
Exploiting Intermediate Value Leakage in Dilithium:
A Template-Based Approach
Alexandre Berzati1, Andersson Calle Viera1,2,

Maya Chartouny1,3, Steven Madec1, Damien Vergnaud2 and David Vigilant1

1 Thales DIS, France
{alexandre.berzati,andersson.calle-viera,maya.saab-chartouni,steven.madec,david.

vigilant}@thalesgroup.com
2 Sorbonne Université, CNRS, Inria, LIP6, F-75005 Paris, France

3 Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles, 78000,
Versailles, France

Abstract. This paper presents a new profiling side-channel attack on CRYSTALS-
Dilithium, the new NIST primary standard for quantum-safe digital signatures.
An open source implementation of CRYSTALS-Dilithium is already available, with
constant-time property as a consideration for side-channel resilience. However, this
implementation does not protect against attacks that exploit intermediate data
leakage. We show how to exploit a new leakage on a vector generated during the
signing process, for which the costly protection by masking is still a matter of debate.
With a corpus of 700 000 messages, we design a template attack that enables us to
efficiently predict whether a given coefficient in one coordinate of this vector is zero
or not. By gathering signatures and being able to make the correct predictions for
each index, and then using linear algebra methods, this paper demonstrates that one
can recover part of the secret key that is sufficient to produce universal forgeries.
While our paper deeply discusses the theoretical attack path, it also demonstrates
the validity of the assumption regarding the required leakage model from practical
experiments with the reference implementation on an ARM Cortex-M4. We need
approximately a day to collect enough representatives and one more day to perform
the traces acquisition on our target.
Keywords: Dilithium · Digital signature · Lattice-based cryptography · Post-
quantum cryptography · Side-channel attacks · Template Attacks · Learning with
Errors

1 Introduction
Public-key cryptography relies on well-defined mathematical assumptions to enable secure
communication over unsecured channels. For instance, RSA [RSA78] security relies upon
the difficulty of factoring large integers, and the Diffie-Hellman key exchange [DH76] is
based on the hardness of the discrete logarithm. However, assuming a sufficiently powerful
quantum computer would be available, Shor has proposed a quantum algorithm [Sho94]
that can break those cryptosystems in polynomial time.

Shor’s algorithm highlights the need for new cryptographic schemes, and post-quantum
cryptography (PQC) is an emerging field of cryptography focused on developing cryp-
tographic algorithms that are secure against quantum (and classical) computers. The
National Institute of Standards and Technology (NIST) has initiated a process to stan-
dardize new quantum-resistant public key cryptographic algorithms. Three PQC signature
algorithms were selected in 2022: CRYSTALS-Dilithium [LDK+22], Falcon [SBN+21], and

mailto:{alexandre.berzati, andersson.calle-viera, maya.saab-chartouni, steven.madec, david.vigilant}@thalesgroup.com
mailto:{alexandre.berzati, andersson.calle-viera, maya.saab-chartouni, steven.madec, david.vigilant}@thalesgroup.com

2 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

SPHINCS+ [BHK+19]. This paper focuses on CRYSTALS-Dilithium (also referred as
Dilithium in the sequel) signature algorithm, that NIST recommends for most of the use
cases [AASA+22]. Dilithium is a signature scheme based on the Fiat-Shamir heuristic
and its security relies on the hardness of the Module Learning with Errors and Mod-
ule Short Integer Solutions problems. Given a public matrix A of elements in the ring
Rq = Zq[X]/(Xn + 1) for integers n and q, the signing algorithm samples a vector y and
computes w = A y. The algorithm extracts high-order and low-order bits out of each
coefficient of w using the Decompose function that outputs the HighBits and LowBits
vectors denoted respectively w1 and w0. Similarly to Schnorr signature [Sch91], a challenge
c is derived from the message being signed and w1 by using some hash function (modelized
as a random oracle in the security analysis) and the signing algorithm computes z as
y + c s1 (where s1 is part of the signer’s secret key) and returns the pair (z, c) as the
signature (if it satisfies some security properties). The vector w1 can be recovered publicly
from the signature (z, c) but the vector w0 cannot. We show here that a side-channel
attack on w0 may actually reveal the signer’s secret key.

Side-channel attacks exploit the physical implementation of cryptographic systems, such
as the power consumption, electromagnetic emanation or timing information to infer secrets.
Dilithium reference implementation [DKL+22] already proposes a very compact constant-
time open source code. Still, this implementation does not claim protection against more
powerful attacks exploiting intermediate data leakage, such as differential power analysis
(DPA) [KJJ99]. It was shown in [MGTF19] that some data leakages exist, and some
may be exploitable (see also [MGTF19, RJH+18, MUTS22, ABC+22, LZS+21, QLZ+23]
and references therein). Many works were devoted to present secure implementation of
Dilithium signatures against side-channel attacks [MGTF19, RJH+18, MUTS22, ABC+22].
Similarly to the group-based setting or Schnorr/ECDSA signatures, it was advocated that
the nonce y should be protected in order not to leak information on the signing key.

Our Contributions. In this paper, we present a new attack path on both randomized
and deterministic versions of Dilithium. We show that we are able to exploit a leakage
on the Decompose function in practice on a publicly available implementation through a
template approach.

The vulnerability of the vector w0 was until more recently still unclear. In [MGTF19],
Migliore, Gérard, Tibouchi, and Fouque presented a masked implementation of Dilithium
where w0 was not protected due to the important overhead of doing so and mentioned
that the Decompose function is “by far the most complex operations regarding masking”
in Dilithium. A contrario, Azouaoui, Bronchain, Cassiers, Hoffmann, Kuzovkova, Renes,
Schneider, Schönauer, Standaert and van Vredendaal have recommended to protect w0 in
[ABC+22] but without giving an attack path. For the first time we manage to exploit the
leakage on w0 in a practical attack setting showing that it should be indeed protected.

Our theoretical attack relies on the simple observation that from a signature where one
coordinate of w0 is null, one can obtain the value of the corresponding coordinate of another
secret information used in the signing algorithm. Once this secret information has been
completely reconstructed, it is possible to retrieve s1 using linear algebra. The knowledge
of s1 allows to forge a valid signature on any arbitrary message [RJH+18] [MGTF19]. Note
that if there is a loss of precision due to a signal acquisition or micro-architectural effect,
error can be bounded using error management techniques such as described in Section 3.4.

For the proof-of-concept we consider the C cryptographic library PQClean [KSSW]
and use the ChipWhisperer-Lite 32-bit with an STM32f3 micro-controller (powered by an
ARM Cortex M4). We chose this setup for various reasons, mainly because the CW is
used in the literature for its convenience and repeatability, and because the ARM Cortex
M4 is widely used for PQC implementations and benchmarks. We design a template
attack that enables us to predict whether a given coefficient of w0 is zero or not. For

Berzati et al. 3

the sake of simplicity, we intend to build the template on the first coefficient and then
apply the same one to the remaining coefficients in order to distinguish if we have 0 or not.
Our goal was to demonstrate that a template built on one Decompose could be applied
to any other coefficient. It is reasonable to assume that the Decompose of any rejection
round behaves similarly. We implement the template such as described in [CK13]. By
doing the profiling and the matching phase on the above setup, we prove the feasibility of
exploiting such leakage of w0 in practice. For the profiling phase, we compute incomplete
signatures. Indeed, in order to speed up the process and to limit the storage, we stop after
the execution of the Decompose step. We obtain side-channel leakages together with w0
without retrieving y. In the matching phase, we only work with computation made on
the first round of rejection of Dilithium. With the same template, we are able to match
correctly the first 100 coefficients treated in the Decompose before any rejection.

With a corpus of 700 000 messages to build our template, we provide a comprehensive
analysis of a relevant leakage model on w0 in Section 4. Without setup optimizations,
it takes less than a day to collect enough representatives, and one more day to perform
the traces acquisition on our target. In a realistic attack setting, detecting whether some
coordinate of w0 is null using noisy power traces might not be error-free. Thus we provide
a technique to filter potential values from signatures. We achieve manageable false positive
(i.e. when we wrongly predict a coefficient w0 = 0) rate of 0.067%, and false-negative (i.e.
when we predict a coefficient w0 ≠ 0 but it actually is 0) rate of 0.1174%. Then supposing
that we are able to retrieve at least a set of k×n signatures with the corresponding indices
of w0, we show how to build and solve the system, while managing the errors.

2 Background
This section provides essential background information for a better understanding of the
attack.

2.1 Notations
Let us note by Zq the ring of integers modulo q and by Zq[X] = (Z/qZ)[X] the set of
polynomials with integer coefficients modulo q. We define by R = Z[X]

/
(Xn + 1) the

ring of polynomials with integer coefficients, reduced by the cyclotomic polynomial Xn + 1
and Rq = Zq[X]

/
(Xn + 1) the ring of polynomials with integer coefficients modulo q,

reduced by the cyclotomic polynomial Xn + 1.
In the following, all polynomial operations are performed in Rq except if specified

otherwise.
For an even (resp. odd) positive integer α, we define r0 = r mod ±α to be the unique

element r′ in the range −α

2 < r′ ≤ α

2 (resp. −α− 1
2 < r′ ≤ α− 1

2) such that r ≡ r

mod α. For α ∈ N, we define r′ = r mod +α to be the unique element r′ in the range
0 ≤ r′ < α.

For an element w ∈ Zq, we define ∥w∥∞ as |w mod ±q|. For an element w ∈ R,
i.e., w = w0 + w1X + . . . + wn−1Xn−1, we define ∥w∥∞ as max

i
∥w∥∞ and we define

∥w∥ =
√
∥w0∥2

∞ + ∥w1∥2
∞ + . . . + ∥wn−1∥2

∞.
Let Sη be all the elements w ∈ R such that ∥w∥∞ ≤ η and S̃η the set {w mod ±2η :

w ∈ R}.
We will denote by Rotj(c), the rotated coefficient vector of a polynomial c, rotated by

j times in an anti-cyclic fashion. JopK will be the boolean evaluation of the operation op.

4 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

2.2 Dilithium
Dilithium is a post-quantum digital signature proposed by the “Cryptographic Suite for
Algebraic Lattices” (CRYSTALS) team. In 2022, NIST selected it as the new primary
standard for quantum-safe digital signatures. It is based on the Fiat-Shamir with aborts
principle [Lyu09], and its security can be reduced to the hardness of solving two lattices
problems over module lattices, module learning with errors (M-LWE) [LDK+22], and
SelfTargetMSIS [KLS18]. When writing this paper, the latest specification version is 3.1.
It is designed with four main ideas in mind: simple to implement securely, conservative
with parameters, minimizing the size of the public key and the size of the signature, and
finally, easy to vary security. The essential functions of Dilithium scheme consist of KeyGen
to generate the key, Sign to produce the signature of a message, and Verify to verify the
signature.

Key Generation. The key generation algorithm is described in Algorithm 1. It generates
a matrix A from a seed ρ via some function ExpandA (see [LDK+22]). Afterwards, the
algorithm samples random secret key vectors s1 and s2. Each coefficient of these vectors
is an element of Rq with small coefficients of size at most η. Finally, the second part of
the public key is computed as t = A s1 + s2.

Algorithm 1 KeyGen
1 ζ ← {0, 1}256

2 (ρ, ρ′, K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ) ▷ H instantiated as SHAKE-256
3 A ∈ Rk×l

q := ExpandA(ρ) ▷ A is generated and stored in NTT Representation as Â
4 (s1, s2) ∈ Sl

η × Sk
η := ExpandS(ρ′)

5 t := A s1 + s2 ▷ Compute As1 as NTT−1(Â · NTT(s1))
6 (t1, t0) := Power2Roundq(t, d)
7 tr ∈ {0, 1}256 := H(ρ || t1)
8 return pk = (ρ, t1), sk = (ρ, K, tr, s1, s2, t0)

Signature. The signing algorithm is described in Algorithm 2. It is constructed by a
rejection sampling loop, generating a new signature until it satisfies some security properties.
First, the algorithm generates a masking vector of polynomials y with coefficients less than
γ1. The signer then computes w = Ay, sets w1 to be the high-order bits of the coefficients
in this vector, and w0 to be the low-order bits of w. The challenge c is then created as the
hash of the message and w1. The output c is a polynomial in Rq with exactly τ ± 1’s and
the rest 0’s. The potential signature is computed, using s1, as z = y + c s1. To ensure that
the signature does not leak information about the key and for correctness purposes, lines
13 and 17 execute some bound checks. If one of these verification fails, a new signature
candidate is generated.

Signature verification. The verification algorithm is described in Algorithm 3. The
verifier computes the high-order bits of A z− c t1 · 2d, and accepts if all the coefficients of
z are less than γ1 − β provided that c is the hash of the message and w′

1.

Decompose. To break up an element in Zq into their “high-bits” and “low-bits”, we can
use the function Decompose. In fact, we divide w by α to get w = w1 α + w0 where w0 = r
mod ±α and w1 = (w−w0)/α. Note that Decompose(w) = (HighBits(w), LowBits(w)) =
(w1, w0).

Berzati et al. 5

Algorithm 2 Sign

1 A ∈ Rk×l
q := ExpandA(ρ) ▷ A is generated and stored in NTT Representation as Â

2 µ ∈ {0, 1}512 := H(tr ||M)
3 κ := 0, (z, h) :=⊥
4 ρ′ ∈ {0, 1}512 := H(K ||µ) (or ρ′ ← {0, 1}512 for randomized signing)
5 while (z, h) =⊥ do ▷ Pre-compute ŝ1 := NTT(s1), ŝ2 := NTT(s2) and t̂0 := NTT(t0)
6 y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7 w := A y ▷ w := NTT−1(Â · NTT(y))
8 w1, w0 = Decomposeq(w, 2 γ2)
9 c̃ ∈ {0, 1}256 := H(µ ||w1)

10 c ∈ Bτ := SampleInBall(c̃) ▷ Store c in NTT representation as ĉ = NTT(c)
11 z := y + c s1 ▷ Compute cs1 as NTT−1(ĉ · ŝ1)
12 r0 := w0 − cs2 ▷ Compute cs2 as NTT−1(ĉ · ŝ2)
13 if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14 (z, h) :=⊥
15 else
16 h := MakeHintq(w1, w0 − cs2 + c t0, 2 γ2) ▷ Compute c t0 as NTT−1(ĉ · t̂0)
17 if ||c t0||∞ ≥ γ2 or |h|hj=1 > ω then
18 (z, h) :=⊥
19 κ := κ + l

20 return σ = (c̃, z, h)

Algorithm 3 Verify
1 A ∈ Rk×l

q := ExpandA(ρ)
2 µ ∈ {0, 1}512 := H(H(ρ || t1) ||M)
3 c := SampleInBall(c̃)
4 w′

1 := UseHintq(h, Az− ct1 · 2d, 2γ2)
5 return J||z||∞ < γ1 − βK and Jc̃ = H(µ ||w′

1)K and J|h|hj=1 ≤ ωK

We give in Figure 1 the C code of the PQCLean Decompose function that is implemented
in the same way in most of the available libraries. In line 3, the value of w is first loaded
without prior knowledge of w1 and w0. However, since w0 is mainly contained in the
lower bytes of w, there will likely be some leakage of the two least significant bytes at the
beginning of the Decompose function. Furthermore, in the same line, by adding 127 to w,
the least significant byte of w - which primarily contains information about w0 - is altered,
leading to early leakage of this byte in the traces. While lines 4 and 5 don’t offer much
information about the least significant bytes, line 7 involves subtracting w1 × 2 γ2 from
w, which approximates w based on the most significant bytes, thereby directly leaking
information on w0. Additionally, if w1 × 2 γ2 = w, a significant visible difference between
w and w0 will be observed thus magnifying the leakage of this operation for the 0 value.

Details on Reference Implementation. We can find several differences between the
specification of Dilithium [LDK+22] and the various implementations, such as the reference
implementation [DKL+22] or the one from the PQClean Library [KSSW].

6 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

1 int32_t PQCLEAN_DILITHIUM2_CLEAN_Decompose (int32_t *w0 , int32_t w) {
2 int32_t w1;
3 w1 = (w + 127) >> 7;
4 w1 = (w1 * 11275 + (1 << 23)) >> 24;
5 w1 ^= ((43 - w1) >> 31) & w1;
6

7 *w0 = w - w1 * 2 * GAMMA2 ;
8 *w0 -= (((Q - 1) / 2 - *w0) >> 31) & Q;
9 return w1;

10 }

Figure 1: C Code of the Decompose function.

In this paragraph, we point out specific details that will be of interest for the attack.

In Algorithm 2 line 12, in order to optimize the complexity, we compute r0 as w0− c s2
and then we check whether ∥w0 − c s2∥ < γ2 − β. If this inequality holds then w0 − c s2 is
the low part of w− c s2 according to Lemma 3 in [LDK+22].
Note that w0 is already computed in the Algorithm 2 line 8, no matter if we use the
function Decompose or HighBits. Lastly, another optimization is done line 16 during the
computation of the vector h, since we already have the value w0 − c s2 we add c t0 to it
and compare the result with w1 to produce the hint h.

In the following, and if not stated otherwise, we will refer to the PQClean implementa-
tion of Dilithium which is slightly equivalent to the reference implementation.

2.3 Side-Channel Attacks on Dilithium
Concrete security was not the only priority for the NIST PQC competition as for the first
time, an emphasis is also put on security against side-channel attacks.

One of the paper’s objectives is to state if some parts of Dilithium implementation
require specific treatment concerning side-channel attacks (SCA). In fact, this section first
recalls template attack principle, which we will use to demonstrate the practicability of
our new attack. The remaining of this section will give an overview of the physical attacks
already published.

Template Attacks. Side-Channel Attacks have proven to be extremely effective as a
practical way to attack cryptographic algorithm implementations. In particular, when
open devices are available, with the possibility to set and modify the key value, profiling
attacks such as templates can be very powerful. First introduced by Chari, Rao and
Rohatgi [CRR03], this attack is divided into four steps. The first step, using a copy of
the target device, records a large number of power traces using many different keys and
inputs. The second step is creating a template of the device operation by selecting points of
interest that are supposed to contain a considerable proportion of the leakage information.
Third, the attacker records a small number of power traces using multiple plaintexts on
the victim’s device. Finally, the template is applied to the attack traces. For each possible
subkey, the attacker determines which value is most likely to be the correct one and repeats
the same step until the entire key is recovered.

This paper describes an application of a template attack as in [CK13]. We may also
apply other types of templates and, more generally, other profiling SCA methods. The
efficiency of a profiling attack is better when the clone (hardware and software) is similar
to the target. Since we are working on a public implementation and a public evaluation
platform, this also shows that it is the best method to use here.

Berzati et al. 7

State of the art. Several practical Fault Injection Attacks leading to the key recovery
have already been published. Indeed Bruinderink and Pessl [BP18] showed the applicability
of differential fault attacks on Dilithium using multiple paths. The attacker can produce
a correct signature and a faulty signature. By faulting somewhere in the generation of
the challenge c, without changing the value of y, the attacker can produce a different
variable z under the same number of rejection rounds. From the correct signature, we have
z = y +c s1, and from the faulty signature, we have z′ = y +c′ s1. Hence, z−z′ = (c−c′) s1
and therefore we can compute s1 = (c− c′)−1(z − z′).

Furthermore, Bruinderink and Pessl also showed, as in other papers [RJH+18] [MGTF19],
that it is possible to forge signatures with only the extracted portion of the secret key s1.

Regarding SCA, previous work also has shown that some leakages during the signature
could be exploited to infer the whole Dilithium key. For example, Fournaris, Dimopoulos
and Koufopavlou [FDK20] demonstrated a correlation power analysis of the polynomial
multiplication c s1. The analysis focused on the polynomial multiplication operation
during the sample rejection loop, regardless of the technique used (schoolbook polynomial
multiplication, sparse matrix polynomial multiplication, or Number Theoretic Transform
(NTT) representation).

Also, Kim, Lee, Han, Sim and Han [KLH+20] proposed a machine learning-based
profiling attack on unprotected and masked versions of Dilithium-2. They targeted the
leakage during load save and reduction operation. They showed that to obtain all the
secret key parts in the algorithm, only two of s1, s2, t0 are needed. Then by solving a
simple equation, the attacker can find the third one. To validate their attack, the authors
targeted the s1 value and made experiments in a simulated setting. A uniform noise is
added to the trace supposing 8-bit Hamming weight leakage and linear regression model.

More recently, Mazougui et al. [MUTS22] showed an end-to-end profiled side-channel
attack on Dilithium targeting the nonce y. They identified a leak in the generation of one
coefficient of y by using machine learning to distinguish whether the coefficient is zero
or not. Their attack extracts information about the vector y from a single trace. Given
coefficient yi = 0 then zi = 0 + (c s1)i. Since z and c are known at the end of the signature,
collecting many of these equations allows the attacker to recover all s1 coefficients using
linear algebra.

3 A new theoretical attack on Dilithium
This section presents a new theoretical path of profiling attacks on Dilithium. The
prerequisite is a sufficiently strong leakage of the value w0. To our knowledge, this is the
first complete attack exploiting a leakage on w0, even if Azouaoui et al. already pointed
out that protecting w0 would be a good recommendation [ABC+22]. We propose some
methods to minimize the error during the matching phase so that we introduce as few
errors as possible in our equations. We then show how the system of equations can be
solved using the Least Squares Method (LSM). We also propose an error management
technique, which computes the correct secret key, although we have introduced few errors.
Finally, we highlight the number of signatures required to perform this attack and multiple
vulnerable operations in the reference implementation that may render the attack possible.

3.1 Main Idea
Our goal is to recover the secret key s1 because knowing s1 is sufficient to sign arbitrary
messages [RJH+18], [MGTF19] and [BP18]. The attack consists in collecting signatures
for which one coefficient of w0 is known (from profiling attacks) to be equal to 0. As
discussed at the end of Section 2.2, w0 value is computed in the reference implementation
without any particular protection.

8 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

The signature is composed of (c, z, h). Since z = y + c s1 and t = A s1 + s2 we have

A z− c t = A y− c s2. (1)

By replacing w = A y and t = t1 2d + t0 in Equation (1), we get

A z− c t1 2d − c t0 = w− c s2,

and by rewriting this equation, we obtain

A z− c t1 2d = w + c (t0 − s2).

From the Decompose function we get that w = w1 2 γ2 + w0 , the above equation thus
becomes

A z− c t1 2d = w1 2 γ2 + w0 + c (t0 − s2),
and if we suppose that for some (i, j), (w0)i,j = 0, then we have(

A z− c t1 2d
)

i,j
= (w1 2 γ2 + c (t0 − s2))i,j . (2)

Given that the elements A, z, c, t1, d, γ2 are public and that w1 can be computed
from the verification part, we can recover (t0 − s2)i,j from Equation (2). We repeat the
same step for all i and j such that 0 ≤ i < k and 0 ≤ j < n in order to fully recover t0− s2.
Finally, the knowledge of t0 − s2 allows to find s1:

t = A s1 + s2 = t1 2d + t0,

hence,
A s1 = t1 2d + (t0 − s2). (3)

However, A is not square in all the Dilithium versions, but if we multiply the Equation (3)
by At, we get that (At A) is square and is invertible with very high probability [ABC+22].
Thus, we get

s1 = (At A)−1 At
(
t1 2d − (s2 − t0)

)
.

Knowing s1 suffices to sign arbitrary messages [RJH+18].

Remark. In this case we focus on distinguishing signatures for which w0 = 0 from those
where w0 ̸= 0. We will denote by Classifier this procedure. In theory, any constant
could have been used. Factoring in other known constants in Equation (2) does not affect
the resolution. However 0 may be more practical for the attack. Indeed, assuming the
different Hamming Weights (HW) of w0 can be distinguished with a template, then the
value 0 would be uniquely discriminated by its HW.

3.2 Candidates Filtering
In practice, there might be some noise when measuring a signal. This may lead to a wrong
prediction that (w0)i,j is equal to 0, with introductions of errors in our system of equations.
In order to overcome this, we need to remove the values where (w0)i,j ̸= 0 as early as
possible to reduce the number of wrong equations. Hence, we put a filter on the value of
A z− c t1 2d −w1 2 γ2.

Under the assumption that (w0)i,j = 0 for some (i, j) and from Equation (2) we have(
A z− c t1 2d −w1 2 γ2

)
i,j

= (c (t0 − s2))i,j .

Since (s2)i,j << (t0)i,j , (
A z− c t1 2d −w1 2 γ2

)
i,j
≈ (c t0)i,j .

Berzati et al. 9

According to the specification of Dilithium [LDK+22], we can assume that the low order
bits are uniformly distributed, i.e., t0 ∼ U([−2d−1 + 1, 2d−1]). Therefore, since c is a
vector with exactly τ coefficients in {−1, 1} and the rest equal to 0, by the central limit
theorem, c t0 is normally distributed with mean 0 and standard deviation σ, i.e.,

c t0 ∼ N (0, σ2)

σ2 = (2d−1+
(2d−1 + 1) + 1)2 − 112 τ = 22d − 1

12 τ

Hence, the probability that |(A z− c t1 2d −w1 2 γ2)i,j | is lower or equal to 2 σ is equal to
0.954.
Therefore, if we assume that (w0)i,j = 0 then,

|(A z− c t1 2d −w1 2 γ2)i,j | ≤ 2 σ. (4)

For instance, in Dilithium-2, we have 2 σ = 2
√

226 − 1
12 39 ≈ 29 537. Experimentally,

we can discard approximately 70% of the N := n× k = 1024 values where we might not
have zero.

Using this filter, we may remove around 5% of the equations where actually (w0)i,j = 0.
However, in case of the presence of noise, it might be preferable to perform more signatures
rather than introducing errors in the system of equations.

For example, let us consider a side-channel analysis that exploits a HW leakage. In the
presence of noise, this filter will be be especially efficient to not inject equations for which
w0 has a large value but a low HW.

3.3 Resolution - Least Square Method
Let us write e = (w0)i,j . If our classifying process manages to detect zero values with
enough precision, then this coefficient vanishes, and we get Equation (2). On the other
hand, if our classifier is wrong and tells us that the value of (w0)i,j = 0, but in fact, we do
not have a zero, then we will get samples of the form(

A z− c t1 2d
)

i,j
= (w1 2 γ2 + c (t0 − s2))i,j + e,

where e is the error. Note that for most of our equation e = 0. This equation can be
rewritten as (

A z− c t1 2d −w1 2 γ2
)

i,j
= (c (t0 − s2))i,j + e. (5)

Let L be the left-hand side of Equation (5) for all (i, j), and let C be the negacyclic matrix
representation of the corresponding ci,j for all (i, j). Since ∥C t0∥ ≤ τ2d−1, ∥C s2∥ ≤ β
and ∥e∥ ≤ 2 γ2, then ∥C (t0 − s2) + e∥ < q, and thus we do not have a modular reduction.
Therefore, this problem can be viewed as an LWE without modular reduction [BDE+18].
We use some statistical techniques to find an approximate solution of (t0 − s2) from the
noisy linear system formed by equation of the form (5). If the matrix is not invertible
we can use the Least Squares Method described by Bootle et al. in [BDE+18], we get a
candidate solution

˜(t0 − s2) = (C̃T C̃)−1C̃T L,

where C̃T is the matrix where for each vector i, each line j is comprised of the rotated
corresponding challenge ci, j .

If ∥(t0 − s2)− ˜(t0 − s2)∥∞ <
1
2 , then ⌈ ˜(t0 − s2)⌋ = (t0 − s2). We get that most of the

coefficients of ˜(t0 − s2) are correct and the rest are wrong by ±1, so either rounding up or
down should yield the correct solution. Let us denote by SOLVE this procedure.

10 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

3.4 Error Management
It is important to notice that in most cases, the error term in our equations is equal to
zero under the assumption that our classifier is correct in most instances. This means the
solution may result from a “noisy” set of equations, i.e., with a small number of incorrect
equations. Several techniques that can recover the correct value from a disturbed set of
equations are described hereafter.

LWE with side information. With the “noisy” equations, our system looks like the LWE
problem. Dachman-Soled, Ducas, Gong and Rossi [DDGR20] proposed a framework to
integrate SCA “hints” to solve a LWE instance. In order to use hints from side-channel
information, the learning with errors with side information instance is first transformed
into a distorted bounded distance decoding (DBDD) instance. This transformation allows
us to track the distribution of the secret vector. By providing hints, we can potentially
modify this distribution to make it easier to find the solution vector. If we give enough
hints, the secret vector recovery becomes feasible using lattice reduction attacks.

ILP. One can also see the problem of finding a given polynomial from this set of noisy
equations as identifying the polynomial that maximizes the number of equations. In other
words, we want to find the polynomial that fits most equations in our system. To this
end, Marzougui et al. [MUTS22] formulated an Integer Linear Program (ILP) to solve
this problem. Using the solution candidate obtained from the least-squares method, the
authors use the big M [BJS11] method to factor in the noisy equations. Ultimately, the
solution obtained from the ILP must correspond to the correct value.

Majority Vote. If we want the probability, of finding all N = n× k coefficients, to be
equal to 1 then we will necessarily have some coordinates (i, j) where (w0)i,j will be equal
to 0 several times. Moreover, if our distinguisher is incorrect on one coefficient at most,
by taking two different equations, there is a small chance that it is wrong on the same
coefficient. Since we are doing the resolution just before this step, either by inverting the
matrix or by the LSM, we will only have some rounding problems, i.e., we will be very
close to the exact value. By solving several systems with different equations, we will have
several t0 − s2 candidates. Then, we can perform a majority vote on each coefficient (i, j)
to find the correct intermediate value and at the end retrieve the correct t0 − s2.

3.5 Attack Summary
Pseudo-Algorithm 4 describes all steps to find a solution candidate (t0 − s2).

Number of Needed Signatures. The number of needed signatures is an important
performance indicator of an SCA. The purpose of this subsection is to find out how many
signatures are required for a complete attack. To recover all the N = n× k coordinates,
where (w0)i,j = 0 for i and j such that 0 ≤ i < k and 0 ≤ j < n. We know that for a
fixed (i, j), (w0)i,j = 0 with probability 1

2 γ2
. Hence, one coordinate is not equal to zero

with probability 1 − 1
2 γ2

. Over T experiences, a coordinate is not equal to zero with

probability (1− 1
2 γ2

)T . Hence, a coordinate is equal to zero at least once with probability

1 − (1 − 1
2 γ2

)T . Therefore, over T experiences the n coordinates are equal to zero at least

once with probability
(

1 −
(

1 − 1
2 γ2

)T
)n

.

Berzati et al. 11

Algorithm 4 Equivalent Secret Key Recovery
1 L = [[0]× n]× k, C̃ = [[0]× n]× k

2 for sig in S do
3 for i = 0 to k − 1 do
4 for j = 0 to n− 1 do
5 z, c, h← sig
6 val = (A z− c t12d −w12γ2)i,j

7 if |val| ≤ 2
√

22d−1
12 τ then

8 (w̃0)sig
i,j := Classifier(T(w̃0)sig

i,j
)

9 if (w̃0)sig
i,j = 0 then

10 L[i][j] = val
11 C̃[i][j] = Rot255−j(c)
12 for i = 0 to k − 1 do
13 t0_minus_s2 = SOLVE(L[i], C̃[i])

For instance, for Dilithium-2, γ2 = 95 232. In order to recover the N = 256× 4 = 1024
coordinates where (w0)i,j = 0, we need 2.43 millions signatures. In this case, we get a
high probability of 0.997 of recovering all the coefficients.
Note that in practice, for Dilithium-2, 2.5 millions signatures were needed to recover the
N = 256× 4 = 1024 coordinates where (w0)i,j = 0. This is consistent with our analysis as
seen from the graph in Figure 2.

Figure 2: Probability of having recovered all the N = n× k coordinates for Dilithium-2.

3.6 Potential Leakage Spots Involving w0

This section discusses potential leaking operations in Dilithium.
Probably the most intuitive location is the Decompose function line 8, where the w value

is split into its upper w1 and lower w0 parts. Especially in the reference implementation
there are many accesses to w0. Previous work [MGTF19] has already shown that this
sub-routine leaks information, but no attack on w0 was given, moreover it was shown to
be hard to protect efficiently.

Furthermore, the computation of the r0 line 12 Algorithm 2 value performed in the
normal domain by subtracting cs2 to w0 is also a good candidate for an attack. If the
targeted value is zero, we should have an apparent leakage in Hamming weight (HW).
Even though it is a promising operation, this is let for future practical work.

12 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

Finally, the r0 value is also used in the MakeHint function on line 16 of Algorithm 2.
It can also be considered as a leakage spot.

In this work, we focus on the leakage of the Decompose function.

4 Experimental Results
This section demonstrates the practical feasibility of the theoretical attack when no specific
countermeasure is implemented. We aim to demonstrate the vulnerability of the w0 value
in Dilithium. We simplify the attack as much as possible while still covering a wide range
of study cases. Although we present extensively the practical results only for the first
coefficient of the first coordinate of w0, it is important to note that the methodology
and results can be extended to all the other indices of w0 with minimal changes, as the
implementation manipulates each coefficient independently in the same way and performs
the same constant-time operation. We provide at the end of this section arguments in
favor of this hypothesis. All side-channel analyses were coded in Python and will soon be
available as notebooks.

4.1 Setup
For our attack, we use the Post-quantum cryptographic library PQClean [KSSW], which
offers “clean” standalone C implementations [KSSW] of most post-quantum schemes
included in the NIST round 3 and 4 submissions [nis]. Focusing mainly on the embedded
system domain, the ChipWhisperer-Lite 32-bit, with an STM32f3 micro-controller, is
often used in related academic research. We chose it as a test bench to deploy the
Dilithium-2 signature scheme. We compiled Dilithium-2 using the gcc-arm cross-compiler
arm-none-eabi-gcc 10.2.1 (with the options -O3).

To go to the nitty-gritty, we use the ChipWhisperer (CW) “cw” library [OC14] for
trace acquisition, and we use an open-source side-channel python library to process the
side-channel information and perform the desired analysis. We also use the LSM and
the rounding subroutines implemented in the “numpy” library [HMvdW+20]. Moreover,
we use an optimized C reference implementation of Dilithium [DKL+22] running on an
Intel Core i7 to speed-up the computation of intermediate values. We also use this code
to determine the number of coefficients we discarded with our filter and the number of
coefficients w0 = 0 not identified.

4.2 Learning Phase
The goal is to identify the points of interest (POI) where we have a leakage of the Decompose
function and to build templates on these points. According to the source code and the
design, we expect that we can distinguish w0 equal to the value 0 more easily than other
values, as shown in Figure 1.

4.2.1 Reverse engineering

The ChipWhisperer Lite has limited space capacity and can only handle a maximum of
24 400 samples, making it challenging to identify essential features in traces or capture
longer operation sequences such as an entire Dilithium signature.

To overcome this, we compute incomplete signatures by stopping when we obtain the
value of the first w0. Hence, using the PQClean library default implementation, an extract
of the executed code can be viewed in Figure 3, where the trigger signal is only active
throughout the whole four poly_Decompose calls.

Berzati et al. 13

1 for (i = 0; i < K; ++i) {
2 trigger_high ();
3 PQCLEAN_DILITHIUM2_CLEAN_poly_Decompose (&v1→vec[i],&v0→vec[i],&v→vec[i]);
4 trigger_low ();
5 }

Figure 3: PQClean Dilithium-2 signature generation code snippet.

Figure 4: ChipWhisperer Decompose(w[0][j]), for j ∈ {0, 1 , 2, 3}.

In Figure 4, we zoomed on a single Decompose for an acquisition performed directly
on the ChipWhisperer. We highlight the four decompositions through the four shades of
gray, where each coefficient of the polynomial (w)i is decomposed. We can see a repeating
pattern that spans for about 260 samples, corresponding to the calls to the Decompose
function.

Each polynomial of the vector w is independent as well as each value. Hence, w0 is also
independent. Furthermore, the same operation Decompose is applied to each coefficient
inside a loop. Without loss of generality, we can suppose that by creating a template on the
first coefficient of w0, we can apply it to the other coefficients. One important particularity
of the Dilithium signature scheme worth noting is the use of a rejection sampling loop.
This can increase the complexity of the profiling step of the template. To overcome this
difficulty, we decided only to consider the very first Decompose of the first round to build
our template, even if more rejection rounds were computed.

4.2.2 Leakage model and w0 leakage detection

Since we are now able to identify the Decompose consumption profile, we will now focus
on the leakage inferred by w0 and particularly when its value is equal to 0. To achieve
this, we perform a reverse analysis of the intermediate value w0 for a relevant leakage
model according to our setup and explain in detail how we constructed the dataset used
to perform the corresponding analyses. For this purpose, we built a profiling data set with
700 000 traces collected from the ChipWhisperer.

Selection function. By default, the traces collected from the ChipWhisperer are easy to
process as they do not require any synchronization. We know how the Decompose function
works, and we can identify the inputs corresponding to the fixed outputs, so we choose the
identity of (w0)i,j as a selection function to determine the intermediate values which will
be targeted by our attack.

14 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

Distinguisher. As a second step of our analysis, we apply one of the many statistical
tools widely used when building profiled attacks. In an unprotected setting, all these
tests are expected to give the same results [MOS09]. Here, we choose to test the ANOVA
distinguisher because it works with data partitioning, which is very similar to the templates
partitioning mechanism[YJ21]. Based on the previous reverse analysis and the code review
of the poly_Decompose function implementation presented in Figure 1, we identified a
relevant leakage model.

Leakage model. We know that for all 0 ≤ i < k and 0 ≤ j < n, −γ2 < (w0)i,j ≤ γ2. In
our study case, for Dilithium-2, γ2 = (q−1)/88 = 95 232, which is 00017400 in hexadecimal,
so if (w0)i,j ≥ 0 it results that (w0)i,j is bounded by this value. On the other hand if
(w0)i,j < 0 we have that (w0)i,j is between FFFFFFFF and FFFE8C02.

While only two classes are possible for the most significant byte (MSB), which is easily
distinguishable, there are four possible groups for the second MSB. It can be trickier to
distinguish between the cases 00 and 01 or the cases FF and FE.

As we will be performing the template only on the filtered values, we know that
|(w0 − c s2 + c t0)i,j | < 2 σ, but because |c s2| ≤ β and |c t0| < 2 σ then it must hold that
|(w0)i,j | < 2 σ + β + 2 σ. Now, if (w0)i,j ≥ 0 the value is between 00000000 and 0000E70E
and if (w0)i,j < 0 it is between FFFFFFFF and FFFF18F2. There are only two classes
possible now for the two MSBs. Therefore, for Dilithium-2, the template attack can be
simplified on the last two bytes to determine if we have a zero value which can potentially
speed up the attack.

Since we are working on ChipWhisperer STM32F3 with a Cortex M4 32 bits processor,
and since templates will be limited to the 2 LSBs for Dilithium-2, we considered the w0
value as four independent bytes. We then perform a reverse analysis on the value of each
byte value separately. It leads to a 256 partitions analysis of each byte value.

However, this simplification does not hold for both Dilithium-3 and Dilithium-5 because
of the different values of the bounds. Even though the MSB is still filtered, the bounds for
the second MSB don’t hold anymore. For these versions, we would have to analyze the
four bytes or we may have to choose a leakage model more appropriate.

Moreover, we selected the HW leakage model for attack generality, making 0 a good
choice due to its sole representation in this HW class (also true for HW = 32).

Building the profiling data set. We must consider having as many occurrences as possible
for each class of the leakage models. For our leakage model, each byte value has a significant
representation when building the data set with random messages. To do so, we used the
C reference implementation. We coded a script that performs Dilithium signatures for
a given security parameter until there is a significant number of representatives for each
class. In order to run the attack, we arbitrarily decided to collect 2 700 messages per class,
to guarantee a minimal number of representative in each class. We then complete with
random messages to have a data set of 700 000 messages. In the end, this number of traces
might be oversized regarding the targeted implementation, but our objective is only to
demonstrate the feasibility of the end-to-end attack. Collecting the necessary messages
corresponding to the 256 partitions amounts to a total of 24 hours approximately. We also
need 24 more hours to perform the corresponding acquisitions with the ChipWhisperer.

4.2.3 POIs selection for templates

The templates must be created using a reduced number of samples in each trace to lower
the computation cost. To do so, we keep only a few samples empirically from the ANOVA
distinguisher shows highest amplitude.

Berzati et al. 15

Figure 5: POIs selection for the Leakage model for the two MSBs.

Figure 6: POIs selection for the Leakage model for the two LSBs.

Figure 5 and 6 illustrate our selection of the leakage peaks as Points of Interest to keep
the best indices in our power traces for our leakage model. We have also plotted some
power traces of the Decompose in the background, where we can see significant variability
in multiple locations compared to the rest of the samples between different signature
executions. In the end, we have kept 5 POIs for each byte. In Figure 6, we have plotted
the results for the ANOVA statistical indicator, cited previously, for the four bytes. We
can observe that they give essentially the same information. Clear leakage peaks can be
seen from samples 0 to 250 at roughly the same position. Furthermore, we can see that
they can be split in two categories, for the two MSBs and the two LSBs. This results will
be useful later on for selecting the Points of Interest.

4.3 Matching Phase
We now validate our templates created using the POIs previously selected. For this purpose,
we create a matching data set of 10 traces collected from the ChipWhisperer, which took
about 1.4 seconds since we didn’t try to optimize it. The data set is built with a targeted
intermediate value fixed to (w0)0,0 = 0 for all traces. For our experiments, we do not
consider cross-device template matching as we use the same target to build the profiling
data set used for matching.

The results of our experiments are shown in Figures 7 and 8. For our leakage model,
the best template score corresponds to our targeted value (w0)0,0 = 0. We also observe
the evolution of the scores showing that our value is clearly distinguishable from the others
right from the first trace prediction.

Divide and conquer (w0)0,0 LSBs. The Figures 7 and 8 show that the template matching
guesses correctly the first and the second LSB of (w0)0,0 = 0, and the results are shown
for 10 traces. Furthermore, we can see that the corresponding score for the correct guess is
clearly distinguishable from the rest. As stated previously, the score for the correct guess
is already detectable with one trace. Still, surprisingly enough, the score does not seem to
improve dramatically with the number of traces added. Maybe by adding artificial noise
to the trace one could observe clear improvement of the score for the correct guess.

16 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

Figure 7: Matching value LSB 0.

Figure 8: Matching value LSB 1.

Divide and conquer (w0)0,0 MSBs. For completeness and to show what a potential
matching could be for the versions 3 and 5 of Dilithium, we decided to study also the MSB
of the targeted value. From our leakage model, we know that without the filtering step
only two partitions are required for the first MSB of (w0)0,0 and four partitions for the
second MSB in the case of Dilithium-2. Figure 9 show that the template matching guesses
correctly the first and the second MSB of (w0)0,0 = 0.

Figure 9: Matching HW MSB 0 and 1.

Even though the two MSBs are correctly matched, we can see that the scores of the
second MSB for values 0 and 1 are really close to each other. It could be challenging to
distinguish them from a weaker leakage or with more noise. This raises the importance of
the filter step previously to the leakage assessment.

4.4 Results Interpretation on (w0)0,0

In our analysis of the (w0)0,0 = 0 coefficients, we found that it could be challenging to
differentiate close values such as 00 and 01 or FF and FE. To speed up the attack, the
implemented filter on the values increases the speed of the attack up to two times when
focusing on the last two bytes, but this only applies to Dilithium-2. In our experiments,
with over 10 000 000 signatures, the filter discarded approximately 69.3% of the N = 1024
coefficients, leaving on average only 314 coefficients that could potentially be equal to 0.
Additionally, we evaluated the number of true (w0)i,j = 0 detected by the filter and found
that it was approximately 94.66%, which is close to the 95.4% theoretically expected from
Subsection 3.2.
To test the false positives of our template on the first w0, i.e., when we wrongly predict a
coefficient (w0)0,0 = 0, we decided to perform 100 000 signatures with 10 traces each time
to complete the matching. In the end, we found that we have 67 false positives for this
first coefficient. We also tested for false negatives on (w0)0,0 = 0 with our template, i.e
when we wrongly predict a coefficient (w0)0,0 ≠ 0. With the same number of traces as
for the matching, we evaluated 50 000 messages with fixed intermediate value (w0)0,0 = 0.

Berzati et al. 17

We observe that we have 87 coefficients not detected. Combined with the values rejected
by the filter, this amounts to acquiring more signatures before the attack.

Note that when we are in a deterministic setting, i.e., where all the parameters are
fixed, we can obtain several traces for the same message. In this case, we can converge
toward a more reliable trace and possibly reduce the number of false positives.

4.5 Resolution and Majority Vote
First, we give a method to get a candidate for t0 − s2, and then we give our results on the
majority vote to get the correct solution.
Having an implementation of the Dilithium-2 signing algorithm, we decided to proceed
as described. For a given secret key, for a signature of a message, we can determine if
there was a set of indices for which (w0)i,j = 0 and if so, retrieve this (i, j). After 2.5 M
signatures, we had all the N = 256 × 4 = 1024 indices multiple times. With this set of
coefficients, we randomly choose a set of N values, then with our false positive rate, we add
a small error of e (in practice we used e ∈ {−1, 1}) to a coefficient with this probability.
Finally, we construct the vector L and the matrix C̃ before testing if it is invertible and
applying the corresponding resolution method. This resolution step takes under a second.
Finally, we compare to the correct t0 − s2.
We also tested the effect of this error on a given coefficient by solving the system with
a single error on every coefficient between 0 and 255 for the 4 vectors. We observed
that depending on the coefficient, the approximated ˜t0 − s2 can have between 0 and 256
values different from the correct t0 − s2. We show in Figure 10 the number of indices that
produces the according number of incorrect rounded coefficients. This number seems to be

Figure 10: Number of wrongly rounded coefficients

related to the norm of the corresponding column in the matrix C̃, which could gives us
beforehand a rough indication about the quality of our candidate.
On the other hand, we have tested the majority vote for when we have at most 12 wrongly
rounded coefficients of the ˜t0 − s2 value, which happens for half of the positions in our tests.
This method aims to make several calls to the SOLVE function with different equations
to obtain multiple candidates and then apply the majority vote on these candidates. We
tested the probability of success in this setting. For instance, we tested the probability
of success for all the 5 possible combinations of candidates where ˜t0 − s2 has at most 12
wrong coefficients and found out that this probability is approximately 75%. This took
around 6 days. Hence, testing all the possible combinations of candidates takes a lot of
time and scaling this analysis with more candidates was not possible. To overcome this,
we chose several combinations of random candidates instead of all the possible ones. In
our example, we took 100 000 random combinations of 5 candidates where we have at
most 12 wrong coefficients and got a success rate of approximately 76.12% which gives
us a good estimate. This took around 15 seconds. For completeness, we decided to test

18 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

100 000 random combinations for a variable number of candidates to see the evolution of
the success rate. We also decided to do the same analysis without bounding the number
of errors of the candidates. The results are shown in Figure 11.

Figure 11: Evolution of the success probability with respect to the number of candidates

We can see that by bounding the number of errors to 12, which happens half of the
time in our case we are able to converge sooner to the correct t0 − s2, so by choosing
carefully what indices are not certain before solving the system we are able to reduce the
propagation of this error to a bounded number of coefficients. Then, by selecting those
specific candidates we can limit the total number of candidates to 30 in our majority
vote with still finding the correct t0 − s2. However if one does not want or cannot do
this selection beforehand, selecting 125 candidates for the majority vote has a very high
probability of finding the correct t0 − s2.

4.6 End-to-end attack and Modularity
So far, we confirmed that we could exploit the leakage to recover (w0)0,0 = 0. For the
sake of simplicity, we intend to apply the same template to the rest of the coefficients to
distinguish if we have 0 or not. With few samples at our disposition, we do not capture the
totality of the decompositions, so we will need to make several acquisitions. For instance,
as in our case with the ChipWhisperer, we can at most capture 95 coefficients on the
N = 256 × 4 = 1024 needed. Therefore, we must do at least 11 set of acquisitions per
message to capture the entire coefficients. Since we have a good superposition of the first
95 coefficients, as shown in Figure 12, we can assume that we can apply the same template
for the rest of the coefficients. We validated our attack on random coefficients of the first

Figure 12: Superposition of the first 95 Decompose.

acquisition without any adjustment except shifting the POIs. Moreover, in practice, by
testing on all the 95 coefficients, we got the same false positive and false negative rate,
therefore confirming that targeting one Decompose among the N = n× k is sufficient to
attack all of them. For some coefficients, we may have a loss of precision due to a signal
acquisition or micro-architectural effect, which could increase the number of false positives,

Berzati et al. 19

i.e., when we wrongly predict a coefficient w0 = 0 . In this case, if we don’t get the correct
value, we can mount a template attack per coefficient.

We now describe a scenario of an end-to-end attack. Here are the detailed steps.
• Collect suitable messages. The required time for this step can be optimized using

PC implementation.
• Make the acquisitions on the profiling device.
• Select the POIs and build a template on the first coefficient of the first vector of w0.
• Make the acquisitions on the targeted device.
• Apply the filtering procedure, in order to exclude signatures for which w0 is different

from 0 with high probability.
• Apply the same template on all w0 coefficients without any adjustment except

shifting the POIs.
• After collecting the corresponding signatures for which (w0)i,j equal to 0 with high

probability for each (i, j), build a system of equations corresponding to the data
collected.

• Use the least square method to get a valid solution candidate.
• Apply the majority vote to get the correct solution.
Depending on the setup used, one can focus on a different model according to the

corresponding leakage assessment or the version of Dilithium. Also, depending on the
equipment at disposition, we can choose to use the filter or not. One can limit the number
of acquisitions to perform by selecting which coefficients to focus on beforehand. The next
step in the process, given a set of positions where w0 = 0 and corresponding signatures, is
to use the Algorithm 4 to perform the Least Squares Method (LSM) resolution to find a
solution candidate of t0 − s2. We must also ensure that the values are signed for the LSM
to solve the system correctly. With our implementation in Sage, the whole Algorithm 4
takes a little more than 2 minutes. We use the majority vote technique to find simply and
efficiently the accurate t0− s2, as shown previously in 3.4. This process is repeated several
times with different equations. For example, during our experiments, we repeated it 3
times, for a duration of 78 seconds each, and a majority vote was taken on each position
(i, j) to find the correct t0 − s2. We did not use the framework presented in [DDGR20]
given that no implementation of a solver using the LWE with side information was available.
Still, it could be interesting to study the performances of this solution compared to ours.
Finally, we can recover the secret key s1. To do so, we first convert the matrix A into the
normal domain using the predefined functions of Dilithium. Then we solve Equation (3.1).
We can verify if we have the correct s1 by checking if the values are in [−η, η].

5 Discussions and Countermeasures
In this paper, we have practically shown that exploiting the leakage of w during the
decomposition can lead to the full recovery of the secret key s1, which is sufficient to
generate valid signatures. In their previous work, Migliore et al. [MGTF19] showed a
masked version of Dilithium that does not mask the Decompose in line 8 of Algorithm 2.
However, Azouaoui et al. recommended that it is an important operation to mask.

In the absence of any countermeasure, implementations using signed values may magnify
some exploitable leakage, especially since the signed representation is the most efficient
to implement on an ARM Cortex-M4 [GKS20]. For instance, the subtraction w0 − c s2
with positive coefficients of w0 and c s2 would suddenly generate a negative number when,
for these specific coefficients, w0 < c s2. This strong Hamming distance may give some
hints to the attacker to classify very small values of w0. One way to prevent attacks is to

20 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

minimize potentially vulnerable operations in the algorithm. The computation w0 − c s2
is a possible source of leakage, but it can be eliminated using the standard method to
compute the r0 value, with some overhead due to the Decompose operation.

There exist simple known countermeasures. For example, shuffling and masking can
easily make this side-channel attack impossible in practice when correctly implemented.

Shuffling. Shuffling the manipulation of coefficients for all identified sensitive values w0
during Decompose and during the calculation of r0 may render the attack very complex.
Indeed during the matching phase, the attacker needs to link the observation that one
coefficient of w0 equals zero, with the related indices i and j for this zero coefficient. This
operation is needed to mount the correct system of equations and thus for the attack’s
success. The calculation of r0 and Decompose do not need to process individual coefficients
in any specific order.

Secret sharing. Sharing sensitive variable w0 in d additive shares, for Decompose and
for the subtraction w0 − c s2 would avoid any d − 1-th order attack. Detecting when a
coefficient (w0)i,j = 0 using leakage from d multiple shares exponentially increases the
number of traces needed with increasing masking order. For instance, an implementation
of SecDecompose, which is an efficient secure implementation of Decompose, is already
discussed by Azouaoui et al. [ABC+22]. The arithmetic sharing must be kept until the
complete computation of r0.

For an alternative exploitation of the leakage, one can notice that with the same setup
and under the same hypothesis, the attack path described here could also be exploited
through Machine Learning side-channel attack [MPP16] instead of a template attack.

For future work, we want to investigate if there are other sensible operations that we
did not identify yet as well as evaluate the leakage of the w0 − c s2 operation.

References
[AASA+22] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela
Robinson, Daniel Smith-Tone, and Yi-Kai Liu. Status report on the third
round of the nist post-quantum cryptography standardization process, 2022-
07-05 2022.

[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoff-
mann, Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schnei-
der, François-Xavier Standaert, and Christine van Vredendaal. Leveling
Dilithium against leakage: Revisited sensitivity analysis and improved
implementations. IACR Cryptol. ePrint Arch., page 1406, 2022.

[BDE+18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque,
and Mehdi Tibouchi. LWE without modular reduction and improved side-
channel attacks against BLISS. In Thomas Peyrin and Steven Galbraith,
editors, Advances in Cryptology – ASIACRYPT 2018, Part I, volume 11272
of Lecture Notes in Computer Science, pages 494–524, Brisbane, Queensland,
Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019: 26th Conference on Computer and Commu-
nications Security, pages 2129–2146. ACM Press, November 11–15, 2019.

Berzati et al. 21

[BJS11] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear programming
and network flows. John Wiley & Sons, 2011.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on
deterministic lattice signatures. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):21–43, 2018. https://tches.
iacr.org/index.php/TCHES/article/view/7267.

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. Cryp-
tology ePrint Archive, Paper 2013/770, 2013. https://eprint.iacr.org/
2013/770.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2523
of Lecture Notes in Computer Science, pages 13–28, Redwood Shores, CA,
USA, August 13–15, 2003. Springer, Heidelberg, Germany.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in Cryptology –
CRYPTO 2020, Part II, volume 12171 of Lecture Notes in Computer
Science, pages 329–358, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Heidelberg, Germany.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

[DKL+22] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Gregor
Seiler, Peter Schwabe, and Damien Stehlé. PQ-CRYSTALS, Dilithium.
https://github.com/pq-crystals/dilithium, 2022. GitHub repository.
Accessed: 2022-12-15.

[FDK20] Apostolos P. Fournaris, Charis Dimopoulos, and Odysseas G. Koufopavlou.
Profiling dilithium digital signature traces for correlation differential side
channel attacks. In Alex Orailoglu, Matthias Jung, and Marc Reichenbach,
editors, Embedded Computer Systems: Architectures, Modeling, and Simu-
lation - 20th International Conference, SAMOS 2020, Samos, Greece, July
5-9, 2020, Proceedings, volume 12471 of Lecture Notes in Computer Science,
pages 281–294. Springer, 2020.

[GKS20] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels.
Compact Dilithium implementations on cortex-M3 and cortex-M4. Cryptol-
ogy ePrint Archive, Report 2020/1278, 2020. https://eprint.iacr.org/
2020/1278.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585(7825):357–362, September 2020.

https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://eprint.iacr.org/2013/770
https://eprint.iacr.org/2013/770
https://github.com/pq-crystals/dilithium
https://eprint.iacr.org/2020/1278
https://eprint.iacr.org/2020/1278

22 Exploiting Intermediate Value Leakage in Dilithium: A Template-Based Approach

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[KLH+20] Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Bo-Yeon Sim, and Dong-Guk Han.
Novel single-trace ML profiling attacks on NIST 3 round candidate Dilithium.
Cryptology ePrint Archive, Report 2020/1383, 2020. https://eprint.
iacr.org/2020/1383.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete
treatment of Fiat-Shamir signatures in the quantum random-oracle model.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 552–586, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

[KSSW] Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom
Wiggers. Pqclean. https://github.com/PQClean/PQClean. Accessed:
2022-12-15.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 598–616, Tokyo, Japan, December 6–10, 2009. Springer,
Heidelberg, Germany.

[LZS+21] Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and
Jingdian Ming. On the security of lattice-based Fiat-Shamir signatures in
the presence of randomness leakage. IEEE Trans. Inf. Forensics Secur.,
16:1868–1879, 2021.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation.
In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19: 17th International Conference on Applied Cryptography
and Network Security, volume 11464 of Lecture Notes in Computer Science,
pages 344–362, Bogota, Colombia, June 5–7, 2019. Springer, Heidelberg,
Germany.

[MOS09] Stefan Mangard, Elisabeth Oswald, and Francois-Xavier Standaert. One for
all - all for one: Unifying standard dpa attacks. Cryptology ePrint Archive,
Paper 2009/449, 2009. https://eprint.iacr.org/2009/449.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. Cryptology
ePrint Archive, Report 2016/921, 2016. https://eprint.iacr.org/2016/
921.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre
Seifert. Profiling side-channel attacks on Dilithium: A small bit-fiddling

https://eprint.iacr.org/2020/1383
https://eprint.iacr.org/2020/1383
https://github.com/PQClean/PQClean
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2009/449
https://eprint.iacr.org/2016/921
https://eprint.iacr.org/2016/921

Berzati et al. 23

leak breaks it all. Cryptology ePrint Archive, Report 2022/106, 2022.
https://eprint.iacr.org/2022/106.

[nis] National institutes of standards and technology, post-quantum cryptogra-
phy. https://csrc.nist.gov/Projects/post-quantum-cryptography.
Accessed: 2022-12-15.

[OC14] Colin O’Flynn and Zhizhang David Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. In International Work-
shop on Constructive Side-Channel Analysis and Secure Design, 2014.

[QLZ+23] Zehua Qiao, Yuejun Liu, Yongbin Zhou, Jingdian Ming, Chengbin Jin,
and Huizhong Li. Practical public template attack attacks on CRYSTALS-
Dilithium with randomness leakages. IEEE Trans. Inf. Forensics Secur.,
18:1–14, 2023.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chat-
topadhyay, and Shivam Bhasin. Side-channel assisted existential forgery
attack on Dilithium - A NIST PQC candidate. Cryptology ePrint Archive,
Report 2018/821, 2018. https://eprint.iacr.org/2018/821.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[SBN+21] Deepraj Soni, Kanad Basu, Mohammed Nabeel, Najwa Aaraj, Marcos
Manzano, and Ramesh Karri. FALCON, pages 31–41. Springer International
Publishing, Cham, 2021.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, January 1991.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, Santa Fe, NM, USA, November 20–22, 1994. IEEE
Computer Society Press.

[YJ21] Wei Yang and Anni Jia. Side-Channel Leakage Detection with One-Way
Analysis of Variance. Security and Communication Networks, 2021:6614702,
March 2021. Publisher: Hindawi.

https://eprint.iacr.org/2022/106
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://eprint.iacr.org/2018/821

	Introduction
	Background
	Notations
	Dilithium
	Side-Channel Attacks on Dilithium

	A new theoretical attack on Dilithium
	Main Idea
	Candidates Filtering
	Resolution - Least Square Method
	Error Management
	Attack Summary
	Potential Leakage Spots Involving w0

	Experimental Results
	Setup
	Learning Phase
	Matching Phase
	Results Interpretation on w000
	Resolution and Majority Vote
	End-to-end attack and Modularity

	Discussions and Countermeasures

