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Abstract. We initiate a formal study of individual cryptography. Informally speaking, an algorithm
Alg is individual if, in every implementation of Alg, there always exists an individual user with full
knowledge of the cryptographic data S used by Alg. In particular, it should be infeasible to design
implementations of this algorithm that would hide S by distributing it between a group of parties using
an MPC protocol or outsourcing it to a trusted execution environment.
We define and construct two primitives in this model. The first one, called proofs of individual knowledge,
is a tool for proving that a given message is fully known to a single (“individual”) machine on the
Internet, i.e., it cannot be shared between a group of parties. The second one, dubbed individual
secret sharing, is a scheme for sharing a secret S between a group of parties so that the parties have no
knowledge of S as long as they do not reconstruct it. The reconstruction ensures that if the shareholders
attempt to collude, one of them will learn the secret entirely. Individual secret sharing has applications
for preventing collusion in secret sharing. A central technique for constructing individual cryptographic
primitives is the concept of MPC hardness. MPC hardness precludes an adversary from completing a
cryptographic task in a distributed fashion within a specific time frame.

1 Introduction

Multiparty computation (MPC) [6, 12, 20] is a powerful cryptographic technique that enables parties to
evaluate any function securely in the presence of an adversary. It guarantees that nothing is revealed about
the honest parties’ inputs except what can be learned from the function’s output. MPC protocols have found
countless applications in cryptography and are one of the main tools for achieving privacy. In addition, MPC
technology is becoming widely available in practice, e.g., for machine learning and blockchain applications.
While MPCs are traditionally used for the “good” with their increasing availability in practice, there is a
danger that an adversary misuses this technology to carry out malicious tasks. Let us illustrate this with
two examples.

Identity sharing over the Internet. Imagine a service provider S that maintains a system in which individual
users U can open accounts by paying a subscription fee. To lower this fee, the malicious users decide to open
a single account and to share the credentials S to it between each other. In this paper, we are interested
in situations when these users are individuals A1, . . . ,Aa connected via the Internet that do not trust each
other, i.e., we are not concerned about scenarios in which the credentials are shared between different devices
that belong to a single person, between members of one family, or between devices that are located physically
very close to each other (so the network connection speed does not matter).
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Poland, under research project No. 463393, by the German Research Foundation (DFG) via the DFG CRC 1119
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Suppose that to discourage such users from simply sharing S in plaintext, the service provider integrates
ad-hoc countermeasures such that knowledge of S suffices to damage the account significantly. For example,
if the “account” is a cryptocurrency address, then the knowledge of S should suffice to drain the account
from all the coins. Alternatively, if it is an online storage system, then knowledge of S should permit deleting
all the files. While these countermeasures should suffice to discourage the users from sharing S in plaintext,
they are not sufficient to protect against a more sophisticated identity sharing attack, where the malicious
users share S using secret sharing and jointly emulate a single “virtual” user U using an MPC protocol to
authenticate with S.

The identity-sharing attack is similar to the “identity-lease attack” recently introduced by Puddu et
al. [29]. In an identity-lease attack, the attacker’s primary goal is to temporarily outsource (“lease”) its
identity to a third party, who can control it for a specific time or purpose. As discussed in [29], this may, for
instance, be problematic in electronic voting, where identity leasing can be used to sell votes. While Puddu
et al. rely on a trusted execution environment for their attack, it is possible to carry out the same attack
using an MPC committee. Here, the committee holds secret shares of the user’s identity and is queried by
the third party to carry out the desired task (e.g., vote for a certain party in an electronic election).

Collusion in secret sharing. Threshold secret sharing is a fundamental primitive in cryptography. It allows
an honest dealer to share a secret S among a set of parties P1, . . . ,Pa such that any subset of t− 1 parties
learns nothing about S, while a subset of t parties suffices to recover S. To this end, we typically require that
at most t− 1 parties are malicious, while the remaining parties are honest and do not collude. However, the
latter may be unrealistic, particularly when collusion can go undetected and thus cannot easily be financially
punished. For example, in standard secret sharing schemes, nothing prevents a set of t parties from simply
exchanging their shares to recover the secret S. As discussed in the next paragraph, a trivial attempt to
de-incentivize such an attack can be broken by an MPC protocol.

Consider a setting where the dealer wishes that the shareholders only release the secret after a certain
time T . This setting is often referred to as “encryption to the future” and has gained some interest due to
applications for blockchains [10, 22]. To prevent the simple collusion attack from above, the honest dealer
shares S′ := (S,X), where if some party Pi gets to know X before time T , she is able to punish all
other shareholders (e.g., this may be done via a smart contract on a blockchain).4 While this approach
de-incentivizes our naive collusion attack from above, it can easily be attacked using an MPC protocol. More
concretely, instead of just recovering the entire S′ by exchanging their secret shares, the parties run an MPC,
which allows them to stripe off X before learning S.

MPC hardness. By closely examining the two previous examples, we make the following crucial observation.
Both attacks rely on the assumption that a distributed adversary can efficiently evaluate the cryptographic
task via the MPCs. Hence, to thwart these attacks, our key idea is to make these cryptographic tasks MPC-
hard. Informally, we say that a task/function is MPC-hard if executing it securely in a distributed way takes
a significant amount of time. This implies that if a cryptographic task is MPC-hard, then in order to run it
efficiently, the parties need to execute it individually. We formalize this new notion through a concept that
we call individual cryptography.

Let us take a look at how MPC hardness may help us to prevent the previous two attacks. In the case of
the identity sharing example, the distributed adversary, i.e., a tuple A1, . . . ,Aa of interactive machines (also
called the sub-adversaries), uses an MPC protocol to ensure that no party individually knows the credentials
to authenticate with a service provider S. Suppose the service provider will only accept an authentication
attempt if it is completed within a certain time frame. The distributed adversary now has two options. Either
it runs the authentication process via the MPC. This, however, will fail due to MPC hardness. Alternatively,
the adversary may ask one of the sub-adversaries, say Aj , to execute the task individually, in which case Aj

has to know the credential S entirely.5 We formalize this concept via a new primitive that we call Proof of

4 We note that a similar (but more involved) idea has been used in a recent work of Mangipudi et al. to construct a
collusion-deterrent threshold information escrow [27].

5 Recall that in this case, the sub-adversary Aj can take full control over the account of the user, which was something
that a malicious user tries to avoid.
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Individual Knowledge (PIK). Informally, a PIK guarantees that the prover must know the entire secret if it
wants to get accepted by a verifier. We will provide further details on PIKs in Sect. 1.2. In the secret sharing
example, the distributed adversary uses the MPC to compute some non-trivial function of the shared secret
S before time T . Here, we require that the reconstruction algorithm of the secret sharing scheme is MPC
hard. Informally, this guarantees that the distributed adversary cannot complete the reconstruction before
some time T unless one of the sub-adversaries say Aj , runs the reconstruction individually. We call such a
secret sharing scheme an individual secret sharing (ISS) and present more details on it in Sect. 5.

Attacks via the trusted execution environment (TEE). An alternative way to perform the aforementioned
attacks is to use trusted execution environments (such as Intel’s SGX) to accelerate the MPC (see, e.g., [2])
or to outsource secret storage in a way similar to the one described in [29]. To make our schemes secure
against such attacks, we need to make some additional assumptions about what kind of fast computation
is infeasible in TEEs. One option is to assume that the honest users are equipped with hardware similar to
Bitcoin mining rigs that can compute a massive amount of hashes in parallel (note that our PIK protocol
is based on massive parallel computation, while the ISS uses sequential computation). Another option is to
come up with new hash functions that are infeasible to compute quickly on TEEs (e.g., due to large memory
requirements). We leave it as future work to design such hash functions.

1.1 Informal description of our model

As standard in cryptographic modeling, we have to describe the adversarial model (i.e., the adversaries’
abilities) and specify what it means for a cryptographic task to be secure. Let us start with the adversarial
model.

The adversarial model. As our MPC-hard functions will be based on massively evaluating a hash function,
we give the distributed adversary A1, . . . ,Aa access to a special oracle ΩH that allows evaluating a fixed
input-length hash function H : {0, 1}λ → {0, 1}κ. The oracle accepts queries of the form (x,mode), where
x ∈ {0, 1}λ and mode ∈ {fast, slow}. If mode = fast, then a query is called fast. It is called slow otherwise.
Let us give some intuition behind these two modes.

The fast queries are hash function evaluations that a sub-adversary Ab runs locally. We assume that these
evaluations can be done very fast (orders of magnitude faster than slow queries). For example, a party may
execute them using a specially designed ASIC, such as used in the context of Bitcoin mining. We assume
that the number of fast queries is only bounded by the running time of the adversary, which is polynomial
time. On the other hand, the slow queries model an evaluation of the hash function using an MPC protocol.
In particular, this means that the sub-adversaries A1, . . . ,Aa can learn H(x) without knowing x. Since
the evaluation of a hash function using MPC technology is conceivable much slower than using an ASIC,
we assume that the budget of the adversary for such queries is comparably small, i.e., bounded by some
parameter σ.

In addition to bounding the number of slow queries that the sub-adversaries may ask for, in our PIK
application, we put an additional restriction on the sub-adversaries. We require that they run in at most ρ
communication rounds. Notice that we do not require any bounds on the communication complexity as at
the end of each round, we allow the sub-adversaries to share any information that they currently possess.

Attacks exploiting the hash function structure. We need to stress that in the model above, the hash function
H : {0, 1}λ → {0, 1}κ needs to be chosen carefully, and it is unrealistic to assume that λ is large. It is also
important that H does not have a structure that the adversary could exploit. A natural choice for H is a
compression function of a popular hash function (for example, in SHA-256, the compression function is of a
type H : {0, 1}728 → {0, 1}256).

We illustrate this by the following example. Suppose H is a Merkle-Damgard-type hash function, and
let G : {0, 1}2κ → {0, 1}κ be the compression function that H is built from, i.e., for messages of a form
(S1 || S2 ||W ) (with |S1| = |S2| = |W | = κ) we have H(S1 || S2 ||W ) = G(G(G(IV || S1) || S2) ||W ) (where
IV ∈ {0, 1}κ is some fixed initial value, and for simplicity, we omit the last block encoding message length).
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Now, suppose that we want to verify if a message S consisting of two blocks (S1, S2) (both of length κ) is
stored on one machine by forcing the prover to compute a large number of hashes of a form H(S,W ) (for
multiple W ’s), which is the case for our PIK construction (see below). Taking into account the structure
of H, two sub-adversaries: A1 and A2 can now “split” the computation as follows: the A1 first computes
h = G(IV , S1), and then sends h to A2 who can compute H(S1 ||S2 ||W ) for an arbitrary number of different
W ’s without knowing S1, just by using that fact that H(S1 || S2 ||W ) = G(G(h || S2) ||W ). Hence, if H
is a Merkle-Damgard type of hash function, the assumption that the input of every fast query is known to
the adversary would be unrealistic. The same applies to sponge-based hash functions and to any other hash
functions that read their input blocks in an online way and compress them to a shorter state.

Security against distributed adversaries. By using MPC-hardness, we want to enforce that the distributed
adversary must run the cryptographic task individually. More concretely, if the adversaries manage to com-
plete the cryptographic task within some specified time bound (seconds in the case of PIK and hours in the
case of ISS), then one of the adversaries, say Aj , must know some secret information S completely. Hence,
we need some formal method to model “knowledge”.

The question of formalizing knowledge has a long history in cryptography, and in particular, it has been
studied in the context of “proofs of knowledge” [3], “knowledge of exponent” [14], or “plaintext-awareness” [5].
None of these approaches considers attacks by a distributed adversary. The most relevant to ours is the model
of [5], which considers an adversary with access to a hash function (modeled as a random oracle). It is assumed
that if an adversary A evaluated H on some input x, then A knows the input x and the corresponding output
H(x). Technically: the (input, output) pairs are later given to an algorithm E called “knowledge extractor”.
If, based on these tuples, the knowledge extractor outputs some message S, then we assume that “A knows
S” (since A could have computed S herself just by observing the oracle queries and the replies to them).

In our case, we use the concept of a knowledge extractor but slightly adjust it in the following way.
First, we will consider knowledge extractors Eb for each of the different adversaries Ab. Second, each such
knowledge extractor takes as input the transcript of queries T fast

b that Ab has made to the oracle ΩH only
in mode = fast. Put differently: queries made by Ab in mode = slow (recall that these queries model MPC
evaluations of H with a potentially unknown input) are not given to the knowledge extractor Eb. Finally, we
say that an adversary Aj individually knows a secret S if there exists an efficient knowledge extractor Ej
such that S ∈ Ej(T fast

b ).

Allowing pre-computation of the hash function. To model realistic attacks, we do not make any assumptions
about how much time the distributed adversary has before the protocol starts. In particular, we allow the sub-
adversaries to perform any distributed computation that involves the hash function H before the beginning
of the protocol. This will be reflected by assuming that the attack works in two phases: in the first one, called
pre-processing phase, the adversary will not be restricted in the number of slow hash queries that she can
evaluate. Such a restriction will only apply in the second, online, phase. We protect our protocols against
such pre-computation attacks by making all hashes depend on random values that are unknown before the
online phase.

1.2 Informal description of PIK

As outlined in the introduction, a PIK protocol should allow the prover P to convince the verifier V that
a secret S (that they both know) is stored on one machine and known to the machine owner. This is done
by forcing P to quickly reply to challenges Z from V in a way that proves that P performed intensive
computation on the entire value of S. Since P measures the response time, it will notice any response delays
that are due to the fact that S is, in fact, distributed between different “sub-adversaries”, and it is not stored
on one machine. This distinction is made by performing a large amount of “hash computations” on S, which
in practice, for example, can be carried out via a highly optimized ASIC.

As outlined in the previous subsection, two main parameters that characterize the adversary are σ – the
number of hashes that can be computed in such a way that no sub-adversary learns their inputs since they
are computed using MPC (in our model, this corresponds to the “slow” queries to the oracle), and ρ – the
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number of communication rounds between the Ab’s. In Sect. 1.1, we already explained the idea behind the
slow queries. The bound on the number of communication rounds is relatively mild in practice. Recall that
Ab’s are connected over the Internet, and hence assuming that no more than 1000 rounds of communications
per second (say) are executed between them is reasonable.

Our scheme is described formally in Sect. 4. The reader may, in particular, look at the diagram in Fig. 2
– we will refer to it while presenting our solution informally below. Let us start with describing a simple
scheme for proving knowledge of a message consisting of one block (i.e., messages of a form S = (S1), where
S1 ∈ {0, 1}λ), and assuming that (a) the sub-adversaries cannot execute any slow queries, and (b) the sub-
adversaries cannot communicate during protocol execution. In this case, the following idea works: the verifier
sends a challenge Z to the prover, and the prover has to respond with h = H(Z || S1). Since no slow queries
are allowed, and the sub-adversaries cannot communicate. Thus one sub-adversary, say Ab, needs to know
(Z, S1). Let us now show how to remove our artificial assumptions in the above example.

Allowing slow queries. Recall that above, we assumed that the sub-adversaries could not perform any slow
queries (i.e., no H can be computed using MPCs). We eliminate this restriction in the following way: namely,
we force the prover to perform multiple computations of hashes on different nonces to find a nonce that leads
to a hash starting with ζ zeros. This ensures that to convince the verifier, there must be an individual
adversary Ab that makes a large number of fast queries that contain as input S1. Notice that our approach
is very similar to Bitcoin’s puzzles, except that we do it κ times to reduce the variance in finding a solution.
The nonce that is used in the ith puzzle is denoted with W i.

Longer messages S. Let us now discuss how to eliminate the assumption that S just consists of one block.
Let S = (S1, . . . , Sn) where n ≥ 1. Our idea is straightforward (see also the first column on Fig. 2, ignoring
the values at the beginning of the hashed blocks): we apply the construction for a single block iteratively, i.e.,
for the ith nonce W we let Q1 := H(Z ||W ), and then for each j = 2, . . . , n+ 1 we let Qj := H(Sj ||Qj−1).

Allowing communication between the sub-adversaries. Note that the above construction is insecure if there
are no restrictions on the communication between the Ab’s. Indeed, imagine two sub-adversaries A1 and A2

and suppose S has two blocks S = (S1, S2), with A1 holding S1 and A2 holding S2. Then these adversaries
can break the above PIK as follows: A1 computes a massive number of hashes Q2 := H(S1 ||H(Z,W )) (for
different values of W ) using fast queries to Ωfast and sends the Q2’s to A2. Sub-adversary A2 processes every
Q2 by computing Q3 := H(S2 || Q2) in order to find Q2 such that Q3 starts with ζ zeros. Once such Q2

is found, she communicates it to A2, who checks which W this Q2 corresponds to and sends this Q to the
verifier.

The above example shows that we need to restrict communication between the sub-adversaries. As dis-
cussed in Sect. 1.1 we choose to do it by putting a bound ρ on the number of rounds (an alternative approach
would be to bound the communication size, but it seems more challenging to work with in practice). In our
construction, we use this assumption by requiring that the prover needs to compute d = ρ+ 1 iterations of
the procedure outlined above (cf. Fig. 2).

Dealing with artificial fast queries. While from the above, it is clear that one of the sub-adversaries Ab has
to know the entire S, it is not immediately clear how to build an efficient knowledge extractor. One challenge
here is that the adversary may try to “confuse” us by making “useless” fast queries to ΩH . We address
this challenge by adding 2-bit flags to the inputs on which the hash function is evaluated. This enables the
knowledge extractor to identify starting points for efficiently extracting the most likely values for S.

1.3 Informal description of ISS

Our individual secret sharing scheme is based on the following simple idea. Let P1, . . . , Pa be the parties
among which the secret S is shared, and let t be the threshold denoting the minimal number of parties
needed to reconstruct the secret. In order to share S in an “individual” way, we first share a random value
X ←$ {0, 1}κ using a standard t-out-of-a secret sharing. We then compute a long chain of hashes H on
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X. Let K be the output of this computation, and let η be the length of the chain. We then use K to
encrypt our secret S using a standard symmetric encryption scheme. The shares of S are the shares of X
plus the resulting ciphertext C. Reconstruction works in a natural way: t parties first reconstruct X (using
the standard reconstruction procedure), and then one of them computes K. Afterwards, S is computed by
decrypting C using key K.

The parameter η is chosen in such a way that it is feasible to compute K from X in plain (e.g. it takes
10 minutes in hardware), but computing it using MPC is infeasible within the time in which we want S
to remain secret. In the security proof we use the fact that if a long chain of hashes was computed by the
adversary, then a noticeable fraction of intermediate results of this computation had to be computed using
the fast queries. For the details see Sect. 5.

1.4 Related work

Using cryptography for malicious purposes has been studied before, most notably in the context of “Cryp-
tovirology” proposed by Young and Yung [31]. The approach of [31] focuses on the malicious use of public-key
encryption and not the MPCs. Hence, our paper can be viewed as a natural continuation of the approach
of [31] (with MPCs being more “advanced” primitives than the public-key encryption schemes). The idea of
preventing leaking secrets has been studied extensively in a context such as traitor-tracing, e.g., it [13, 26].
To our knowledge, none of these works considers a distributed adversary.

On a higher level, our paper is also related to papers that look at defining the notion of “identity” in
cryptography. In particular, it has some similarities to Position-Based Cryptography [11], where an identity
of a user is defined by its geographic location. This approach is also based on measuring the prover’s response
time. Still, it is assumed that the communication is not done over the Internet but via physical signals (the
whole approach is based on the fact that the speed of electromagnetic signals is fixed). Another difference is
that the users in [11] do not have secret credentials but are identified by their geographic location. As already
mentioned, our proof techniques are similar to those used in the context of space-bounded cryptography, in
particular in the construction of schemes that are secure based on assumptions about the restricted memory
of the adversary and whose security relies on hash functions, see, e.g., [1, 16, 17, 19]. For the differences
between our model and the ones used in this area, see Sect. 1.1.

Concurrent work. In a very recent concurrent work, Kelkar et al. [25] introduce the concept of complete knowl-
edge. A proof of complete knowledge (PoCK) guarantees that a single party has complete control/knowledge
of its secret. This is very similar to our notion of PIK. We emphasize that while both works aim at simi-
lar goals, there are significant differences. Their construction of a PoCK directly achieves a zero-knowledge
property. In contrast, our basic PIK construction does not have this property (we outline a generic trans-
formation of any PIK into a zkPIK in Sect. 4.4). In addition, they also present an implementation. On the
other hand, their work is very much application-oriented. It lacks a formal model that takes into account
the many subtleties that we attempt to model with the concept of individual cryptography (e.g., possible
communication, fast/slow queries, and taking into account how hash functions are constructed in practice).
In addition, they do not have a construction of individual secret sharing, which shows that our modeling has
applications beyond proof of knowledge.

Acknowledgments. We would like to thank the anonymous Crypto reviewers for their helpful comments,
especially for pointing out to use the fact the need to model the pre-processing attacks.

2 Preliminaries

A function f : N→ R is negligible if for every positive integer c there exists an integer N such that for every
n > N we have |f(n)| ≤ n−c. A sequence of events has an overwhelming probability if the probability of their
negations is negligible. We will use the following standard fact.

Lemma 1. For every p < 1 we have that (1− p)1/p ≤ e−1.
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A pair of algorithms (Enc : {0, 1}∗×{0, 1}∗ → {0, 1}∗,Dec : {0, 1}∗×{0, 1}∗ → {0, 1}∗) is a CPA-secure sym-
metric encryption scheme (see, e.g., [24]) if for every K,M ∈ {0, 1}∗ we have that Dec(K,Enc(K,M)) = M .
Moreover, we require that for every poly-time machine Dcpa

1 , that takes as input 1κ, and outputs S0, S1, Y ∈
{0, 1}∗ (such that |S0| = |S1|) an every every poly-time machineDcpa

2 it holds that Pr
[
D2(Y,Enc(K,S0)) = 1

]
−

Pr
[
D2(Y,Enc(K,S1)) = 1

]
≤ negl(κ), where K ←$ {0, 1}κ. We will also use the following lemma, whose proof

appears in Appx. A.1.

Lemma 2. Let κ, ζ ∈ N be arbitrary parameters (where ζ can be a function of κ). Let U1, . . . , UC be inde-
pendent random variables distributed over {0, 1} and such that for each i we have that Pr[Ui = 1] = 2−ζ . Let
U := U1 + · · ·+ UC . We have that (a) if C = κ · 2ζ+1 then Pr[U ≤ κ] ≤ negl(κ) and (b) if C ≤ κ · 2ζ−1 then
Pr[U ≥ κ] ≤ negl(κ).

3 The model

This section provides more details on the model already informally introduced in Sect. 1.1. All protocols are
executed in an asynchronous model. Every protocol is parameterized by a security parameter 1κ and a hash
function H that is modeled differently in the honest and adversarial executions. In the honest execution, the
parties access H in a black-box way (via a standard random oracle [4]), except for Sect. 4.4, where a “circuit
access” to H is needed (in the construction of zkPIK).

In the adversarial model, the malicious parties access H via an interactive machine ΩH , which chooses
a random function H : {0, 1}λ → {0, 1}κ (where λ and κ are parameters of the model) and interacts with
parties A1, . . . ,Aa by accepting queries of a form (x,mode), where x ∈ {0, 1}∗ and mode ∈ {fast, slow}. If
mode = fast, then a query is called fast. It is called slow otherwise. Each query coming from a party Ab

is answered to Ab with H(x) (we also say that Ab evaluated H on input x). The execution of a protocol
is divided into the pre-computation phase and the online phase, happening one after another. We say that
ΩH is σ-bounded if the total number of slow queries answered in the online phase is at most σ. The queries
that exceed this quota are answered with ⊥. The total number of fast queries is only bounded by the time
complexity of the adversaries (i.e., it is polynomial in κ).

The main idea is that the fast queries are “cheap” and the participants will be allowed to send much
more of them than the “expensive” slow queries (which correspond to queries computed using MPC/TEE
techniques). On the other hand, when analyzing what the adversarial parties learned from the execution
(i.e. when defining the “knowledge extractors”, see below), only the fast queries will count. Namely, only
the inputs to such queries will be considered known to the querying party. The distinction between the
pre-computation phase and the online phase serves to model the fact that before the protocol starts, the
sub-adversaries have an unbounded (but polynomial) time and can execute any distributed protocol. Note
that the mode flag is only used for “accounting” purposes: the actions ΩH do not depend on the value of
this flag, except when defining the available budget of queries.

At the end of the execution of a protocol, we look at the information each party received as a result of
the fast oracle queries. We define the local hash transcript of a party Ab to be the sequence Tb of hash inputs
that ΩH received from Ab (in the same order in which they were received). Let T fast

b be the sub-sequence of
Tb containing only the inputs corresponding to fast queries (call it local fast-hash transcript of a party Ab).
A (knowledge) extractor E is a deterministic poly-time machine that takes T fast

b as input and produces as
output a finite set E(T fast

b ) ⊂ {0, 1}∗. The extractors have block-box access to H (via the same oracle ΩH ,
only using the fast queries).

For future reference, also define the global hash transcript to be the sequence T of hash inputs that
ΩH received (in the same order in which they were received). Let the global fast-hash transcript be the
sub-sequence T fast of T containing only the inputs corresponding to fast queries.

4 Proofs of Individual Knowledge

We now provide formal details of the definition and the construction that were informally presented in Sect. 1.
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4.1 Definition

A proof of individual knowledge (PIK) is a protocol πρ,σ
PIK between a prover P and a verifier V (also denoted

(P ⇆ V)), which are probabilistic poly-time machines with access to a hash function H : {0, 1}λ → {0, 1}κ.
The prover and the verifier take as input a pair (1κ, S), where 1κ is a security parameter and S ∈ {0, 1}∗.
For ηP , ηV ∈ N, we say that the prover and the Verfier are ηP - and ηV -bounded (respectively) if the prover
and the Verfier make at most ηP and ηV evaluations of H (respectively). We require that the protocol is
complete, i.e., if both parties are honest (and their inputs are as above), then with overwhelming probability,
the verifier outputs yes (in which case we also say that V accepts).

The second required property is soundness. Define a (ρ, σ)-distributed adversary to be a tuple (A1, . . . ,Aa)
of poly-time interactive sub-adversaries. The honest verifier V receives (1κ, S) as input and interacts with
A1 that also receives (1κ, S) as input. Intuitively, A1 plays the role of the (malicious) prover from the point
of view of the verifier V. Initially, the sub-adversaries can run a per-computation phase, where they can send
an arbitrary number of slow queries to the oracle ΩH . Then, the protocol starts, and the sub-adversaries
enter the online phase in which they can make at most σ queries to the oracle ΩH . The adversaries run in at
most ρ rounds, where each of them has the following form: (1) each sub-adversary Ab performs some local
computation, at the end of which Ab outputs a string Str b, and (2) each Str b is delivered to every other
sub-adversary Ab̂. We emphasize that we do not restrict the size of the communicated messages.

Consider an execution of a distributed adversary (A1, . . . ,Aa) against an honest verifier (on input (1κ, S)).
Define exec((A1, . . . ,Aa) ⇆ V); 1κ;S) to be equal to (T fast

1 , . . . , T fast
a ,OutV), where each T fast

b is the local
fast-hash transcript of Ab and OutV ∈ {yes, no} is the output of V. We now have the following.

Definition 1. We say that πρ,σ
PIK is a PIK protocol sound against (ρ, σ)-distributed adversary if there exists

knowledge extractors E1, . . . , Ea such that for every (ρ, σ)-distributed adversary (A1, . . . ,Aa) and every S ∈
{0, 1}∗ we have that

Pr[OutV = yes and S ̸∈ E1(T fast
1 ) ∪ · · · ∪ Ea(T fast

a )] ≤ negl(κ), (1)

where (T fast
1 , . . . , T fast

a ,OutV)←$ exec((A1, . . . ,Aa) ⇆ V); 1κ;S). We say that πρ,σ
PIK has extraction efficiency

(αO, αT, αS) if |E1(T fast
1 ) ∪ · · · ∪ Ea(T fast

a )| ≤ αO, and E operates in time at most αT and uses space at most
αS. The parameters αO, αT and αS can be functions of some other parameters in the system.

The idea behind αO is that αO− 1 is the number of “false positives”, i.e., values in E1(T fast
1 )∪ · · · ∪ Ea(T fast

a )
that are not equal to S. Obviously, the smaller αO is, the better. In Sect. 4.4, we describe a method that,
with high probability, allows to reduce the number of such false positives to 0 in many applications.

4.2 Construction

In this section, we present our construction of a PIK protocol πρ,σ
PIK, which was already informally described in

Sect. 1.2. The protocol is parameterized by a “moderate hardness parameter” ζ ∈ N and a security parameter
1κ. It uses a hash function H : {0, 1}λ → {0, 1}κ with λ ≥ 2κ. In practice, H could be a compression function
of a popular hash function. The protocol participant takes as input S ∈ {0, 1}∗ and 1κ. We assume that |S|
is a multiple of λ− κ− 2 (if it is not the case, then one can pad S with zeros). Let S1, . . . , Sn be such that
S = (S1 || · · · || Sn) where |S1| = · · · = |Sn| = λ− κ− 2.

Our PIK protocol is depicted in Fig. 1. It uses a sub-routine scratch (see also Fig. 2 for a graphical
representation of the computation of scratch). The protocol starts with the verifier sending a random challenge
Z ∈ {0, 1}κ. Then, the goal of the prover is to find κ nonces W 1, . . . ,Wκ ∈ {0, 1}λ−κ−2 that convince the
verifier that the prover did a substantial amount of work for the challenge Z. This is done by requiring that
the output of every scratch(S,Z,W i) starts with ζ zeros. We have the following definition.

Definition 2. We call a given scratch(S,Z,W ) successful if its output starts with ζ zeros (cf. Step 2b on
Fig. 1 (b)).
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This is similar to the Bitcoin mining procedure, except that we require κ nonces to be found (in Bitcoin
κ = 1) in order to reduce the variance of the success probability. The main idea behind scratch is that it
forces the prover to sequentially compute d times H on every block Sj of S. We also force the prover to
compute scratch(S,Z,W ) on a large number of W ’s. The search for the W i’s can be fully parallelized. The
only non-parallelizable part is the scratch procedure, which takes as input (S,Z,W ), where S is the message,
Z is the challenge, and W is the nonce.

The inputs of H in scratch start with two bits: 00 indicates that the hash is computed on (Z,W ) (where
Z is a challenge and W is a nonce), 01 indicates that the first block (S1) is hashed (together with some Q),
and 10 indicates that the hashed value Sj is one of the subsequent blocks (i.e., j > 1). Labels 00, 01, and

10 are used to help the extractor find S (e.g. if the extractor sees that some (01 || Ŝ1 || Q̂1) was hashed then

the extractor guesses that Ŝ1 is the first block of S and starts searching for a hash of a form (10 || Ŝ2 || Q̂2)

with Q̂2 = H(01 || Ŝ1 || Q̂1) (see Proof of Thm. 1 for the details). Note that in total scratch computes nd+1
hashes H. Security of πρ,σ

PIK is stated in the following theorem.

Theorem 1. Let κ, n, d be as above and let ηP := (nd+1)·2ζ+1 ·κ and ηV := (nd+1)·κ. Assume σ ≤ κ·2ζ−3

and ρ ≤ d− 1. Then πρ,σ
PIK from Fig. 1 is a PIK protocol with ηP -bounded prover and ηV -bounded verifier that

is sound against a (ρ, σ)-distributed adversary with extraction efficiency (αO, αT, αS), where

E[αO] = 2−ζ · ℓ, E[αT] = O(ℓb), and E[αS] = O(2−ζ · ℓb · |S|).

Above, ℓb is the number of hashes computed by a sub-adversary Ab, and ℓ := ℓ1 + · · ·+ ℓa. The unit of time
is a computation of H.

The proof of Thm. 1 is presented in Sect. 4.3. Before proceeding to it, let us comment on the parameters
in the lemma statement. When it comes to the parameters of the honest prover and verifier, the most
important ones are those denoting the “budget” for the hash computations, i.e., ηP = (nd + 1) · 2ζ+1 · κ
and ηV = (nd + 1) · κ respectively. Note that each computation of the scratch procedure requires (nd + 1)
hash computations. The verifier needs to do such a computation κ times; hence, she needs to perform only
(nd + 1) · κ hashes. For the prover, observe that each scratch attempt succeeds with probability 2−ζ (by
“succeeding” we mean finding a value that starts with ζ zeros). Since the prover needs to be successful κ
times, she needs, on average, (nd+1) · 2ζ · κ scratch attempts. We set ηP to be the double of this parameter
in order to make the probability that he is successful (see Def. 2) less than κ times exponentially small.

Observe also that if we substitute 2−ζ with 2 · κ · (nd+ 1)/ηP then the formula 2−ζ · ℓ (appearing both
in the bounds on E[αO] and E[αS]) can be rewritten as: 2 · κ · (nd + 1) · ℓ/ηP . It is interesting to look at
the last factor, i.e., ℓ/ηP . Recall that ℓ is the number of hashes computed by the adversary A. On the other
hand, ηP is the maximal number of hashes computed by the honest prover. Hence, ℓ/ηP corresponds to the
multiplicative advantage of the adversary with respect to the honest prover, or, in other words, it answers
the question “How much more computing power does the adversary have compared to the honest prover?”.
In our theorem, the bounds on αO and αS grow linearly with ℓ/ηP . Intuitively, this comes from the fact that
a powerful adversary can always “mislead” the extractor by executing a large number of scratch procedures
on Ŝ ̸= S.

4.3 Proof of Thm. 1

Completeness. Let us start with proving completeness. We first upper-bound the probability that the
protocol halts in Step 2 due to the fact that the budget for H computations was exhausted. Note that this
budget allows the prover to evaluate scratch ⌊ηP/(nd+ 1)⌋ = 2ζ+1 · κ times (since each scratch execution
takes nd+1 hash evaluations). For i = 1, . . . , 2ζ+1 ·κ, let Ui ∈ {0, 1} be equal to 1 if and only if the ith scratch
execution was successful, i.e., it produced an output that starts with κ zeros. Set U = U1+ · · ·+U2ζ+1·κ. For
simplicity of the analysis assume that πρ,σ

PIK does not stop once all the W j ’s are found. Clearly, the Ui’s are
independent. Moreover, we have that each Pr[Ui = 1] = 2−ζ (the probability that a random string starts with
ζ zeros) and hence each E[Ui] = 2−ζ . Therefore by Lemma 2 (Point (a)), we get that Pr[U < κ] ≤ negl(κ).
Therefore with overwhelming probability the prover finds κ values W such that scratch(S,Z,W ) starts with
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Procedure scratch(S,Z,W )

1. Assume S = (S1 || · · · || Sn), where each |Sj | = λ− κ− 2.
2. For k = 1 to d do:

For j = 1 to n do:

Qk
j :=


H(00 || Z ||W ) if k = 1 and j = 1

H(10 || Sn ||Qk−1
n ) if k ̸= 1 and j = 1

H(01 || S1 ||Qk
1) if j = 2

H(10 || Sj−1 ||Qk
j−1) if j > 2

3. Output H(10 || Sn ||Qd
n).

(a)

Protocol πρ,σ
PIK

The protocol is parameterized with a “moderate hardness” parameter ζ ≤ κ. It is executed between the ηP -
bounded prover P and the ηV -bounded verifier V. Both parties take as input (1κ, S), where S = (S1, . . . , Sn).

1. The verifier V chooses a random challenge Z ∈ {0, 1}κ and sends it to the prover P.
2. The prover P does the following parallel search across different values of i = {1, . . . , κ} and nonces

W i ∈ {0, 1}λ−κ−2:
(a) Let Qi := scratch(S,Z,W i).
(b) If Qi starts with ζ zeros then record W i and stop the parallel search.
The above search is done as long as the prover did not exhaust her budget for computing hashes (recall
that she can make at most ηP of them). If this happens before the search is over, then P outputs ⊥ to V,
who also outputs ⊥, and then both halt. Otherwise, we proceed to the next step.

3. The prover sends (W 1, . . . ,Wκ) to the verifier.
4. Upon receiving (W 1, . . . ,Wκ) the verifier outputs yes if for all i ∈ {1, . . . , κ} it holds that the output of

scratch(S,Z,W i) starts with ζ zeros. Otherwise, the verifier outputs no.

(b)

Fig. 1. Proof of individual knowledge (PIK) πρ,σ
PIK that satisfies Def. 1 (see Thm. 1). The main procedure is depicted

in point (b). It uses a sub-routine scratch depicted in point (a).

ζ zeros without exhausting her hash budget, and hence she does not output ⊥. It is also easy to see that the
Verifer always accepts in such a case (since she just repeats the same scratch computation as the prover for
the W i values that she received in Step 4, and ηV hash evaluations are needed for this computation).

Soundness. To show soundness, let A = (A1, . . . ,Aa) be a (ρ, σ)-distributed adversary. Consider an execu-
tion of A against an honest verifier on input (1κ, S) and let Z be the challenge that the verifier sends in Step
1. Recall that the adversary has access to a σ-bounded oracle ΩH that she can use to evaluate hash function
H. For an arbitrary Ŝ (necessarily equal to S), such that Ŝ = (Ŝ1 || · · · || Ŝn) (with each Ŝj ∈ {0, 1}λ−κ−2)

and an arbitrary Q̂1 ∈ {0, 1}κ a trace on T for Ŝ (starting with Q̂1) is a sequence (i1, . . . , in) such that

– T [i1] = (01 || Ŝ1 || Q̂1) and
– for every m = 2, . . . t we have: T [i1] = (10 || Ŝm ||H(T [im−1])).

Intuitively a trace is a sequence of indices on T that “look like” an attempt to evaluate a column on Fig. 2
for some Ŝ. For any nonce W , an S-scratch on T for W is a sequence

i0 || (i11, . . . , i1n) || · · · || (id1, . . . , idn), (2)
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. . .

. . .

. . .
. . .

Fig. 2. A diagram representing an execution of scratch((S1, . . . , Sn), Z,W ) procedure from Fig. 1.

where T [i0] = (00 || Z ||W ) and each (ik1 , . . . , i
k
n) is a trace for S staring either with H(T [i0]) (if k = 1)

or with H(10 || Sn ||H(T [ik−1
n ])) (otherwise). In other words: S-scratch is a sequence of indices on T that

correspond to an attempt to evaluate the entire diagram on Fig. 2 for Ŝ = S.

Claim 1. For a hash transcript T consider two distinct nonces W and Ŵ . Let I and Î be S-scratches on
T for W and Ŵ , respectively. Then with overwhelming probability, we have that I and Î are disjoint, i.e.,
there does not exist an index i that appears in both I and Î.

Proof (sketch). Let Qk
i ’s and Q̂k

i ’s be the values of the variables in the scratch procedure when run on input

(S,Z,W ) and (S,Z, Ŵ ), respectively (see Fig. 1 or the diagram on Fig. 2). Suppose there exists an index i

that appears in both I and Î. Obviously T [i] cannot be of a form (00 || Z ||W ), since W ̸= Ŵ . Hence T [i]
must have a form (b0 || b1 || Sj ||Q). This means that T [i] is an output of a sequence of hashes starting with

H(00 || Z ||W ) and simultaneously, it is an output of a sequence of hashes starting with H(00 || Z || Ŵ ).
Using this information, one can efficiently find a collision in H. Since the probability of finding collisions in
H is negligible, the probability that such W and Ŵ can be found has to be negligible. ⊓⊔

We will need the following definition.

Definition 3. Let W be a nonce such that there exists an S-scratch on T for W . We call W fast if for
every S-scratch (i1, . . . , im) on T for W each T [ij ] is a fast query. Otherwise, we call it slow.

We will also use the following simple fact that states that with overwhelming probability, the adversary has
to compute the Qk

j variables in the same order as the honest party executing the scratch procedure.

Claim 2. Fix some Z ∈ {0, 1}κ and W ∈ {0, 1}λ−κ−2 and let S be as above. Let Qk
j ’s be the variables

computed in the scratch(S,Z,Q) procedure (see Fig. 1 (a)). For a global hash transcript T
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– let i10 be the first position in T on which (00 || Z ||W ) appears, and
– for k ∈ {1, . . . , d} and j ∈ {1, . . . , n} let ikj be the first position in T such that T [ikj ] ends with Qk

j .

Then with overwhelming probability the ikj ’s when sorted lexicographically by (k, j) are monotonically in-
creasing, i.e.,

∀
(k0,j0)
(k1,j1)

k0 < k1 ∨ ((k0 = k1) ∧ (j0 < j1)) implies that ik0
j0

< ik1
j1
. (3)

Proof (sketch). Let ≺ be the strict lexicographic order on (k, j)’s used in Eq. (3). Suppose that there exists
(k0, j0) ≺ (k1, j1) such that ik0

j0
≥ ik1

j1
. Clearly, unless a collision in H is found (which happens with negligible

probability), all the Qk
j ’s are distinct, and hence we can assume that ik0

j0
> ik1

j1
. Without loss of generality

assume that (k0, j0) immediately precedes (k1, j1) in the “≺” order. Observe that Qk1
j1

is an output of a hash

function H when evaluated on an input that contains Qk0
j0

(with a convention that Q1
0 := 00 || Z ||W ). But

ik0
j0

> ik1
j1

means that Qk1
j1

was submitted to the oracle before the adversary learned Qk0
j0
. Since the outputs

of a random oracle are uniform over {0, 1}κ, this happens with negligible probability. This finishes the proof
of the claim. ⊓⊔

Claim 3. Suppose the number of fast W ’s is at most κ · 2ζ−3. Then the probability that V(1κ, S) accepts on
input S is negligible.

Proof (sketch). Recall that we assumed that σ ≤ κ · 2ζ−3 and in Claim 1 we have shown that for distinct W

and Ŵ the S-scratches for W and Ŵ are disjoint. Since Z ∈ {0, 1}κ is sampled by the prover in the online
phase, thus with overwhelming probability (00 || Z ||W ) is sent to the oracle in the online phase. By Claim
2, this means that with overwhelming probability, all of the S-scratches on T for W contain only queries
sent to the oracle in the online phase. Thus, the total number of slow W ’s is at most κ · 2ζ−3. Adding the
fast ones, we get that the total number C of W ’s for which an S-scratch in T exists is at most κ · 2ζ−2. Let
W 1, . . . ,WC be these nonces.

By Claim 2, with overwhelming probability, the adversary first needs to compute the entire S-scratch
before learning whether it was successful or not. For each i ∈ {1, . . . , C} let Ui ∈ {0, 1} be equal to 1 if
and only if scratch(S,Z,W i) starts with ζ zeros. Clearly, the Ui’s are independent and Pr[Ui = 1] = 2−ζ .
Let U = U1 + · · · + UC . Using Lemma 2, we get that Pr[U ≥ κ/2] ≤ negl(κ). Recall that V accepts only if
she receives (W 1, . . . ,Wκ) such that each scratch(S,Z,W i) starts with ζ zeros. From the analysis above, we
get that with overwhelming probability, there exists κ − κ/2 = κ/2 values Wi such that the corresponding
value (10 || Sn ||Qd

n) is not in T , or, in other words, H was not evaluated on it. Clearly, the probability that
H(10 || Sn ||Qd

n) starts with ζ zeros for all such Wi’s is equal to (2−ζ)κ/2 = 2−ζ·κ/2 ≤ negl(κ). ⊓⊔

Before presenting our extractor E , consider the following natural construction idea. By Claim 3, if the
adversary was successful, then T fast needs to contain at least κ · 2ζ−3 S-scratches of a computation of
scratch(S,Z,W ) (for some W ’s). Each such an S-scratch contains d = ρ + 1 traces for S, where ρ is the
maximal number of communication rounds. Therefore every S-scratch contains a trace computed in a single
round. As we show formally later (see Claim 4), all the queries corresponding to such a trace had to come
from a single adversary. Hence, it should be possible to find it by scanning all T fast

b ’s.
More concretely, consider an extractor that scans the transcript T fast

b in order to find elements of a form

(01 || Ŝ1 || Q̂1) (for some Ŝ1 and Q̂1). Each such element is potentially part of an attempt by Ab to compute

a scratch path on a message starting with Ŝ1. The extractor stores Ŝ1 and Q̂2 := H(01 || Ŝ1 || Q̂1). It then

continues scanning the transcript to find elements of a form (10 || Ŝ2 || Q̂2). Suppose E found such an element,

and let Q3 := H(10 || Ŝ2 || Q̂2). It then looks for elements of a form (10 || Ŝ2 || Q̂3), and so on, until it finds n

strings: (Ŝ1, . . . , Ŝn). It then outputs (Ŝ1 || · · · || Ŝn).
The above approach essentially works, although it needs some modifications. The main challenge is that

the adversary can make “fake” calls to ΩH , whose goal would be just to mislead the extractor. Hence, a
hash transcript can contain Ŝ-scratches for some other Ŝ’s (possibly sharing a prefix with S). We deal with
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these problems by exploiting the fact that in a successful execution, the adversary still needs to perform a
large number (κ · 2ζ−3) of scratch executions on real S. Our solution is presented in Fig. 3. The E procedure
maintains a set F containing information that can lead to finding the solution S. The values are added to this
set only with a certain probability (2−ζ). This probability is chosen so that the most likely some S-scratch
is included in F , yet, it reduces the size of F significantly, leading to better parameters. In particular, it
prevents the size of F from becoming too large if the adversary makes lots of “fake” hash queries described
above.

Knowledge extractor E(T fast
b )

1. Let ℓb := |T fast
b |.

2. Let F be a set that is initially empty. Set F contains pairs of a form (Q̂, Ŝ), where Q̂ ∈ {0, 1}κ is a hash

output, and Ŝ ∈ {0, 1}∗.
3. For each i = 1, . . . , ℓb do

(a) If T fast
b [i] is of a form (01||Ŝ||Q̂) (for some Ŝ and Q̂) then with probability 2−ζ add a pair (H(01||Ŝ||Q̂), Ŝ)

to F (if it is not stored there yet).

Note that (01 || Ŝ || Q̂) can appear more than once in T fast
b . Since we want the probability of being added

to F to be the same for every string (01 || Ŝ || Q̂) (no matter how often it appears in T fast
b ), we perform

this random choice by evaluating some function φ : {0, 1}∗ → {0, 1} (treated as a random oracle) such

that Pr[φ(x) = 1] = 2−ζ . We add (H(01 || Ŝ || Q̂), Ŝ) to F if and only it φ(01 || Ŝ || Q̂) = 1.

(b) If T fast
b [i] is of a form (10 || Ŝ || Q̂) (for some Ŝ and Q̂) and that there exists a pair (Q̂, Ŝ′) ∈ F (for some

Ŝ′ ∈ {0, 1}∗) then add (H(10 || Ŝ || Q̂), (Ŝ′ || Ŝ)) to F .
Additionally, if |(Ŝ′ || Ŝ)| = n then output (Ŝ′ || Ŝ) (but do not terminate),

Fig. 3. The knowledge extractor for our PIK protocol. It preoceeds in an online fashion, reading T fast
b and outputting

during the execution the “candidate” values for S. The output of E(T fast
b ) is the set of all values that were output

during the execution of E .

Claim 4. Consider an execution of A = (A1, . . . ,Aa) against an honest verifier V on input (1κ, S). For each
b, let T fast

b be the fast-hash transcript of Ab. Suppose V(1κ, S) accepts. Then with overwhelming probability
for some b, the string S is among the values output by the knowledge extractor E(T fast

b ).

Proof. Consider a global hash transcript T fast. Let W be a fast W (see Def. 3). Recall that, since the
adversary can evaluate H on the same value multiple times, there can be multiple S-scratches on T fast for
W . Let first-scratch(W, T ) denote the S-scratch composed of the first positions on T fast for W where the
given value appears on T fast. More formally, let first-scratch(W ) be the S-scratch (i1, . . . , im) for W such
that for every ij is the least index i such that T fast[ij ] = T fast[i], i.e., we have:

∀j∈{1,...,m} ∀i<ij T fast[i] ̸= T fast[ij ]. (4)

Recall that ρ is the number of rounds, and we assumed that ρ ≤ d − 1. Therefore for every fast W and
first-scratch(W ) of form as in Eq. (2), there needs to exist a round and an index k such that hashes of values
T [ik1 ], . . . , T [ikn] were all sent to ΩH in a single round. Observe that the knowledge of each T [ikj ] is needed to

compute the next value T [ikj+1] and, because of Eq. (4) H(T [ikj ]) was not computed in the previous round.
Since the output of a hash can be guessed with probability 2−κ, thus with overwhelming probability, all the
values T [ik1 ], . . . , T [ikn] had to be submitted to ΩH by single sub-adversary Ab. Hence there must exist a
trace ik1 , . . . , i

k
n in first-scratch(W ) that was computed by a single sub-adversary Ab.

By Claim 3, with overwhelming probability, the total number of fast W ’s is greater than κ · 2ζ−3. Hence,
at least κ · 2ζ−3 traces for S were computed by a single Ab. The probability that each trace is added to F is
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2−ζ . Hence, the probability that at least one trace for S is output by some Ab is at least 1− (1− 2−ζ)κ·2
ζ−3

,
which, by Lemma 1, is at least 1− e−κ/8 ≥ 1− negl(κ). ⊓⊔

It remains to analyze the extraction efficiency of the extractor. Consider a run on E on input Tb. We first
show the following bound on the expected output size of F :

E[|F|] ≤ 2−ζ · ℓb (5)

(where ℓb is the number of fast hash queries of Ab). Recall that new values are added to F by scanning all
ℓb positions on T fast

b in the following way:

1. if T fast
b [i] is of a form (01 || Ŝ || Q̂) then a new value is added to F with probability at most 2−ζ and

2. if T fast
b [i] is of a form (10 || Ŝ || Q̂) then a new value is added if Q̂ is a result of a chain of hashes that

started with hashing some (01 || Ŝ || Q̂′) and φ(01 || Ŝ || Q̂′) = 1. Since this happens with probability 2ζ

we get that the probability that (10 || Ŝ || Q̂) is added to F is 2−ζ .

This proves (5). Since the values that are output by the extractor are a subset of F , and ℓ = ℓ1 + · · · + ℓb,
thus we get that E[αO] = E

[
E1(T fast

b ) ∪ · · · ∪ Ea(T fast
b )

]
≤ 2−ζ · ℓ.

To analyze the time and space complexity of E observe that E is an online algorithm that reads T fast
b

once. Assume that F is maintained using Cuckoo Hashing [28], where in every pair (Q̂, Ŝ), the element Q̂ is

treated as the key, and Ŝ is the stored value. Thanks to this, looking up and inserting the values in F takes
constant time. Thus, the expected time complexity αT of each E is O(ℓb), and the expected space complexity
αS is O(2−ζ · ℓb · |S|). This concludes the proof. ⊓⊔

4.4 Extensions

This section describes possible extensions of the basic PIK protocol from Sect. 4. We leave the formalization
of these extensions for future work as formally modeling attacks in the network settings is often highly
non-trivial. For example, it requires us to consider different attack scenarios (e.g., man-in-the-middle, replay
attacks, etc.) and typically involves a detailed description of the attack model (including modeling the
network and the environment).

PIK as building block. As mentioned in Sect. 1, PIK is a primitive that will usually not be used in a
“standalone” way but rather as a part of a more extensive system. The main reason for this is that the
messages sent by the prover may provide some information about S. Indeed, the definition of PIK does not
mention any privacy guarantees for the prover, neither against an external attacker nor against the verifier
(who actually, in our setting from Def. 1, knows S entirely). In this section, we describe two extensions of
PIK that address this problem. The first one (“Encrypted and Authenticated PIK”) answers the issue of
security against an external adversary, and the second one provides a version of PIK (“zero-knowledge PIK”)
that works against a verifier that does not know S. This version of PIK does not reveal any information
about S to the verifier (or any other party).

Encrypted and Authenticated PIK (eaPIK). Encrypted and Authenticated PIK (eaPIK) is a version
of PIK where the communication between the prover and the verifier is secured using a symmetric key K.
Let us describe this solution as a general transformation of any PIK protocol πρ,σ

PIK. The main idea is quite
straightforward: we let every message6 in the protocol πρ,σ

PIK be encrypted and authenticated with a fresh key
K that is shared between the prover and the verifier, sampled independently from S. Note that since we
have a setup phase (for establishing S), thus assuming that in this phase, we also generate K is very mild.
To summarize: the client and the server share the following:

6 It is easy to see that in case of our protocol πρ,σ
PIK (see Fig. 1) the only message that may contain sensitive information

about S is (W 1, . . . ,Wκ) sent by the prover to the verifier in Step 3. Hence, it is enough if only this message is
encrypted.
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– key K for encrypting messages during the execution of the PIK protocol and
– secret S that is used as the input of both parties in PIK.

Of course, as long as the prover is honest (and hence: she stores S on a single machine), she easily convinces
the verifier that she knows S. On the other hand, by the PIK properties, a dishonest prover cannot distribute
S among different sub-adversaries. It is important to note that the PIK protocol only guarantees that S
cannot be distributed, and K is not protected similarly. Hence, any potential application accessing the server
should require the knowledge of S only, and it should not be assumed that K is stored on a single machine.

ZK-Proofs of Individual Knowledge. Let us now describe a solution for a setting where S is known only
to the prover. In this case, PIK makes sense only if some publicly-available information on S is known. We
model this in the following standard way. Suppose L is an NP-language characterized by some NP-relation
φ : {0, 1}∗ ×{0, 1}∗ → {0, 1}. The verifier holds some public information pub ∈ {0, 1}∗, while the prover has
an NP-witness S ∈ {0, 1}∗ such that (S, pub) ∈ L. A natural example of L is the language of all secret keys
in some public-key encryption scheme, with pub being the public key and S being the corresponding private
key. The goal of the prover is to convince the verifier that she knows S such that φ(S, pub) = 1 and that
this S is stored on an individual machine. Moreover, this should be done in zero-knowledge, i.e., without
revealing additional information to the verifier about S. We call a protocol that satisfies these requirements
a ZK-proof of individual knowledge (zkPIK) for relation φ.

Let us now outline how to transform a public-coin PIK protocol πρ,σ
PIK into a zkPIK, where by “public-coin

PIK” we mean protocols where the messages of the verifier are drawn at random, independently from S. It
is easy to see that our πρ,σ

PIK protocol (see Fig. 1) is public-coin since the only message that the verifier sends
is the random challenge Z in Step 1. Our protocol works as follows. The prover and the verifier execute
πρ,σ
PIK with the following modification: the prover, instead of sending her messages in clear, commits to them

using a cryptographic commitment scheme [9], and later proves in zero-knowledge [21] that she committed
to messages that would make the verifier in protocol πρ,σ

PIK accept. Note that the zero-knowledge proof can
be executed after the message exchange is finished; hence, the time needed to execute it does not influence
the time bounds of the original PIK protocol. Clearly, this proof can also be executed in a non-interactive
way [8], e.g., using one of the Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARK)
schemes (see, e.g., [7]). Note that this solution assumes a generic use of zero-knowledge protocols.

Reducing the number of candidate messages. Recall that one of the parameters in PIK is the maximal
size αO of the set of “candidate secrets Ŝ”, that besides the real value, S contains a lot of “false positives”.
Moreover, αO can be quite large in our construction. A simple technique for eliminating the false positives
is to let the verifier publish a hash h = H ′(S) (where H ′ is some hash function different from the one used

in constructing PIK). Once h is known, everyone (including the prover) can check for every candidate Ŝ if

H ′(Ŝ) = h, and if it does not hold, eliminate this Ŝ from the candidate set. It is easy to see that Ŝ = S

passes this test, while (assuming no collisions in H are found) all Ŝ’s such that Ŝ ̸= S get eliminated. This
solution can be proven secure in the random oracle model as long as the entropy of S (from the point of
view of an external adversary) is large enough to guarantee that the adversary cannot guess S. This is the
case, e.g., if S is a uniform random key.

Let us also discuss how h can be published. One option is to let h be sent to the verifier by the prover
during the execution of the protocol. In the case of the eaPIK protocol, h would be encrypted by key K.
Note that we do not even need the assumption that S has high entropy since it remains hidden from the
external attacker. In the case of zkPIK, h could just be a part of the public key.

5 Individual Secret Sharing

In this section, we define and construct a secret sharing scheme that is “individually secure” in the following
sense. Any secret S shared between the parties can be either reconstructed entirely by a single individual

15



party or it remains completely hidden. In other words: it is impossible to reconstruct the secret “partly” or
to convert its shares to some shares from a standard secret sharing scheme (so that the parties could, e.g.,
perform some MPC computation on such standard shares). We call our scheme individual secret sharing (for
a formal definition, see Def. 4). It is constructed using another primitive that we also define and construct,
called individual random secret sharing scheme (IRSS, see Def. 5). The difference between ISS and IRSS is
that in the latter, the shared secret is chosen randomly by the sharing procedure. Our schemes are passively
secure, i.e., we do not address the problem of secure reconstruction in case some of the parties are actively
cheating. A scheme that addresses this in the blockchain settings has been recently proposed in [18].

5.1 Standard Secret Sharing

Recall that secret sharing [30] is a protocol that allows a dealer to share a secret S between a group of
parties. Let a, t ∈ N be such that t ≤ a. A (t, a)-secret sharing ((t, a)-SS) is a pair of poly-time algorithms
(share, rec) such that share is a randomized algorithm that takes as input (S, 1κ) (where S ∈ {0, 1}∗ and 1κ

is a security parameter), and outputs a sequence (S1, . . . , Sa, pub) ∈ ({0, 1}∗)a+1 and rec takes as input a

subset {Si1 , . . . , Sit} ⊆ {S1, . . . , Sa} of size t and pub and outputs Ŝ ∈ {0, 1}∗ ∪ {⊥}. Each Si is called a
share of S. The value pub is not a part of the standard secret sharing definition. We will use it to denote
a public value (in our case: a ciphertext encrypted with a shared key) known to every party (think of it as
included in every share or published by the dealer on some public bulletin board).

We require that if {Si1 , . . . , Sit} and pub come from the output of share(S), then rec({Si1 , . . . , Sit , pub}) =
S. The security of a (t, a)-SS is defined as follows. Let a distinguisher be a pair (D1,D2) of poly-time machines
such that:

– machine D1 takes as input 1κ and outputs S0, S1, Y ∈ {0, 1}∗ (with |S0| = |S1|) and
– machine D2 takes as input Y ∈ {0, 1}∗, a subset of shares, and pub ∈ {0, 1}∗ and outputs a bit.

We require that for every subset {i1, . . . , it−1} ⊆ {1, . . . , a} and every distinguisher (D1,D2) it holds that

Pr
[
D2(Y, {S0

i1
, . . . , S0

it−1
}, pub) = 1

]
−Pr

[
D2(Y, {S1

i1
, . . . , S1

it−1
}, pub) = 1

]
≤ negl(κ),

(6)

where for b ∈ {0, 1} we have (Sb
1, . . . , S

b
a, pub)←$ share(Sb, 1κ). Note that the machine D2 learns pub “for

free”. The role of Y is to “pass” the information from D1 to D2 — one can think of (D1,D2) as a single
entity operating in two phases, and Y as the state of this entity between these phases.

We also define a random secret sharing to be a secret sharing scheme where the secret S is not chosen
by the dealer but is selected randomly by the share algorithm together with the shares of S. Formally,
a (t, a)-random secret sharing ((t, a)-RSS) is a pair of poly-time algorithms (share, rec) such that share
is a randomized algorithm that takes as input 1κ and outputs a sequence (S, (S1, . . . , Sa)), where S ∈
{0, 1}κ and rec is the same as rec in the SS definition (except that there is no “pub” input). We require
for (S, (S1, . . . , Sa))←$ share(1κ) we always have rec({Si1 , . . . , Sit}) = S and that for every {i1, . . . , it−1}
⊆ {1, . . . , a} and every poly-time distinguisher D that takes as input a secret S and a set of t− 1 shares and
outputs a bit, it holds that

|Pr
[
D(S0, {(S0

i1 , . . . , S
0
i1}) = 1

]
− Pr

[
D(S1, {S0

i1 , . . . , S
0
i1}) = 1

]
| ≤ negl(κ), (7)

where (S0, (S0
1 , . . . , S

0
a))←$ share(1κ) and S1←$ {0, 1}κ. It is easy to see that every random secret sharing

scheme can be converted into a standard secret sharing by using the random key S to encrypt the shared
messages and making pub equal to the resulting ciphertext. We will use this technique is Sect. 5.4.

Examples. Let (F,⊕,×) be a finite field and let t, a be some parameter with t ≤ a. The following is an
(a, a)-random secret sharing: share⊕(1

κ) := (S1, . . . , Sa), and rec⊕(S1, . . . , Sa) := S1 + · · · + Sa. Another
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standard example is the Shamir’s (t, a)-random secret sharing [30] (shareShamir, recShamir) defined as follows.
Let 1, . . . , a be some distinct elements of F. Then shareShamir(1

κ) := ((1, P (1)), . . . , (a, P (a))), where P is a
random polynomial over F with degree at most t − 1 and recShamir((i1, X1), . . . , (it, Xt)) := P (0), where P
is the polynomial of degree at most t interpolated at points (i1, X1), . . . , (it, Xt). It is easy to see that both
of these schemes satisfy our definition in a very strong sense, namely Eq. (7) holds even if we substitute
“negl(κ)” with 0 (note that this also explains why the share algorithms do not depend on 1κ).

5.2 ISS and IRSS Definitions

In this section, we present the definition of our main primitive, individual secret sharing (ISS), as well as
the auxiliary notion of individual random secret sharing (where the shared secret is chosen randomly by the
sharing algorithm). The main idea of the ISS definition is that we require that the scheme should be secure
in the standard sense (in the random oracle model), and additionally, we require that for any distributed
adversary (A1, . . . ,Aa) (with each poly-time machine Ab holding a share Si of a secret S) that learns some
information about the shared secret at least one Ab’s learns the secret S entirely. As in Sect. 4, we consider
an distributed adversary that operates in a pre-processing phase, and then in the main phase. The adversary
interacts with an oracle ΩH . She is σ-bounded, meaning that she can send at most σ slow queries to the
oracle in the online phase. Unlike, in Sect. 4, in this definition, we do not make any restriction on the number
of rounds in which the distributed adversary operates.

More concretely, suppose that (A1, . . . ,Aa) can distinguish between the shares of two secrets S0 and S1

with advantage pA. We then require that there exists an extractor E that extracts S entirely from the fast
hash transcript of one of the Ai’s with probability proportional to pA (i.e., ξ ·pA, where ξ is the parameter of
the scheme). Additionally, E gets as input string pub, which is assumed to be public according to the secret
sharing definition (see Sect. 5.1). The “distinguishing game” is denoted as ISS and presented in Fig. 4 (a).
Similarly to what we had in the PIK definition (see Def. 1), we can assume that the game is played by one
of the adversaries, say A1. Our definition uses the notion of “extraction efficiency” in the same way as it was
done in the PIK definition.

Definition 4. For ξ ∈ [0, 1] a (t, a, σ, ξ)-individual secret sharing ((t, a, σ, ξ)-ISS) is a (t, a)-SS scheme with
both share and rec having access to a random oracle ΩH:{0,1}λ→{0,1}κ , and security holding against (D1,D2)
that have access to ΩH . Consider a distributed adversary A = (A1, . . . ,Aa) and the ISS(σ, b,A) experiment
from Fig. 4 (a). Let

pA := |Pr[ISS(σ, 0,A) = 1]− Pr[ISS(σ, 1,A) = 1]|. (8)

We require that for every A there exists a poly-time extractor E such that for both b ∈ {0, 1}

Pr
[
Sb ∈ E(T fast

1 , pub) ∪ · · · ∪ E(T fast
a , pub)

]
≥ ξ · pA − negl(κ), (9)

where pub comes from the ISS(σ, b,A) experiment and T fast
1 , . . . , T fast

a are the fast hash transcripts of A1, . . . ,Aa

(respectively) in this experiment. We say that (share, rec) has extraction efficiency (αO, αT, αS) if |E1(T fast
1 , pub)∪

· · · ∪ Ea(T fast
a , pub)| ≤ αO, and E operates in time at most αT and uses space at most αS. The parameters

αO, αT and αS can be functions of some other parameters in the system.

We also have the following.

Definition 5. A (t, a, σ)-random individual secret sharing ((t, a, σ)-ISS) is a (t, a)-RSS scheme with both
share and rec having access to a random oracle ΩH:{0,1}λ→{0,1}κ , and security holding against D that has
access to ΩH . Consider a distributed adversary A = (A1, . . . ,Aa) and the IRSS(σ, b,A) experiment from
Fig. 4 (b). Let

pA := |Pr[IRSS(σ, 0,A) = 1]− Pr[IRSS(σ, 1,A) = 1]|. (10)

We require that for every A there exists an extractor E such that

Pr
[
S0 ∈ E(T fast

1 ) ∪ · · · ∪ E(T fast
a )

]
≥ pA − negl(κ), (11)

where T fast
1 , . . . , T fast

a are the fast hash transcripts of A1, . . . ,Aa (respectively) in the IRSS(σ, b,A) experiment.
The extraction efficiency is defined as in Def. 4.
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Note that unlike Def. 4, this definition does not use the ξ parameter. This is done for the sake of simplicity,
since, as it turns out, our construction (see Sect. 5.3) works without the need for this parameter. The
extractors do not take pub as input, as in the random secret sharing definition this value does not exist.

ISS(σ, b,A)

1. The sub-adversaries perform the pre-computation phase in which they can send an unbounded number of
queries (including the slow ones) to the oracle ΩH .

2. A1 chooses (S0, S1) (with |S0| = |S1|)
3. For b ∈ {0, 1} let (Sb

1, . . . , S
b
a, pub)←$ share(Sb, 1κ).

4. Each Ai receives (S
b
i , pub),

5. The sub-adversaries Ai engage in an interactive protocol with access to σ-bounded oracle ΩH , at the end
of which, A1 outputs b̂ ∈ {0, 1}. The experiment outputs b̂.

(a)

IRSS(σ, b,A)

1. The sub-adversaries perform the pre-computation phase in which they can send an unbounded number of
queries (including the slow ones) to the oracle ΩH .

2. Let (S0, (S0
1 , . . . , S

0
a))←$ share(S0, 1κ) and let S1 ←$ {0, 1}κ.

3. Each Ai receives S
0
i .

4. Proceed as in Step 5 in the ISS(σ, b,A) experiment above.

(b)

Fig. 4. (a) The ISS experiment and (b) the IRSS experiment. Above, A is a distributed adversary consisting of sub-
adversaries A1, . . . ,Aa.

5.3 IRSS Construction

In this section, we construct an IRSS scheme (share, rec). Our scheme is presented in Fig. 5. It uses an arbitrary
(standard) (t, a)-random secret sharing scheme (sharestd, recstd) as a building block. It is parameterized by the
maximal number σ of slow queries available to the distributed adversary and a parameter η > 2 ·max(κ, σ).
Its main idea is fairly simple: we first use a standard random secret sharing (RSS) scheme to share a random
secret X. The shares in our individual random secret sharing are the same as those in the RSS, while the
shared secret is equal to iter17→η(X). Here, iter17→η(X) is a procedure that simply applies H to itself η times,
adding the index j to each hash (see Fig. 4 (a)). Intuitively, the security of our scheme is based on the fact
that computing iter in a reasonable amount of time is impossible without one of the parties learning one of
the intermediate values used in this computation. This is formalized in Lemma 3 below.

Lemma 3. For any (t, a) suppose (sharestd, recstd) is a (t, a)-random secret sharing scheme. Then for any σ
the scheme (share, rec) from Fig. 5 is a (t, a, σ)-individual random secret sharing with extraction efficiency
(αO, αT, αS), where E[αO] ≤ κ · ℓ/η, E[αT] ≤ ℓ (where ell is the number of fast hashes computed by A and
time complexity is measured in the number of H evaluations), and αS = O(κ).

Proof (sketch). We first show that (share, rec) is a (t, a)-RSS, i.e., that for any poly-time distinguisher D
(having access to ΩH) Eq. (6) holds. From the security of the underlying RSS scheme (sharernd, recrnd) we
know that X is computationally indistinguishable from random, given the knowledge of t− 1 shares. Hence
the probability that A queries the oracle on X is negligible, and thus X1 is uniform from A’s point of view.
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Procedure iterα 7→η(X)

1. Let Xa−1 := X.
2. For j = α to β let Xj := H((j − 1) ||Xj−1).
3. Output Xη.

(a)

Protocol (share, rec)

The protocol is parameterized by a parameter σ denoting the maximal number of slow queries available to the
distributed adversary and a parameter η > 2 ·max(κ, σ).

share(1κ) :

1. Let (X, (S1, . . . , Sa))←$ sharestd(1
κ).

2. Output (S, (S1, . . . , Sa)), where S = iter1 7→η(X) .

rec({Si1 , . . . , Sit}):

1. Let X := recstd({Si1 , . . . , Sit}).
2. Output S := iter1 7→η(X).

(b)

Fig. 5. The IRSS protocol (share, rec) that satisfies Def. 5 (see Lemma 3 for the proof). The main procedure is
depicted in point (b). It is based on an RSS scheme (sharestd, recstd) it uses a sub-routine iter, see point (a).

By induction, the same is true for each Xj (for j = 1, . . . , η − 1) and for Sη = H((η − 1) ||Xj−1). Therefore
(share, rec) is a (t, a)-RSS.

To finish the proof we construct a knowledge extractor E that satisfies the security definition of IRSS. The
extractor is presented in Fig. 6. Let Z denote the event that all the values (0||X0), (1||X1), . . . , ((η−1)||Xη−1)
in the computation of iter17→η(X) (see Fig. 5 (a)) appear the global hash transcript T .

Knowledge extractor E(T fast
b )

1. Let ℓn = |T fast
b |.

2. For each i = 1, . . . , ℓb:
if T fast

b [i] is of a form (j || X̂j−1) (for some j ∈ {1, . . . , ℓ} and some X̂j−1 ∈ {0, 1}κ) then with
probability κ/η:

output iterj 7→η(X̂) (but do not terminate)

and call such (j || X̂j−1) selected.

Fig. 6. Our knowledge extractor for IRSS. For its analysis see proof of Lemma 3.

Claim 5. For Z defined above we have that

|Pr[IRSS(σ, 0,A) = 1|¬Z]− Pr[IRSS(σ, 1,A) = 1|¬Z]| ≤ negl(κ). (12)

Proof. The argument is similar to the one from the proof of Lemma 3. Suppose Z did not happen. This
means that there exists j such that the adversary never queried ΩH on (j ||Xj). Since Xj+1 = H(j ||Xj)
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is uniform over {0, 1}κ from A’s point of view, thus the probability that A queries ΩH on (j + 1, Xj+1) is
negligible. By induction, the same is true for each (j′+1, Xj′+1) (for j′ ≥ j) and for Sb = H((η−1) ||Xj−1).
Therefore S0 is indistinguishable from S1 and hence Eq. (10) holds. ⊓⊔

Claim 6. For Z defined above we have that

Pr[Sb ∈ E(T1) ∪ · · · ∪ E(Ta)|Z] ≥ 1− negl(κ), (13)

Proof (sketch). First, observe that since S and Xj ’s are random strings of length κ, thus, by an argument
similar to the one in the proof of Thm. 1, ΩH is queried on any of them in the pre-processing phase
with negligible probability. Thus, we can assume that no hash query was computed in Step. 1. Assume
that Z occurred. We have to show that with overwhelming probability S ∈ E(T1) ∪ · · · ∪ E(Ta). For S ∈
E(T1) ∪ · · · ∪ E(Ta) to happen, it suffices that at least one (j,Xj) was selected by the extractor (since

iter17→η(X) = iter(j+1) 7→η(Xj)). Since we assumed that Z occurred, thus there are at least η− σ fast queries
containing (j,Xj)’s (note that η − σ > 0, since we assumed that η > 2σ). Each of them is selected with
probability κ/η by some E(Tb) (note that κ/η < 1, since we assumed that η > 2κ). Therefore the probability
that at least one of them is selected is at least 1 − (1 − κ/η)η−σ = 1 − (1 − κ/η)(η/κ)·(η−σ)·κ/η, which,
by Lemma 1 is at least 1 − e−(η−σ)·κ/η = 1 − e−κ·(1−σ/η), which is overwhelming, since we assumed that
η > 2 · σ. ⊓⊔

Now, denote q := Pr[Z]. We have

pA = |Pr[IRSS(σ, 0,A) = 1]− Pr[IRSS(σ, 1,A) = 1]| (14)

= |Pr[IRSS(σ, 0,A) = 1|¬Z] · (1− q) + Pr[IRSS(σ, 0,A) = 1|Z] · q
−Pr[IRSS(σ, 1,A) = 1|¬Z] · (1− q)− Pr[IRSS(σ, 1,A) = 1|Z] · q|

≤ |(1− q) · (Pr[IRSS(σ, 0,A) = 1|¬Z]− Pr[IRSS(σ, 1,A) = 1|¬Z])| (15)

+|q · (Pr[IRSS(σ, 0,A) = 1|Z]− Pr[IRSS(σ, 1,A) = 1|Z])|
≤ |(Pr[IRSS(σ, 0,A) = 1|¬Z]− Pr[IRSS(σ, 1,A) = 1|¬Z])|+ q

≤ negl(κ) + q, (16)

where Eq. (14) comes from the definition of pA (see Eq. (10)), Eq. (15) comes from rearranging the terms
and from the triangle inequality, and Eq. (16) comes from Claim 5. Hence

q ≥ pA − negl(κ) (17)

By Claim 6 we have

1− negl(κ) ≤ Pr[Sb ∈ E(T1) ∪ · · · ∪ E(Ta)|Z]
= Pr[Sb ∈ E(T1) ∪ · · · ∪ E(Ta) ∧ Z]/Pr[Z]
≤ Pr[Sb ∈ E(T1) ∪ · · · ∪ E(Ta)]/q,

which implies that
q · (1− negl(κ)) ≤ Pr[Sb ∈ E(T1) ∪ · · · ∪ E(Ta)]. (18)

The last inequality, together with Eq. (17) implies that Eq. (11) holds. Hence, the only thing that remains
to finish the proof of the lemma is to analyze the efficiency of the extractor. Let ℓ denote the total number
of hashes computed by the adversary. First observe that the expected number of values selected by E(T fast

b )
is at most ℓb · κ/ν, and therefore E[αO] = E

[
|E(T fast

1 ) ∪ · · · ∪ E(T fast
a )|

]
≤ κ · ℓ/η.

To analyze the time and space complexity of E observe that E is an online algorithm that reads T fast
b

once. Each iter operation takes at most η hash computations, and therefore E[αT] ≤ η · ℓ/η = ℓ. Clearly, this
computation can be done in constant space (in the number of hash output blocks), and therefore αS = O(κ).
This concludes the proof. ⊓⊔
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5.4 ISS Construction

Let (Enc,Dec) a CPA-secure symmetric encryption scheme (see Sect. 2). Let (sharernd, recrnd) be a (t, a, σ)-
IRSS. Our ISS scheme is constructed on top of (sharernd, recrnd) by using the random shared secret as a key
for (Enc,Dec) and letting pub be equal to the ciphertext C. Our (t, a, σ, 1/2)-ISS scheme is presented in
Fig. 7 its security is proven below.

Theorem 2. The protocol (share, rec) is a (t, a, σ, 1/2)-ISS scheme. Moreover, suppose the extraction effi-
ciency of (shareIRSS, recIRSS) is αO, αT, and αS. Then the extraction efficiency of (share, rec) is αO, αT, and
αS = O(κ) + S(Dec), where S(Dec) denotes the space needed for running the Dec algorithm.

ISS scheme (share, rec)

share(1κ, S):

1. Let (K, (S1, . . . , Sa))←$ shareIRSS(1
κ).

2. Let pub := Enc(K,S).
3. Output (S1, . . . , Sa, pub).

rec({Si1 , . . . , Sit}, pub):

1. Let K := recIRSS({Si1 , . . . , Sit}).
2. Output Dec(K, pub)

Fig. 7. Our ISS scheme that satisfies Def. 4 (see Thm. 2 for the analysis).

Proof. We start with the following fact.

Claim 7. The protocol (share, rec) is a (t, a)-SS scheme.

Proof. We first show that (share, rec) is a (t, a)-SS scheme. Let (D1,D2) be a distinguisher and let 1κ be a
security parameter. The proof proceeds by a “game hopping” argument. Consider the following sequence of
probabilities:

– r0 := Pr
[
D2(Y, {Si1 , . . . , Sit−1

}, pub) = 1
]
where we let (K, (S1, . . . , Sa))←$ shareIRSS(1

κ) and (S0, S1, Y )←$D1(1
κ)

and pub := Enc(K,S0),
– r1 := Pr

[
D2(Y, {Si1 , . . . , Sit−1

}, pub) = 1
]
where we let (K, (S1, . . . , Sa))←$ shareIRSS(1

κ) and (S0, S1, Y )←$D1(1
κ)

and pub := Enc(K̂, S0), K̂ ←$ {0, 1}κ,
– r2 := Pr

[
D2(Y, {Si1 , . . . , Sit−1

}, pub = 1
]
where we let (K, (S1, . . . , Sa))←$ shareIRSS(1

κ) and (S0, S1, Y )←$D1(1
κ)

and pub := Enc(K̂, S1), K̂ ←$ {0, 1}κ, and
– r3 := Pr

[
D2(Y, {Si1 , . . . , Sit−1}, pub = 1

]
where we let (K, (S1, . . . , Sa))←$ shareIRSS(1

κ) and (S0, S1, Y )←$D1(1
κ)

and pub := Enc(K,S1).

It is easy to see that |r0 − r1| ≤ negl(κ), as otherwise one could create the following distinguisher DIRSS

for the IRSS scheme (cf. Eq. (7)). Recall that DIRSS receives as input (K, (Si1 , . . . , Sit−1)) and its goal is to
distinguish between the scenario (0) where (K, (S1, . . . , Sa))←$ share(1κ) and scenario (1) whereK ←$ {0, 1}κ
and (S1, . . . , Sa) are sampled independently. The distinguisher DIRSS(K, (Si1 , . . . , Sit−1

) simply runs D1(1
κ)

to obtain (S0, S1, Y ), computes pub := Enc(K,S0), and outputs b = D2(Y, {Si1 , . . . , Sit−1
}, pub. It is easy to

see that in scenario (0) we have that Pr[b = 1] = r0 and in scenario (1) we have Pr[b = 1] = r1. Thus from
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the security of IRSS, |r0 − r1| has to be negligible. Using a symmetric argument we get that also |r2 − r3| is
negligible.

Let us now argue that |r1 − r2| ≤ negl(κ). The only difference in between the probability formulas for r1
and r2 is that in the former pub is computed as pub := Enc(K̂, S0) and in the later as pub := Enc(K̂, S1).
Hence, it is easy to see that any extinguisher that causes |r1 − r2| to be non-negligible can be converted to

a distinguisher that distinguishes between Enc(K̂, S0) and Enc(K̂, S0) with non-negligible advantage, which
would contradict the CPA-security of (Enc,Dec). Hence it needs to hold that |r1 − r2| ≤ negl(κ).

Altogether, we get that |r0 − r3| ≤ |r0 − r1| + |r1 − r2| + |r2 − r3| ≤ negl(κ). This finishes, the proof of
the claim, since obviously |r0 − r3| is equal to Eq. (6). ⊓⊔

To finish the proof of the lemma, we need to prove the following.

Claim 8. Consider a distributed adversary A = (A1, . . . ,Aa) and the ISS(σ, b,A) experiment from Fig. 4
(a). Then for every A there exists an extractor E such that for both b ∈ {0, 1}

Pr[Sb ∈ E(T1, pub) ∪ · · · ∪ E(Ta, pub)] ≥ pA/2− negl(κ), (19)

where T1, . . . , Ta are the fast hash transcripts of A1, . . . ,Aa (respectively) in the experiment ISS(σ, b,A)
and pA := |Pr[ISS(σ, 0,A) = 1]− Pr[ISS(σ, 1,A) = 1]|. Moreover E has the same extraction efficiency as the
extractor that extracts the secrets in the IRSS attack on (sharernd, recrnd).

Proof. We again use the game-hopping technique. Define the following experiments.

– ISS0 is the same as ISS(σ, 0,A),
– ISS1 is the same as ISS0, except that the pub := Enc(K̂, S0), where we have K̂ ←$ {0, 1}κ,
– ISS2 is the same as ISS1, except that pub := Enc(K̂, S1), and
– ISS3 is the same as ISS3, except that pub := Enc(K,S1). Note that ISS3 = ISS(σ, 1,A).

Using the same argument as in the proof of Claim 7, from the CPA-security of (Enc,Dec) we get that
|Pr[ISS1 = 1] − Pr[ISS2 = 1]| ≤ negl(κ). Let r := |Pr[ISS0 = 1] − Pr[ISS1 = 1]| and r′ := |Pr[ISS2 = 1] −
Pr[ISS3 = 1]|. We have

pA = |Pr[ISS(σ, 0,A) = 1]− Pr[ISS(σ, 1,A) = 1]|
≤ |Pr[ISS0 = 1]− Pr[ISS1 = 1]|+ |Pr[ISS1 = 1]− Pr[ISS2 = 1]| (20)

+|Pr[ISS2 = 1]− Pr[ISS3 = 1]|
≤ r + negl(κ) + r′,

where Eq. (20) follows from the triangle inqaulity. This implies that r ≥ pA/2−negl(κ) or r′ ≤ pA/2−negl(κ).
Without loss of generality, assume that r ≥ pA/2 − negl(κ). Clearly, since K̂ ←$ {0, 1}κ, by an argument
similar to the one used in the proof of Claim 7, A can be converted to an adversary A′ that wins the IRSS
game against (shareIRSS, recIRSS) with advantage pA/2, i.e., such that Eq. (10) holds with pA/2. Using the
assumption that (shareIRSS, recIRSS) is (t, a, σ)-secure, we get that there exists an extractor E ′ such that

Pr[K ∈ E ′(T1) ∪ · · · ∪ E ′(Ta)] ≥ pA/2− negl(κ).

where T1, . . . , Ta are the fast hash transcripts of A1, . . . ,Aa (respectively). Extractor E(Tm, pub) simply runs
E ′(Tm), and for every K ∈ E ′(Tm) it outputs Dec(K, pub). Since pub = Dec(K,S0), thus if b = 0 we get

Pr[Sb ∈ E(T1, pub) ∪ · · · ∪ E(Ta, pub)] ≥ pA/2− negl(κ). (21)

It is also easy to see that this probability does not depend on b (since in the ISS experiment only pub depends
on b). Hence Eq. (21) holds also for b = 1.

Clearly, E performs the same number of hashes as E ′ and has the same output size. Hence the αO and
αT of E remains the same. For the space complexity, we need to add the space SDec that is needed for the
evaluation of Dec. ⊓⊔

These two claims complete the proof of the lemma. ⊓⊔
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ISS scheme (shareISS⊕ , recISS⊕ )

share(1κ, S):

1. Let (S1, . . . , Sn)←$Fn.
2. Let K := iter17→η(S1 + · · ·+ Sn).
3. Let pub := Enc(K,S).
4. Output (S1, . . . , Sn, pub).

rec(1κ, (S1, . . . , Sn, pub)):

1. Let K := iter17→η(S1 + · · ·+ Sn).
2. Output Dec(K, pub).

(a)

ISS scheme (shareISSShamir, rec
ISS
Shamir)

share(1κ, S):

1. Let ((1, P (1)), . . . , (a, P (a))), where P is a random polynomial over F with degree at most t− 1.
2. Let K := iter1 7→η(P (0)).
3. Let pub := Enc(K,S).
4. Output (S1, . . . , Sn, pub).

rec(1κ, (S11 , . . . , Sit , pub)):

1. Let P be the polynomial of degree at most t interpolated at points (i1, X1), . . . , (it, Xt).
2. Let K := iter1 7→η(P (0)).
3. Output Dec(K, pub).

(b)

Fig. 8. Two concrete examples of ISS schemes: (a) an (a, a) scheme based on (share⊕, rec⊕) and (b) a (t, a) scheme
based on (shareShamir, recShamir) (see Sect. 5.1). Above F is a finite field and (Enc,Dec) is a CPA-secure symmetric
encryption scheme. Procedure iter is defined on Fig. 5 (a).

5.5 Concrete examples

Concrete examples of ISS schemes are presented on Fig. 8.

Lemma 4. Suppose (Enc,Dec) is a CPA-secure symmetric encryption scheme such that Dec works in space
O(κ). Then for any a, t, σ, and η · max(κ, σ) we have that (a) (shareISS⊕ , recISS⊕ ) is an (a, a, σ, 1/2)-ISS and

(b) (shareISSShamir, rec
ISS
Shamir) is an (t, a, σ, 1/2)-ISS and with extraction efficiency (αO, αT, αS), where E[αO] ≤

κ · ℓ/η, E[αT] ≤ ℓ and αS = O(κ)+S(Dec) with S(Dec) denoting space needed for running the Dec algorithm
and ℓ denoting the number of fast hashes computed by A.

Proof. As explained in Sect. 5.1 (share⊕, rec⊕) and (shareShamir, recShamir) are (a, a)- and (t, a)-RSS Schemes
(respectively). Hence, by Lemma 3, one can build an (a, a, σ)-IRSS scheme (shareIRSS⊕ , recIRSS⊕ ) and a (t, a, σ)-

IRSS scheme (shareIRSSShamir, rec
IRSS
Shamir) from them (respectively) using the transformation from Fig. 5. The re-

sulting schemes have (αO, αT, αS), where (αO, αT, αS), where E[αO] ≤ κ · ℓ/η, E[αT] ≤ ℓ and αS = O(κ)
The (shareISS⊕ , recISS⊕ ) and (shareISSShamir, rec

ISS
Shamir) schemes come from applying the transformation from

Fig. 7 to (shareIRSS⊕ , recIRSS⊕ ) and (shareIRSSShamir, rec
IRSS
Shamir) (respectively). By Lemma 3 they are (a, a, σ, 1/2)- and
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(t, a, σ, 1/2)-ISS schemes (respectively) and their extraction efficiency is (αO, αT, αS), where αO and αT are
as before and αS = O(κ) + S(Dec). ⊓⊔

Conclusion

In this paper, we initiated the formal study of individual cryptography. It would be exciting to search for
particular computational problems that are MPC- or TEE-hard in practice (one good candidate would be
functions that require many memory lookups), and to improve the practical parameters that we achieve. This
would be, in a sense, a complementary effort to the search for “MPC-friendly primitives” (see, e.g., [23]).
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A Appendix

A.1 Proof of Lemma 2

We will use the following versions of the Chernoff–Hoeffding bounds (see, e.g., Thm. 1.1 in [15]).

Lemma 5. Let U1, . . . , UC be random variables independently distributed over [0, 1] and let U = U1+· · ·+UC .
Then for all ε > 0 we have

(a) Pr[U < (1− ε)E[U ]] ≤ exp(−ε2 · E[U ]/2) and
(b) Pr[U > (1 + ε)E[U ]] ≤ exp(−ε2 · E[U ]/3).

Clearly each E[Ui] = 2−ζ and hence E[U ] = C ·2−ζ . Let us start with proving Point (a). Assume C = κ ·2ζ+1.
This implies that E[U ] > κ · 2ζ+1 · 2−ζ = 2κ. Set ε := 1/4. We get

Pr[U ≤ κ] ≤ Pr[U ≤ (1/2) · E[U ]] (22)

= Pr[U < (1− ε)E[U ]] (23)

≤ exp(−ε2 · E[U ]/2) (24)

= exp(−κ/16) (25)

≤ negl(κ). (26)

Hence Point (a) of Lemma 2 is proven. Let us now proceed to proving Point (b). Assume C ≤ κ · 2ζ−1. This
implies that

κ > C · 2−ζ+1 (27)

Set ε :=
√

9 · κ · 2ζ−5/C. Using the assumption that C ≤ κ · 2ζ−1 we get that

ε >
√

9 · κ · 2ζ−5/(κ · 2ζ−1) (28)

= 3/4 (29)

We hence get

Pr[U ≥ κ] ≤ Pr
[
U ≥ C · 2−ζ+1

]
(30)

= Pr[U ≥ (1− 1/2)E[U ]] (31)

≤ Pr[U > (1− ε)E[U ]] (32)

≤ exp(−(9 · κ · 2ζ−5/C) · (C · 2−ζ)/2) (33)

= exp(−9 · κ · 2−6) (34)

≤ negl(−κ), (35)

where in Eq. (30) we used Eq. (27), in Eq. (32) — Eq. (29), and in Eq. (33) — Lemma 5 (Point (b)). Hence
Point (b) of Lemma 2 is proven. ⊓⊔
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