
Differential analysis of the ternary hash function
Troika

Christina Boura, Margot Funk, and Yann Rotella

Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles,
78000,Versailles, France

christina.boura@uvsq.fr, margot.funk@uvsq.fr, yann.rotella@uvsq.fr

Abstract. Troika is a sponge-based hash function designed by Kölbl,
Tischhauser, Bogdanov and Derbez in 2019. Its specificity is that it is
defined over F3 in order to be used inside IOTA’s distributed ledger
but could also serve in all settings requiring the generation of ternary
randomness. To be used in practice, Troika needs to be proven secure
against state-of-the-art cryptanalysis. However, there are today almost
no analysis tools for ternary designs. In this article we take a step in this
direction by analyzing the propagation of differential trails of Troika
and by providing bounds on the weight of its trails. For this, we adapt
a well-known framework for trail search designed for Keccak and pro-
vide new advanced techniques to handle the search on F3. Our work
demonstrates that providing analysis tools for non-binary designs is a
highly non-trivial research direction that needs to be enhanced in order
to better understand the real security offered by such non-conventional
primitives.

Keywords: differential cryptanalysis, Troika, ternary design

1 Introduction

Almost all symmetric-key cryptographic schemes known today are defined over
the binary field F2. However, recent advances in cryptology imply that ternary
symmetric constructions could fit better in some particular contexts. A first
notable example is a cryptocurrency and distributed ledger technology called
IOTA. This platform is based on a ternary architecture and its security relied,
among others, on the security of a ternary hash function. For this purpose, a
hash function called Curl-P was designed for IOTA, but was soon after found to
have devastating security issues [7]. Curl-P was then replaced by Kerl, another
ternary hash function that could be seen as an adaptation of SHA-3 to F3. This
adaptation was however not natural and led to a particularly inefficient design.
For this reason, Kölbl, Tischhauser, Bogdanov and Derbez proposed in 2019
Troika [8], a ternary hash function claimed to be secure and efficient at the same
time.

Even if the advantage of a ternary construction is not completely clear in the
IOTA paradigm, ternary symmetric designs could be very meaningful in other

settings. For example, in a completely different context, Debris-Alazard, Sendrier
and Tillich designed in 2019 Wave, a ternary code-based signature scheme [6].
While this scheme is asymmetric, it needs the generation of good quality ternary
randomness. Troika would then be a natural candidate for this purpose, as hash
functions are regularly used as random number generators.

In the last 30 years, cryptanalysis of traditional binary schemes has been
extremely developed. On the other hand, almost nothing is known about the
security of ternary symmetric schemes, starting from their resistance against
very basic attacks as the differential one. In this article we propose to take a
step into this direction by providing an enhanced analysis of the hash function
Troika against differential cryptanalysis. The goal of our work is two-fold. First,
we aim to provide the first third-party differential analysis against this function
by giving concrete upper bounds on the probability of its differential trails.
Second, we develop non-trivial techniques for searching differential bounds for
ternary designs. We believe that our work can serve as a starting point for the
analysis against differential cryptanalysis of ternary designs to come.

Our contributions

Troika is a sponge-based construction whose round function has a design very
similar to Keccak. Searching for good differential trails for Keccak is a very
complex task due mainly to its large state and its weakly aligned inner compo-
nents. Dedicated algorithms for generating all trails for Keccak below a given
weight, leading to upper bounds on the probability of differential trails for a
certain number of rounds were developed in [4,9]. These articles were the start-
ing point of our work. We adapted and extended them for the ternary case and
applied them to Troika. This adaptation was not straightforward and we needed
to develop advanced techniques to be able to compute on trits (i.e. elements
of F3) in a reasonable time. Most of our improvements concern the tree traversal
used to generate out-kernel 2-round trail cores. This applies to the computation
of the so-called runs, a way to organize the differential patterns of a state. More
precisely, we defined an equivalence class notion on the runs that permitted us
to treat less trail cores and we improved a specific order relation such that fewer
collisions between runs occur, leading to more efficient tree pruning. This per-
mitted us to scan all trail cores up to weight 41 and to prove that there do not
exist 6-round trails with weight lower than 82. In comparison, the designers of
Troika were only able to provide results on smaller versions of Troika by using
a MILP-based approach. Their approach could not apply to the original version
of the function because of its large state.

Eventually, we show that adapting the existing tool from Keccak to Troika
is a highly nontrivial problem, even if the design strategy of both primitives is
similar. This is mainly due to the fact that, contrary to the binary case, active
trits can take two values (1 or 2), leading to a huge number of trails to treat.
Thus, providing interesting bounds for Troika is not possible without introducing
new ideas to prune the search tree efficiently. More generally, our work highlights

2

that adapting existing tools and methods from F2 to F3 is a challenging task
and indicates that more research efforts are needed towards this direction.

The rest of the article is organized as follows. In Section 2 we recall classical
notions regarding differential trail search on symmetric primitives. Section 3
presents the specifications of Troika while Section 4 describes the general strategy
used to scan all trail cores of a certain weight. Our algorithms for generating
2-round trail cores for Troika are described in Section 5. These 2-round trail
cores can then be extended to 6-round trail cores with the techniques described
in Section 6.2. Section 6.1 is dedicated to the direct search of 3-round trail cores
of a particular profile, called in-kernel that can be generated relatively easier
without the techniques of Section 5. Finally, Section 7 presents some statistics
on the trails we managed to scan.

2 Differential cryptanalysis

Differential cryptanalysis is a powerful attack against symmetric primitives that
exploits input differences that propagate through the primitive to some out-
put difference with high probability. We recall in this section basic definitions
regarding differential properties.

Notation Let K be a finite field. We want to study a substitution-permutation
primitive f from Kn to Kn. Typically for Troika, K is the field F3. We write +
for the usual coordinate-wise addition in Kn and use the operator − in the usual
way. We call state the value of the variable of Kn which is progressively updated
through the substitution permutation network. We denote by R0, . . . , Rr−1 the r
round functions that are iteratively applied to the state i.e. f = Rr−1 ◦ · · · ◦
R1 ◦ R0. For k ∈ [0, r − 1], the round function Rk is the composition of a
nonlinear map χ, a linear map λ and a round constant addition ιk, that is to
say Rk = ιk ◦λ◦χ. The state is divided for the nonlinear layer into disjoint parts
of equal size, called boxes. A nonlinear map, called S-box and supposed here to
be bijective, is applied to each box of the state.

Differentials Let f : Kn → Kn be a permutation. A differential over f is a
couple (∆in, ∆out) ∈ (Kn)2. The difference ∆in is said to be an input difference
while the difference ∆out is called an output difference. The differential probability
of a differential (∆in, ∆out) over f is defined as

DPf (∆in, ∆out) := #{x ∈ Kn : f(x + ∆in)− f(x) = ∆out}
#Kn

.

If DPf (∆in, ∆out) > 0, we say that the input difference ∆in is compatible with
the output difference ∆out through f and call (∆in, ∆out) a valid differential
over f . The weight of a valid differential (∆in, ∆out) over f is

wf (∆in, ∆out) := − log#K (DPf (∆in, ∆out)) .

3

Differential trails When the dimension n of the domain of the iterated func-
tion f is large, it is in general not possible to compute the exact differential
probability of a differential over f . Thus, we try to approximate this probability
by studying sequences of differences, called differential trails. In the following, we
denote by f = Rr−1◦ · · · ◦R0 an iterated function from Kn to Kn. For k ∈ [1, r], a
k-round differential trail over f is a sequence Q = (q(0), q(1), . . . , q(k)) ∈ (Kn)k+1

where for 0 ≤ i ≤ k−1, (q(i), q(i+1)) is a valid differential over Ri. The differential
probability of Q is defined as

DPf (Q) := #{(x, x′) ∈ (Kn)2 : ∀i ∈ [0, k], f [i](x)− f [i](x′) = q(i)}
#Kn

,

where f [0] is the identity function and for i ∈ [1, k], f [i] = Ri−1 ◦ . . . ◦ R0. If
we write DTf (∆in, ∆out) for the set composed of all trails over f of the form
(∆in, q(1), . . . , q(k−1), ∆out), then DPf (∆in, ∆out) =

∑
Q∈DTf (∆in,∆out) DPf (Q).

Computing the exact probability of a differential trail is in general out of
reach. Instead, we try to approximate it, looking locally at the differentials that
form the trail. The weight of a differential trail Q = (q(0), q(1), . . . , q(k)) over f ,
defined as

wf (Q) :=
k−1∑
i=0

wRi
(q(i), q(i+1)),

is a value used to approximate the differential probability of the trail. We expect
to have DPf (Q) ≃ (#K)− wf (Q). The weight of the trail Q is easy to calculate
as for all i ∈ [0, k − 1], wRi

(
q(i), q(i+1)) = wχ

(
q(i), λ−1 (q(i+1))). This last

quantity can be computed as the sum of the weights of the differentials given
by the restriction of

(
q(i), λ−1 (q(i+1))) to the domain and co-domain of the S-

boxes. To estimate the security of a primitive against differential attacks, it is
essential to ensure that there do not exist differential trails with low weight.

Trail cores [4] A k-round differential trail over f will be represented as follows:

b0
χ−−→ a1

λ−−→ b1
χ−−→ a2

λ−−→ · · · λ−−→ bk−1
χ−−→ ak

λ−−→ bk,

where for i ∈ [1, k], bi = λ(ai) and DPχ(bi−1, ai) > 0. Since the S-boxes are
bijective, if a differential (b, a) is valid over χ, then the nonzero boxes of the
difference a are located at the same positions as those of b. These boxes and
their corresponding S-boxes are said to be active.

The choice of the difference b0 and the choice of the difference ak of the k-
round trail do not affect the number of active S-boxes. For this reason it is
convenient to specify only the central part of the trail, namely (a1, . . . , bk−1).
This defines a set of differential trails

⟨a1, . . . , bk−1⟩ := {Q = (b′
0, a1, . . . , bk−1, a′

k, b′
k) : Q is a k-round trail over f}

called a k-round trail core of f . The weight of a k-round trail core ⟨a1, . . . , bk−1⟩,
written w⟨a1, . . . , bk−1⟩, is the minimum of the weights of the trails that belong

4

to the trail core. To make this explicit, the notions of minimum direct and
reverse weight of a difference are introduced. The minimum reverse weight of a
difference ∆ ∈ Kn is given by

w̃rev(∆) = min
b
{wχ(b, ∆)},

where the minimum is taken over the differences b ∈ Kn such that (b, ∆) is a
valid differential over χ. The minimum direct weight of ∆ ∈ Kn is

w̃dir(∆) = min
a
{wχ(∆, a)},

where the minimum is taken over the differences a ∈ Kn such that (∆, a) is a
valid differential over χ. The weight of a 2-round trail core ⟨a, b⟩ is then w⟨a, b⟩ =
w̃rev(a) + w̃dir(b). If k ≥ 2, the weight of a k-round trail core ⟨a1, . . . , bk−1⟩ is

w̃rev(a1) +
k−2∑
i=1

wχ(bi, ai+1) + w̃dir(bk−1).

Following the same approach as in [9], we gradually generate differential trail
cores, starting from short trail cores and extending them in the forward and
backward direction.

3 Troika description

We denote the finite field with 3 elements by F3. We call an element of F3 =
{0, 1, 2} a trit and an element of F3

3 a tryte.

The Troika round function Troika is a hash function from F∗
3 to F243

3 . It
follows the sponge construction [1] with a rate of 243 trits and a capacity of 486
trits. Therefore, the state is a vector of 729 trits. The permutation f used inside
the sponge construction is composed of 24 rounds. Each round follows the Kec-
cak [2] philosophy and is composed of 5 step functions: a nonlinear layer Sub-
Trytes, two shuffling layers ShiftRows and ShiftLanes, a parity-mixer AddColum-
nParity and a round constant addition AddRoundConstanti. Taking the same
notations as in Keccak-f , we abbreviate them here respectively by χ, ρr, ρℓ, θ
and ιi. We also denote by ρ the composition ρ = ρℓ ◦ ρr and λ the whole linear
layer. The round function Ri is then given by Ri = ιi ◦ λ ◦ χ, where χ is the
nonlinear layer and λ = θ ◦ ρ is the linear layer.

Notations and definitions The round function operates on a state of 729 trits,
organized as a three-dimensional array of size 9×3×27 trits. In the following, x
will always be an integer between 0 and 8, xB an integer between 0 and 2,
y an integer between 0 and 2 and z an integer between 0 and 26. Moreover,
coordinates along the x, y and z axes will always be considered modulo 9, 3 and

5

27 respectively. We use the letter A to denote a state, that is either seen as an
element of F729

3 or as a three-dimensional array. We write A[x, y, z] for the trit
of A of coordinates (x, y, z). The box of A of coordinates (xB , y, z) is the tryte
(A[3xB + i, y, z])i∈[0, 2]. We call a box-column a triplet of boxes that have the
same xB and z coordinates. The different parts of the state of Troika can be
visualised in Figure 9 of Appendix B. We denote by e(x,y,z) the canonical state
whose components are all zero, except the component of coordinates (x, y, z)
that equals 1.

Definition 1. (trit-activity pattern) The trit-activity pattern of a state A is
the vector A of {0, 1}729 that indicates the nonzero trits of A, called active trits.
It is defined as A[x, y, z] = 0 if A[x, y, z] = 0 and A[x, y, z] = 1 otherwise.

Definition 2. (box-activity pattern) The box-activity pattern of a state A is
the vector of {0, 1}729 denoted by box(A) and given by box(A)[x, y, z] = 1 if the
box of A containing the trit of coordinates (x, y, z) is active and box(A)[x, y, z] =
0 otherwise.

Definition 3. (box weight) The box weight [3] of a state A is the number
of boxes of A that are active, namely #{(xB , y, z) : (A[3xB + i, y, z])i∈[0, 2] ̸=
(0, 0, 0)}. It is denoted by wbox(A).

The nonlinear layer The map SubTrytes, here denoted by χ, is the parallel
application of 9 × 27 S-boxes of size 3 trits. The minimum reverse and direct
weights of a state are easy to compute. Indeed, by computing the differential
distribution table of the S-box, one can verify the following properties.

Property 1. For all differences A ∈ F729
3 , w̃rev(A) = w̃dir(A) = 2 wbox(A).

Property 2. It can be noticed that the following input differences ∆in are com-
patible through the S-box map with output differences ∆out of the form :

∆in ∈ F3
3 ∆out = (t0, t1, t2) ∈ F3

3 ∆in ∈ F3
3 ∆out = (t0, t1, t2) ∈ F3

3
(0, 0, 1) t2 = 1 (1, 0, 0) t1 ̸= 0
(0, 0, 2) t2 = 2 (2, 0, 0) t1 ̸= 0

This property is used in Appendix E.3 to extend trail cores in the forward
direction.

Remark 1. If a differential (∆, ∆′) is valid through the bijective nonlinear map χ,
then the differences ∆ and ∆′ have the same box-activity pattern.

The shuffling layers The permutations ShiftRows and ShiftLanes move the trits
of the state along the x and z axes, without modifying their value. We denote
by ρ̃ the permutation of the set of coordinates that satisfies ρ

(
e(x,y,z)

)
= eρ̃(x,y,z)

for all (x, y, z) ∈ [0, 8]× [0, 2]× [0, 26]. For a complete description of these layers
we refer to [8].

6

The parity-mixer The map AddColumnParity, written here θ, is a column
parity mixer [10]. The parity plane of a state A is the bi-dimensional array of
size 9×27 that indicates the parity (0, 1 or 2) of each column of A. It is denoted
by P (A) and defined as

P (A)[x, z] :=
2∑

y=0
A[x, y, z] mod 3.

It is said that the column of A of coordinates (x, z) has parity P (A)[x, z] ∈ F3.
The θ-effect plane of A is the bi-dimensional array of size 9×27, denoted by E(A)
and defined as

E(A)[x, z] := P (A)[x− 1, z] + P (A)[x + 1, z + 1].

If E(A)[x, z] is zero, the column of A of coordinates (x, z) is said to be non
affected by θ. Otherwise, the column is said to be affected by E(A)[x, z] ∈ F3.
The map θ is defined as

θ(A)[x, y, z] := A[x, y, z] + E(A)[x, z].

The set K := {A ∈ F729
3 : θ(A) = A} is called the column-parity kernel (or

kernel for short). Moreover, the set F729
3 \K is denoted by N . A state belongs

to the kernel if and only if all its columns have parity 0. Given a k-round trail
core ⟨a1, b1, . . . , ak−1, bk−1⟩, its parity profile is written |X1| . . . |Xk−1| where
Xi = K if bi ∈ K and Xi = N otherwise. The column parity mixer θ does
not change the parity of the state : P (A) = P (θ (A)). Indeed, P (θ (A)) [x, z] =∑2

y=0 A[x, y, z] + 3E(A)[x, z] mod 3 = P (A)[x, z]. Therefore, E(A) = E (θ (A))
and the inverse function of θ is given by

θ−1(A)[x, y, z] = A[x, y, z]− E(A)[x, z].

z-equivalence classes The four step functions χ, ρr, ρℓ and θ are invariant
with respect to the translation along the z-axis i.e. they commute with functions
that translate the state in the z direction. Differential trails are thus considered
up to translation along the z-axis.

4 General strategy for differential trail search [9]

Our objective is to analyze the resistance of Troika against differential cryptanal-
ysis by providing a lower bound on the weight of any trail over a given number
of rounds. We explain in this section the general strategy we followed for doing
so. As Troika’s round function has a similar design to Keccak-f , we naturally
adopted the same strategy as the one used in [9]. This strategy permits to lower
bound the weight of 6-round trail cores by extending trail cores on 3 rounds.

7

4.1 Overview of the steps

All 6-round trail cores of weight less than a bound W can be generated by
1. collecting all 3-round trail cores of weight up to W/2,
2. extending these 3-round trail cores by 3 rounds in the forward direction and

in the backward direction.

Remark 2. In [9], it is sufficient to collect all the 3-round trail cores up to weight
⌊W/2⌋ since the weight is necessarily an integer in F2.

To cover the space of 3-round trail cores a1
λ−−→ b1

χ−−→ a2
λ−−→ b2 up to some

weight, the search space is split according to the parity profile of the trail cores.
Trail cores of parity profile |K|K| can be generated efficiently (see Section 6.1).
For trail cores of parity profile |K|N |, |N |K| and |N |N | we use the same steps
as in [9], recalled in the following lemma.

Lemma 1. [9] Let T3 be the weight up to which we want to collect the 3-round
trail cores and T1 be a parameter that can be adjusted.
All |K|N |-trail cores up to weight T3 can be generated by
1. collecting all |K|-trail cores ⟨a, b⟩ with w̃rev(a) ≤ T1 and extending them

forward outside the kernel,
2. collecting all |N |-trail cores ⟨a, b⟩ with w̃rev(a) + w̃dir(b) < T3 − T1 and

extending them backward inside the kernel.
All |N |K|-trail cores up to weight T3 can be generated by
1. collecting all |K|-trail cores ⟨a, b⟩ with w̃dir(b) ≤ T1 and extending them

backward outside the kernel,
2. collecting all |N |-trail cores ⟨a, b⟩ with w̃rev(a) + w̃dir(b) < T3 − T1 and

extending them forward inside the kernel.
All |N |N |-trail cores up to weight T3 can be generated by
1. collecting all |N |-trail cores ⟨a, b⟩ with 2 w̃rev(a)+w̃dir(b) < T3 and extending

them forward outside the kernel,
2. collecting all |N |-trail cores ⟨a, b⟩ with w̃rev(a)+2 w̃dir(b) ≤ T3 and extending

them backward inside the kernel.

To exhaustively generate the 2-round trail cores that respect the constraints
of the above lemma, we use a tree traversal, as defined by Mella et al. in [9]. We
recall this technique in Section 4.2 and define the specific trees used for Troika
in Section 5. The extension phase is detailed in Section 6.2.

4.2 Generating 2-round trail cores as a tree traversal

For simplicity, we explain the method presented in [9] to study 2-round trail
cores of weakly aligned primitives in the case of primitives defined on Fn

2 . This
technique exploits the specific features of the linear layer to take simultaneously
into account the weights w̃rev(a) and w̃dir(b) of a 2-round trail core ⟨a, b⟩.

More precisely, given a bound W and two weightings α and β, a tree traversal
is performed to find all trail cores ⟨a, b⟩ satisfying α w̃rev(a)+β w̃dir(b) ≤W and

8

possibly some other restrictions. We denote by cα,β the function that associates
to a pair (a, b) ∈ (Fn

2)2 the quantity α w̃rev(a) + β w̃dir(b). In the following, after
having fixed a pair (α, β), we will call the quantity cα,β(a, b) the cost of the trail
core ⟨a, b⟩.

The idea is to generate trail cores of the form ⟨a, b⟩ by adding progressively to
a variable (a, b) ∈ (Fn

2)2 initialised to (0, 0) some vectors of (Fn
2)2. These vectors

are called units and must be defined according to the distinctive features of the
round function. The cost of the trail core ⟨a, b⟩ is checked each time a unit is
added. This process is stopped when all the trail cores that could be obtained
by adding more units would have a cost higher than W .

The tree traversal More formally, the algorithm is a tree traversal. A node of
the tree is a list of units, called unit-list. A unit-list of the form L = [u1, . . . , un]
is associated to the vector (aL, bL) :=

∑n
i=1 ui and to the cost cα,β(aL, bL). A

unit-list L is said to be complete if bL = λ(aL), that is to say if it is associated to
a 2-round trail core. It is not always the case (see the tree defined in Section 5.3).
The root of the tree is the empty unit-list. A child of a unit-list L is a unit-list
of the form L || [u], where u is some particular unit that does not belong to L.
To avoid having two unit-lists with the same units in a different order, an order
relation on the units is chosen and units are only added in ascending order. This
order relation organizes the edges of the tree and must therefore be chosen to
ensure good properties of the tree.

During the tree traversal a lower bound on the cost of all of the current
node’s descendants is calculated. The tree is pruned if this lower bound is higher
than W . The goal is to define the units and the tree organization in order to be
able to prune the tree efficiently. There should be no descendant of a node L that
has a cost much lower than this L’s cost. A node should have as few brothers as
possible.

Finally, if there exists an equivalence relation on trail cores – like the z-
invariance – then it is possible to visit only one representative per equivalence
class. The order relation on the units induces an order relation on the unit-lists,
given by the lexicographic order. A unit-list is said to be canonical if it is the
smallest representative of its class. We are interested in the set formed by all
canonical unit-lists of cost below W . As the Lemma 1 of [9, Section 3.2] shows
that a unit-list that is not canonical cannot have a canonical descendant, the
tree is also pruned if a non canonical unit-list is encountered.

Lower bounding the cost To discuss how to give a lower bound on the costs
of the descendants of a unit-list, we distinguish as in [5] between two types of
active coordinates, the stable ones and the unstable ones. An active coordinate
of (aL, bL) is said to be a stable coordinate of L if it is active for any pair (aL′ , bL′)
where L′ is a descendant of L and unstable otherwise. By counting only the
contribution of the stable coordinates of L we obtain a lower bound on the costs
of the descendants of L.

9

This bound might be improved by studying the behavior of the unstable
coordinates of L. For that, we search for some sets of passive or unstable coor-
dinates that necessarily contribute to the cost of the descendants of L. We say
that a subset I of the passive or unstable coordinates of (aL, bL) is an activity
invariant of L if for every descendant L′ of L there exists a coordinate i ∈ I such
that i is an active coordinate of (aL′ , bL′). If all the coordinates of an activity
invariant belong to boxes that have not already contributed to the bound, then
this bound can be increased by adding a lower bound on the contribution of that
activity invariant. This process is summarized in Algorithm 1 of Appendix A.

5 Generating 2-round trail cores in Troika

We present in this section the trees used to exhaustively generate the 2-round
Troika’s trail cores of a given parity profile that also respect a cost constraint.

The cost of a 2-round trail core ⟨a, b⟩ depends only on the positions of the
active trits, but in some cases we will also need to know the exact difference. For
this reason we introduce the notion of mixed states.

Definition 4. (Mixed state) A mixed state is a three-dimensional array of size
9 × 3 × 27 whose cells can take either the value 0, 1, 2 or , where the value

stands for an active trit of unspecified value. It can also be seen as a vector
of {0, 1, 2, }729.

We say that a difference A ∈ F729
3 is compatible with a parity plane p and

a mixed state M if P (A) = p and if for all coordinates (x, y, z), A[x, y, z] =
M [x, y, z] if M [x, y, z] ∈ {0, 1, 2} and A[x, y, z] ̸= 0 otherwise.

Addition of mixed states is defined as the component-wise addition. Only
the commutative addition 0 + = and the usual addition modulo 3 can occur
in our algorithms. The definitions of the trit shuffling ρ, the box weight and
the cost functions cα,β are extended to mixed states. We denote by m(x,y,z) the
mixed state whose components are all zero, except the component of coordi-
nates (x, y, z) that equals .

5.1 Generating |K|-trail cores

We define the tree used for the generation of trail cores ⟨ρ−1(b), b⟩ with b ∈ K
and valid cost. As the difference b of such trail cores belongs to the kernel,
its columns have either zero, two or three active coordinates. A node of the tree
represents a couple of mixed states (ρ−1(M), M) ∈ {0, }729×{0, }729 where M
has zero, two or three active coordinates per column. All nodes can be obtained
by summing units of the form :

1. x,z :=
(
ρ−1(m), m

)
, where m = m(x,0,z) + m(x,1,z),

2. x,z :=
(
ρ−1(m), m

)
, where m = m(x,0,z) + m(x,2,z),

10

3. x,z :=
(
ρ−1(m), m

)
, where m = m(x,1,z) + m(x,2,z),

4. x,z :=
(
ρ−1(m(x,2,z)), m(x,2,z)

)
.

Units are characterized by their coordinates (x, z) and their patterns , , or

. Their ordering is arbitrary. We just need to have x,z < x,z for all x and z.
Units have to be added to the unit-list in ascending order while respecting

two constraints. A unit of type 4 can only be added to a unit-list that already
contains the unit of type 1 of same coordinates (x, z). A unit of types 1, 2
or 3 cannot be added if there is already in the unit-list another unit of same
coordinates (x, z). Thereby, the mixed state M of a node (ρ−1(M), M) cannot
have a column with only one active coordinate. Moreover, this ensures that all
coordinates of a unit-list are stable and consequently that the cost function cα,β

is monotonic with respect to units addition.
To obtain the differences b of the desired trail cores ⟨ρ−1(b), b⟩, it just remains

to generate, for each node (ρ−1(M), M) reached during the tree traversal, the
differences compatible with the zero parity plane and the mixed state M .

5.2 Reducing the problem of generating |N |-trail cores to that of
generating parity-bare states at the input of θ

For the generation of trail cores of the form ⟨ρ−1(c), θ(c)⟩ with c ∈ N , our
approach is the same as in [9]. Unlike the generation of |K|-trail cores, we were
not able to define a tree whose nodes have only stable coordinates. The difficulty
comes from the column parity mixer : activating trits at the input of θ can
deactivate trits at the output of the function and vice versa. The rationale behind
the tree’s units and the order relation among them is to gradually choose the
columns’ values on either side of the map θ in an appropriate order that limits
the number of unstable coordinates.

As in [9], we reduce the problem of that of finding a good tree containing
all trail cores ⟨ρ−1(c), θ(c)⟩ such that c is a parity-bare state. That means that
the unaffected columns of c have as few active trits as possible for their parity,
namely zero for columns of parity zero and one for the other unaffected columns.
Once the parity-bare states are generated, we no longer have to care about the θ-
effect and can define trees as in Section 5.1 to recover from the parity-bare states
all the wanted |N |-trail cores. Indeed, any out-kernel state can be obtained by
summing a parity-bare state and an in-kernel state that only adds extra active
coordinates to the unaffected columns of the initial parity-bare state. We refer
to Appendix C for a detailed description of the tree used to add extra active
coordinates in the unaffected columns of a parity-bare state.

11

Example 1. Replacing an unaffected column 1 of a parity-bare state c by one

of the columns 2
2

, 2
2

, 1
2
1

, 1
1
2

, 2
1
1

does not decrease the cost of the trail core
⟨ρ−1(c), θ(c)⟩.

5.3 Generating parity-bare states at the input of θ

We now present the tree used to organize the trail cores ⟨ρ−1(c), θ(c)⟩ such that c
is a parity-bare state. The idea is to choose the columns of the difference c in an
order that makes it possible to control the parity plane and the θ-effect plane
of c.

To describe more easily the tree’s units and the order relation among them, we
introduce the notion of diagonal coordinate d of a column. The (x, z)-coordinates
and (d, z)-coordinates of a column are related by the change of coordinates
(x, z) = (d + 2z mod 9, z). In the following, the letter d will always be an integer
taken modulo 9 that refers to a diagonal coordinate. The coordinates of a column
are implicitly given using the (d, z)-coordinates.

General form of units A unit of the tree is an element of F729
3 × F729

3 whose
values at the input and output of θ correspond to the values of a column, affected
or not, before and after θ. More formally, a unit is a pair of the form t2

t1
t0


x,z,t

:=
(

ρ−1

(2∑
i=0

tie(x,i,z)

)
,

2∑
i=0

(ti + t)e(x,i,z)

)
.

It is characterized by its (x, z)-coordinates, by a triplet (t0, t1, t2) ∈ F3
3 that is

the column value at the input of θ and by a trit t that is the θ-effect applied
to obtain the column value at the output of θ. To obtain a pair of the form
(ρ−1(c), θ(c)) by summing units, the parity-plane and the θ-effect plane formed
at the input of θ have to be consistent.

Runs and loops Similar to what is done for Keccak [2] and Xoodoo [5], to
link the parity plane and the θ-effect of a state, we group all its columns of non-
zero parity in sets called runs and loops. The following definitions are motivated
by the fact that the θ-effect applied to a column of coordinates (d0 + 1, z0)
depends on the parity of the columns of coordinates (d0, z0) and (d0, z0 + 1).

Definition 5. Let A be a state. For an integer ℓ ∈ [1, 26] and some coor-
dinates (d0, z0), we consider the set r formed by the columns of A of coordi-
nates (d0, z0), . . . , (d0, z0 + ℓ − 1). If all the columns of r have non-zero parity
and if the two columns of coordinates (d0, z0 − 1) and (d0, z0 + ℓ) have parity
zero, we say that r is the run of A of coordinates (d0, z0) and of length ℓ.

12

Definition 6. If a state admits a set of columns of coordinates (d0, 0), . . .,
(d0, 26) that all have non-zero parity, we say that this set is a loop.

z

x+
-

+
+

- -
+

Unaffected column of parity 0
Column of parity 1
Column of parity 2
Column affected by +2
Column affected by +1

Fig. 1. Parity and θ-effect planes of a run of (d, z)-coordinates (0, 1) and of length 5

The set formed by all the non-zero parity columns of a state can be parti-
tioned into runs and loops. Each run or loop determines a part of the θ-effect
plane. More precisely, if a state A admits a run of coordinates (d0, z0) and of
length ℓ, then this run determines for all i ∈ [−1, ℓ− 1], the value of E(A)[d0 +
1, z0 + i]. The columns of coordinates (d0 + 1, z0− 1) and (d0 + 1, z0 + ℓ− 1) are
always affected.

From supra-units to units Since a trail core ⟨ρ−1(c), θ(c)⟩ formed from a
parity-bare state c that has a loop has a cost too high for our search, we restrict
the nodes of the tree to trail cores formed from parity-bare states that have
only runs. However, the existence of loops for Troika, is a consequence of the
particular θ mapping used in Troika and this effect does not appear in Keccak.
The existence of these loops is due to the fact that all the diagonal coordinates
form 9 disjoint sets. We use this property later to improve the lower bound on
the cost of a trail.

Every parity-bare state with n runs can be decomposed into n parity-bare
states with only one run. These latter have only unaffected null columns, un-
affected columns with a single active trit and affected columns of parity zero.
Such a decomposition is not unique. To make it unique, we adopt the same
conventions as in [2] and [5]. The runs of the decomposition must not overlap.
Moreover, if the initial state admits affected columns of non-zero parity, these
columns have to be decomposed into an unaffected column with a single active
trit at y = 0, whose value is the parity of the initial column, and an affected
column chosen accordingly. We call this rule the non-zero-y0 convention. Under
these conventions, the existence and the uniqueness of the decomposition can
be proved as in [5, Section 7.3.2] by exhibiting a deterministic procedure that
removes from a parity-bare state with n runs a parity-bare state with one run
to get a parity-bare state with n − 1 runs. It removes the columns of a run as
well as the columns affected by this run, using the non-zero-y0 convention to
split the affected columns of non-zero parity and only remove the suitable part
of such columns.

13

Column of parity 2
affected by 1

1
2
2

2
0
0

θ =

Unaffected column
of parity 2

2
0
0

2
0
0

θ +

Column of parity 0
affected by 1

2
2
2

0
0
0

θ

Fig. 2. Decomposition of an affected column of non-zero parity using the non-zero-y0
convention

z

x
+

+

-
- = +

z

x
+

+

z

x
-

-

Fig. 3. Parity and θ-effect planes of a parity-bare state with 2 runs and its decomposi-
tion into parity-bare states with 1 run. The affected column of non-zero parity has to
be split according to the non-zero-y0 convention. The symbols are explained in Figure 1

All the sought trail cores can be expressed as a sum of elements of F729
3 ×F729

3
of the form

(
ρ−1(A), θ(A)

)
where A is a parity bare state with only one run. We

call these elements supra-units. Since there are too many possible supra-units,
they cannot directly be used as units. A finer subdivision is therefore used. It
relies on the units introduced before, that enable to form the supra-units one by
one. With this refinement, many supra-units have a common ancestor, which is
important for the tree pruning.

We define a partial order relation on the supra-units. For that, we characterise
a supra-unit

(
ρ−1(A), θ(A)

)
with the coordinates (d, z) and the length ℓ of the

run of A. The partial order is given by the lexicographic order on [d, z, ℓ] and
supra-units are put in the unit-list in ascending order.

Two types of units are used. Those that are said to be affected correspond
to affected columns of parity zero at the input of θ ; those that are said to be
unaffected correspond to unaffected columns with only one active trit at the
input of θ. Each supra-unit of coordinates (d, z) and length ℓ is the sum of :

– ℓ unaffected units with (d, z)-coordinates (d, z), . . . , (d, z + ℓ− 1),
– 2 affected units of coordinates (d + 1, z − 1) and (d + 1, z + ℓ− 1),
– from 0 to ℓ− 1 other affected units that could be in positions (d + 1, z), . . .,

(d + 1, z + ℓ− 2).
These units are indexed from 0 to 2ℓ and added to the unit-list in ascending
order of indexes. The i-th unit has coordinates (d + 1, z− 1 + i

2) if i is even and
(d, z + ⌊ i

2⌋) if i is odd.

14

Importance of the ordering of supra-units The ordering of units resembles
the one of [9], except that here, the partial order on supra-units allows us to
detect more active coordinates that are stable for a unit-list. This results in an
improvement of the bound computed with Algorithm 1 (given in Appendix A).
We were able to increase the 3-round weight target from 33 to 41.

The only way for active coordinates of a unit-list to turn passive is when an
unaffected unit is added to a unit-list that already contains an affected unit of
same coordinates, or vice versa. By the non-zero-y0 convention, the only overlaps
allowed are of the form : t2

t1
t0


x,z,t

+

 0
0
t′
0


x,z,0

, where t0 + t1 + t2 = 0, t ∈ {1, 2} and t′
0 ∈ {1, 2}.

Let L be a unit-list and (aL, bL) =
∑

u∈L u. If a unit-list has only one of
the two terms of the above sum, then the trit of aL of coordinates ρ−1(x, 0, z)
and the trit of bL of coordinates (x, 0, z) may be unstable. In the particular case
of Troika, this criterion can be refined by locating columns that can no longer
be concerned by an overlap and thus have only stable coordinates. The main
remark is that overlaps only involve affected units of a supra-unit of diagonal
coordinate d and unaffected units of a supra-unit of diagonal coordinate d+1. The
ordering of supra-units implies that unaffected units that belong to a supra-unit
of diagonal coordinate d > 0 are not concerned anymore by overlaps since supra-
units of d-coordinate d− 1 can no longer be added to the unit-list. Similarly, if
we write dlast for the d-coordinate of the supra-unit that is being formed or that
just has been completed, then all the affected units belonging to a supra-unit of
coordinate d < dlast − 1 cannot be involved in a new overlap.

z

x
-

+

+

-

+

-
Parity and θ-effect plan of a
supra-unit of d-coordinate

d = 1 - + + -

d = 2 + -

Fig. 4. Columns overlapping

Lower bounding the cost We use Algorithm 1 to compute a lower bound
on the costs of node’s descendants. The criterion used to distinguish between
stable and unstable coordinates of a unit-list L is explained above. It remains to
describe the activity invariants of L. Suppose that the difference ρ(aL) has an
affected column of coordinates (x, z). For every descendant L′ of L, this column

15

remains affected and thus aL′ [ρ−1(x, 0, z)] ̸= bL′ [x, 0, z]. In particular, at least
one of these two trits is active. Suppose now that the difference ρ(aL) has an
unaffected column with only one active trit of coordinates (x, 0, z). Whether or
not this column becomes affected for a descendant L′ of L, there will always be
an active trit among the set {aL′ [ρ−1(x, 0, z)], bL′ [x, 0, z]}. Moreover, since the
columns of coordinates (x, z) at the input and output of θ will always have a
non-zero parity, the same is true for the sets {aL′ [ρ−1(x, i, z)] : i ∈ [0, 2]} and
{bL′ [x, i, z] : i ∈ [0, 2]}.

An improvement for the tree traversal The fact that we are working over F3
does not facilitate the tree traversal. If we entirely specify the value of the dif-
ferences for all the active trits, there will be too many possibilities to treat. But,
if we do not specify the value, the behaviour of the column parity mixer θ is too
complicated to understand. To deal with this situation we introduce an equiva-
lence relation on parity-bare states used to reduce the search space during the
tree traversal.

Definition 7. (Components of a parity-bare state) Let A be a parity-bare state
with n runs and A =

∑n
i=1 Ai its decomposition into parity-bare states with one

run defined in Section 5.3. We form a graph GA whose vertices are numbered
from 1 to n. The i-th and j-th vertices are connected by an edge if and only if
the parity-bare state Ai + Aj has an affected column of non-zero parity. If this
graph admits k connected components C1, . . . , Ck, then we call the elements of
the set {

∑
j∈Ci

Aj : i ∈ [1, k]} the components of A.

Definition 8. (Scalar-equivalence) Let A1 and A2 be two parity-bare states that
have k components C1

1 , . . . , C1
k and C2

1 , . . . , C2
k . The parity-bare states A1 and

A2 are scalar-equivalent if there exists some scalars λ1, . . . , λk ∈ {1, 2} and a
permutation σ of the set {1, . . . , k} such that C1

i = λiC
2
σ(i) for all i ∈ [1, k].

z

x
+

+

+

+

+

+
z

x
+

+

+

+

-
-

z

x
-

-
-

-
+

+
z

x
-

-
-

-
-

-

1
2

3

Fig. 5. Parity planes and θ-effect planes of four parity-bare states that are scalar-
equivalent and their associated graph.

We say that two complete unit-lists L and L′ are scalar-equivalent if the dif-
ferences ρ(aL) and ρ(aL′) are scalar-equivalent. Two complete scalar-equivalent

16

unit-lists describe trail cores that have the same trit-activity pattern. We orga-
nize the tree to have only one representative per equivalence class. At the end
of the tree traversal, we generate from each representative the elements of its
class.

6 Dealing with |K|K| profile and extensions

6.1 Generating 3-round trail cores of parity profile |K|K|

The space of 3-round trail cores with parity profile |K|K| can be directly scanned
up to some limit weight. We search for trail cores of the form ⟨ρ−1(b1), b1, a2, ρ(a2)⟩
with b1 ∈ K and ρ(a2) ∈ K.

The first step is to generate a subset A2 ⊂ F729
2 that contains all trit activity

patterns that are good candidates for a2. For that, we derive necessary conditions
on a2 from the fact that the differences b1 and ρ(a2) must be in the kernel. More
precisely, if ⟨ρ−1(b1), b1, a2, ρ(a2)⟩ is a trail core of parity profile |K|K|, then
a column of ρ(a2) cannot have exactly one active trit. Moreover, as b1 ∈ K,
a box-column of b1 cannot have exactly one active box. Due to the fact that
the differences b1 and a2 have the same box activity pattern, a box-column
of a2 cannot have exactly one active box. Thereby, we deduce the two following
necessary conditions on ρ(a2) and on a2 :

– If ρ(a2)[x, y, z] = 1, then ρ(a2)[x, y + 1, z] = 1 or ρ(a2)[x, y + 2, z] = 1;
– If a2[x, y, z] = 1, then it exists i ∈ {0, 1, 2} and j ∈ {1, 2} such that a2[3xB +

i, y + j, z] = 1, where xB = ⌊x
3 ⌋.

To take into account the weight constraint, we compute only from the trit
activity pattern a2 of a difference a2, a lower bound on the weight of trail cores
of the form ⟨ρ−1(b1), b1, a2, ρ(a2)⟩, denoted by w̃3-round

min (a2). The set A2 is formed
by all the trit activity patterns a2 that respect the necessary conditions and that
lead to a bound w̃3-round

min (a2) below the limit weight. We refer to Appendix D for
a complete description of the method to form the subset A2.

The second step is to generate all (|K|K|, W)-trail cores, by extending back-
ward inside the kernel (if possible) the 2-round trail cores ⟨a2, ρ(a2)⟩ that satisfy
a2 ∈ A2 and ρ(a2) ∈ K. The details of the extension algorithm are given in
Appendix E.1.

6.2 Extension of trail cores

Once all trail-cores of a certain length have been obtained, these must be ex-
tended. Extensions are treated differently depending on their direction (back-
ward or forward) and their type (inside or outside the kernel).

For the forward extension, the authors of [9] exploited the fact that the
Keccak S-box is quadratic, a property that does not hold for Troika. To extend
a trail core outside the kernel in the forward and backward direction or inside the
kernel in the backward direction we use a step-by-step approach to control the

17

extensions’ weight. Our approach shares some similarities with the method of [9]
but is necessarily different because the inner components of the two functions
are not the same.

Because of the page restriction all our methods used for extending the ob-
tained trail cores are given in Appendix E.

7 Results and conclusion

We have covered the space of all 3-round trail cores up to weight 41 and showed
that there exists no differential trail over six rounds with weight below 82. It
results in a better bound than the one obtained with the MILP-based approach.
Adapting the framework of [9] for the field F3 was harder than expected. Dealing
with trits rather than bits complicates the analysis and we were not able to take
a cost target for the search as high as for Keccak.

Our experimental results have been obtained on a Intel Core i5 processor
running at 2.4Hz and a single core was used for each experiment. Our code is
publicly available1. We assume that we cannot do considerably better as the
number of trails to scan would rapidly be a limiting factor. This is why we did
not try to run the code longer even though it may be possible to get a slightly
better bound.

For the generation of 3-round trail cores of parity profile |K|K|, we were able
to cover the space up to weight 65. This search takes advantage of the small size
of the S-boxes, which gives restrictive conditions on the box-activity pattern of
an in-kernel difference. Figure 6 reports the number of found |K|K| trail cores
per weight.

25 30 35 40 45 50 55 60 65

101
102
103
104
105
106

T3

trail cores

Fig. 6. Number of |K|K| trail cores of weight W such that ⌈W ⌉ = T3

For the generation of 3-round trail cores with parity profile |K|N |, |N |K| and
|N |N |, increasing the target weight drastically increases the number of 2-round
trail cores to investigate and extend into 3-round trail cores. Figure 7 reports
the number of 2-round trail cores that have to be collected in order to apply
Lemma 1 with T3 = 41 and T1 = 11.
1 https://github.com/MargotFunk/troikaDifferentialCryptanalysis

18

https://github.com/MargotFunk/troikaDifferentialCryptanalysis

3 4 5 6 7 8 9 10
100
101
102
103
104
105
106
107

T1

#
tr

ai
lc

or
es

Number of 2-round trail cores (a, b) with b ∈ K such that cα,β(a, b) = T1

(α, β) = (1, 0)
(α, β) = (0, 1)

12 14 16 18 20 22 24 26 28
100
101
102
103
104
105
106
107

T2

#
tr

ai
lc

or
es

Number of 2-round trail cores (a, b) with b ∈ N such that c1,1(a, b) = T2

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
100
101
102
103
104
105
106
107
108

T3

#
tr

ai
lc

or
es

Number of 2-round trail cores (a, b) with b ∈ N such that cα,β(a, b) = T3

(α, β) = (2, 1)
(α, β) = (1, 2)

Fig. 7. Number of 2-round trail cores for different cost functions. Trail cores are con-
sidered in the three graphs up to z-invariance. In the second graph, trail cores are also
considered up to scalar-equivalence.

The execution time for the generation of all 3-round trail cores for the four
different parity profiles is given below.

Parity profile Direction Time Parity profile Direction Time
|K|K| backward 22m40s |K|N | forward 5m7s

backward 5h19m

|N |N | forward 9h16m |N |K| forward 6h32m
backward 17h7m backward 26m10s

Finally, Figure 8 gives the weight distribution of the 3-round trail cores up
to weight T3 = 41 depending on the parity profile of the trail cores.

19

24 26 28 30 32 34 36 38 40

101

102

103

T3

#
tr

ai
lc

or
es

K	K
K	N
N	K
N	N

Fig. 8. Number of 3-round trail cores of weight W such that ⌈W ⌉ ≤ T3 for different
parity profiles.

References
1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of

the sponge construction. In: EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197.
Springer (2008)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission
(January 2011), http://sponge.noekeon.org/, submission to NIST (Round 3)

3. Bordes, N., Daemen, J., Kuijsters, D., Assche, G.V.: Thinking outside the
Superbox. In: CRYPTO, Part III. LNCS, vol. 12827, pp. 337–367. Springer
(2021). https://doi.org/10.1007/978-3-030-84252-9 12, https://doi.org/10.1007/
978-3-030-84252-9 12

4. Daemen, J., Assche, G.V.: Differential propagation analysis of Keccak. In: FSE
2012. LNCS, vol. 7549, pp. 422–441. Springer (2012). https://doi.org/10.1007/978-
3-642-34047-5 24, https://doi.org/10.1007/978-3-642-34047-5 24

5. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo
and Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018).
https://doi.org/10.13154/tosc.v2018.i4.1-38, https://doi.org/10.13154/tosc.
v2018.i4.1-38

6. Debris-Alazard, T., Sendrier, N., Tillich, J.: Wave: A new family of trapdoor one-
way preimage sampleable functions based on codes. In: ASIACRYPT 2019, Part
I. LNCS, vol. 11921, pp. 21–51. Springer (2019)

7. Heilman, E., Narula, N., Tanzer, G., Lovejoy, J., Colavita, M., Virza, M., Dryja,
T.: Cryptanalysis of Curl-P and other attacks on the IOTA cryptocurrency. IACR
Trans. Symmetric Cryptol. 2020(3), 367–391 (2020), https://doi.org/10.13154/
tosc.v2020.i3.367-391

8. Kölbl, S., Tischhauser, E., Derbez, P., Bogdanov, A.: Troika: a ternary crypto-
graphic hash function. Designs, Codes and Cryptography 88, 91–117 (Jan 2019).
https://doi.org/10.1007/s10623-019-00673-2

9. Mella, S., Daemen, J., Assche, G.V.: New techniques for trail bounds and appli-
cation to differential trails in keccak. IACR Trans. Symmetric Cryptol. 2017(1),
329–357 (2017). https://doi.org/10.13154/tosc.v2017.i1.329-357, https://doi.org/
10.13154/tosc.v2017.i1.329-357

10. Stoffelen, K., Daemen, J.: Column parity mixers. IACR Transactions on Symmetric
Cryptology 2018(1), 126–159 (Mar 2018), https://tosc.iacr.org/index.php/ToSC/
article/view/847

20

http://sponge.noekeon.org/
https://doi.org/10.1007/978-3-030-84252-9_12
https://doi.org/10.1007/978-3-030-84252-9_12
https://doi.org/10.1007/978-3-030-84252-9_12
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2020.i3.367-391
https://doi.org/10.13154/tosc.v2020.i3.367-391
https://doi.org/10.1007/s10623-019-00673-2
https://doi.org/10.13154/tosc.v2017.i1.329-357
https://doi.org/10.13154/tosc.v2017.i1.329-357
https://doi.org/10.13154/tosc.v2017.i1.329-357
https://tosc.iacr.org/index.php/ToSC/article/view/847
https://tosc.iacr.org/index.php/ToSC/article/view/847

A Algorithm to give a lower bound on the costs of a
unit-list and its descendants

We recall here the algorithm used in [5] to give a lower bound on the costs of a
unit-list and its descendants. To index the coordinates of an element of Fn

2 ×Fn
2 ,

we distinguish between the set of coordinates of the first component, denoted
by Ca, and the set of coordinates of the second component, denoted by Cb. Let
L be a unit-list and (aL, bL) :=

∑
u∈L u. We denote by AL = SL ∪UL the set of

active coordinates of (aL, bL), where SL is the set of stable coordinates of L and
UL is the set of unstable coordinates of L.

Algorithm 1: Bound on the costs of the descendants of a unit-list
input : A unit-list L
output: A lower bound on the elements of the set

{α w̃rev(aL′) + β w̃dir(bL′) : L′ is a descendant of L}
wa ← the smallest minimum reverse weight of all differences with one
active box

wb ← the smallest minimum direct weight of all differences with one
active box

/* variable used to avoid counting more than once an active
box */

(∆a, ∆b)← (0, 0) ∈ Fn
2 × Fn

2
Activate all coordinates of (∆a, ∆b) that are stable coordinates of L.
/* contribution of stable coordinates */
bound← α wa wbox(∆a) + β wb wbox(∆b)
/* contribution of unstable coordinates */
forall u ∈ UL do

if there exists a small activity invariant Iu of L containing u then
forall i ∈ Iu do Note the contribution ci of i

ci ←


0 if i ∈ Ca and i belongs to an active box of ∆a

0 if i ∈ Cb and i belongs to an active box of ∆b

α wa if i ∈ Ca and i belongs to a passive box of ∆a

β wb if i ∈ Cb and i belongs to a passive box of ∆b

/* Take the minimum of the contributions */
c← min{ci : i ∈ Iu}
if c > 0 then

bound← bound + c
Activate all the coordinates of (∆a, ∆b) that belong to Iu.

return bound

21

B Different parts of the state of Troika

The state with its boxes

A slice

A column

A slice with its three
box-columns

Fig. 9. Different parts of the state of Troika

C Tree to complete the columns of a parity-bare state

Let c be a parity-bare state associated to a trail core ⟨ρ−1(c), θ(c)⟩ of valid
cost. We arrange in a tree all the trail cores ⟨ρ−1(c∗), θ(c∗)⟩ that correspond to
a difference c∗ that has the same parity plane and affected columns as c and
possibly extra active coordinates in its unaffected columns.

We form, from the initial parity-bare state c, the mixed state Mc defined as

Mc[x, y, z] =


c[x, y, z] if E(c)[x, z] ̸= 0

if E(c)[x, z] = 0 and c[x, y, z] ̸= 0
0 otherwise

.

For simplicity we describe the columns of the mixed state Mc using the same
attributes as those used to qualify the parity-bare state c from which they come
from (affected or unaffected,parity 0, 1 or 2). The unaffected columns of Mc of
parity 0 are passive while those of parity 1 or 2 have only one active coordinate.

The unit (ρ−1(Mc), Mc) is the first unit of the unit-list. Other units are added
to complete the unaffected columns of Mc as represented in Figure 10. They are
of types 1, 2, 3, 4 (see Section 5.1) or

5. x,z :=
(
ρ−1(m(x,1,z)), m(x,1,z)

)
.

Finally, we generate the trail cores ⟨ρ−1(c∗), θ(c∗)⟩ from the differences c∗ that
are compatible with the parity plane P (c) and with the descendants of Mc

reached during the tree traversal.

22

Unaffected column of parity 0 Unaffected column of parity 1 or 2

Fig. 10. How to complete the unaffected columns of the mixed state Mc

D First step of the |K|K|-trail cores generation

We describe here the algorithm used to generate all the trit activity patterns a2
of the wanted |K|K|-trail cores ⟨ρ−1(b1), b1, a2, ρ(a2)⟩.

We introduce a graph G to organize the necessary conditions on ρ(a2) and
a2. We denote by v(x,y,z) the pair of coordinates

(
(x, y, z), ρ̃(x, y, z)

)
. The set

V defined as V := {v(x,y,z) : (x, y, z) ∈ [0, 8] × [0, 2] × [0, 26]} is the set of
vertices of the graph G. A vertex of G represents a trit seen both from the point
of view of a2 and ρ(a2). The graph G has two types of edges, one to visualize
the necessary conditions on a2, the other to deal with the conditions on ρ(a2).
A vertex v(x,y,z) ∈ V has 6 neighbors by constraints on a2, given by the set
Na2

(
v(x,y,z)

)
:= {v(3xB+i,y+j,z) : xB = ⌊x

3 ⌋, i ∈ {0, 1, 2}, j ∈ {1, 2}}. It also
has 2 neighbors by constraints on ρ(a2), given by the set Nρ(a2)

(
v(x,y,z)

)
:=

{vρ̃−1(ρ̃(x,y,z)+(0,i,0)) : i ∈ {1, 2}}.
We consider that each vertex of the graph G can be either active or passive.

We say that a subset of V that indicates the active vertices of the graph G is
an activity pattern. An activity pattern S ⊂ V of the graph G is valid if it
corresponds to a pair (a2, ρ(a2)) that respects all the necessary conditions on a2
and ρ(a2), namely if for all v ∈ S, Na2 (v) ∩ S ̸= ∅ and Nρ(a2) (v) ∩ S ̸= ∅. Two
activity patterns S and S′ are equivalent if there exists z ∈ [0, 26] such that
S′ = {v +

(
(0, 0, z), (0, 0, z)

)
: v ∈ S}. Our goal is to generate all equivalence

classes of valid activity patterns of the graph G that do not activate too many
S-boxes.

This selection of activity patterns of the graph G is done with a traversal of
a tree T . A node of this tree describes an activity pattern of G by listing all the
vertices of G that belong to this activity pattern.

We introduce some notations to describe the tree T . A node L = [v1, . . . , vn]
of T defines an activity pattern S(L) := {v1, . . . , vn} of the graph G and a pair
of trit activity patterns denoted by

(
a2

(L), ρ(a2)
(L))

. If L and L′ are two lists,
we write L || L′ the concatenation of L and L′. We use the following order
relation on V : for all v(x,y,z), v(x′,y′,z′) ∈ V , v(x,y,z) < v(x′,y′,z′) if and only if
(x, y, z) <lex (x′, y′, z′).

23

The root of T is the empty list. Children of a node of T are given by Algo-
rithm 2, in order to have in the tree all the desired activity patterns.

Algorithm 2: Children of a node of the tree T
input : A node L of the tree T
output: The set composed of all children of L

if L = [] then
return { [v(x,y,0)] }(x,y)∈[0, 8]×[0, 2];

if L = [v1, . . . , vn] then
i← max

{
{1} ∪ {1 ≤ i ≤ n :

⋃i−1
j=1{vj} is valid}

}
if Na2 (vn)) ∩ S(L) = ∅ then

N ← Na2 (vn)
else if Nρ(a2) (vn) ∩ S(L) = ∅ then

N ← Nρ(a2) (vn)
else if Na2 (vi) ∩ S(L) = ∅ then

N ← Na2 (vi)
else if Nρ(a2) (vi) ∩ S(L) = ∅ then

N ← Nρ(a2) (vi)
else S(L) is valid

N ← {v : v ∈ V \ S(L)}
if N ∩ {v ∈ V : vi < v} = ∅ then

return ∅
else

return {L || [v] : v ∈ N ∩ {v ∈ V : vi < v}}

D.1 Proof that all desired activity patterns are in the tree
We want to show that if S ⊂ V is a valid activity pattern of the graph G, then
it exists a node L of the tree T such that S(L) is equivalent to S.

Let n be the cardinality of the valid activity pattern S ⊂ V and let v(xmin,ymin,zmin)
be the smallest element of S. We define the set S0 := {v(x,y,z−zmin) : v(x,y,z) ∈ S}.
We can numbered the elements of S0 from v1 to vn so that for all k ∈ [1, n], the
list Lk defined as Lk := [v1, . . . , vk] satisfies the propositions:

– P1(k) : Lk is a node of T .
– P2(k) : For all v ∈ S0 \ {v1, . . . , vk}, we have that vi(Lk) < v, where i(Lk) :=

max
{
{1} ∪ {1 ≤ i ≤ k :

⋃i−1
j=1{vj} is valid}

}
.

Let v1 be the smallest element of S0, that is to say v1 = v(xmin,ymin,0). The
elements v2, . . . , vn are chosen one by one with the following procedure.

1. If {v1, . . . , vk−1} is a valid activity pattern of G, we define vk to be the
minimum of the set S0\{v1, . . . , vk−1}. As P2(k−1) is satisfied, vi(Lk−1) < vk

and thus Lk is a node of T . Moreover, as {v1, . . . , vk−1} is valid, we have
that i(Lk) = k and the proposition P2(k) is true.

24

2. If Na2 (vk−1)
⋂
{v1, . . . , vk−1} = ∅, as S0 is valid, we have that the set

Na2 (vk−1)
⋂

(S0 \ {v1, . . . , vk−1)}) is not empty. Let vk be an element of
Na2 (vk−1)

⋂
(S0 \ {v1, . . . , vk−1)}. By the proposition P2(k − 1), we know

that vi(Lk−1) < vk and therefore Lk is a node of T . As {v1, . . . , vk−1} is not
valid, we have that i(Lk−1) = i(Lk). As P2(k − 1) holds, the proposition
P2(k) is also true.

3. Similarly if Nρ(a2) (vk−1)
⋂
{v1, . . . , vk−1} = ∅, we choose for vk an element

of Nρ(a2) (vk−1)
⋂

(S0 \ {v1, . . . , vk−1)}.
4. Similarly if Na2

(
vi(Lk−1)

)⋂
{v1, . . . , vk−1} = ∅, we choose for vk an element

of Na2

(
vi(Lk−1)

)⋂
(S0 \ {v1, . . . , vk−1)}.

5. Similarly if Nρ(a2)
(
vi(Lk−1)

)⋂
{v1, . . . , vk−1} = ∅, we choose for vk an ele-

ment of Nρ(a2)
(
vi(Lk−1)

)⋂
(S0 \ {v1, . . . , vk−1)}.

D.2 Control the weight during the tree traversal

Among all the valid activity patterns of the graph G, we only need those that
may lead to a trail core ⟨ρ−1(b1), b1, a2, ρ(a2)⟩ of weight below some limit weight
W . Given a node L of T , we use Algorithm 3 to compute a lower bound on the
weights of trail cores of the form ⟨ρ−1(b1), b1, a2, ρ(a2)⟩ with a2 = a2

(L) denoted
by w̃3-round

min (L).

Algorithm 3: w̃3-round
min

input : A node L = [v1, . . . , vn] of the tree T
output: w̃3-round

min (L) such that
w̃3-round

min (L) ≤ min{w⟨ρ−1(b1), b1, a2, ρ(a2)⟩ : a2 = a2
(L)}

∆← {0}729

min
(

wbox(∆)
)
← 0

for i = 1 to n do
// see if min

(
wbox(∆)

)
can be incremented(

(x, y, z), (ρ̃(x, y, z))
)
← vi

xB ← ⌊x/3⌋
newActiveBox ← true
for j = 0 to 2 do

if the box of ∆ containing the trit of coordinate ρ̃−1(3xB + j, y, z)
is already active then

newActiveBox ← false

if newActiveBox = true then
min

(
wbox(∆)

)
← 1 + min

(
wbox(∆)

)
for j = 0 to 2 do

∆[ρ̃−1(3xB + j, y, z)]← 1

w̃3-round
min (L)← 2

(
min

(
wbox(∆)

)
+ wbox(a2

(L)) + wbox(ρ(a2)
(L)

)
)

return w̃3-round
min (L)

25

The weight of a 3-round trail core ⟨ρ−1(b1), b1, a2, ρ(a2)⟩ is

w⟨ρ−1(b1), b1, a2, ρ(a2)⟩ = 2 wbox
(
ρ−1(b1)

)
+ wχ(b1, a2) + 2 wbox (ρ(a2))

≥ 2
(
wbox

(
ρ−1(b1)

)
+ wbox(a2) + wbox (ρ(a2))

)
.

The variable min
(

wbox(∆)
)

of Algorithm 3 stores a lower bound on the weight
wbox

(
ρ−1(b1)

)
. The variables ∆ and min

(
wbox(∆)

)
are only modified when

adding 3 active trits to the variable ∆ also activates 3 new active boxes of ∆.
One of these 3 boxes is at the same position as an active box of ρ−1(b1).

If a node L′ of T is a descendant of another node L, the inequality w̃3-round
min (L) ≤

w̃3-round
min (L′) holds. Consequently, we can prune the tree as soon as a node L such

that w̃3-round
min (L) > W is reached.

E Extension of trail cores

In this section we present in detail our algorithms for trail core extensions.
Finding all backward extensions of a trail core C = ⟨a1, b1, . . . , ak−1, bk−1⟩

of weight below some bound W ′ means finding all the pairs (a, b) ∈
(
F729

3
)2

that define a trail core ⟨a, b, a1, . . . , bk−1⟩ of weight below W ′. This is equiv-
alent to finding the set Extback(∆, W) := {(a, b) : b = λ(a), DPχ(b, ∆) >
0, w̃rev(a) + wχ(b, ∆) ≤ W} with ∆ = a1 and W = W ′ − w⟨C⟩ + w̃rev(a1).
Similarly, extending forward a trail core under some weight constraint consists
in generating a set of the form Extfor(∆, W) := {(a, b) : b = λ(a), DPχ(∆, a) >
0, wχ(∆, a) + w̃dir(b) ≤W}. We say that an element of Extback(∆, W) (respec-
tively Extfor(∆, W)) is a backward (respectively forward) extension of weight
w̃rev(a) + wχ(b, ∆) (respectively wχ(∆, a) + w̃dir(b)).

To explain the algorithms, we introduce the subspaces Box-col(xB , z) =
⟨e(3xB+i,y,z)⟩(i,y)∈[0, 2]×[0, 2] and Slice(z) = ⟨e(x′,y′,z)⟩(x′,y′)∈[0, 8]×[0, 2]. Given a
state A, we define the states Slice(A, z) :=

∑
(x′,y′)∈[0, 8]×[0, 2] e(x′,y′,z)A[x′, y′, z]

and Box-col(A, xB , z) :=
∑

(i,y′)∈[0, 2]×[0, 2] e(3xB+i,y′,z)A[3xB + i, y′, z].
The algorithms used to extend a trail core outside the kernel in the forward

and backward direction or inside the kernel in the backward direction follow the
same principle to control the extensions’ weight. Since the functions ρ and θ of
the linear layer λ = θ ◦ ρ are permutations, we can fix the trits of a pair (a, b)
where b = λ(a), by choosing either the value of a, ρ(a) or b. The idea is to look
for the pairs (a, b) that belong to some set Extfor(∆, W) or Extback(∆, W) by
choosing the value of a, ρ(a) or b step by step (e.g. slice by slice or box-column
by box-column). These algorithms use a particular direct sum of F729

3 – namely⊕
z Slice(z) or

⊕
xB ,z Box-col(xB , z) – denoted here with the general notation⊕k

i=1 Si. A variable ℓ, that represents either the value of a, ρ(a) or b, is said to
be valid if it corresponds to an extension that we are looking for. The algorithms
are based on the fact that there exist some interesting sets L1 ⊂ S1, . . . , Lk ⊂ Sk

such that every valid ℓ can be decomposed as ℓ =
∑k

i=1 ℓi, where ℓi ∈ Li for all
i ∈ [1, k]. The set {

∑k
i=1 ℓi : (ℓ1, . . . , ℓk) ∈ L1× . . .×Lk} is seen as the set of the

26

leaves of a tree, where the first level corresponds to the choice of ℓ1 ∈ L1, the
second level deals with the choice of ℓ2 ∈ L2 etc. It is generally not necessary to
reach the last level of the tree to realize that the path leads to leaves that have
a weight too large. Extensions are generated with a tree traversal, during which
we compute a lower bound on the weights of the leaves that can be reached from
the current vertex. The tree is pruned as soon as this lower bound, called the
cost of the vertex, is too high.

The algorithm that deals with forward extensions inside the kernel takes
advantage of the very strong requirement that an extension (a, b) ∈ Extfor(∆, W)
must satisfy to have at the same time the difference a with the same box-activity
pattern as ∆ and the difference b inside the kernel. The χ-compatibility and the
weight constraint are only checked subsequently.

E.1 Backward extensions inside the kernel

We denote by ℓ the variable used to gradually generate the difference b of a
pair (a, b) ∈ Extback(∆, W)

⋂
F729

3 × K. The idea is to choose the value of ℓ
box-column by box-column.

For all coordinates (xB , z) ∈ [0, 2] × [0, 26], we pre-compute the set XxB ,z

formed by all the box-column vectors ℓxB ,z ∈ K ∩ Box-col(xB , z) such that
(ℓxB ,z, Box-col(∆, xB , z)) is a valid differential over χ. In particular, if a box-
column of ∆ of coordinates (xB , z) is passive, LxB ,z = {0}. If for one coordinate
(xB , z) the set LxB ,z is empty, then it do not exist a backward extension in the
kernel. That happens for instance if the difference ∆ has a box-column with
exactly one active box. If none of the sets LxB ,z is empty, the sets LxB ,z define
a tree as explained above. A leaf ℓ of this tree verifies ℓ ∈ K and DPχ(ℓ, ∆) > 0.
Only the leaves of weight w̃rev(ρ−1(ℓ)) + wχ(ℓ, ∆) below W must be reached.

Let ℓ =
∑

xB ,z ℓxB ,z, where (ℓ0,0, . . . , ℓ2,26) ∈ L0,0×. . .×L2,26, be a leaf of the
tree. During the tree traversal, for each coordinate (xB , z), we know the exact
contribution of ℓxB ,z to the weight wχ(ℓ, ∆), that is wχ (ℓxB ,z, Box-col(∆, xB , z)).
However, without the knowledge of the whole vector (ℓ0,0, . . . , ℓ2,26), we can-
not know the exact contribution of ρ−1(ℓxB ,z) to the weight w̃rev(ρ−1(ℓ)) =
2 wbox(ρ−1(ℓ)). Indeed, two differences ρ−1(ℓxB ,z) and ρ−1(ℓx′

B
,z′) can have an

active trit in the same box. Therefore, it is not possible to assign to ρ−1(ℓxB ,z) a
precise number of box activations. We consider roughly that a vector ρ−1(ℓxB ,z)
activates as many boxes as its number of active trits. Given an element ℓxB ,z of
LxB ,z, we define its contribution to the total weight w̃rev(ρ−1(ℓ)) + wχ(ℓ, ∆) to
be c(ℓxB ,z) := 2wt(ℓxB ,z) + wχ(ℓxB ,z, Box-col(∆, xB , z)), where wt stands for the
Hamming weight. This overestimation needs to be corrected in order to have a
lower bound on the weight of the extension (ρ−1(ℓ), ℓ). Let δ = ρ−1(box(∆)). As
the set of active coordinates of δ contains all the active coordinates of ρ−1(ℓ)

wt(ρ−1(ℓ))− wbox(ρ−1(ℓ)) ≤ wt(δ)− wbox(δ).

This is equivalent to

27

∑
xB ,z

c(ℓxB ,z)− 2 (wt(δ)− wbox(δ)) ≤ 2 wbox(ρ−1(ℓ)) + wχ(ℓ, ∆).

For a level k ∈ [1, 81] of the tree, a node ℓk of this level has the form∑k
i=1 ℓxBi

,zi
where ℓxBi

,zi
∈ LxBi

,zi
for all i ∈ [1, k]. The cost of ℓk, that is a

lower bound on the weights of the leaves reachable from ℓk, is given by

k∑
i=1

c(ℓBi,zi
) +

81∑
i=k+1

min{c(d) : d ∈ LxBi
,zi
} − 2 (wt(δ)− wbox(δ)) .

E.2 Extensions outside the kernel

When looking for extensions outside the kernel, one has to deal with the column
parity mixer θ as it does no longer act as the identity map. The main remark
is that the map θ can be computed slice by slice. Depending on the direction of
the extension, the extension’s trits are either chosen at the input of θ or at the
output.

Extensions in the backward direction The trits of an extension (a, b) of
Extback(∆, W) are chosen at the output of the map θ. In this subsection, we also
denote by ℓ the variable whose trits are fixed slice by slice to obtain the final
pair (ρ−1 ◦ θ−1(ℓ), ℓ) of weight w̃rev (ρ−1 ◦ θ−1(ℓ)

)
+ wχ(ℓ, ∆). As the map θ−1

satisfies

θ−1(ℓ)[x, y, z] = ℓ[x, y, z]− P (ℓ)[x− 1, z]− P (ℓ)[x + 1, z + 1]

the vector Slice(θ−1(ℓ), z) is determined by the values of the vectors Slice(ℓ, z)
and Slice(ℓ, z + 1). We therefore choose the slices of ℓ in descending order of
z-coordinate to know simultaneously the values of the slices of θ−1(ℓ). Let z0 ∈
[0, 26] be the coordinate of the first slice of ℓ that we choose and define for
i ∈ [1, 26], zi = z0 − i. For i ∈ [0, 26], we introduce the set Li formed by all the
vectors ℓi ∈ Slice(zi) that are compatible through χ with the output difference
Slice(∆, zi). The set Li is associated to the (i+1)-th level of a tree. The cost of a
vertex of this tree is computed using Algorithm 4 which introduces an auxiliary
variable to compute the slices of θ−1(ℓ). When a leaf ℓ is reached during the
tree traversal, only the weight of the extension (ρ−1 ◦ θ−1(ℓ), ℓ) remains to be
checked.

Extensions in the forward direction For an extension in the forward di-
rection, trits are chosen at the input of the map θ, using again a variable that
is chosen slice by slice and denoted by ℓ. Pairs of the form

(
ρ−1(ℓ), θ(ℓ)

)
, that

might constitute a forward extension, are generated by fixing the slices of the
variable ℓ in descending order of z-coordinate for the same reason as in the case
of a backward extension. The Property 2 of the nonlinear layer provides neces-
sary conditions that the difference ρ−1(ℓ) must fulfill to be compatible through

28

Algorithm 4: Cost of a node of the tree used for backward extensions
input : A vertex v =

∑k

i=0 ℓi of the k + 1-th level of the tree, k ∈ [0, 25]
The auxiliary variable auxp associated to the parent p =

∑k−1
i=0 ℓi of v

output: The cost c of v and the auxiliary variable auxv associated to v

if k = 0 then
auxv ← 0
c← wχ (ℓ0, Slice(∆, z0)) + 2

∑26
i=1 wbox (Slice(∆, zi))

if 1 ≤ k ≤ 25 then
auxv ← auxp

forall (x, y) ∈ [0, 8]× [0, 2] do
auxv[x, y, zk]← v[x, y, zk]− P (v)[x− 1, zk]− P (v)[x + 1, zk + 1]

c← w̃rev(ρ−1(auxv)) +
k∑

i=0

wχ (ℓi, Slice(∆, zi)) + 2
26∑

i=k+1

wbox (Slice(∆, zi))

return (c, auxv)

χ with the input difference ∆. More precisely, it indicates the activity or pas-
sivity of some trits of ρ−1(ℓ) and specifies the value of some other trits. As the
map ρ only permutes trits, conditions on the slices of ℓ directly follow. We write
z0 ∈ [0, 26] for the coordinate of the first slice of ℓ that is chosen and zi = z0− i
for i ∈ [1, 26]. For i ∈ [0, 26], the i + 1-th level of the tree is given by the set
that contains all the vectors of Slice(zi) satisfying the constraints stated above.
During the tree traversal, it is necessary to ensure that the path will lead to a
leaf ℓ such that ρ−1(ℓ) has the same box-activity pattern as the difference ∆ and
of weight wχ(∆, ρ−1(ℓ)) + w̃rev(θ(ℓ)) not too high. An algorithm similar to Al-
gorithm 4 is used to compute a lower bound on the weights of the χ-compatible
leaves that descend from a particular vertex. A leaf ℓ of this tree does not neces-
sarily satisfy DPχ(∆, ρ−1(ℓ)) > 0. This condition needs to be checked each time
a leaf is reached.

E.3 Forward in-kernel extension

We present the method used to generate the set A∆ ⊂ F729
3 formed by all

differences a satisfying DPχ(∆, a) > 0 and ρ(a) ∈ K.

Filtering phase A filtering phase is first applied to identify cases of impossible
extensions. During that step, some coordinates of the differences a ∈ A∆ that
are necessarily active and some that are necessarily passive are identified.

For all a ∈ A∆, the box activity pattern of a is equal to that of ∆. Moreover,
since the difference ρ(a) belongs to the kernel, it cannot have a column with
exactly one active trit. This is why, using Algorithm 5, it may be possible to
conclude from the box activity pattern of the difference ∆ that the set A∆ is

29

Algorithm 5: First filter
input : The difference ∆
output: false if it can be deduced that A∆ is empty; Otherwise, a difference ä

such that the implication ä[x, y, z] = 0 =⇒ a[x, y, z] = 0 holds for all
a ∈ A∆ and (x, y, z) ∈ [0, 8]× [0, 2]× [0, 26]

ä← box(∆)
ρ(ä)← ρ (box(∆))
forall (x, z) ∈ [0, 8]× [0, 26] do

if the column of ρ(ä) has exactly one active coordinate (x, y, z) then
ä[x, y, z]← 0
ρ(ä)[ρ̃−1(x, y, z)]← 0

if the box of ä containing the trit of coordinates ρ̃−1(x, y, z) is not longer
active then

return false

return ä

empty. If the difference ∆ passes this filter, the algorithm outputs a variable ä
that indicates trits of the differences a ∈ A∆ that are necessarily passive.

A second filter is applied if the difference ∆ passes the first one. If the differ-
ence ∆ has boxes whose values belong to the set {(0, 0, 1), (0, 0, 2), (1, 0, 0), (2, 0, 0)},
it is possible to locate, using Property 2 (see Section 3), some trits of the differ-
ences a ∈ A∆ that are necessarily active. If there are after this step trits that
are simultaneously necessarily active and passive, the set A∆ is empty.

Finally, from the difference ä returned by Algorithm 5, it may be possible to
deduce other trits of a and ρ(a) that must be active. If a box of ä has a unique
active coordinate, we conclude that this is an active coordinate of a. Indeed, the
box of a containing that coordinate must be active, and this trit is the only one
of the box that can be active. Moreover, if a column of ρ(ä) has exactly 2 active
trits and one of them is necessarily active, then the second is also necessarily
active.

Extension phase If the difference ∆ passes the filtering phase, an extension
phase is performed. It consists in scanning all pairs of the form (a, ρ(a)) with
ρ(a) ∈ K that also respect the constraints deduced during the filtering phase.
We test for each pair if the output difference a is compatible with the input
difference ∆ through χ.

30

	Differential analysis of the ternary hash function Troika

