
Verifiable Distributed Aggregation Functions

Hannah Davis
University of California, San Diego

Christopher Patton
Cloudflare

Mike Rosulek
Oregon State University

Phillipp Schoppmann
Google

2023/07/12

Abstract

The modern Internet is built on systems that incentivize collection of information about users. In
order to minimize privacy loss, it is desirable to prevent these systems from collecting more information
than is required for the application. The promise of multi-party computation is that data can be ag-
gregated without revealing individual measurements to the data collector. This work offers a provable
security treatment for “Verifiable Distributed Aggregation Functions (VDAFs)”, a class of multi-party
computation protocols being considered for standardization by the IETF.

We propose a formal framework for the analysis of VDAFs and apply it to two constructions. The
first is Prio3, one of the candidates for standardization. This VDAF is based on the Prio system of
Corrigan-Gibbs and Boneh (NSDI 2017). We prove that Prio3 achieves our security goals with only
minor changes to the draft. The second construction, called Doplar, is introduced by this paper. Doplar
is a round-reduced variant of the Poplar system of Boneh et al. (IEEE S&P 2021), itself a candidate for
standardization. The cost of this improvement is a modest increase in overall bandwidth and computa-
tion.

Change Log

The proceedings version of this paper appears at PETS 2023. This is the full version.

• 2023/06/15: Proceedings version submitted. This version includes minor changes to address the re-
maining feedback from the PETS 2023 program committee.

• 2023/02/22: Fix a minor bug in the Doplar spec (Section 5). Previously we had included the IDPF tree
level in the derivation of the joint randomness parts; but these are shared across all levels. Remove the
level from the joint randomness parts binder; add the level to the joint randomness seed binder; and
propagate these changes through the proofs of robustness and privacy. (No changes to the reductions
or bounds were required.)

• 2023/02/03: Initial ePrint submission.

1 Introduction

Operating a complex software system, such as an operating system, web browser, or web service, often
requires measuring the behavior of the system’s users. When used for a specific purpose, such measurements
are often only consumed in some aggregated form, e.g., F (m1, . . . ,mct) for some specific function F , rather
than the individual measurements m1, . . . ,mct . But in conventional systems, the measurements are revealed
to the operator as a matter of course, resulting in an increased capability to surveil users. Consider the
following motivating examples:

1

1. Identifying misbehaving or malicious origins. To detect bugs or attack vectors, a browser vendor might
want to know how often establishing a connection to a given origin or loading a given web page triggers
a specific event [48]. But logging these events and aggregating them in the clear risks exposing browser
history.

2. Measuring ad conversion rates. Today advertising is a significant revenue source for many web service
providers. In order to accurately assess the value of an ad campaign, the service provider and advertiser
might want to measure how many people who clicked on a given ad made a purchase [2].

3. Classifying malicious client behavior. Many operators benefit from the ability to classify (or predict)
user behavior automatically, and in real-time. For example, anomaly detection systems use machine
learning models, trained and validated on requests from real clients, to classify fraudulent or otherwise
malicious behavior [46].

These applications require only aggregates; by collecting individual measurements, the operator learns more
information than is ultimately used for the intended purpose. One way out of this predicament is multi-party
computation (MPC), which allows computing some function of private inputs distributed across multiple
parties, without revealing these private inputs. In this paper, we consider a class of MPC protocols in which
the bulk of the computation is outsourced to a small set of non-colluding servers.

Recent attention from the MPC community on problems like these has yielded solutions that are practical
enough for real-world deployment [32, 23, 17, 18, 5, 10]. Notable examples include Mozilla’s Origin Telemetry
project [48] and the COVID-19 Exposure Notification Private Analytics system developed jointly by Apple
and Google [7]. The success of these projects spurred the formation of a working group within the Internet
Engineering Task Force (IETF) whose objective is to standardize MPC for “Privacy-Preserving Measurement
(PPM)” [1], thereby improving interoperability and providing a deployment roadmap for new schemes.

The primary goal of this paper is to lay some of the groundwork for the provable security analysis that
will be needed to support this effort. We formalize a syntax and set of security definitions for a particular
class of MPC protocols from the literature [23, 17, 18, 5] of interest to the working group. Our definitions
unify previous ones into an explicit, game-based framework that accounts for practical matters not attended
to in prior work.

We apply our definitional framework to two constructions. The first is a candidate for standardization
based on the Prio scheme designed by Corrigan-Gibbs and Boneh [23]; we show that this protocol meets our
security goals with only minor changes. Another candidate for standardization is the more recent Poplar
scheme due to Boneh et al. [18]; we introduce and analyze a variant of this protocol that has improved round
complexity.

Overview. The PPM working group plans to develop multiple protocol standards, one of which is the focus
of this work. The Distributed Aggregation Protocol (DAP) standard [30] centers around the execution of
a particular class of MPC protocols, called Verifiable Distributed Aggregation Functions (VDAFs) [9]. A
VDAF is used to securely compute some aggregation function F over a set of measurements generated
by the clients. To protect their privacy, the measurements are secret-shared and the computation of the
aggregate is distributed amongst multiple, non-colluding aggregation servers (called aggregators hereafter).
Execution of a VDAF involves four basic steps (illustrated in Figure 1):

• Shard: Each client shards its measurement mi into input shares and sends one share to each aggre-
gator. In this work, we sometimes refer to this sequence of input shares as the client’s report.

• Prepare: After receiving a report from a client, the aggregators gossip amongst themselves in order
to prepare their shares for aggregation. This involves refining the shares into an aggregatable form
and verifying that the outputs are “well-formed”, e.g., that they correspond to an integer in a given
range, or correspond to a one-hot vector (a vector that is non-zero in at most one position). We call
the outputs of this process the refined shares.

• Aggregate: Once an aggregator has recovered the desired number of refined shares, it combines them
into its share of the aggregate result, called an aggregate share. It then sends this to the data
consumer, known as the collector.

2

m

sk , st Init

n

Shard

Prep1msg Init, x1

Prep2
msg Init, x2

Prep1

Prep2

msg1

msg2

y1

y2

Unshard

Agg1y1,1, . . . , y1,ct

Agg2y2,1, . . . , y2,ct

a

ct

Figure 1: Illustration of (left) sharding and preparation of a single measurement and (right) aggregation and
unsharding of a set of measurements. All parameters are defined in Section 3.

• Unshard: Finally, the collector combines each of the aggregate shares into F (m1, . . . ,mct).

Why standardize VDAFs? The case for standardizing this class of MPC protocols is made by the aforemen-
tioned deployments of Prio [48, 7], of which VDAFs are a natural generalization. The key feature that makes
these protocols widely applicable and suited for Internet scale is that the expensive part of the computation
(Shard/Prepare) is fully parallelizable across all reports being aggregated. This means that deployments can
be scaled to such a degree that the time spent on executing the VDAF is primarily network-bound rather
than CPU-bound. It is less clear (at least to those in the PPM working group) whether MPC techniques
where the computations depend on all reports (e.g., oblivious sorting [53] or shuffling [6, 10]) would scale in
the same way.

This feature also implies that VDAFs are only suitable for aggregation functions F that can be decom-
posed into f, g for which F (m1, . . . ,mct) = f(g(m1), . . . , g(mct)), where g may be non-linear, but f must
be affine. Indeed, the goal is not to encompass all possible MPC schemes, but a particular, useful, and
highly parallelizable class of them. VDAFs can be used for a variety of aggregation tasks, including: simple
statistics like sum, mean, standard deviation, quantile estimates, or linear regression [23]; a step of a gradient
descent [37]; or heavy hitters (see below).

Security goals. The PPM working group’s primary goal for VDAFs (cf. [30, Section 7]) is that they are
private in the sense that the attacker learns nothing about the measurements m1, . . . ,mct beyond what it
can infer from the aggregate result F (m1, . . . ,mct). An active attacker who corrupts the collector and a
fraction of the aggregators (typically all but one) and controls transmission of all messages in the protocol—
except, of course, the input shares delivered to honest aggregators. Its corruptions are “static”: the set of
corrupt parties does not change over the course of the attack.

Another security consideration for VDAFs is that they are robust in the sense that the attacker cannot
force the collector to compute anything other than the aggregate of honestly generated reports. Here the
attacker is a set of malicious clients attempting to corrupt the aggregate result by sending malformed
reports. For robustness we assume all of the aggregators execute the protocol correctly. Otherwise, a
corrupt aggregator could trivially corrupt the result by sending the collector a malformed aggregate share.

We formalize these security notions in the game-playing paradigm [14]. First, in Section 3.2 we define

privacy via an indistinguishability game ExpprivΠ (A) played by an attacker A against VDAF Π. The attacker
interacts with the honest parties (i.e., the clients and uncorrupted aggregators) via a set of oracles. These
oracles allow A to mount a kind of “chosen batch attack” in which the honest parties process one of two
batches of measurements, and A’s goal is to determine which was processed. This is analogous to the
simulation-based definition of [23, Definition 1], which asks the the attacker to distinguish the protocol’s
execution from the view generated by a simulator.

We formalize robustness via a game ExprobustΠ (A) (Section 3.2). Here the attacker A—playing the role of
a coalition of malicious clients—is given a single oracle that models the execution of the preparation step
of VDAF execution on (invalid) reports. The attacker wins if an aggregator ever accepts an invalid share
or if the aggregators compute refined shares that, when combined, do not correspond to a valid refined
measurement. For natural VDAFs, robustness implies robustness in the sense of [23, Definition 6]: namely,
the collector is guaranteed to correctly aggregate measurements uploaded by honest clients.

Note on the simulation paradigm. An alternative approach, and one that is more conventional for MPC, is
to formulate security in the Universal Composability (UC) framework [21]. This methodology would begin

3

by specifying the “ideal functionality” for computing an aggregation function such that, for any VDAF that
securely realizes this functionality, any suitable notion of either privacy or robustness would follow from the
UC composition theorem.

While this methodology is attractive, it creates the following difficulty in our setting. Many applications of
VDAFs may be willing to tolerate a loose robustness bound (i.e., a non-negligible probability of accepting an
invalid share) if doing so leads to better performance or communication. On the other hand, no application
can accept a loose bound for privacy. In order to reason about this tradeoff, it is necessary to obtain
explicit, concrete bounds for privacy and robustness separately. A theorem in the UC framework yields only
a single bound, for the “UC-realizability” of the ideal functionality; applying this result directly would lead
to parameter choices that might be more conservative than strictly necessary for the given application.

Another consideration is to make our results accessible to the target audience. Applying the UC frame-
work, and interpreting its results, involves a number of subtleties that, based on our own observations, are
often misunderstood when translated to practice.1 One goal of our definitions is to make as explicit as
possible all of the requirements an application like DAP [30] needs to meet in order to use VDAFs securely.

Previous definitions. Our definitions in Section 3 can be seen as a more precise (but not necessarily stronger)
formulation of the informal definitions given in the original Prio paper [23, Appendix A]. While the authors
mention the possibility of using a unified simulation-based security definition for privacy and robustness,
they do not provide one.

For Poplar on the other hand, Boneh et al. [18, Appendix A] provide a simulation-based definition for
the end-to-end functionality. In order to capture the fact that a malicious server can influence the output of
the protocol, they define a leakage function that allows the attacker to perturb the aggregate result with an
arbitrary additive offset. While we believe this captures the robustness attacks that are possible for Poplar,
it does not immediately generalize to the broader class of functionalities we consider as VDAFs. Also note
that Boneh et al. do not provide any proofs using their security definition. (The proofs they do provide are
for definitions that are naturally captured by games, e.g., [18, Appendix D].) Finally, the simulation-based
security definition of Poplar only considers a single security parameter, something that would need to be
overcome to allow for separate security bounds for privacy and robustness.

Constructions. The starting point for our work is draft-irtf-cfrg-vdaf-03 [9], the current draft of the VDAF
specification at the time of writing.

The first scheme described in draft-03, called Prio3, is based on Prio [23], but incorporates performance
improvements from Boneh et al. [17] (hereafter BBCG+19). Prio3 can be used to compute a wide variety of
aggregation functions due to its use of Fully Linear Proofs (FLPs). Briefly, an FLP is a special type of zero-
knowledge proof that allows the client’s input measurement to be validated by the aggregators (e.g., ensure
that it is a number in some pre-determined range) who have only secret shares of the input and proof. The
FLP designed by BBCG+19 (see [17, Theorem 4.3]) and adopted by the draft (with minor modifications;
see [9, Section 7.3]) is expressed in terms of some arithmetic circuit C that takes in the prover’s input x and
a random string jr computed jointly by the prover and verifier. Computing this joint randomness, verifying
the proof, and evaluating C(x, jr) requires just one round of communication among the aggregators.

In Section 4, we prove Prio3 is both robust (Theorem 1) and private (Theorem 2) under the assumption
that the underlying FLP is, respectively, sound and honest-verifier zero-knowledge as defined by BBCG+19.
Our analysis unveiled a few subtle design issues in draft-03 that we address here.

The second scheme in draft-03 is called Poplar1 and is based on the recent Poplar protocol from Boneh
et al. [18] (BBCG+21). Poplar is designed to solve the private “heavy hitters” problem in which each client
submits an arbitrary bitstring α and the collector wants to compute the set of unique strings that occurred
at least T times. The key idea of BBCG+21 is an extension of distributed point functions (DPFs) [31], where
two aggregators hold a share of a “DPF key” that concisely represents a point function. A point function
evaluates to 0 on every input, except for the distinguished point α, where the function evaluates to some
β ̸= 0. By secret sharing the DPF keys generated by the clients, the aggregators can count how many clients
submitted a particular candidate string without revealing which clients submitted it.

1For a recent example, consider the standards for PAKEs (“Password-Authenticated Key Exchange”) developed by the
CFRG. Most of these standards are based on protocols with analysis in the UC framework. For one protocol [4], one question
left open by that analysis was how to securely instantiate the “session identifier”, one of the artifacts of the ideal functionality.
The current draft offers recommendations for choosing the session identifier, but allows applications to ignore this entirely; a
game-playing argument was used to justify this (cf [3, Appendix B]).

4

Poplar1 makes use of an enriched primitive called an incremental DPF (IDPF). IDPF keys can be queried
not only at a given point, but a given prefix. That is, an incremental point function is one that evaluates
to 0 on every input except for the set of strings that are a prefix of α. This new primitive gives rise to an
efficient solution to the heavy hitters problem that involves running Poplar1 multiple times over the same
set of IDPF keys, where each run begins with a set of candidate prefixes computed from the previous run.

To achieve robustness, Poplar1 uses a two-round multi-party computation in which the aggregators verify
that the IDPF outputs are well-formed. That means that, compared to Prio3, the Poplar1 VDAF costs one
additional round of communication, per report, during the preparation phase. The additional roundtrip is
significant from an operational perspective.

In Section 5 we introduce Doplar, our modification to Poplar which achieves a one-round preparation.
To achieve this, we combine FLPs and methods from distributed point functions in a novel way. We adopt a
point-function verification method from De Castro and Polychroniadou [22]. We also introduce a new flavor
of delayed-input FLPs, which may be of independent interest.

Related Work. Several works have considered private aggregate statistics, relying either on secret-sharing
between non-colluding servers [24, 27, 29, 40, 42, 44], or on anonymization networks [50, 35, 20]. However,
these works either do not provide privacy against malicious clients or rely on expensive zero-knowledge
proofs.

A protocol for Secure Aggregation (SecAgg) in the single-server setting was presented by Bonawitz et al.
[16] and subsequently improved by Bell et al. [12, 11]. While SecAgg can provide security against malicious
parties, it relies on multiple rounds of interaction between clients and server.

The VDAF abstraction was designed to encompass the architecture of Prio and Poplar in which the
expensive portion of the MPC is fully parallelizable. Another example of a VDAF from the literature is the
protocol of Addanki et al. [5], which uses boolean (bit-wise) secret sharing instead of arithmetic circuit to
improve communication cost from client to aggregator. However, this comes at a cost of weaker privacy,
since their protocol does not protect against malicious servers.

There are also protocols that do not fit neatly into the VDAF framework as specified, but which might
be adapted into VDAFs in the future. Masked LARK [37] is a proposal by Microsoft for training machine
learning models on private data, using secret-sharing and MPC between a set of aggregators. AdScale [32]
presents an aggregation system focused on private ads measurement. While designed for a single aggregation
server, their construction appears to be amenable to our multi-server setting.

Other protocols in the literature share the same security goals of VDAFs, but do not have the same
streaming architecture. One example is the recent “Oblivious Shuffling” protocol due to Anderson et al.
[6], which involves an MPC, assisted by a third-party, for unlinking each report from the client that sent it.
The online processing for this procedure intrinsically involves all of the reports being shuffled; for VDAFs,
all of the online processing is per-report. Similarly, Bell et al. [10] present a protocol for computing sparse
histograms with two aggregators that is more efficient than DPFs for large domains, but reveals differentially
private views to the aggregators. Again, the protocol crucially relies on shuffling contributions from multiple
users. Vogue [39] is a protocol for computing private heavy hitters using three non-colluding servers. The
protocol is secure against malicious servers and clients, but again relies on shuffling. Finally, the STAR
protocol [25] uses an anonymizing proxy to ensure the collector only learns “popular” measurements, while
any measurement that occurs less than a pre-determined threshold is not revealed to any party.

In recent concurrent work, Mouris et al. [47] present another three-party, honest-majority protocol for
computing heavy hitters. Their full protocol relies on a secure comparison protocol that is run after the
aggregation phase, and thus doesn’t immediately fit our setting. However, we believe their input validation
protocol can be adapted to obtain a VDAF for heavy hitters that has similar characteristics as our protocol in
Section 5. (Indeed their core primitive, which they also call “Verifiable IDPF”, bears a striking resemblence
to our own VIDPF abstraction.) Likewise, one could get robustness against malicious aggregators in the
honest-majority setting by applying their ”duplicate aggregator” technique to our protocols. We leave
exploration of how to combine our results to future work.

Full version. This is the proceedings version of our paper. The full version [26] includes proofs of all
theorems, a notion of “completeness” for VDAFs, and additional remarks and commentary.

5

2 Preliminaries

This section describes cryptographic primitives on which our constructions are based. We begin with a bit
of non-standard notation.

Notation. Let [i..j] denote the set of integers {i, . . . , j} and write [i] as shorthand for the set [1..i]. If v⃗ is
a vector, let v⃗[i] denote the i-th element of v⃗. Let (x,) denote the singleton vector with value x and () the
empty vector.

In our pseudocode, all variables that are undeclared implicitly have the value ⊥. Let y←$ S denote
sampling y uniformly from a finite set S; let y←$ A(x) denote execution of randomized algorithm A; and
let y ← A(x; r) denote execution of randomized algorithm A with coins r. If X is a random variable with
support {0, 1} we let Pr

[
X

]
denote the probability that X = 1.

A table T is a map from unique keys to values; we write T[K1, . . .] to denote the value corresponding to
key K1, We sometimes write a dot “·” in place of one of the elements of the key, e.g., “T[K1, ·]” instead
of “T[K1,K2]”. We use this notation to denote the vector of values in the table that match the key pattern.
For example, we write T[K1, ·] for the vector (T[K1,K

1
2], . . . ,T[K1,K

n
2]) where (K1,K

1
2), . . . , (K1,K

n
2) are

all of the keys in the table prefixed by K1, in lexicographic order.
We measure an adversary’s runtime by the time it takes to run its experiment to completion, including

evaluating its queries.

Pseudorandom Generators. The VDAF spec [9, Section 6.2] calls for a particular type of object they
call “pseudorandom generator (PRG)”. Unlike the conventional PRGs, these objects are stateful. A PRG is
comprised of the following algorithms:

• PRG.Init(seed ∈ {0, 1}κ, cntxt ∈ {0, 1}∗) → st ∈ Q takes a seed and context string to the initial PRG
state. We call κ the seed length.

• PRG.Next(st ∈ Q, ℓ ∈ N) → (st ′ ∈ Q, out ∈ {0, 1}ℓ) takes in the current PRG state and outputs a
string of the desired length.

We also make use of an algorithm Expand[PRG] that uses the given PRG to map a seed and context string
to a vector of integers over the modular ring Zp for the desired modulus p. We defer to [9, Section 6.2] for
the full definition of Expand[PRG].

In our security proofs, we model PRGs as random oracles [13]. In some cases, such as the distributed
point functions (DPFs) in Section 5.1, constructions based on computational assumptions are known to be
sufficient. We refer to Guo et al. [33, 34] for an overview of the state-of-the-art PRGs for DPFs and similar
constructions.

Fully Linear Proof Systems. We recall the definition of FLP systems from BBCG+19 [17]. (Our
formulation differs slightly, as we discuss below.) FLPs allow a prover to prove to a verifier, in zero-
knowledge, that a secret-shared value has some property required by the application, e.g., the input is a
number in the desired range, is a one-hot vector, etc. (The main construction of BBCG+19 allows the
validity condition to be expressed in terms of an arithmetic circuit evaluated over the input, similar to more
conventional zero-knowledge proof systems.) They are “fully linear” in the sense that verifying the proof
involves computing a strictly linear function over both the input and proof. This allows verification to be
performed on secret-shared data, leveraging its additive homomorphism property. (This is contrast to prior
work on “linear PCPs” [8, 15, 38] in which the verifier has linear access to the proof, but arbitrary access to
the input.)

An FLP with finite field F, proof length m, verifier length v, prover randomness length pl , joint random-
ness length jl , and query randomness length ql is a triple of algorithms FLP defined as follows:

• FLP.Prove(x ∈ Fn, jr ∈ Fjl) → π ∈ Fm is the randomized proof-generation algorithm that takes in
an input x and joint randomness jr and outputs a proof string π ∈ Fm. We shall assume this algorithm
generates random coins by sampling uniformly from Fpl .

• FLP.Query(x ∈ Fn, π ∈ Fm, jr ∈ Fjl) → σ ∈ Fv is the randomized query-generation algorithm that
takes in an input x, proof string π, and joint randomness jr and outputs a verifier string σ. We shall
assume the random coins are sampled uniformly from Fql .

6

Algorithm ViewFLP(x):

1 jr ←$ Fjl ; qr ←$ Fql

2 π←$ Prove(x, jr)
3 σ ← Query(x, π, jr ; qr)
4 ret jr ∥ qr ∥σ

Algorithm ErrFLP(P
∗):

5 (stP∗ , x)←$ P ∗(); jr ←$ Fjl

6 π←$ P ∗(stP∗ , jr)
7 σ←$ Query(x, π, jr)
8 ret x ̸∈ L ∧ Decide(σ)

Figure 2: Procedures for defining security of FLPs.

• FLP.Decide(σ ∈ Fv) → acc ∈ {0, 1} is the deterministic decision predicate that takes in a verifier
string σ and outputs a bit acc indicating whether the input is valid.

We require the field F to have prime order; we occasionally denote its order by F.p. We say that FLP
is fully linear if the query-generation algorithm computes a linear function of the input and proof. That
is, there exists a function Q whose output is a matrix in Fv×(n+m) and, for all inputs x, proofs π, joint
randomnesses jr , and query randomnesses qr , it holds that Query(x, π, jr ; qr) = Q(jr ; qr) · (x ∥π) ∈ Fv.

Associated with FLP is a language L ⊆ Fn. We say that FLP is complete for L if the proof system
outputs 1 whenever the input is in L. That is, for all x ∈ L it holds that

Pr
[
Decide(σ) : jr ←$ Fjl ;π←$ Prove(x, jr);σ←$ Query(x, π, jr)

]
= 1 .

We define soundness of FLP in terms of experiment ErrFLP(P
∗) shown in Figure 2 associated with a

malicious prover P ∗. In this experiment, the prover commits to an invalid input x ∈ Fn \ L. Next, joint
randomness jr is generated and given to P ∗, who then generates a proof π. Finally, the verifier is run on
x, π, jr ; the malicious prover “wins” if the verifier deems the input valid. We say FLP is ϵ-sound for L if
for all P ∗ it holds that Pr

[
ErrFLP(P

∗)
]
≤ ϵ.

Let ViewFLP(x) denote the procedure defined in Figure 2. We say FLP is δ-statistical, strong, honest-
verifier zero-knowledge—or, simply, δ-private—if the verifier’s view can be simulated without knowledge
of the input. That is, there exists a randomized algorithm S such that for all x ∈ L it holds that∑

ω

∣∣Pr[ViewFLP(x) = ω
]
− Pr

[
S() = ω

]∣∣ ≤ δ .

Comparison to Boneh et al. [17]. Our syntax diverges slightly from BBCG+19 in two main respects. First,
we have tailored the syntax to 1.5-round, public-coin IOP systems (cf. [17, Section 3.2]), as this is the
only type of system considered in the VDAF specification [9]. Following the spec, we refer to the “random
challenge” as the “joint randomness”, as this allows us to more easily distinguish the challenge from the
randomness consumed locally by the prover and verifier. Second, following the VDAF specification [9], we
have adapted the syntax so that it describes explicitly the computations of the prover and verifier. Namely,
our query-generation algorithm takes in the input and proof and outputs the verifier string consumed by
the decision algorithm, whereas in BBCG+19, the query-generation algorithm outputs a description of the
linear function used to compute the verifier string.

Our notion of FLP soundness differs slightly from BBCG+19 in that it explicitly requires the prover
to “commit” to the invalid prior to the joint randomness being generated. This clarifies that the joint
randomness needs to be independent of the input in order for soundness to be achievable.

Incremental Distributed Point Functions. A point function is a function that is 0 everywhere except
on a special input α; an incremental point function is a function that is 0 everywhere except on any prefix
of α. One can imagine arranging the co-domain of this function into a complete, binary tree in which the
nodes are labeled with prefixes; and for each node labeled p, its children are labeled with p ∥ 0 and p ∥ 1.
Each node on the path to the leaf node α is assigned a non-0 value, and all other nodes are assigned 0. (See
[18, Figure 4] for an illustration.)

An incremental point function that gives output β⃗[ℓ] on the length-ℓ prefix of α is defined formally as:

fα,β⃗

(
pfx ∈ {0, 1}≤η

)
=

{
β⃗
[
|pfx |

]
if pfx is a prefix of α

0 otherwise.

7

An Incremental Distributed Point Function (IDPF) [18] is a concise secret sharing of an incremental point
function. We recall the definition of an IDPF from Boneh et al. [18] and restrict it slightly to suit the
constructions of [9]. An IDPF’s domain is the set of bitstrings of length at most η. For each input length ℓ,
the IDPF generates outputs in the group Gℓ. We present definitions only for the case of 2 parties, since
leading constructions are specialized for that case. Let η, and κ be positive integers, let M be a set, and
let Gℓ be a group for each ℓ ∈ [η]. An IDPF is a pair of algorithms:

• IDPF.Gen(α ∈ {0, 1}η, β⃗ ∈ G1 × · · · × Gη) → ({0, 1}κ)2 ×M is the key generation algorithm that

takes a bitstring α and a vector β⃗ of point values, each of which is an element of the group Gℓ for the
corresponding input length. It outputs a pair of key shares and a “public share” (an element ofM).

• IDPF.Eval(id ∈ {1, 2}, key ∈ {0, 1}κ, pub ∈M, pfx ∈ {0, 1}ℓ) → Gℓ is the point-function evaluation
algorithm that takes in a shareholder index, an IDPF key share, a public share pub, and a prefix string
of ℓ ≤ η bits, then outputs a share of the IDPF output.

An IDPF is correct if for all α ∈ {0, 1}η, all β⃗ ∈ G1 × · · · ×Gη, all (key1, key2, pub) ∈ [IDPF.Gen(α, β⃗)], and
all strings pfx of length ℓ ≤ η:

fα,β⃗(pfx) =
∑

ĵ∈{1,2}

IDPF.Eval(ĵ, keyĵ , pub, pfx) .

We define privacy for an IDPF later in Section 5.1.

3 Security Model

3.1 Syntax

As discussed in Section 1, a VDAF can be thought of as a protocol for evaluating an aggregation function F
that takes as input the vector of measurements generated by the clients and outputs an aggregate result. In
addition, the function may include an auxiliary “aggregation parameter” that allows the measurements to
be “refined” to contain only the information of interest to the collector. Accordingly, prior to executing the
VDAF, each aggregator’s state is initialized with this aggregation parameter.

Recall that execution of a VDAF proceeds in four distinct phases. (See Figure 1 for an illustration.) We
formalize the computation of the parties in each phase as the component algorithms of a VDAF:

• Shard(m ∈ I,n ∈ N) → (msg Init ∈ M, x⃗ ∈ X s) is the randomized sharding algorithm run by the
client. It takes in the client’s input measurement m and a nonce n and returns an initial message2 to
be broadcasted to all aggregators and a sequence of input shares, one for each of the s aggregators.

• Prep(ĵ ∈ [s], sk ∈ SK, st ∈ Q,n ∈ N , m⃗sg ∈M∗, x ∈ X)→ (sts ∈ {running, finished, failed}, out ∈
(Q×M)∪Y∪{⊥} is the deterministic, interactive preparation algorithm run by each aggregator dur-
ing the online preparation process. Its inputs are the share index ĵ, the verification key shared by the
aggregators sk , the current state st , the nonce n, the most recent round of broadcast messages m⃗sg
(or (msg Init,) if this is the first round), and the aggregator’s input share x . The preparation algorithm
returns an indication sts of whether the process is running, finished, or failed. When the status is
running, the output includes the aggregator’s next state and broadcast message ((st ,msg) ∈ Q×M);
and when the status is finished, the output includes the aggregator’s refined share (y ∈ Y).

• Agg(y⃗ ∈ Y∗) → a ∈ A is the deterministic aggregation algorithm run locally by each aggregator. It
takes in a sequence of refined shares y⃗ and outputs an aggregate share a.

• Unshard(ct ∈ N, a⃗ ∈ As) → r ∈ O is the deterministic unsharding algorithm used to compute the
aggregate result r. Its inputs are the report count ct and aggregate shares a⃗.

2This message is called the “public share” in the specification.

8

The sets I, N , M, X , SK, Q, Y, A, and O must also be defined by the VDAF. (We typically do so only
implicitly.) In addition to these sets, the VDAF specifies a set QInit ⊆ Q of possible initial states.

Our security definitions for VDAFs require three additional syntactic properties. The first is a property
we call refinement consistency. Intuitively, this property insists that, for a given initial state, the VDAF
defines the set of refined measurements with respect to which the validity of the refined shares is to be
verified. For Doplar for example (Section 5), the set of measurements are fixed-length bitstrings, while the
refined measurements are one-hot vectors over a finite field. Formally, refinement consistency requires the
existence of functions refine and refineFromShares such that for all m,n and st Init ∈ QInit,

Pr[refine(st Init,m) = refineFromShares(st Init,msg , x⃗) :

(msg , x⃗)←$ Shard(m,n)] = 1 .

Second, we require aggregation consistency, which means, roughly, that aggregating refined shares
into aggregate shares, then unsharding, is equivalent to first unsharding the individual refined shares, then
aggregating. To illustrate this idea, imagine arranging the refined shares into a matrix, where the rows
correspond to aggregators and the columns to measurements. Aggregation consistency means that one can
either add up the columns, then the rows, or add up the rows, then the columns. Formally, we require the
existence of a function finishResult such that for all refined shares y11 , . . . , y

1
ct , . . . , y

s
1, . . . , y

s
ct ∈ Y, it holds

that

Unshard(ct , (Agg(y11 , . . . , y
1
ct), . . . ,Agg(y

s
1, . . . , y

s
ct))) =

finishResult(ct ,Unshard(1, (Agg(y11), . . . ,Agg(y
s
1))),

. . . ,Unshard(1, (Agg(y1ct), . . . ,Agg(y
s
ct)))) .

We will see that these notions of refinement and aggregation consistency, while fairly technical in nature,
are trivial to show for natural constructions (including Prio3 and Doplar).

Lastly, our privacy definition allows the VDAF to be executed multiple times over the same batch of
measurements, each time beginning with a new initial state. (This accounts for the iterative nature of
IDPFs.) Depending on the VDAF, it may be necessary for aggregators to restrict the sequence of initial
states to prevent trivial leakage. Accordingly, we require each VDAF to specify an allowed-state algorithm
validSt that takes in the sequence of previous initial states and the next initial state and returns a bit
indicating whether the next initial state is allowed.

Remark 1. A notable feature of the VDAF syntax is the “verification key” shared by the aggregators. Looking
ahead, this key is used to derive, from the nonce supplied by the client, shared randomness used for verifying
refined shares. This is how the authors of the VDAF spec [9] chose to instantiate the “ideal coin-flipping
functionality” used in the descriptions of protocols in the papers on which the spec is based [23, 17, 18]. As
we will see in the next section, the details to how this functionality is instantiated are crucial to the privacy
and robustness of VDAFs.

3.2 Security

Three definitions are given for VDAFs. The first, completeness, is used to specify correct evaluation of an
aggregation function. The others, robustness and privacy, roughly correspond3 to the notions of the same
names from [23, Appendix A].

Security considerations for DAP [30]. Recall from the introduction that the DAP standard being developed
by the PPM working group is designed to securely execute a VDAF in a real world network. Aspects of our
security model can be thought of as abstracting away the functionality provided by DAP. As such, many of
our modeling decisions here amount to requirements that the DAP protocol must fulfill. We will highlight
some of these considerations throughout this section.

3We have not attempted to work out formal relationships between our definitions and those of Corrigan-Gibbs and Boneh
[23]; whether our definitions, when restricted to the same class of protocols, are stronger, weaker, or equivalent is an open
question.

9

Completeness. We require that, when executed honestly, the VDAF evaluates its aggregation function F
correctly. We formalize non-adversarial execution of Π via procedure RunΠ in Figure 3. Along with the
VDAF Π, this procedure is parameterized by an initial state st Init with which to configure the aggregators
and a sequence of measurements and nonces to process into an aggregate result.

Algorithm Run processes the measurements as illustrated in Figure 1. First, each measurement is sharded
into input shares by the submitting client (line 4), then refined into a set of refined shares by the aggregators
(5–16). Next, the refined shares recovered by each aggregator are combined into an aggregate share (18).
Finally, the aggregate shares are combined by the collector into the aggregate result (19).

Definition 1 (Completeness). Let F : QInit × I∗ → O be a function. We say that VDAF Π is complete
for F if for all m⃗ ∈ I∗ and n⃗ ∈ N ∗ for which |m⃗| = |n⃗| and stInit ∈ QInit it holds that

Pr
[
RunΠ(stInit, m⃗, n⃗) = F (stInit, m⃗)

]
= 1 ,

where the probability is over the randomness of Run and its subroutines. We say that Π is complete if it
is complete for some function F .

Robustness. We say that VDAF Π is robust if, when all of the aggregators execute the protocol correctly,
“valid” refined measurements are correctly aggregated, while any “invalid” measurements are filtered out
by the aggregators (with high probability). This property is captured via the game ExprobustΠ (A) defined
in Figure 3. In this game the adversary, acting as a coalition of malicious clients, submits reports to
the aggregators, eavesdrops on their communication, and observes the result of their computation. This
functionality is modeled by the Prep oracle, which the adversary may query any number of times. It controls
the nonce and initial state for each trial, but its oracle queries are subject to the restriction that, for each
distinct nonce, the sequence of initial states must be valid (according to the allowed-state algorithm validSt).

Validity is defined in terms of the refinement-consistency algorithms (see Section 3.1). Let VstInit =
{refinestInit

(m) : m ∈ I} be the set of refined measurements for initial state st Init. The adversary wins the
robustness game if, when run on initial state st Init, initial message msg Init, and input shares x⃗ , either: (1)
an aggregator accepts a share of an invalid refined measurement, i.e., one of the aggregators ends in state
finished, but the refined share y is not valid (i.e., not in the set VstInit , see line 15 in Figure 3); or (2) the
refined shares computed by the aggregators do not match the expected refined measurement, i.e., unsharding
the refined shares does not result in y (line 18).

Definition 2 (Robustness). Define the advantage of A in defeating the robustness of VDAF Π as

AdvrobustΠ (A) = Pr
[
ExprobustΠ (A)

]
.

Informally, we say that Π is robust if for every efficient adversary A, the value of AdvrobustΠ (A) is small.

Remark 2. If a VDAF is robust in the sense of Definition 2 and aggregation-consistent, then the VDAF is
also robust in the sense of [23, Definition 6]. Namely, as long as the aggregators execute the VDAF correctly,
the collector is guaranteed to correctly aggregate measurements from honest clients (and reject the measure-
ments from dishonest clients). The aggregation function that is computed is determined by the finishResult
function implied by aggregation consistency, namely F (stInit,m1, . . . ,mct) = finishResult(ct , (y1, . . . , yct)),
where yk̂ is the refined measurement obtained from refining mk̂ with stInit.

Privacy. We formalize privacy via the indistinguishability game ExpprivΠ,t (A) in the right panel of Figure 4.
The game is associated with VDAF Π, adversary A, and corruption threshold t. We consider an attacker
that controls the collector and statically corrupts at most t aggregators (lines 1–2). Using its Prep oracle (lines
16–28), the adversary controls transmission of all messages in the protocol, except for the honestly generated
input shares sent to honest (uncorrupted) aggregators. We assume that the adversary also controls setup
(see the Setup oracle on lines 11–15), meaning that it can pick the verification keys for honest aggregators
(1) and the initial state of each run of the preparation phase (14). This captures the real-world setting of the
DAP protocol [30], where one of the aggregators (the “leader”) effectively picks these values on behalf of the
others (the “helpers”). Note that our game requires the secret key to be committed to prior to generating

10

Algorithm RunΠ(st Init, m⃗, n⃗):

1 sk ←$ SK; ct ← |m⃗|
2 // Shard/Prepare

3 for k̂ ∈ [ct]:
4 (msg , x⃗)← Π.Shard(m⃗[k̂], n⃗[k̂])
5 Msg[0, 1]← msg
6 for ĵ ∈ [s]: St[ĵ]← st Init
7 for ℓ̂ ∈ [r + 1]:
8 for ĵ ∈ [s]:
9 (sts, out)← Π.Prep(ĵ, sk , St[ĵ],

10 n⃗[k̂],Msg[ℓ̂-1, ·], x⃗ [ĵ])
11 if sts = running:
12 (St[ĵ],msg)← out
13 Msg[ℓ̂, ĵ]← msg
14 else if sts = finished:
15 Out[ĵ, k̂]← out
16 else if sts = failed: ret ⊥
17 //Aggregate/Unshard

18 for ĵ ∈ [s]: a⃗[ĵ]← Π.Agg(Out[ĵ, ·])
19 ret Π.Unshard(ct , a⃗)

Game ExprobustΠ (A):

1 sk ←$ SK; w ← false; APrep(); ret w

Prep(n ∈ N , x⃗ ∈ X s ,msg Init ∈M, st Init ∈ QInit):

2 if not Π.validSt(Used[n], st Init): ret ⊥
3 Used[n]← Used[n] ∥ (st Init,)
4 Msg[0, 1]← msg Init

5 y ← Π.refineFromShares(st Init,msg Init, x⃗)
6 for ĵ ∈ [s]: St[ĵ]← st Init
7 for ℓ̂ ∈ [r + 1]:
8 for ĵ ∈ [s]:
9 (sts, out)← Π.Prep(ĵ, sk ,St[ĵ]

10 n,Msg[ℓ̂-1, ·], x⃗ [ĵ])
11 if sts = running:
12 (St[ĵ],msg)← out
13 Msg[ℓ̂, ĵ]← msg
14 else if sts = finished:
15 yĵ ← out ; w̃ ← [y ̸∈ VstInit]
16 else if sts = failed: pass
17 if not w̃ :
18 w̃ ← [y ̸= Π.Unshard(1, (Π.Agg(yĵ))ĵ∈s]
19 w ← w ∨ w̃ ; ret (w ,Msg)

Figure 3: Left: Procedure for defining completeness of r -round, s-party VDAF Π. Right: Game for
defining robustness of Π. Let QInit ⊆ Q denote the set of valid initial states and, for each st Init ∈ QInit, let
VstInit = {refinestInit(m) : m ∈ I}.

measurements: this is a deliberate restriction that was necessary to prove security of our constructions. (It
is necessary for DAP to enforce this restriction.)

The initial state for each run is subject to the restriction imposed by the allowed-state algorithm defined
by the VDAF (lines 11–13). (Accordingly, it is necessary for honest aggregators to enforce this restriction
in the DAP protocol.)

The game asks A to distinguish execution of the protocol on two sets of measurements of its choosing. To
capture this, the attacker is given an oracle Shard (lines 6–10) that models execution of the honest clients.
This oracle takes in two measurements m0,m1 and shards mb , where b is the challenge bit chosen at the
start of the game, and returns the initial message and the input shares of the corrupted aggregators. The
oracle chooses a nonce n from the nonce space N at random. (Accordingly, the DAP protocol must arrange
for clients to choose their nonces at random.)

To model an attacker that controls the collector, the game allows the adversary to learn the aggregate
shares computed by honest aggregators. This is captured by the Agg oracle (lines 29–35). Queries to
this oracle are subject to the restriction that the aggregate share does not trivially leak the challenge bit:
namely, the aggregate of both batches of measurements specified by the adversary must be equal (31).
(Tables Batch0,Batch1 keep track of the pairs of measurements m0,m1 passed to the Shard for which a
given aggregator has recovered a refined share for a given initial state.) This restriction is analogous to the
“leakage function” provided to the simulator in previous simulation-style definitions. See [23, Appendix A]
and [18, Appendix A]. We consider something slightly stronger: if the honest aggregators disagree either
on the initial state or the verification key, then we do not impose the restriction (32). This amounts to
demanding that the aggregate shares leak nothing in this case.

Definition 3 (Privacy). Let Π be an s-party VDAF and let t < s be a positive integer. Define the t-advantage
of A in attacking the privacy of Π as

AdvprivΠ,t (A) = 2 · Pr
[
ExpprivΠ,t (A)

]
− 1 .

Informally, we say that Π is t-private if for every efficient A the value of AdvprivΠ,t (A) is small.

11

Game ExpprivΠ,t (A):

1 (stA,V, (sk ĵ)ĵ∈V)←$ A()
2 if |V|+ t ̸= s return ⊥
3 b←$ {0, 1}
4 b′←$ AShard,Setup,Prep,Agg(stA)
5 ret b = b′

Shard(k̂ ∈ N,m0,m1 ∈ I):
6 if Used[k̂] ̸= ⊥: ret ⊥
7 n←$N
8 (Pub[k̂], In[k̂, ·])←$ Π.Shard(mb ,n)
9 Used[k̂]← (n,m0,m1)

10 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Setup(̂i ∈ N, ĵ ∈ V, st Init ∈ QInit):

11 if Status[̂i, ĵ] ̸= ⊥
12 or not Π.validSt(Setup[·, ĵ], st Init):
13 ret ⊥
14 Setup[̂i, ĵ]← st Init
15 Status[̂i, ĵ]← running

Prep(̂i ∈ N, ĵ ∈ V, k̂ ∈ N, m⃗sg ∈M∗):

16 if Status[̂i, ĵ] ̸= running or In[k̂, ĵ] = ⊥: ret ⊥
17 if St[̂i, ĵ, k̂] = ⊥:
18 St[̂i, ĵ, k̂]← Setup[̂i, ĵ]; m⃗sg ← (Pub[k̂],)
19 (n,m0,m1)← Used[k̂]
20 (sts, out)←
21 Π.Prep(ĵ, sk ĵ , St[̂i, ĵ, k̂],n, m⃗sg , In[k̂, ĵ])
22 if sts = running:
23 (st ,msg)← out ; St[̂i, ĵ, k̂]← st
24 else if sts = finished:
25 St[̂i, ĵ, k̂]← ⊥; Out[̂i, ĵ, k̂]← out
26 Batch0 [̂i, ĵ, k̂]← m0; Batch1 [̂i, ĵ, k̂]← m1

27 else if sts = failed: St[̂i, ĵ, k̂]← ⊥
28 ret (sts,msg)

Agg(̂i ∈ N, ĵ ∈ V):
29 if Status[̂i, ĵ] ̸= running: ret ⊥
30 (st1, . . . , sts)← Setup[̂i, ·]
31 if F (st ĵ ,Batch0 [̂i, ĵ, ·]) ̸= F (st ĵ ,Batch1 [̂i, ĵ, ·])
32 and (∀j, j′ ∈ V) stj = stj′ ∧ sk j = sk j′ :
33 ret ⊥
34 Status[̂i, ĵ]← finished

35 ret Π.Agg(Out[̂i, ĵ, ·])

Figure 4: Game for defining privacy of a complete, s-party VDAF Π for corruption threshold ≥ 0. Let F
denote the aggregation function for which Π is complete and let QInit its set of initial states. Let T = [s]\V.

4 Prio3

In this section we present our security analysis for Prio3, one of the candidates for standardization specified
in draft-irtf-cfrg-vdaf-03 [9]. The starting point for this VDAF is an FLP system (Section 2) that defines the
set of valid measurements. Drawing on techniques from Boneh et al. [17], Prio3 exploits the full-linearity
property to allow the aggregators to validate the secret shared input. However, in order for the resulting
VDAF to be suitable for a particular aggregation function F : I → O, we need the proof system to define
how measurements (I) are encoded as inputs to the prover and how refined shares are processed into the
aggregate results (O).

Definition 4 (Affine, aggregatable encodings [23, Sec. 5.]). Let F : I → O be a function. An FLP system
FLP admits an affine, aggregatable encoding for F if it defines the following algorithms:

• FLP.Encode(m ∈ I) → inp ∈ Fn is an injective map from the domain of F to the input space Fn of
FLP.

• FLP.Truncate(inp ∈ Fn)→ out ∈ Fol refines an FLP input into a format suitable for aggregation. We
call ol the output length.

• FLP.Decode(ct ∈ N, out ∈ Fol) → a ∈ O converts a refined, aggregated output out to its final form a.
This computation may depend on the number of measurements ct.

Correctness requires that for all ct ≥ 0 and m⃗ ∈ Ict it holds that

F (m⃗) = Decode
(
ct ,

∑
i∈[ct]

Truncate (Encode (m⃗[i]))
)
.

Let FLP be an FLP system that admits an affine, aggregatable encoding for F and let PRG be a PRG.
We specify the core algorithms of Prio3[FLP,PRG] in Figure 5. (This version includes changes to draft-
irtf-cfrg-vdaf-03 [9], as we discuss below.) The sharding algorithm begins by encoding the measurement as

12

Algorithm Shard(m,n):

1 inp ← Encode(m)
2 for ĵ ∈ [2..s]:
3 blind ĵ , xseed ĵ , pseed ĵ ←$ {0, 1}κ

4 x⃗ [ĵ]← RG2(xseed ĵ , ĵ)

5 ⃗rseed [ĵ]← RG7(blind ĵ , ĵ ∥n ∥ x⃗ [ĵ])
6 x⃗ [1]← inp −

∑s
ĵ=2 x⃗ [ĵ]

7 blind1←$ {0, 1}κ

8 ⃗rseed [1]← RG7(blind1, 1 ∥n ∥ x⃗ [1])
9 jseed ← RG6(0

κ, ⃗rseed); jr ← RG1(jseed , ε)
10 ps ←$ {0, 1}κ; pr ← RG4(ps, ε)
11 π⃗[1]← Prove(inp, jr ; pr)
12 π⃗[1]← π⃗[1]−

∑s
ĵ=2 RG3(pseed ĵ , ĵ)

13 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
14 for ĵ ∈ [2..s]:
15 x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

16 ret (⃗rseed , x⃗)

Algorithm Unpack(ĵ, x):

17 if ĵ = 1: (inp, π, blind)← x
18 else:
19 (xseed , pseed , blind)← x
20 inp ← RG2(xseed , ĵ)
21 π ← RG3(pseed , ĵ)
22 ret (inp, π, blind)

Algorithm Prep(ĵ, sk , st ,n, m⃗sg , x):

23 if st = ε: //Process initial message from client

24 (inp, π, blind)← Unpack(ĵ, x)

25 (⃗rseed ,)← m⃗sg ; ⃗rseed [ĵ]← RG7(blind , ĵ ∥n ∥ inp)
26 jseed ← RG6(0

κ, ⃗rseed); jr ← RG1(jseed , ε)
27 qr ← RG5(sk ,n)

28 msg ← (Query(inp, π, jr ; qr), ⃗rseed [ĵ])
29 st ← (jseed ,Truncate(inp))
30 ret (running, st ,msg)
31 //Process broadcast messages from aggregators

32 (jseed , y)← st ; (v⃗fs[ĵ], ⃗rseed [ĵ])ĵ∈[s] ← m⃗sg

33 acc ← Decide(
∑s

ĵ=1 v⃗fs[ĵ])

34 if acc and jseed = RG6(0
κ, ⃗rseed): ret (finished, y)

35 else ret (failed,⊥)

Algorithm Agg(y⃗):

36 ret
∑|⃗y|

i=1 y⃗ [i]

Algorithm Unshard(ct , a⃗):

37 ret Decode(ct ,
∑|a⃗|

i=1 a⃗[i])

Algorithm RGi(seed , cntxt):

38 l← (jl , n,m, pl , ql)
39 if i ≤ 5: ret Expand[PRG](seed , labeli ∥ cntxt ,F.p, l[i])
40 else: ret PRG.Next(PRG.Init(seed , labeli ∥ cntxt), κ)

Figure 5: Definition of 1-round, s-party VDAF Prio3[FLP,PRG]. Let label1, . . . , label7 be arbitrary, distinct
bitstrings.

prescribed by the FLP. It then splits the encoded measurement inp into shares, generates a proof of inp’s
validity, and splits the proof into shares as well. The joint randomness jr passed to the proof generation
algorithm is derived from the input shares following the Fiat-Shamir-style transform described—but not
formally analyzed—in [17, Section 6.2.3]. During preparation, the aggregators collectively re-compute jr
from their input shares. Each aggregator broadcasts a share of the verifier by running the FLP query-
generation algorithm on its share of the input and proof. (The query randomness qr is derived from the
shared verification key sk and the nonce n provided by the environment.) The FLP decision algorithm is
run on the combined verifier shares.

The aggregators must derive the joint randomness prior to computing their verifier shares. In order
to allow them to perform both computations in parallel in a single round, the client sends in its initial
message the sequence ⃗rseed of “joint randomness parts” consisting of the intermediate values computed by
the aggregators. This allows jr to be computed immediately on receipt of the input shares. To detect if a
malicious client transmitted malformed parts, the aggregators also verify the joint randomness was computed
properly in the same flow.

Allowed initial states. The set of initial states for Prio3 is simply QInit = {ε}. In our security analysis,
we assume honest aggregators process a batch at most once. Accordingly, the allowed-state algorithm
Prio3[FLP,PRG].validSt accepts only if the batch was not aggregated previously.

Consistency. The set of refined measurements includes any output of the affine, aggregatable encoding for
FLP. On input of st Init ∈ {ε} and m ∈ I, the refinement algorithm Prio3[FLP,PRG].refine first encodes m,
then truncates and decodes it as prescribed by FLP. The refine-from-shares algorithm, refineFromShares,
unpacks each input share (see Unpack in Figure 5), extracts the shares of the FLP input, truncates them,
adds them together, and decodes the result.

13

For aggregation consistency, we require the encoding scheme for FLP to be aggregation-consistent in a
similar sense. Specifically, there must exist a function finishResult such that for all outputs out1, . . . , outct ∈
Fol it holds that Decode(ct ,

∑
k̂∈[ct] out k̂) = finishResult(ct ,Decode(1, out1), . . . ,Decode(1, outct)).

Changes to the specification [9]. Figure 5 differs from draft-03 of the VDAF spec in three ways. The
most important change is to incorporate the nonce provided by the environment into the joint randomness
computation. This turns out to be crucial for a tight robustness bound; without this change, we must
contend with cases in which joint randomness is reused across reports.

Second, we have revised the domain separation tags for the PRG invocations so that each RGi in Figure 5
can be treated as an independent random oracle.

Lastly, we have moved the joint randomness parts from the input shares into the client’s initial broadcast
message. This change allowed us to simplify our proofs somewhat, but we do not believe it is essential for
security. It also has the added benefit of reducing overall communication overhead for s > 2.

Security. Fix s > 2 and let Π = Prio3[FLP,PRG] be as specified above. Let N denote the nonce space
for Π and let κ denote the seed length of PRG.

Theorem 1. Modeling each RGi in Figure 5 as a random oracle, if FLP is ϵ-sound (Section 2), then for
every adversary A against the robustness of Π it holds that

AdvrobustΠ (A) ≤ (qRG + qPrep) · ϵ+
qRG + qPrep

2

2κ−1
,

where A makes qPrep queries to Prep and a total of qRG queries to its random oracles.

For reasonable choices of the PRG seed size, the loosest term in this bound is (qRG + qPrep) · ϵ. The
multiplicative loss of qRG + qPrep reflects the adversary’s ability to partially control the randomness of the
FLP insofar as it is able to use rejection sampling to obtain query and joint randomness with any property.
The ϵ-soundness of FLP bounds the probability of violating soundness in a single interaction, but in a VDAF
the attacker may interact with the underlying FLP once in each of its qPrep queries to Prep, and it can use
its queries to RG1 to bias these interactions’ joint randomness.

Proof sketch. We sketch the security reduction here and defer the detailed proof to Appendix C.1. Our goal
is to construct from A a malicious prover P ∗ for the soundness of FLP. The overall idea is to run A in a
simulation of the robustness game for Π in which P ∗’s instance of the soundness experiment (Figure 2) is
embedded in a random Prep query so that P ∗ wins its game precisely when A sets w ← true for the first
time in that query. The main difficulty is that P ∗ must arrange to use the joint randomness it received as
input in its own game. To provide a consistent simulation of RG1, we need to arrange to extract the input to
commit to from A’s queries. This results in a union bound over all queries to RG1, either by the simulation
of Prep or by A directly.

Remark 3. For FLPs that do not make use of joint randomness (i.e., those for which jl = 0), queries to
RG1 can be disregarded, as this oracle is not used by Π. In particular, a similar reduction can be shown that
results in a multiplicative loss of just qPrep.

Remark 4. Although we have not addressed this explicitly in our specification, the extraction step of our
security reduction relies on the encoding of the context string passed to each RGi being invertible. (Similarly
for Theorem 3.)

Theorem 2. Modeling each RGi in Figure 5 as a random oracle, if FLP is δ-private, then for all 0 < t < s
and attackers A it holds that

AdvprivΠ,t (A) ≤ 2qShard

(
δ +

qRG + qShard
|N |

+
s · qRG
2κ−1

)
,

where A makes qShard queries to Shard and a total of qRG queries to the random oracles.

14

Proof sketch. The full proof is given in Section C.2. The main idea is to arrange for A’s queries to its oracles
to be independent of the challenge bit. We do so via a game-playing argument in which we incrementally
revise the game until the outcome of each oracle is independent of the current state of the game. The last
step involves a hybrid argument, where in each hybrid world we replace one invocation of the proof- and
query-generation algorithms of FLP (see Figure 2) with invocation of the simulator hypothesized by the
δ-privacy of FLP. This accounts for the multiplicative loss of qShard in the bound.

Remark 5. Instead of using separate seeds for the input share, proof share, and blind, it may be safe to
reuse the same seed for all three purposes, similar to the seed in Doplar (Section 5). This may result in a
slightly looser bound: such a change would enable the attacker to test guesses of the input share because the
known joint randomness part would be derived from the same seed.

5 Doplar

In this section we describe and analyze Doplar, our round-reduced variant of Poplar1 [9]. Poplar1 is a
candidate for standardization in draft-irtf-cfrg-vdaf-03; Doplar is introduced by our paper.

Poplar1 is designed to solve the “heavy hitters” problem (as described in Section 1) using an IDPF
(Section 2) in the following way. Two aggregators hold shares of an IDPF key generated by the clients.
Each evaluates its IDPF key at a number of equal-length candidate prefixes. They expect that the output is
non-zero for at most one of these candidates; to verify this, they execute an MPC to determine if they hold
shares of a one-hot vector, and that the non-zero value is in the desired range (i.e., equal to one or zero).
If verification succeeds, then each adds its share of the vector together with the other verified shares. The
result is a vector representing the number of measurements prefixed by each candidate.

The “secure sketch” MPC of Boneh et al. [18] requires two rounds of communication between the aggre-
gators. (Computing and verifying this sketch occurs during the preparation phase of VDAF evaluation.) In
this section we propose an alternative strategy that, leveraging techniques in Section 4, requires just one.

Our first step is to factor the validity check into two, parallelizable computations. The first computation
is solely responsible for checking that the vector of IDPF outputs is one-hot. In Section 5.1 we extend
IDPFs (Section 2) into verifiable IDPFs (VIDPFs), which preserve the same privacy properties as IDPFs,
but additionally verify the one-hotness of the refined shares. In Appendix A we show how to instantiate this
primitive using a simple technique from de Castro and Polychroniadou [22].

The second computation checks that the sum of the elements of the vector is in the desired range. Our
first idea is to perform this range check using an FLP (Section 2). This does not work, however, since a
standard FLP requires the prover to know the statement it is proving; in our case, it does not know the
value of the sum computed by the aggregators, since it does not know the candidate prefixes. To overcome
this, we show how to transform an FLP into one that is delayed input [43]. Such a proof system allows a
proof to be generated for a set of potential inputs such that the honest verifier accepts the proof for any
input in this set, but rejects otherwise (with high probability). We define delayed-input FLP in Section 5.2
and defer the construction to Appendix B.

The result is the 1-round, 2-party VDAF presented in Section 5.3. The cost of this round reduction is a
modest increase in overall communication cost and CPU time, at least for the current instantiations of the
VIDPF and delayed-input FLP. We compare the cost of Doplar and Poplar1 at the end of this section.

5.1 Verifiable IDPF

A verifiable IDPF (VIDPF) allows the dealer to prove to the shareholders that their shares represent a
one-hot vector. For our purposes, we define a one-hot vector as a vector that is nonzero in at most one
component (i.e., the all-zeroes vector is also one-hot). Verifiable function secret sharings (of which VIDPF
is a special case) were previously considered in [19, 22], and a construction specifically for VIDPF was given
in [22].

A VIDPF has two algorithms in addition to the usual Gen,Eval:

• VIDPF.VEval(id ∈ {1, 2}, key ∈ {0, 1}κ, pub ∈M,
x⃗ ∈ ({0, 1}ℓ)u) → {0, 1}∗ × (Gℓ)

u takes as input an IDPF share (private and public parts), and a
sequence of IDPF inputs. It outputs a verification value and a sequence of output shares.

15

• VIDPF.Verify(h1, h2)→ {0, 1} takes as input two verification values and returns a boolean.

We also overload the syntax of the plaintext evaluation function to take a vector of inputs, i.e., we let

fα,β⃗(x⃗) =
(
fα,β⃗(x⃗[1]), fα,β⃗(x⃗[2]), . . .

)
.

We say VIDPF is correct if, for all α ∈ {0, 1}η, all β⃗ ∈ G1×· · ·×Gη, all x⃗ ∈ ({0, 1}ℓ)∗, all (key1, key2, pub) ∈
[Gen(α, β⃗)], all (h1, y⃗1) ∈ [VEval(1, key1, pub, x⃗)], and all (h2, y⃗2) ∈ [VEval(2, key2, pub, x⃗)]:

• y⃗1 + y⃗2 = fα,β⃗(x⃗)

• If (y⃗1 + y⃗2) is a one-hot vector then V.Verify(h1, h2) = 1

Theorem 3 requires VIDPF to be extractable. Intuitively, there should be an algorithm that can extract
α, β⃗ from adversarially generated VIDPF key shares. Then VEval must produce shares consistent with the
incremental point function fα,β⃗ , whenever Verify succeeds. (A similar property is formalized for IDPFs

by BBCG+21.) This property implies, among other things, that if Verify succeeds, then shareholders are
guaranteed to hold shares of a one-hot vector. We formalize this property below.

Definition 5 (Extractable VIDPF (cf. [18, Definition 7])). Suppose that VIDPF is defined in terms of a
random oracle with co-domain Y. Refer to the game in Figure 6 associated to VIDPF, extractor E, and
adversary A. Define A’s advantage in fooling E as AdvextractVIDPF,E(A) = 2 · Pr

[
ExpextractVIDPF,E(A)

]
− 1.

Finally, our privacy reduction for Doplar (Theorem 4) requires the underlying VIDPF to be private,
in the sense that one shareholder’s view—consisting of its share keyĵ , the public share pub, and the other
shareholder’s verification value h—leaks nothing about the secrets α and β. Prior definitions of verifiable
FSS—e.g., the one in de Castro and Polychroniadou [22]—only define privacy with respect to a single vector
of evaluation points and verification predicate, both of which are assumed to be known at the time of share
generation. In our setting, shares are generated and only later is there a choice of evaluation points and
verification predicates. The same shares may be evaluated many times, on different input vectors and with
different verification predicates. This leads to a more interactive, and stronger, definition than in prior
works.4

Definition 6. Let ExpprivVIDPF,S(A) be the privacy game for VIDPF, simulator S = (S1, S2), and adversary
A defined in Figure 6. Define the advantage of A in distinguishing S’s simulation from its view of VIDPF’s
execution as AdvprivVIDPF,S(A) = 2 · Pr[ExpprivVIDPF,S(A)]− 1.

If this privacy game withholds the Sketch oracle from the adversary (shaded in Figure 6) then we obtain
the privacy game for plain IDPFs, with the adversary’s advantage defined analogously.

In Appendix A we describe a VIDPF construction that satisfies all the necessary security properties. The
construction is heavily based on the verifiable DPF technique from [22].

5.2 Delayed-Input FLPs

We introduce a new variant of fully linear proofs (FLPs), in which the prover does not know in advance
which instance (i.e., input) will be used during verification. Instead, the proof is generated only knowing a
set of possible instances; later, the proof is verified using one of those instances. For technical reasons, the
proof and verification steps operate not on the instance, but on a randomized encoding of the instance. This
extra randomness is useful in our eventual construction (Appendix B).

We adopt the terminology of delayed-input, which is standard in the study of (interactive) zero-
knowledge protocols. In an interactive protocol with delayed input, the instance and witness need not
be known/chosen until some intermediate round (often the prover’s final round). In our setting, the actual
choice of instance/witness is not chosen until after the prover finishes “speaking”. The protocol of Lapidot
and Shamir [43] is often regarded as the first ZK protocol with delayed input, while Katz and Ostrovsky [41]
were the first to explicitly rely on the delayed input property while using a ZK proof in an application.

4The game does not need to provide an oracle for VIDPF.Verify since it is a deterministic algorithm whose inputs are known
to the adversary.

16

Game ExpextractVIDPF,E(A):

1 b←$ {0, 1}; (key1, key2, pub, stA)←$ ARO()

2 if b = 0: (α, β⃗)←$ E(key1, key2, pub,Rand)
3 b′←$ ARO,Eval(stA); ret b = b′

Eval(x⃗):

4 (h1, y⃗1)←$ VIDPF.VEvalRO(1, key1, pub, x⃗)
5 (h2, y⃗2)←$ VIDPF.VEvalRO(2, key2, pub, x⃗)
6 if b = 0 and VIDPF.VerifyRO(h1, h2) = 1: ret fα,β⃗(x⃗)
7 else: ret y⃗1 + y⃗2

RO(inp):

8 if Rand[inp] = ⊥: Rand[inp]←$ Y
9 ret Rand[inp]

Game ExpprivVIDPF,S(A):

10 b←$ {0, 1}; (stA, α, β⃗, ĵ)← A()
11 if b = 0: (keyĵ , pub)←$ S1(ĵ)

12 else: (key1, key2, pub)←$ VIDPF.Gen(α, β⃗)
13 b′ ← ASketch(stA, keyĵ , pub); ret b = b′

Sketch(x⃗):
14 if b = 0: h ← S2(ĵ, keyĵ , pub, x⃗)

15 else: (h,)← VIDPF.VEval(3− ĵ, key3−ĵ , pub, x⃗)
16 ret h

Game ExpprivDFLP,S(A):

1 b←$ {0, 1}; (X , stA)← A()
2 if b = 0: (stS , jr , qr)← S1(|X |)
3 else:
4 jr ←$ Fjl ; qr ←$ Fql ; ∆←$ Fel

5 π←$ DFLP.Prove(X ,∆, jr)
6 (x, stA)← A(stA, jr , qr); assert x ∈ X
7 if b = 0: σ ← S(stS)
8 else: σ ← DFLP.Query(DFLP.Encode(∆,x),∆, π, jr ; qr)
9 b′ ← A(stA, σ); ret b = b′

Figure 6: Games for defining extractability (top-left), and privacy (bottom-left) of VIDPFs and privacy of
delayed-input FLP (right).

Definition 7. A delayed-input FLP DFLP consists of the following algorithms:

• DFLP.Encode(∆ ∈ Fel , x ∈ Fn)→ e ∈ Fn′
takes as input encoding randomness ∆, and an input instance

x. Returns an encoding of x; we let n′ denote the length of the encoding. The function Encode(∆, ·)
must be a linear function and invertible. We denote the inverse by Decode.

• DFLP.Prove(X ⊆ Fn, ∆ ∈ Fel , jr ∈ Fjl)→ π ∈ Fm takes as input a set of possible instances, encoding
randomness ∆, and joint randomness jr . Produces output proof π.

• DFLP.Query(e ∈ Fn′
, ∆ ∈ Fel , π ∈ Fm, jr ∈ Fjl ; qr ∈ Fql)→ σ ∈ Fv takes as input an encoded instance

e, encoding randomness ∆, proof π, joint randomness jr , and query randomness qr. Returns a verifier
σ. The function Query(·, ·, ·, jr ; qr) must be linear.

• DFLP.Decide(σ ∈ Fv)→ acc ∈ {0, 1}: Takes as input query responses σ and returns a boolean.

If Prove is restricted to sets X with |X | = k then we call the construction a delayed-k-input FLP.

A delayed-input FLP should satisfy the following properties:

• Completeness (with respect to language L): For all X ⊆ L, all x ∈ X , and all ∆:

Pr[Decide(σ) : jr ←$ Fjl ;π←$ Prove(X , ∆, jr);

σ←$ Query(Encode(∆,x), ∆, π, jr)] = 1 .

• Soundness (with respect to L): The scheme should be sound in the usual sense of FLPs, with respect
to the language L∗ = {(Encode(∆,x), ∆) | x ∈ L}. In other words, it is hard for a malicious prover to
generate a proof that verifies with respect to (e,∆) ̸∈ L∗.

17

Algorithm Shard(α,n):

1 //Construct the VIDPF key shares.

2 seed1, seed2←$ {0, 1}κ
3 for ℓ ∈ [η]:
4 ∆⃗[ℓ]← RG2(seed1,n ∥ ℓ ∥ 1)
5 + RG2(seed2,n ∥ ℓ ∥ 2)
6 β⃗[ℓ]← DFLP.Encode(∆⃗[ℓ], 1)

7 (key1, key2, pub)←$ VIDPF.Gen(α, β⃗)
8 //Prepare the joint randomness parts.

9 ⃗rseed [1]← RG5(seed1,n ∥ 1 ∥ pub ∥ key1)
10 ⃗rseed [2]← RG5(seed2,n ∥ 2 ∥ pub ∥ key2)
11 //Generate the level proofs.

12 for ℓ ∈ [η]:

13 jseed ← RG6(0
κ, ℓ ∥ ⃗rseed)

14 jr ← RG1(jseed ,n ∥ ℓ)
15 π←$ DFLP.Prove({0, 1}, ∆⃗[ℓ], jr)

16 p⃗f [ℓ]← π − RG3(seed2,n ∥ ℓ)
17 //Prepare the initial message and input shares.

18 x1 ← (key1, seed1, p⃗f)
19 x2 ← (key2, seed2)

20 msg ← (pub, ⃗rseed)
21 ret (msg , x1, x2)

Algorithm Unpack(ĵ, x ,n, ℓ):

22 if ĵ = 1: (key, seed , p⃗f)← x ; π ← p⃗f [ℓ]
23 else: (key, seed)← x ; π ← RG3(seed ,n ∥ ℓ)
24 ret (key, seed , π)

Algorithm Prep(ĵ, sk , st ,n,msg , x):

25 if st ∈ QInit: //Process initial message from client

26 (ℓ, p⃗fx)← st ; u← |p⃗fx |
27 (pub, ⃗rseed)← msg ; (key, seed , π)← Unpack(ĵ, x ,n, ℓ)
28 ∆← RG2(seed ,n ∥ ℓ ∥ ĵ)
29 ⃗rseed [ĵ]← RG5(seed ,n ∥ ℓ ∥ ĵ ∥ pub ∥ key)
30 jseed ← RG6(0

κ, ⃗rseed)
31 jr ← RG1(jseed ,n ∥ ℓ); qr ← RG4(sk ,n ∥ ℓ)
32 (h, y⃗)← VIDPF.VEval(ĵ, pub, key, p⃗fx)
33 inp ←

∑
i∈[u] y⃗[i]

34 σ ← DFLP.Query(inp,∆, π, jr ; qr)

35 msg ← (σ, ⃗rseed [ĵ], h); st ← (jseed , (DFLP.Decode(y⃗[i]))i∈[u])
36 ret (running, st ,msg)
37 //Process broadcast messages from aggregators

38 (jseed , y⃗)← st ;
(
(σ1, rseed1, h1), (σ2, rseed2, h2)

)
← msg

39 acc ← DFLP.Decide(σ1 + σ2)
40 if acc and jseed = RG6(0

κ, (rseed1, rseed2))
41 and VIDPF.Verify(h1, h2): ret (finished, y⃗)
42 else: ret (failed,⊥)

Algorithm Agg(y⃗): ret
∑|⃗y|

i=1 y⃗ [i]

Algorithm Unshard(, a⃗): ret
∑|a⃗|

i=1 a⃗[i]

Algorithm RGi(seed , cntxt):

43 l← (jl , el ,m, ql)
44 if i ≤ 4: ret Expand[PRG](seed , labeli ∥ cntxt ,F.p, l[i])
45 else: ret PRG.Next(PRG.Init(seed , labeli ∥ cntxt), κ)

Figure 7: Definition of 1-round, 2-party VDAF Doplar[VIDPF,DFLP,PRG]. Let label1, . . . , label6 be arbi-
trary, distinct bitstrings.

• Privacy: In Figure 6 we define a game for delayed-input FLPs, in which the proof is generated using
some set X of candidates, and later verified with respect to a particular x ∈ X . A delayed-input FLP
is δ-private if there exists a simulator S such that every A’s advantage is AdvprivDFLP,S(A) ≤ δ, where

AdvprivDFLP(A) = 2 · Pr[ExpprivDFLP,S(A)]− 1 .

5.3 Construction

We specify our construction Doplar[VIDPF,DFLP,PRG] in Figure 7. Its three components are: a verifiable
IDPF VIDPF with input length η; a delayed-2-input FLP DFLP with input set {0, 1}, proof lengthm, encoded
input length n, encoding randomness length el , joint randomness length jl , and query randomness length ql ;
and a pseudorandom generator PRG (Section 2) with seed length κ. To be suitable for our construction, we
must choose VIDPF and DFLP so that VIDPF.Gℓ = DFLP.Fn for each ℓ ∈ [η].

To shard its measurement α ∈ {0, 1}η, the client begins by running the VIDPF key generator on α.
The initial state for Doplar encodes the “level” ℓ at which the VIDPF shares are to be evaluated; each
candidate prefix must have length ℓ. (Recall from Section 2 that (V)IDPFs can be thought of as shares
of values arranged in a binary tree with nodes labeled by prefixes.) For each level of the VIDPF tree,
the client generates a delayed-input proof of the refined shares’ validity; just as for Prio3 (Section 4), the
joint randomness used at each level is derived from the aggregator’s input shares. The VIDPF output is
programmed so that the sum of the output shares corresponds to an encoded input for the delayed-input
FLP.

18

To prepare a report for aggregation, the aggregators evaluate their VIDPF key shares at the desired
candidate prefixes, then interact in order to check that (1) the joint randomness was computed correctly, (2)
their refined shares are one-hot, and (3) the sum of their refined shares is either one or zero.

Allowed initial states. An initial state is valid if it consists of a sequence of candidate prefixes all
having the same length. Moreover, each of the prefixes must be distinct. An initial state is allowed for
Doplar[VIDPF,DFLP,PRG] if the prefix length is distinct from all previous states for the same report. That

is, the allowed-state algorithm validSt only permits a new state st = (ℓ, p⃗fx) if ℓ is distinct for all previous

states and each of the prefixes p⃗fx is distinct.

Remark 6. Although not addressed in Boneh et al. [18] explicitly, this restriction on the candidate prefixes
is necessary for Poplar as well, as re-using the correlated randomness shared by the client would reveal
information about the secret-shared vector.

Consistency. The set of refined measurements for Doplar are one-hot vectors over the field F for which
the non-zero element is equal to 0 or 1. For a given initial state (ℓ, p⃗fx), this can be computed from the

VIDPF public share and key shares by evaluating the shares on each of the prefixes p⃗fx . Since the VIDPF is
a point function and the prefixes are distinct, the vector of VIDPF outputs will contain at most one nonzero
entry. Aggregation consistency for Doplar is similarly straight-forward, since the refined share space and
aggregate share space are the same and both aggregation and unsharding are vector summation. When we
let finishResult be vector summation as well, the desired property is trivially true.

Security. Let Π = Doplar[VIDPF,DFLP,PRG] as specified above. Let N be the nonce space and let κ be
the seed length for PRG.

Theorem 3. Modeling each RGi in Figure 7 as a random oracle, if DFLP is ϵ-sound, then for all tA-time
adversaries A and tE-time extractors E there exists a O(tA + qPreptE)-time adversary B for which

AdvrobustΠ (A) ≤ 2(qRG + qPrep) · ϵ+
(qRG + 3qPrep)

2

2κ

+ qPrep · AdvextractVIDPF,E(B) ,

where A makes qPrep queries to Prep and a total of qRG queries to its random oracles.

Proof sketch. The proof has a similar structure to Theorem 1 in that the last step is a reduction to the
soundness of DFLP. However in order to use this, we must first revise the game so that the challenge
input issued by the malicious prover P ∗ was constructed from the sum of refined shares that are otherwise
valid (i.e., one-hot). Using the extractability property of VIDPF, we can simplify the winning condition by
extracting the the input measurement from the adversary’s random oracle queries and use it to compute the
refined measurement whenever the one-hotness check succeeds. Refer to Appendix C.3 for the proof.

Theorem 4. For all tA-time adversaries A and t′-time simulators S, T there exist O(tA + qShardt
′)-time

adversaries B,C for which

AdvprivΠ,1 (A) ≤ 2qShard

(
AdvprivVIDPF,S(B) + η · AdvprivDFLP,T (C)

+
ηqRG + qShard
|N |

+
3qRG
2κ−1

)
,

where each RGi in Figure 7 is modeled as a random oracle, adversary A makes a total of qRG queries to all
of its random oracles and qShard queries to Shard.

Proof sketch. The reduction to DFLP privacy follows the same lines as Theorem 2 except there are η · qShard
different hybrid worlds in the last step. Privacy of VIDPF is used to ensure that the simulation of the
boundary world can be carried out without access to the input measurement. Refer to Appendix C.4 for the
proof.

19

0

50

100

150

200

Ba
nd

w
id

th
(K

ilo
by

te
s) Doplar Client

Doplar Aggregator
Poplar1 Client
Poplar1 Aggregator

100 200 300 400 500
0

5

10

15

Input Length (Bits)

Ru
nt

im
e

(m
ill

ise
co

nd
s) Doplar Client

Doplar Aggregator
Poplar1 Client
Poplar1 Aggregator

Figure 8: Bandwidth (top) and runtime (bottom) for Doplar and Poplar1.

5.4 Performance Evaluation

In this section we compare the cost of Doplar to Poplar1 in terms of communication (total bits written to
the wire) and computation. The parameters chosen for Poplar1 by the specification [9] match those in the
performance evaluation conducted by Boneh et al. [17]. We therefore take these parameters as our basis
for comparison. In the following, we have instantiated VIDPF and DFLP as described in Appendix A and
Appendix B respectively.

Boneh et al. [17] claim a per-report robustness bound of roughly 2/|F|, where F is the field chosen for the
inner nodes.5 They choose a 62-bit field. In order to obtain the same robustness bound, while permitting
the adversary at most 264 queries to its random oracles, we need to use a 128-bit field for Doplar. For both
constructions, we instantiate the PRG with AES-128 as described in [9, Section 6.2] (hence the seed length
is κ = 128).

Communication overhead. In Figure 8 we plot the communication cost of Doplar and Poplar1 for various
choices of the input length η. We plot the total number of kilobytes sent by each client. We also plot the
total number of kilobytes sent by each aggregator, per report, over all η rounds of aggregation. As one
would expect, the communication cost for Doplar scales linearly with the input length. However, the client’s
bandwidth is about 6 times that of Poplar1; and the Aggregator’s bandwidth is about 5 times.

Computational overhead. To evaluate Doplar’s computational overhead, we implement a prototype6 and
benchmark it against an existing implementation of Poplar1. The ISRG (Internet Security Research Group)
maintains Rust implementations of the current crop of VDAF standard candidates.7 The code includes a
work-in-progress version of Poplar1 (on a development branch, as of this writing) as well as the FLP and
IDPF primitives we use in our own implementation of Doplar.

We use the Criterion framework for Rust.8 All benchmarks reported below were run on a 2019 MacBook
Pro (2.6 GHz 6-Core Intel Core i7) running rustc version 1.67.1 and cargo-criterion version 1.1.0. The default
parameters were used, except the measurement time was set to 30 seconds for all benchmarks.

Microbenchmarks for sharding. To benchmark the client, we chose a random input string of the desired
length, then measured the runtime of the sharding algorithm on that input. Figure 8 shows the runtimes
for lengths ranging from 32 to 512 bits. From these data we see that sharding is about 6 times as expensive

5Poplar1 uses a smaller field for the inner nodes of the IDPF tree than the leaf nodes.
6https://github.com/cloudflareresearch/doplar/tree/cjpatton/PoPETS-2023.4-Artifact
7Source code for the prio crate: https://github.com/divviup/libprio-rs
8Criterion: https://docs.rs/criterion/latest/criterion/

20

https://github.com/cloudflareresearch/doplar/tree/cjpatton/PoPETS-2023.4-Artifact
https://github.com/divviup/libprio-rs
https://docs.rs/criterion/latest/criterion/

for Doplar as for Poplar1. However, sharding a 512-bit input takes only 5 milliseconds, which is still quite
practical. (Moreover, there is more room for optimization of our prototype.)

Microbenchmarks for preparation. Due to the highly parallelizable nature of VDAFs, much of the time the
aggregators spend on executing the protocol is network-bound. However, it is useful to assess the amount
of CPU time spent on processing a single report. To do so, we report microbenchmarks for per-report
preparation, specifically how much time it takes an aggregator to compute its (first) broadcast message
from the initial state provided by the collector and the input share provided by the client. Let us call this
“preparation initialization”.

One complicating factor is that the runtime of IDPF evaluation depends intrinsically on the distribution
of the batch of measurements and the heavy-hitters threshold used. (We refer the reader to Algorithm 3
in Boneh et al. [18] for details.) To address this, we generated a synthetic batch of measurements and
computed the prefix tree (cf. [18, Section 5.1]) for the desired threshold, then ran preparation initialization
on the longest paths of this tree.9

The following experiment was run 10 times. Following Boneh et al. [18], we sample random input strings
from a Zipf distribution (with parameter 1.03 and support 128), then compute the prefix tree with a heavy-
hitters threshold of 10. We chose a batch size of 1000. For both Doplar and Poplar, run Criterion to measure
the runtime of preparation for the longest paths of the tree.

Figure 8 shows the runtime averaged over all trials for lengths ranging from 32 to 512 bits. From these
data we see that preparation is only about 1.75 times as expensive for Doplar as for Poplar1. This is not
surprising, given that the runtime is dominated by IDPF evaluation, which in turn depends on the number
of candidates.

Level skipping. One way to improve bandwidth for both schemes is to “skip” IDPF evaluation at certain
levels. For example, if we descend the IDPF tree in τ -bit increments instead of 1-bit increments, then (1) our
VIDPF construction requires one-hot check material only in every τ -th level, and (2) the Doplar construction
requires DFLPs only at every τ -th level.10 As a result, these major contributors to communication cost are
reduced by a factor of τ . Additionally, the process of aggregating (traversing the tree of prefixes to find heavy
hitters) requires fewer rounds by a factor of τ . The trade-off is that we consider more candidate prefixes at
each level—i.e., at each step we consider the 2τ descendants at depth τ from each candidate—but this cost
is amortized over the batch.

Notably, the impact of this optimization is more significant for Doplar than for Poplar1. (For example, a
“skip factor” of τ = 2, i.e., skipping every other level, reduces the client’s overhead from 6 to 5 times that of
Poplar1 with the same optimization.) This is primarily due to the reduction in the number of delayed-input
proofs, which make up the bulk of the first input share. (The second input share compresses its shares of
the proofs into a single PRG seed.)

6 Conclusion and Future Work

The PPM working group’s ambition is to preserve user privacy even as software systems rely increasingly
on gaining insights into user behavior. Our work aims to help ensure that this effort rests on firm formal
foundations. However, we leave open a number of directions for future work. We discuss two in the remainder.

Security analysis of DAP. The definitions in this paper apply to VDAFs, which are only a component of
the DAP specification [30]. Thus, our work necessarily leaves open the security of the end-to-end protocol.
There are two important questions. First, DAP is designed to inherit the security properties of VDAF, i.e.,
one would hope that whatever can be proven about the VDAF also holds when the VDAF is instantiated
in the real-world environment in which DAP runs. One way to address this is to formulate the problem in
terms of indifferentiability [49]: if DAP’s execution can be shown to be indifferentiable from the execution
of the VDAF in the idealized environment described here, then any attack against DAP can be translated
into an attack against the underlying VDAF.

The other important question is whether DAP meets its own security goals, which, depending on the
application, might go beyond what can be achieved with a VDAF alone. Consider that whether MPC-style

9Note that IDPFs can be implemented with cross-aggregation cache, which amortizes longest-path evaluation over multiple
aggregations.

10The underlying (non-verifiable) IDPF is still organized as a binary tree, so its cost is not affected.

21

definitions like ours are enough for privacy depends intrinsically on the nature of the measurements being
collected and how they are aggregated. It is one thing to ensure that we securely compute the aggregate; it is
another to ensure that the aggregate itself does not leak “too much” information about the measurements. In
particular, in many applications it will be useful to achieve differential privacy (DP) [28] in addition to secure
computation. There are definitions of DP that extend to the multi-party setting [45, 52], and a number of
works have considered MPC protocols for aggregation functionalities that also guarantee differential privacy
of the outputs [51, 36, 10]. We hope to see future work extend this investigation to specific VDAFs.

Doplar improvements. For some applications, it would be useful for Doplar (or Poplar1) if the leaf output
could be “weighted”, i.e., a number in range {a, . . . , b} rather than {0, 1}. (Consider the ad-conversion use
case from Section 1: it might be useful to know not only how many purchases were made per ad impression,
but the total amount of money that was spent.) The delayed-k-input FLP paradigm may allow for this
generalization, if schemes can be constructed for k > 2. (In this work, we only construct the delayed-2-input
FLP needed for plain heavy hitters.)

There is also room for improvement of the communication cost. Despite the round reduction, the higher
bandwidth may be prohibitive for some applications. However, we are optimistic that the bandwidth can be
improved. Future work should focus on the delayed-2-input FLP. The current instantiation (Appendix B),
while simple, effectively doubles the proof size of the base FLP.

Acknowledgements

Thank you to the anonymous reviewers from the PETS 2023 program committee whose feedback helped us
improve a number of technical aspects of our paper. Thank you as well to Christopher Wood who helped
us position this work in the context of the ongoing standardization effort at IETF. Finally, thanks to Nikita
Borisov, Sof́ıa Celi, Tanya Verma, Tara Whalen, and Avani Wildani for editorial improvements.

Hannah and Mike carried out their work on this paper while visiting Cloudflare Research. This research
received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

[1] Privacy preserving measurement (2022), URL https://datatracker.ietf.org/wg/ppm/about/

[2] Private Advertising Tecnology Community Group (2022), URL https://www.w3.org/community/

patcg/

[3] Abdalla, M., Haase, B., Hesse, J.: Security analysis of cpace. Cryptology ePrint Archive, Paper 2021/114
(2021), URL https://eprint.iacr.org/2021/114

[4] Abdalla, M., Haase, B., Hesse, J.: CPace, a balanced composable PAKE. Internet-Draft draft-irtf-cfrg-
cpace-06, Internet Engineering Task Force (Jul 2022), URL https://datatracker.ietf.org/doc/

draft-irtf-cfrg-cpace/06/, work in Progress

[5] Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., Polychroniadou, A.: Prio+: Privacy preserv-
ing aggregate statistics via boolean shares. Cryptology ePrint Archive, Report 2021/576 (2021),
https://ia.cr/2021/576

[6] Anderson, E., Chase, M., Durak, F.B., Ghosh, E., Laine, K., Weng, C.: Aggregate measurement via
oblivious shuffling. Cryptology ePrint Archive, Report 2021/1490 (2021), https://ia.cr/2021/1490

[7] Apple, Google: Exposure Notification Privacy-preserving Analytics (ENPA). White pa-
per (2021), https://covid19-static.cdn-apple.com/applications/covid19/current/static/

contact-tracing/pdf/ENPA_White_Paper.pdf

[8] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of
approximation problems. J. ACM 45(3), 501–555 (may 1998), ISSN 0004-5411, doi:10.1145/278298.
278306, URL https://doi.org/10.1145/278298.278306

22

https://datatracker.ietf.org/wg/ppm/about/
https://www.w3.org/community/patcg/
https://www.w3.org/community/patcg/
https://eprint.iacr.org/2021/114
https://datatracker.ietf.org/doc/draft-irtf-cfrg-cpace/06/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-cpace/06/
https://ia.cr/2021/576
https://ia.cr/2021/1490
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://doi.org/10.1145/278298.278306

[9] Barnes, R., Patton, C., Schoppmann, P.: Verifiable Distributed Aggregation Functions. Internet-Draft
draft-irtf-cfrg-vdaf-03, Internet Engineering Task Force (Aug 2022), URL https://datatracker.ietf.

org/doc/draft-irtf-cfrg-vdaf/03/, work in Progress

[10] Bell, J., Gascón, A., Ghazi, B., Kumar, R., Manurangsi, P., Raykova, M., Schoppmann, P.: Distributed,
private, sparse histograms in the two-server model. In: Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 307–321 (2022)

[11] Bell, J., Gascón, A., Lepoint, T., Li, B., Meiklejohn, S., Raykova, M., Yun, C.: Acorn: Input validation
for secure aggregation. Cryptology ePrint Archive (2022), URL https://eprint.iacr.org/2022/1461

[12] Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server aggregation with
(poly) logarithmic overhead. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1253–1269 (2020)

[13] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73,
CCS ’93, ACM, New York, NY, USA (1993), ISBN 0-89791-629-8

[14] Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-
playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006, pp. 409–426,
Springer Berlin Heidelberg, Berlin, Heidelberg (2006), ISBN 978-3-540-34547-3

[15] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via
linear interactive proofs. In: Sahai, A. (ed.) Theory of Cryptography, pp. 315–333, Springer Berlin
Heidelberg, Berlin, Heidelberg (2013), ISBN 978-3-642-36594-2

[16] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage, D., Segal,
A., Seth, K.: Practical secure aggregation for privacy-preserving machine learning. In: proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

[17] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge proofs on secret-shared
data via fully linear pcps. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO
2019, pp. 67–97, Springer International Publishing, Cham (2019), ISBN 978-3-030-26954-8

[18] Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight techniques for private
heavy hitters. In: IEEE Symposium on Security and Privacy, pp. 762–776, IEEE (2021)

[19] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and extensions. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1292–1303 (2016)

[20] Brickell, J., Shmatikov, V.: Efficient anonymity-preserving data collection. In: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 76–85 (2006)

[21] Canetti, R.: Universally composable security. J. ACM 67(5) (sep 2020), ISSN 0004-5411, doi:10.1145/
3402457, URL https://doi.org/10.1145/3402457

[22] de Castro, L., Polychroniadou, A.: Lightweight, maliciously secure verifiable function secret shar-
ing. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022
- 41st Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I, Lecture Notes in Com-
puter Science, vol. 13275, pp. 150–179, Springer (2022), doi:10.1007/978-3-031-06944-4\ 6, URL
https://doi.org/10.1007/978-3-031-06944-4_6

[23] Corrigan-Gibbs, H., Boneh, D.: Prio: Private, robust, and scalable computation of aggregate statistics.
In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), pp.
259–282, USENIX Association, Boston, MA (Mar 2017), ISBN 978-1-931971-37-9, URL https://www.

usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

23

https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/03/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/03/
https://eprint.iacr.org/2022/1461
https://doi.org/10.1145/3402457
https://doi.org/10.1007/978-3-031-06944-4_6
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

[24] Danezis, G., Fournet, C., Kohlweiss, M., Zanella-Béguelin, S.: Smart meter aggregation via secret-
sharing. In: Proceedings of the first ACM workshop on Smart energy grid security, pp. 75–80 (2013)

[25] Davidson, A., Snyder, P., Quirk, E., Genereux, J., Livshits, B., Haddadi, H.: Star: Secret sharing
for private threshold aggregation reporting. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 697–710 (2022)

[26] Davis, H., Patton, C., Rosulek, M., Schoppmann, P.: Verifiable distributed aggregation functions.
Cryptology ePrint Archive, Paper 2023/130 (2023), URL https://eprint.iacr.org/2023/130

[27] Duan, Y., Canny, J., Zhan, J.: {P4P}: Practical {Large-Scale}{Privacy-Preserving} distributed com-
putation robust against malicious users. In: 19th USENIX Security Symposium (USENIX Security 10)
(2010)

[28] Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata,
Languages and Programming, pp. 1–12, Springer Berlin Heidelberg, Berlin, Heidelberg (2006), ISBN
978-3-540-35908-1

[29] Elahi, T., Danezis, G., Goldberg, I.: Privex: Private collection of traffic statistics for anonymous
communication networks. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1068–1079 (2014)

[30] Geoghegan, T., Patton, C., Rescorla, E., Wood, C.A.: Distributed Aggregation Protocol for Privacy
Preserving Measurement. Internet-Draft draft-ietf-ppm-dap-02, Internet Engineering Task Force (Sep
2022), URL https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/02/, work in Progress

[31] Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E.
(eds.) Advances in Cryptology – EUROCRYPT 2014, pp. 640–658, Springer Berlin Heidelberg, Berlin,
Heidelberg (2014), ISBN 978-3-642-55220-5

[32] Green, M., Ladd, W., Miers, I.: A protocol for privately reporting ad impressions at scale. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, p.
1591–1601, Association for Computing Machinery, New York, NY, USA (2016), ISBN 9781450341394,
doi:10.1145/2976749.2978407, URL https://doi.org/10.1145/2976749.2978407

[33] Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation from fixed-key block
ciphers. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 825–841, IEEE (2020)

[34] Guo, X., Yang, K., Wang, X., Zhang, W., Xie, X., Zhang, J., Liu, Z.: Half-tree: Halving the cost
of tree expansion in cot and dpf. Cryptology ePrint Archive, Paper 2022/1431 (2022), URL https:

//eprint.iacr.org/2022/1431

[35] Hohenberger, S., Myers, S., Pass, R., et al.: Anonize: A large-scale anonymous survey system. In: 2014
IEEE Symposium on Security and Privacy, pp. 375–389, IEEE (2014)

[36] Humphries, T., Akhavan Mahdavi, R., Veitch, S., Kerschbaum, F.: Selective mpc: Distributed compu-
tation of differentially private key-value statistics. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1459–1472 (2022)

[37] III, J.J.P., Charles, D., Gilton, D., Jung, Y.H., Parsana, M., Anderson, E.: Masked lark: Masked
learning, aggregation and reporting workflow (2021)

[38] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short pcps. In: Twenty-Second
Annual IEEE Conference on Computational Complexity (CCC’07), pp. 278–291 (2007), doi:10.1109/
CCC.2007.10

[39] Jangir, P., Koti, N., Kukkala, V.B., Patra, A., Gopal, B.R., Sangal, S.: Vogue: Faster computation
of private heavy hitters. Cryptology ePrint Archive, Paper 2022/1561 (2022), URL https://eprint.

iacr.org/2022/1561

24

https://eprint.iacr.org/2023/130
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/02/
https://doi.org/10.1145/2976749.2978407
https://eprint.iacr.org/2022/1431
https://eprint.iacr.org/2022/1431
https://eprint.iacr.org/2022/1561
https://eprint.iacr.org/2022/1561

[40] Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In: International Symposium
on Privacy Enhancing Technologies Symposium, pp. 221–238, Springer (2012)

[41] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Annual International Cryp-
tology Conference, pp. 335–354, Springer (2004)

[42] Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Interna-
tional Symposium on Privacy Enhancing Technologies Symposium, pp. 175–191, Springer (2011)

[43] Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs. In: Menezes, A.,
Vanstone, S.A. (eds.) Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 11-15, 1990, Proceedings, Lecture Notes
in Computer Science, vol. 537, pp. 353–365, Springer (1990), doi:10.1007/3-540-38424-3\ 26, URL
https://doi.org/10.1007/3-540-38424-3_26

[44] Melis, L., Danezis, G., De Cristofaro, E.: Efficient private statistics with succinct sketches. arXiv
preprint arXiv:1508.06110 (2015)

[45] Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Annual
International Cryptology Conference, pp. 126–142, Springer (2009)

[46] Molteni, D.: Improving the WAF with machine learning. Cloudflare blog (2022), URL https://blog.

cloudflare.com/waf-ml/

[47] Mouris, D., Sarkar, P., Tsoutsos, N.G.: PLASMA: Private, lightweight aggregated statistics against
malicious adversaries with full security. Cryptology ePrint Archive, Paper 2023/080 (2023), URL https:

//eprint.iacr.org/2023/080, https://eprint.iacr.org/2023/080

[48] Mozilla: Origin Telemetry (2022), URL https://firefox-source-docs.mozilla.org/toolkit/

components/telemetry/collection/origin.html

[49] Patton, C., Shrimpton, T.: Quantifying the security cost of migrating protocols to practice. In: Mic-
ciancio, D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020, pp. 94–124, Springer
International Publishing, Cham (2020), ISBN 978-3-030-56784-2

[50] Popa, R.A., Blumberg, A.J., Balakrishnan, H., Li, F.H.: Privacy and accountability for location-based
aggregate statistics. In: Proceedings of the 18th ACM conference on Computer and communications
security, pp. 653–666 (2011)

[51] Roth, E., Noble, D., Falk, B.H., Haeberlen, A.: Honeycrisp: Large-scale differentially private aggrega-
tion without a trusted core. In: Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples, p. 196–210, SOSP ’19, Association for Computing Machinery, New York, NY, USA (2019), ISBN
9781450368735, doi:10.1145/3341301.3359660, URL https://doi.org/10.1145/3341301.3359660

[52] Schoppmann, P., Vogelsang, L., Gascón, A., Balle, B.: Secure and scalable document similarity on
distributed databases: Differential privacy to the rescue. Proceedings on Privacy Enhancing Technologies
2, 209–229 (2020)

[53] Taubeneck, E., Thomson, M., Savage, B., Case, B., Masny, D., Jain, R.: Ipa end to end protocol.
Proposal submitted to the PATCG working group of the W3 (2022), URL https://github.com/

patcg-individual-drafts/ipa/blob/main/IPA-End-to-End.md

A Instantiating VIDPF

In this section we present our proposed VIDPF construction.

25

https://doi.org/10.1007/3-540-38424-3_26
https://blog.cloudflare.com/waf-ml/
https://blog.cloudflare.com/waf-ml/
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080
https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html
https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html
https://doi.org/10.1145/3341301.3359660
https://github.com/patcg-individual-drafts/ipa/blob/main/IPA-End-to-End.md
https://github.com/patcg-individual-drafts/ipa/blob/main/IPA-End-to-End.md

De Castro-Polychroniadou technique. De Castro & Polychroniadou [22] (hereafter DP22) proposed
the following simple and elegant technique to verify that a vector is one-hot. Consider a vector v⃗ that is
additively secret-shared v⃗ = v⃗1 ⊕ v⃗2. For simplicity, we describe the technique assuming that the sharing is
with respect to XOR, since in that case the shares of zero are identical strings. The technique adapts readily
to the more general case of additive shares over any group. Assume also that the parties have additive shares
of a binary indicator vector b⃗ = b⃗1 ⊕ b⃗2, which is nonzero exactly in the same positions that v⃗ is.

First, observe that the parties can easily verify whether they hold shares of an all-zeroes vector, since this
happens if and only if their shares (as strings) are identical. They can simply exchange and compare hashes
of their share-vectors (although see our remark below for a disclaimer about this idea). The technique of
DP22 is to adjust a one-hot vector into an all-zeroes vector, with the help of the dealer.

Define
adjust(v⃗i, b⃗i, C) =

(
H(1, v⃗i[1])⊕ b⃗i[1] · C, H(2, v⃗i[2])⊕ b⃗i[2] · C, . . .

)
If v⃗ and b⃗ are nonzero in (only) position i∗, then set C∗ = H(i∗, v⃗1[i

∗]) ⊕ H(i∗, v⃗2[i
∗]). Now consider the

result of both shareholders applying adjust(·, ·, C∗) to their shares:

• In positions i ̸= i∗ where they share zero, we have v⃗1[i] = v⃗2[i] and b⃗1[i] = b⃗2[i]. For these positions in
the output of adjust, both parties will compute identical strings.

• In position i∗, the parties have b⃗1[i
∗] ̸= b⃗2[i

∗]. By symmetry, suppose b⃗1[i
∗] = 1 and b⃗2[i

∗] = 0. Then
the first party will compute

H(i∗, v⃗1[i
∗])⊕ C∗

= H(i∗, v⃗1[i
∗])⊕

(
H(i∗, v⃗1[i

∗])⊕H(i∗, v⃗2[i
∗])

)
= H(i∗, v⃗2[i

∗])

and the second party will compute H(i∗, v⃗2[i
∗]) as well.

In all cases, both parties will compute the same output of adjust, which they can check for equality by
exchanging and comparing hashes. Hence, the dealer will compute the C∗ value and include it in the parties’
DPF keys. They can use C∗ to perform their verification.

To see why the DP22 approach is sound, suppose the parties hold shares of a non-one-hot vector — i.e.,
it is nonzero at positions i ̸= i′. Do both parties compute the same output of adjust? This can only happen
if C∗ value somehow corrects both positions i and i′, and this happens only when

H(i, v⃗1[i])⊕H(i, v⃗2[i]) = C∗ = H(i′, v⃗1[i
′])⊕H(i′, v⃗2[i

′])

⇐⇒ H(i, v⃗1[i])⊕H(i, v⃗2[i])⊕H(i′, v⃗1[i
′])⊕H(i′, v⃗2[i

′]) = 0

The construction is therefore sound if it is hard to find “multi-collisions” of this form in H. In particular, if
H is a random oracle with output length 4κ then an adversary making q < 2κ queries to H can find such a
collision with probability bounded by q4/24κ ≪ q/2κ.

Regarding privacy, there is one subtle issue that must be considered. Suppose party #1 holds its share
v⃗1 and the correction value C∗ = H(i∗, v⃗1[i

∗]) ⊕ H(i∗, v⃗2[i
∗]). Suppose this party has a guess for i∗ and

a guess for the nonzero value v = v⃗1[i
∗] ⊕ v⃗2[i

∗]. Then she can verify this guess by checking whether
C∗ = H(i∗, v⃗1[i

∗])⊕H(i∗, v⃗1[i
∗]⊕ v) — all values she knows. Hence, C∗ exposes an offline dictionary attack

on the secret values i∗ and v⃗[i∗]. If v⃗[i∗] is high entropy, then this is no vulnerability at all. But if v⃗[i∗]
is known to be a small value like 1 (as is the case in many applications), then this issue allows a corrupt
shareholder to unilaterally learn i∗, violating privacy. We resolve this by simply ensuring that the dealer
encodes a random element at the one-hot position (in addition to a potentially low-entropy desired value).11

Extending to incremental DPF. The technique of DP22 is well-suited for DPFs. In an incremental
DPF (IDPF), we can apply their technique to each prefix-length. However, this guarantees only that each

11We have chosen to describe our VIDPF to use an underlying IDPF as a black-box. When this is the case, we must
ensure that the IDPF outputs have sufficient entropy for the one-hotness check. If we were to instead to analyze our VIDPF
(instantiated with a natural IDPF construction) as a monolithic construction, it is likely that the underlying IDPF would
already have internal entropy available that could be used for the one-hotness check. I.e., we may be able to obtain smaller
share sizes by exploiting internal properties of the underlying IDPF.

26

VIDPF.Gen(α ∈ {0, 1}η, β⃗ ∈ G1 × · · · ×Gη):
1 for ℓ ∈ [η]:
2 R⃗[ℓ]←$ {0, 1}κ

3 β⃗∗[ℓ]← (1, β⃗[ℓ], R⃗[ℓ])

4 (key1, key2, pub)← IDPF.Gen(α, β⃗∗)
5 for ℓ ∈ [η]:
6 pfx ← α[1 : ℓ]
7 (, data1, R1)← IDPF.Eval(1, key1, pub, pfx)
8 (, data2, R2)← IDPF.Eval(2, key2, pub, pfx)

9

C⃗[ℓ]← RG(pfx ∥−data1 ∥−R1)

⊕ RG(pfx ∥ data2 ∥R2)

10 pub∗ ← (pub, C⃗)
11 ret (key1, key2, pub

∗)

VIDPF.VEval(id , key, pub∗, x⃗):

12 (pub, C⃗)← pub∗

13 for i ∈ [|x⃗|]
14 y⃗[i]← IDPF.Eval(id , key, pub, x⃗[i])

15 (b, ⃗data[i], R)← y⃗[i]
16 h← h ∥ adjust(id , key, pub∗, b, x⃗[i])
17 ret (h, ⃗data)

VIDPF.adjust(id , key, pub∗, b, x): // a helper procedure

18 (pub, C⃗)← pub∗

19 if |x| = 0: ret x // length of x as a bit string

20 (, d, R)← IDPF.Eval(id , key, pub, x)
21 prefix ← adjust(id , key, pub∗, b, x[1 : |x| − 1])

22 ret prefix ∥
(
RG(x ∥ (−1)idd ∥ (−1)idR)⊕ b · C⃗[|x|]

)
VIDPF.Verify(h1, h2):
23 ret h1 == h2

Figure 9: VIDPF construction VIDPF[IDPF], based on any IDPF. If the VIDPF is to be instantiated with

groups G1, . . . ,Gη then the underlying IPDF is instantiated with groups G̃1, . . . , G̃η, where G̃ℓ = {0, 1} ×
Gℓ × {0, 1}κ.

prefix-length corresponds to some point function. It does not necessarily guarantee that the point functions
of the different prefix-lengths satisfy the prefix condition that is needed in an IDPF.

In our construction, we extend the DP22 technique to IDPFs. For each evaluation of the IDPF — say, at
point x — we compute the adjustment strings using the DP22 technique, for x and all of its prefixes. This
alone is not enough to guarantee the prefix property. To “tie different prefix lengths together,” we ask the
shareholders to compute the adjustment strings with respect to the same sharings of the indicator bit, for all
the prefixes of x. We show that this forces the point functions at every prefix-length to be prefix-consistent.

Immediate Optimizations in an Implementation. Our construction evaluates the underlying IDPF
on all prefixes of the given strings. Doing this näıvely would increase the computational costs by a factor
of ℓ when evaluating on strings of length ℓ. However, these extra evaluations are essentially free in existing
IDPFs — while evaluating at string x, these constructions already evaluate all prefixes of x along the way.
A reasonable implementation of our VIDPF will take advantage of this fact.

The verification value h produced by VEval is a very long string, consisting of ℓ · 4κ bits for each query
point of length ℓ. If parties are to exchange these h values in an application of our VIDPF, it would account
for a significant fraction of the total communication. However, the Verify algorithm that uses these h values
merely checks them for equality. Therefore, it suffices for each party to send only a collision-resistant hash of
their h value, which can have fixed length only 2κ. This optimization changes the concrete security bound
for VIDPF soundness, by adding a term for the probability of finding a collision under the hash function.

Lemma 1. Let IDPF be an IDPF and RG be a random oracle with outputs of length 4κ. Let A be an adversary
making q queries to RG. There is a O(tA)-time adversary A′ such that the construction VIDPF[IDPF] in
Figure 9 satisfies the following:

AdvextractVIDPF[IDPF],E(A) ≤ (q4 + q2)/24κ

AdvprivVIDPF[IDPF](A) ≤ AdvprivIDPF(A
′) + q/2κ

Proof. Correctness of our construction follows from the discussion above, and is the same as in DP22.
Extractability: We begin with a few observations, which hold for all VIDPF keys, even adversarially

generated ones:

27

E(key1, key2, pub
∗,Rand):

1 (pub, C⃗)← pub∗

2 if E1 or E2: // defined in the text, here with respect to oracle queries listed in Rand

3 abort
4 α← empty string
5 for ℓ ∈ [η]:
6 if ∃a ∈ {0, 1}, y1, R1, y2, R2 such that
7 C⃗[ℓ] = Rand[(α∥a) ∥−y1 ∥−R1]⊕ Rand[(α∥a) ∥ y1 ∥R2]
8 α← α ∥ a
9 β⃗[ℓ]← y1 + y2

10 else: α← α ∥ 0; β⃗[ℓ]← 0

11 ret (α, β⃗)

Figure 10: Extractor for the proof of Lemma 1.

Observation: If adjust(1, key1, pub
∗, b1, x) = adjust(2, key2, pub

∗, b2, x), then adjust(1, key1, pub
∗, b1, x

′) =
adjust(2, key2, pub

∗, b2, x
′) as well, for every prefix x′ of x. This follows trivially by inspection and the re-

cursive nature of adjust. Note that the same b1, b2 are used for both x and x′.
Observation: Let pub∗ = (pub, C⃗). Suppose adjust(1, key1, pub

∗, b1, x) = adjust(2, key2, pub
∗, b2, x),

and IDPF.Eval(1, key1, pub, x) = (, y1, R1), and IDPF.Eval(2, key2, pub, x) = (, y2, R2). Then:

1. If b1 = b2 then RG(x ∥−y1 ∥−R1) = RG(x ∥ y2 ∥R2). This includes the case where (y1, R1)+(y2, R2) =
(0, 0), making the two calls to RG identical. It also includes the case where these two calls to RG are
a collision.

2. If b1 ̸= b2 then C⃗[|x|] = RG(x ∥−y1 ∥−R1)⊕ RG(x ∥ y2 ∥R2).

This observation can be verified by inspection.
Let E1 denote the bad event that the adversary queries RG and observes a collision. If RG has outputs of

length 4κ, and the adversary makes q oracle queries, then the probability of this bad event is bounded by
q2/24κ. When E1 does not happen, then in condition (1) above, only the case that (y1, R1)+(y2, R2) = (0, 0)
is possible.

Let E2 denote the bad event that the adversary makes any four queries to RG that satisfy:

RG(pfx ∥−d1 ∥−R1)⊕ RG(pfx ∥ d2 ∥R2) =

RG(pfx ′ ∥−d′1 ∥−R′1)⊕ RG(pfx ′ ∥ d′2 ∥R′2)

for pfx ̸= pfx ′ and d1 + d2 ̸= 0 and d′1 + d′2 ̸= 0. (These conditions ensure that the four calls to RG must
be on distinct inputs.) If RG has outputs of length 4κ, and the adversary makes q oracle queries, then the
probability of this bad event is bounded by q4/24κ. When E2 does not happen, then any value C ∈ {0, 1}4κ
uniquely determines at most one pair of queries satisfying C = RG(pfx ∥−d1 ∥−R1)⊕ RG(pfx ∥ d2 ∥R2)

We can apply the two observations inductively and obtain the following. If adjust(1, key1, pub
∗, b1, x) =

adjust(2, key2, pub
∗, b2, x) for b1 ̸= b2, then every correction word C⃗[ℓ] must be of the form RG(x[1 : ℓ] ∥ · · ·)⊕

RG(x[1 : ℓ] ∥ · · ·), for ℓ ≤ |x|. Then, provided that E2 does not happen, there is at most one x of length ℓ

for which C⃗ can be written in this way.
Combining all of these observations, we can define the extractor as shown in Figure 10.
Conditioned on the event that E doesn’t abort (which happens only with probability (q4 + q2)/24κ), we

claim that the adversary has no advantage in the extractability game.
Consider a query to Eval(x⃗) in the game, and assume the call to Verify succeeds. Then for every x⃗[i],

the corresponding calls to adjust produce identical output. If these calls to adjust have b1 = b2, and E1 has
not happened, then the corresponding output y⃗[i] must be 0. If these calls to adjust have b1 ̸= b2, then C⃗[ℓ]
must have the form RG(x⃗[i] ∥ · · ·)⊕ RG(x⃗[i] ∥ · · ·). If E2 has not happened, then x⃗[i] is in fact unique with
this property, and therefore x⃗[i] is a prefix of α computed by the extractor E. One can easily check that E

28

extracts β⃗[ℓ] that is equal to the VIDPF output y⃗[i]. In other words, y⃗ matches the output of fα,β⃗ . Hence,
the adversary’s advantage is zero.

Privacy: Let SIDPF be the simulator for privacy for the underlying IDPF. The simulator for our construc-
tion is given in Figure 11. We prove privacy in a series of hybrids, also illustrated in Figure 11. Game G0

refers to the original experiment ExpprivVIDPF, where we have inlined the definition of S2 for convenience. The
b = 0 and b = 1 branches of the Sketch oracle differ only in whose shares are given as input to VIDPF.VEval.
By the correctness of the scheme, the distinction doesn’t matter, so the Sketch oracle is independent of b.
Eliminating the conditional in the Sketch oracle, we obtain G1, which is distributed identically to G0.

G2 is identical to G1, but we have inlined the definition of VIDPF.Gen for convenience. By the correctness
of the underlying IDPF, outputs of IDPF.Eval(1, ·) and IDPF.Eval(2, ·) are secret-shares of the appropriate
plaintext values. So it has no effect on the adversary’s view to solve for the output of IDPF.Eval(3 − ĵ, ·)
using the plaintext values and the output of IDPF.Eval(ĵ, ·), instead of using key3−ĵ . In doing so, we obtain
G3 which is distributed identically to G2.

Now notice that in G3, the value key3−ĵ is never used. As such, we can replace line 26 (the call to

IDPF.Gen) with a corresponding call to the simulator SIDPF, which generates a simulated keyĵ and pub. Call
the result G4 (not pictured); this advantage in distinguishing G3 from G4 is at most ϵpriv.

In G4, the random values R⃗[ℓ] are used only to solve for R3−ĵ , which is in turn used only as an argument
to RG. Define a bad event that the adversary ever queries RG at an input of this form — i.e., of the form
RG(· ∥ · ∥ R⃗[ℓ]− Rĵ). The probability of the bad event is bounded by q/2κ since R⃗[ℓ] is uniformly random.
Conditioned on this bad event not happening, the results of these queries to RG are freshly random, and
the value that is assigned to C⃗[ℓ] is uniform. In that case, the behavior of the game is independent of the

challenge bit because S1 also assigns uniform values to C⃗[ℓ]. The advantage in guessing the challenge bit is
therefore bounded by the probability of the bad event.

B Instantiating Delayed-Input FLP

Our main result is to construct a delayed-2-input FLP for use in Doplar.

Lemma 2. The construction in Figure 12 (when suitably instantiated) is a delayed-2-input FLP with per-
fect completeness, soundness 4(n + 2)/(|F| − n − 2), and privacy 1/|F|, for F-arithmetic circuits with n
multiplication gates.

The main idea of the construction is simple. The prover wishes to generate a proof that will work with
either of two instances x1 and x2. She simply generates a separate FLP proof for both instances x1 and x2,
and randomly permutes the two proofs. To verify the combined proof against some x, the verifier accepts iff
either of the component proofs verifies against that x.

Completeness and soundness of this construction are relatively clear. However, the construction is not
necessarily zero-knowledge. While verifying the combined proof, we expect to verify a component proof
against a proof that was generated for some other instance — e.g., verify a proof generated for x1 against x2.
The standard zero-knowledge property of the underlying FLP does not apply to this situation. Indeed, since
the Query function is linear, the result of querying a “mismatched” instance-proof pair will reveal “how far
away” the instance is from the correct one.

We show that, when the underlying FLP is that of Boneh et al. [17], and extra randomness is in-
troduced into the statement by means of the Encode(∆, ·) function, even the queries to the “mismatched”
instance+proof can be simulated. Intuitively, the extra uncertainty of ∆ blinds the results of the problematic
queries.

Proof of Lemma 2. Figure 12 describes a delayed-input FLP that uses a basic FLP as a building block. Our
claims in this proof rely on that FLP being instantiated using the construction of [17], also used in the
VDAF draft specification (see [9, Section 7.3]). We recall the relevant aspects of that construction below, as
needed.

29

S1(ĵ):

1 (key, pub)← SIDPF()
2 for ℓ ∈ [η]: C⃗[ℓ]←$ {0, 1}4κ
3 pub∗ ← (pub, C⃗)
4 ret (key, pub∗)

S2(ĵ, key, pub, x⃗):

5 (h,)← VIDPF.VEval(ĵ, key, pub, x⃗)
6 ret h

Game G0 G1 :

7 b←$ {0, 1}
8 (stA, α, β⃗, ĵ)← A()
9 if b = 0: (keyĵ , pub

∗)←$ S1(ĵ)

10 else: (key1, key2, pub
∗)←$ VIDPF.Gen(α, β⃗)

11 b∗ ← ASketch(stA, keyĵ , pub
∗)

12 ret b = b∗

Sketch(x⃗):

13 if b = 0:
14 //h ← S2(ĵ, keyĵ , pub

∗, x⃗)

15 (h,)← VIDPF.VEval(ĵ, keyĵ , pub
∗, x⃗)

16 else: (h,)← VIDPF.VEval(3− ĵ, key3−ĵ , pub
∗, x⃗)

17 ret h

Game G2 G3 :

18 b←$ {0, 1}
19 (stA, α, β⃗, ĵ)← A()
20 if b = 0: (keyĵ , pub

∗)←$ S1(ĵ)
21 else:
22 // (key1, key2, pub

∗)←$ VIDPF.Gen(α, β⃗):

23 for ℓ ∈ [η]:
24 R⃗[ℓ]←$ {0, 1}κ

25 β⃗∗[ℓ]← (1, β⃗[ℓ], R⃗[ℓ])

26 (key1, key2, pub)← IDPF.Gen(α, β⃗∗)
27 for ℓ ∈ [η]:
28 pfx ← α[1 : ℓ]

29 (b1, data1, R1)← IDPF.Eval(1, key1, pub, pfx)

30 (b2, data2, R2)← IDPF.Eval(2, key2, pub, pfx)

31 (bĵ , dataĵ , Rĵ)← IDPF.Eval(ĵ, keyĵ , pub, pfx)

32

(b3−ĵ , data3−ĵ , R3−ĵ)

← (1⊕ bĵ , β⃗[ℓ]− dataĵ , R⃗[ℓ]−Rĵ)

33

C⃗[ℓ]← RG(pfx ∥ − data1 ∥R1)

⊕ RG(pfx ∥ data2 ∥R2)

34 pub∗ ← (pub, C⃗)
35 b∗ ← ASketch(stA, keyĵ , pub

∗)
36 ret b = b∗

Sketch(x⃗):
37 //h ← S2(ĵ, keyĵ , pub

∗, x⃗)

38 (h,)← VIDPF.VEval(ĵ, keyĵ , pub
∗, x⃗)

39 ret h

Figure 11: Simulator and hybrids used in the proof of privacy for the VIDPF construction.

In Doplar, we will use our DFLP construction for the language L = {0, 1} — i.e., we use it to prove that
a value is zero or one. In this case, we instantiate the underlying FLP with the circuit:

C((s, t,∆), r) =
(
r · s(s− 1) + r2 · (s ·∆− t)

)2
, (1)

where r denotes the joint randomness. This circuit recognizes the set of inputs (s, t,∆) ∈ {(0, 0, ∆), (1, ∆,∆)}.
Note that FLP has input length n = 3 and joint-randomness length jl = 1; its circuit has 3 multiplication
gates (s(s−1), s∆, and the outer square). In the more general case, FLP will be instantiated for the language
{(s, t,∆) | s ∈ L ∧ s∆ = t}. If the circuit for membership in L has n multiplication gates, then FLP will be
instantiated with a circuit with n+ 2 multiplication gates.

Completeness follows immediately from the perfect completeness of the underlying FLP. The FLP of [17]
has soundness 2n′/(|F| − n′) when its circuit has n′ multiplication gates. We instantiate that FLP with
n′ = n + 2, and we also incur a factor 2 loss in soundness since our construction verifies two proofs in the
underlying FLP. Hence, we obtain the soundness bound stated in the lemma.

The zero-knowledge simulator for our construction is given as S in Figure 13. To demonstrate privacy,
we first consider the hybrid on the left of Figure 13. With the gray box included and white box excluded,
the hybrid generates exactly the honest verifier’s view. In this game, both proofs are queried on xc, the
adversary’s choice. Note that proof πb⊕c was generated with input xc in mind, while πb⊕c⊕1 was not. Let
u = b⊕ c⊕ 1, the index of the “mismatched” proof (i.e., πu was generated with xc⊕1 in mind, not xc). By

30

DFLP∗.Prove({x⃗1, x⃗2},∆, jr):

1 (jr1, jr2)← jr
2 e⃗1 ← FLP.Encode(∆, x⃗1)
3 e⃗2 ← FLP.Encode(∆, x⃗2)
4 b←$ {1, 2}
5 πb←$ FLP.Prove(e⃗1,∆, jrb)
6 π3−b←$ FLP.Prove(e⃗2,∆, jr3−b)
7 ret (π1, π2)

DFLP∗.Query(e⃗, ∆, (π1, π2), jr ; qr):

8 (jr1, jr2)← jr ; (qr1, qr2)← qr
9 σ1←$ FLP.Query(e⃗, ∆, π1, jr1; qr1)

10 σ2←$ FLP.Query(e⃗, ∆, π2, jr2; qr2)
11 ret (σ1, σ2)

DFLP∗.Decide(σ):

12 (σ1, σ2)← σ
13 ret FLP.Decide(σ1)
14 ∨ FLP.Decide(σ2)

DFLP∗.Encode(∆ ∈ F, x⃗ ∈ Fn):

15 for i ∈ [n]:
16 e⃗[i]← x⃗[i]
17 e⃗[i+ n]← ∆ · x⃗[i]
18 ret e⃗

DFLP∗.Decode(e⃗ ∈ F2n):

19 ret e⃗[1 : n]

Figure 12: Delayed-2-input FLP construction DFLP∗[FLP]. The construction should be instantiated where
FLP is the FLP for arithmetic circuits from [17].

applying the linearity of Encode(∆, ·) and Query(·, ·, ·), we can write:

Query(Encode(∆,xc),∆, πu, jru; qru) =

Query(Encode(∆,xc⊕1), ∆, πu, jru; qru) + Query(Encode(∆,xc − xc⊕1), 0, 0⃗, jru; qru)

Making this change of notation in the game yields hybrid G1 (in Figure 13, gray boxes excluded and outlined
box included). G1 is distributed identically to the original privacy game.

In each call to Query in G1 that involves a value πi, we use the same input that was used to generate πi.
Hence, we can apply the zero-knowledge property of the underlying FLP to each such expression. In doing
so, we obtain the hybrid G2 on the right of Figure 13. The underlying FLP of [17] has perfect zero-knowledge,
so G2 is distributed identically to the original game.

To complete the proof, it suffices to show that σu is distributed pseudorandomly in F3 × {0}, since the
simulator samples σu uniformly from that set. In particular, when σ̃ is distributed as in a simulated proof,
∆ is random, and d ̸= 0, what is the distribution on σ̃ + Query(Encode(∆, d), 0⃗, 0⃗, · · ·)?

To answer this question, we must use specific properties of the FLP from [17]. We first briefly review the
main idea behind their proof. The prover defines two polynomials L and R such that, for each multiplication
gate i in the verification circuit, the value on its left wire is L(i) and its right wire R(i). Additionally, L(0)
and R(0) are chosen uniformly. Define the “gadget” polynomial G = L×R — then G(i) is the value of the
output wire of the ith gate.

The proof vector π then consists of L(0), R(0), and the coefficients of the G polynomial. With that in
mind, the Query algorithm makes 4 linear queries to the input + proof vector:

1. Obtain evaluations of the polynomial L as follows:

• L(0) is part of the proof vector.

• For i > 0, if the left input to gate i is an input to the circuit, then L(i) is given as part of the
proof input/instance, to which Query has access.

• Otherwise, the left input to gate i is the output of some other multiplication gate j. This value
can be obtained as G(j), since the coefficients of G are included in the proof vector.

Reconstruct L as the result of Lagrange interpolation over the points {(i, L(i))}. Evaluate this poly-
nomial L at point qr (the query randomness).

2. Similarly, reconstruct R and evaluate it at point qr .

3. Evaluate the polynomial G at point qr .

31

4. Evaluate G at point m, where the output of verification circuit is the output wire of the m’th multi-
plication gate.

Suppose the results of these queries are (r, s, t, u); the Decide algorithm checks that t = rs and u = 0. The
zero-knowledge property is that the result of the queries is distributed as (r, s, rs, 0) for uniform r, s←$ F.

With Query as above, we now consider the distribution of

(r, s, rs, 0) + Query(Encode(∆, d), 0⃗, 0⃗, · · ·),

where ∆, r, s are uniform in F.

• The first component of this expression is uniform due to r.

• With overwhelming probability 1 − 1/|F| we have r ̸= 0. Conditioned on r ̸= 0, the third component
of the expression is uniform, since it is masked with rs, and s is uniform (even conditioned on the first
component).

• Let q4 be the 4th component of Query’s output in the above expression. By definition of Query, q4 is the
result of evaluating G at point qr . But in this expression, the “proof vector” argument to Query is all
zeroes, hence Query evaluates the all-zeroes polynomial and outputs q4 = 0. Hence the 4th component
of the overall expression is zero.

• Let q2 be the second output of Query in the above expression. We see that q2 is the result of evaluating
polynomial R at point qr , after reconstructing R as described above. Fix a position i in which d⃗[i] ̸= 0.

Then the (n+ i)th position of e⃗ = Encode(∆, d⃗) is e⃗[i] = d⃗[i]∆, and therefore is uniformly distributed
when ∆ is uniformly distributed.

The final multiplication gate in the verification circuit is the outermost square in (1). The input to
this squaring operation is a linear combination that includes e⃗[i]. So as e⃗[i] is uniformly distributed,
the input to this multiplication gate is also uniformly distributed. Then the result of interpolating
polynomial R (based on e⃗[i] among other values) and evaluating R at qr is also uniformly distributed.
In other words, q2 is uniformly distributed over uniform choice of ∆, so the second component of the
above expression is uniform.

Overall, we have shown that the distribution of σu in G2 of Figure 13 is statistical distance 1/|F| from the
simulator’s distribution: uniform over F3×{0}. Hence in G2 the adversary has advantage bounded by 1/|F|
in G2.

C Proofs of Theorems

C.1 Prio3 Robustness (Theorem 1)

We begin by instantiating the robustness game for Π in Figure 14. We expand the Prep algorithm and
make a few simplifications to the game’s internal notation and bookkeeping. First, the game Exprobust calls
for a VDAF with an arbitrary number of rounds, but Prio3 constructions has just one round. Second, we
know that the Prep algorithm will be called exactly twice for each aggregator, and that the initial broadcast
message and state are empty. We Therefore unroll the loop of lines 5–14 of Figure 3 and evaluate those
if-statements whose values are pre-determined. Third, we replace table St with a vector s⃗t and remove
table Msg altogether. (The transcript output by the oracle is now constructed at the end on line 21 on the
left-hand panel of Figure 14.) Fourth, we evaluate Prep in parallel for all aggregators instead of in sequence;
the order of these operations does not affect their results because aggregators do not share state. Fifth, we
perform the deterministic Decide operation only once since its result is the same for all aggregators. Finally,
we replace each call to RGi with a call to the corresponding random oracle ROi. Let qi denote the number
of queries A makes to ROi; note that qRG = q1 + · · ·+ q7.

We have also dropped winning condition on line 16 of Figure 3. By definition, Π.refineFromShares(ε, x⃗) =

Π.Unshard(1, (Π.Agg(⃗inp[1]), . . . ,Π.Agg(⃗inp[s]))), where inp[ĵ] is the unpacked inner measurement share of

32

ExpprivDFLP,S(A): G1(A):

1 b←$ {0, 1}
2 ({x0, x1}, stA)← A()
3 if b = 0:
4 (stS , (jr0, jr1), (qr0, qr1))← S1()
5 else:
6 jr0, jr1←$ Fjl ; qr0, qr1←$ Fql

7 ∆←$ F
//Prove({x0, x1}, ∆, jr)

8 b←$ {0, 1}
9 πb ← Prove(Encode(∆, x⃗0),∆, jrb)

10 π1⊕b ← Prove(Encode(∆, x⃗1),∆, jr1⊕b)

11 (c, stA)← A(stA, (jr0, jr1), (qr0, qr1))
12 if b = 0: (σ0, σ1)← S∗(stS)
13 else: //Query(Encode(∆, xc), ∆, π, jr ; qr)

14 σ0 ← Query(Encode(∆,xc),∆, π0, jr0; qr0)
15 σ1 ← Query(Encode(∆,xc),∆, π1, jr1; qr1)

16 σb ← Query(Encode(∆,x0),∆, πb, jrb; qrb)
17 σ1⊕b ← Query(Encode(∆,x1),∆, π1⊕b, jr1⊕b; qr1⊕b)
18 u← b⊕ c⊕ 1 // index of “mismatched” proof

19 σu ← σu

+ Query(Encode(∆,xc − x1⊕c), 0, 0⃗, jru; qru)

20 b′ ← A(stA, (σ0, σ1))
21 ret b == b′

G2(A):
1 b←$ {0, 1}
2 ({x0, x1}, stA)← A()
3 if b = 0:
4 (stS , (jr0, jr1), (qr0, qr1))← S1()
5 else:
6 ∆←$ F
7 b←$ {0, 1}

8 (jr0, qr0, σ0)← SFLP()
9 (jr1, qr1, σ1)← SFLP()

10 (c, st)← A(stA, (jr0, jr1), (qr0, qr1))
11 if b = 0: (σ0, σ1)← S∗(stS)
12 else:
13 u← b⊕ c⊕ 1 // index of “mismatched” proof

14 σu ← σu

+ Query(Encode(∆,xc − x1⊕c), 0, 0⃗, jru; qru)
15 b′ ← A(stA, (σ0, σ1))
16 ret b == b′

S1():
1 (jr0, qr0, σ0)← S()
2 (jr1, qr1, σ1)← S()
3 ret

(
stS = (σ0, σ1), (jr0, jr1), (qr0, qr1)

)
S2(σ0, σ1):
4 b←$ {0, 1}
5 σb←$ F3 × {0} // overwrite σb

6 ret (σ0, σ1)

Figure 13: Hybrids for zero-knowledge property of the delayed-2-input FLP construction.

input share x⃗[ĵ] for each ĵ. Thus w can never be set by forcing the refined shares to mismatch the expected
refined measurement.

Now we express the proof with a series of incrementally changed games, beginning with G1 (c.f. Figure 14).
The joint randomness for each aggregator ĵ is derived in ExprobustΠ from the seed jseed ĵ of that aggregator,

which is also the state s⃗t [ĵ]. In G1, we instead derive joint randomness from s⃗t [1] for all aggregators, thus
ensuring that the joint randomness is the same for everyone.

We build a wrapper adversary B for which

AdvrobustΠ (A) ≤ Pr[G1(B)] +
q5
2κ

. (2)

Adversary B only makes queries to Prep that set s⃗t [ĵ] = s⃗t [1] for all ĵ. It accomplishes this by calculating
s⃗t [ĵ] for every aggregator and Prep query made by A. If it finds that s⃗t [ĵ] = s⃗t [1] for all aggregators, it
forwards the query to its own Prep oracle. Otherwise, it runs Prep itself. B can perfectly simulate Prep
except for line 9, because it does not know sk . Instead, B picks its own verification key sk ′ and uses sk ′ in
line 9 where Prep would use sk . Adversary A can detect the substitution of sk ′ for sk in two cases: If A
queries RO5 on seed sk ′; or if the Prep oracle and B query RO5 on the same context string. The latter event
does not occur because each query to RO5 contains a unique nonce. The former occurs with probability at
most q5

2κ , because sk ′ is a uniformly random κ-bit string. The queries that B simulates would always set
acc ĵ ← 0 in line 17. Thus any query that would set w ← true is forwarded to the Prep oracle by B, and B
wins whenever A does. The claim follows.

Next, we use the full linearity of FLP to decompose FLP.Query into algorithm Q and a matrix multiplica-
tion operation, as shown in the left-hand panel of Figure 15. Q is a randomized algorithm, but it is executed
deterministically with fixed input jr and coins qr . We may therefore call Q only once to eliminate redun-

33

Game ExprobustΠ (A) G1(A) :

1 w ← false; sk ←$ {0, 1}κ
2 ARO,Prep(); ret w

Prep(n, x⃗ ,msg Init, st Init):

3 if Used[n] ̸= ⊥: ret ⊥
4 Used[n]← ⊤
5 for ĵ ∈ [s]:
6 (⃗inp[ĵ], π⃗[ĵ], blind)← Unpack(ĵ, x⃗ [ĵ])
7 (ρ⃗,)← m⃗sg ; ρ⃗[ĵ]← RO7(blind , ĵ ∥n ∥ ⃗inp[ĵ])

8 ⃗rseed [ĵ]← ρ⃗[ĵ]
9 s⃗t [ĵ]← RO6(0

κ, ρ⃗) // joint rand seed

10 jr ← RO1(s⃗t [ĵ], ε) jr ← RO1(s⃗t [1], ε)

11 qr ← RO5(sk ,n)

12 v⃗fs[ĵ]← Query(⃗inp[ĵ], π⃗[ĵ], jr ; qr)

13 vf ←
∑s

ĵ=1 v⃗fs[ĵ]
14 d← FLP.Decide(vf)
15 for ĵ ∈ [s]:

16 jseed ĵ ← s⃗t [ĵ]; jseed ′
ĵ
← RO6(0

κ, ⃗rseed)

17 acc ĵ ← d ∧ [[jseed ĵ = jseed ′
ĵ
]]

18 w ← (w ∨ [acc ĵ ∧ refineFromShares(ε, x⃗) ̸∈ L])
19 ret (w , (msg Init, (v⃗fs[ĵ],

⃗rseed [ĵ]))ĵ∈[s])

Adversary BRO,Prep():

1 sk ′←$ {0, 1}κ
2 ARO,PrepSim()

PrepSim(n, x⃗ ,msg Init, st Init):

3 if Used[n] ̸= ⊥: ret ⊥
4 Used[n]← ⊤; fwd ← true

5 for ĵ ∈ [s]:
6 (⃗inp[ĵ], π⃗[ĵ], blind)← Unpack(ĵ, x⃗ [ĵ])
7 (ρ⃗,)← m⃗sg ; ρ⃗[ĵ]← RO7(blind , ĵ ∥n ∥ ⃗inp[ĵ])

8 ⃗rseed [ĵ]← ρ⃗[ĵ]
9 s⃗t [ĵ]← RO6(0

κ, ρ⃗) // Joint rand seed

10 if s⃗t [ĵ] ̸= s⃗t [1]: fwd ← false

11 jr ← RO1(s⃗t [ĵ], ε)
12 qr ← RO5(sk

′,n)

13 v⃗fs[ĵ]← Query(⃗inp[ĵ], π⃗[ĵ], jr ; qr)
14 if fwd : return Prep(n, x⃗ ,msg Init, st Init)

15 ret (false, (msg Init, (v⃗fs[ĵ],
⃗rseed [ĵ]))ĵ∈[s])

Figure 14: Left: Definition of game G1 for the proof of Theorem 1. Also shown is the robustness game for Π
and adversary A with some simplifications applied. Right: Adversary B.

dancy. Finally, we sum the vectors x⃗ĵ ∥πĵ before the multiplication instead of multiplying then summing the
products. This preserves the output thanks to the associativity of matrix multiplication.

Full linearity is an information theoretic property that holds unconditionally for all inputs, proofs, and
coins, so the new game computes the same verifier string vf . Thus

Pr[G1(B)] = Pr[G2(B)] . (3)

We produce the next modified game, in the right-hand panel of Figure 15, to define variables inp =∑s
ĵ=1

⃗inp[ĵ] and π =
∑s

ĵ=1 π⃗[ĵ] and invoke PRG.Query on inp, π directly. In addition, from Figure 5, we
can see that inp = Π.refineFromShares(ε, x⃗), so we substitute inp into line 21. By the full linearity of
FLP, we have that Q(jr ; qr) · (inp ∥π) = FLP.Query(inp, π, jr ; qr). Again, these operations do not affect the
adversary’s view of Prep, and

Pr[G2(B)] = Pr[G3(B)] . (4)

In the next game, we replace the pseudorandom query randomness qr with a fresh random string that is
implicitly sampled by Query. We bound the difference in advantage between games G3 and G4 via a reduction
B′ to the pseudorandomness of RG5. The reduction honestly simulates G3 except in line 11, where it queries
its challenge oracle on n and sets qr to the response. Because every nonce is unique, these queries are all
distinct. When the challenge oracle is a random function, this is a perfect simulation of G4; otherwise it is a
perfect simulation of G3. Adversary B′ makes qPrep queries to its challenge oracle; when RG5 is modeled as
a random oracle, there is a maximum of q5 random oracle queries.

The generic PRF advantage for a (q5, qPrep)-query attacker against a random oracle with domain {0, 1}κ
is bounded by the probability q5

2κ that the attacker makes a random oracle query containing sk . Thus

Pr[G3(B)] ≤ Pr[G4(B)] +
q5
2κ

. (5)

Our next game (G5 defined in the right-hand panel of Figure 16) differs from G4 as follows. We set a bad

flag and force the adversary to lose if it makes two queries to Prep which derive their joint randomness from

34

Game G1(B) G2(B) :

1 w ← false; sk ←$ {0, 1}κ
2 BRO,Prep(); ret w

Prep(n, x⃗ ,msg Init, st Init):

3 if Used[n] ̸= ⊥: ret ⊥
4 Used[n]← ⊤
5 for ĵ ∈ [s]:
6 (⃗inp[ĵ], π⃗[ĵ], blind)← Unpack(ĵ, x⃗ [ĵ])
7 (ρ⃗,)← m⃗sg ; ρ⃗[ĵ]← RO7(blind , ĵ ∥n ∥ ⃗inp[ĵ])

8 ⃗rseed [ĵ]← ρ⃗[ĵ]
9 s⃗t [ĵ]← RO6(0

κ, ρ⃗) // joint rand seed

10 jr ← RO1(s⃗t [1], ε); qr ← RO5(sk ,n)

11 v⃗fs[ĵ]← Query(⃗inp[ĵ], π⃗[ĵ], jr ; qr)

12 vf ←
∑s

ĵ=1 v⃗fs[ĵ]

13 jr ← RO1(s⃗t [1], ε); qr ← RO5(sk ,n)
14 Z ← Q(jr ; qr)
15 vf ← Z ·

∑s
ĵ=1

⃗inp[ĵ] ∥ π⃗[ĵ]

16 d← FLP.Decide(vf)
17 for ĵ ∈ [s]:

18 jseed ĵ ← s⃗t [ĵ]; jseed ′
ĵ
← RO6(0

κ, ⃗rseed)

19 acc ĵ ← d ∧ [[jseed ĵ = jseed ′
ĵ
]]

20 w ← (w ∨ [acc ĵ ∧ refineFromShares(ε, x⃗) ̸∈ L])
21 ret (w , (msg Init, (v⃗fs[ĵ],

⃗rseed [ĵ]))ĵ∈[s])

Game G2(B) G3(B) :

1 w ← false; sk ←$ {0, 1}κ
2 BRO,Prep(); ret w

Prep(n, x⃗ ,msg Init, st Init):

3 if Used[n] ̸= ⊥: ret ⊥
4 Used[n]← ⊤
5 for ĵ ∈ [s]:
6 (⃗inp[ĵ], π⃗[ĵ], blind)← Unpack(ĵ, x⃗ [ĵ])
7 (ρ⃗,)← m⃗sg ; ρ⃗[ĵ]← RO7(blind , ĵ ∥n ∥ ⃗inp[ĵ])

8 ⃗rseed [ĵ]← ρ⃗[ĵ]
9 s⃗t [ĵ]← RO6(0

κ, ρ⃗) // joint rand seed

10 jr ← RO1(s⃗t [1], ε)
11 qr ← RO5(sk ,n)

12 Z ← Q(jr ; qr)
13 vf ← Z ·

∑s
ĵ=1

⃗inp[ĵ] ∥ π⃗[ĵ]

14 inp ←
∑s

ĵ=1
⃗inp[ĵ]; π ←

∑s
ĵ=1 π⃗[ĵ]

15 vf ← FLP.Query(inp, π, jr ; qr)

16 d← FLP.Decide(vf)
17 for ĵ ∈ [s]:

18 jseed ĵ ← s⃗t [ĵ]; jseed ′
ĵ
← RO6(0

κ, ⃗rseed)

19 acc ĵ ← d ∧ [[jseed ĵ = jseed ′
ĵ
]]

20 w ← (w ∨ [acc ĵ ∧ refineFromShares(ε, x⃗) ̸∈ L])

21 w ← (w ∨ [acc ĵ ∧ inp ̸∈ L])

22 ret (w , (msg Init, (v⃗fs[ĵ],
⃗rseed [ĵ]))ĵ∈[s])

Figure 15: Game G2 (left) and game G3 (right) for the proof of Theorem 1.

the same seed. Each query to Prep derives its joint randomness seed from a unique nonce, so duplicate seeds
require a collision between two queries to RO6 or between two vectors of hints. Both seeds and hints are
randomly sampled by random oracles RO6 and RO7 respectively, so we limit the probability of both types
of collision with a birthday bound over the qPrep queries to Prep:

qPrep
2

2κ+1
+

qPrep
2

2κ·s+1
<

qPrep
2

2κ
.

Since the games are identical until bad gets set, we have

Pr[G4(B)] ≤ Pr[G5(B)] +
qPrep

2

2κ
. (6)

We are now ready to reduce to FLP soundness. To do so, we construct a malicious prover P ∗ in Figure 17
from B whose advantage in the FLP soundness experiment is related to B’s advantage in winning game G5.
Recall from Figure 2 that the prover is called twice, first to choose an input and a second time to generate
a proof. The prover is given joint randomness jr in this second call, after committing to the input. Thus,
in our reduction we must extract this input from B random oracle queries, then program the random oracle
with jr before proceeding.

The malicious prover P ∗ runs B in a simulation of G5. Its random oracle queries are answered by lazy-
evaluating a table Rand; all oracle queries are handled the same way except for a distinguished query, which
will be programmed using the jr string generated as part of the malicious prover’s experiment. At the start
of the simulation, the prover P ∗ samples i∗←$ [q1 + qPrep]. On the i∗ unique invocation of RO1 (see ROExt1
in Figure 17), the prover checks the table Rand for a nonce n and input shares inp1, . . . , inps that give rise

35

Game G3(B) G4(B) :

1 w ← false; sk ←$ {0, 1}κ
2 BRO,Prep(); ret w

Prep(n, x⃗ ,msg Init, st Init):

3 if Used[n] ̸= ⊥: ret ⊥
4 Used[n]← ⊤
5 for ĵ ∈ [s]:
6 (⃗inp[ĵ], π⃗[ĵ], blind)← Unpack(ĵ, x⃗ [ĵ])
7 (ρ⃗,)← m⃗sg ; ρ⃗[ĵ]← RO7(blind , ĵ ∥n ∥ ⃗inp[ĵ])

8 ⃗rseed [ĵ]← ρ⃗[ĵ]
9 s⃗t [ĵ]← RO6(0

κ, ρ⃗) // joint rand seed

10 jr ← RO1(s⃗t [1], ε)

11 qr ← RO5(sk ,n)

12 inp ←
∑s

ĵ=1
⃗inp[ĵ]; π ←

∑s
ĵ=1 π⃗[ĵ]

13 vf ← FLP.Query(inp, π, jr ; qr)

14 vf ←$ FLP.Query(inp, π, jr)

15 d← FLP.Decide(vf)
16 for ĵ ∈ [s]:

17 jseed ĵ ← s⃗t [ĵ]; jseed ′
ĵ
← RO6(0

κ, ⃗rseed)

18 acc ĵ ← d ∧ [[jseed ĵ = jseed ′
ĵ
]]

19 w ← (w ∨ [acc ĵ ∧ inp ̸∈ L])
20 ret (w , (msg Init, (v⃗fs[ĵ],

⃗rseed [ĵ]))ĵ∈[s])

Game G4(B) G5(B) :

1 w ← false; sk ←$ {0, 1}κ; J ← ∅
2 BRO,Prep(); ret w

Prep(n, x⃗ ,msg Init, st Init):

3 if Used[n] ̸= ⊥: ret ⊥
4 Used[n]← ⊤
5 for ĵ ∈ [s]:
6 (⃗inp[ĵ], π⃗[ĵ], blind)← Unpack(ĵ, x⃗ [ĵ])
7 (ρ⃗,)← m⃗sg ; ρ⃗[ĵ]← RO7(blind , ĵ ∥n ∥ ⃗inp[ĵ])

8 ⃗rseed [ĵ]← ρ⃗[ĵ]
9 s⃗t [ĵ]← RO6(0

κ, ρ⃗) // joint rand seed

10 if s⃗t [1] ∈ J : bad← true

11 J ← J ∪ {s⃗t [1]}

12 jr ← RO1(s⃗t [1], ε)
13 inp ←

∑s
ĵ=1

⃗inp[ĵ]; π ←
∑s

ĵ=1 π⃗[ĵ]
14 vf ←$ FLP.Query(inp, π, jr)
15 d← FLP.Decide(vf)
16 for ĵ ∈ [s]:

17 jseed ĵ ← s⃗t [ĵ]; jseed ′
ĵ
← RO6(0

κ, ⃗rseed)

18 acc ĵ ← d ∧ [[jseed ĵ = jseed ′
ĵ
]]

19 w ← (w ∨ [¬bad∧ acc ĵ ∧ inp ̸∈ L])
20 ret (w , (msg Init, (v⃗fs[ĵ],

⃗rseed [ĵ]))ĵ∈[s])

Figure 16: Fourth and fifth intermediate games for the proof of Theorem 1.

to the seed jseed provided as input. If successful, the prover outputs inp1 + · · ·+ inps as its challenge input,
awaits the response jr , and sets Rand[1, jseed , ε]← jr (line 11). It also records n∗ ← n for use later on.

The simulation of Prep queries is identical except after two events. First, the prover P ∗ halts and concedes
if two Prep queries generate the same joint randomness seed s⃗t [1]. (Adversary B loses in this case.) Second,
if n = n∗, then P ∗ immediately halts and outputs the proof π computed on line 30. If the simulation has
reached this point, then the probability that P ∗ wins its game is at least the probability that the game
sets w ← true on line 36. Conditioning on the probability that P ∗ guesses the winning query to RO1, we
have that

Pr
[
G5(B)

]
≤ (q1 + qPrep) · ϵ . (7)

The claimed bound follows by gathering up all of the bounds across the games and simplifying.

C.2 Prio3 Privacy (Theorem 2)

We begin by instantiating the privacy game ExpprivΠ,t for Prio3 VDAF Π. Game G0 in Figure 18 was con-
structed by inlining Π’s constituent algorithms and cleaning up the control flow. In addition, calls to RGi

have been substituted with calls to a random oracle ROi. Let qi denote the number of queries A makes to
ROi; note that qRG = q1 + · · ·+ q7.

In our first game hop, we modify Shard oracle’s behavior after setting flag bad1 on line 7. In the new game,
G1 (Figure 18), the nonce n is sampled without replacement, ensuring that each nonce is used is unique.
Applying the Fundamental Lemma of Game Playing [14], and using a birthday bound for the probability of
bad1 getting set,

Pr
[
G0(A)

]
≤ Pr

[
G1(A)

]
+

qShard
2

|N |
. (8)

36

Adversary P ∗[B]():

1 w ← false; sk ←$ {0, 1}κ; bad← false; J ← ∅
2 ctr ← 0; n∗ ← ⊥; i∗←$ [q1 + qPrep]
3 BROExt1,RO2,...,RO7PrepSim(); ret w

ROExt1(seed , cntxt):

4 if Rand[1, seed , cntxt] ̸= ⊥: ret RO1(seed , cntxt)
5 ctr ← ctr + 1
6 if ctr = i∗ ∧ (∃n, (blind ĵ , inp ĵ , ρĵ)ĵ∈[s]

)

7

(
∀ĵ

)
Rand[7, blind ĵ , ĵ ∥n ∥ inp ĵ] = ρĵ

8 ∧Rand[6, 0κ, (ρ1, . . . , ρs)] = seed :
9 output inp1 + · · ·+ inps and wait for jr .

10 n∗ ← n; Rand[1, seed , cntxt]← jr
11 ret RO1(seed , cntxt)

ROi(seed , cntxt):

12 l← (jl , n,m, pl , ql)
13 if Rand[i, seed , cntxt] = ⊥:
14 if i ≤ 5: Rand[i, seed , cntxt]←$ Fl[i]

15 else: Rand[i, seed , cntxt]←$ {0, 1}κ
16 ret Rand[i, seed , cntxt]

PrepSim(n, x⃗ ,msg Init, st Init):

17 if Used[n] ̸= ⊥: ret ⊥
18 Used[n]← ⊤
19 for ĵ ∈ [s]:
20 (⃗inp[ĵ], π⃗[ĵ], blind)← Unpack(ĵ, x⃗ [ĵ])
21 (ρ⃗,)← m⃗sg ; ρ⃗[ĵ]← RO7(blind , ĵ ∥n ∥ ⃗inp[ĵ])

22 ⃗rseed [ĵ]← ρ⃗[ĵ]
23 s⃗t [ĵ]← RO6(0

κ, ρ⃗) // joint rand seed

24 if s⃗t [1] ∈ J : bad← true; halt.

25 J ← J ∪ {s⃗t [1]}
26 jr ← ROExt1(s⃗t [1], ε)
27 inp ←

∑s
ĵ=1

⃗inp[ĵ]; π ←
∑s

ĵ=1 π⃗[ĵ]
28 if n = n∗: output π and halt.
29 vf ←$ FLP.Query(inp, π, jr)
30 d← FLP.Decide(vf)
31 for ĵ ∈ [s]:

32 jseed ĵ ← s⃗t [ĵ]; jseed ′
ĵ
← RO6(0

κ, ⃗rseed)

33 acc ĵ ← d ∧ [[jseed ĵ = jseed ′
ĵ
]]

34 w ← (w ∨ [¬bad ∧ acc ĵ ∧ inp ̸∈ L])
35 ret (w , (msg Init, (v⃗fs[ĵ],

⃗rseed [ĵ]))ĵ∈[s])

Figure 17: Malicious prover P ∗ for the proof of Theorem 1. The lookup in the random oracle table Rand on
lines 6–8 can performed efficiently by creating a reverse-lookup table; we omit the details for brevity.

Next we replace the adversary A with one that controls all but one aggregator. We construct such an
adversary B as a wrapper around A, and show that B wins with at least the probability of A. The adversary
B, defined in Figure 19, presents four oracles ShardSim, SetupSim, PrepSim, and AggSim to adversary A,
each emulating an oracle in game G1. Algorithms SetupSim, PrepSim, AggSim are computed by B just as
the respective oracles in game G1 except that queries pertaining to aggregator z are forwarded to B’s own
oracles. Algorithm ShardSim forwards A’s query to Shard in the natural way, but returns the shares of the
aggregators deemed honest by A.

We claim that B perfectly simulates G1(A). This is obvious for ShardSim and for queries for which ĵ = z;
in these cases, B simply forwards its queries to the appropriate oracles without changing their inputs. The
only difference is that Shard returns more input shares than A requests; B stores these extra input shares
for its own use and does not reveal them. By construction, this is a subset of the input shares returned by
the query.

When Amakes queries to SetupSim, PrepSim, or AggSim with ĵ ∈ V\{z}, our wrapper adversary performs
the operations of Setup, Prep, or Agg respectively. Effectively, adversary B uses its stored input shares to
fill in entries of tables In, Batch, Setup, Status, St, and Out exactly as the real privacy game would. Since
each entry is disambiguated by its ĵ, there is no overlap with the tables maintained by the game; every table
entry read by B must first have been written by B and thus all the information it needs to simulate the
game perfectly is accessible. It follows that

Pr
[
G1(A)

]
= Pr

[
G1(B)

]
. (9)

In the next game hop (Figure 20) we make some simplifying changes, including cleaning up the bad1
flag and substituting {z} for V and simplifying accordingly. (We do not highlight this change in Figure 20,
as it is fairly straightforward.) We also make the following breaking change: In game G2, we program the
table Rand with values chosen by the Shard oracle for the joint randomness, prover randomness, and query
randomness. Accordingly, we pass these joint randomness and query randomness to the honest aggregator
via its input share (In[k̂, z]; see line 29). This is to simplify bookkeeping in the next step.

Game G2 is identical to game G1 until programming Rand overwrites an already existing value on line
18, 19, 20, or 21.

37

Game G0(A) G1(A) :

1 (stA,V, (sk ĵ)ĵ∈V)←$ ARO(); T ← [s] \ V
2 if |V|+ t ̸= s return ⊥
3 b←$ {0, 1}; b′←$ ARO,Shard,Setup,Prep,Agg(stA)
4 ret b = b′

Shard(k̂ ∈ N,m0,m1 ∈ I):
5 if Used[k̂] ̸= ⊥: ret ⊥
6 n←$N
7 if n ∈ N ∗: bad1 ← true; n←$N \N ∗

8 N ∗ ← N ∗ ∪ {n}
9 inp ← Encode(mb)

10 for ĵ ∈ [2..s]:
11 blind ĵ , xseed ĵ , pseed ĵ ←$ {0, 1}κ

12 x⃗ [ĵ]← RO2(xseed ĵ , ĵ)

13 ⃗rseed [ĵ]← RO7(blind ĵ , ĵ ∥n ∥ x⃗ [ĵ])
14 x⃗ [1]← inp −

∑s
ĵ=2 x⃗ [ĵ]

15 blind1←$ {0, 1}κ; ps ←$ {0, 1}κ

16 ⃗rseed [1]← RO7(blind1, 1 ∥n ∥ x⃗ [1])
17 jseed ← RO6(0

κ, ⃗rseed); jr ← RO1(jseed , ε)
18 pr ← RO4(ps, ε)
19 π⃗[1]← Prove(inp, jr pr)
20 π⃗[1]← π⃗[1]−

∑s
ĵ=2 RO3(pseed ĵ , ĵ)

21 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
22 for ĵ ∈ [2..s]:
23 x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

24 Pub[k̂]← ⃗rseed ; In[k̂, ·]← x⃗
25 Used[k̂]← (n,m0,m1)
26 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Setup(̂i ∈ N, ĵ ∈ V, st Init ∈ {ε}):
27 if Status[̂i, ĵ] ̸= ⊥ or |Setup[·, ĵ]| > 0: ret ⊥
28 Setup[̂i, ĵ]← st Init
29 Status[̂i, ĵ]← running

Prep(̂i ∈ N, ĵ ∈ V, k̂ ∈ N, m⃗sg ∈M∗):

30 if Status[̂i, ĵ] ̸= running or In[k̂, ĵ] = ⊥:
31 ret ⊥
32 if St[̂i, ĵ, k̂] = ⊥:
33 St[̂i, ĵ, k̂]← Setup[̂i, ĵ]
34 m⃗sg ← (Pub[k̂],)
35 (n,m0,m1)← Used[k̂]
36 if St[̂i, ĵ, k̂] = ε: //Process initial message from client

37 (inp, π, blind)← Unpack(ĵ, In[k̂, ĵ])

38 (⃗rseed ,)← m⃗sg

39 ⃗rseed [ĵ]← RO7(blind , ĵ ∥n ∥ inp)
40 jseed ← RO6(0

κ, ⃗rseed); jr ← RO1(jseed , ε)
41 qr ← RO5(sk ĵ ,n)

42 msg ← (Query(inp, π, jr ; qr), ⃗rseed [ĵ])
43 St[̂i, ĵ, k̂]← (jseed ,Truncate(inp))
44 ret (running,msg)
45 //Process broadcast messages from aggregators

46 (jseed , y)← St[̂i, ĵ, k̂]

47 (v⃗fs[ĵ], ⃗rseed [ĵ])ĵ∈[s] ← m⃗sg

48 acc ← Decide(
∑s

ĵ=1 v⃗fs[ĵ])

49 St[̂i, ĵ, k̂]← ⊥
50 if acc = 0 or jseed ̸= RO6(0

κ, ⃗rseed):
51 ret (failed,⊥)
52 Out[̂i, ĵ, k̂]← y
53 Batch0 [̂i, ĵ, k̂]← m0

54 Batch1 [̂i, ĵ, k̂]← m1

55 ret (finished,⊥)

Agg(̂i ∈ N, ĵ ∈ V):
56 if Status[̂i, ĵ] ̸= running: ret ⊥
57 if F (Batch0 [̂i, ĵ, ·]) ̸= F (Batch1 [̂i, ĵ, ·])
58 and (∀j, j′ ∈ V) sk j = sk j′ : ret ⊥
59 Status[̂i, ĵ]← finished

60 y⃗ ← Out[̂i, ĵ, ·]
61 ret

∑|y⃗|
i=1 y⃗[i]

ROi(seed , cntxt):

62 l← (jl , n,m, pl , ql)
63 if Rand[i, seed , cntxt] = ⊥:
64 if i ≤ 5: Rand[i, seed , cntxt]←$ Fl[i]

65 else: Rand[i, seed , cntxt]←$ {0, 1}κ
66 ret Rand[i, seed , cntxt]

Figure 18: Games G0 and G1 for the proof of Theorem 2. This game is identical to the privacy game for Π,
except the Shard, Prep, and Agg algorithms have been inlined. Algorithm Unpack is as defined in Figure 5.
The random oracles ROi are lazy-evaluated in a table Rand.

38

Adversary BRO[A]():

1 (stA,V, (sk ĵ)ĵ∈V)←$ ARO()
2 z←$ V; V ′ ← {z}; T ← [s] \ V
3 stB ← (stA, z, T ,V, (sk ĵ)ĵ∈V)
4 ret (stB ,V ′, (skz))

Adversary BRO,Shard,Setup,Prep,Agg[A](stB):

5 (stA, z, T ,V, (sk ĵ)ĵ∈V)← stB

6 b′←$ ARO,ShardSim,SetupSim,PrepSim,AggSim(stA)
7 ret b′

Figure 19: Wrapper adversary B for the proof of Theorem 2. Algorithms SetupSim, PrepSim, AggSim are
evaluated by B just as the respective oracles in game G0 except that queries pertaining to aggregator z are
forwarded to B’s own oracles. Algorithm ShardSim forwards A’s query to Shard in the natural way, but
returns the shares of the aggregators deemed honest by A.

• Line 18: Adversary B either has to guess jseed or guess the input to RO6 used to derive it. For the
latter it must must guess ⃗rseed or all of the corresponding inputs to RO7, which include the blinds
generated by oracle Shard. Taking union bound over all the queries to Shard, the game overwrites Rand
at this point with probability at most q1qShard/2

κ + (q6 + q7)qShard/(2
s·κ).

• Line 19: B must guess the ps generated by oracle Shard, so the game overwrites the table with
probability at most q4qShard/2

κ.

• Line 20: B must guess the nonce n generated by the oracle. The game overwrites the table here with
probability at most q5qShard/|N |.

• Line 21: B must guess ⃗rseed or all of the corresponding inputs to RO7, so the game overwrites the
table with probability at most (q6 + q7)qShard/(2

s·κ).

We bound the probability of B distinguishing between these games by the probability that any one of these
events occurs, Gathering up the terms yields

Pr
[
G1(B)

]
≤ Pr

[
G2(B)

]
(10)

+
(q1 + q4)qShard

2κ
+

(q6 + q7)qShard
2s·κ−1

+
q5qShard
|N |

. (11)

In the next game hop (see G3 in the left panel of Figure 21) we prepare to ensure that all of the input

shares x⃗, proof shares π⃗, and the public share ⃗rseed sampled by the Shard oracle are uniform random. We
do so by sampling these values prior to processing mb and programming the random oracle with the sample
values (lines 3–12) so long as doing so does overwrite existing values (see procedure PO on lines 37–40). The
game sets a flag bad4 if Shard would have overwritten an existing value. This does not change the adversary’s
view of the experiment, so

Pr
[
G2(B)

]
= Pr

[
G3(B)

]
. (12)

Next, in game G4 (top-right panel of Figure 21) we change oracle Shard’s behavior after bad4 gets set.
In particular, if ever PO is called on an input (i, seed , cntxt , out) for which Rand[i, seed , cntxt], the value is
overwritten. Game G4 is identical to game G3 until bad4 gets set. Then we apply the Fundamental Lemma
of Game Playing [14] to show that

Pr
[
G3(B)

]
≤ Pr

[
G4(B)

]
+ Pr

[
G4(B) sets bad4

]
(13)

≤ Pr
[
G4(B)

]
+

((s − 1)(q2 + q3) + s(q7))qShard
2κ

. (14)

The probability that B sets the bad4 flag in Game G4 is the probability that B makes a random oracle
query that gets overwritten on line 9, 10, 11, or 12. On each line, the random oracle is programmed with
a uniform random string sampled by the oracle prior to being revealed to the adversary. Rolling out the
for-loop on line 8 and taking a union bound over all Shard queries yields the claimed bound.

39

Game G1(B) G2(B) :

1 (stB , {z}, (skz,))←$ BRO(); T ← [s] \ {z}
2 b←$ {0, 1}; b′←$ BRO,Shard,Setup,Prep,Agg(stB)
3 ret b = b′

Shard(k̂ ∈ N,m0,m1 ∈ I):
4 if Used[k̂] ̸= ⊥: ret ⊥
5 n←$N \N ∗; N ∗ ← N ∗ ∪ {n}
6 inp ← Encode(mb)
7 for ĵ ∈ [2..s]:
8 blind ĵ , xseed ĵ , pseed ĵ ←$ {0, 1}κ

9 x⃗ [ĵ]← RO2(xseed ĵ , ĵ)

10 ⃗rseed [ĵ]← RO7(blind ĵ , ĵ ∥n ∥ x⃗ [ĵ])
11 x⃗ [1]← inp −

∑s
ĵ=2 x⃗ [ĵ]

12 blind1←$ {0, 1}κ; ps ←$ {0, 1}κ

13 ⃗rseed [1]← RO7(blind1, 1 ∥n ∥ x⃗ [1])
14 jseed ← RO6(0

κ, ⃗rseed); jr ← RO1(jseed , ε)
15 pr ← RO4(ps, ε)

16 jseed ←$ {0, 1}κ
17 jr ←$ Fjl ; pr ←$ Fpl ; qr ←$ Fql

18 Rand[1, jseed , ε]← jr
19 Rand[4, ps, ε]← pr
20 Rand[5, skz,n]← qr

21 Rand[6, 0κ, ⃗rseed]← jseed

22 π⃗[1]← Prove(inp, jr ; pr)
23 π⃗[1]← π⃗[1]−

∑s
ĵ=2 RO3(pseed ĵ , ĵ)

24 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
25 for ĵ ∈ [2..s]:
26 x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

27 Pub[k̂]← ⃗rseed
28 In[k̂, ·]← x⃗

29 In[k̂, z]← (x⃗[z], jseed , jr , qr)

30 Used[k̂]← (n,m0,m1)
31 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Setup(̂i ∈ N, ĵ ∈ {z}, st Init ∈ {ε}):
32 if Status[̂i, ĵ] ̸= ⊥ or |Setup[·, ĵ]| > 0: ret ⊥
33 Setup[̂i, ĵ]← st Init
34 Status[̂i, ĵ]← running

Prep(̂i ∈ N, ĵ ∈ {z}, k̂ ∈ N, m⃗sg ∈M∗):

35 if Status[̂i, ĵ] ̸= running or In[k̂, ĵ] = ⊥:
36 ret ⊥
37 if St[̂i, ĵ, k̂] = ⊥:
38 St[̂i, ĵ, k̂]← Setup[̂i, ĵ]
39 m⃗sg ← (Pub[k̂],)
40 (n,m0,m1)← Used[k̂]
41 if St[̂i, ĵ, k̂] = ε: //Process initial message from client

42 (inp, π, blind)← Unpack(ĵ, In[k̂, ĵ])

43 (x, jseed , jr , qr)← In[k̂, ĵ]
44 (inp, π, blind)← Unpack(ĵ, x)

45 (⃗rseed ,)← m⃗sg

46 ⃗rseed [ĵ]← RO7(blind , ĵ ∥n ∥ inp)
47 jseed ← RO6(0

κ, ⃗rseed); jr ← RO1(jseed , ε)
48 qr ← RO5(skz,n)

49 msg ← (Query(inp, π, jr ; qr), ⃗rseed [ĵ])
50 St[̂i, ĵ, k̂]← (jseed ,Truncate(inp))
51 ret (running,msg)
52 //Process broadcast messages from aggregators

53 (jseed , y)← St[̂i, ĵ, k̂]

54 (v⃗fs[ĵ], ⃗rseed [ĵ])ĵ∈[s] ← m⃗sg

55 acc ← Decide(
∑s

ĵ=1 v⃗fs[ĵ])

56 St[̂i, ĵ, k̂]← ⊥
57 if acc = 0 or jseed ̸= RO6(0

κ, ⃗rseed):
58 ret (failed,⊥)
59 Out[̂i, ĵ, k̂]← y
60 Batch0 [̂i, ĵ, k̂]← m0

61 Batch1 [̂i, ĵ, k̂]← m1

62 ret (finished,⊥)

Agg(̂i ∈ N, ĵ ∈ {z}):
63 if Status[̂i, ĵ] ̸= running: ret ⊥
64 if F (Batch0 [̂i, ĵ, ·]) ̸= F (Batch1 [̂i, ĵ, ·]): ret ⊥
65 Status[̂i, ĵ]← finished

66 y⃗ ← Out[̂i, ĵ, ·]
67 ret

∑|y⃗|
i=1 y⃗[i]

ROi(seed , cntxt):

68 l← (jl , n,m, pl , ql)
69 if Rand[i, seed , cntxt] = ⊥:
70 if i ≤ 5: Rand[i, seed , cntxt]←$ Fl[i]

71 else: Rand[i, seed , cntxt]←$ {0, 1}κ
72 ret Rand[i, seed , cntxt]

Figure 20: Game G2 for the proof of Theorem 2.

40

Next, in game G5 (bottom-right panel of Figure 21) we simplify the Shard oracle by inlining calls to PO
and replacing invocations of RO with corresponding value generated by the oracle. These changes do not
change the view of the adversary, so

Pr
[
G4(B)

]
= Pr

[
G5(B)

]
. (15)

Up to this point, we have constructed the “leader” input and proof shares differently than all of the
other shares: we pick all other shares randomly, then set x⃗ [1] = inp −

∑s
ĵ=2 x⃗ [ĵ] and π⃗[1] = π −

∑s
ĵ=2 π⃗[ĵ].

In our next game, we instead sample the “leader” shares randomly and compute the shares of the honest
aggregator z in a distinguished manner: x⃗ [z] = inp−

∑
ĵ∈T x⃗ [ĵ] and π⃗[z] = π−

∑
ĵ∈T x⃗ [ĵ], where T = [s]\{z}.

If z = 1, this changes nothing. Otherwise, consider that in G5, we have

x⃗ [1] = inp −
s∑

ĵ=2

x⃗ [ĵ] = inp −

∑
ĵ∈T

x⃗ [ĵ]− x⃗ [z] + x⃗ [1]

 .

If we add x⃗ [z] − x⃗ [1] to both sides of this equation, we can see that in G4, it was already true that x⃗ [z] =
inp −

∑
ĵ∈T x⃗ [ĵ]. The same holds true for π⃗[z] by an analogous argument. Therefore the distributions of

aggregators’ 1 and z’s input and proof shares are unchanged between G4 and G5, and we have

Pr[G5(B)] = Pr[G6(B)] . (16)

In our next game (G7, defined in the right panel of Figure 22) we run the query algorithm for aggregator
z in the Shard oracle and only send the result to Prep. The adversary cannot detect the timing of when this
algorithm is run, so we have

Pr[G6(B)] = Pr[G7(B)] . (17)

In the next game (G8, defined in the left panel of Figure 23) we run ViewFLP (as defined in Section 2)
on input inp to get jr , qr , and a verifier σ and use these to compute Shard’s output. We have defined
x⃗ [z] = inp −

∑
ĵ∈T x⃗ [ĵ] and x⃗ [z] = π −

∑
ĵ∈T π⃗[ĵ]. Using the full linearity of FLP, we can the honest

aggregator z’s verifier share vfs in terms of jr , qr , σ and the corrupt aggregators’ shares, since:

Query(inp, π, jr ; qr) = Query(x⃗ [z], π⃗[z], jr ; qr) (18)

+
∑
ĵ∈T

Query(x⃗ [ĵ], π⃗[ĵ], jr ; qr) (19)

This revision to the game does not change the outcome of the experiment. However, since we do not have
access to the prover randomness generated by ViewFLP(inp), we can no longer consistently program the
random oracle (see 19). Fortunately, to trigger this inconsistency, the adversary would have to guess the
seed ps used to to program it prior to calling Shard. It follows that

Pr[G7(B)] ≤ Pr[G8(B)] +
q4qShard

2κ
. (20)

Let S be the simulator hypothesized by δ-privacy of FLP. In the right panel of Figure 23 we define a
series of hybrid games that replace ViewFLP with a simulator S for the privacy of FLP. Recall from Section 2
that S outputs a string jr ∥ qr ∥σ. In Gi

9(B), the first i− 1 queries to Shard generate jr , qr , σ by calling S();
the remaining queries call ViewFLP instead. This means that G1

9 is identical to G8, so

Pr
[
G8(B)

]
= Pr

[
G1
9(B)

]
. (21)

For every v ∈ Fjl×ql×v, we let pi,v denote the probability that B wins hybrid Gi
9, conditioned on the

event that the ith query to Shard sets v = jr ∥ qr ∥σ. A union bound over all v shows that

Pr[Gi
9(B)] =

∑
v∈Fjl×ql×v

pi,v . (22)

41

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G2 G3

1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \N ∗; N ∗ ← N ∗ ∪ {n}
3 x⃗←$ (Fn)s ; π⃗←$ (Fm)s

4 (blind1, . . . , blind s)←$ ({0, 1}κ)s
5 (xseed2, . . . , xseed s)←$ ({0, 1}κ)s−1

6 (pseed2, . . . , pseed s)←$ ({0, 1}κ)s−1

7 ⃗rseed ←$ ({0, 1}κ)s
8 for ĵ ∈ [s]:
9 PO2(xseed ĵ , ĵ, x⃗[ĵ])

10 PO3(pseed ĵ , ĵ, π⃗[ĵ])

11 PO7(blind ĵ , ĵ ∥n ∥ x⃗[ĵ], ⃗rseed [ĵ])

12 PO7(blind1, 1 ∥n ∥ x⃗[1], ⃗rseed [1])

13 inp ← Encode(mb)
14 for ĵ ∈ [2..s]:

15 blind ĵ , xseed ĵ , pseed ĵ ←$ {0, 1}κ

16 x⃗ [ĵ]← RO2(xseed ĵ , ĵ)

17 ⃗rseed [ĵ]← RO7(blind ĵ , ĵ ∥n ∥ x⃗ [ĵ])
18 x⃗ [1]← inp −

∑s
ĵ=2 x⃗ [ĵ]

19 blind1←$ {0, 1}κ; ps ←$ {0, 1}κ

20 ⃗rseed [1]← RO7(blind1, 1 ∥n ∥ x⃗ [1])
21 jseed ←$ {0, 1}κ
22 jr ←$ Fjl ; pr ←$ Fpl ; qr ←$ Fql

23 Rand[1, jseed , ε]← jr
24 Rand[4, ps, ε]← pr
25 Rand[5, skz,n]← qr

26 Rand[6, 0κ, ⃗rseed]← jseed
27 π⃗[1]← Prove(inp, jr ; pr)
28 π⃗[1]← π⃗[1]−

∑s
ĵ=2 RO3(pseed ĵ , ĵ)

29 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
30 for ĵ ∈ [2..s]:
31 x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

32 Pub[k̂]← ⃗rseed
33 In[k̂, ·]← x⃗
34 In[k̂, z]← (x⃗[z], jseed , jr , qr)
35 Used[k̂]← (n,m0,m1)
36 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Algorithm POi(seed , cntxt , out):

37 if Rand[i, seed , cntxt] = ⊥:
38 Rand[i, seed , cntxt]← out
39 else:
40 bad4 ← true

Algorithm POi(seed , cntxt , out): Game G3 G4

1 if Rand[i, seed , cntxt] = ⊥:
2 Rand[i, seed , cntxt]← out
3 else:
4 bad4 ← true; Rand[i, seed , cntxt]← out

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G5

1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \ N ∗; N ∗ ← N ∗ ∪ {n}
3 x⃗←$ (Fn)s ; π⃗←$ (Fm)s

4 (blind1, . . . , blind s)←$ ({0, 1}κ)s
5 (xseed2, . . . , xseed s)←$ ({0, 1}κ)s−1

6 (pseed2, . . . , pseed s)←$ ({0, 1}κ)s−1

7 ⃗rseed ←$ ({0, 1}κ)s
8 for ĵ ∈ [s]:
9 Rand[2, xseed ĵ , ĵ]← x⃗[ĵ]

10 Rand[3, pseed ĵ , ĵ]← π⃗[ĵ]

11 Rand[7, blind ĵ , ĵ ∥n ∥ x⃗[ĵ]]← ⃗rseed [ĵ]

12 Rand[7, blind1, 1 ∥n ∥ x⃗[1]]← ⃗rseed [1]
13 inp ← Encode(mb)
14 x⃗ [1]← inp −

∑s
ĵ=2 x⃗ [ĵ]

15 ps ←$ {0, 1}κ
16 jseed ←$ {0, 1}κ
17 jr ←$ Fjl ; pr ←$ Fpl ; qr ←$ Fql

18 Rand[1, jseed , ε]← jr
19 Rand[4, ps, ε]← pr
20 Rand[5, skz,n]← qr

21 Rand[6, 0κ, ⃗rseed]← jseed
22 π⃗[1]← Prove(inp, jr ; pr)
23 π⃗[1]← π⃗[1]−

∑s
ĵ=2 π⃗[ĵ]

24 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
25 for ĵ ∈ [2..s]:
26 x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

27 Pub[k̂]← ⃗rseed
28 In[k̂, ·]← x⃗
29 In[k̂, z]← (x⃗[z], jseed , jr , qr)
30 Used[k̂]← (n,m0,m1)
31 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Figure 21: Games G3 (left), G4 (top-right), and G5 (bottom-right) for the proof of Theorem 2. Only the
Shard is shown, as this is the only object that changes in each game hop.

42

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G5 G6

1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \N ∗; N ∗ ← N ∗ ∪ {n}
3 x⃗←$ (Fn)s ; π⃗←$ (Fm)s

4 (blind1, . . . , blind s)←$ ({0, 1}κ)s
5 (xseed2, . . . , xseed s)←$ ({0, 1}κ)s−1

6 (pseed2, . . . , pseed s)←$ ({0, 1}κ)s−1

7 ⃗rseed ←$ ({0, 1}κ)s

8 jr ←$ Fjl ; pr ←$ Fpl

9 inp ← Encode(mb)
10 π ← Prove(inp, jr ; pr)
11 x⃗ [z]← inp −

∑
ĵ∈T x⃗ [ĵ]

12 π⃗[z]← π −
∑

ĵ∈T π⃗[ĵ]

13 for ĵ ∈ [s]:
14 Rand[2, xseed ĵ , ĵ]← x⃗[ĵ]

15 Rand[3, pseed ĵ , ĵ]← π⃗[ĵ]

16 Rand[7, blind ĵ , ĵ ∥n ∥ x⃗[ĵ]]← ⃗rseed [ĵ]

17 Rand[7, blind1, 1 ∥n ∥ x⃗[1]]← ⃗rseed [1]

18 inp ← Encode(mb)
19 x⃗ [1]← inp −

∑s
ĵ=2 x⃗ [ĵ]

20 ps ←$ {0, 1}κ
21 jseed ←$ {0, 1}κ

22 jr ←$ Fjl ; pr ←$ Fpl ; qr ←$ Fql

23 Rand[1, jseed , ε]← jr
24 Rand[4, ps, ε]← pr
25 Rand[5, skz,n]← qr

26 Rand[6, 0κ, ⃗rseed]← jseed

27 π⃗[1]← Prove(inp, jr ; pr)
28 π⃗[1]← π⃗[1]−

∑s
ĵ=2 π⃗[ĵ]

29 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
30 for ĵ ∈ [2..s]:
31 x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

32 Pub[k̂]← ⃗rseed
33 In[k̂, ·]← x⃗
34 In[k̂, z]← (x⃗[z], jseed , jr , qr)
35 Used[k̂]← (n,m0,m1)
36 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G6 G7

1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \ N ∗; N ∗ ← N ∗ ∪ {n}
3 x⃗←$ (Fn)s ; π⃗←$ (Fm)s

4 (blind1, . . . , blind s)←$ ({0, 1}κ)s
5 (xseed2, . . . , xseed s)←$ ({0, 1}κ)s−1

6 (pseed2, . . . , pseed s)←$ ({0, 1}κ)s−1

7 ⃗rseed ←$ ({0, 1}κ)s ; jr ←$ Fjl ; pr ←$ Fpl

8 inp ← Encode(mb)
9 π ← Prove(inp, jr ; pr)

10 x⃗ [z]← inp −
∑

ĵ∈T x⃗ [ĵ]

11 π⃗[z]← π −
∑

ĵ∈T π⃗[ĵ]

12 for ĵ ∈ [s]:
13 Rand[2, xseed ĵ , ĵ]← x⃗[ĵ]

14 Rand[3, pseed ĵ , ĵ]← π⃗[ĵ]

15 Rand[7, blind ĵ , ĵ ∥n ∥ x⃗[ĵ]]← ⃗rseed [ĵ]

16 Rand[7, blind1, 1 ∥n ∥ x⃗[1]]← ⃗rseed [1]
17 ps ←$ {0, 1}κ; jseed ←$ {0, 1}κ; qr ←$ Fql

18 Rand[1, jseed , ε]← jr ; Rand[4, ps, ε]← pr

19 Rand[5, skz,n]← qr ; Rand[6, 0κ, ⃗rseed]← jseed
20 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
21 for ĵ ∈ [2..s]: x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

22 Pub[k̂]← ⃗rseed ; In[k̂, ·]← x⃗

23 In[k̂, z]← (x⃗[z], jseed , jr , qr)

24 vfs ← Query(x⃗ [z], π⃗[z], jr ; qr)

25 In[k̂, ĵ]← (vfs, ⃗rseed [z],Truncate(x⃗ [z]), jseed)

26 Used[k̂]← (n,m0,m1)
27 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Prep(̂i ∈ N, ĵ ∈ {z}, k̂ ∈ N, m⃗sg ∈M∗):

28 if Status[̂i, ĵ] ̸= running or In[k̂, ĵ] = ⊥: ret ⊥
29 if St[̂i, ĵ, k̂] = ⊥:
30 St[̂i, ĵ, k̂]← Setup[̂i, ĵ]; m⃗sg ← (Pub[k̂],)
31 (n,m0,m1)← Used[k̂]
32 if St[̂i, ĵ, k̂] = ε: //Process initial message from client

33 (x, jseed , jr , qr)← In[k̂, ĵ]

34 (inp, π, blind)← Unpack(ĵ, x); (⃗rseed ,)← m⃗sg

35 ⃗rseed [ĵ]← RO7(blind , ĵ ∥n ∥ inp)
36 msg ← (Query(inp, π, jr ; qr), ⃗rseed [ĵ])
37 St[̂i, ĵ, k̂]← (jseed ,Truncate(inp))

38 (vfs, rseed , y , jseed)← In[k̂, ĵ]
39 msg ← (vfs, rseed); St[̂i, ĵ, k̂]← (jseed , y)

40 ret (running,msg)
41 //Process broadcast messages from aggregators

42 (jseed , y)← St[̂i, ĵ, k̂]; (v⃗fs[ĵ], ⃗rseed [ĵ])ĵ∈[s] ← m⃗sg

43 acc ← Decide(
∑s

ĵ=1 v⃗fs[ĵ]); St[̂i, ĵ, k̂]← ⊥
44 if acc = 0 or jseed ̸= RO6(0

κ, ⃗rseed): ret (failed,⊥)
45 Out[̂i, ĵ, k̂]← y
46 Batch0 [̂i, ĵ, k̂]← m0; Batch1 [̂i, ĵ, k̂]← m1

47 ret (finished,⊥)

Figure 22: Game G6 (left) and game G7 (right) for the proof of Theorem 2.

43

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G7 G8

1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \N ∗; N ∗ ← N ∗ ∪ {n}
3 x⃗←$ (Fn)s ; π⃗←$ (Fm)s

4 (blind1, . . . , blind s)←$ ({0, 1}κ)s
5 (xseed2, . . . , xseed s)←$ ({0, 1}κ)s−1

6 (pseed2, . . . , pseed s)←$ ({0, 1}κ)s−1

7 ⃗rseed ←$ ({0, 1}κ)s ; jr ←$ Fjl ; pr ←$ Fpl

8 inp ← Encode(mb)

9 π ← Prove(inp, jr ; pr)

10 jr ∥ ∥ qr ∥σ←$ ViewFLP(inp)

11 x⃗ [z]← inp −
∑

ĵ∈T x⃗ [ĵ]

12 π⃗[z]← π −
∑

ĵ∈T π⃗[ĵ]

13 for ĵ ∈ [s]:
14 Rand[2, xseed ĵ , ĵ]← x⃗[ĵ]

15 Rand[3, pseed ĵ , ĵ]← π⃗[ĵ]

16 Rand[7, blind ĵ , ĵ ∥n ∥ x⃗[ĵ]]← ⃗rseed [ĵ]

17 Rand[7, blind1, 1 ∥n ∥ x⃗[1]]← ⃗rseed [1]

18 ps ←$ {0, 1}κ; jseed ←$ {0, 1}κ; qr ←$ Fql

19 Rand[1, jseed , ε]← jr ; Rand[4, ps, ε]← pr

20 Rand[5, skz,n]← qr ; Rand[6, 0κ, ⃗rseed]← jseed
21 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
22 for ĵ ∈ [2..s]: x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

23 Pub[k̂]← ⃗rseed ; In[k̂, ·]← x⃗

24 vfs ← Query(x⃗ [z], π⃗[z], jr ; qr)

25 vfs ← σ−
26

∑
ĵ∈T Query(x⃗ [ĵ], π⃗[ĵ], jr ; qr)

27 In[k̂, ĵ]← (vfs, ⃗rseed [z],Truncate(x⃗ [z]), jseed)
28 Used[k̂]← (n,m0,m1)
29 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Shard(k̂ ∈ N,m0,m1 ∈ I): Game G8 Gi
9

1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \ N ∗; N ∗ ← N ∗ ∪ {n}
3 x⃗←$ (Fn)s ; π⃗←$ (Fm)s

4 (blind1, . . . , blind s)←$ ({0, 1}κ)s
5 (xseed2, . . . , xseed s)←$ ({0, 1}κ)s−1

6 (pseed2, . . . , pseed s)←$ ({0, 1}κ)s−1

7 ⃗rseed ←$ ({0, 1}κ)s
8 inp ← Encode(mb)

9 jr ∥ ∥ qr ∥σ←$ ViewFLP(inp)

10 ctr ← ctr + 1
11 if ctr < i: jr ∥ ∥ qr ∥σ←$ S()
12 else: jr ∥ ∥ qr ∥σ←$ ViewFLP(inp)

13 x⃗ [z]← inp −
∑

ĵ∈T x⃗ [ĵ]

14 for ĵ ∈ [s]:
15 Rand[2, xseed ĵ , ĵ]← x⃗[ĵ]

16 Rand[3, pseed ĵ , ĵ]← π⃗[ĵ]

17 Rand[7, blind ĵ , ĵ ∥n ∥ x⃗[ĵ]]← ⃗rseed [ĵ]

18 Rand[7, blind1, 1 ∥n ∥ x⃗[1]]← ⃗rseed [1]
19 jseed ←$ {0, 1}κ
20 Rand[1, jseed , ε]← jr

21 Rand[5, skz,n]← qr ; Rand[6, 0κ, ⃗rseed]← jseed
22 x⃗ [1]← (x⃗ [1], π⃗[1], blind1)
23 for ĵ ∈ [2..s]: x⃗ [ĵ]← (xseed ĵ , pseed ĵ , blind ĵ)

24 Pub[k̂]← ⃗rseed ; In[k̂, ·]← x⃗
25 vfs ← σ−
26

∑
ĵ∈T Query(x⃗ [ĵ], π⃗[ĵ], jr ; qr)

27 In[k̂, ĵ]← (vfs, ⃗rseed [z],Truncate(x⃗ [z]), jseed)
28 Used[k̂]← (n,m0,m1)
29 ret (n,Pub[k̂], (In[k̂, ĵ])ĵ∈T)

Figure 23: Game G8 (left) and game G9 for the proof of Theorem 2.

We are now ready to bound the quantity Pr[Gi+1
9 (B)]− Pr[Gi

9(B)]. The two games Gi+1
9 and Gi

9 differ only

in the tuple v chosen by of the (i+ 1)
th

query to Shard: the former calls ViewFLP and the latter calls S. We
therefore decompose both probabilities over the possible choices of v, and substitute in the statement∑

v∈Fjl×ql×v

∣∣Pr[ViewFLP(inp) = v
]
− Pr

[
S() = v

]∣∣ ≤ δ

that follows from the δ-privacy of FLP for all inp. Since pi,v ≤ 1 for all i and v and Pr[ViewFLP(inp) =

44

v]− Pr[S() = v] ≤ |Pr[ViewFLP(inp) = v]− Pr[S() = v]|:

Pr[Gi+1
9 (B)]− Pr[Gi

9(B)] =∑
v

pi,v · Pr[ViewFLP(inp) = v]− pi,v · Pr[S() = v]

=
∑
v

pi,v · (Pr[ViewFLP(inp) = v]− Pr[S() = v])

≤
∑
v

|Pr[ViewFLP(inp) = v]− Pr[S() = v]|

≤ δ .

A union bound over all i ∈ [qShard] produces the final inequality:

Pr[GqShard
9 (B)]− Pr[G1

9(B)] ≤ δ · qShard. (23)

Finally, we observe that game GqShard
9 can now be rewritten so that the outcome is independent of the

challenge bit b. Hence

Pr[GqShard
9 (B)] =

1

2
. (24)

Collecting bounds across all games and simplifying yields the theorem.

C.3 Doplar Robustness (Theorem 3)

The proof is by a game-playing argument. We begin with the game G0 defined in Figure 24 played by the
given adversary A. This game was constructed from ExprobustΠ (A) by applying the following revisions. First,
we have replaced Prep with its implementation, rolled out the loops in the Prep oracle, and simplified some
of the control flow. Second, we have removed the call to refineFromShares and set the purported refined
measurement with the sum of the refined shares output by the calls to VIDPF.VEval. (This is equivalent by
refinement consistency of Π.) Third, we use the fact that the allowed-state validSt algorithm for Π only
permits Prep queries with unique (n, ℓ) pairs to make the contents of table Used more explicit. Finally, we
lazy-evaluate each random oracle, denoted ROi, with a table Rand. We use RO′ to denote the random oracle
for VIDPF. By construction we have that

AdvrobustΠ (A) = Pr
[
G0(A)

]
. (25)

In the remainder, we let qi denote the number queries A makes to ROi and qi denote the number of queries A
makes to RO′; note that qRG = q1 + · · ·+ q6 + q′.

Similar to the proof of Theorem 1, note that we have dropped the winning condition on line 16 of
the robustness game (Figure 3). The refined measurement computed from the input shares is equal to
Π.Unshard(1, (Π.Agg(y⃗1), Π.Agg(y⃗2))) = y⃗1 + y⃗2, so this condition is never met by definition.

Next, in game G1 (left panel of Figure 24) we revise the definition of the RO oracle so that for each
i ∈ {5, 6}, the values of Rand[i, seed , cntxt] are sampled without replacement. The new game is identical to
G0 up to a collision in the output for either Rand[5, ·, ·] or Rand[6, ·, ·]. Applying a birthday bound over all
queries by A or by the Prep oracle yields

Pr
[
G0(A)

]
≤ Pr

[
G1(A)

]
+

(q5 + 2qPrep)
2

2κ+1
+

(q6 + 3qPrep)
2

2κ+1
. (26)

Next, in game G2 (right panel of Figure 25) we simplify the Prep oracle by substituting aggregator ĵ’s
local computation of the joint randomness seed jseed ĵ with a direct computation of the seed jseed from
the parts ρ1, ρ2 computed on lines 9–10. Accordingly, We simplify the joint local randomness checks (lines

26–27) to just check if the purported hint ⃗rseed [ĵ] matches the computed part ρĵ (28–29). This change is
only detectable to the adversary if it can find a joint randomness seed and hints such that the check succeeds,
but the aggregators compute distinct jseed1 ̸= jseed2. This is impossible by construction (transition from
G1 to G2), so

45

Game G0(A) G1(A) :

1 sk ←$ SK; w ← false; ARO,Prep(); ret w

Prep(n, x⃗ ,msg Init, st Init):

2 (ℓ, p⃗fx)← st ; u← |p⃗fx |
3 if Used[n, ℓ] ̸= ⊥: ret ⊥
4 Used[n, ℓ]← ⊤
5 (pub, ⃗rseed)← msg Init

6 (key1, seed1, π1)← Unpack(1, x⃗ [1],n, ℓ)
7 (key2, seed2, π2)← Unpack(2, x⃗ [2],n, ℓ)
8 ∆1 ← RO2(seed1,n ∥ ℓ ∥ 1)
9 ∆2 ← RO2(seed2,n ∥ ℓ ∥ 2)

10 ρ1 ← RO5(seed1,n ∥ 1 ∥ pub ∥ key1)
11 ρ2 ← RO5(seed2,n ∥ 2 ∥ pub ∥ key2)
12 jseed1 ← RO6(0

κ, ℓ ∥ ρ1 ∥ ⃗rseed [2])

13 jseed2 ← RO6(0
κ, ℓ ∥ ⃗rseed [1] ∥ ρ2)

14 jr1 ← RO1(jseed1,n ∥ ℓ)
15 jr2 ← RO1(jseed2,n ∥ ℓ)
16 qr ← RO4(sk ,n ∥ ℓ ∥)
17 (h1, y⃗1)← VIDPF.VEvalRO

′
(1, pub, key1, p⃗fx)

18 (h2, y⃗2)← VIDPF.VEvalRO
′
(2, pub, key2, p⃗fx)

19 y⃗ ← y⃗1 + y⃗2
20 inp1 ←

∑
i∈[u] y⃗1[i]

21 inp2 ←
∑

i∈[u] y⃗2[i]

22 σ1 ← DFLP.Query(inp1,∆1, π1, jr1; qr)
23 σ2 ← DFLP.Query(inp2,∆2, π2, jr2; qr)
24 jseed ← RO6(0

κ, ℓ ∥ ρ1 ∥ ρ2)
25 b1 ← jseed1 = jseed
26 b2 ← jseed2 = jseed

27 v ← VIDPF.VerifyRO
′
(h1, h2)

28 d← DFLP.Decide(σ1 + σ2)
29 if y⃗ ̸∈ VstInit

30 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): w ← true

31 ret (w , (msg Init, ((σ1, ρ1, h1), (σ2, ρ2, h2))))

ROi(seed , cntxt):

32 l← (jl , el ,m, ql)
33 if Rand[i, seed , cntxt] = ⊥:
34 if i ≤ 4: Rand[i, seed , cntxt]←$ Fl[i]

35 else: Rand[i, seed , cntxt]←$ {0, 1}κ

36 out ←$ {0, 1}κ \ Qi; Qi ← Qi ∪ {out}
37 Rand[i, seed , cntxt]← out

38 ret Rand[i, seed , cntxt]

RO′(inp):

39 if Rand′[inp] = ⊥: Rand′[inp]←$ Y
40 ret Rand′[inp]

Prep(n, x⃗ ,msg Init, st Init): G1 G2

1 (ℓ, p⃗fx)← st ; u← |p⃗fx |
2 if Used[n, ℓ] ̸= ⊥: ret ⊥
3 Used[n, ℓ]← ⊤
4 (pub, ⃗rseed)← msg Init

5 (key1, seed1, π1)← Unpack(1, x⃗ [1],n, ℓ)
6 (key2, seed2, π2)← Unpack(2, x⃗ [2],n, ℓ)
7 ∆1 ← RO2(seed1,n ∥ ℓ ∥ 1)
8 ∆2 ← RO2(seed2,n ∥ ℓ ∥ 2)
9 ρ1 ← RO5(seed1,n ∥ 1 ∥ pub ∥ key1)

10 ρ2 ← RO5(seed2,n ∥ 2 ∥ pub ∥ key2)
11 jseed1 ← RO6(0

κ, ℓ ∥ ρ1 ∥ ⃗rseed [2])

12 jseed2 ← RO6(0
κ, ℓ ∥ ⃗rseed [1] ∥ ρ2)

13 jr1 ← RO1(jseed1,n ∥ ℓ)
14 jr2 ← RO1(jseed2,n ∥ ℓ)

15 jseed ← RO6(0
κ, ℓ ∥ ρ1 ∥ ρ2)

16 jr ← RO1(jseed ,n ∥ ℓ)
17 qr ← RO4(sk ,n ∥ ℓ ∥)
18 (h1, y⃗1)← VIDPF.VEvalRO

′
(1, pub, key1, p⃗fx)

19 (h2, y⃗2)← VIDPF.VEvalRO
′
(2, pub, key2, p⃗fx)

20 y⃗ ← y⃗1 + y⃗2
21 inp1 ←

∑
i∈[u] y⃗1[i]

22 inp2 ←
∑

i∈[u] y⃗2[i]

23 σ1 ← DFLP.Query(inp1,∆1, π1, jr1 jr ; qr)

24 σ2 ← DFLP.Query(inp2,∆2, π2, jr2 jr ; qr)

25 jseed ← RO6(0
κ, ℓ ∥ ρ1 ∥ ρ2)

26 b1 ← jseed1 = jseed
27 b2 ← jseed2 = jseed

28 b1 ← ρ1 ̸= ⃗rseed [1]

29 b2 ← ρ2 ̸= ⃗rseed [2]

30 v ← VIDPF.VerifyRO
′
(h1, h2)

31 d← DFLP.Decide(σ1 + σ2)
32 if y⃗ ̸∈ VstInit
33 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): w ← true

34 ret (w , (msg Init, ((σ1, ρ1, h1), (σ2, ρ2, h2))))

Figure 24: Games G0, G1, and G2 for the proof of Theorem 3. Let Y denote the co-domain of the random
oracle used by VIDPF.

46

Pr
[
G1(A)

]
= Pr

[
G2(A)

]
. (27)

Next, in game G3 (Figure 25), we make the following changes. First, we modify oracle RO4 so that, for
any query that coincides with the secret verification key sk sampled at the beginning of the game, the oracle
immediately returns ⊥ without programming the RO table. Second, we modify Prep by replacing the call to

qr ← RO4(sk ,n ∥ ℓ ∥)

with
qr ← Rand[4, sk ,n ∥ ℓ]←$ Fql .

That way each call to Prep samples fresh query randomness. The second change does not overwrite any
value in Rand due to the first change. Thus the new game is identical to G2 until the adversary makes a
query to RO4 with the seed equal to sk . Taking a union bound over all of A’s queries, we have that

Pr
[
G2(A)

]
≤ Pr

[
G3(A)

]
+

q4qPrep
2κ

. (28)

In the last game, G4 (right-hand panel of Figure 25), we use the extractability of VIDPF to simplify the
winning condition. First, we change how the IDPF output vector y⃗ is computed by Prep: If the one-hot
check succeeds, i.e., v is set to 1 on line 24, then we use the extractor E to extract (α, β⃗) from the transcript

of the random oracle (7) and set y⃗ to fα,β⃗(p⃗fx). Second, we revise the winning condition (28) by requiring

only that the sum of the elements of y⃗ is not in the delayed-input set X = {0, 1} for DFLP. In particular, we
no longer require y⃗ to be one-hot for the adversary to win. (Recall that VstInit is the set of one-hot vectors
where the non-zero element is in X .) These conditions are equivalent in the revised game, since (1) A cannot
set w if v = 0, and if v = 1, vector y⃗ is one-hot by definition.

We claim that there exists an O(tA + qPreptE)-time adversary B for which

Pr
[
G3(A)

]
≤ Pr

[
G4(A)

]
+ qPrep · AdvextractVIDPF,E(B) . (29)

The proof is by a hybrid argument. For each i ∈ [qPrep] let G′i be the game G3 except that only the first i
queries to Prep are answered in the usual way; the remaining queries are answered as they are in game G4.
Adversary B first samples i←$ [qPrep] then runs G′i(A) as usual, except that it simulates Prep queries for
one of the reports using its own game. Specifically, after unpacking IDPF public share pub and key shares
key1, key2 on lines 4–6, it pauses the simulation, outputs (pub, key1, key2), and waits to be invoked again.
On its second invocation, it resumes the simulation of the Prep query until it reaches the computation of y⃗
on lines 23–26: At this point it queries its own Eval oracle on the candidate prefixes p⃗fx and sets y⃗ to the
return value. Thereafter, it simulates the remainder of the game faithfully. if A sets w ← true in its game,
then B guesses 1; otherwise it guesses 0.

Let δi1 (resp. δi0) denote the probability that B samples i and guesses 1 in the VIDPF extractability
experiment, conditioned on the outcome of the coin toss being 1 (resp. 0). Then for all i,

AdvextractVIDPF,E(A) ≥ 1

qPrep

(
δi1 − δi0

)
. (30)

Moreover, by construction we have that

δi1 − δi0 = Pr
[
G′i(A)

]
− Pr

[
G′i+1(A)

]
. (31)

for all i. The claim follows from the observation that Pr
[
G3(A)

]
= Pr

[
G′0(A)

]
and Pr

[
G4(A)

]
=

Pr
[
G′qPrep(A)

]
.

Consider what A must do to set w ← true in game G4. For some Prep query, the delayed-input proof
check must succeed when in fact the sum

∑
i∈[u] y⃗[i] is not a valid encoded input. We bound A’s advantage

in game G4 by a reduction to the soundness of DFLP. Recall from the definition of soundness in Section 5.2
that the malicious prover P ∗ first commits to an encoded input (e,∆), then gets a fresh joint randomness jr ,
then picks a proof forgery π. It wins if DFLP.Decode(e) ̸∈ L but the verifier deems the input valid (i.e.,
DFLP.Decide(DFLP.Query(e,∆, π, jr ; qr)) = 1, where qr is a fresh query randomness sampled by the game).

47

Consider the malicious prover P ∗ in Figure 26. The basic idea is that P ∗ simulates G4(A) and extracts
its commitment from queries to the random oracle. Specifically, the prover samples i∗←$ [q1 + qPrep] at the
beginning of the game, and for the i∗-th query to RO1, it attempts to compute (e,∆) as follows (see lines
15–19).

The prover maintains a reverse look-up table for random oracle queries for computing the query random-
ness (i.e., RO4), the joint randomness seed parts (RO5), and the joint randomness seed (RO5). On the i∗-th
query, it looks for values n, ℓ, pub, key1, key2, seed1, and seed2 that would be used by a query to Prep. If
successful, it uses these to construct its encoded input (DFLP.Encode(∆, inp∗), ∆) to output in its game (20).
It computes ∆ as the sum of the ∆ĵ ’s corresponding to that query (16–17). So how does it compute inp∗?

Well, in G4, the Prep query corresponding to i∗ evaluates IDPF keys shares at a set of candidate prefixes p⃗fx
chosen by the adversary. But because p⃗fx is not known at this point, the best it can do is guess. It therefore
chooses inp∗ by sampling uniform randomly from the set X = {0, 1} of delayed-input values.

If extraction of the commitment is successful, then the prover outputs it, awaits the response from its
game, and programs the table with the response jr (21). Thereafter, prover P ∗ runs G5(A) as usual until a
Prep query is made for the session (n∗, ℓ∗) that coincides with the distinguished RO1 query i∗. At this point,
the prover cannot compute the decision bit d and the verifier shares σ1, σ2 consistently, as it does not have
access to the query randomness sampled by its game. Instead, it simply halts and outputs π1 + π2 as its
proof forgery (35–37).

Observe that P ∗’s simulation of G5(A) is perfect up until the point it it halts and outputs its forgery. This
is due to the full linearity of DFLP, which allows us to substitute the computation of the query-generation
algorithm secret-shared data in G5 with the computation of the query-generation algorithm on plaintext
inputs in the prover’s soundness game. It follows that P ∗ wins precisely when A sets w ← true in the call
to Prep that coincides with the distinguished session. Conditioning on the probability that P ∗ guesses the
correct call to RO1, and that we guessed the value of inp∗ correctly, we conclude that

Pr
[
G4(A)

]
≤ 2(q1 + qPrep) · ϵ . (32)

The bound follows from gathering up each of the equations in simplifying.

C.4 Doplar Privacy (Theorem 4)

We begin with a game G0 (Figure 27) in which we instantiate ExpprivΠ (A) in the random oracle model, in-line
the sub-routines of Π, and simplify the code. Calls to RG have been replaced with a random oracle RO; as
usual, RO is implemented by lazy-evaluating a table Rand. In the remainder, we let qi denote the number of
queries A makes to ROi. Another simplifying change we have made is to hard-code the index of the corrupt
aggregator, which we denote by z̃. (We denote the honest aggregator by z.) Accordingly, we have removed
the share index ĵ from the oracle parameters and tables, as there is only one valid choice for these. (This is
without loss of generality.) None of these changes impact the outcome of the experiment, so

Pr
[
ExpprivΠ (A)

]
= Pr

[
G0(A)

]
. (33)

In game G1 (Figure 27) we revise the Shard oracle by sampling the nonce without replacement (line 5).
This ensures each report has a unique nonce, which will be useful in subsequent steps. By a birthday bound,
we have that

Pr
[
G0(A)

]
≤ Pr

[
G1(A)

]
+

qShard
2

|N |
. (34)

In our next step, G2 (Figure 28), we modify the Shard oracle such that, instead of querying the random
oracle RO, it programs the random oracle using a new sub-routine, PO (31–34). This ensures that the output
of Shard is not correlated with the game’s current state, allowing us to treat the sampled values as fresh.
This has a cost, however, since if any of the values programmed by the oracle overwrite existing values in
table Rand, then the adversary will end up with an inconsistent view. We can bound this by considering
the probability of any one of the following events occurring:

48

• Seed seed1 or seed2 sampled on line 4 coincides with a query to RO2 made by A (see lines 6–7). We
write this as Rand2 for short in the remainder.

• Seed seed1 or seed2 coincides with an element of Rand5 (11–12).

• Vector ⃗rseed sampled on lines 11–12 coincides with an element of Rand6 (13).

• Seed jseed sampled on line 15 coincides with an element of Rand1 (16).

• Seed seed2 coincides with an element of Rand3 (18).

Because the nonces sampled by Shard are unique, and because each of this oracle queries encodes the
nonce, we can be certain that points programmed into the table by each Shard query do not collide with
one another. Indeed, it is only possible for these values to coincide with random oracle queries made by A.
Apply a union bound over all qShard queries, we conclude that

Pr
[
G1(A)

]
≤ Pr

[
G2(A)

]
+

q2qShard
2κ−1

+
q5qShard
2κ−1

+
q6qShard
22κ

+
q1qShard

2κ
. (35)

In the next step, G3 (Figure 29), we substitute calls to VIDPF.Gen and VIDPF.VEval with calls to the
simulator S = (S1

VIDPF, S
2
VIDPF). The first part, S1

VIDPF, is used to simulate the public share corrupt aggre-
gator’s key share (10); the second part, S2

VIDPF, is used to simulate the honest aggregators one-hot check,
based on the output of the first (41). After this second point, we no longer compute the honest aggregator’s

refined share y⃗ consistently. Instead, we compute the corrupt aggregator’s refined share ⃗̃y and compute the
the challenge input inp by subtracting the sum from the true sum for the input αb (43–44).

There exists an adversary B for which

Pr
[
G2(A)

]
≤ Pr

[
G3(A)

]
+ qShard · AdvprivVIDPF,S(B) . (36)

The proof is by a standard argument. In each hybrid game, we answer one more Shard query (and the
corresponding Prep query) using S. Adversary B simply runs A in one of these hybrid games, chosen at
random, and outputs whatever A outputs.

In game G4 (Figure 30), we prepare for the Shard oracle for the reduction to DFLP privacy. The primary
change is that we have Shard sample the query randomness qr that will be used to query the proof at each
level (see line 18 in the left panel). This ensures that the query randomness is “committed” even before the
query is made. We use the unpredictability of the nonce to bound the probability that this change leads to
an inconsistent view of the experiment. In particular,

Pr
[
G3(A)

]
≤ Pr

[
G4(A)

]
+

ηq4qShard
|N |

. (37)

In this step, we also make a couple of non-breaking changes. First, we in-line programming of the random
oracle with the joint randomness and encoding randomness (16–17,19). Second, we store each proof and
encoding randomness in tables P and D respectively. These changes are made to clarify the next step.

In game G5 (Figure 30) we prepare the Prep oracle by re-arranging the proof query. In particular, we run
the query-generation algorithm on the plaintext encoded input and proof, and generate the verifier share
that is output by subtracting from the verifier (denoted V[k̂, ℓ]; see line 19 of the right panel) the verifier
share generated from the corrupt aggregator’s share. The adversary’s view is consistent with the previous
game by the full linearity of DFLP.

Lastly, in game G6 (not pictured) we modify the Prep oracle by replacing computation of the verifier from
αb with the DFLP-privacy simulator T . There exists an adversary C for which

Pr
[
G5(A)

]
≤ Pr

[
G6(A)

]
+ ηqShard · AdvprivDFLP,T (C) . (38)

The proof is by a hybrid argument, where each hybrid game G′u,v is defined as follows. For the first u reports
and for the first v levels of the VIDPF tree, the verifier V[u, v] is generated as specified in game G5 (line 19 in
the right panel of Figure 30); all other verifiers are generated by T as specified in game G6. By construction,

Pr
[
G5(A)

]
− Pr

[
G6(A)

]
= Pr

[
G′0,0(A)

]
− Pr

[
G′qShard,η(A)

]
. (39)

49

Define DFLP-privacy attacker C as follows. (Refer to Figure 6.) On its first invocation, it simply outputs
X = {0, 1} as the input set, as this is what is required by the game. On its next invocation, it is given joint
randomness jr∗ and query randomness qr∗. It proceeds by simulating A in a random hybrid game. It first
samples u∗←$ [qShard] and v∗←$ [η]. It then runs G′u∗,v∗(A) except:

• On the u∗-th query to Shard, for the v∗-th level, it uses jr∗ and qr∗ to program the random oracles for
the joint and query randomness respectively.

• When A makes a Prep query corresponding to report u∗ and level v∗, it halts and outputs xb and
awaits a response from its game. Upon being invoked once more on input σ, it sets V[u∗, v∗]← σ and
continues the simulation.

Finally, when A halts, C halts and returns whatever A output. Then C perfectly simulates G′u∗,v∗(A) when

the value of its challenge bit is 1, and it perfectly simulates G′u∗,v∗+1(A) when its challenge bit is equal to 0.
The claimed bound follows from a standard conditioning argument.

To complete the proof, we note that

Pr
[
G6(A)

]
=

1

2
. (40)

Gathering up all of the terms and simplifying yields the desired bound.

50

Prep(n, x⃗ ,msg Init, st Init): G2 G3

1 (ℓ, p⃗fx)← st ; u← |p⃗fx |
2 if Used[n, ℓ] ̸= ⊥: ret ⊥
3 Used[n, ℓ]← ⊤
4 (pub, ⃗rseed)← msg Init

5 (key1, seed1, π1)← Unpack(1, x⃗ [1],n, ℓ)
6 (key2, seed2, π2)← Unpack(2, x⃗ [2],n, ℓ)
7 ∆1 ← RO2(seed1,n ∥ ℓ ∥ 1)
8 ∆2 ← RO2(seed2,n ∥ ℓ ∥ 2)
9 ρ1 ← RO5(seed1,n ∥ 1 ∥ pub ∥ key1)

10 ρ2 ← RO5(seed2,n ∥ 2 ∥ pub ∥ key2)
11 jseed ← RO6(0

κ, ℓ ∥ ρ1 ∥ ρ2)
12 jr ← RO1(jseed ,n ∥ ℓ)
13 qr ← RO4(sk ,n ∥ ℓ ∥)

14 qr ← Rand[4, sk ,n ∥ ℓ]←$ Fql

15 (h1, y⃗1)← VIDPF.VEvalRO
′
(1, pub, key1, p⃗fx)

16 (h2, y⃗2)← VIDPF.VEvalRO
′
(2, pub, key2, p⃗fx)

17 y⃗ ← y⃗1 + y⃗2
18 inp1 ←

∑
i∈[u] y⃗1[i]

19 inp2 ←
∑

i∈[u] y⃗2[i]

20 σ1 ← DFLP.Query(inp1,∆1, π1, jr ; qr)
21 σ2 ← DFLP.Query(inp2,∆2, π2, jr ; qr)

22 b1 ← ρ1 ̸= ⃗rseed [1]

23 b2 ← ρ2 ̸= ⃗rseed [2]

24 v ← VIDPF.VerifyRO
′
(h1, h2)

25 d← DFLP.Decide(σ1 + σ2)
26 if y⃗ ̸∈ VstInit

27 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): w ← true

28 ret (w , (msg Init, ((σ1, ρ1, h1), (σ2, ρ2, h2))))

ROi(seed , cntxt):

29 if i = 4 ∧ seed = sk : ret ⊥
30 l← (jl , el ,m, ql)
31 if Rand[i, seed , cntxt] = ⊥:
32 if i ≤ 4: Rand[i, seed , cntxt]←$ Fl[i]

33 else:
34 out ←$ {0, 1}κ \ Qi; Qi ← Qi ∪ {out}
35 Rand[i, seed , cntxt]← out
36 ret Rand[i, seed , cntxt]

Prep(n, x⃗ ,msg Init, st Init): G3 G4

1 (ℓ, p⃗fx)← st ; u← |p⃗fx |
2 if Used[n, ℓ] ̸= ⊥: ret ⊥
3 Used[n, ℓ]← ⊤
4 (pub, ⃗rseed)← msg Init

5 (key1, seed1, π1)← Unpack(1, x⃗ [1],n, ℓ)
6 (key2, seed2, π2)← Unpack(2, x⃗ [2],n, ℓ)

7 if T[n] = ⊥: T[n]←$ E(key1, key2, pub,Rand′)

8 ∆1 ← RO2(seed1,n ∥ ℓ ∥ 1)
9 ∆2 ← RO2(seed2,n ∥ ℓ ∥ 2)

10 ρ1 ← RO5(seed1,n ∥ 1 ∥ pub ∥ key1)
11 ρ2 ← RO5(seed2,n ∥ 2 ∥ pub ∥ key2)
12 jseed ← RO6(0

κ, ℓ ∥ ρ1 ∥ ρ2)
13 jr ← RO1(jseed ,n ∥ ℓ)
14 qr ← Rand[4, sk ,n ∥ ℓ]←$ Fql

15 (h1, y⃗1)← VIDPF.VEvalRO
′
(1, pub, key1, p⃗fx)

16 (h2, y⃗2)← VIDPF.VEvalRO
′
(2, pub, key2, p⃗fx)

17 y⃗ ← y⃗1 + y⃗2

18 inp1 ←
∑

i∈[u] y⃗1[i]

19 inp2 ←
∑

i∈[u] y⃗2[i]

20 σ1 ← DFLP.Query(inp1,∆1, π1, jr ; qr)
21 σ2 ← DFLP.Query(inp2,∆2, π2, jr ; qr)

22 b1 ← ρ1 ̸= ⃗rseed [1]

23 b2 ← ρ2 ̸= ⃗rseed [2]

24 v ← VIDPF.VerifyRO
′
(h1, h2)

25 if v = 1: (α, β⃗)←$ T[n]; y⃗ ← fα,β⃗(p⃗fx)
26 else y⃗ ← y⃗1 + y⃗2

27 d← DFLP.Decide(σ1 + σ2)

28 if y⃗ ̸∈ VstInit
(∑

i∈[u] y⃗[i]
)
̸∈ X

29 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): w ← true

30 ret (w , (msg Init, ((σ1, ρ1, h1), (σ2, ρ2, h2))))

Figure 25: Games G3 and G4 for the proof of Theorem 3. Let X = {0, 1} denote the delayed-input set for
DFLP.

51

Adversary P∗[A]():

1 i∗←$ [q1 + qPrep]; n
∗, ℓ∗ ← ⊥; ctr ← 0

2 sk ←$ SK; w ← false; AROExt,PrepSim()

ROExti(seed , cntxt):

3 if i = 4 ∧ seed = sk : ret ⊥
4 l← (jl , el ,m, ql)
5 if Rand[i, seed , cntxt] = ⊥:
6 if i = 1:
7 ctr ← ctr + 1
8 if i = i∗ ∧
9 if (∃n, ℓ, pub, key1, key2, ρ1, ρ2, seed1, seed2)

10 ∧ ρ1 = Rand[5, seed1,n ∥ 1 ∥ pub ∥ key1]
11 ∧ ρ2 = Rand[5, seed2,n ∥ 2 ∥ pub ∥ key2]
12 ∧ seed = Rand[6, 0κ, ℓ ∥ ρ1, ∥ ρ2]:
13 (n∗, ℓ∗)← (n, ℓ)
14 //We don’t know p⃗fx , so guess what the sum will be!

15 inp∗←$ {0, 1}
16 ∆1 ← ROExt2(seed1,n ∥ ℓ ∥ 1)
17 ∆2 ← ROExt2(seed2,n ∥ ℓ ∥ 2)
18 ∆← ∆1 +∆2

19 e← DFLP.Encode(∆, inp∗)
20 output (e,∆) and wait for jr .
21 Rand[1, seed , cntxt]← jr
22 else: Rand[1, seed , cntxt]←$ Fjl

23 else if i ∈ {2, 3, 4}: Rand[i, seed , cntxt]←$ Fl[i]

24 else:
25 out ←$ {0, 1}κ \ Qi; Qi ← Qi ∪ {out}
26 Rand[i, seed , cntxt]← out
27 ret Rand[i, seed , cntxt]

ROExt′(inp):

28 if Rand′[inp] = ⊥: Rand′[inp]←$ Y
29 ret Rand′[inp]

PrepSim(n, x⃗ ,msg Init, st Init):

30 (ℓ, p⃗fx)← st ; u← |p⃗fx |
31 if Used[n, ℓ] ̸= ⊥: ret ⊥
32 Used[n, ℓ]← ⊤
33 (pub, ⃗rseed)← msg Init

34 (key1, seed1, π1)← Unpack(1, x⃗ [1],n, ℓ)
35 (key2, seed2, π2)← Unpack(2, x⃗ [2],n, ℓ)
36 if (n∗, ℓ∗) = (n, ℓ): output π1 + π2 and halt.
37 if T[n] = ⊥: T[n]←$ E(key1, key2, pub,Rand′)
38 ∆1 ← RO2(seed1,n ∥ ℓ ∥ 1)
39 ∆2 ← RO2(seed2,n ∥ ℓ ∥ 2)
40 ρ1 ← RO5(seed1,n ∥ 1 ∥ pub ∥ key1)
41 ρ2 ← RO5(seed2,n ∥ 2 ∥ pub ∥ key2)
42 jseed ← RO6(0

κ, ℓ ∥ ρ1, ∥ ρ2)
43 jr ← RO1(jseed ,n ∥ ℓ)
44 qr ← Rand[4, sk ,n ∥ ℓ]←$ Fql

45 (h1, y⃗1)← VIDPF.VEvalRO
′
(1, pub, key1, p⃗fx)

46 (h2, y⃗2)← VIDPF.VEvalRO
′
(2, pub, key2, p⃗fx)

47 inp1 ←
∑

i∈[u] y⃗1[i]

48 inp2 ←
∑

i∈[u] y⃗2[i]

49 σ1 ← DFLP.Query(inp1,∆1, π1, jr ; qr)
50 σ2 ← DFLP.Query(inp2,∆2, π2, jr ; qr)

51 b1 ← ρ1 ̸= ⃗rseed [1]

52 b2 ← ρ2 ̸= ⃗rseed [2]

53 v ← VIDPF.VerifyRO
′
(h1, h2)

54 if v = 1: (α, β⃗)←$ T[n]; y⃗ ← fα,β⃗(p⃗fx)
55 else y⃗ ← y⃗1 + y⃗2
56 d← DFLP.Decide(σ1 + σ2)

57 if
(∑

i∈[u] y⃗[i]
)
̸∈ X

58 and (b1 ∧ v ∧ d) or (b2 ∧ v ∧ d): w ← true

59 ret (w , (msg Init, ((σ1, ρ1, h1), (σ2, ρ2, h2))))

Figure 26: Malicious prover P ∗ against the soundness of DFLP for the proof of Theorem 3.

52

Game G0(A) G1(A) :

1 (stA, {z}, (sk ,))←$ ARO(); z̃ ← 3− z
2 b←$ {0, 1}; b′←$ ARO,Shard,Setup,Prep,Agg(stA)
3 ret b = b′

Shard(k̂ ∈ N, α0, α1 ∈ I):
4 if Used[k̂] ̸= ⊥: ret ⊥
5 n←$N n←$N \N ∗;N ∗ ← N ∗ ∪ {n}
6 //Construct the VIDPF key shares.

7 seed1, seed2←$ {0, 1}κ
8 for ℓ ∈ [η]:
9 D[k̂, ℓ]← RO2(seed1,n ∥ ℓ ∥ 1)

10 + RO2(seed2,n ∥ ℓ ∥ 2)
11 β⃗[ℓ]← Encode(D[k̂, ℓ], 1)

12 (key1, key2, pub)←$ VIDPF.Gen(αb , β⃗)
13 //Prepare the joint randomness.

14 ⃗rseed [1]← RO5(seed1,n ∥ 1 ∥ pub ∥ key1)
15 ⃗rseed [2]← RO5(seed2,n ∥ 2 ∥ pub ∥ key2)
16 //Generate the level proofs.

17 for ℓ ∈ [η]:

18 jseed ← RO6(0
κ, ℓ ∥ ⃗rseed)

19 jr ← RO1(jseed ,n ∥ ℓ)
20 π←$ DFLP.Prove({0, 1},D[k̂, ℓ], jr)

21 p⃗f [ℓ]← π − RO3(seed2,n ∥ ℓ)
22 //Prepare the initial message and input shares.

23 x1 ← (key1, seed1, p⃗f)
24 x2 ← (key2, seed2)
25 In[k̂]← xz
26 Pub[k̂]← (pub, ⃗rseed)
27 Used[k̂]← (n, α0, α1)
28 ret (n,Pub[k̂], (xz̃,))

Setup(̂i ∈ N, st Init ∈ QInit):

29 (ℓ, p⃗fx)← st Init
30 if Status[̂i] ̸= ⊥ or ℓ ∈ U or p⃗fx not distinct: ret ⊥
31 U ← U ∪ {ℓ}
32 Setup[̂i]← st Init; Status[̂i]← running

Prep(̂i ∈ N, k̂ ∈ N, m⃗sg ∈M∗):

33 if Status[̂i] ̸= running or In[k̂] = ⊥: ret ⊥
34 if St[̂i, k̂] = ⊥: St[̂i, k̂]← Setup[̂i]
35 (n, α0, α1)← Used[k̂]
36 if St[̂i, k̂] ∈ QInit: //Process initial message from client

37 (ℓ, p⃗fx)← St[̂i, k̂]; u← |p⃗fx |
38 (pub, ⃗rseed)← Pub[k̂]
39 (key, seed , π)← Unpack(z, In[k̂],n, ℓ)
40 ∆← RO2(seed ,n ∥ ℓ ∥ z)
41 ⃗rseed [z]← RO5(seed ,n ∥ z ∥ pub ∥ key)
42 jseed ← RO6(0

κ, ℓ ∥ ⃗rseed)
43 jr ← RO1(jseed ,n ∥ ℓ); qr ← RO4(sk ,n ∥ ℓ)
44 (h, y⃗)← VIDPF.VEval(z, pub, key, p⃗fx)
45 inp ←

∑
i∈[u] y⃗[i]

46 σ ← DFLP.Query(inp,∆, π, jr ; qr)

47 msg ← (σ, ⃗rseed [z], h)
48 St[̂i, k̂]← (jseed , (DFLP.Decode(y⃗[i]))i∈[u])
49 ret (running,msg)
50 //Process broadcast messages from aggregators

51 (jseed , y⃗)← St[̂i, k̂]; St[̂i, k̂]← ⊥
52

(
(σ1, rseed1, h1), (σ2, rseed2, h2)

)
← m⃗sg

53 accDFLP ← DFLP.Decide(σ1 + σ2)
54 accVIDPF ← VIDPF.Verify(h1, h2)
55 acc0 ← jseed = RO6(0

κ, ℓ ∥ rseed1 ∥ rseed2)
56 if accDFLP and accVIDPF and acc0:
57 Out[̂i, k̂]← y⃗; Batch0 [̂i, k̂]← α0; Batch1 [̂i, k̂]← α1

58 ret finished
59 ret failed

Agg(̂i ∈ N):
60 if Status[̂i] ̸= running: ret ⊥
61 st Init ← Setup[̂i]
62 if F (st Init,Batch0 [̂i, ·]) ̸= F (st Init,Batch1 [̂i, ·]): ret ⊥
63 Status[̂i]← finished

64 ret
∑

y⃗∈Out[̂i,·] y⃗

Figure 27: Games G0 and G1 for the proof of Theorem 4.

53

Shard(k̂ ∈ N, α0, α1 ∈ I):
1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \N ∗;N ∗ ← N ∗ ∪ {n}
3 //Construct the VIDPF key shares.

4 seed1, seed2←$ {0, 1}κ
5 for ℓ ∈ [η]:

6 D[k̂, ℓ]← RO2 PO2 (seed1,n ∥ ℓ ∥ 1)

7 + RO2 PO2 (seed2,n ∥ ℓ ∥ 2)
8 β⃗[ℓ]← Encode(D[k̂, ℓ], 1)

9 (key1, key2, pub)←$ VIDPF.Gen(αb , β⃗)
10 //Prepare the joint randomness.

11 ⃗rseed [1]← RO5 PO5 (seed1,n ∥ 1 ∥ pub ∥ key1)

12 ⃗rseed [2]← RO5 PO5 (seed2,n ∥ 2 ∥ pub ∥ key2)
13 //Generate the level proofs.

14 for ℓ ∈ [η]:

15 jseed ← RO6 PO6 (0κ, ℓ ∥ ⃗rseed)

16 jr ← RO1 PO1 (jseed ,n ∥ ℓ)
17 π←$ DFLP.Prove({0, 1},D[k̂, ℓ], jr)

18 p⃗f [ℓ]← π− RO3 PO3 (seed2,n ∥ ℓ)
19 //Prepare the initial message and input shares.

20 x1 ← (key1, seed1, p⃗f)
21 x2 ← (key2, seed2)
22 In[k̂]← xz
23 Pub[k̂]← (pub, ⃗rseed)
24 Used[k̂]← (n, α0, α1)
25 ret (n,Pub[k̂], (xz̃,))

ROi(seed , cntxt): G1 G2

26 l← (jl , el ,m, ql)
27 if Rand[i, seed , cntxt] = ⊥:
28 if i ≤ 4: Rand[i, seed , cntxt]←$ Fl[i]

29 else: Rand[i, seed , cntxt]←$ {0, 1}κ
30 ret Rand[i, seed , cntxt]

POi(seed , cntxt):

31 l← (jl , el ,m, ql)
32 if i ≤ 4: Rand[i, seed , cntxt]←$ Fl[i]

33 else: Rand[i, seed , cntxt]←$ {0, 1}κ
34 ret Rand[i, seed , cntxt]

Figure 28: Game G2 for the proof of Theorem 4.

54

Shard(k̂ ∈ N, α0, α1 ∈ I):
1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \N ∗;N ∗ ← N ∗ ∪ {n}
3 //Construct the VIDPF key shares.

4 seed1, seed2←$ {0, 1}κ
5 for ℓ ∈ [η]:
6 D[k̂, ℓ]← PO2(seed1,n ∥ ℓ ∥ 1)
7 + PO2(seed2,n ∥ ℓ ∥ 2)
8 β⃗[ℓ]← Encode(D[k̂, ℓ], 1)

9 (key1, key2, pub)←$ VIDPF.Gen(αb , β⃗)

10 (T[k̂], pub)←$ S1
VIDPF(z̃); keyz̃ ← T[k̂]; keyz ← ⊥

11 //Prepare the joint randomness.

12 ⃗rseed [1]← PO5(seed1,n ∥ 1 ∥ pub ∥ key1)
13 ⃗rseed [2]← PO5(seed2,n ∥ 2 ∥ pub ∥ key2)
14 //Generate the level proofs.

15 for ℓ ∈ [η]:

16 jseed ← PO6(0
κ, ℓ ∥ ⃗rseed)

17 jr ← PO1(jseed ,n ∥ ℓ)
18 π←$ DFLP.Prove({0, 1},D[k̂, ℓ], jr)

19 p⃗f [ℓ]← π − PO3(seed2,n ∥ ℓ)
20 //Prepare the initial message and input shares.

21 x1 ← (key1, seed1, p⃗f)
22 x2 ← (key2, seed2)
23 In[k̂]← xz
24 Pub[k̂]← (pub, ⃗rseed)
25 Used[k̂]← (n, α0, α1)
26 ret (n,Pub[k̂], (xz̃,))

Prep(̂i ∈ N, k̂ ∈ N, m⃗sg ∈M∗): G2 G3

27 if Status[̂i] ̸= running or In[k̂] = ⊥: ret ⊥
28 if St[̂i, k̂] = ⊥: St[̂i, k̂]← Setup[̂i]
29 (n, α0, α1)← Used[k̂]
30 if St[̂i, k̂] ∈ QInit: //Process initial message from client

31 (ℓ, p⃗fx)← St[̂i, k̂]; u← |p⃗fx |
32 (pub, ⃗rseed)← Pub[k̂]

33 (key , seed , π)← Unpack(z, In[k̂],n, ℓ)

34 ∆← RO2(seed ,n ∥ ℓ ∥ z)
35 ⃗rseed [z]← RO5(seed ,n ∥ z ∥ pub ∥ key)
36 jseed ← RO6(0

κ, ℓ ∥ ⃗rseed)
37 jr ← RO1(jseed ,n ∥ ℓ); qr ← RO4(sk ,n ∥ ℓ)
38 (h, y⃗)← VIDPF.VEval(z, pub, key, p⃗fx)
39 inp ←

∑
i∈[u] y⃗[i]

40 keyz̃ ← T[k̂]

41 h←$ S2
VIDPF(z̃, pub, keyz̃, p⃗fx)

42 (, ⃗̃y)← VIDPF.VEval(z̃, pub, keyz̃, p⃗fx)

43 xb ← |{p⃗fx [i] : p⃗fx [i] prefixes αb}i∈[u]|
44 inpb ← DFLP.Encode(∆[k̂, ℓ], xb)
45 inp ← inpb −

∑
i∈[u]

⃗̃y[i]

46 σ ← DFLP.Query(inp,∆, π, jr ; qr)

47 msg ← (σ, ⃗rseed [z], h)
48 St[̂i, k̂]← (jseed , (DFLP.Decode(y⃗[i]))i∈[u])
49 ret (running,msg)
50 //Process broadcast messages from aggregators

51 (jseed , y⃗)← St[̂i, k̂]; St[̂i, k̂]← ⊥
52

(
(σ1, rseed1, h1), (σ2, rseed2, h2)

)
← m⃗sg

53 accDFLP ← DFLP.Decide(σ1 + σ2)
54 accVIDPF ← VIDPF.Verify(h1, h2)
55 acc0 ← jseed = RO6(0

κ, ℓ ∥ rseed1 ∥ rseed2)
56 if accDFLP and accVIDPF and acc0:
57 Out[̂i, k̂]← y⃗; Batch0 [̂i, k̂]← α0; Batch1 [̂i, k̂]← α1

58 ret finished
59 ret failed

Figure 29: Game G3 for the proof of Theorem 4.

55

Shard(k̂ ∈ N, α0, α1 ∈ I): G3 G4

1 if Used[k̂] ̸= ⊥: ret ⊥
2 n←$N \N ∗;N ∗ ← N ∗ ∪ {n}
3 //Construct the VIDPF key shares.

4 seed1, seed2←$ {0, 1}κ

5 for ℓ ∈ [η]:
6 D[k̂, ℓ]← PO2(seed1,n ∥ ℓ ∥ 1)
7 + PO2(seed2,n ∥ ℓ ∥ 2)

8 (T[k̂], pub)←$ S1
VIDPF(z̃); keyz̃ ← T[k̂]; keyz ← ⊥

9 //Prepare the joint randomness.

10 ⃗rseed [1]← PO5(seed1,n ∥ 1 ∥ pub ∥ key1)
11 ⃗rseed [2]← PO5(seed2,n ∥ 2 ∥ pub ∥ key2)
12 //Generate the level proofs.

13 for ℓ ∈ [η]:

14 jseed ← PO6(0
κ, ℓ ∥ ⃗rseed)

15 jr ←$ Fjl ; qr ←$ Fql ; D[k̂, ℓ], ∆̃←$ Fel

16 Rand[2, seedz,n ∥ ℓ ∥ z]← D[k̂, ℓ]− ∆̃
17 Rand[2, seed z̃,n ∥ ℓ ∥ z̃]← ∆̃
18 Rand[4, sk ,n ∥ ℓ]← qr
19 Rand[1, jseed ,n ∥ ℓ]← jr
20 P[k̂, ℓ]←$ DFLP.Prove({0, 1},∆, jr)

21 p⃗f [ℓ]← P[k̂, ℓ]− PO3(seed2,n ∥ ℓ)

22 jr ← PO1(jseed ,n ∥ ℓ)
23 π←$ DFLP.Prove({0, 1},D[k̂, ℓ], jr)

24 p⃗f [ℓ]← π − PO3(seed2,n ∥ ℓ)
25 //Prepare the initial message and input shares.

26 x1 ← (key1, seed1, p⃗f); x2 ← (key2, seed2)

27 In[k̂]← xz; Pub[k̂]← (pub, ⃗rseed)
28 Used[k̂]← (n, α0, α1)
29 ret (n,Pub[k̂], (xz̃,))

Prep(̂i ∈ N, k̂ ∈ N, m⃗sg ∈M∗): G4 G5

1 if Status[̂i] ̸= running or In[k̂] = ⊥: ret ⊥
2 if St[̂i, k̂] = ⊥: St[̂i, k̂]← Setup[̂i]
3 (n, α0, α1)← Used[k̂]
4 if St[̂i, k̂] ∈ QInit: //Process initial message from client

5 (ℓ, p⃗fx)← St[̂i, k̂]; u← |p⃗fx |
6 (pub, ⃗rseed)← Pub[k̂]
7 (, seed , π)← Unpack(z, In[k̂],n, ℓ)
8 ∆← RO2(seed ,n ∥ ℓ ∥ z)
9 ⃗rseed [z]← RO5(seed ,n ∥ z ∥ pub ∥ key)

10 jseed ← RO6(0
κ, ℓ ∥ ⃗rseed)

11 jr ← RO1(jseed ,n ∥ ℓ); qr ← RO4(sk ,n ∥ ℓ)
12 keyz̃ ← T[k̂]

13 h←$ S2
VIDPF(z̃, pub, keyz̃, p⃗fx)

14 (, ⃗̃y)← VIDPF.VEval(z̃, pub, keyz̃, p⃗fx)

15 xb ← |{p⃗fx [i] : p⃗fx [i] prefixes αb}i∈[u]|
16 inpb ← DFLP.Encode(∆[k̂, ℓ], xb)

17 inp ← inpb −
∑

i∈[u]
⃗̃y[i]

18 σ ← DFLP.Query(inp,∆, π, jr ; qr)

19 V[k̂, ℓ]← DFLP.Query(inpb ,D[k̂, ℓ],P[k̂, ℓ], jr ; qr)
20 σ ← V[k̂, ℓ]− DFLP.Query(

∑
i∈[u]

⃗̃y[i],∆, π, jr ; qr)

21 msg ← (σ, ⃗rseed [z], h)
22 St[̂i, k̂]← (jseed , (DFLP.Decode(y⃗[i]))i∈[u])
23 ret (running,msg)
24 //Process broadcast messages from aggregators

25 (jseed , y⃗)← St[̂i, k̂]; St[̂i, k̂]← ⊥
26

(
(σ1, rseed1, h1), (σ2, rseed2, h2)

)
← m⃗sg

27 accDFLP ← DFLP.Decide(σ1 + σ2)
28 accVIDPF ← VIDPF.Verify(h1, h2)
29 acc0 ← jseed = RO6(0

κ, ℓ ∥ rseed1 ∥ rseed2)
30 if accDFLP and accVIDPF and acc0:
31 Out[̂i, k̂]← y⃗; Batch0 [̂i, k̂]← α0; Batch1 [̂i, k̂]← α1

32 ret finished
33 ret failed

Figure 30: Games G4 and G5 for the proof of Theorem 4.

56

	Introduction
	Preliminaries
	Security Model
	Syntax
	Security

	Prio3
	Doplar
	Verifiable IDPF
	Delayed-Input FLPs
	Construction
	Performance Evaluation

	Conclusion and Future Work
	Instantiating VIDPF
	Instantiating Delayed-Input FLP
	Proofs of Theorems
	Prio3 Robustness (Theorem 1)
	Prio3 Privacy (Theorem 2)
	Doplar Robustness (Theorem 3)
	Doplar Privacy (Theorem 4)

