
Amortized bootstrapping revisited: Simpler,
asymptotically-faster, implemented

Antonio Guimarães1 , Hilder V. L. Pereira1 , and Barry van Leeuwen2

1 Institute of Computing – University of Campinas, Brazil⋆ ⋆ ⋆,
2 COSIC, KU Leuven, Leuven, Belgium.†

antonio.guimaraes@ic.unicamp.br,

hilder@ic.unicamp.br,

barry.vanleeuwen@kuleuven.be

Abstract. Micciancio and Sorrel (ICALP 2018) proposed a bootstrapping algorithm that can refresh
many messages at once with sublinearly many homomorphic operations per message. However, despite
the attractive asymptotic cost, it is unclear if their algorithm could ever be practical, which reduces the
impact of their results. In this work, we follow their general framework, but propose an amortized boot-
strapping procedure that is conceptually simpler and asymptotically cheaper. We reduce the number of
homomorphic multiplications per refreshed message from O(3ρ ·n1/ρ · logn) to O(ρ ·n1/ρ), and the noise

overhead from Õ(n2+3·ρ) to Õ(n1+ρ), where n is the security level and ρ ≥ 1 is a free parameter. We
also make it more general, by handling non-binary messages and applying programmable bootstrap-
ping. To obtain a concrete instantiation of our bootstrapping algorithm, we describe a double-CRT
(aka RNS) version of the GSW scheme, including a new operation, called shrinking, used to speed-up
homomorphic operations by reducing the dimension and ciphertext modulus of the ciphertexts. We also
provide a C++ implementation of our algorithm, thus showing for the first time the practicability of
the amortized bootstrapping. Moreover, it is competitive with existing bootstrapping algorithms, being
even around 3.4 times faster than an equivalent non-amortized version of our bootstrapping.

1 Introduction

Since the introduction of the first Fully Homomorphic Encryption (FHE) scheme, by Gentry [16],
there has been a quest to improve the efficiency and the security of FHE. The main efficiency
bottleneck of any FHE scheme is the bootstrapping operation that refreshes the ciphertexts after
being involved in a few homomorphic operations, allowing us to perform further operations on
them. Hence, most works aiming to make FHE more efficient direct their efforts towards designing
faster bootstrapping. For this goal, there are two main strategies:

Heavy-packed bootstrapping tries to pack several messages into a “large” ciphertext. This makes
bootstrapping complex and very costly, but refreshes several messages at once, with the aim for
the amortized cost per message to be low. This type of bootstrapping was proposed for many
schemes, [11,15,10,17], obtaining good amortized costs, however these schemes generally were not
very efficient regarding noise management, thus, their bootstrapping algorithms often incur quasi-
polynomial noise growth. This implies that their security is based on worst-case lattice problems
with superpolynomial approximation factors. Ideally, we would like to have FHE with assumptions
identical to general lattice-based public-key encryption, which assumes worst-case lattice problems
with polynomial approximation factors only.

⋆ ⋆ ⋆ This paper was mainly written while Hilder V. L. Pereira was in COSIC, KU Leuven.
† Please, notice that van Leeuwen is the family name of the third author, thus, instead of [GPL23], the correct
acronym for citing this paper would be [GPV23] or maybe [GPvL23].

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760
https://orcid.org/0000-0002-3792-4042

Table 1: Comparison of number of homomorphic operations and noise growth of bootstrapping
algorithms of different schemes based on worst-case lattice problems with polynomial approximation
factor. The notation Õ hides polylogarithmic factors in n.

Scheme Total cost Messages Amortized cost Noise overhead

[14] Õ(n) 1 Õ(n) Õ(n1.5)

[12] O(n) 1 O(n) Õ(n)

[29] Õ(3ρ · n1+1/ρ) O(n) Õ(3ρ · n1/ρ) Õ(n2+3·ρ)

This work O(ρ · n1+1/ρ) O(n) O(ρ · n1/ρ) Õ(n1+ρ)

On the other front, fast single message bootstrapping encrypts a single message into a “small”
ciphertext, hugely simplifying the bootstrapping. The aim here is to execute it much faster, in
many cases in a few milliseconds on a common commercial computer [14,12,32,8]. The downside
now is the need for one bootstrapping per gate of the circuit being evaluated homomorphically and,
since each bootstrapping refreshes a single message, the amortized cost is still high. However, this
bootstrapping strategy does attain a polynomial noise overhead, achieving the ideal assumption
base: worst-case lattice problems with polynomial approximation factors.

Then, in [29], Micciancio and Sorrell try to obtain the advantages of these two approaches, by
proposing a bootstrapping algorithm that follows the blueprint of [14], but packs several messages
into a single ciphertext to amortize the cost of the bootstrapping. Therewith, they obtain the first
FHE scheme whose security is based on the hardness of worst-case lattice problems with polynomial
approximation factors that at the same time is bootstrappable with amortized sublinearly many
homomorphic operations. Their main idea is to describe the bootstrapping as a polynomial multipli-
cation, then to evaluate it homomorphically using some fast polynomial multiplication algorithm.
Due to the limitations of the functions one can evaluate homomorphically, they cannot simply
evaluate a Fast Fourier Transform, thus, they adapt the Nussbaumer Transform [31] to work over
power-of-three cyclotomic rings, then use it in their algorithm to bootstrap O(n) messages in time
Õ(3ρ ·n1+1/ρ), where ρ is a free parameter. Note that the Õ-notation hides polylogarithmic factors
on n. Therefore, their amortized cost is only Õ(3ρ · n1/ρ) homomorphic operations per message.

Following the blueprint of [29], we propose a simpler and more efficient amortized bootstrap-
ping. Our first contribution is to remove the Nussbaumer Transform, replacing it by a standard
(homomorphic) Number Theoretic Transform (NTT). By doing so we make the whole bootstrap-
ping algorithm more straightforward and gain important asymptotic factors decreasing the number
of homomorphic operations per message from O(3ρ · n1/ρ · log n) to O(ρ · n1/ρ), and the noise in-
troduced by the bootstrapping from Õ(n2+3ρ) to Õ(n1+ρ). Moreover, instead of just bits, we can
handle n messages in Zt, for small t. This also means that we support programmable bootstrap-
ping, reducing the noise and simultaneously applying any function f : Zt → Zt to the message. In
Table 1, we present a comparison of our work with previous ones.

Although [29] obtains a significant asymptotic improvement over previous works, it is unclear
how (in)efficient it would be in practice, since the hidden constants are hard to estimate. Thus, as
a second contribution, we present a concrete instantiation of our method. For this, we formalize
a double-CRT (RNS) variant of the GSW scheme [18], including a new operation, called shrink-
ing, that allows to efficiently reduce the ciphertext size, and thus, the cost of the homomorphic
operations, as the noise grows. This also allows us to present a concrete cost analysis, in terms of

2

polynomial multiplications (or NTTs), which gives us a much better idea of the practical cost of
the amortized bootstrapping and makes it easier to compare with other works, since the number
of times that the NTT is executed is already used to estimate the cost of several previous schemes,
such as [14,12,8].

Finally, we also implemented our bootstrapping in C++ and made it publicly available,3 thus,
presenting the first implementation of amortized and providing baseline running times and memory
usage for this type of bootstrapping, showing that such a scheme is feasible in practice with running
times comparable to some existing schemes.

1.1 Overview of the amortized bootstrapping from [29]

The bootstrapping strategy of [3], improved and made practical in [14], works as follows: the whole
FHE scheme is organized in two layers, each one composed by one homomorphic scheme. The base
scheme is an LWE-based scheme that can perform very limited number of homomorphic operations,
then has to be bootstrapped. Then the second scheme, called the accumulator, is used to evaluate
the decryption of the base scheme homomorphically, i.e., to bootstrap it. For the accumulator, one
uses the GSW scheme [18] instantiated with the RLWE problem, so that it can encrypt polynomials.
Because of the slow noise growth of GSW, the noise overhead of the bootstrapping is just polynomial
in the security parameter. Essentially, to decrypt an LWE ciphertext c, one has to multiply it by
the secret key s. Thus, starting with GSW encryptions of powers of X with the secret key in the
exponent, i.e., Xsi , the GSW homomorphic multiplications are used to compute

∏n
i=0X

ci·si = Xc·s.
Finally, there is an extraction procedure that maps this power of X to the message encrypted by
c. Notice that the bootstrapping costs Õ(n) homomorphic operations, more specifically, GSW
multiplications.

The main idea of [29] is to combine O(n) LWE ciphertexts into one single RLWE ciphertext
c ∈ R2 encrypting O(n) messages. Then, because the secret is a polynomial s instead of a vector,
decrypting c now boils down to performing a polynomial multiplication on R, which can be done
in time O(n · log n) via standard techniques, such as the Fast Fourier Transform (FFT). Thus, if
one could use the accumulator to evaluate an FFT, the amortized cost of such bootstrapping would
be only O(log n) homomorphic operations per message. However, due to limitations in the noise
growth of this bootstrapping strategy, it is not possible to evaluate all the O(log n) recursive levels
of the FFT. Thus, [29] sets the recursion level as a parameter ρ.

Moreover, since the GSW scheme is instantiated over the ring R := Z[X]/⟨XN+1⟩ and working
only with powers of X, whose order is 2N in R, there is a limited set linear operations over Z2N

available as homomorphic operations. So, for example, we cannot take an encryption of (X to the
power of) m and produce an encryption of −m or of m−1. Therefore, [29] cannot evaluate an FFT.
To overcome this limitation, they pack the LWE ciphertexts into an RLWE ciphertext defined over
a power-of-three cyclotomic ring, i.e., defined modulo Φ3k(X) = 2 · 3k−1 + 3k−1 + 1, and adapt the
Nussbaumer transform to replace the FFT and perform polynomial multiplications modulo Φ3k(X).
The radix-r Nussbaumer transform works as the FFT, by dividing the input by r in each recursive
level. However, in their adapted algorithm, there is an expansion by 3, i.e., they obtain r inputs of
length 3n/r instead of length n/r. Since this expansion happens in all recursive levels, the factor 3
accumulates exponentially and, at the end, their bootstrapping costs Õ(3ρ · n1+1/ρ) homomorphic
operations and the noise introduced by the bootstrapping is Õ(n2+3·ρ).

3 GitHub repository: https://github.com/antoniocgj/Amortized-Bootstrapping

3

https://github.com/antoniocgj/Amortized-Bootstrapping

1.2 Overview of our contributions and techniques

Simpler and more efficient amortized bootstrapping Micciancio and Sorrell accepted that
the accumulator constructed with GSW just provides a limited set of operations over Z2N , where
N is a power of two, and tried to adapt the fast polynomial multiplication algorithms to work with
that instruction set. We diverge from this by trying to adapt the accumulator to the algorithm we
want to evaluate, instead of vice versa. As the Number Theoretic Transform (NTT) is the algorithm
of choice to perform multiplications modulo XN +1 our goal is to obtain an accumulator that can
evaluate NTTs.

To obtain that, we use the results from [7] to instantiate the GSW scheme modulo Xp − 1,
where p is a prime number, but with security based on the RLWE problem. This gives us an
equivalent instruction set of [29], but over Zp. Then, we set p ≡ 1 (mod 2N), so that we have
a 2N -root of unity in Zp and the NTT of dimension N is well-defined. Then, we extend recent
results about using automorphisms on bootstrapping algorithms [7,24] to the GSW scheme, which
expands the instruction set of our accumulator. In Table 2, we compare both accumulators. Putting
it all together we obtain a GSW-based accumulator that allows us to homomorphically evaluate a
standard NTT. The only limitation that remains is that the noise overhead of the bootstrapping
is still exponential in the number of recursive levels of the NTT, hence restricting to ρ recursive
levels as in [29], guarantees that the noise overhead remains polynomial in N .

With a more powerful accumulator, the bootstrapping algorithm becomes much simpler, as its
main step is essentially the same as a well-known NTT. Moreover, there is no longer the expansion
by 3 within the recursions, which allows us to save a factor of 3ρ in the time complexity and to
reduce the noise overhead from Õ(n2+3·ρ) to Õ(n1+ρ).

Additionally, our accumulator also allows us to replace the algorithm used in [29] to perform
the entry-wise vector multiplication in the FFT domain, called SlowMult, by a cheaper and simpler
procedure, which yields an additional gain of a log n factor. Therefore, we reduce the number of
homomorphic operations from O(3ρ · n1+1/ρ · log n) in [29] to O(ρ · n1+1/ρ). In Figure 1, we present
the main steps of our bootstrapping.

High noise

[m1]

...

[mn]

... Packing [∑
mi ·Xi

] Homomorphic
inverse
NTT

...

[
Xm1+e1

]
...[

Xmn+en
]... Message

extraction

...

[f1(m1)]

...

[fn(mn)]

Low noise

Fig. 1: Main building blocks of our amortized bootstrapping. First we pack high-noise ciphertexts
into a single ciphertext encrypting a polynomial with original messages as the coefficients. Then
we evaluate the NTT homomorphically, obtaining encryptions of powers of X having the messages
plus restricted noise in the exponent. Finally, we execute a message extraction procedure, removing
the noise terms and applying any set of desired functions to the messages.

4

Table 2: Comparison of the accumulator proposed in [29] and ours. The notation [a] means en-
cryption of (X to the power of) a. Negation is not natively supported by [29], thus, for any message
m, they actually encrypt (m,−m), which requires two ciphertexts. Negation is then implemented by
swapping the ciphertexts so that they encrypt (−m,m). However this doubles the memory and time
of all their operations.

Variable
type

Size of
enc.
message

Available operations

[a], [b] 7→ [a+ b] [a] 7→ [−a] [a], w 7→ [a · w]
Key

switch-
ing

Shrinking

[29] Z2k

2 GSW
cipher-
texts

*

Ours
Zp,

prime p

1 GSW
cipher-
text

Double-CRT version of GSW FHE schemes implementing single-message bootstrapping, such
as [14,12,8], can use very small parameters when compared to other FHE schemes thanks to the
almost linear noise overhead of the bootstrapping. In particular, the ciphertext modulus, Q, is
typically an integer between 232 and 264. Since all homomorphic operations are defined modulo Q,
these schemes can be implemented using native integer types of most CPUs.

For other schemes the ciphertext modulus, Q, is much larger, normally with more than one
thousand bits. Thus, implementing the operations modulo Q requires more care: one represents Q
as a product of small primes qi’s, e.g., with 32 bits, then uses the Chinese Remainder Theorem
(CRT) to express operations modulo Q as independent operations modulo each qi, allowing the use
of native integer types again. As all the polynomials composing ciphertexts are stored in the FFT
domain and the FFT can be seen as a type of CRT, this representation is often called Double-
CRT [21] or, alternatively, RNS representation [20].

Since the amortized bootstrapping has at least quadratic noise overhead, it also typically requires
Q with more bits than native types of CPUs. Therefore, to obtain a practical implementation, we
formally describe a double-CRT version of the accumulator, i.e. the GSW scheme 4 , including all
common operations already existing for GSW, such as homomorphic multiplication and external
product, and new operations, like Galois automorphisms and key switchings.

One optimization that is commonly used for GSW is to ignore least significant bits of the ci-
phertexts during the multiplications, as they correspond to the noise of the RLWE samples, i.e.,
approximate deomposition in the TFHE scheme [12]. However, in the double-CRT representation,
as there is no notion of least significant bits, this technique no longer applies. Thus, we propose a
ciphertext shrinking, which introduces the implementation of approximate gadget decompositions
over the double-CRT representation. It takes a GSW ciphertext, which is a 2d × 2 matrix where
each entry is a polynomial modulo Q, and outputs another GSW ciphertext as a 2d′ × 2 matrix
and defined modulo Q′, where d′ < d and Q′ < Q, with basically the same relative noise. Reduc-

4 A double-CRT version of GSW is implemented in the Lattigo library, but there is no formal description and
analysis of the scheme. Moreover, it only includes external products.

5

ing simultaneously d and Q enables a cubic performance improvement in all core homomorphic
operations.

We notice that any protocol or scheme that uses GSW can benefit from our new homomorphic
operations, thus, this contribution is of independent interest.

Thanks to this low-level description of the GSW scheme, we estimate the cost of our amortized
bootstrapping concretely in terms of NTTs and integer (modular) multiplications. This simpli-
fies the comparison with other bootstrapping strategies and also clarifies the practicability of the
amortized bootstrapping.

Proof-of-concept implementation in C++ We provide the first implementation of a bootstrap-
ping algorithm for FHE based on the worst-case hardness of lattice problems and with polynomial
approximation factors with amortized sublinearly many homomorphic operations. We show that
our construction is practical, being up to 3.4 times faster than the non-packed approach we tested.

Our source code is publicly available, since we believe that this can help the academic community
to understand our techniques and also simplify comparisons in future works. We stress that the
description of [29] is very high level and also that any implementation of their bootstrapping must
be far from practical, even if our double-CRT GSW scheme is used, due to all the hidden constants
in the asymptotic costs. Thus, one could reasonably wonder if the amortized bootstrapping would
ever be practically feasible, and our algorithms together with our implementation provide a positive
answer.

2 Preliminaries

For a1, ..., ak,m1, ...,mk ∈ Z, with mi’s being pairwise coprime, let M =
∏k

i=1mi and define
CRTm1,...,mk

(a1, ..., ak) as the unique a ∈ ZM such that ai = a mod mi. Also, for any a ∈ ZM ,
define CRT−1

m1,...,mk
(a) = (a mod m1, ..., a mod mk). For an element a(X) of any polynomial ring of

the form Z[X]/⟨f(X)⟩, we extend CRT and CRT−1 by applying it coefficient wise.

For any vector u, we denote the infinity norm by ∥u∥ and the Euclidean norm by ∥u∥2. For
any polynomial a =

∑d
i=0 ai · Xi, we define the norm of a as the norm of the coefficient vector

(a0, ..., ad). If a is an element of a polynomial ring like Z[X]/⟨f(X)⟩, we consider a′ ∈ Z[X] as the
unique canonical representation of a, and thus the norm of a is simply the norm of a′.

Rings We use power-of-two cyclotomic rings of the form Z[X]/⟨XN + 1⟩, where N = 2k for some
k ∈ N, which we denote by R̂, and circulant rings of the form Z[X]/⟨Xp − 1⟩, for some prime
number p, which we denote by R̃. For any positive integer Q, we define R̂Q := R̂/(QR̂) and
R̃Q := R̃/(QR̃), i.e., the same rings as before but with coefficients of the elements reduced modulo
Q.

Plain, ring and circulant LWE In the well-known learning with errors problem (LWE) [33] with
parameters n, q, and σ, an attacker has to find a secret vector s ∈ Zn given many samples of the
form (ai, bi), where ai is uniformly sampled from Zn

q and bi := ai · s+ ei mod q, with ei following a
discrete Gaussian distribution with parameter σ.

The ring version of LWE, known as RLWE [27], is used to obtain more efficient cryptographic
schemes, since it typically allows us to encrypt larger messages when compared to similar schemes

6

instantiated with LWE. In the RLWE we fix the ring R = Z[X]/⟨Φm(X)⟩, where Φm(X) is the
m-th cyclotomic ring, and we are given samples of the form (ai, bi), where ai is uniformly sampled
from Rq and bi := ai · s + ei mod q, for some small noise term ei, and we have to find the secret
polynomial s. Most schemes are constructed on top of the RLWE problem with a power-of-two
cyclotomic polynomial, Φ2N (X) = XN + 1, where N = 2k for some k ∈ N∗.

In this work, we also use a variant of the LWE called circulant-LWE (CLWE), which was
introduced in [7] and was proved to be as hard as the RLWE on prime-order cyclotomic polynomials.
Hence, we restrict ourselves to prime p. Instead of using the ring R = Z[X]/⟨Φp(X)⟩ we use the
“circulant ring” R̃ = Z[X]/⟨Xp − 1⟩. Then CLWE samples are obtained essentially by projecting
RLWE samples from R to R̃. This is done by fixing some integer Q prime with p and by defining
the map LQ : RQ → R̃Q as

LQ :

p−1∑
i=0

ai ·Xi 7→
p−1∑
i=0

ai ·Xi − p−1 ·

(
p−1∑
i=0

ai

)
·
p−1∑
i=0

Xi mod Q

Finally, given an RLWE sample (a′, b′ = a′ · s′ + e′) ∈ R2
Q, we define the corresponding CLWE

sample as (a, b) := (LQ(a
′), LQ((1−X) · b′)) ∈ R̃2

Q. Thanks to the homomorphic properties of LQ,
we have b = a ·s+e mod Q, where e = LQ((1−X) ·e′) is a small noise term and s = LQ((1−X) ·s′)
is the CLWE secret. Then, using the CLWE problem, the GSW instantiated over the circulant ring
R̃ is CPA-secure if the message space is restricted to powers of X, that is, if one just encrypts
Xk ∈ R̃ for k ∈ Z [7].

In Section 3.5, we extend the results [7] so that we can also encrypt non-powers of X (un-
der some conditions), as this is needed in our bootstrapping algorithm, especially, to use Galois
automorphisms on GSW ciphertexts.

Subgaussian distributions and independence heuristic A random variable X is subgaus-
sian with parameter σ > 0, in short σ-subgaussian, if for all t ∈ R it holds that E[exp(2πtX)] ≤
exp(πσ2t2). If X is σ-subgaussian, then ∀t ∈ R, Pr[|X| ≥ t] ≤ 2 exp(−πt2/σ2). This allows one
to bound the absolute value of X with overwhelming probability. Namely, by setting t = σ

√
λ/π,

we see that Pr[|X| ≥ σ
√
λ/π] ≤ 2 exp(−π(s

√
λ/π)2/s2) = 2 exp(−λ) < 2−λ. Linear combina-

tions of independently distributed subgaussians are again subgaussians, i.e., given independent
σi-subgaussian distributions Xi’s, then for any c = (c1, ..., cn) ∈ Rn, it holds that Y :=

∑n
i=1 ciXi

is
(√∑n

i=1 c
2
iσ

2
i

)
-subgaussian. We say that a polynomial a is σ-subgaussian if its coefficients are in-

dependent σi-subgaussian, with σi ≤ σ. For any n ∈ N∗, given f equal to Xn±1 and a, b ∈ Z[X]/⟨f⟩
following subgaussians with parameters σa and σb, we assume the independence heuristic, i.e. the
coefficients of the noise terms of the LWE, RLWE, and CLWE samples appearing in the linear combi-
nations we consider are independent and concentrated, to say that a ·b is (

√
n · σa · σb)-subgaussian.

Double-CRT (RNS) representation for polynomial arithmetic Homomorphic operations
of commonly used FHE schemes are composed of some operations over polynomial rings RQ =
ZQ[X]/⟨f(X)⟩, where f(X) is a degree-N polynomial over ZQ[X]. Here, we suppose that f(X) =
XN + 1 or f(X) = XN − 1. Because Q generally has much more than 64 bits, working with
elements of RQ requires libraries that implement arbitrary precision integers, which is inefficient.
To overcome this the residual number system (RNS), aka double-CRT, is typically used. It exploits

7

the decomposition of Q to work with several polynomials modulo each qi, which then fit in the 32-
or 64-bit native integer types of current processors.

In more detail, because Q =
∏ℓ

i=1 qi, by using the Chinese remainder theorem coefficient-wise
we have

RQ = ZQ[X]/⟨f(X)⟩ =
ℓ∏

i=1

Zqi [X]/⟨f(X)⟩

Thus, additions and multiplications over RQ can be implemented with ℓ independent operations
over Rqi . Moreover, since efficiently multiplying polynomials modulo f(X) requires fast Fourier
transforms or number-theoretic transforms (NTT), one goes one step forward and represents el-
ements of Rqi in the “NTT form”, i.e., given a(X) ∈ RQ, one stores the matrix Mat(a) ∈ Zℓ×N

defined as rowi(Mat(a)) := NTTqi(a(X)). Notice that we need to choose qi such that a suitable
primitive root of unity ωi ∈ Zqi exists.

So, given a(X) ∈ RQ, we store the matrix

Mat(a) :=

NTTqi(a mod qi)
...

NTTqℓ(a mod qℓ)

 =

a1,0 . . . a1,N−1
...

. . .
...

aℓ,0 . . . aℓ,N−1

 ∈ Zℓ×N

With this representation each addition and multiplication over RQ is implemented with point-
wise operations of the corresponding matrices. For example, a · b ∈ RQ is

Mat(a)⊙ Mat(b) =

a1,0 · b1,0 . . . a1,N−1 · b1,N−1
...

. . .
...

aℓ,0 · bℓ,0 . . . aℓ,N−1 · bℓ,N−1

 ∈ Zℓ×N

where the operations in the i-th row are performed modulo qi.

Cost of operations in double-CRT representation: We estimate the cost of our algorithms by the
number of NTTs and multiplications performed modulo the small primes qi’s. We assume that all
those primes have about the same bit length, thus, operations modulo any of them cost essentially
the same. Moreover, we assume that a forward and a backward NTT modulo qi have the same cost,
thus, we do not distinguish them in our cost estimations.

Base extension In some situations, we may want to operate on polynomials defined modulo
different values Q and D. To do this we need to represent both operands on a common modulus
with an operation called base extension.

For simplicity, let’s assume that D =
∏w

i=1 di divides Q so that we have Q = P · D for some
P =

∏v
i=1 pi. Then, given a ∈ RQ and b ∈ RD, both in double-CRT form, we want to lift b to RQ.

This is done by reconstructing each coefficient of b modulo D, then reducing them modulo each
pi. However, to avoid arbitrary precision integers we try to reconstruct bi ∈ ZD already performing
all the operations modulo the pi’s. This means that the conversion is not exact and we obtain
[bi]D + ui ·D in base P with |ui| ≤ 1/2 instead of exactly [bi]D. So, overall we have the residues of
[b(X)]D + u(X) ·D in the basis P ·D, with ∥u(X)∥∞ ≤ 1/2 [23].

8

For completeness, we show this operation in detail in Appendix C. It costs v + w NTTs and
O(v · w ·N) modular multiplications, and it is defined as follows:

FastBaseExtension(b,D, P) :=

 w∑
j=1

[
b · (D/dj)−1

]
dj

· (D/dj) mod pi

v

i=1

Gadget matrix Consider three positive integers Q, B, and d such that d ∈ O(logQ). Let g be a
d-dimensional column vector, I2 be the 2× 2 identity matrix, and ⊗ denote the Kronecker tensor
product. We say that G = I2 ⊗ g ∈ Z2d×2 is a gadget matrix for the base g with quality B if
there is an efficient decomposition algorithm G−1 : Z2

Q → Z2×2d such that, if A = G−1(a, b), then

∥A∥∞ ≤ B and A · G = (a, b) mod Q. We naturally extend G−1 to a polynomial ring of the
form RQ = ZQ[X]/⟨f(X)⟩ by applying G−1 coefficientwise. That is, given (a, b) ∈ R2

Q, we define

G−1(a, b) =
∑deg f−1

i=0 G−1(ai, bi) ·Xi. We also extend G−1 to matrices C ∈ R2d×2
Q by applying it to

each row. Thus, for C ∈ R2d×2
Q , we have G−1(C) ∈ R2d×2d.

The main example of a gadget matrix is the one defined by some base B ∈ Z, which corresponds
to d = ⌈logB(Q)⌉, g = (B0, B1, ..., Bd−1)T , and quality B. For instance, if B = 2, then G−1(a, b) =
(a0, ..., ad−1, b0, ..., bd−1), where ai’s and bi’s are the bits of a and b, respectively.

The CRT-gadget decomposition is of central importance in our double-CRT GSW scheme,
presented in Section 3, and it is defined as follows. Let q1, ..., qℓ be prime numbers and Q :=

∏ℓ
i=1 qi.

Let d ∈ N be the “number of digits”. For simplicity, assume that d|ℓ and define k := ℓ/d ∈ Z. Then,
for 1 ≤ i ≤ d, define the i-th “CRT digit” as Di :=

∏i·k
j=(i−1)·k+1 qi, that is, a product of k

consecutive primes. Finally, define Qi := Q/Di and Q̂i := (Q/Di)
−1 mod Di. Then the gadget

matrix is G = I2 ⊗ g ∈ Z2d×2 where g := (Q1 · Q̂1, ..., Qd · Q̂d). More explicitly,

G =

Q1 · Q̂1 0
...

...

Qd · Q̂d 0

0 Q1 · Q̂1
...

...

0 Qd · Q̂d

∈ Z2d×2.

Then we define G−1(a, b) := (CRT−1
D1,...,Dd

(a),CRT−1
D1,...,Dd

(b)). It follows that G−1(a, b) · G =

(a, b) mod Q. Moreover, since each entry of G−1(a, b) is of the form a mod Di or b mod Di, we see
that the quality of this gadget matrix is D := max (D1, ..., Dd).

Because of the ciphertext shrinking that we present in Section 3, we need a more general
definition of gadget matrices, which includes an integer scaling factor. Namely, we say that Gα is
a scaled gadget matrix with factor α if G−1(α−1 · a, α−1 · b) ·Gα = (a, b), in other words, we have
to multiply the input (a, b) by the inverse of α modulo Q before decomposing it.

Basic encryption schemes based on LWE, RLWE, and CLWE We define the set of LWE
encryptions of a message m ∈ Zt, where t ≥ 2, under a secret key s ∈ Zn, with E-subgaussian noise
and scaling factor ∆ ∈ Z as

LWEQ
s (∆ ·m,E) := {(a, b) ∈ Zn+1

Q : b = [a · s+ e+∆ ·m]Q where e is E-subgaussian }.

9

For a power-of-two cyclotomic polynomial R̂, the set of RLWE ciphertexts encrypting a message
m ∈ R̂, with scaling factor ∆ ∈ N, under a secret key s, and with E-subgaussian noise is

R̂QLWEs(∆ ·m,E) := {(a, b) ∈ R̂2
Q : b = [a · s+ e+∆ ·m]Q where e is E-subgaussian }.

Basically the same definition applies to CLWE ciphertexts:

R̃QLWEs(∆ ·m,E) := {(a, b) ∈ R̃2
Q : b = [a · s+ e+∆ ·m]Q where e is E-subgaussian }.

In any of the three types of ciphertexts, the decryption is done by multiplying the term a (or a)
by the secret key and subtracting it from b modulo Q, which produces e′ = e+∆ ·m mod Q, then
we output ⌊e′/∆⌉ mod t. If ∥e′ −∆ ·m∥ < Q/(2t), then the decryption correctly outputs m mod t.

Common homomorphic operations Generally, FHE schemes allow us to add and multiply
ciphertexts homomorphically. In this section we briefly show a list of other common homomorphic
operations that apply to RLWE and that will be used here on both RLWE and CLWE ciphertexts.
Readers not familiar with them can read Appendix D for a detailed description.

– Modulus switching : takes a ciphertext c = (a, b) ∈ RLWEs,Q(m,E), where Q =
∏ℓ−1

i=0 qi,
and prime q diving Q, and outputs c′ ∈ RLWEs,Q′(m,E′), where Q′ = Q/q and E′ ≤√

(E/q)2 + ∥s∥22 /2. Moreover, it costs 2ℓ NTTs and O(kℓN) multiplications on Zqi .

– Key switching : takes as input a ciphertext c = (a, b) ∈ R̃QLWEz(∆ ·m,E) and a key-switching
key K ∈ R̃QKS

d
s(z, Ek), both in double-CRT form. It outputs c′ ∈ R̃QLWEs(∆ ·m,E′), where

E′ ≤ O(
√
E2 + dp ·D2 · E2

k), with D = max(D1, ..., Dd). Moreover, it costs d · ℓ NTTs and

O(ℓ2 · p) products on Zqi .
– Automorphism: it takes c = (a, b) ∈ R̃QLWEs(∆ ·m,E), u ∈ Zp, and K ∈ R̃QKS

d
s(s(X

u), Ek)
as input. It outputs c′ ∈ R̃QLWEs(∆ ·m(Xu), E′). The noise growth and the cost are the same
as the ones of the key switching.

Ring Packing In [29], Micciancio and Sorrell present a ring packing method to transform a set
of N LWE samples (ai, bi := ai · s + ei +∆µi) ∈ Zn+1

Q into a single RLWE ciphertext encrypting

µ =
∑N−1

i=0 µi ·Xi. To do so, they define a “packing key” composed of n · L RLWE ciphertexts as

K := (a,b := a · z + e+G · s) ∈ R̂n·L×2
Q

where L := ⌈logB(Q)⌉ and G = In ⊗ (B0, ..., Bℓ−1)T ∈ Zn·L×n is a gadget matrix such that
g−1(u)G = u for any u ∈ Zn

Q. We show this packing procedure in detail in Appendix E. Note that

it requires O(n · L) multiplications on R̂Q.

3 Double-CRT GSW encryption scheme

In this section, we formalize a double-CRT version of the GSW scheme supporting all the standard
operations, like the external product and homomorphic multiplication. We also present two key
switching algorithms for GSW, making it possible to evaluate automorphisms on GSW ciphertexts.
Moreover, we also include a new operation, which we call shrinking.

10

We present our scheme over the circulant ring R̃ := Z[X]/⟨Xp − 1⟩, where p is prime, and
base its security on the circulant-LWE problem. Moreover, since our main goal is to use the GSW
scheme to run the amortized bootstrapping, we just define the encryption function to powers of
X and do not present the decryption. We stress that is trivial to adapt our scheme to the usual
RLWE problem using power-of-two cyclotomic rings and encrypting other types of messages.

We define the GSW ciphertexts in a more general way, by including a correction factor α ∈ Z,
which is introduced by the shrinking operation. In more detail, the set of GSW encryptions m with
a scaling factor α is denoted by R̃QGSW

d
s(α ·m). Any element of this set has the form

C = [a | a · s+ e] +m ·Gα ∈ R̃2d×2
Q ,

where s ∈ R̃ is the secret key, e ∈ R̃2d is the noise term, and Gα is the scaled gadget matrix, as
described in Section 2. We can write R̃QGSW

d
s(α ·m,E) to specify that e is E-subgaussian.

Saying that C is in double-CRT form means that each entry ci,j ∈ R̃Q is stored as Mat(ci,j), as
described in Section 2.

– GSW.ParamGen(1λ): Choose a prime number p, standard deviations σerr, σsk ∈ R, and an integer
Q :=

∏ℓ
i=1 qi, where q1, ..., qℓ are small primes (say, with 32 bits), such that the (p,Q, σerr, σsk)-

RLWE problem offers us λ bits of security. Moreover, p and Q must be coprime.
Let d ∈ N be the “number of CRT digits”. For simplicity, assume that d|ℓ and let u := ℓ/d ∈ Z.
Then, for 1 ≤ i ≤ d, define each “CRT digit” as Di :=

∏i·u
j=(i−1)·u+1 qi, that is, a product of u

consecutive primes. Output params = (p,Q, σerr, σsk, d, {qi}ℓi=1, {Di}di=1).
– GSW.KeyGen(params): Sample s̄0, ..., s̄p−1 following a discrete Gaussian over Z with parameter

σsk. Let s̄ =
∑p−1

i=0 s̄i ·Xi then project s̄ as s := L((1−X)s̄) ∈ R̃. Output sk := (s, s̄).
– GSW.Enc(µ, sk): To encrypt µ ∈ Zp, generate a matrix V ∈ R̃2d×2

Q where each row is a sample
from the Circulant-LWE distribution with secret s and noise terms following a discrete Gaussian
with parameter σerr. Output V +Xµ ·G ∈ R̃QGSW

d
s(1 ·Xµ).

Lemma 1 (Security of GSW). If the decisional (p,Q, σerr, σsk)-RLWE problem is hard, then the
GSW scheme over the circulant ring R̃ is CPA-secure for messages of the form Xk.

Proof. Lemma 4 of [7].

We now present the homomorphic operations that can be performed with GSW.

3.1 Shrinking gadget matrices

We begin by defining a new operation called shrinking, whose main purpose is to reduce the size of
ciphertexts. Let Q,Qi, Q̂i, and D be as in Section 2. Also, let α ∈ ZQ and αi := α mod Di. Then,
the scaled gadget matrix is

Gα =

Q1 · Q̂1 · α1 0
... 0

Qd · Q̂d · αd 0

0 Q1 · Q̂1 · α1
...

...

0 Qd · Q̂d · αd

∈ Z2d×2.

11

Notice that each CRT digit Di defines two rows of Gα. Ideally, we would choose k digits, say,
D1, ..., Dk, remove the two 2k rows corresponding to them, and obtain a new gadget matrix with
respect to the digits Dk+1, ..., Dd. However, by doing so, we obtain a scaled gadget matrix Gβ with
respect to a new scaling factor β.

For this shrinking operation, we define the projection πk : R2d×2
Q → R2(d−k)×2

Q as the function
that takes a matrix C and outputs C′ such that for 1 ≤ i ≤ d− k, rowi(C

′) := rowi+k(C) and
rowd−k+i(C

′) := rowi+d+k(C). Then we divide the result by D(k) := D1 · ... ·Dk, and compute the
new scaling factor β. This procedure is shown in detail in Algorithm 1. In Lemma 2, we prove its
correctness.

Algorithm 1: Shrink matrix

Input: C ∈ R2d×2
Q , CRT digits D1, ..., Dd, a scaling factor α, and k ∈ Z such that 1 ≤ k < d.

Output: C′ ∈ R2(d−k)×2

Q′ and α′ ∈ Z.
1 D(k) := D1 · ... ·Dk

2 Q′ := Q/D(k)

3 C̄ := πk(C)

4 C′ := C̄/D(k) mod Q′

5 α′ := α · CRTDk+1,...,Dd(D
(k))−1 mod Q′.

6 return C′, α′

Lemma 2. Let Q :=
∏d

i=1Di for coprime Di’s and k be an integer such that 1 ≤ k < d. Define
Q′ := Q/(D1 · ... · Dk). Then, given a scaled gadget matrix Gα with respect to the CRT basis
D1, ..., Dd, Algorithm 1 outputs G′ ∈ Z2(d−k)×2 and α′ ∈ Z such that CRT−1(a, b) ·G′ = α′ · (a, b)
mod Q′, for any (a, b) ∈ R2

Q′, where CRT−1 is the decomposition with respect to Dk+1, ..., Dd.

Proof. Presented in Appendix F.1.

3.2 Shrinking a ciphertext

Let C = [a | a · s + e] +m ·Gα ∈ R̃2d×2 be an encryption of m with scaling factor α. We define
the operation GSW.Shrink(C, k) essentially by applying Algorithm 1 to C, except that dividing

C̄ ∈ R̃2(d−k)×2
Q by D(k) is done by applying the modulus switching to every row of C̄. This is

necessary because we are assuming that C is stored in double-CRT form. We show this procedure
in detail in Algorithm 2 and prove its correctness in Lemma 3.

Lemma 3 (Correctness and cost of ciphertext shrinking). Let C ∈ R̃QGSW
d
s(α · m,E),

k ∈ N∗ such that k < d, and C′, α′ be the output of Algorithm 2. Assume that s is S-subgaussian
for some S. Then, C′ ∈ R̃QGSW

d
s(α

′ ·m,E′) with E′ ≤ O(E/D(k) +
√
p · S).

Moreover, assuming that each CRT digit Di is a product of ℓ/d primes, the cost of Algorithm 2
is 4 · (d− k) · ℓ NTTs and O(k · ℓ2 · p) multiplications on Zqi.

Proof. Firstly notice that C̄ = πk(C) = πk([a | a ·s+e])+m ·πk(Gα) = [ā | ā ·s+ ē]+m ·D(k) ·Gα′ ,
where ā = πk(a) and ē = πk(e). Thus, each row of C̄ can be seen as an RLWE sample encrypting
∆ · µ, where µ ∈ {m,−s} and ∆ = D(k) · Q′

i · Q̂′
i · α′

i for some i. Thus, ModSwtQ→Q′(rowi(C̄))

12

Algorithm 2: Shrink ciphertext

Input: C ∈ R̃2d×2
Q in double-CRT form, scaling factor α, CRT digits D1, ..., Dd, and k ∈ Z such that

1 ≤ k < d.
Output: C′ ∈ R̃2(d−k)×2

Q′ and new correction factor α′ ∈ Z.
Complexity: 4 · (d− k) · ℓ NTTs and O(k · ℓ2 · p) multiplications on Zqi .
Noise growth: E 7→ O(E/D(k) +

√
p · S)

1 D(k) := D1 · ... ·Dk

2 Q′ := Q/D(k)

3 C̄ := πk(C) ∈ R̃2(d−k)×2

Q′

4 for 1 ≤ i ≤ 2 · (d− k) do
5 ci := ModSwtQ→Q′(rowi(C̄))

6 Define C′ such that rowi(C
′) = ci.

7 β := CRTDk+1,...,Dd(D
(k), ..., D(k))−1 mod Q′.

8 α′ := α · β mod Q′

9 return C′, α′

outputs an RLWE sample encrypting ∆ ·µ/D(k) = Q′
i · Q̂′

i ·α′
i ·µ. Grouping these rows to define C′

gives us C′ = [a′ | a′ · s+ e′] +m ·Gα′ .

To analyze the error growth, first, notice that πk does not increase the noise, thus, ē is
E-subgaussian. Then, the final noise e′ is just provenient from the modulus switching over RLWE
samples with E-subgaussian noise, thus, we have E′ = O(E/D(k) +

√
p · S).

Over the ring R̃Q, one modulus switching to remove u primes out of ℓ costs 2ℓ NTTs andO(u·ℓ·p)
products modulo qi. Since we are removing D(k), which is a product of kℓ/d primes, and we execute
modulus switching 2(d− k) times, in total we need 4(d− k)ℓ NTTs and O(2(d− k) · k · ℓ2 · p/d) =
O(k · ℓ2 · p) multiplications on Zqi .

3.3 External product in RNS representation

The external product is a homomorphic multiplication between a CLWE ciphertext and a GSW
ciphertext. In our case, there is a little difference because we have to take care of the scaling factor
α. Namely, firstly we multiply the CLWE ciphertext by α−1 mod Q before decomposing it with
respect to the scaled gadget matrix Gα, so that the result CLWE ciphertext does not depend on
α. We now present this operation in detail in Algorithm 3 and prove its correctness in Lemma 4.

Lemma 4 (Correctness and cost of external product). On input c ∈ R̃QLWEs(∆ ·m0, E0)
and C ∈ R̃QGSW

d
s(α · m1, E1), Algorithm 3 outputs c′ ∈ R̃QLWEs(∆ · m0 · m1, E

′) where E′ =
O(

√
dp ·D ·E1 +E0) if m1 is a power of X and E′ = O(

√
dp ·D · E1 +

√
p · E0 · ∥m1∥) otherwise.

Moreover, it requires 2 · d · ℓ NTTs and O(ℓ2 · p) products on Zqi.

Proof. Remember that we can write C = [a | a · s + e] +m ·Gα ∈ R̃2d×2
Q for some a ∈ R̃2d

Q and
E-subgaussian e. Let u = (u1, ..., u2d) be the vector defined by the first loop. It is easy to see that
u = G−1(α−1 · c). Therefore, it holds that u ·Gα = c mod Q.

Applying the fast base extension to ui outputs vi = ui + wi where ∥wi∥ ≤ Di/2. Thus, by
defining D := max(D1, ..., Dd), we have v = u+w where ∥w∥ ≤ D/2.

Firstly, we claim that w · Gα = (0, 0) mod Q. Indeed, remember that Qi := Q/Di, Q̂i :=
Q−1

i mod Di, g = (Q1 · Q̂1 · [α]D1 , ..., Qd · Q̂d · [α]Dd
) and Gα = ((g 0)T (0 g)T) ∈ Z2d×2, thus,

13

Algorithm 3: RNS-friendly External product

Input: c ∈ R̃QLWEs(∆ ·m0, E0) and C ∈ R̃QGSW
d
s(α ·m1, E1) both in double-CRT form.

Output: c′ ∈ R̃QLWEs(∆ ·m0 ·m1, E
′)

Complexity: 2 · d · ℓ NTTs and O(ℓ2 · p) products on Zqi .
Noise growth: E′ ∈ O(

√
dp ·D · E1 + E0) if m1 = Xu for some u and

E′ ∈ O(
√
dp ·D · E1 +

√
p · E0 · ∥m1∥) otherwise

1 Denote c = (a, b)
▷ Almost for free in double-CRT form. Just group entries corresponding to prime factors of

each Di and multiply them by α−1

2 for 1 ≤ i ≤ d do
3 Let ui := α−1 · a mod Di

4 Let ui+d := α−1 · b mod Di

5 for 1 ≤ i ≤ d do

6 Let vi := FastBaseExtension(ui, Di, Q/Di) ∈ R̃Q

7 Let vi+d := FastBaseExtension(ui+d, Di, Q/Di) ∈ R̃Q

8 Let v := (v1, ..., v2d) ∈ R̃2d
Q ▷ it is already in double-CRT format

9 c′ = v ·C ∈ R̃2
Q

10 return c′

by writing w = (w1,w2) we can see that (w1,w2) ·Gα = (w1 · g,w2 · g). But for both i = 1, 2, we
have

wi · g =

d∑
j=1

(w′
i,j ·Dj) · (Qj · Q̂j · [α]Di) =

d∑
j=1

w′
i,j ·Q · Q̂j · [α]Di = 0 mod Q.

Therefore, modulo Q, it holds that

c′ := v ·C = [v · a, v · a · s+ v · e] + u ·Gα ·m1

= [v · a, v · a · s+ v · e] + [a, a · s+ e+∆ ·m0] ·m1

= [v · a+ a ·m1︸ ︷︷ ︸
a′

, a′ · s+ v · e+ e ·m1︸ ︷︷ ︸
e′

+∆ ·m0 ·m1].

Hence, c is indeed an RLWE encryption of m0 ·m1.

Moreover, since ∥v∥ ≤ D, we have that v ·e is (
√
dp ·D · E1)-subgaussian. If m1 = Xz for some

z, the product e·m1 mod Xp−1 just rotates the coefficients of e, but do not change the distribution,
thus, e′ is (

√
dp ·D · E1 + E0)-subgaussian. In general, e ·m1 is (

√
p · E0 · ∥m1∥)-subgaussian, and

e′ is (
√
dp ·D · E1 +

√
p · E0 · ∥m1∥)-subgaussian.

It remains to analyze the cost of the algorithm. The first loop costs only 2ℓ modular multi-
plications. Since each CRT digit Di has ℓ/d prime factors, each base extension costs ℓ NTTs and
O((ℓ/d) · (ℓ − ℓ/d) · p) modular multiplications. Thus, the second loop costs 2 · d · ℓ NTTs and
O(ℓ2 · (1 − 1/d) · p) = O(ℓ2 · p) modular multiplications. Since the output of FastBaseExtension
is already in double-CRT format, the product v · C does not require any NTT and is performed
via pointwise multiplication, thus, it costs 4dℓp modular multiplications. Therefore, the total cost
is 2 · d · ℓ NTTs and O(ℓ2 · p) products on Zqi .

14

3.4 Homomorphic multiplication

This operation5 takes GSW encryptions of two messages and outputs a GSW encryption of their
product. This is done by performing one external product for each row of one of the ciphertexts,
therefore, the cost is exactly 2 ·d times the cost of one external product. Since each row is multiplied
independently, the noise growth is the same as in the external product. We show it in detail in
Algorithm 4. The only caveat is the scaling factor of the output. Both input ciphertexts have scaling
factors, say α0 and α1, so one could expect that the output would be scaled by α0 · α1. However,
since external products output CLWE encryptions that do not depend on the scaling factor of the
GSW ciphertext, the output of the GSW multiplication is scaled only by, say, α0.

Algorithm 4: RNS-friendly GSW homomorphic multiplication

Input: C0 ∈ R̃QGSW
d
s(α0 ·m0, E0) and C1 ∈ R̃QGSW

d
s(α1 ·m1, E1) both in double-CRT

form.
Output: C ∈ R̃QGSW

d
s((α0) ·m0 ·m1, E)

Complexity: 4 · d2 · ℓ NTTs and O(d · ℓ2 · p) products on Zqi .
Noise growth: E ∈ O(

√
dp ·D · E1 + E0) if m1 = Xu for some u and

E′ ∈ O(
√
dp ·D · E1 +

√
p · E0 · ∥m1∥) otherwise

▷ Consider ∆i := Qi · Q̂i · α0 mod Di

1 for 1 ≤ i ≤ d do

2 Let ci := rowi(C0) ∈ R̃QLWEs(∆i ·m0, E0)

3 c′i = ci ⊡C1 ∈ R̃QLWEs(∆i ·m0 ·m1, E) ▷ External product

4 for d+ 1 ≤ i ≤ 2 · d do

5 Let ci := rowi(C0) ∈ R̃QLWEs(−∆i ·m0 · s, E0)

6 c′i = ci ⊡C1 ∈ R̃QLWEs(−∆i ·m0 ·m1 · s, E) ▷ External product

7 Let C′ ∈ R̃2d×2
Q such that rowi(C

′) = c′i
8 return C′

3.5 Key switching for GSW

If one instantiates the double-CRT GSW scheme over the usual power-of-two cyclotomic ring, i.e.
modulo XN + 1, then one can freely choose the keys that will be switched with no issue regarding
security. However, we are using the circular ring, Xp − 1, and so have to be more careful.

In [7], it is shown that GSW over circulant rings is secure if one just encrypts powers of X. The
main problem was that in a circular ring an attacker can interpret an element a ∈ R as a polynomial
a′ ∈ Z[X]. In this case, it holds that a′ = a+u ·(Xp−1) for some u ∈ Z[X], and so a′(1) = a(1) ∈ Z.
Thus, a ciphertext evaluated at one would produce the pair (a(1), b(1) = a(1)·s(1)+∆m+e(1)) ∈ Z2,
which could leak information about s or the message.

To solve this Bonnoron, Ducas, and Fillinger [7] apply a function to the RLWE samples that
fixes the values of the polynomials when they are evaluated at one, such that (a(1), b(1)) = (0, ∆),
thus are independent of the secret key and leak no information on the message.

However, to key switch from a secret key s ∈ R̃ to another secret key z ∈ R̃, we have to encrypt
z, which is not a power of X. Thus, we extend the results of [7] to show that it is also safe to

5 In [13], a homomorphic multiplication between two GSW ciphertexts is called internal product.

15

Algorithm 5: GSW key switching

Input: C ∈ R̃QGSW
d
z(α ·m,E), K ∈ R̃QKS

d
s(z, Ek), Ks ∈ R̃QGSW

d
s(1 · (−s), Es), all in double-CRT form.

Output: C′ ∈ R̃QGSW
d
s(α ·m,E′),

Complexity: 3 · d2 · ℓ NTTs and O(d · ℓ2 · p) products on Zqi .
Noise growth: E′ ∈ O(

√
dp ·D · Es +

√
p · ∥s∥ · E + p ·

√
d ·D · Ek · ∥s∥)

1 for 1 ≤ i ≤ d do

2 ci = KeySwt(rowi(C),K) ∈ R̃QLWEs(∆i ·m)

3 cd+i = ci ⊡Ks ∈ R̃QLWEs(−∆i ·m · s)

4 Let C′ ∈ R̃2d×2
Q such that rowi(C

′) = ci

5 return C′

encrypt z. The crucial property here is: In the case of key-switching keys, we are only encrypting
the secret polynomials of the CLWE problem, which are always of the form s = L((1 − X) · s′),
and so always result in zero when they are evaluated at one. Therefore, as m(1) = 0, it is secure
to encrypt them under the CLWE problem. We prove this formally for any constant c such that
m(1) = c in Appendix B.

GSW key switching via two-layer reconstruction Given C ∈ R̃QGSW
d
z(α · m), remember

that for 1 ≤ i ≤ d, rowi(C) ∈ R̃QLWEz(∆i ·m), where ∆i := Qi · Q̂i · αi. Also, for d+ 1 ≤ i ≤ 2 · d,
rowi(C) ∈ R̃QLWEz(−∆i ·m · z). Thus, to switch C to a key s, we just need to use the first d rows.
Namely, we use the RLWE/CLWE key switching to obtain CLWE encryptions of ∆i ·m under s,
then we multiply these ciphertexts by −s to construct the last d rows. This procedure is shown in
detail in Algorithm 5.

From the costs of the external product and of the key switching, we see that we need 3 · d2 · ℓ
NTTs and O(d · ℓ2 · p) products on Zqi . From the noise growth presented in these algorithms,
we see that after key switching, the noise is Ê-subgaussian, where Ê ∈ O(E +

√
dp · D · Ek)

and D = max(D1, ..., Dd). Thus, after the external products, we have an E′-subgaussian, where
E′ ∈ O(

√
dp ·D · Es +

√
p · Ê · ∥s∥) = O(

√
dp ·D · Es +

√
p · ∥s∥ · E + p ·

√
d ·D · Ek · ∥s∥)

Noise-reduced GSW key switching via parallel reconstruction When we key switching
the first d rows from z to s, we generate CLWE samples with a larger noise. Then, when we use
these samples to reconstruct the other d rows, we accumulate more noise over them, generating
thus samples with even larger noise, proportional to p.

The key switching that we present in this section avoids that “double accumulation” by pro-
ducing independent CLWE samples that can be subtracted to reconstruct the remaining rows.
Because subtraction increases the noise linearly, we accumulate less noise in the last d rows of the
GSW ciphertext. In the end, we save a factor

√
p in the final noise. For this, we need an extra key

encrypting the s · z and we replace the GSW encryption of s by a key-switching key from s to s
itself. We present this procedure in detail in Algorithm 6, but defer the proof of its correctness to
Appendix F.3.

3.6 GSW automorphism

Given C ∈ R̃QGSW
d
s(α ·m,E) and η : X 7→ Xu, for some u ∈ Z, we just have to apply η to each

row of C, then apply one of the GSW key switching algorithms described in Section 3.5.

16

Algorithm 6: NoiseReducedGSWKeySwt

Input: C ∈ R̃QGSW
d
z(α ·m,E), Kz ∈ R̃QKS

d
s(z, Ez), Ks ∈ R̃QKS

d
s(s, Es), and Ksz ∈ R̃QKS

d
s(s · z, Esz),

all in double-CRT form.
Output: C′ ∈ R̃QGSW

d
s(α ·m,E′),

Complexity: 3 · d2 · ℓ NTTs and O(d · ℓ2 · p)) products on Zqi .
Noise growth: E′ ∈ O(

√
dp ·D · Esz +

√
dp ·D · Es +

√
p · ∥s∥ · E)

▷ Construct the first d rows of the GSW ciphertext

1 for 1 ≤ i ≤ d do

2 ci = KeySwt(rowi(C),Kz) ∈ R̃QLWEs(∆i ·m)

▷ Now construct the last d rows

3 for 1 ≤ i ≤ d do

4 Let (a, b) = rowi(C) ∈ R̃QLWEz(∆i ·m)
5 for 1 ≤ i ≤ d do

▷ Each base extension costs ℓ NTTs and O(p · ℓ2/d) multiplications on Zqi

6 hi = FastBaseExtension(a mod Di, Di, Q/Di) ∈ R̃Q

7 yi = FastBaseExtension(b mod Di, Di, Q/Di) ∈ R̃Q

8 h := (h1, ..., hd)
9 y := (y1, ..., yd)

10 a′ := h · col1(Ksz)− y · col1(Ks)
11 b′ := h · col2(Ksz)− y · col2(Ks)

12 cd+i := (a′, b′) ∈ R̃QLWEs(−∆i ·m · s)

13 Let C′ ∈ R̃2d×2
Q such that rowi(C

′) = ci

14 return C′

Notice that the first d rows of C are regular CLWE encryptions, thus, automorphisms work
as usual producing new CLWE encryptions under the key η(s). The other d rows can be seen as
CLWE encryptions of the −∆i ·m · s, therefore, the automorphism generates CLWE encryptions
of −∆i · η(m) · η(s), which correspond to the last d rows of a GSW encryption of ∆i · η(m) under
the key η(s). Moreover, η does not change the distribution of the noise. In summary, η(C) ∈
R̃QGSW

d
η(s)(α · η(m), E).

Then, applying GSW key switching on η(C) gives us C′ ∈ R̃QGSW
d
s(α · η(m), E′). Hence, the

noise growth and the cost are the same as the ones of the chosen key switching.

3.7 GSW evaluation of scalar products on the exponent

In this section we consider the problem of evaluating a scalar product between two vectors u,v ∈ Zk
p,

when u is known in clear and each entry of v is encrypted as Xvi into a GSW sample. The output
is a GSW encryption of Xu·v mod p.

The straightforward way of implementing this scalar product is the following: apply the auto-
morphism X 7→ Xui to obtain GSW encryptions of Xui·vi mod p, then use the GSW multiplication k
times to obtain a GSW encryption of

∏k
i=1X

ui·vi = Xu·v mod p. However, each GSW multiplication
costs 2d external products, so this näıve implementation needs 2kd external products. We want to
reduce that to around k · d, thus, halving the cost.

Moreover, instead of using k automorphisms on GSW ciphertexts, which cost essentially 2 ·d ·k
CLWE key switchings, we want to use automorphisms on the CLWE samples so that the cost of k
automorphisms also drops to k · d, that is, halving the cost compared to GSW automorphisms.

17

Algorithm 7: EvalScalarProd: Evaluate scalar product in the exponent of X

Input: Ks ∈ R̃QGSW
d
s(1 · (−s), Es), Kv ∈ R̃QKS

d
s(s(X

v), Ek) for all v ∈ Zp, and for 1 ≤ i ≤ k,
Ci ∈ R̃QGSW

d
s(α ·Xmi , Ei) and ui ∈ Zp. All Kv and Ci in double-CRT form.

Output: C′ ∈ R̃QGSW
d
s(α ·Xy, E′) where y =

∑k
i=1 ui ·mi mod p.

Complexity: 3 · k · d2 · ℓ NTTs and O(k · d · ℓ2 · p) products on Zqi .

Noise growth: E 7→ O
(∑k

i=1

(√
dDp · ∥s∥ · Ei

)
+
√
dp ·D · Es + Ē + Ê

)
, where Ē =

√
p · ∥s∥ · E1 and

Ê =
√
p · ∥s∥ ·

√
k + 1 · EKS with EKS ∈ O(

√
dp ·D · Ek).

▷ Consider that ∆i := Qi · Q̂i · αi, where αi = α mod Di

1 Define uk+1 = 1
2 for 1 ≤ i ≤ d do

3 Let ci := rowi(C1) ∈ R̃QLWEs(∆i ·Xm1 , E1)

4 ci = Auth(ci, u1 · u−1
2 mod p) ∈ R̃QLWEs(∆i ·Xm1·u1·u−1

2 , E1 + EKS)

▷ Let S(j) := u−1
j+1 ·

∑j
i=1mi · ui mod p

5 for 2 ≤ j ≤ k do

6 ci = ci ⊡Cj ∈ R̃QLWEs(∆i ·XS(j−1)+mj ,
∑j

i=2

(√
dp ·D · Ei

)
+ (E1 + EKS))

7 v = uj · u−1
j+1 mod p

8 ci = Auth(ci, v,Kv) ∈ R̃QLWEs(∆i ·XS(j)

,
∑j

i=1

(√
dp ·D · Ei

)
+ E1 +

√
j + 1 · EKS)

▷ Now, construct the other d rows of the GSW sample

9 for 1 ≤ i ≤ d do

10 Let cd+i := ci ⊡Ks ∈ R̃QLWEs(−∆i ·XS(k)

· s, E)

11 Define C′ ∈ R̃QGSW
d
s(α ·XS(k)

, E) such that rowi(C
′) = ci

12 return C′

Hence, given Ci ∈ R̃QGSW
d
s(α · Xvi), we define C′

1 = C1, and for 2 ≤ i ≤ k, we want to
compute C′

i = Auth(Ci, ui) ·C′
i−1.

The main idea is to extract the d rows of C′
i that correspond to the CLWE samples encrypting

Xm for some messagem and ignore the other d rows. So, let cj ∈ R̃QLWEs(∆j ·Xm) be the j-th row
of C′

i. Instead of applying the automorphism ui to C′
i, we can use a technique from [7] and apply

u−1
i mod p to cj , then multiply it with C′

i−1 via external product, and apply the automorphism ui
in the end. This gives us

1. c′j = Auth(ci, u
−1
i) (encrypts Xu−1

i ·m)

2. c′′j = c′j ·Ci (encrypts Xu−1
i ·m+vi)

3. c′′′j = Auth(c′′i , ui) (encrypts Xm+ui·vi)

Repeating this k times, at the end, we have c′′′j ∈ R̃QLWEs(∆j ·X
∑

uivi), as desired. Notice that
for each i, the first and the third step are automorphisms, so can compose them and run a single
key switching instead of two. Finally, repeating this d times, we obtain all the d first rows of the
GSW ciphertext encrypting the Xu·v, and it remains to construct the other d rows essentially by
multiplying by −s, as it was done in the GSW key switching in Algorithm 5.

Since the whole algorithm uses k ·d external products and k ·d CLWE automorphisms, the total
cost is 3 · k · d2 · ℓ NTTs. Notice that k GSW multiplications plus k GSW automorphisms would
cost 7 · k · d2 · ℓ NTTs, therefore we are gaining a factor of around 2.33. We show this procedure in
detail in Algorithm 7.

18

4 Bootstrapping

In this section, we show how we can use our circulant GSW scheme to evaluate a bootstrapping
algorithm with polynomial noise overhead and sublinear number of homomorphic operations per
refreshed message.

4.1 Homomorphic Number Theoretic Transform

With a more expressive accumulator in hand we can finally replace the homomorphic Nussbaumer
transform and the SlowMult algorithm used in [29] by the Number Theoretic Transform (NTT)
and a simpler point-wise multiplication.

It is well known that over “cyclic polynomial rings” of the form Rp := Zp[X]/⟨XN − 1⟩, where
N is a power of two, we can multiply two elements a, z ∈ Rp in time O(N logN) by using the
NTT. For this, assume that p ≡ 1 (mod N), then there exists a primitive N -root of unity ω ∈ Zp.
The NTT is an algorithm that takes a ∈ Rp, interprets it as a polynomial in Zp[X], and, in time
O(N logN), outputs the vector (a(ω0), a(ω1), ..., a(ωN−1)) ∈ ZN

p . Now let ⊙ : ZN → ZN be the
entrywise multiplication. Then it holds that

NTT−1 (NTT(a)⊙ NTT(z)) ≡ N · a · z mod ⟨XN − 1, p⟩.

However, over “negacyclic polynomial rings” of the form R̂p := Zp[X]/⟨XN + 1⟩, to perform
this multiplication, we first have to multiply the coefficients of a and z by powers of some primitive
2N -root of unity ψ ∈ Zp, then apply the NTT and inverse NTT as usual, and finally multiply by
powers of ψ−1. In more detail, let ψ := (ψ0, ψ, ..., ψN−1) and ψ−1 := (ψ0, ψ−1, ..., ψ−(N−1)), where
ψ is a 2N ’th root of unity as defined above, then

ψ−1 ⊙ NTT−1(NTT(ψ ⊙ a)⊙ NTT(ψ ⊙ z)) ≡ N · a · z mod ⟨XN + 1, p⟩

Because we now need a 2N -root of unity modulo p, we need p ≡ 1 (mod 2N). Notice that the
NTT is of dimension N , not 2N . Also, given ψ, the N -th root of unity used by the NTT can be
defined as ω = ψ2 mod p.

This radix-m version of the NTT algorithm recursively splits the N -dimensional input into m
vectors of dimension N

m . Then, after ρ recursive levels, we reach the base case of the recursion
and we apply a quadratic algorithm to compute the NTT of inputs of size N

mρ . Typically, one sets
ρ = logm(N), such that the quadratic step is executed over inputs of size one and are actually void,
obtaining the complexity O(N · logN). However, because the noise overhead of the homomorphic
NTT is proportional to Nρ, we restrict ourselves to instantiating the algorithm with small values
of ρ only.

We show the radix-m inverse NTT in detail in Algorithm 8, where the multiplication by ψ−1

and also by the inverse of N modulo p is already included in the last step, so that the output
already corresponds to the product of the two polynomials. We denote a k-th root of unity in Zp

by wk. At the beginning of the algorithm, we start with wN , then all the others roots of unity that
appear in all the recursive calls are just powers of wN .

Number of operations of homomorphic inverse NTT The time complexity of a radix-m
NTT is standard: the number of operations of lines 7 and 15 can be represented by T (N) =

19

Algorithm 8: NTT−1
m - Inverse NTT in time O

(
ρ ·N1+ 1

ρ

)
Input: (f0, . . . , fN−1) ∈ ZN

p , ρ ∈ Z+, ρ̃ ∈ Z+, where ρ̃ starts at 1, m ∈ Z+ s.t. m | N
Output: NTT−1(f)

1 if ρ = 1 then
2 u = ψ−1N−1 mod p

3 else
4 u = (1, 1, ..., 1) ∈ ZN

5 if ρ̃ = ρ then
▷ Trivial quadratic algorithm, time O

(
N2

)
6 for 0 ≤ j < N do

7 aj =
∑n−1

i=0 fi · uj · w−i·j
N mod p

8 else
▷ General case with recursive calls

9 for 0 ≤ i < m do
10 g =

(
fi, fm+i, ..., fm(N/m−1)+i

)
11 h(i) = NTT−1

m (g, ρ̃+ 1)

12 for 0 ≤ k1 < N
m

do
13 for 0 ≤ k2 < m do
14 j = k1 +

N
m
· k2

15 aj =
∑m−1

i=0 h
(i)
k1
· uj · w−i·k1

N · w−i·k2
m mod p

16 return (a0, ..., aN−1)

m ·T (N/m)+m ·N . Iterating it ρ times gives us T (N) = mρ ·T (N/mρ)+ρ ·m ·N . Finally, we reach
the end of the recursion and use the quadratic algorithm, thus, replacing T (N/mρ) by (N/mρ)2,
we have T (N) = N2/mρ + ρ ·m ·N . By choosing m = N1/ρ, we obtain the optimal complexity:

O

(
ρ ·N ·m+

N2

mρ

)
= O

(
ρ ·N1+ 1

ρ

)
(1)

With this, it is now easy to prove the complexity and noise overhead of the homomorphic
evaluations of this algorithm.

Lemma 5 (Time complexity in terms of homomorphic operations). The homomorphic

evaluation of the inverse NTT, Algorithm 8, of dimension N , can be executed with O
(
N

1+ 1
ρ · ρ

)
homomorphic operations (GSW multiplications and automorphisms).

Proof. The input of the algorithm is a vector of (circulant) GSW ciphertexts encrypting Xfi . To
add each term of the sums shown in lines 7, we just have to apply an automorphism, obtaining

an encryption of Xfi·uj ·w−i·j
n mod p, and one homomorphic multiplication, to accumulate the term in

the partial sum.

For the sum of line 15, we proceed in the same way, by applying the automorphism X 7→ Xw,
where w = uj · w−i·k1

n · w−i·k2
m , then one multiplication.

Thus, in total, we have O
(
N

1+ 1
ρ · ρ

)
homomorphic operations.

20

Since each GSW multiplication and automorphism can be implemented with O(d2 · ℓ) NTTs
and O(d · ℓ2 ·p) products on Zqi using our double-CRT instantiation of GSW, we have the following
result.

Corollary 1 (Time complexity in terms of NTTs and modular multiplications). Let
Q =

∏ℓ
i=1 qi be the ciphertext modulus. Let d be the number of CRT digits used in the GSW

ciphertexts. Then the homomorphic evaluation of the inverse NTT, Algorithm 8, of dimension N ,

can be executed with O
(
N

1+ 1
ρ · ρ · d2 · ℓ

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · ℓ2 · p

)
multiplications modulo

qi.

Finally, by assuming that each sum in lines 7 and 15 is implemented with Algorithm 7, we can
have a concrete instead of asymptotic estimation of the number of NTTs.

Lemma 6 (Number of NTTs used the homomorphic inverse NTT). Let Q =
∏ℓ

i=1 qi be
the ciphertext modulus. Let d be the number of CRT digits used in the GSW ciphertexts. Consider
the Algorithm 8 with recursive level ρ, dimension N , and with lines 7 and 15 implemented with the
EvalDotProduct, Algorithm 7. If no ciphertext shrinking is used, then the total number of NTTs is

3 ·N · d2 · ℓ ·
(
N

mρ
+ ρ ·m

)
. (2)

If we use shrinking at the end of each recursive call, then the total number of NTTs is

3 ·N2 · d2ρ · ℓρ
mρ

+ 3 ·N ·m ·

(
ρ−1∑
i=0

d2i · ℓi

)
+ 4 ·N ·

(
ρ−1∑
i=0

di · ℓi+1

)
(3)

where dρ and ℓρ define the dimension of the input ciphertexts (thus, d = dρ > dρ−1 > ... > d0 and
ℓ = ℓρ > ℓρ−1 > ... > ℓ0).

Proof. The proof follows trivially by defining a recursive formula for the amount of NTTs per
recursive call, then applying the number of NTTs already given in Algorithm 7. A detailed proof
is provided in Appendix G.

Error growth of the homomorphic inverse NTT Assuming again that the sums in Algo-
rithm 8 are implemented with the EvalScalarProd (Algorithm 7), we have the following result.

Lemma 7. Consider the homomorphic evaluation of Algorithm 8 on input Ci ∈ R̃QGSW
d
s(α ·

Xfi , E), where 0 ≤ i < n. Let Ks ∈ R̃QGSW
d
s(1 · (−s), Es) and Kv ∈ R̃QKS

d
s(s(X

v), Ek) be the
keys to compute the sums with Algorithm 7. Moreover, assume that Es is constant. Then, the noise
of the output ciphertexts is bounded by

O
(
(
√
d ·D · p · ∥s∥)ρ ·

√
N · (E + Ek)

)
where ρ is the chosen recursive depth.

Proof. We present the proof in Appendix F.4.

21

4.2 Partial decryption using NTT−1
m

Remember that to decrypt (a, b) ∈ R̂pLWEz(m,E), we have to compute b⋆ := b− a · z mod p, then
it holds that b⋆ = e+∆ ·m, where ∆ = ⌊p/t⌉. Then we can recover each coefficient mi by taking
the log t most significant bits. This last step is message extraction and we present it in Section 4.3.
In this section, we present an algorithm that uses the homomorphic inverse NTT to compute b⋆.

The first part of the algorithm computes the forward NTT of a and of b, to obtain a :=
NTT(ψ ⊙ a), b := NTT(ψ ⊙ b), and the bootstrapping key encrypting z̄ := NTT(−ψ ⊙ z), we
use GSW automorphisms to compute the entrywise product ā ⊙ z̄ = (ā0 · z̄0, ..., āN−1 · z̄N−1). At
this point, we also add NTT(ψ⊙ b). Finally, we apply the inverse NTT homomorphically to obtain
GSW ciphertexts encrypting b⋆.

Algorithm 9: NTTDec, the homomorphic partial decryption

Input: Encryption c ∈ R̂pLWEz(m,E
(in)). Bootstrapping keys Ki ∈ R̃QGSW

d
s(1 ·X−z̄i , E), where

(z̄0, . . . , z̄N−1) := NTT(ψ ⊙ z) ∈ ZN
p , and key-switching keys for all the Galois automorphisms

ηa : X 7→ Xa. Vectors with powers of 2N -th root of unity ψ in Zp, i.e., ψ = (ψ0, . . . , ψN−1) and
ψ−1 = (ψ0, . . . , ψ−(N−1))

Output: C̄i ∈ R̃QGSW
d
s(α ·Xei+∆·mi , E′′) for 0 ≤ i < N

Complexity: O
(
N

1+ 1
ρ · ρ · d2 · ℓ

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · ℓ2 · p

)
products over Zqi

Noise growth: (E,Ek) 7→ E′′ = O
(
(
√
d ·D · p · ∥s∥)ρ · √n · p · (E · ∥s∥+ Ek ·

√
d ·D)

)
1 Parse c as (a, b) ∈ R̂2

p where R̂p = Zp[X]/⟨XN + 1⟩
2 (a0, ..., aN−1)← ψ ⊙ NTT(a) ; ▷ NTT(a) ∈ ZN

p

3 (b0, ..., bN−1)← ψ ⊙ NTT(b) ; ▷ NTT(b) ∈ ZN
p

4 for i ∈ {0, . . . , N − 1} do
5 K̄i = ηāi(Ki) ; ▷ K̄i ∈ R̃QGSW

d
ηāi

(s)(1 ·X−āi·z̄i , E)

6 KSηāi
(s)→s(K̄i) ; ▷ K̄i ∈ R̃QGSW

d
s(1 ·X−āi·z̄i , E′)

7 K̃i = X b̄i · K̄i ; ▷ K̃i ∈ R̃QGSW
d
s(1 ·X b̄i−āi·z̄i , E′)

8 (C̄0, ..., C̄N−1) = NTT−1(K̃0, . . . , K̃N−1) ; ▷ C̄i ∈ R̃QGSW
d
s(1 ·Xei+∆·mi , E′′)

Lemma 8 (Correctness, cost, and noise overhead of NTTDec). Given a ciphertext
c = (a, b) ∈ R̂pLWEz(∆ · m,E(in)), the bootstrapping keys Ki ∈ R̃QGSW

d
s(1 · X z̄i , E),

where (z̄1, . . . , z̄N−1) = NTTp(ψ ⊙ −z), and the keys used by Algorithm 7, namely Kv ∈
R̃QKS

d
s(s(X

v), Ek) for all v ∈ Z∗
p and Ks ∈ R̃QGSW

d
s(1 · (−s), Es), where Es is a constant, then

Algorithm 9 outputs GSW encryptions of Xei+∆·mi with E′′-subgaussian noise, where

E′′ = O
(
(
√
d ·D · p · ∥s∥)ρ ·

√
N · p · (E · ∥s∥+ Ek ·

√
d ·D)

)
.

Moreover, Algorithm 9 costs O
(
N

1+ 1
ρ · ρ · d2 · ℓ

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · ℓ2 · p

)
multiplica-

tion in Zqi.

Proof. Let c = (a, b) ∈ R̂pLWEz(m,E
(in)), then āi and b̄i are computed with a single NTT each,

thus O(N logN) operations over Zp, in clear. These operations do not contribute to the complexity,
since the homomorphic operations dominate them.

22

In lines 5 and 6, we compute K̄i via GSW automorphism. Since this is done for each i, it
contributes a total of 3 ·N · d2 · ℓ NTTs and O(N · d · ℓ2 · p) modular multiplications.

Then, we perform N plaintext-ciphertext multiplications to add b̄i to the exponent. This costs
zero NTTs and O(N · p · d · ℓ) modular multiplications, thus, it is already dominated by the cost of
the automorphisms.

Finally, we apply the homomorphic inverse NTT, which, by Lemma 5, costs O
(
N

1+ 1
ρ · ρ · d2 · ℓ

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · ℓ2 · p

)
multiplications modulo qi. Thus, it is clear that this step domi-

nates the total cost.

As for the noise overhead, assuming that the ciphertexts defined in line 6 are obtained by
applying the GSW Galois automorphisms defined in Algorithm 6, we have

E′ = O(
√
dp ·D · Es +

√
p · ∥s∥ · E +

√
dp ·D · Ek).

Then, multiplying by X b̄i modulo Xp − 1 only rotates the coefficients of the noise terms, but does
not increase them. Thus, the ciphertexts K̃i also have E′-subgaussian noise.

Finally, by Lemma 7, the homomorphic inverse NTT increases the noise from E′ to

O
(
(
√
d ·D · p · ∥s∥)ρ ·

√
N · (E′ + Ek)

)
. Therefore, using the definition of E′ and simplifying the

expression by ignoring lower terms, we obtain

E′′ = O
(
(
√
d ·D · p · ∥s∥)ρ ·

√
N · p · (E · ∥s∥+ Ek ·

√
d ·D)

)
.

4.3 Message Extraction

After executing Algorithm 9, we obtain ciphertexts of the form C̃ ∈ R̃QGSW
d
s(α · X∆·m+e), and

we want to extract the message m from the exponent, X∆·m+e 7→ m. This message extraction
procedure was introduced in [14] and adapted to different settings in subsequent works [12,32,8].
Usually, it is assumed to work with negacyclic rings, however in Algorithm 10 we provide a version
of the message extraction algorithm adapted to the cyclic ring. Here we assume messages in Zt

instead of in {0, 1}, and apply a programmable bootstrapping, i.e., mapping X∆·m+e to f(m) for
any given function f : Zt → Zt. Moreover, our algorithm also takes care of the scaling factor α in
the gadget matrix. We prove its correctness and time complexity Appendix F.2.

4.4 The Bootstrapping Algorithm

With all the sub-constructions in place, we can now fully define the bootstrapping algorithm and
analyze both the complexity and the error growth.

The algorithm takes in N LWE samples ci ∈ LWEQ
s (∆ · mi) ∈ Zp+1, then packs them into

one RLWE ciphertext c ∈ R̂QLWEz(∆ ·m(X)), where m(X) =
∑
miX

i. It proceeds by modulo
switching c from Q to p and running NTTDec, the partial decryption via homomorphic NTT, which
generates GSW encryptions of X∆′mi+ei . Finally, the messages mi are extracted back into LWE
ciphertexts. The bootstrapping is shown in detail in Algorithm 11.

23

Algorithm 10: MsgExtract

Input: C ∈ R̃QGSW
d
s(α ·X∆·m+e, E), where ∆ = ⌊p/t⌉ and |e| < ∆/2. A function f : Zt → Zt

Output: c̄ ∈ LWEQ
s (⌊Q/t⌉ · f(m), E′) ∈ Zp+1

Q

Complexity: d · ℓ NTTs and O(ℓ2 · p) products on Zqi .
Noise growth: E 7→ O(

√
dp ·D · E)

1 Let t(X) = X∆/2 ·
∑t−1

i=0

∑∆−1
j=0 f(i)Xp−i∆−j mod Xp − 1

2 Let c̄ = (0, ⌊Q/t⌉ · t(X)) ∈ R̃2
Q be a trivial and noiseless encryption of t(X)

3 c′ := (a′, b′) = c⊡C ; ▷ c′ ∈ R̃QLWEs(⌊Q/t⌉ · t(X) ·X∆·m+e, E′)
4 Let A ∈ Zp×p be the circulant matrix of a′

5 Let b ∈ Zp be the coefficient vector of b′

6 Let u := (1, 0, ..., 0) ∈ {0, 1}p

7 return c̄ = [u ·A,u · b] ; ▷ c̄ ∈ LWEQ
s (⌊Q/t⌉ · f(m), E′)

Algorithm 11: Bootstrap — for plaintext space Zt

Input: ci ∈ LWEQ
s (∆ ·mi, E

(in)) ∈ Zp+1 for 0 ≤ i < N , where ∆ = ⌊Q/t⌉. All the bootstrapping and
key-switching keys used in Algorithm 9. Arbitrary functions fi : Zt → Zt, for 0 ≤ i < N .

Output: c′i ∈ LWEQ
s (∆ · fi(mi)) ∈ Zp+1 for 0 ≤ i < N .

Complexity: O(N
1+ 1

ρ · ρ · d2 · ℓ) NTTs and O(N
1+ 1

ρ · ρ · d · ℓ2 · p) multiplication in Zqi .

Noise growth: E(in) 7→ O
(
(p ·
√
d ·D)ρ+1 · ∥s∥ρ ·

√
N · (E · ∥s∥+ Ek ·

√
d ·D)

)
1 (a(1), b(1)) = PackLWE (c0, ..., cN−1) ; ▷ (a(1), b(1)) ∈ R̂QLWEz(∆ ·m(X), E(1))

2 (a(2), b(2)) = ModSwitchQ→p(a
(1), b(1)) ; ▷ (a(2), b(2)) ∈ R̂pLWEz(∆

′ ·m(X), E(2))

3 (C0, . . . ,CN−1) = NTTDec(a(2), b(2)) ; ▷ Ci ∈ R̃QGSW
d
s(α ·Xe′i+∆′·mi , Ē)

4 for 0 ≤ i < N do
5 c′i = MsgExtract(Ci, fi) ; ▷ c′i ∈ LWEQ

s (fi(mi), E
′)

6 return c′0, ..., c
′
N−1

24

Lemma 9. Given at most N LWE ciphertexts and the keys described in Lemma 8, Algorithm 11
outputs LWE ciphertexts with E′-subgaussian noise, where

E′ = O
(
(p ·

√
d ·D)ρ+1 · ∥s∥ρ ·

√
N · (E · ∥s∥+ Ek ·

√
d ·D)

)
.

Moreover, it costs O
(
N

1+ 1
ρ · ρ · d2 · ℓ

)
NTTs and O

(
N

1+ 1
ρ · ρ · d · ℓ2 · p

)
multiplication in Zqi.

Proof. The cost of Algorithm 11 is asymptotically dominated by the NTTDec, thus, it follows
directly from Lemma 8.

Again from Lemma 8, the noise of the GSW ciphertexts Ci output by NTTDec sat-

isfy Ē = O
(
(
√
d ·D · p · ∥s∥)ρ ·

√
N · p · (E · ∥s∥+ Ek ·

√
d ·D)

)
, where E and Ek are the pa-

rameters of the noises from the bootstrapping keys and the key-switching keys, respectively.
From Lemma 11, the final noise is then E′ = O(

√
dp · D · Ē). Hence, it holds that E′ =

O
(
(p ·

√
d ·D)ρ+1 · ∥s∥ρ ·

√
N · (E · ∥s∥+ Ek ·

√
d ·D)

)
Corollary 2. The bootstrapping algorithm presented in Algorithm 11 has noise overhead of
Õ(λ1.5+ρ), where λ is the security parameter.

Proof. For a security level of λ bits based on the RLWE problem, we can choose p,N ∈ Θ(λ) and
E,Ek, ∥s∥ ∈ O(1). Since d = O(logQ) = O(log λ) and D is constant, we have

E′ = O
(
λρ+1.5 · (log λ)(ρ+2)/2 ·Dρ+2 · ∥s∥ρ+1

)
= Õ(λ1.5+ρ).

Theorem 1 (Correctness of bootstrapping). For a security parameter λ, let Q = Õ(λ2.5+ρ)
and consider that the input ciphertexts ci ∈ LWEQ

s (∆ ·mi, E
(in)) ∈ Zp+1 satisfy E(in) = O(Q/λ).

Then, with probability 1 − 2−λ, the output of Algorithm 11 is correct, i.e., it outputs valid LWE
encryptions of f(mi), with E

′-subgaussian noise, where Õ(λ1.5+ρ) = Õ(Q/λ), thus, it is composable.

Proof. From the description of the ring packing algorithm presented in Section 2, the parameter
E(1) shown in Algorithm 11 satisfy E(1) = E(in) ·

√
N+

√
nN logQ·ER = O(E(in) ·

√
λ) = O(Q/

√
λ),

where we used n,N, logQ ∈ O(λ) and ER = O(1). Thus, after modulus switching, by using p = O(λ)
and ∥s∥ = O(1), it holds that E(2) = O(E(1)p/Q+

√
N · ∥s∥) = O(p/

√
λ+

√
N · ∥s∥) = O(p/

√
λ).

Therefore, from the noise bound of the subgaussian distributions, as discussed in Section 2, the noise
of the packed RLWE ciphertext is O(E(2)

√
λ) = O(p) with probability 1− 2−λ, which means it is

decryptable. In other words, with overwhelming probability, the correctness condition of MsgExtract
is satisfied, i.e., the restriction ∥e∥ < ∆/2 described in Lemma 11, since there ∆ = ⌊p/t⌉ = O(p).
Hence, the output indeed encrypts f(mi).

Moreover, by Corollary 2, the final noise is E′-subgaussian with E′ = Õ(λ1.5+ρ), which is
O(Q/λ), therefore, satisfies the same bound as the input, and thus, the bootstrapping is composable.

Remark 1. One can trivially gain a factor
√
λ in the noise presented in Corollary 2 by partially

merging MsgExtract with the homomorphic inverse NTT, Algorithm 8, by starting with encryptions
of ⌊Q/t⌉ · t(X) instead of encryptions of one. This does not change the noise growth of the inverse
NTT and we just needs to execute lines 4 to 7 of MsgExtract, which also do not change the noise.
With this, the final noise in Corollary 2 is improved to Õ(λ1+ρ). This optimization is applied in
our implementation.

25

5 Practical Results

Amortized bootstrapping algorithms introduce significant asymptotic gains compared to non-
amortized versions. However, they also introduce some performance overhead by requiring sig-
nificantly larger parameters. As parameters grow, the asymptotic gains start to materialize, but,
at the same time, memory requirements increase sharply to a point in which the implementation
might become prohibitive. This is the problem preventing the [29] method from being practical,
and, to a lesser extent, is also an issue in our method.

As such, our primary goal when developing a proof-of-concept practical implementation was to
find the smallest parameter set in which our amortized bootstrapping starts to present practical
gains. We implemented our scheme mostly from scratch using Intel HEXL Library [6] as the arith-
metic backend to provide fast polynomial multiplications. We benchmarked our implementation in
a m6i.metal instance on AWS (Intel Xeon 8375C at 3.5GHz with 512 GB of RAM at 3200 MHz).
We use Ubuntu 22.04 and G++ 11.3.0. Compiling options and further details are available in our
repository. All parameter sets presented in this section consider the 128-bit security level estimated
using the Lattice Estimator [2] with the default (MATZOV [28]) cost model.

5.1 Parameter selection

In general, bootstrapping capabilities are defined by three parameters: The output dimension p,
the input error σin, and the output error σout of a bootstrapping. Specifically, a k-bit message is

correctly bootstrapped with probability erf
(
p/2k+1

σin

√
2

)
, where erf is the Gauss error function. Let

p∗ be the modulus of the bootstrapping output, and N be the RLWE input dimension, Equation 4
estimates the value of σin for the amortized bootstrapping considering a composed circuit (i.e., when
we bootstrap the result of a previous bootstrapping). The first term represents noise introduced
by the previous bootstrapping and arithmetic operations. The second term estimates the noise
introduced by the key switching from dimensions p to N and the ring packing. These first two
terms are scaled down by p

p∗ by the modulus switching procedure, which, in turn, introduces some
rounding noise, represented by the third term in the equation. Compared to a typical bootstrapping,
our amortized method has the additional restriction that there must exist a 2N -th root of unity
modulo p. Therefore, we select p = 12289 for bootstrapping RLWE samples of dimension N = 1024.
As the rounding noise is the only one to be introduced directly over modulus p, it is the main limiting
factor for our bootstrapping capabilities, and we minimize it by working with sparse ternary keys
of Hamming Weight 256.

σ2in ≤
(
σ2out + (p+N2) log2(p

∗)σ2ks
)(p

p∗

)2

+
∥s∥22
12

(4)

5.2 Performance of Amortized Bootstrapping

INTT Performance The homomorphic evaluation of the INTT, Algorithm 8, is the core and most
expensive procedure in our amortized bootstrapping. Table 3 shows its execution time for ℓ = d = 4
and ρ = 2, with and without shrinking. We choose these parameters only for benchmarking the
INTT implementation and shrinking technique. They are not optimized for message bootstrapping.
We note that increasing ρ would multiply the output noise by at least

√
dpD ∥s∥ (Lemma 7), which,

in turn, would cubically deteriorate performance on the basic arithmetic. While our estimates and

26

Table 3: Execution time, in milliseconds, for the INTT for ℓ = 4 and ρ = 2.

p n
Without shrinking With shrinking Shrinking

SpeedupExec. Time Amortized Time Exec. Time Amortized Time

12289 512 1,078,033 2,106 695,761 1,359 1.5

12289 1024 3,546,423 3,463 2,132,504 2,083 1.7

Table 4: Execution time, in milliseconds, for the amortized bootstrapping.
p n ℓ = d Total Time Amortized Time

12289 1024
3 871,827 851
4 1,540,075 1,504

experimental data suggest the asymptotic improvements of ρ = 2 are greater than the arithmetic
overhead, this does not seem to be the case for larger values of ρ.

Bootstrapping Performance As we move to the complete bootstrapping, we introduce the over-
head of calculating several key switchings, but we also can further optimize the INTT evaluation.
As we defined, it outputs GSW ciphertexts, from which we extract CLWE samples in the message
extraction phase. A more efficient way of implementing it is to run the last recombination step
(Lines 12 to 15 in Algorithm 8) already using a CLWE as the accumulator for the summations,
replacing GSW multiplications with external products. Further, we can also initialize the accumula-
tor with the test vector at the beginning of this last recombination (similarly as introduced in [12]),
which simplifies the message extraction and reduces the output error, as explained in Remark 1.
This also allows us to use a smaller modulus, with ℓ = 3. Table 4 shows the results for complete
bootstrapping, including key switchings, with ρ = 2 and p∗ = 224. The failure probabilities for 7
and 8-bit messages are 2−62.4 and 2−17.2, respectively. The parameters ℓ = 4 and ℓ = 3 are similar
in terms of bootstrapping capabilities, but using ℓ = 4 reduces σout significantly (in up 249 times
for our parameters), enabling variations of our bootstrapping as we exemplify in Section 5.3.

5.3 Comparison with other bootstrapping methods

As the output of the bootstrapping is a set of LWE ciphertexts defined modulo Q, one can classify
the bootstrapping algorithms in two categories depending on the size of Q as follows: (1) when Q
is small enough to fit into native integer types; (2) when Q is large and double-CRT techniques are
needed. The first scenario yields the fastest bootstrapping algorithms known until now, as the ones
implemented in TFHE-RS [1], but it is less general, since the output ciphertexts have little noise
budget and all the subsequent homomorphic evaluation is done via programmable bootstrapping.
The second scenario is more versatile, since we can increase Q to obtain refreshed ciphertexts with
more noise budget so that we can compute on them without using programmable bootstrapping.
In particular, some constructions require large Q. For example, if one uses scheme switchings, such
as Chimera [9], where the slots of a BGV ciphertext are extracted into individual LWE ciphertexts,
then functional bootstrapping is applied on each of them, then one needs the output to be defined
modulo a large Q so that it is possible to pack the LWE ciphertexts again into a BGV ciphertext.
As another example, the high-precision CKKS bootstrapping presented in [22] also requires large
Q. Thus, we divide our comparison in those two cases.

27

Comparison with small-Q bootstrapping algorithms Our amortized bootstrapping pro-
duces ciphertexts with large Q, hence this comparison is complicated, since these two types of
bootstrapping offer different capabilities, and unfair, since using small Q allows one to implement
the bootstrapping using native integer types, which represents a much faster arithmetic back end
compared to double-CRT. Nonetheless, this section contains some discussion about this comparison.
The state-of-the art implementation of programmable bootstrapping is TFHE-RS [1]. To achieve
their impressive performance, they rely on binary secrets, on an FFT library specially tailored for
negacyclic rings used in RLWE, and on small (word-sized) modulus. These are all particularities
not shared by our scheme. Furthermore, we must note that the performance of such library is the
result of several years of extensive research on techniques, parameters, and implementation opti-
mizations [4]. Whereas, the goal of our implementation is just to provide a the first proof of concept
of an entirely novel bootstrapping method, and further research on optimal choice of parameters
or implementation optimizations are out of our scope.

All that said, we notice that TFHE-RS bootstraps 8-bit messages in 828.1 ms [1], which is only
3% faster than our amortized time in the same machine.

Comparison with large-Q bootstrapping algorithms To have a comparable non-amortized
version of our bootstrapping, we implemented, using double-CRT, the algorithm defined in [24],
which is the latest bootstrapping method for TFHE-like schemes. We start with the implementation
of the accumulator using the double-CRT CLWE variant of the GSW scheme described in Section 3.
We estimate noise using Equation 4, but consider N = 0 as we do not have the ring packing in this
version. We choose parameters that enable similar bootstrapping capabilities for both methods and
optimize performance by minimizing the dimension n. The main restriction for this process is the
security level of the input. Specifically, we work with sparse ternary keys to minimize the noise,
and we need to perform a key switching from dimensions p = 12289 to n, which requires an output
modulus of at least p∗ ≈ 221 to accommodate the noise. Considering this, n = 896 is the smallest
dimension for which the input ring is secure. We could lower n by using Gaussian keys with a larger
distribution σs, but it is advantageous to avoid the quadratic impact of σs compared to the linear
impact of n in the square norm of s (third term of Equation 4).

Thus, considering n = 896, ℓ = d = 2, and p = 12289, the running time we obtained was around
2.9 seconds, which is 3.4 times slower than our best amortized running times presented in Table 4.
The failure probabilities for 7 and 8-bit messages are 2−58.5 and 2−16.3, respectively.

5.4 Further Improvements

Since our results are comparable with the state-of-the-art programmable bootstrapping with small
ciphertext modulus Q (even though our amortized bootstrapping uses large Q, and thus, needs
double-CRT), and faster than non-amortized bootstrapping with large Q, we believe that we
achieved the goal of showing that efficient amortized bootstrapping is possible and can be practical.
Nonetheless, our implementation is a proof of concept and there are many promising techniques
that could be applied to further improve performance. For example, using parameters from Ta-
ble 4, our implementation requires 76.5 GiB of memory (for ℓ = 3). However, considering only
already existing techniques from the literature (e.g., decomposed automorphisms [24]), we could
reduce it to less than 10 GiB of memory. We discuss more about possible further improvements in
Appendix H.

28

Acknowledgments

This work has been supported in part by Cyber Security Research Flanders with reference number
VR20192203, by the Defence Advanced Research Projects Agency (DARPA) under contract No.
HR0011-21-C-0034 DARPA DPRIVE BASALISC, and by the FWO under an Odysseus project
GOH9718N.

Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of DARPA, the US Government, or Cyber
Security Research Flanders. The U.S. Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright annotation therein.

This work was done while A. Guimarães was visiting the Department of Computer Science of
Aarhus University. He is supported by the São Paulo Research Foundation under grants 2013/08293-
7, 2019/12783-6, and 2021/09849-5.

References

1. zama-ai/tfhe-rs (May 2023), https://github.com/zama-ai/tfhe-rs, original-date: 2022-10-13T09:20:07Z
2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Cryptology ePrint Archive,

Report 2015/046 (2015), https://eprint.iacr.org/2015/046
3. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.)

CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (Aug 2014). https://doi.org/10.
1007/978-3-662-44371-2_17

4. Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Parameter optimization &
larger precision for (T)FHE. Cryptology ePrint Archive, Report 2022/704 (2022), https://eprint.iacr.org/
2022/704

5. Bluestein, L.: A linear filtering approach to the computation of discrete fourier transform. IEEE Transactions on
Audio and Electroacoustics 18(4), 451–455 (1970). https://doi.org/10.1109/TAU.1970.1162132

6. Boemer, F., Kim, S., Seifu, G., de Souza, F.D., Gopal, V.: Intel HEXL: Accelerating homomorphic encryption
with intel AVX512-IFMA52. Cryptology ePrint Archive, Report 2021/420 (2021), https://eprint.iacr.org/
2021/420

7. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homomorphic accumulator. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 18. LNCS, vol. 10831, pp. 217–251. Springer, Heidelberg (May
2018). https://doi.org/10.1007/978-3-319-89339-6_13

8. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: Final: Faster fhe instantiated with ntru and lwe.
In: Advances in Cryptology – ASIACRYPT 2022. Springer International Publishing, Cham (2022)

9. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-lwe-based fully homomorphic en-
cryption schemes. Journal of Mathematical Cryptology 14(1), 316–338 (2020). https://doi.org/doi:10.1515/
jmc-2019-0026, https://doi.org/10.1515/jmc-2019-0026

10. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (Feb / Mar 2013). https:
//doi.org/10.1007/978-3-642-36362-7_1

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping.
In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325. ACM (Jan 2012). https://doi.org/10.1145/2090236.2090262

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33.
Springer, Heidelberg (Dec 2016). https://doi.org/10.1007/978-3-662-53887-6_1

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic encryption over the torus.
Journal of Cryptology 33(1), 34–91 (Jan 2020). https://doi.org/10.1007/s00145-019-09319-x

14. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007/978-3-662-46800-5_24

15. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report
2012/144 (2012), https://eprint.iacr.org/2012/144

29

https://github.com/zama-ai/tfhe-rs
https://eprint.iacr.org/2015/046
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://eprint.iacr.org/2022/704
https://eprint.iacr.org/2022/704
https://doi.org/10.1109/TAU.1970.1162132
https://doi.org/10.1109/TAU.1970.1162132
https://eprint.iacr.org/2021/420
https://eprint.iacr.org/2021/420
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/doi:10.1515/jmc-2019-0026
https://doi.org/doi:10.1515/jmc-2019-0026
https://doi.org/doi:10.1515/jmc-2019-0026
https://doi.org/doi:10.1515/jmc-2019-0026
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC. pp.
169–178. ACM Press (May / Jun 2009). https://doi.org/10.1145/1536414.1536440

17. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (Apr 2012). https:
//doi.org/10.1007/978-3-642-29011-4_28

18. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 75–92. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/978-3-642-40041-4_5

19. Guimarães, A., Pereira, H.V.L., Leeuwen, B.v.: Amortized Bootstrapping Revisited: Simpler, Asymptotically-
faster, Implemented (2023), https://eprint.iacr.org/2023/014, report Number: 014

20. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme.
In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 83–105. Springer, Heidelberg (Mar 2019). https:
//doi.org/10.1007/978-3-030-12612-4_5

21. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/

978-3-662-46800-5_25

22. Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.: General bootstrapping approach for
RLWE-based homomorphic encryption. Cryptology ePrint Archive, Report 2021/691 (2021), https://eprint.
iacr.org/2021/691

23. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for finite fields. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 608–639. Springer, Heidelberg (Dec 2021).
https://doi.org/10.1007/978-3-030-92078-4_21

24. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Efficient FHEW bootstrapping with
small evaluation keys, and applications to threshold homomorphic encryption. Cryptology ePrint Archive, Report
2022/198 (2022), https://eprint.iacr.org/2022/198

25. Liu, F.H., Wang, H.: Batch bootstrapping i: A new framework for simd bootstrapping in polynomial modulus.
In: Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III. p. 321–352.
Springer-Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30620-4_11, https://doi.
org/10.1007/978-3-031-30620-4_11

26. Liu, F.H., Wang, H.: Batch bootstrapping ii: Bootstrapping polynomial modulus only requires Õ(1) fhe multipli-
cations amortization. In: Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part
III. p. 353–384. Springer-Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30620-4_12,
https://doi.org/10.1007/978-3-031-30620-4_12

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (May / Jun 2010). https://doi.
org/10.1007/978-3-642-13190-5_1

28. MATZOV: Report on the Security of LWE: Improved Dual Lattice Attack (Apr 2022). https://doi.org/10.
5281/zenodo.6412487, https://doi.org/10.5281/zenodo.6412487

29. Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: Chatzigiannakis, I., Kakla-
manis, C., Marx, D., Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 100:1–100:14. Schloss Dagstuhl (Jul
2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.100

30. Micheli, G.D., Kim, D., Micciancio, D., Suhl, A.: Faster Amortized FHEW bootstrapping using Ring Automor-
phisms (2023), https://eprint.iacr.org/2023/112, report Number: 112

31. Nussbaumer, H.: Fast polynomial transform algorithms for digital convolution. IEEE Transactions on Acoustics,
Speech, and Signal Processing 28(2), 205–215 (1980). https://doi.org/10.1109/TASSP.1980.1163372, https:
//ieeexplore.ieee.org/document/1163372

32. Pereira, H.V.L.: Bootstrapping fully homomorphic encryption over the integers in less than one second. In:
Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 331–359. Springer, Heidelberg (May 2021). https:
//doi.org/10.1007/978-3-030-75245-3_13

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R.
(eds.) 37th ACM STOC. pp. 84–93. ACM Press (May 2005). https://doi.org/10.1145/1060590.1060603

30

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2023/014
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
https://eprint.iacr.org/2021/691
https://eprint.iacr.org/2021/691
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-92078-4_21
https://eprint.iacr.org/2022/198
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_11
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1007/978-3-031-30620-4_12
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.4230/LIPIcs.ICALP.2018.100
https://doi.org/10.4230/LIPIcs.ICALP.2018.100
https://eprint.iacr.org/2023/112
https://doi.org/10.1109/TASSP.1980.1163372
https://doi.org/10.1109/TASSP.1980.1163372
https://ieeexplore.ieee.org/document/1163372
https://ieeexplore.ieee.org/document/1163372
https://doi.org/10.1007/978-3-030-75245-3_13
https://doi.org/10.1007/978-3-030-75245-3_13
https://doi.org/10.1007/978-3-030-75245-3_13
https://doi.org/10.1007/978-3-030-75245-3_13
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603

A Glossary of parameters used in this work

Parameter Description Size
λ Security level –
n Dimension of LWE samples O(λ)
N Degree of RLWE samples (XN + 1). Power of two. O(λ)
p Degree of CLWE samples (Xp − 1). Prime. O(λ)
ρ Recursive depth of the bootstrapping algorithm –
qi Prime factor of ciphertext modulus Q < 250

Q Ciphertext modulus defined as
∏ℓ

1=1 qi Õ(λ1.5+ρ)
ℓ Number of prime factors of Q O(ρ · log λ)
t Plaintext modulus O(1)
d Dimension of GSW ciphertexts. Number of CRT digits O(ℓ)
Di Each CRT digit. Product of approx. ℓ/d primes. O(qi · ℓ/d)
D Upper-bound on the size of the CRT digits max(D1, ..., Dd)

B Generalization of circulant-LWE encryption

In [7], it was proved that we can use the circulant-RLWE problem to encrypt messages of the form
Xk, that is, powers of X. We now show that by slightly modifying their proof, we can prove that a
scheme that encrypts polynomials m(X) whose sum of coefficients is equal to 0 is also CPA-secure
under the RLWE assumption.

Lemma 10. If the decisional Ring-LWE problem is hard for the prime-order cyclotomic polynomial
Φp(X), a modulus Q ∈ Z, and standard deviation σ, then the Circulant-LWE scheme is cpa-secure

for messages of the form m(X) =
∑p−1

i=0 mi ·Xi where m(1) = 0.

Proof. Let SQ,p := {
∑p−1

i=0 aiX
i :
∑p−1

i=0 ai = 0 mod Q}. By Lemma 11 of [7], if the Ring-LWE prob-
lem is hard, then the Circulant-LWE distribution is indistinguishable from the uniform distribution
over S2

Q,p. Now, notice that for any ∆ ∈ Z and b ∈ SQ,p, if we define c = b+∆ ·m, then we have

p−1∑
i=1

ci =

p−1∑
i=1

bi +∆

p−1∑
i=1

mi = 0 mod Q.

Thus, SQ,p +∆m = SQ,p. Therefore, the circulant-LWE encryption of m is indistinguishable from
a uniformly random sample from SQ,p × (SQ,p +∆m) = S2

Q,p.

Now, notice that the secret key of the Circulant-LWE scheme is obtained by projecting the
secret s̄ from the RLWE to s = L((1 − X)s̄) ∈ SQ,p, therefore, it satisfies s(1) = 0. Moreover,
applying automorphisms to s modulo Xp − 1 only reorder the coefficients, so, if s(k)(X) := s(Xk),
we also have s(k)(1) = 0, therefore, encrypting s(k)(X) for any k is secure and we conclude that it
is safe to publish the key-switching keys from s to s(k). Finally, in Algorithm 6, we also need to
encrypt a product s · z, but both keys are also CLWE secrets, thus, we still have s(1) · z(1) = 0.

31

C Algorithm to perform fast base extension

Algorithm 12: FastBaseExtension

Input: D =
∏w

i=1 di, P =
∏v

i=1 pi, a ∈ RD in double-CRT form.
Output: a′ = a+ u ·D ∈ RPD in double-CRT form, where ∥u∥ ≤ 1/2.
Complexity: v + w NTTs and O(v · w ·N) modular multiplications
// Assume that D̂j := (D/dj)

−1 mod dj are precomputed

1 for 1 ≤ j ≤ w do

2 Let a(j) := rowj(Mat(a)) ∈ ZN

3 a(j) := NTT−1
dj

(a(j)) ∈ Rdj

4 for 1 ≤ i ≤ v do

5 a(w+i) := 0 ∈ Rpi

6 for 1 ≤ j ≤ w do

7 tmp := a(j) · D̂j mod dj
8 tmp := tmp · (D/dj) mod pi
9 a(w+i) = (a(w+i) + tmp) mod pi

10 for 1 ≤ i ≤ v do

11 a(w+i) := NTTpi(a
(w+i)) ∈ ZN

pi

12 Return (a(1), ...,a(w+v)) ∈ Z(w+v)×N .

D Common homomorphic operations

Modulus switching Here, we just consider the case where we want to switch the ciphertext
modulus Q =

∏ℓ−1
i=0 qi to a smaller Q′ by removing some primes, say, q0, ..., qk−1. Thus, Q

′ =
∏ℓ−1

i=k qi.
It is possible to switch to a larger modulus Q′ by adding new primes to the moduli chain, but since
we do not use this in our work, we do not discuss it here.

Let q := Q/Q′ = q0 · ... ·qk−1. Given c := (a, b := a ·s+e+∆m) ∈ RLWEs,Q(m) where ∆ = ⌊Q/t⌉
for some t, the modulus switching from Q to Q′ consists in computing

c′ :=
[⌊
c ·Q′/Q

⌉]
Q′ = ([⌊a/q⌉]Q′ , [⌊b/q⌉]Q′).

Generally, c′ is an RLWE encryption of the same message m, but with ciphertext modulus Q′

and noise close to e/q. Because rounding is not compatible with double-CRT representation we
avoid it by first subtracting [c]q from c, so that the result is a multiple of q, then we can divide
by q and no rounding is needed. In more detail, we define δa := a mod q and δb := b mod q, then
compute ĉ = (a − δa, b − δb). Notice that all the coefficients of ĉ belong to qZ. Finally, we output
c′ := [ĉ/q]Q′ = ((a− δa) · q−1, (b− δb) · q−1) mod Q′.

To subtract δa from a we first need to use FastBaseExtension from q to Q′ to obtain δa in
base Q. The same is needed for b. Each FastBaseExtension costs ℓ NTTs and O(kℓN) modular
multiplications, where N is the degree of the modulus polynomial. Multiplying by q−1 modulo Q′

means that we have to multiply each residue of c′ modulo qi, for k ≤ i ≤ ℓ − 1 by the inverse of
q modulo qi. This step just costs O(N · (ℓ− k)) integer modular multiplications. Thus, the overall
number of operations 2ℓ NTTs and O(kℓN) multiplications on Zqi .

32

Algorithm 13: ModSwitch Algorithm

Input: c = (a, b) ∈ RLWEs,Q(m), Q′ such that Q′|Q
Output: c′ ∈ RLWEs,Q′(m)
Complexity: 2ℓ NTT, O(kℓN) multiplications on Zqi

Noise growth: E → O(E/q +
√
N · S)

1 δa = FastBaseExtensionQ′,q(a mod q)
2 δb = FastBaseExtensionQ′,q(b mod q)
3 ĉ = (a− δa, b− δb)
4 c′ = [ĉ/q]Q′ =

(
(a− δa) · q−1, (b− δb) · q−1

)
mod Q′

After modulus switching, there is a ϵ such that ∥ϵ∥∞ ≤ 1 and the noise changes from e to

e′ = (e+ δa · s− δb)/q +m · ϵ.

Because both a and b are (indistinguishable from) uniform modulo Q, both δa and δb are
uniform modulo q, thus, they are (q ·

√
2π)-subgaussians. Therefore, if e is E-subgaussian and s is

S-subgaussian, we have e′ is (E/q +
√
N · S ·

√
2π + 2

√
2π)-subgaussian. Simplifying, the modulus

switching changes the noise from an E-subgaussian to a O(E/q +
√
N · S)-subgaussian.

Key switching The key-switching procedure can be divided into two steps, where the first step
uses the secret key to generate a public key-switching key, and the second step consists of using the
key-switching key to actually perform the key switching.

We denote by R̃QKS
d
s(z, E) the set of key-switching keys from a key z to a key s, having E-

subgaussian noise. Given s and z, we generate K ∈ R̃QKS
d
s(z, E) as K = [ak | bk := ak · s+ ek +

z · g] ∈ Rd×2
q , where g = (Q1 · Q̂1, . . . , Qd · Q̂d) is the CRT gadget vector, that is, for 1 ≤ i ≤ d,

rowi(K) ∈ R̃QLWEs(∆i · z, E), where ∆i := Qi · Q̂i.
To key switch a ciphertext, c = (a, b) ∈ R̃QLWEz(∆ ·m), we basically have to compute the CRT

decomposition of a and multiply it by both columns of K. This is shown in detail in Algorithm 14.

Algorithm 14: Key switching

Input: c = (a, b) ∈ R̃QLWEz(∆ ·m,E) and K ∈ R̃QKS
d
s(z, Ek), both in double-CRT form.

Output: c′ ∈ R̃QLWEs(∆ ·m,E′)
Complexity: d · ℓ NTTs and O(ℓ2 · p) products on Zqi

Noise growth: E′ = O(E +
√
dp ·D · Ek), where D = max(D1, ..., Dd)

▷ Consider that Q =
∏ℓ

i=1 qi and Di is a product of k primes, with ℓ = k · d
1 for 1 ≤ i ≤ d do
2 āi := a mod Di

▷ Each base extension costs ℓ NTTs and O(k · ℓ · p) multiplications on Zqi

3 ãi = FastBaseExtension(āi, Di, Q/Di) ∈ R̃Q

▷ The following lines cost zero NTTs and O(2 · d · p) modular products

4 a := (ã1, ..., ãd) ∈ R̃d
Q

5 â = a · col1(K)

6 b̂ = a · col2(K) ▷ Noise: O(
√
dp ·D · Ek)-subgaussian

7 c′ = (−â, b− b̂) ∈ R̃2
Q

8 return c′

33

D.1 Automorphism

Given a ciphertext c = (a, b) ∈ R̂QLWEs(∆ · m) and an integer u ∈ Z∗
p, we apply the Galois

automorphism X 7→ Xu to both a and b. This operation maps c to another RLWE ciphertext
encrypting m(Xu) mod Xp − 1. It also has the side effect of changing the key to s(Xu), thus, a
key switching is needed to go back to the original key s(X). Applying the automorphism itself is
done by simply rotations of coefficients, which is essentially for free, thus, the cost and the noise
growth are only due to the key-switching step. We show it in detail in Algorithm 15. We are most
interested in the particular case where we encrypt an integer v as Xv, since the automorphism
allows us to obtain an encryption of u · v mod p as Xu·v.

Algorithm 15: Automorphism

Input: c = (a, b) ∈ R̃QLWEs(∆ ·m,E), u ∈ Zp, and K ∈ R̃QKS
d
s(s(X

u), Ek). Both c and K in
double-CRT form.

Output: c′ ∈ R̃QLWEs(∆ ·m(Xu), E′)
Complexity: d · ℓ NTTs and O(ℓ2 · p) products on Zqi

Noise growth: E′ = O(E +
√
dp ·D · Ek), where D = max(D1, ..., Dd)

1 Let η be the mapping X 7→ Xu mod p

2 (â, b̂) = (η(a), η(b)) ∈ R̃QLWEs(Xu)(∆ ·m(Xu), E)

3 c′ = KeySwt(â, b̂,K) ∈ R̃QLWEs(∆ ·m(Xu), E′)
4 return c′

E Detailed algorithm for ring packing

Algorithm 16: PackLWE Algorithm from [29]

Input: [(a(i), b(i))]i<N ∈ LWEQ
s (∆ ·mi, E), packing key K := (a,b) ∈ R̂nℓ×2

Q with
ER-subgaussian error.

Output: (a, b) ∈ R̂QLWEz(∆ ·m)
Complexity: O(n ·N log(Q) log(N)) multiplications over ZQ

Noise growth: (E,ER) 7→ O(
√
N · E +

√
n ·N · log(Q) ·B · ER)

1 for 0 ≤ i < n do

2 āi :=
∑N−1

j=0 a
(j)
i ·Xj

3 ā = (ā0, . . . , ān−1) ∈ R̂n
Q

4 b̄ =
∑N−1

i=0 b(i) ·Xi

5 u = g−1(ā) ∈ R̂n·L
Q

6 (a, b) = (−u · a, b̄− u · b) ∈ R̂2
Q

F Proofs

F.1 Proof of Lemma 2, about shrinking matrices

Let Q′
i := Q′/Di ∈ Z and Q̂′

i := (Q′/Di)
−1 mod Di, for k + 1 ≤ i ≤ d. We want to write G′ in

terms of Q′
i and Q̂

′
i to show that it is indeed a scaled gadget matrix with respect to the CRT digits

Dk+1, ..., Dd and the modulus Q′.

34

First, notice that

Ḡ := πk(G) =

Qk+1 · Q̂k+1 · αk+1 0
... 0

Qd · Q̂d · αd 0

0 Qk+1 · Q̂k+1 · αk+1
...

...

0 Qd · Q̂d · αd

∈ Z2(d−k)×2.

But we see that for k + 1 ≤ i ≤ d, Qi = Q/Di = (Q′/Di) ·D(k) = Q′
i ·D(k), thus all entries are

divisible by D(k).
Also, Q̂i = [(Q/Di)

−1]Di = [(Q′/Di)
−1 · (D(k))−1]Di = Q̂′

i · (D(k))−1 mod Di. Therefore, by
defining α′

i := αi · (D(k))−1 mod Di, we have

G′ :=
πk(G)

D(k)
=

Q′
k+1 · Q̂′

k+1 · α′
k+1 0

... 0

Q′
d · Q̂′

d · α′
d 0

0 Q′
k+1 · Q̂k+1 · α′

k+1
...

...

0 Q′
d · Q̂d · α′

d

∈ Z2(d−k)×2.

Now, let y := CRT−1(a, b). To show that y ·G′ = α′ · (a, b) mod Q′, notice that the product
by the first column of G′, modulo Q′, gives us

y · col1(G′) =
d∑

i=k+1

(Q′
i · Q̂′

i) · α′
i · [a]Di

= CRT([α′ · a]Dk+1
, ..., [α′ · a]Dd

)

= CRT([(D(k))−1 · α]Dk+1
, ..., [(D(k))−1 · α]Dd

) · CRT([a]Dk+1
, ..., [a]Dd

)

= α′ · a

The same argument shows that y · col2(G′) = α′ · b mod Q′.

F.2 Lemma and proof of correctness of MsgExtract

Lemma 11 (Correctness of MsgExtract). Let the input ciphertext be C̃ ∈ R̃QGSW
d
s(α ·

X∆·m+e, E), with ∥e∥ < ∆/2. Let the plaintext space be Zt for some t ≥ 2. Let s ∈ ZN be the
coefficient vector of s. For any function f : Zt → Zt, define the “test polynomial” t(X) ∈ R̃ as

t(X) = X∆/2 ·

∆−1∑
i=0

f(0) ·Xp−i +

2∆−1∑
i=∆

f(1) ·Xp−i + ...+

t∆−1∑
i=(t−1)·∆

f(t− 1) ·Xp−i

 .

Then, Algorithm 10, MsgExtract, outputs an LWE ciphertext LWEp
s(⌊Q/t⌉ · f(m), E′) ∈ Zp+1

Q ,

where E′ = O(
√
dp ·D · E).

35

Proof. The correctness follows from the standard observation that the constant term of g(X) :=
t(X) · X∆·m+e is equal to f(m). This is essentially the same argument used in the extraction
algorithms of [13,8]. Thus, by the correctness of the external product, c′ encrypts g(X) such that
g0 = f(m).

The rest of the procedure just extracts from c′ an LWE sample corresponding to the first
coefficient, hence, encrypting g0.

The cost and noise growth are simply given by the external product, Algorithm 3, but with the
number of NTTs divided by two, since the first polynomial in the external product is zero.

F.3 Lemma about GSW key switching with less noise growth

Lemma 12 (Correctness and cost of GSW key switching with parallel reconstruction).
On input C ∈ R̃QGSW

d
z(α·m,E), Kz ∈ R̃QKS

d
s(z, Ek), Ks ∈ R̃QKS

d
s(s, Ez), and Ksz ∈ R̃QKS

d
s(s·

z, Es), Algorithm 3 outputs C′ ∈ R̃QGSW
d
s(α ·m,E′) where

E′ = O
(√

p · (
√
d ·D · Esz +

√
d ·D · Es + ∥s∥ · E)

)
.

Moreover, it requires 3 · d2 · ℓ NTTs and O(d · ℓ2 · p) products on Zqi.

Proof. The correctness of the first d rows of the output C′ follows from the correctness of the key
switching for R/CLWE samples, Algorithm 14. For the last d rows, consider the following.

WriteKs := [as | bs := as ·s+es+s·g] ∈ R̃d×2
Q andKsz := [ak | bk := ak ·s+ek+s·z ·g] ∈ R̃d×2

Q ,

where g ∈ Zd is the CRT gadget vector. Also, write (a, b) = rowi(C) with b = a · z + e+∆i ·m.
Then y ·col2(Ks) = y ·as ·s+y ·es+s(az+e+∆i ·m) = y ·as ·s+y ·es+a ·s ·z+e ·s+∆i ·m ·s

and h · col2(Ksz) = h · ak · s+ hek + a · s · z. Hence,

b′ := h · col2(Ksz)− y · col2(Ks) = (h · ak − yas)︸ ︷︷ ︸
a′

·s+ h · ek − y · es − e · s︸ ︷︷ ︸
e′

−∆i ·m · s.

By defining D = max(D1, ..., Dd), we have that e′ is E′-subgaussian, where

E′ ∈ O(
√
dp ·D · Esz +

√
dp ·D · Es +

√
p · ∥s∥ · E).

Thus, (a′, b′) ∈ R̃QLWEs(−∆i ·m · s, E′).
Now, it remains to analyze the cost. The d RLWE key switchings executed in line 2 cost, in

total, d2 · ℓ NTTs and O(d · ℓ2 · p) products on Zqi . All the fast base extensions cost in total 2 · d2 · ℓ
NTTs and O(d · ℓ2 · p) modular products. The remaining operations just cost 4 · d · p modular
products. Therefore, the algorithm requires 3 · d2 · ℓ NTTs and O(d · ℓ2 · p) products on Zqi .

F.4 Proof of Lemma 7, about noise growth of Algorithm 8

Proof. Algorithm 8 can be divided into three distinct steps:

– The splitting step, where the vectors g passed to the recursive calls are defined. This does not
introduce any additional error.

– The base case of the recursion, where the NTT is computed with a quadratic algorithm.
– The recombination step, lines 12 to 15.

36

First consider the base case, where the quadratic step is applied to vectors of dimensionN/mρ. In
this step, each ak is defined as the output of Algorithm 7 on ciphertexts Ci ∈ R̃QGSW

d
s(α ·Xfi , E).

Thus, by the noise analysis done in Algorithm 7, at the end of the base case, we have GSW
ciphertexts with E(ρ)-subgaussian noise, where

E(ρ) = O

((√
N

mρ
·
√
d · p ·D · ∥s∥

)
· E +

√
dp ·D · Es +

√
N

mρ
· √p · ∥s∥ · EKS

)

where EKS = O(
√
dp ·D · Ek).

Now, for 2 ≤ i ≤ ρ, let E(i) be the subgaussian parameter of the noise of the ciphertexts
used in the recombination step of the i-th recursive level. At this stage, each aj is computed as
an inner product with m coefficients, hence the noise in the output of the i-th recursive level is
E(i−1)-subgaussian, where E(i−1) is obtained by applying the noise growth formula of Algorithm 7
with input noise E(i) and vector dimension equal to m, that is,

E(i−1) = O
(
α · E(i) + β

)
,

where α =
√
m · d ·D · p · ∥s∥ and β :=

√
dp ·D ·Es +

√
p · ∥s∥ ·E1 +

√
p · ∥s∥ ·

√
m ·EKS . Iterating

this formula gives us

E(1) = O(α · E(2) + β) = · · · = O

(
αρ−1 · E(ρ) + β

ρ−2∑
i=0

αi

)
.

By the definition of E(ρ), we have

E(1) = O

(
√
N · (

√
d ·D · p · ∥s∥)ρ · E + αρ−1

(√
dp ·D · Es +

√
N

mρ
· √p · ∥s∥ · EKS

)
+ β

ρ−2∑
i=0

αi

)
.

Finally, by absorbing the lowest terms in the big-Oh notation, assuming that Es is constant, and
recalling that EKS = O(

√
dp ·D · Ek), we obtain

E(1) = O

(
√
N · (

√
d ·D · p · ∥s∥)ρ · E + αρ−1

(√
N

mρ
·
√
d ·D · p · ∥s∥ · Ek

))
= O

(√
N · (

√
d ·D · p · ∥s∥)ρ · (E + Ek)

)

G Number of NTTs in homomorphic inverse NTT

Let T (N) be the number of NTTs over Zqi that are executed during the homomorphic evaluation
of the inverse NTT, Algorithm 8. Firstly, let’s consider that no ciphertext shrinking is used, so d
and ℓ are constant in all the recursive levels. We can see that T (N) = m · T (N/m) +R(N) where
m·T (N/m) accounts for them recursive calls on vectors of dimension N/m and R(N) is the number
of NTTs of the recombination step. Assuming that the sums are implemented with EvalScalarProd,

37

Algorithm 7, which cost 3 ·m · d2 · ℓ NTTs, we have R(N) = N · (3 ·m · d2 · ℓ) = 3 ·N ·m · d2 · ℓ.
Therefore,

T (N) = m · T (N/m) + 3 ·N ·m · d2 · ℓ.

Iterating this up to ρ recursive levels, we have

T (N) = m · T (N/m) + 3 ·N ·m · d2 · ℓ
= m · (m · T (N/m2) + 3 · (N/m) ·m · d2 · ℓ) + 3 ·N ·m · d2 · ℓ
= m2 · T (N/m2) + 3 · 2 ·N ·m · d2 · ℓ

=
...

= mρ · T (N/mρ) + 3 · ρ ·N ·m · d2 · ℓ

Then, we run the homomorphic quadratic inverse NTT on dimension N/mρ. Since on dimension
k, this algorithm executes k times the homomorphic scalar product of dimension k, its cost is
k · (3 · k · d2 · ℓ). Therefore, using k = N/mρ, the total number of NTTs is

T (N) = mρ · 3 · (N/mρ)2 · d2 · ℓ+ 3 · ρ ·N ·m · d2 · ℓ = 3 ·N · d2 · ℓ ·
(
N

mρ
+ ρ ·m

)
.

To generalize this analysis to the case where shrinking is used, let’s assume that we shrink the
ciphertexts at the end of each recursive call. Thus, considering that we have recursive depth ρ, we
have different dimensions and number of primes, di and ℓi for 0 ≤ i ≤ ρ, where ℓρ is the number of
primes that we have in the very beginning (thus, dρ > dρ−1 > ... > d0 and ℓρ > ℓρ−1 > ... > ℓ0).

Now, the formula for the number of NTTs becomes

T (N, i) = m · T (N/m, i+ 1) + 3 ·N ·m · d2i · ℓi + 4 ·N · di · ℓi+1

where the last term, 4 · N · di · ℓi+1, accounts for the number of NTTs executed by the shrink-
ing algorithm to switch from dimension (di+1, ℓi+1) to (di, ℓi) the n ciphertexts output by the m
recursive calls.

By starting with i = 0 and iterating ρ times again, we have

T (N, 0) = m · T (N/m, 1) + 3 ·N ·m · d20 · ℓ0 + 4 ·N · d0 · ℓ1
= m2 · T (N/m2, 2) + 3 ·N ·m · d21 · ℓ1 + 4 ·N · d1 · ℓ2 + 3 ·N ·m · d20 · ℓ0 + 4 ·N · d0 · ℓ1
= m2 · T (N/m2, 2) + 3 ·N ·m ·

(
d21 · ℓ1 + d20 · ℓ0

)
+ 4 ·N · (d1 · ℓ2 + d0 · ℓ1)

=
...

= mρ · T (N/mρ, ρ) + 3 ·N ·m ·

(
ρ−1∑
i=0

d2i · ℓi

)
+ 4 ·N ·

(
ρ−1∑
i=0

di · ℓi+1

)

Now, using 3·(N/mρ)2 ·d2ρ ·ℓρ for the number of NTTs of the quadratic step, i.e., T (N/mρ, ρ), the
total number of NTTs used in the homomorphic inverse bootstrapping with one layer of shrinking
after each recursive level is

T (N, 0) =
3 ·N2 · d2ρ · ℓρ

mρ
+ 3 ·N ·m ·

(
ρ−1∑
i=0

d2i · ℓi

)
+ 4 ·N ·

(
ρ−1∑
i=0

di · ℓi+1

)

38

H Further Improvements

In this section, we discuss some of the techniques that could be used to improve our construction
or implementation. We note that, although we estimate the impact for some of them using exper-
imental data, we do not present these techniques in our implementation. Their implementation is
left as future work.

Optimal Parameter Selection We choose parameters in Section 5.3 based on a manual search.
However, optimizing parameters is generally a complex task, requiring extensive parameter search,
application considerations, and testing [4]. As such, a more extensive and formal parameter opti-
mization could likely improve our results both for the amortized and non-amortized versions.

Memory usage The high memory requirements are certainly the main drawback of our con-
struction, but there already are several ways of mitigating it. Table 5 shows the detailed memory
requirements for our parameters. Compressed (Compr.) values consider different techniques that
we can use to reduce memory requirements, but that might affect performance. Performance Opti-
mal (Perf. Opt.) values do not consider any compression techniques, focusing solely on improving
performance. Our implementation and, hence, all execution times we present in this section do not
consider the compression techniques. LWE and Packing key switching keys are not included in this
comparison. The table considers the following techniques:

– Temporary buffer. Our algorithm needs a temporary buffer because it does not calculate the
INTT in place. Instead of having a different buffer for each recursive call to the INTT, we can
have a single one shared among them. This restricts parallelization and does not allow memory
from shrunk ciphertexts to be freed.

– State buffer. This is the array of accumulators. To save memory, we can evaluate the INTT
directly over the bootstrapping key. This comes at the cost of having to load the bootstrapping
key before each bootstrapping.

– Automorphism key switching keys. We can use decomposed automorphism calculations, as we
further discuss in the next subsection.

Table 5: Memory requirements for p = 12289.
N = 512 N = 1024

ℓ = 3 ℓ = 4 ℓ = 3 ℓ = 4
Perf. Opt. Compr. Perf. Opt. Compr. Perf. Opt. Compr. Perf. Opt. Compr.

Bootstrapping Key 4.5 GiB 4.5 GiB 8.0 GiB 8.0 GiB 9.0GiB 9.0 GiB 16.0 GiB 16.0 GiB

Automorphism key 54.0 GiB 63.0 MiB 96.0 GiB 112.0 MiB 54.0GiB 63.0 MiB 96.0 GiB 112.0MiB

Temporary buffer 2.2 GiB 72.0 MiB 4.0 GiB 128.0 MiB 4.5GiB 72.0 MiB 8.0 GiB 128.0MiB

State buffer 4.5 GiB 0 8.0 GiB 0 9.0GiB 0 16.0 GiB 0

Total 65.3 GiB 4.6 GiB 116.0GiB 8.2 GiB 76.5GiB 9.1 GiB 136.0 GiB 16.2 GiB

Decomposed Automorphisms In [24], they introduce an efficient way of reducing the number of
automorphism keys by representing the automorphism generators as a product of the powers of the

39

ring multiplicative generator. In their case, automorphism generators are in Z∗
2N , and they need to

map them to ZN/2×Z2 to obtain a multiplicative generator. In ours, automorphism generators are
in Z∗

p for some prime p, so we always have a multiplicative generator of order p− 1. This technique
can reduce the number of automorphism key switching from p down to just ⌈log2(p)⌉, which would
reduce the total size of the automorphism keys 877 times for our parameters. It is hard to estimate
the impact on the performance. In one hand, this technique could bring a slowdown of around 2 to
3 times, on the other, reducing drastically the memory usage reduces data movement, which speeds
up the running times in practice. In [24], they also introduce the concept of window size, which
defines the number of automorphism keys they actually use. In this way, they are able to provide
intermediary solutions, which require larger keys but introduce less performance overhead.

Reducing the size of NTTs When defining the accumulator for the non-amortized version, we
are able to select values for p that are very close to the next power of two. The same cannot be
done when defining p for the amortized method, as we are further limited by the necessity of a
2n-th root of unity modulo p. If the goal is just to reduce memory usage, we can use the Bluestein
NTT [5], which allows evaluating multiplications directly in R̃. However, Bluestein essentially turns
the transform in a convolution of size 2N , thus not improving itself. In fact, it might introduce
additional overheads to the transform computation. It also requires the existence of p-th roots of
unity modulo the primes Qi, which further limits our parameter selection. Nonetheless, it would
reduce our memory requirements by around two times.

40

	Amortized bootstrapping revisited: Simpler, asymptotically-faster, implemented

