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Abstract
TLS termination, which is essential to network and security
infrastructure providers, is an extremely latency-sensitive
operation that benefits from access to sensitive key material
close to the edge. However, increasing regulatory concerns
prompt customers to demand sophisticated controls on where
their keys may be accessed. While traditional access-control
solutions rely on a highly-available centralized process to
enforce access, the round-trip latency and decreased fault
tolerance make this approach unappealing. Furthermore,
the desired level of customer control is at odds with the
homogeneity of the distribution process for each key.

To solve this dilemma, we have designed and implemented
Portunus, a cryptographic storage and access control system
built using a variant of public-key cryptography called attribute-
based encryption (ABE). Using Portunus, TLS keys are pro-
tected using ABE under a policy chosen by the customer. Each
server is issued unique ABE keys based on its attributes, allow-
ing it to decrypt only the TLS keys for which it satisfies the
policy. Thus, the encrypted keys can be stored at the edge, with
access control enforced passively through ABE. If a server
receives a TLS connection but is not authorized to decrypt the
necessary TLS key, the request is forwarded directly to the near-
est authorized server, further avoiding the need for a centralized
coordinator. In comparison, a trivial instantiation of this sys-
tem using standard public-key cryptography might wrap each
TLS key with the key of every authorized data center. This
strategy, however, multiplies the storage overhead by the num-
ber of data centers. Deployed across Cloudflare’s 400+ global
data centers, Portunus handles millions of requests per second
globally, making it one of the largest deployments of ABE.

1 Introduction

Transport Layer Security (TLS) is a cryptographic protocol
widely used to secure communication and protect data integrity
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between clients, such as browsers, and servers, who host the
websites. In a TLS handshake, the server presents a certificate—
containing its public key—to the client, and uses the associated
private signing key to create a digital signature. This verifies
the website’s authenticity and creates a secure connection.

Seeking enhanced performance and security, website
operators often enlist the services of infrastructure providers
like Content Delivery Networks (CDNs). These providers—
offering services such as DDoS protection, load balancing, and
caching—run on globally distributed data centers to ensure
low latency and high performance, and to maintain availability.
They also need to be able to inspect the TLS connection
between clients, who are the end users of their customer’s
websites, and their customer’s servers. This process of
intercepting a TLS connection at an intermediary point in the
network is called TLS termination. To handle TLS termination
on behalf of their customers, service providers require access
to the private signing key for their respective websites.

However, customers utilizing these services have different
degrees of comfort concerning the use of their key material
across data centers. For example, European customers may
stipulate key storage exclusively within the European Union.
Another might demand key storage only in data centers secured
with bulletproof glass and laser alarm systems. These cus-
tomers would like providers to control access to their key mate-
rial based on geographical and security properties. Given that
the TLS handshake is in the critical path of establishing a con-
nection to a website, any latency introduced by key access con-
trol methods could significantly disrupt service quality. Addi-
tionally, for larger infrastructure providers handling millions of
TLS terminations per second, minimizing computational over-
head from the access control method is essential to scalability.

Unfortunately, traditional access control mechanisms
fall short in this endeavor. Centralized methods of access
control [41] require edge data centers to communicate
with the network’s control plane to access specific keys,
leading to an expensive round-trip which adds latency and
reduces reliability. Alternately, access control using standard
public-key encryption provides low latency by assigning



unique encryption keys to each data center and encrypting
the customer’s private signing key with the keys of each data
center that complies with the access policy. This encrypted
data can then be disseminated across all edge data centers in
advance of connection requests, reducing latency. However,
this strategy becomes rather complex to manage in the face
of heterogeneous policies and large scale. The ciphertext size
grows in proportion to the number of data centers, creating
large overheads. Newly added centers cannot participate in
establishing TLS connections unless the customer’s signing
key is re-encrypted with their newly issued encryption keys.

To address these issues, we required a more direct way
to enforce access control through cryptography. Our first
attempt [52, 53] combined identity-based encryption [11, 51]
and broadcast encryption [25], but ultimately was too inflexible
and limited in the types of access policies it could support.
Spurred by these restrictions, we created Portunus. Portunus
uses a variant of traditional public key cryptography called
ciphertext-policy attribute-based encryption (CP-ABE) [9],
which can implement fine-grained access control on a crypto-
graphic level. CP-ABE is a a variant of the more general notion
of attribute-based encryption (ABE), which was first proposed
by Sahai and Waters [46] as a type of public-key encryption in
which the keys and ciphertexts are associated with attributes
instead of individual users. Concretely, CP-ABE links the
secret keys to the attribute set of the key holders, and the
ciphertexts to access policies that govern which key holders
can decrypt them. Those policies are determined by the
encryptor, who can therefore manage access to their data in
the spirit of attribute-based access control (ABAC) [38].

We have adopted Portunus at scale. Using Portunus, TLS
keys are encrypted using an X25519 key that serves as a data
encryption key, which we call the policy key. This policy key
is further encrypted using ABE under a policy chosen by the
customer. Both the encrypted customer keys and policy keys
are stored in a globally replicated database present on every
machine at Cloudflare. Each edge machine has attributes deter-
mined by a database mapping its core cryptographic identity to
a set of attributes, e.g., country and region. Edge machines are
issued unique ABE secret keys by a key generation authority
run in the control plane, allowing them to decrypt only the
policy keys that they are authorized to access based on their
attributes. Thus, both the encrypted customer keys and policy
keys can be stored at the edge, with access control enforced
passively through ABE. If a server receives a TLS connection
but is not authorized to decrypt the necessary TLS key, the
request is forwarded directly to the nearest authorized server,
further avoiding the need for a centralized coordinator. As
new machines are added, they automatically have access to
the keys to which they are permitted by the policy.

While decryption in ABE is more computationally expen-
sive than its equivalent in traditional public key cryptography,
we are able to significantly mitigate its impact through session
resumption and caching decrypted policy keys.

Adopting CP-ABE as a storage-layer access control
solution means that all nodes share the same data, simplifying
the distribution process. It also makes it easy for newly added
nodes to take up the burden of satisfying requests. Furthermore
there are no centralized components whose failure would lead
to breaks in the availability of the system. Cryptographically
enforced access control is inherently less coupled and more
fault tolerant than a centralized system would be.

Our core contributions are:

1. Portunus, a real-world deployment of an ABE-based
access control system for key management. Al-
though several works have shown interest in using
ABE [22, 23, 32, 48], few have resulted in large-scale
real-world deployments.

2. A discussion of the practical costs and benefits of such
a scheme, concluding that it is effective in solving
distributed access control

3. Lessons learned for future use of CP-ABE by engineers
and for ABE researchers about real-world requirements

2 Requirements

In the design process for Portunus, we identified a series
of requirements arising from customer needs, internal
engineering demands, and the experience of operating the
predecessor of Portunus, Geo Key Manager [52, 53].
Low computational overhead: As TLS handshakes can
happen at extremely high volumes for legitimate reasons, it
is essential that we not add significant computational overhead
to the responding process.
Rotation capable: It should be easy to rotate encryption
keys used in the system. Key rotation is the practice of
systematically replacing cryptographic keys with new ones
periodically, to limit the amount of data exposed by the
compromise of a particular key. A rotation ensures that
newly-uploaded TLS signing keys are not decryptable by
machines that have not been updated with new key material.
Recovery from strong attackers: We assume an attacker
that is capable of compromising multiple edge machines and
reading the database of certificates and associated signing
keys. We would like this attacker to be unable to continue
impersonating sites after their access is removed, unless
the site’s certificate was decryptable on the machines they
compromised. We also want subsequent certificates not to be
decryptable by the attacker after key rotation.
Flexible attributes: Historically, the set of attributes
customers want changes over time, such as when a new compli-
ance standard is introduced. Accommodating these changes in
the prior system, Geo Key Manager, took considerable work.
Flexible policies: From experience, we know that customers
and internal services would need a wide range of policies. Even



if the eventual product did not expose the full expressiveness,
future developments would be difficult to anticipate.

Limited storage: Quicksilver, Cloudflare’s configuration
management system [43], has limited space because it
duplicates all data across all machines globally. To preserve
fault tolerance and the ability to serve requests quickly from
all machines, our system needs to minimize storage overhead.

Uniformity of data: Quicksilver employs a homogeneous
tree replication strategy: data centers around the world are
organized into a tree and writes at the root are replicated
downward. As a response to server failure, the tree is
reorganized: such reorganization requires all nodes in the
tree to be accessing the new data. Therefore, the system must
accommodate a consistent data view across all edge machines.

3 Cryptographic Building Blocks

This section describes the various components of the ABE
scheme implemented in Portunus. We start by describing the
language to specify policies and attributes. Next, we define CP-
ABE and its security property, collusion resistance. After that,
we delve into pairings, a mathematical operation used to build
many ABE schemes. This includes the scheme of our choice,
TKN20, which uniquely satisfies all of our requirements. Pre-
sented informally and intuitively, we strive to make this com-
plex scheme accessible to a broad audience. We further discuss
necessary aspects for achieving strong security guarantees. Fi-
nally, we conclude by discussing the software implementation
of this scheme and a usage example of the ABE library API.

3.1 Policy Specification Language
In Portunus, the set of attributes assigned to data centers is
an injective map from labels to values, both represented as
strings, e.g., country: Japan. The policies that are enforced
on the wrapped private keys are non-monotone Boolean
formulas (consisting of AND, OR and NOT operators) over
statements that demand that a label has a value, or that it
does not have a certain value, e.g., country: Japan or
country: not Japan. Table 1 shows some example policies
and corresponding semantics.

For the negations (i.e., NOT operators), we put the NOT
operator on the attribute value rather than on the entire
attribute. This means that, to satisfy a negation, e.g., country:
not Japan, the attribute set must have an attribute with the
same label, i.e., country, and it must differ from the value i.e.,
Japan. In contrast, many schemes put the NOT on the entire
attribute, e.g., not country: Japan [40]. In these schemes,
the attribute set satisfies the negation if it does not contain
the attribute country: Japan. However, the problem with
this type of negation is that attribute sets that do not have any
attributes with this label trivially satisfy this negation. This
is especially problematic when new labels are added. Then,

all previously issued keys automatically satisfy the negation,
regardless of whether they may have the negated value or not.

To express and represent policies, we implement a simple
language that parses strings from the API and converts them
into the structures that are consumed by the ABE scheme
(Section 3.2.7). This means the front end of our policy
language is composed of Boolean expressions as strings, such
as country: JP or (not region: EU), while the back end
is a monotonic Boolean circuit consisting of wires and gates.

Monotonic Boolean circuits only include AND and OR
gates. In order to handle NOT gates, we assign positive or
negative values to the wires. Every NOT gate can be placed
directly on a wire because of De Morgan’s Law, which allows
the conversion of a formula like not (X and Y) into not X
or not Y, and similarly for disjunction.

3.2 Attribute-Based Encryption

Attribute-based encryption (ABE) is a variant of public-key
cryptography in which the key pairs are associated with at-
tributes rather than individual users [46]. Unlike traditional
public-key encryption, ABE allows users to enforce a more
fine-grained access control to the encrypted data [3, 9, 27, 42,
59]. There are two variants of ABE: key-policy ABE (KP-
ABE) [27], and ciphertext-policy ABE (CP-ABE) [9].

3.2.1 Key-Policy ABE (KP-ABE)

In KP-ABE, users’ secret keys are generated based on an
access policy that defines the privileges scope of the concerned
user, and data are encrypted over a set of attributes. For
example, consider a military setting. A confidential document
about nukes is encrypted under the attributes type: nuclear,
clearance: top-secret. Then a user with a key defined
over the access policy (type: nuclear or type: laser)
and clearance: top-secret can decrypt the document,
but a user with a key clearance: top-secret cannot.

3.2.2 Ciphertext-Policy ABE (CP-ABE)

In CP-ABE, encrypting users specify access policies that
determine who is allowed to decrypt the data. Users’ secret
keys are generated over a set of attributes. For example,
consider a hospital setting in which a doctor has attributes
role: doctor and region: US, while a nurse has attributes
role: nurse and region: EU. A document encrypted under
the policy role: doctor or region: EU can be decrypted
by both the doctor and nurse.

We restrict our discussion to CP-ABE in this paper, because
it is a more natural fit to the desired semantics of Portunus:
our fleet of servers have natural attributes like location and
compliance standards, and our customers choose their policies.



Table 1: Example Policies and Semantics

Example Policy Semantics

country: US or region: EU Decrypt only in US or European Union
NOT (country: RU or country: US) Do not decrypt in Russia and US
country: US and security: high Decrypt only in US data centers with a high level of security

3.2.3 Formal Definition of CP-ABE

A ciphertext-policy ABE (CP-ABE) scheme consists of four
algorithms [9]:

• Setup(λ) → (MPK,MSK): The setup takes as input a
security parameter λ, it outputs the master public-secret
key pair (MPK,MSK).

• KeyGen(MSK,S)→ SKS: The key generation takes as
input a set of attributes S and the master secret key MSK,
and outputs a secret key SKS.

• Encrypt(MPK,A,M)→ CTA: The encryption takes as
input a plaintext message M, an access policy A and the
master public key MPK. It outputs a ciphertext CTA.

• Decrypt(SKS,CTA)→M′: The decryption takes as input
the ciphertext CTA that was encrypted under an access
policy A, and a secret key SKS associated with a set of
attributes S. It succeeds and outputs the plaintext message
M′ if S satisfies A. Otherwise, it aborts.

A scheme is called correct if decryption of a ciphertext with
secret key yields the original plaintext message.

3.2.4 Collusion Resistance

The security models for ABE schemes consider their secu-
rity against chosen-plaintext (CPA) and chosen-ciphertext
attacks (CCA), as well as their collusion resistance. Infor-
mally, collusion resistance ensures that multiple users with
secret keys cannot join forces and decrypt a ciphertext that
they could not decrypt individually. For example, a cipher-
text encrypted under the policy role: doctor and region:
EU cannot be decrypted by a user with the attributes role:
doctor and region: US, and another user with the attributes
role: nurse and region: EU. To capture this type of secu-
rity, the security models allow the attacker to request multiple
secret keys for attributes that are not authorized to decrypt the
challenge ciphertext. Furthermore, the models capture security
against chosen-plaintext attacks or chosen-ciphertext attacks.
We define these security models more formally in Appendix A.

3.2.5 Pairing-Based ABE

A popular type of ABE is pairing-based ABE, because it is
efficient and can support many desirable properties [59]. A
pairing—also known as a bilinear map—is a map e : G1 ×

G2→GT defined over three groupsG1,G2 andGT of prime or-
der p with generators g1∈G1,g2∈G2 such that (i) e(ga

1,g
b
2)=

e(g1,g2)
ab for all a,b∈Zp (bilinearity), (ii) e(g1,g2) is not the

identity in GT (non-degeneracy) and (iii) e is efficiently com-
putable. Note that Zp denotes the ring of integers modulo p.

Intuitively, pairings are used to ensure that we can achieve
security guarantees for both the keys and the ciphertexts. We
need those guarantees, because we require ABE schemes to be
secure against collusion, meaning that users should not be able
to combine their keys and obtain better decryption powers. In
contrast, traditional public-key encryption typically only pro-
vides security guarantees for the ciphertexts. Therefore, we can
use discrete-log based assumptions such as the Diffie-Hellman
assumption [19] to create secure encryption schemes such
as the ElGamal encryption scheme [26]. In such encryption
schemes, the public key and ciphertext typically live in a group
in which the discrete-log problem is believed to be hard, while
the associated secret key is an integer. By exponentiating a part
of the ciphertext with the secret key, we can obtain the message.
To ensure that we can achieve similar security assumptions for
the keys in ABE, we also place the keys in a group in which the
discrete-log problem is believed to be hard. To recover the mes-
sage, we perform a pairing operation instead of exponentiating,
which can be seen as an exponentiation with a “hidden” integer.

Most ABE implementations rely on open-source li-
braries for the pairing-based arithmetic, e.g., MIRACL [49],
RELIC [4] or our own library, CIRCL [1]. In this way, ABE can
be implemented in a highly optimized fashion without requir-
ing all the details about the inner workings of pairings. Further-
more, using pairings in a black-box way also allows us to ef-
ficiently update the underlying pairing-friendly curves, should
the old ones be broken or more efficient ones be found [18].

3.2.6 The TKN20 Scheme

We are using a fully CCA-secure hybrid encryption scheme
based on the scheme by Tomida, Kawahara and Nishimaki
(TKN20) [54–56]. We have open-sourced this code as part of
our cryptographic library, CIRCL [1]. We chose TKN20 be-
cause it is currently the only ABE scheme that has a full descrip-
tion and satisfies the following properties simultaneously [59]:

1. Expressivity: support for AND, OR and NOT operators.
Many schemes exist that support monotone formulas,
i.e., formulas with AND and OR only. Few of these also



support NOT operators1.

2. (Almost) completely unbounded: any string can be
used as an attribute, and there are no bounds on the
policy lengths and attribute sets. Note, however, that it is
bounded in the number of label occurrences in the secret
key, i.e., each label may occur only once.

3. Multi-use of attributes: support for repeated use of the
same attribute in a Boolean formula.

4. Strong security guarantees: full security against
chosen-plaintext attacks under standard assumptions2.

3.2.7 Representation of Monotone Access Policies

In the mathematical description of the scheme, the (monotone)
access policies are represented as linear secret-sharing scheme
(LSSS) matrices [28]. In such matrices, the rows of the
matrix are associated with the attributes used in the policy. To
determine whether a set of attributes S satisfies the policy, the
subset of rows associated with the attributes that also occur
in the set can be considered. If the vector (1,0,...,0) is in the
span of those rows, then the set satisfies the policy matrix.

More formally, an access policy can be represented as a
pair A=(A,ρ) such that A∈Zn1×n2

p is an LSSS matrix, where
n1,n2 ∈N, and ρ is a function that maps its rows to attribute
values. Then, for some vector with randomly generated entries
v=(s,v2,...,vn2)∈Z

n2
p , the i-th share of secret s generated by

this matrix is λi =Aiv⊺=Ai,1s+∑ j∈{2,...,n2}Ai, jv j, where Ai
denotes the i-th row of A. In particular, if S satisfies A, then
there exist a set of rows ϒ = {i ∈ {1, ...,n1} | ρ(i) ∈ S} and
coefficients εi∈Zp for all i∈ϒ such that ∑i∈ϒεiAi=(1,0,...,0),
and by extension ∑i∈ϒεiλi=s, holds.

An efficient method to convert a Boolean formula to an
LSSS-matrix representation was proposed by Lewko and
Waters [36]. For example, the policy role: doctor and

region: EU is represented as (A,ρ) where A =

(
1 1
0 −1

)
and ρ maps the first row to doctor and the second row to EU.
The vector (1,0) can only be recovered from both rows, i.e., by
adding them. Note that this algorithm yields the same shares of
the secret s as the secret-sharing algorithm in the TKN20 paper.

3.2.8 Representing NOTs and Labels

To represent NOT operators and labels in the policy,
we define two additional maps, ρ and ρlab. The map
ρ : {1,...,n1}→{0,1}maps the rows of the matrix (which each
correspond to an attribute in the policy) to 0 if the attribute is not
negated, and to 1 if the attribute is negated, e.g., not region:

1NOT operators can be supported in three ways [5]. TKN20 supports the
most efficient variant proposed by Okamoto and Takashima [39]. This variant
requires that the attribute set uses each label at most once.

2We do, however, require the use of the random oracle model [7]

EU. The map ρlab : {1,...,n1}→{0,1}∗ maps the rows of the
matrix to labels (represented as strings), e.g., region.

3.2.9 High-Level Overview of the TKN20 Scheme

Before we give a description of a simplified version of the
TKN20 scheme, we first give an overview of the scheme. By
doing this, we aim to demystify the many components of the
scheme and highlight the techniques used to construct it.

First, we consider the general form of the scheme’s master
public key, the secret keys and the ciphertexts. In general,
the ciphertext consists of one element in GT that hides the
message, i.e., M ·As, where A=e(g1,g2)

α is part of the public
key, and further, elements in G1 and G2. The secret keys
consists of elements in G1 and G2, where at least one contains
α “in the exponent”, e.g., gα+rb

1 . To decrypt, the appropriate
key and ciphertext components need to be paired (with e) to
recover As=e(g1,g2)

αs, and thus, the message M.
To embed the attribute sets and policies in the secret keys

and ciphertexts, we use appropriate representations of these
in G1 and G2. To represent the policies, we use the shares λi
generated with the matrix representation in Section 3.2.7. In
the scheme, these shares occur as Bλi in the ciphertext, where
B is part of the master public key. To represent the attribute
label-value pairs, we use two techniques: the hash-based [28]
and the polynomial-based [10] approaches. The hash-based
approach simply takes as input the attribute string, e.g., role:
doctor, and hashes it directly into G1 or G2. The polynomial-
based approach takes as input the string and first hashes it
to an element x in Zp, and then maps it into G1 or G2 with
an implicit polynomial, e.g., B0 · Bx

1 = gb0+xb1
1 . In TKN20,

these two approaches are combined: a hash is used to map the
attribute-label string directly into the groupG1, and the implicit
polynomial is used to map the attribute-value string into the
group. More specifically, this combination computes H0(lab)·
H1(lab)x, where lab denotes the label, e.g.,role, and x denotes
the representation of the associated value, e.g., doctor, in Zp.

The reason why TKN20 maps the attribute values into
the group using the polynomial-based approach is that it can
support NOT operators. To support these, TKN20 uses the
high-level approach introduced by Ostrovsky et al. [40], which
exploits the structure of the polynomial-based map. Roughly,
this approach uses the fact that two distinct points on a
1-degree polynomial can be used to reconstruct the polynomial
with Lagrange interpolation3. More concretely, this means
that the secret can be reconstructed if the attribute value in the
key does not match the attribute value in the ciphertext, i.e.,
when they represent two distinct points on the polynomial.

3.2.10 Simplified Description of the TKN20 Scheme

We provide a simplified version of the scheme below, and
explain then how the real version of the scheme—which can

3This approach is also used in Shamir’s secret sharing scheme [50].



be found in the TKN20 paper [55, 56]—can be constructed
from the simplified version.

• Setup(λ) → (MPK, MSK): The setup outputs the
master public-secret key pair (MPK, MSK), where
Hi : {0,1}∗→G1 with i∈{0,1} are two hash functions
(modeled as random oracles), MSK=(α,b), and

MPK=(p,G1,G2,GT ,e,g1,g2,H0,H1,

A=e(g1,g2)
α,B=gb

1).

• KeyGen(MSK, (S,ψlab)) → SKS: On input a set of at-
tribute values S and the associated labeling map ψlab : S→
{0,1}∗, which maps the attributes in the set S to labels
(represented as strings), it outputs the secret key SKS as

SKS=(S,K1=gα+rb
1 ,K2=gr

2,

{K3,att=(H0(ψlab(att))·H1(ψlab(att))xatt)r}att∈S),

where r∈RZp is a randomly generated element in Zp and
xatt denotes the representation of att in Zp.

• Encrypt(MPK,A,M)→CTA: On input a plaintext mes-
sage M∈GT and an access policy A=(A,ρ,ρlab,ρ,τ)—
where τ : {1,...,n1}→{1,...,m} is a function that maps
each row that is associated with the same label to a
different integer in {1,...,m}, with m being the maximum
number of times that a label occurs in the policy—it
outputs a ciphertext CTA as

CTA=(A,C=M ·As,C1=gs
2,
{

C2,l =gsl
2

}
l∈{1,...,m},{

C3, j =Bλ j ·(H0(ρlab( j))·H1(ρlab( j))xρ( j))sτ( j)
}

j∈χ0
,{

C3, j =B−λ j ·H0(ρlab( j))sτ( j) ,

C4, j =Bxρ( j)λ j ·H1(ρlab( j))sτ( j)
}

j∈χ1
),

where s,s1,...,sm,v2,...,vn2 ∈RZp are randomly generated
elements in Zp, λ j = A j,1s + ∑k∈{2,...,n2} A j,kvk, and
χi={ j∈{1,...,n1}|ρ( j)= i} for i∈{0,1}.

• Decrypt(SKS,CTA)→M′: On input the ciphertext CTA,
and a secret key SKS, it checks whether S satisfies A. If
not, then it aborts. Otherwise, it computes the message by
first determining ϒ0 ={ j∈χ0 |ρ( j)∈S}, ϒ1 ={ j∈χ1 |
ρ( j) /∈ S∧ρlab( j) ∈ ψlab(S)}, ϒ = ϒ0∪ϒ1 and {ε j} j∈ϒ

such that ∑ j∈ϒε jA j =(1,0,...,0), then computing

e(g1,g2)
αs=e(K1,C1)

·

(
∏
j∈ϒ0

(
e(K3,ρ( j),C2,τ( j))/e(C3, j,K2)

)
·∏

j∈ϒ1

(
e(K3,ρ( j),C2,τ( j))/e(C

y j
3, j ·C4, j,K2)

1
x
ρ( j)−y j

))
,

where y j =x
ψ
−1
lab(ρlab( j)). Then, M=C/e(g1,g2)

αs.

3.2.11 Description of the Fully Secure Variant

The structure of the actual TKN20 scheme [55] is much more
advanced. This is because the scheme is fully secure under
well-studied assumptions, in particular, a variant of the matrix
decisional Diffie-Hellman assumption [21]. This assumption
is closely related to the decisional Diffie-Hellman assump-
tion [19, 21]. The main technique that is used to achieve this
level of security is the dual-system encryption technique [62].
Currently, the most advanced and efficient techniques [16, 35]
in this paradigm use matrix structures “in the exponent”, e.g.,
mapping the key component K1 = gα+rb

1 to ga+Wr
1 , where a

and r are vectors of length 3 and W is a (3×3)-matrix [35].

3.2.12 Support for Wildcards

To support CCA-security more efficiently than e.g., [64], we
use wildcards in the secret keys (as also proposed in the journal
version of TKN20, i.e., [56]). A wildcard is represented by an
asterisk ∗, e.g., region: *, and means that all values for the as-
sociated label are accepted, e.g.,region: EU. In other words, it
always matches any occurrence of an attribute with the same la-
bel in the policy. The keys for asterisks have the following form:

(K3,1,att,K3,2,att)=(H0(ψlab(att))r,H1(ψlab(att))r).

Tomida et al. [56] show that the variant of the scheme using
wildcards is provably fully secure as well. Note that we use
this functionality only to achieve CCA-security, because this
functionality seems less intuitive to use for other purposes. In
particular, handing out a wildcarded attribute for some label
gives the user much power: it always satisfies any occurrence
of that specific attribute label in the policy, regardless of what
the policy dictates that the user should have.

3.2.13 Key Encapsulation and Symmetric Encryption

We use the TKN20 scheme to encapsulate a symmetric key
to be used to encrypt the data, and use a one-time secure
symmetric encryption scheme to encapsulate the data. More
accurately, we first derive a symmetric key from the ABE
ciphertext. In particular, instead of encrypting some message
M∈GT , we directly derive the symmetric key from e(g1,g2)

αs

by applying a key derivation function [17]. Because e(g1,g2)
αs

is indistinguishable from a random element in GT , the derived
key is also indistinguishable from a random key [31,33]. Then,
we use this random key to symmetrically encrypt the data. For
this, we use a symmetric encryption scheme that is one-time
secure, which means that no attackers can distinguish between
the encryptions of any two messages (see Appendix B for a
more formal definition). This “hybrid encryption” variant—
where we use ABE to encapsulate a key and symmetric
encryption to encapsulate the data—is provably secure against
chosen-plaintext attacks, see e.g., [34, §A]. To encrypt symmet-
rically, we use the same approach as Boneh and Katz [12]. We



use a pseudo-random generator to generate a key stream that
has the same length as the message, and XOR it to the message.
In Portunus, we use an extendable output function to generate a
sufficiently-long key stream, i.e., BLAKE2b [45], which is be-
lieved to be indistinguishable from pseudo-random generator.

3.2.14 CCA-Security via the BK-Transform

Finally, to achieve CCA-security, we apply the Boneh-Katz
transform [12]. With this transform, we combine the hybrid
encryption scheme with a message authentication code (MAC)
function and a special commitment scheme4, for which formal
definitions and security models can be found in Appendix
B. Informally, the special commitment scheme that we use
consists of two independent hash functions. The first hash
is used to generate a public commitment to a secret random
value, and the second hash uses the secret random value to
derive a key K′. Subsequently, this secret random value is
included in the encryption of the message with the hybrid
encryption scheme. We compute a MAC with the key K′ over
the resulting ciphertext to ensure authenticity of the ciphertext.
Furthermore, the public commitment to the secret random
value is included in the access policy with an AND operator
applied to the original policy, and also in plain in the resulting
ciphertext. To decrypt, one first recovers the message and
secret random value by decrypting the ciphertext. Then, one
verifies whether the public commitment is equal to the hash
over the secret random value, and then if the MAC verifies cor-
rectly given the key derived from the secret random value. We
give a full description of the CCA-secure construction (using
the simplified version of TKN20) in Appendix C. It follows
from [12] and [60] that this construction is CCA-secure.

3.3 Software Implementation
We implemented our scheme as part of the CIRCL library [1] in
Go. The particular instantiation of the pairing-friendly groups
G1,G2 and GT that our implementation uses is the BLS12-381
curve [6, 13]. We generated the code for the arithmetic in Zp
with the Fiat Cryptography tool [20], which formally verifies
the correctness of the produced code. We have also optimized
the arithmetic for the groups G1,G2 and GT through judicious
choice of representation. Our implementation uses the fast
subgroup checks via Bowe’s method [14], which allow us to
check whether any given point is in the group, e.g.,G1. To hash
into groups, we followed the relevant IETF specification [24].
To optimize the decryption algorithm, we use two common
tricks that are often used to speed up computing a product
of pairings, i.e., by reordering the computations [42] and by
sharing the final step of the pairing operations [29]. Figure 1
presents a reproducible program showing the usage of our code.

4Boneh and Katz [12] call this an “encapsulation” scheme, but to
distinguish it more clearly from key and data encapsulation, we call it “special
commitment scheme” in this paper.

4 Design

Armed with the above scheme, we now must construct
services to encrypt customer keys, and make them available
to those who should have them. Cloudflare logically has four
components. The first is a set of edge machines located in
geographically spread and distant data centers. These edge ma-
chines run a homogeneous mixture of services that terminate
TLS and serve HTTP. The actual signing of TLS handshakes
takes place in a system called Gokeyless in all relevant cases.

The second component is a centralized set of services in the
control-plane responsible for the API that customers interact
with to configure their website. One of these services, the
certificate manager, handles all configuration relating to TLS.

The third component is a small number of very tightly
controlled machines that handle certificate issuance for inter-
nal certificates. All machines at Cloudflare have a machine
identity based on RSA keys: our key issuance service uses that
identity to determine the attributes a machine shall have. We
call this service the Key Generation Authority (KGA).

The fourth component is a globally synchronized key-value
store, Quicksilver. This is a global gossip tree for customer
configurations, such as certificates, that is designed to ensure
extremely fast replication, at the cost of constrained bandwidth
and storage. Every edge machine stores a local copy of the
data in Quicksilver.

4.1 Encrypting Customer Keys
When a customer uploads a certificate and the associated
private signing key to Cloudflare, and indicates it is to be
protected under an access policy, the certificate manager in
the control-plane takes the private key and encrypts it with the
required policy. However, the customer’s private key is not
encrypted with the ABE master public key directly. Rather, it is
encrypted with an X25519 key pair, the private key of which is
encrypted under the ABE scheme. These key pairs are indexed
by the policy and the epoch they are under. At any time, there
may be several of these key pairs, called policy keys, present
in the database for a given policy. The certificate manager
will use the most recent one for encryption. This permits
gradual rotation of the key pairs. Note that the only encryption
happening in Portunus is done by the certificate manager.

4.2 Accessing Customer Keys
On receipt of a connection to a site, such as alice.test.com,
Gokeyless carries out a lookup for the certificate in Quicksilver.
If that certificate has a key protected by Portunus, the metadata
for that certificate will have a pointer to the relevant policy
key together with a ciphertext that decrypts to the private key.
Gokeyless then loads the policy key and determines if it is
decryptable by the machine. If not, it consults a table that
maps each policy to a list of satisfying data centers to find a



Listing 1: Example usage of the ABE library API

masterPubKey , masterSecKey := Setup () // Initialize the master public and master secret key
accessPolicy := new(Policy)
accessPolicy.FromString("country: US or region: EU") // Create new policy from given string
// Encrypt the secret message using the master public key and policy
encryptedMsg := masterPubKey.Encrypt(accessPolicy , [] byte{"long live ABE"})
parisDCAttributes := new(Attributes) // Create attributes for the Paris data center
parisDCAttributes.FromMap(map[string]string{ "country": "FR", "region": "EU"})
// Generate an attribute secret key for the Paris data center using the master secret key
parisDCSecKey := masterSecKey.KeyGen(parisDCAttributes)
// Decrypt the ciphertext using the attribute secret key of the Paris data center
decryptedMsg := parisDCSecKey.Decrypt(encryptedMsg)
assertEquals(decryptedMsg , [] byte{"long live ABE"})

Figure 1: Encryption under a policy

Figure 2: Decryption using Attribute Secret Key

neighboring one, and forwards the request there. Gokeyless on
this machine then decrypts the policy key and uses the result to
decrypt the certificate’s private key, performing the signature
and completing the TLS handshake. The decrypted policy keys
are cached in memory, so the computationally burdensome
ABE decryption only happens once for commonly used
policies. This is an important optimization to avoid excessive
CPU consumption during attack scenarios when many
handshakes are arriving.

4.3 Key Distribution
The key generation authority (KGA) holds the ABE master se-
cret key. It also has access to the unique cryptographic identity
for every machine in the fleet, as well as a map of machines to
attributes. This map is largely synchronized with the machine’s
own view. Key issuance for the machine’s attribute-based se-
cret key is managed by the service configuration management

system, Salt [2]. Salt uses the RSA identity key of the machine
to authenticate to the CA, which generates the machine’s at-
tribute secret key using the master secret key and the attributes
of the machine. The map of machines to attributes is configured
in the same database that drives machine identity for Salt.

4.4 Key Rotation
Over time, it is necessary to change the key material in the
system so that an attacker who has access to old key material
can no longer decrypt newly uploaded customer TLS private
keys. However, the lifetime of a customer certificate can
extend beyond a rotation period and it must be possible to
continue to decrypt the customer TLS key for that duration.

The key generation authority generates a new generation
of the master key pair. To preserve the ability to decrypt old
TLS private keys, the CA re-encrypts the existing policy keys
on behalf of the certificate manager. During this process,



machines will have both the old and new generation of the
attribute secret key, ensuring that availability is not impacted
as the old key material is phased out.

Newly uploaded certificate private keys are encrypted under
the same policy key. This means that an attacker who has
access to a policy key can continue to to decrypt new TLS
keys, but it is possible to generate new policy keys for a policy.
This does however guard against an attacker who obtains the
attribute secret keys for a machine from being able to access
the TLS keys after rotation.

To detect accidental or malicious usage of expired key
generations and have end-to-end visibility into the status of
key rotation, we have logging and metrics for key generation
held and used in each part of the system.

4.5 Attribute Changes
From time to time, the attributes associated with a set of data
centers may change. Introducing new labels that have not
been used by existing policies is straightforward, since the
set of data centers that can decrypt a given TLS private key
remains unchanged. However, when the attributes of the data
centers that can decrypt a key are changing, certain changes
are needed to maintain system functionality [5, 59]. We split
the act of “changing an attribute” in two steps: removal of the
old label and value, and the re-addition of the label with the
new value. The former results in loss of decryption capabilities
for associated data centers, because they no longer satisfy
the policies that required the presence of this label. Note that
the removal does not increase the decryption capabilities yet,
because to satisfy a negated attribute, the set of attributes of
the data center must have an attribute with the same label,
regardless of the value. Adding a new label can only increase
the number of policies satisfied due to negation semantics.

Carrying out this transition requires three steps. First, the
affected label is removed from the forwarding information of
the involved data center, so that other data centers stop sending
requests that require its presence. Second, the key is re-issued
with the new attribute. Third, the new attribute is re-added
to the forwarding information so requests are handled by the
data center again. Throughout this, the affected data center
handles end-user requests as usual: those requests that cannot
be satisfied locally are forwarded to other data centers that can
satisfy them, whose forwarding information is not affected by
the transition. This process can be difficult to carry out at scale
and requires careful planning and should be done in stages.
Lastly, a key rotation is required to ensure that any retained
copies of the older key are not used.

4.6 Networking and Resiliency
Gokeyless uses an RPC protocol to forward TLS signing
requests to the closest satisfying data center, which on arrival
leverage a network layer load balancer [63] to determine

an appropriate machine to handle the connection. Since
the computational load of handling a request forwarded for
Portunus is merely an X25519 decryption and an RSA/ECDSA
signature, even high levels of request volume have not led to
failures due to load balancing issues.

Because maintaining connections to all other machines
can be expensive, machines within one data center will elect
among themselves a machine to forward requests to specific
close foreign data centers. This reduces the number of TCP
connections being used.

Resiliency is negatively impacted for customers who apply
overly restrictive policies. It is possible for data centers to be
taken offline or become overwhelmed for a variety of reasons.
If all data centers a customer’s key is decryptable in are offline,
then the customer’s website will be rendered inaccessible. To
prevent this, we require customer keys be decryptable in at
least two large-capacity data centers.

We have found that typically customers will store their cer-
tificates in regions where the majority of their users are found.
This unsurprising pattern puts low demands on the remote
execution capabilities. Unfortunately, events such as DDoS
attacks can add significant load. Operation under normal
conditions is not a guide to operation under adverse conditions.
This led us to expend significant effort to integrate distributed
tracing in addition to metrics to track system performance and
quickly diagnose and reproduce scaling issues.

5 Evaluation

While Portunus was launched to customers in 2022, the older
version of the system based on similar principles (Geo Key
Manager) has been in production since 2017. Over the years,
the number of customers and end-users relying on this product
has steadily increased. This section is an evaluation of the
various components of Portunus.

During a sample week in December 2022, we observed
100k requests per second being served between Portunus and
Geo Key Manager. As most customers restrict key access to the
region where they typically have the most users, approximately
80% of these requests are handled locally. The remaining 20%
are forwarded to their closest satisfying neighbor.

5.1 Cryptography
We evaluate our underlying cryptography library against
RSA-2048 and X25519, utilizing Go libraries crypto/rsa
and x/crypto/nacl/box as reference implementations.
These comparative algorithms were chosen because they
are standard public-key cryptography. We conduct our
measurements on an Apple M1 Mac.

We characterize our library’s performance using measures
inspired by ECRYPT [8]. In all comparisons involving ABE,
we set the attribute set size to 50 and consider policy formulas
over 50 attributes. This attribute set size is significantly higher



Table 2: Space Overheads (bytes)

Secret Public Encrypt Encrypt
Scheme key5 key 23 B 10 KB

RSA-2048 1190 256 233 496
X25519 32 32 48 48
Our scheme 23546 3282 19475 19475

Table 3: Operation times (ms)

Scheme Key Gen. Encrypt 23 B Decrypt 23 B

RSA-2048 180 0.209 1.47
X25519 0.061 0.096 0.046
Our scheme 701 364 30.1

than necessary for any of Portunus’ applications, as most
policies are typically limited to a combination of geographic
properties. Nevertheless, it serves as an extreme worst-case
scenario for benchmarking purposes.

Table 2 shows the space consumed by the various operations.
For our system, the ciphertext overhead is of particular concern
since it is replicated on every machine. Unfortunately, this
overhead is significantly larger than in traditional public-key
cryptography. However, the good news is that this overhead is
constant with respect to message length for a given policy size,
and can be reduced by relying on a small handful of policy keys
(defined in Section 4.1) rather than encrypting every customer
key using ABE. Importantly, the ciphertexts in our system can
be decrypted by multiple decryptors, whereas standard public-
key cryptography benchmarks only consider a ciphertext that
can be decrypted by a single decryptor. The size of the attribute
secret key is less relevant, as a single copy is stored per ma-
chine. The size of the master public key is of even less concern,
as it is only used by the certificate manager in the control plane.

Table 3 shows the average time required to perform different
key operations. Key generation refers to the process of
generating attribute secret keys from the master secret key,
which can be performed out-of-band of user handshakes and
is therefore of marginal relevance in this context. Encryption
latency can also largely be ignored, as it is acceptable for
encryption to take a few extra cycles before a certificate is
considered deployed. But once it is deployed, HTTPS requests
to the website should complete quickly. Since decryption is
in the critical path of every request, it is the most pertinent in
our situation. While session resumption and caching policy
keys can amortize the number of ABE decryptions across TLS
handshakes to a small fraction, improvements to decryption
latency will still affect overall baseline performance. It is
therefore important to further optimize the decryption process.

5For ABE, this is the Attribute-Based Secret Key.

Figure 3: Uptime by policy; this shows that Portunus (v2) has
consistently better uptime than Geo Key Manager (v1)

5.1.1 Request Latency

The overall performance of Portunus includes the impact of
cryptography, networking and geographic location based on
the type of Portunus request: handshakes processed locally, and
those forwarded to a remote data center. The vast majority of lo-
cal requests only perform an X25519 decryption because of pol-
icy keys. The remainder incur the overhead of an ABE decryp-
tion. For remote requests, network latency largely dominates.

5.2 Availability
Figure 3 shows the uptime of our system by policy vs the pre-
vious system. This graph was produced using synthetic probes
spanning every machine across our fleet. It demonstrates that
dynamically selecting all possible machines to decrypt rather
than a pre-determined handful as in our previous release,
produces significant improvements to real-world reliability.

6 Discussion

We want to reiterate why an access-control solution based on
novel cryptography makes the most sense for our system.

The TLS key management system is responsible for
ensuring that edge machines can access customer signing keys
when customers upload their TLS certificates (and associated
signing keys) to Cloudflare. To ensure availability and low
latency, the key manager relies on an internal globally syn-
chronized key-value store, Quicksilver [43] to distribute user
configurations to all edge data centers within seconds. A copy
of the entire Quicksilver data set is replicated on every edge
machine for fault tolerance, allowing requests to be served
even if disconnected from the central synchronizing server.

However, augmenting the key management system to
support policy-based access restrictions required us to
rethink our approach of storing the same data on all edge
machines. Using a central server to enforce access would
reduce fault tolerance and add additional latency, undermining
the advantages of a distributed edge. Alternatively, we could
ensure that only data centers that satisfy a given policy receive
those policy-restricted keys. However, this would require



modifying Quicksilver’s replication strategy to store only a
subset of the key set, which challenges core design decisions
Cloudflare has made over the years that assume the entire data
set is replicated on every machine.

We considered a third option of issuing unique keys for
each data center: wrapping each TLS signing key with the
key of every authorized data center and adding them all to
Quicksilver. Although this approach would have permitted
access to the key only in certain locations while letting TLS be
terminated where possible, it would also significantly increase
the storage space requirements on every machine proportional
to the number of datacenters.

This encouraged us to explore alternative cryptographic
solutions. Our first attempt, Geo Key Manager, was developed
back in 2016, when there was only one ABE scheme that
supported all properties [59], but in a rather inefficient way. In
particular, at the time, supporting negations led to significant
efficiency penalties in the decryption algorithm [58]. Only
recently, the community started addressing these efficiency
issues [5, 55, 58]. To get around this limitation, we initially
used a combination of identity-based encryption and broadcast
encryption to simulate an ABE-like scheme. Unfortunately,
this scheme was not collusion resistant (Section 3.2.4). As a re-
sult we were eager to switch to a more theoretically satisfying
solution once practical ABE schemes became available.

During the implemention of our ABE scheme, while we per-
formed much optimization (Section 3.3), the implementation
has larger overheads compared to the mature implementations
for traditional cryptographic schemes. We mitigated some of
these costs by using policy keys (Section 4.1). This approach
is similar to hybrid encryption, where public-key cryptography
is used to establish a shared symmetric key used to encrypt
data. Policy keys are public key encryption keys to permit the
central service to encrypt user’s certificates without access
to the key. While not as efficient as symmetric cryptography
this still reduces the overhead.

The performance and reliability improvements of the de-
ployed system are due to side-effects of the new cryptographic
scheme. The original system only supported one kind of at-
tribute, a region. Unfortunately, this did not support customers
who wanted to specify countries, and so a hard-coded list of
cities was used on upload. This list was rarely updated, so new
datacenters were not used. Migration was an extremely diffi-
cult prospect. Switching to the new system meant that country
could be used directly, and additional attributes could be added.
This immediately increased the available set of data centers
for many common policies, and directly improved reliability.

Although ABE employs a highly trusted key generation
authority to issue the secret keys, we argue that this authority
does not need to be more trusted than an authority enforcing
traditional access control. Specifically, in Portunus, the role
of the key generation authority is integrated with a certificate
authority that is used to secure all critical services within
Cloudflare’s internal network. If this authority were to be

corrupted, the consequences would be much worse than
simply breaking the security of ABE. If, however, a similar
setting would require that the trust in the authority is mitigated
by distributing the trust across multiple authorities, one could
also deploy multi-authority ABE [15, 37].

A policy conundrum may also arise in certain situations: the
encrypted data still resides in restricted regions. This can po-
tentially cause concern among those without a comprehensive
understanding of the system. Assuaging these concerns will
vary between organizations, but a big part involves spreading
awareness of how policy-based encryption works.

7 Future Work

Although ABE can support all properties required by our partic-
ular application, it does present minor limitations that may be
critical in other contexts. For instance, our scheme doesn’t sup-
port policies with wildcards of the form country: *, meaning
any country can satisfy this policy. It likewise doesn’t permit
an attribute set with multiple values for a single attribute label,
such as {group: fiddlers, group: percussionists}.

It is unclear what post-quantum ABE schemes will have the
combination of performance, implementation simplicity, and
expressivity required. Likewise, the use of pairing-based cryp-
tography creates some challenges in acceptance, as decision
makers may be unfamiliar with it and it is not standardized,
despite ongoing efforts towards standardization at IETF [47].

8 Lessons Learned

In the course of operating Portunus and its predecessor Geo
Key Manager, we have learnt several lessons.

Even after more practical ABE schemes became available,
the difficulty in translating a scheme from an ABE paper to
practice, as well as in selecting an appropriate scheme, should
not be underestimated. Typically, there are some parameters
that must be chosen, with little indication of the strength of
the various assumptions the parameters create. In addition,
the notation can require a formidable amount of translation,
sometimes concealing significant computational steps.

There persists a prevalent notion in the cryptography
community that ABE is still unreasonably slow to be useful.
We believe this is no longer true. Just like traditional public
key cryptography is not used independently to encrypt
large amounts of data, but rather in concert with symmetric
encryption, we believe many applications can enjoy the
benefits of ABE using it with a hybrid encryption strategy.

Complicated cryptographic schemes in services,particularly
ones as critical as TLS termination, can elicit operational appre-
hensions amongst SREs and other teams that depend on the ser-
vice. Cryptography can end up being scapegoated when issues
arise, despite the problems originating from other system com-
ponents. We believe when designing such a system, it is prudent



to prioritize simplicity in every other aspect. This makes fail-
ures outside the cryptography straightforward to diagnose and
conserves the complexity budget for the cryptography.

We have certainly faced the consequences of not adhering
to this principle, in the form of delayed rollout due to difficulty
garnering operational confidence. Geo Key Manager’s com-
plexity extended beyond just the cryptographic components,
such as the use of a custom RPC protocol - an artifact of the
parent system’s (which Geo Key Manager was integrated into)
development before the existence of gRPC. This custom pro-
tocol, despite resolving most of its quirks as part of Portunus’s
development, continued to present challenges in specific edge
cases. We are presently transitioning to gRPC to alleviate these
issues and preempt future related issues. Another example
of reducing complexity was replacing a complex thread-pool
architecture based on outdated assumptions, with a simple and
scalable architecture of one goroutine per request, capitalizing
on the lightweight concurrency model offered by Go. Our
ongoing efforts aim to simplify various other components,
with the ultimate goal of improving system maintainability
and fostering enthusiastic buy-in from other stakeholders,
as well as encouraging other teams to consider applying
ABE-based access control for their own use cases, armed with
the reassurance of Portunus’s successful deployment.

9 Related Work

Prior work has considered CP-ABE for enforcing access con-
trol. Oftentimes, the design of new ABE schemes is justified by
their new capabilities based on use in access control [9,44,65],
but without many details on potential system design. However,
as Venema and Alpár demonstrate [57], there have been
various attacks on some of these constructions [44, 65], partic-
ularly those that do not rely on pairings [30, 66]. It is therefore
important that care is taken in choosing an established scheme
that has the necessary properties and is secure.

Although there are many schemes with various proper-
ties [59], our chosen scheme is unique in satisfying our
desired properties 3.2.6, making comparisons with alternative
ABE schemes difficult. Likewise, comparing cryptographic
operation benchmarks with potentially sub-optimized research
implementations of ABE schemes is not in scope and we refer
the reader to more comprehensive analyses [18].

In contrast to most works about systems that use ABE,
Sieve [61] dives deeper into the details of the system. The
authors discuss how key management, ABE overhead, and
key deletion have to be addressed in a deployed system. In this
system, applications can interact with user data stored in the
cloud, while users maintain control over which applications
have access to their data. Because Sieve is built for a different
setting than Portunus, it makes different choices in how ABE is
applied. Most notably, it uses key-policy ABE, where the keys
are associated with policies and the ciphertexts are associated
with attribute sets, to apply a “tag-based” access control like

described in Section 3.2.1. In particular, the encrypted data
objects that are stored in the cloud are associated with attribute
sets. Once an application requests access to the user’s data, the
user can specify a policy stating which data can be accessed.

Excalibur [48] is perhaps the most similar to our work,
because it also uses CP-ABE to enforce access control in
the spirit of attribute-based access control. The authors
designed and implemented a system for customers to make
data accessible on certain machines, and integrated it into a
cloud environment. Because their use case is different, the
challenges that their system overcomes also differ. Importantly,
like Sieve, Excalibur did not progress beyond a lab setting and
was never actually deployed in a large-scale real-world setting.

Finally, most existing access-control applications separate
the cryptographic and access-control aspects. Cryptography is
used to protect sensitive data (in transit, but sometimes, also at
rest), while access control is enforced more traditionally. In tra-
ditional models, a central authority typically enforces policies
by validating an entity’s authorization prior to granting data
access. When access is granted, a decryption key is shared with
the requesting entity, who can then access the data by decrypt-
ing it. However, this approach introduces significant latency
to the access request. Furthermore, a single central authority
makes the system vulnerable to denial-of-service attacks. In
contrast, using ABE allows access control on a cryptographic
level, achieving both protection of the data whilst allowing
the enforcement of access control. By extension, it removes
this extra latency and mitigates the availability issues of the
central authority. It also allows data to be freely transmitted
between nodes, removing the risk of accidental data leakage
as long as the target node’s secret key is not compromised.

10 Conclusion

For several months, Portunus has seen real-world usage
protecting customer keys. It has succeeded in supplanting the
capabilities of the legacy system and setting a foundation for fu-
ture product development. This required multiple person-years
of effort by a small team, as well as accepting a fairly novel
scheme as the foundation of its security. This effort brought
about increases in reliability and enhanced performance.
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A Security Model for CP-ABE

We define the security game IND-CCA(λ) between challenger
and attacker as follows:

• Setup phase: The challenger runs Setup(λ) to obtain
MPK and MSK, and sends the master public key MPK
to the attacker.

• First query phase: The attacker can make two types of
queries:

– Key query: The attacker queries secret
keys for sets of attributes S, and obtains
SKS←KeyGen(MSK,S) in response.

– Decryption query: The attacker sends a ciphertext
CTA for access policy A and some set S that
satisfies A to the challenger, who returns the
message M ← Decrypt(MPK,SKS,CTA) (where
SKS←KeyGen(MSK,S)).

• Challenge phase: The attacker specifies some access
policy A∗ such that none of the sets S in the first key
query phase satisfies A∗, generates two equal-length
messages M0 and M1, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0,1}, encrypts
Mβ under A∗, i.e., CTA∗←Encrypt(MPK,A∗,Mβ), and
sends the resulting ciphertext CT∗A∗ to the attacker.

• Second query phase: This phase is identical to the first
query phase, with the additional restriction that the at-
tacker cannot query keys for sets of attributes S that satisfy
the policy A∗ or make a decryption query for CT∗A∗ .

• Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as

AdvIND-CCA=

∣∣∣∣Pr[β′=β]− 1
2

∣∣∣∣.
A scheme is fully secure against chosen-ciphertext attacks
if all polynomial-time attackers have at most a negligible
advantage in this security game.

In the model for security against chosen-plaintext attacks,
the attacker is not allowed to make decryption queries in the
first and second query phase—only key queries.

B Other Definitions

B.1 Symmetric Encryption

B.1.1 Formal Definition

We define symmetric encryption as follows. Let λ be
the security parameter. A symmetric encryption scheme
SE=(Enc,Dec), with symmetric key K∈{0,1}λ, is defined as

• EncK(M): On input message M ∈ {0,1}∗, encryption
returns a ciphertext CTsym.

• DecK(CTsym): On input ciphertext CTsym, decryption
returns a message M or an error message⊥.

The scheme is correct if for all keys K ∈ {0,1}λ and all
messages M∈{0,1}∗, we have DecK(EncK(M))=M.

B.1.2 Security Model

For symmetric encryption, we use the same security notion
as in [33], i.e., ciphertext indistinguishability. Informally,
ciphertext indistinguishability ensures that an attacker cannot
distinguish between encryptions of any two messages. More
formally, it is defined as follows. Let λ be a security parameter
and let SE = (Enc,Dec) be a symmetric encryption scheme.
Consider the following game between a challenger and
attacker. The challenger first picks a key K ∈ {0,1}λ. Then,
the attacker specifies two messages M0,M1 and gives these
to the challenger, who flips a coin β ∈R {0,1} and returns
CTsym ← EncK(Mβ) to the attacker. The attacker outputs a
guess β′ for β. Then, SE = (Enc,Dec) has indistinguishable
ciphertexts if for all polynomial-time attackers in the game
above holds that the advantage

∣∣Pr[β′=β]− 1
2

∣∣ is negligible

B.2 MAC Function

B.2.1 Formal Definition

We formally define a MAC function as follows. Let λ be the
security parameter. A message authentication code (MAC)
(MACKMAC ,VrfyKMAC

), where KMAC ∈ {0,1}λ is the MAC
key, is defined by

• MACKMAC(M): On input message M ∈ {0, 1}∗, this
algorithm outputs a tag T.

• VrfyKMAC
(M,T): On input message M and tag T, the

algorithm returns 0 (“reject”) or 1 (“accept”).

The MAC is correct if for all keys KMAC ∈ {0,1}λ and all
messages M∈{0,1}∗ it holds that if T←MACKMAC(M), then
VrfyKMAC

(M,T)=1.



B.2.2 Security Model

For MACs, we use the notion of security against one-time
chosen-message attacks. Let λ be the security parameter, and
let (MACKMAC ,VrfyKMAC

) be a message authentication code.
Consider the following game between challenger and attacker.
The challenger first picks a key KMAC∈{0,1}λ. The attacker
sends a message M to the challenger, who returns a tag T←
MACKMAC(M). Then, the attacker outputs a pair (M′,T′). The
attacker succeeds if (M,T) ̸=(M′,T′) and Vrfy(M′,T′)=1.

B.3 Special Commitment Scheme

B.3.1 Formal Definition

The special commitment scheme that we use is defined as
follows. Let λ be the security parameter.

• ESetup(λ)→pub: Define hashes h1 : {0,1}448→Zp and
h2 : {0,1}448→{0,1}λ, and set pub=(h1,h2).

• ES(λ, pub) → (rand, com, dec): Generate
dec ∈R {0, 1}448, and compute com = h1(dec) and
rand=h2(dec).

• ER(pub,com,dec)→ rand: Generate rand←h2(dec).

The special commitment scheme is correct if
for all (rand, com, dec) ← ES(λ, pub) holds that
ER(pub,com,dec)= rand.

B.3.2 Security Model

A special commitment scheme (ESetup,ES,ER) is secure if
it is hiding and binding.

• Hiding: Consider an attacker and a challenger. Then,
the challenger runs pub ← ESetup(λ) and flips a coin
β ∈R {0, 1}. If β = 0, then C generates a random
rand∈R {0,1}λ, and otherwise, it runs (rand,com,dec)←
ES(λ,pub). It shares (λ,pub,rand,com) with the attacker,
who then outputs a guess β′ for β. The scheme is hiding
if for all such attackers, it holds that the advantage∣∣Pr[β=β′]− 1

2

∣∣ is negligible.

• Binding: Consider an attacker and a challenger. Then,
the challenger runs pub ← ESetup(λ), and shares
(rand,com,dec)← ES(λ,pub) with the attacker. Then,
it is computationally infeasible for the attacker to find
dec′ ̸= dec such that ER(pub,com,dec′) = rand, i.e., for
output dec′ ̸=dec of the attacker, it holds that the success
probability Pr[ER(pub,com,dec′) = rand] is negligible.
The scheme is binding if this holds for all such attackers.

C Description of Our CCA-Secure Scheme

We give a simplified description (using the simplified
description of TKN20 in Section 3.2.10) of our CCA-secure
scheme below.

• Setup(λ) → (MPK, MSK): The setup outputs the
master public-secret key pair (MPK, MSK), where
Hi : {0,1}∗→G1 with i∈{0,1} are two hash functions
(modeled as random oracles), KDF : GT → {0, 1}λ

is a key derivation function [17], SE = (Enc,Dec) is
a symmetric encryption scheme, pub are the public
parameters generated with the setup ESetup of a special
commitment scheme, MSK=(α,b), and

MPK=(SE,pub,p,G1,G2,GT ,e,g1,g2,H0,H1,

A=e(g1,g2)
α,B=gb

1).

• KeyGen(MSK, (S,ψlab)) → SKS: On input a set of at-
tribute values S and the associated labeling map ψlab : S→
{0,1}∗, which maps the attributes in the set S to labels
(represented as strings), it outputs the secret key SKS as

SKS=(S,K1=gα+rb
1 ,K2=gr

2,

{K3,att=(H0(ψlab(att))·H1(ψlab(att))xatt)r}att∈S,

K3,CCA=H0(CCA)r,K4,CCA=H1(CCA)r),

where r∈RZp is a randomly generated element in Zp and
xatt denotes the representation of att in Zp.

• Encrypt(MPK, A, M) → CTA: On input a plain-
text message M ∈ {0, 1}∗ and an access policy
A= (A,ρ,ρlab,ρ,τ)—where τ : {1,...,n1} → {1,...,m}
is a function that maps each row that is associated with
the same label to a different integer in {1,...,m}, with m
being the maximum number of times that a label occurs
in the policy—it first extends the policy A to A′ such
that it applies an AND operator to A and the attribute
label-value pair CCA: com (where com is defined as
below), and outputs a ciphertext CT′A′ as

CT′A′=(A,com←h2(dec),C←EncK(dec∥M),CTA′ ,

T=MACK′(A∥com∥C∥CTA′)),

so that

CTA=(C1=gs
2,
{

C2,l =gsl
2

}
l∈{1,...,m},{

C3, j =Bλ j ·(H0(ρlab( j))·H1(ρlab( j))xρ( j))sτ( j)
}

j∈χ0
,{

C3, j =B−λ j ·H0(ρlab( j))sτ( j) ,

C4, j =Bxρ( j)λ j ·H1(ρlab( j))sτ( j)
}

j∈χ1
),

where s,s1,...,sm,v2,...,vn2+1 ∈R Zp are randomly gen-
erated elements in Zp, λ j =A j,1s+∑k∈{2,...,n2+1}A j,kvk,
χi = { j ∈ {1, ..., n1 + 1} | ρ( j) = i} for i ∈ {0, 1},
K←KDF(As), dec∈R {0,1}448 and K′←h1(dec).



• Decrypt(SKS, CTA′) → M′: On input the ciphertext
CTA′ (where A′ is an AND-composition of policy A
and CCA: com), and a secret key SKS, it first checks
whether S satisfies the A. If not, then it aborts. Oth-
erwise, it first determines ϒ0 = { j ∈ χ0 | ρ( j) ∈ S},
ϒ1 = { j∈ χ1 | ρ( j) /∈ S∧ρlab( j)∈ψlab(S)}, ϒ=ϒ0∪ϒ1
and {ε j} j∈ϒ such that ∑ j∈ϒ ε jA j = (1, 0, ..., 0), then
computes e(g1, g2)

αs as in the decryption of TKN20
(Section 3.2.10), where a key can be generated for CCA
: com by computing K3,CCA ·Kxcom

4,CCA, then retrieves:

K←KDF(e(g1,g2)
αs)

dec∥M←DecK(C)

K′←h1(dec),

and verifies:

h2(dec) ?
=com

Vrfy(A∥com∥C∥CTA′ ,T)
?
=1.

If both checks pass, then the decryption returns M, and
if not, it returns an error message.


	Introduction
	Requirements
	Cryptographic Building Blocks
	Policy Specification Language
	Attribute-Based Encryption
	Key-Policy ABE (KP-ABE)
	Ciphertext-Policy ABE (CP-ABE)
	Formal Definition of CP-ABE
	Collusion Resistance
	Pairing-Based ABE
	The TKN20 Scheme
	Representation of Monotone Access Policies
	Representing NOTs and Labels
	High-Level Overview of the TKN20 Scheme
	Simplified Description of the TKN20 Scheme
	Description of the Fully Secure Variant
	Support for Wildcards
	Key Encapsulation and Symmetric Encryption
	CCA-Security via the BK-Transform

	Software Implementation

	Design
	Encrypting Customer Keys
	Accessing Customer Keys
	Key Distribution
	Key Rotation
	Attribute Changes
	Networking and Resiliency

	Evaluation
	Cryptography
	Request Latency

	Availability

	Discussion
	Future Work
	Lessons Learned
	Related Work
	Conclusion
	Security Model for CP-ABE
	Other Definitions
	Symmetric Encryption
	Formal Definition
	Security Model

	MAC Function
	Formal Definition
	Security Model

	Special Commitment Scheme
	Formal Definition
	Security Model


	Description of Our CCA-Secure Scheme

