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Abstract

Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures
that only authorized subsets of the parties learn the secret. Evolving secret sharing schemes
(Komargodski, Naor, and Yogev [TCC ’16]) allow achieving this end in a scenario where the
parties arrive in an online fashion, and there is no a-priory bound on the number of parties.

An important complexity measure of a secret sharing scheme is the share size, which is
the maximum number of bits that a party may receive as a share. While there has been a
significant progress in recent years, the best constructions for both secret sharing and evolving
secret sharing schemes have a share size that is exponential in the number of parties. On the
other hand, the best lower bound, by Csirmaz [Eurocrypt ’95], is sub-linear.

In this work, we give a tight lower bound on the share size of evolving secret sharing schemes.
Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower
bound on evolving secret sharing.
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1 Introduction

Secret sharing is a fundamental concept in cryptography, that allows a dealer to distribute a
secret among a set of parties in a way that ensures that only authorized subsets of parties learn
the secret. Such schemes are used in secure multi-party computation, amplification schemes for
cryptographic primitives, Byzantine agreement protocols, and more (see [Bei11]). Evolving secret
sharing (Komargodski, Naor, and Yogev [KNY17]) is a variant of secret sharing, that can be used
in evolving systems, for which there is no a-priory bound on the number of parties. In such schemes,
the dealer distributes the secret to an infinite number of parties in an online fashion: the parties
arrive one by one, and each party receives its share of the secret as it arrives. The correctness
guarantee promises that by the time the n-th party receives their share, all the authorized subsets
among the first n parties can reconstruct the secret. Such a scheme is adaptive if the dealer does
not need to know the entire access structure to give a share to a party. Rather, it is sufficient to
know the list of authorized sets containing only parties that already arrived.

The main complexity measure of a secret sharing scheme is its share size: the maximal number
of bits a party might receive as a share. While there have been significant advancements in the area
in recent years ([LVW18; LV18; ABFNP19; ABNP20]), the best known constructions for (classical)
secret sharing have exponential share size in the number of parties (Applebaum and Nir [AN21]).
For the harder task of evolving secret sharing, the best construction for arbitrary access structure
gives the i-th party share of size 2i−1 ([KNY17]).

Somewhat surprisingly, we do not know if exponential share size is the best possible, or even if
the share size must be super linear in the number of parties. Indeed, the best known lower bound
on (classical) secret sharing is due to Csirmaz [Csi97], which showed a specific access structure for
which every scheme must give some party a share of size Ω(n/ log n). Thus, the optimal share size
for arbitrary access structures is an important open question. Prior to this paper, this question
was open also for the case of evolving secret sharing.

1.1 Our Result

In this work, we resolve the above question for the case of evolving secret sharing. We show that the
linear lower bound of Csirmaz [Csi97] implies a tight exponential lower bound on evolving secret
sharing. This is stated in the following two theorems. The first is for adaptive evolving secret
sharing schemes.

Theorem 1.1 (Lower bound for adaptive schemes, informal). There exists an access structure A
such that for every adaptive evolving secret sharing scheme and for every n, the total share size of
the first n parties in A is at least 2n. In particular, the share size of the i-th party is at least 2i−1

for infinitely many i’s.

As stated before, this lower bound is tight with the scheme of [KNY17] which gives the i-th
party share of size 2i−1. Interestingly, the access structure for which we prove this lower bound
does not contain a single authorized set. We also prove the following slightly weaker lower bound,
for a larger class of schemes, namely, non-adaptive schemes.

Theorem 1.2 (Lower bound for non-adaptive schemes, informal). There exists an access structure
A such that the following holds. For every evolving secret sharing scheme for A and for every n,
the total share size of the first n parties is at least 2n−o(n). Moreover, the share size of the i-th
party is at least 2i−o(i) for infinitely many i’s.
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The formal bound we prove (Theorem 3.2) is somewhat stronger, as we can choose the o(n) term
to be any super-constant. For example, Theorem 3.2 implies that the total share size of the first
n parties is at least 2n−logn. The proof of both theorems follows from an observation on [Csi97]’s
lower bound. In his work, Csirmaz [Csi97] shows that in some access structure over n parties, there
is a specific set of t = log n parties that must hold together at least n bits. We observe that if these
t parties are the first to arrive, by [Csi97]’s lower bound they must hold exponential (in t) share
size. See more details in Section 3.1

1.2 Additional Related Work

Lower bounds on secret sharing schemes. Besides the aforementioned lower bound of [Csi97],
Csirmaz [Csi96] showed an access structure for which, the total share size must be quadratic. The
construction is simply duplicating the parties with large shares in [Csi97]’s construction. Csirmaz
[Csi97] also shows that a better lower bound on the share size cannot be proven using Shannon
information inequalities. Beimel and Orlov [BO11] showed the same result for a larger set of
information inequalities. Recently, Applebaum, Beimel, Nir, Peter, and Pitassi [ABNPP22] showed
a connection between the known constructions of secret sharing and monotone real circuits, and
used this connection to give a lower bound on a family of constructions. For evolving schemes,
[KNY17] gave a tight lower bound for the special case of the 2-threshold access structure.

Constructions of evolving secret sharing schemes. Following Komargodski et al. [KNY17],
Paskin-Cherniavsky [PC16] showed a more efficient construction for some classes of access struc-
tures. In this scheme, the dealer needs to know the access structure in advance. More efficient
schemes are known for specific types of access structures ([CT12],[KNY17; KPC17]).

Paper Organization

Basic definitions and notations are given in Section 2, and the proofs of the lower bounds are given
in Section 3.

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. We use [n] to denote the
set {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its ith entry, let v<i = (v1, . . . , vi−1) and
v≤i = (v1, . . . , vi). Similarly, for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I .

When unambiguous, we will naturally view a random variable as its marginal distribution.
For a (discrete) distribution D, let x ← D denote that x was sampled according to D. Let
Supp(D) = {p : PrD[p] > 0}, and define |D| = log(|Supp(D)|).

1We remark that, as in [Csi97], both of our bounds generalize to the information-ratio of the scheme. That is, the
ratio between the total share size of the first n parties to the length of the secret must be exponential in n.
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2.1.1 Entropy and Mutual Information

The Shannon entropy of a distribution P is defined by H(P) =
∑

p∈Supp(P) PrP [p] · log
1

PrP [p] . The

conditional entropy of a random variable A given B, is defined as H(A | B) = Eb←B[H(A|B=b)].
The mutual information between two random variables A and B is defined by

I(A;B) = H(A)−H(A | B) = H(B)−H(B | A)

and the conditional mutual information given a random variable C is defined similarly

I(A;B | C) = H(A | C)−H(A | B,C).

We will use the following well known facts:

Fact 2.1 (Chain rule for mutual information). For two random variables A and B = (B1, . . . , Bn),
it holds that I(A;B) =

∑n
i=1 I(A;Bi | B<i).

Fact 2.2 (Upper bound on mutual information). For two random variables A and B, it holds that
I(A;B) ≤ |A|.

2.2 Secret Sharing Schemes.

We now formally define secret sharing schemes. Let P be a set of parties. An access structure is a
monotone collection of subsets of P.

Definition 2.3 (Access structure). A collection of sets A ⊆ 2P is an access structure if it is
monotone: for every set B ∈ A and for every B′ such that B ⊆ B′ ⊆ P, it holds that B′ ∈ A. A set
B is authorized if B ∈ A, and unauthorized otherwise.

An access structure can be defined by a set of minimal authorized sets. Given a (non-monotone)
setM of subsets of parties, the induced access structure AM is received by adding to AM all the
subsets contained a set in M. That is, AM := {B ⊆ P : ∃C ∈ M s.t. C ⊆ B}. We now ready to
define secret sharing schemes.

Definition 2.4 (Secret sharing scheme). A secret sharing scheme for an access structure A is a
pair of algorithms (SHARE,RECON) such that the following holds:

1. Given a secret s ∈ {0, 1}, SHARE(s) returns shares π = {πp}p∈P . πp is called the share of party
p.

2. Correctness: For every secret s ∈ {0, 1}, π ← SHARE(s) and an authorized set B ∈ A,
RECON(B, πB) = s.

3. Perfect Privacy: For every unauthorized set B /∈ A, it holds that SHARE(0)B ≡ SHARE(1)B.

2.3 Evolving Secret Sharing

We now formally define evolving secret sharing schemes, introduces by Komargodski et al. [KNY17].

Definition 2.5 (Restriction). Given an access structure A over P, and a subset of parties P ′ ⊆ P,
let A|P ′ := {B ∈ A : B ⊆ P ′}.

4



[KNY17] showed that A|P ′ is an access structure for every A and P ′.

Definition 2.6 (Evolving access structure). Let P = N be an infinite set of parties. An evolving
access structure over P is a set of access structures {An}n∈N such that for every n, An is an access
structure over [n] and An+1|[n] = An.

For an evolving access structure A and a finite set of parties I ⊆ P, we use A|I to denote the
access structure An|I for some n with I ⊆ [n]. Notice that the set An|I is independent from the
choice of such n (That is, An|I = An′ |I for every n and n′ such that I ⊆ [n] and I ⊆ [n′]).

Definition 2.7 (Evolving secret sharing scheme). An evolving secret sharing scheme for an evolving
access structure {An}n∈N is a pair of algorithms (SHARE,RECON) such that the following holds
for every n:

1. Given a secret s ∈ {0, 1} and sequence of shares π1, . . . , πn−1, SHARE(s, π1, . . . , πn−1) returns a
share πn for party n. Denote by Πs = (Πs

1,Π
s
2, . . . ) the distribution of the shares of the parties

on secret s. That is, Πs
i = SHARE(s,Πs

1, . . . ,Π
s
i−1).

2. Correctness: For every secret s ∈ {0, 1}, shares π = (π1, . . . , πn) ← Πs
≤n and an authorized set

B ∈ An, RECON(B, πB) = s.

3. Perfect Privacy: For every set B ⊆ [n] of parties with B /∈ An, it holds that Π0
B ≡ Π1

B.

Note that for every set B ⊆ [n] of parties with B /∈ An, it holds that B /∈ Ak for every k ∈ N.
An adaptive evolving secret sharing scheme is a secret sharing scheme that doesn’t know the

access structure in advance. In this definition, the algorithms SHARE and RECON get a description
of the access structure.

Definition 2.8 (Adaptive evolving secret sharing scheme). An adaptive evolving secret sharing
scheme is a pair of algorithms (SHARE,RECON) such that the following hold for every evolving
access structure {An}n∈N and for every n:

1. Given a secret s ∈ {0, 1}, An and sequence of shares π1, . . . , πn−1, SHARE(s,An, π1, . . . , πn−1)
returns a share πn for party n. Denote by Πs = (Πs

1,Π
s
2, . . . ) the distribution of the shares of

the first n parties on secret s. That is, Πs
i = SHARE(s,Ai,Π

s
1, . . . ,Π

s
i−1).

2. Correctness: For every secret s ∈ {0, 1}, shares π = (π1, . . . , πn) ← Πs
≤n and an authorized set

B ∈ An, RECON(B,An, πB) = s.

3. Perfect Privacy: For every set B ⊆ [n] of parties with B /∈ An, it holds that Π0
B ≡ Π1

B.

We now formally define the share size of a set of parties.

Definition 2.9 (Share size). For an evolving access structure A = {An}n∈N , an adaptive scheme
(SHARE,RECON), and S ← {0, 1}, let Πi := SHARE(S,Ai,Π1, . . . ,Πi−1) for every i ∈ N. Then
the share size for A of a party p ∈ N is simply |Πp|. The total share size of a set of parties B is
|ΠB| ≤

∑
p∈B|Πp|. 2

We define share size and total share size for non-adaptive/non-evolving secret sharing schemes
similarly.

2Recall that |Πb| := log(|Supp(Πp)|) is a lower bound on the maximal representation size of a sample from Πp.
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2.4 Csirmaz’s lower bound [Csi97]

Csirmaz proved a lower bound on the share size of a (classic) secret sharing scheme for a specific
access structure. We exploit the properties of this access structure in our proof. The following is
the formal statement we need.

Theorem 2.10 ([Csi97]). For every t ∈ N, there exists an access structure Zt over t+ 2t parties,
such that the following holds: The set of players is composed of two disjoint sets, B and C, such
that |C| = t, |B| = 2t, and:

1. C is an unauthorized set, and,

2. the total share size of players in C is at least 2t − 1.

For completeness, we give here the proof.

Proof. Fix t ∈ N and let n = 2t. We start with describing the access structure Zt. Let B =
{P1, . . . , Pn} be a set of n parties, and let C be a disjoint set of parties of size t. Let C1, . . . , Cn be
an ordering of all the subsets of C, such that for every i < j it holds that Ci ⊈ Cj .3 Define the set
of minimal authorized sets of Zt to be the set

M = {Ci ∪ {P1, . . . , Pi} : i ∈ [n]},

and let Zt = AM be the induced access structure. Item 1 holds by construction. Moreover, by the
definition of C1, . . . , Cn andM, for every i the set Ci ∪ {P1, . . . , Pi−1} is unauthorized. We now use
this to prove the lower bound on the share size. Let S ← {0, 1} be a uniformly chosen secret, and
Π be a random sharing of S. We want to lower bound the size of ΠC . It holds that,

|ΠC |+ |S| ≥ I(ΠC , S; ΠB)

=
∑
i

I(ΠC , S; ΠPi | ΠP<i)

≤
∑
i

I(ΠCi , S; ΠPi | ΠP<i)

≤
∑
i

I(S; ΠPi | ΠCi ,ΠP<i)

=
∑
i

H(S | ΠCi ,ΠP<i)−H(S | ΠPi ,ΠCi ,ΠP<i)

=
∑
i

1− 0

= n

where the first inequality holds by Fact 2.2. The first equality, the second inequality, and the third
inequality hold by the chain rule of mutual information. The last inequality holds since Ci ∪ P<i is
an unauthorized set, but Ci ∪ P≤i is authorized. Item 2 now follows from the above since n = 2t

and |S| = 1. □
3For example, order the sets according to there size in reverse order, with arbitrary order between sets of equal

size.
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3 The Lower Bound on the Share Size

In this section, we formally prove our lower bound. We start with a lower bound on adaptive
evolving secret sharing, and then show how to generalize the bound to hold for non-adaptive
schemes.

3.1 The Adaptive Case

We start by formally stating our main result.

Theorem 3.1. Let A = {An}n∈N be the access structure for which An = ∅ for every n. Then for
every adaptive evolving secret sharing scheme and every t, the total share size for A of the first t
parties is at least 2t − 1. In particular, there are infinite many parties i with share size at least
2i−1 − 1.

The proof of the lower bound is by showing that for every t, after the first t parties arrived,
it is possible to add 2t parties such that the resulting access structure will be Csirmaz’s structure.
Thus, by Csirmaz’s lower bound, the t parties must hold long shares.

Proof. Let (SHARE,RECON) be an adaptive secret sharing scheme, and fix t ∈ N. We start by
defining an evolving access structure A′, and bounding its share size. Later, we relate the share
size of A and A′.

Let C = [t], and let n = 2t. Let B = {P1, . . . , Pn} for Pi = i + t. Define the evolving access
structure A′ = {A′n}n∈N as follows: for every i ∈ [t], let A′i = Ai = ∅. Let A′t+n = Zt be the access
structure over the set B∪C promised by Theorem 2.10. For every j ∈ [n], define A′t+j = A′t+n|[t+j].
Finally, for every i > t+n, let A′i = A′t+n. Notice that A′ is indeed an evolving access structure as
A′t+n|[t] = At.

Let S ← {0, 1} be an uniformly random secret, and let Π = (Π1, . . . ,Πt+n) be the distribution
of the shares of the first t+ n parties on A. That is, Πi = SHARE(S,Ai,Π1, . . . ,Πi−1). Similarly,
let Π′ = (Π′1, . . . ,Π

′
t+n) be the distribution of the shares of the first t + n parties on A′ (using

SHARE and the secret S).

Notice that by definition of evolving secret sharing scheme, the pair (ŜHARE,RECON) is a

secret sharing scheme for the access structure A′t+n, for ŜHARE(s) := Π′|S=s. Thus, it must hold
by Theorem 2.10 that |Π′C | =

∣∣Π′≤t∣∣ ≥ 2t − 1. However, since A′i = Ai for every i ≤ t, it holds that
Π′≤t = Π≤t. Therefore, |Π≤t| ≥ 2t − 1, and the first part of the theorem follows.

To see the second part, assume towards a contradiction that there is only a finite number of
parties i for which the share size is at least 2i−1 − 1, and let i∗ be the maximal such (or i∗ = 1 if
no such exists). Let ℓ be the total share size of the first i∗ parties. Consider the first i∗ + ℓ first
parties of A. By the assumption, their total share size is at most

ℓ+
i∗+ℓ∑

j=i∗+1

(2j−1 − 1) =
i∗+ℓ∑

j=i∗+1

2j−1 <
i∗+ℓ∑
j=1

2j−1 = 2i
∗+ℓ − 1.

On the other hand, by the first part of the theorem, the total share size of the first i∗+ ℓ parties
is at least 2i

∗+ℓ − 1 which is a contradiction to the above. □
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3.2 The Non-Adaptive Case

We now prove our main result for non-adaptive schemes. We start with formally stating the result.

Theorem 3.2. For every function f : N → N with f ∈ ω(1), there exists an access structure
A = {An}n∈N such that the following holds for any evolving secret sharing scheme for A. For every
t, the total share size of the first t parties is at least 2t−f(t) − 1. Moreover, there are infinite many
parties i with share size at least 2i−f(i)−1 − 1.

The proof of the above theorem is similar to the proof of Theorem 3.1. However, since the
access structure is fixed, we cannot argue that the security and correctness hold if we change the
access structure on parties that did not arrive yet. To overcome this, we need to embed inside A
all the access structures Zt for every value of t ∈ N. Recall that Csirmaz’s structure Zt is over two
sets of parties, C and B, such that the set C is of size t and has total share size 2t. To get the stated
lower bound, we need to embed in A the structure Zt in such a way that the parties that hold long
shares (that is, the parties in the set C) will arrive early enough. This is done by associating only
a sparse fraction of the parties to the set B, using the function f .

Proof. Fix a function f ∈ ω(1). We start by describing the access structure A. Assume without
loss of generality that f(0) = 0 and 0 ≤ f(n + 1) − f(n) ≤ 1/2,4 and for every n let xn be a
number such that f(xn) ≥ n and f(xn − 1) < n. Let X = {x1, x2, . . . }. We divide X into disjoint
segments {Ij}j∈N as follows, such that the size of the j-th segment is 2j . Namely, for every j ∈ N
let Ij = {x2j , . . . , x2j+1−1}. For every t ∈ N, let [t]X = [t] \X , and let t′ =

∣∣[t]X ∣∣ be the size of [t]X .
Observe that t′ ≥ t− f(t).

We next define the evolving access structure A such that A|[t]X∪It′ = Zt′ where Zt′ is the access
structure promised by Theorem 2.10. Moreover, [t]X will match the set C in Theorem 2.10. This
concludes the proof of the theorem similarly to the proof of Theorem 3.1, as it follows that the
total share size of the parties in [t]X (and therefore also in [t]) is at least 2t

′ − 1 ≥ 2t−f(t) − 1.
To define A as stated above, for every t′ ∈ N let Zt′ be the access structure promised by

Theorem 2.10, over the sets of parties C = [t]X and B = It′ . For every n ∈ N define

An :=

∞⋃
t′=1

{D ∈ Zt′ : D ⊆ [n]}.

By definition the sequence A = {An}n∈N is an evolving access structure. Moreover, by construction

it holds that for every t′ and for every large enough n (with f(n) > 2t
′+1), it holds that An|[t]X∪It′

is equal to Zt′ , as stated above. Indeed, to make sure that we didn’t add additional authorized
subsets, observe that every authorized set of any structure Zj for j ̸= t′ contains at least one party
from Ij . Since [t]X ∪ It′ and Ij are disjoint, all the authorized sets in An|[t]X∪It′ are authorized in
Zt′ . □

3.3 Evolving Secret Sharing Over a Fixed Number of Parties

Our technique also implies a (weaker) lower bound on the share size of adaptive evolving secret
sharing, when the number of parties is known from advanced (but the access structure is unknown).5

4Otherwise, define f ′(n) = min{f ′(n− 1) + 1/2,minn′>n{f(n′)}}. Clearly f ′ has the assumed property, and for
every n, f ′(n) ≤ f(n).

5Non-adaptive evolving secret sharing with finite number of parties is equivalent to classical secret sharing.
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For example, one can prove that for the empty access structure, every scheme that supports an
arbitrary structure over 2n parties, must give a share of length n/ log n to at least n− log n of the
first n parties. Otherwise, there are log n such parties with total share size less than n. We thus
can use the remaining n parties to complete Csirmaz’s structure, with these log n parties being the
set C. This is of course a contradiction to Theorem 2.10.

We also observe that the share size in this model, of adaptive evolving secret sharing when the
number of parties is known, is related to the share size in classical secret sharing, up to a linear
factor in the number of parties n. Indeed, assume that for every access structure over n parties
there exists a (classical) secret sharing scheme with maximal share size ℓ. The following shows that
the optimal share size of evolving secret sharing over n players is at most 2n×ℓ (the other direction
- that the share size in evolving secret sharing is not smaller than the share size in classical secret
sharing - is trivial). Let P = {P1, . . . , Pn} be the set of parties, and first assume for simplicity
that every authorized set contains the last party Pn. Let An be the final access structure, and
let (SHARE,REC) be a (classic) secret sharing scheme for An. We can construct an evolving
secret sharing scheme as follows: when the i-th party arrives, for every i ∈ [n − 1], the scheme
gives it random (uniformly and independently chosen) ℓ bits as the share πi. The share of Pn is
{πi ⊕ SHARE(s)i}i∈[n] (letting πn = 0ℓ). Clearly, the share size of the Pn in this scheme is n · ℓ,
and all other parties get a share of size ℓ.

To get rid of the assumption that all the authorized sets contain the last player, we can simply
share the secret independently to n access structures, when the i-th access structure contains all
the authorized sets in which Pi is the last party. This will yield a share size of length at most
(n− 1) · ℓ+ n · ℓ (as every party is the last in exactly one such access structure).
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