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Abstract. Modern day smart phones are used for performing several
sensitive operations, including online payments. Hence, the underlying
cryptographic libraries are expected to adhere to proper security mea-
sures to ensure that there are no exploitable leakages. In particular, the
implementations should be constant time to prevent subsequent timing
based side channel analysis which can leak secret keys. Unfortunately, we
unearth in this paper a glaring timing variation present in the Bouncy-
Castle implementation of RSA like ciphers which is based on the BigIn-
teger Java library to support large number theoretic computations. We
follow up the investigation with a step-by-step procedure to exploit the
timing variations to retrieve the complete secret of windowed RSA-2048
implementation. The entire analysis is possible with a single set of tim-
ing observation, implying that the timing observation can be done at the
onset, followed by some post processing which does not need access to
the phone. We have validated our analysis on Android Marshmallow 6.0,
Nougat 7.0 and Oreo 8.0 versions. Interestingly, we note that for newer
phones the timing measurement is more accurate leading to faster key
retrievals.

1 Introduction

Smart phones have become indispensable in day-to-day activities of people across
the globe. Numerous applications thus communicate with several central service
providing servers and hence needs to support standardized encryption schemes
to protect against eavesdroppers. It also implies that the applications and li-
braries supporting these cryptographic operations should satisfy state-of-the-art
secure implementation guidelines, and provide protection against side-channel
attacks. These attacks can compromise the cryptographic secret by observing
execution footprint of the theoretically secure algorithms. Deployment and us-
age of insecure libraries can prove to be detrimental leading to huge financial
damage. The most recent and interesting works on security violation on an An-
droid includes location tracking by the battery measurements which are being
affected by the effect of signal strength at that particular location as in [9], us-
ing signal processing and machine learning to reconstruct acoustic signal from
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gyroscope sensor measurements as in [8], construction and retrieving password
using machine learning on the sensor data measurements while the passwords
are entered [3], while the authors in [12] provide a survey of existing threats and
vulnerabilities of the mobile computing platforms.

The timing side-channel attack was revisited for mobile devices in [13], where
the authors target the T-table based implementation of AES. The authors in [2]
showed that the doubling and addition operations in an Elliptic curve scalar
multiplication can be distinguished by using Electromagnetic side-channel traces
on the smart phone. A similar full key extraction has been demonstrated on
ECDSA in [5] using the EM probes and USB charging cable. Similar discussions
on RSA and ECC can be found in [10] where the EM signals leak a large part
of the secret. In [7], the authors performed extensive set of experiments to make
cross-core cache attacks such as Prime+Probe, Flush+Reload, Evict+Reload,
and Flush+Flush feasible on a non-rooted Android application. The defense to
these forms of cache based attacks have been proposed in [11] where the effect
of the keystrokes timing attacks are being mitigated by adding a large number
of fake keystrokes in between. While in [1], the authors illustrate EM based
secret exponent retrieval from a single decryption on any arbitrary ciphertext in
the OpenSSL fixed-window constant-time implementation of RSA and does not
require any previous knowledge of the cache organization.

The existing works in the literature either requires separate EM based mon-
itoring setup or access to the internal sensors or knowing architectural details.
Since Android 7.0 Operating System optimizations have restricted any user app’s
stealthy access to the sensors such as battery, location sensors and many more. In
this paper, we explore the non-constant time vulnerable implementation of Boun-
cyCastle cryptographic library in presence of timing measurements as side chan-
nel. Our timing side channel vulnerability analysis neither requires the knowledge
of the underlying architecture nor access to the restricted sensor data and has
been validated on Android Marshmallow 6.0, Nougat 7.0 and Oreo 8.0 versions.

1.1 Overview of the paper

There are a few standardized cryptographic library implementation which have
been developed using the recommended algorithmic specification. In this work,
we target one such widely popular crypto library BouncyCastle which follows
NIST standard and includes FIPS140-2 Level1 certified streams to perform
crypto application on the widely popular Android phones. We show that the
cipher implementation supported in the library are vulnerable against timing
attacks. In common practice data used in cryptographic algorithms could be arbi-
trarily large in size. When such operations involving large data size are executed
on Android, instances of a specialized class named BigInteger in java.math

package is used for data representation. BigInteger class provides a favorable
feature wherein the size of the data stored isn’t constrained and additionally,
this class also constitutes of many important member functions which are often
useful to perform faster computations.
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In this paper, we analyze the vulnerability of one such member function
modPow, the modular exponentiation function which is employed in popular en-
cryption algorithms such as RSA, ElGamal etc. We target the implementation
of RSA encryption algorithm using modPow as a subroutine call and uniquely
retrieve the private key used for decryption. In this analysis we require tim-
ing measurements on entire RSA decryption for BouncyCastle crypto call. This
measurement of timing being non-constant and dependent on the data as well
as the algorithm, this measurement is subjected to statistical analysis on three
different phases which eventually leads to full key leakage. The first phase is
to identify the sparse multiplication locations for the target windowed expo-
nentiation. Once these consecutive locations are identified, we define theoretical
constraints on the surrounding bit locations going by a worst-case analysis. This
eventually leaks partial bits for each of these windows. In the final phase, we
follow a Difference of Mean analysis on the remaining bits which leaks the re-
maining unknown key bits in the window. The Difference of Mean approach is
utilized on the fact that the modular reduction on Montgomery Multiplication is
non-constant time based on the input ciphertexts and thus bins can be separated
based on the number of reduction statements executed by these inputs.

We support each of these phases with detailed validations in the result sec-
tion, where we target the RSA-2048 bit secret and retrieve the bits subsequently.
This analysis neither requires any architectural specification nor any micro-
architectural event dependency. We have ported this vulnerability on multiple
Android phones to demonstrate that this attack is platform independent.

1.2 Threat Model

In this paper, we focus on unearthing a timing side channel vulnerability on
BouncyCastle cryptographic implementation. The threat model requires a spy
app with malicious intention which can send ciphertexts to the decryption engine
and receives the output plaintext and in the meanwhile, it measures the execution
time for cryptographic primitives. The timing measurements for our monitor
app are observed using java.lang.System.nanoTime() method in Java which
returns the value of the most precise system timer, in nanoseconds. We invoke
the decryption calls and the start and end times of the decryption are observed.

Responsible Disclosure While we found this timing vulnerability of Boun-
cyCastle and were working on key recovery, we have intimated the bug bounty
team of BouncyCastle regarding the said vulnerability. They have acknowledged
the timing vulnerability.

2 Target Algorithm

In this work, we target the cryptographic implementations supported by the
BouncyCastle provider. BouncyCastle Crypto API consists of lightweight crypto
API which implements a set of all underlying cryptographic algorithm. Android
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Fig. 1: Non-constant timing behaviour of two ciphertexts exponentiation over
same secret

OS in some version of the smart phones incorporate a customized version of this
library named as SpongyCastle. The public key exponentiation of the Bouncy-
Castle implementation has been efficiently coded and documented throughout
the BouncyCastle APIs, and the underlying mathematical operations are being
performed using the BigInteger library from Java.

Before going into actual details regarding the BigInteger algorithmic im-
plementations we start with a case study. We performed a simple experiment
where we kept the secret key to be constant and we varied the input ciphertext.
Figure 1 shows the distribution of timing samples received over two ciphertexts.
The timing samples for ciphertext plotted in red are consistently higher than
the timing values for the ciphertext plotted in blue. This is repeatable and thus
confirms that there are some component codes in the BouncyCastle implemen-
tation which contributes to the timing difference. This observation motivated
us to investigate the real reason behind this non-constant time implementation
which is getting affected by the change in input ciphertext though the secret
exponent has been kept constant in both cases. The following section gives a
brief algorithmic overview of the underlying BigInteger window algorithm used
by BouncyCastle.

2.1 The BigInteger window algorithm

The modPow function is the Java implementation of the modular exponentiation
operation in BigInteger library. This function is invoked while performing the
sensitive modular exponentiation in RSA like ciphers which eventually rely on
the OpenJDK implementation. 6. The BigInteger library of Java comes inbuilt
with Android on smart phone platforms.

6 The exact implementation can be found in src/share/classes/java/math/BigInteger.java
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The function modPow implements windowed modular exponentiation through
an algorithm adapted from Colin Plumb’s C library. The modPow algorithm se-
quentially moves with the exponent bits and squares the result buffer for each
bit of the exponent. Though the squaring is executed for each bit irrespective of
its value, multiplication is selectively performed only once in a window and the
position of multiplication is decided by the last encountered 1 in the window.
The algorithm scans the exponent from the bit immediately after the Most Sig-
nificant Bit (MSB), and gradually progresses by performing squaring for each
bit until it encounters a leading 1, which marks the start of the window. This
initiates a scan for the trailing 1 (within the length of the window) to decide
upon the position upto which the multiplication going to happen. The following
is a general example on 3-bit window (W = 3) for input m.

– When next bits are 100: the sequence of operations are {square, multiply by

input m1, square, square}
– When next bits are 101: the sequence of operations are {square, square, square,

multiply by m5}
– When next bits are 110: the sequence of operations are {square, square, multiply

by m3, square}
– When next bits are 111: the sequence of operations are {square, square, square,

multiply by m7}

Consider an example sequence 10101, leaving out the MSB, the sequence of
operations for 0101 with the windowed method would be {square, square,

square, square, multiply by m5}= ((((m2)2)2)2)m5 = m21, in contrast to
naive square and multiply operation would have been {square, square, multiply,

square, square, multiply}= (((((m2)2)m)2)2)m = m21. It is to be noted,
modpow involves only one multiplication per window.

2.2 Vulnerability of modPow algorithm

The windowed exponentiation algorithm as discussed above performs at most one
multiplication per window depending on the bits in that window. This particular
step incurs an extra computation in terms of that multiplication being performed
or not. If the multiplication positions can be distinguished from the squarings,
then it eventually reveals information about the position of these windows. The
entire timing analysis can be performed with only one set of timing observations
from the executions of BouncyCastle. The algorithm can be primarily divided
into the following three parts. Figure 2 illustrates the overall idea of how bits
get leaked in three phases.

Phase 1: Determining the positions of trailing Multiplication The

first task is to identify the positions of all such multiplication for the entire secret

exponent.

Phase 2: Partial key bits retrieval constraining the window size
Knowing the location of multiplications and the respective bit distances between two

successive multiplication position could lead to multiple bit recovery. We define the

constraints considering various cases that could arrive, since the start and end locations
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Bits leaked after Phase 1

Bits of the secret exponent2048 0

Bits leaked after Phase 2 Bits leaked after Phase 3

Fig. 2: Bits retrieved after each phase analysis

of each of the windows cannot be predicted at this stage. We follow by a worst-case

analysis to derive the surrounding bits. A similar analysis with respect to CRT-RSA

in [4] works on a different version of windowed mod-exp algorithm than the one used

in modPow function of BigInteger class. In this paper we target the BouncyCastle

and have successfully devised a more efficient partial key recovery phase than

reported earlier in the mentioned paper.

Phase 3: Full key recovery by Difference of Mean Analysis In this

phase, we guess the partial unknown bit sequence and perform a Difference of Mean

analysis based on the timing observations and split the observed timings into two bins

based on a guess on the target key bit. The number of Montgomery reductions executed

after each of the squaring and multiplication are non-constant and contribute to timing

difference between two bins.

3 PHASE 1: Determining the position of Multiplication
in windowed exponentiation

The previous section gives a description of the windowed exponentiation algo-
rithm of RSA of the BigInteger library. According to the window algorithm, for
a W-bit window of the exponent, there exists only one multiplication and W
squarings. The position of this trailing multiplication happens in between the
squarings. Also the number of squarings after which multiplication has to take
place, ie, the position of the trailing multiplication depends on the final occur-
rence of bit 1 in the window. This also means that information of location of
these trailing multiplication gives away further information about the exponen-
tiation window, thus the primary motive is to differentiate the location of such
multiplications from the adjacent squarings.
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(a) Motorola G2

(b) Huawei Honor 8 pro

(c) Motorola G5

Fig. 3: Identifying multiplication positions of the secret exponent on three dif-
ferent platforms

3.1 Timing attack on Windowed Exponentiation Algorithm

The aim of this phase is to identify the location of multiplications happening
over the sequence of bits from timing observation. Similar to Kocher’s [6] timing
attack on simple modular exponentiation, we follow by a difference in variance
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analysis for multiplication positions in the windowed algorithm. This is an itera-
tive procedure where the start and end bits of the consecutive windows Win are
not yet known to the adversary, thus she begins with guesses made for each bit
position. The event considered as the guess is that there has or has not been a
multiplication performed at that position.

In this process, the total execution timing over a set of inputs performing
the entire exponentiation on the secret exponent is observed beforehand. Since
this is an iterative procedure, the analysis progresses bit by bit with the basic
assumption that squaring and multiplication locations before the target bit po-
sition is already revealed. This partially known sequences of operation followed
by guesses for the target location are simulated and the hypothetical timings are
noted. The intuition is that the differences of previously observed total timings
and the simulated ones for two different event guesses forms a distribution of
difference timings, and the distribution with lesser variance validates the correct
guess (elaborated in Appendix A).

Therefore as established in [6], correct guess causes reduction in variance,
while a wrong guess affects the variance to increase. In windowed algorithm
there are much fewer multiplications, since the nature of delayed multiplication
only once per window. Also on an Android, the multiplications take considerably
more time than squarings while running the windowed algorithm. The timings as
observed over the Android application shows low variance if the multiplication
has been correctly guessed at that position otherwise reveals that there has been
no multiplication performed at the particular bit position. In simple words, the
variance of the difference in timing reveals the position where multiplications
take place.

3.2 Detection of Multiplications in Windowed Algorithm

We observed timing samples over our monitor app in Android and calculated the
variance over the sample values over both guesses. Figure 3a illustrates the ex-
ample location where the multiplication is getting guessed correctly on Motorola
MotoG27. As the multiplication was already taking place at that position of the
secret, the variance of difference of timings when multiplication has been guessed
is less than the case where the time till the squaring is considered. The values
of variance for the respective distributions observed for each guess is annotated
in the Figure 3a.

Figures 3b and 3c illustrate the cases where multiplications are identified on
Huawei Honor 8 Pro8 and MotoG59 respectively. The distributions in Figure 3
denote the distribution of two guesses and the variance of each guess is anno-
tated in the figure. The x-axis denotes the difference in timing observed from

7 Motorola MotoG2 2nd Gen with Qualcomm MSM8226 Snapdragon 400 Quad-core
1.2 GHz Cortex-A7 with Android Marshmallow 6.0

8 Huawei Honor 8 Pro with Octa-core (4x2.4 GHz Cortex-A73 4x1.8 GHz Cortex-A53)
processor with Android Oreo 8.0

9 Motorola MotoG5 with Qualcomm MSM8937 Snapdragon 430 Octa-core 1.4 GHz
Cortex-A53 processor with Android Nougat 7.0
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the Android application and the simulated timing with the guess, whereas the
y-axis denotes the frequency of those difference of timing observations. The
guess with the lower variance is the correct guess.

The information of the locations where the multiplications have taken place
are extremely important for the partial as well as the full recovery of the RSA
secret. Since the location of trailing multiplication also reveals the last occurrence
of a set(1) bit in the window, these bits themselves have to be 1. Also there are
some more bits in the window that can be retrieved just by knowing the position
of the multiplication which we discuss in the next section.

4 PHASE 2: Partial Key Recovery Analysis

Unlike simple modular exponentiation algorithm, a multiplication in windowed
exponentiation imposes constraint on several bits surrounding it. If the ith mul-
tiplication say li for window Wini (with length W) takes place at bit position
say bj , then the start and end location of Wini can be intuitively predicted to
be less than W− 1 bits away from li in both directions ie, some bits around the
bit location bj . This follows from the simple fact that li (bit location bj) belongs
to Wini and each window is W bits wide. Since multiplication for a window is
executed at the last occurrence of bit 1 in the window, and also say if the window
Wini includes some more bits after li, then it means that all the bits following
bj in Wini must be 0s. Thus it is intuitive, that the location of multiplication
carries information about several bits surrounding it. In the rest of this section,
we discuss the importance of these bit locations and a procedure to recover more
bits of the secret key.

4.1 Importance of multiplication locations

Let li and li+1 be the index locations of two adjacent multiplications belonging
to windows Wini and Wini+1 separated by k bits from bit location bj to bj+k

(refer to Figures 4 and 5 for illustration). As both li and li+1 indicate position of
bits representing the multiplications of their respective windows, both of them
should be 1s and all the bits in between them are yet unknown. Based on the
relative bit distance k between the known bits li and li+1 one or more unknown
bits of the key can be predicted. We categorize the relative distance into two
cases: li+1 − li ≥ W and li+1 − li < W.

Case 1: li+1 − li = k ≥ W The following analysis reveals more bit in the bit
locations bj , · · · , bj+k as illustrated in Figure 4. For the next part we will use
the index locations such as li and li+1 as an alias to bit locations bj and bj+k

respectively to avoid confusion.

– In order to predict the boundaries of Wini+1, we find that as the bit li+1 is
part of Wini+1, the beginning of window Wini+1 could be any one of the
bits in the range {b(j+k)−W+1, · · · , bj+k}.
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Predicted Bits
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Wini+1

Wini+1

li li+1

li+1li

Fig. 4: Case 1

– If (li+1− li) > W, neither of the bits between bj and b(j+k)−W can belong to
Wini+1. These bits from bj , bj+1 · · · , b(j+k)−W should either belong to Wini

or neither of the two windows.
– Now, considering that the multiplication for Wini occurs at li, the bit bj

has the last set bit for the window Wini. The bits following bj which belong
to window Wini can be surely identified to be 0. Therefore if any of the bits
between bj+1, · · · , b(j+k)−W belongs to Wini, then it must be 0.

Case 2: li+1 − li = k < W The second case deals with the possibility where
the next multiplication, li+1, occurs in some bit position within the next W bits
from li ie, k < W. In this case, the start bit of Wini+1 could be any bit between
bj+1 and bj+k and as Wini+1 is W bits wide, Wini+1 spans to some bits (at
least W − k bits) after li+1 as illustrated in Figure 5. In other words, li+1 isn’t
the last bit of the Wini+1. As we already know that multiplication occurs at the
trailing 1 of the window, the last set bit of Wini+1 is at li+1, ie, b

th
j+k location.

Therefore one or more bits of Wini+1 following bj+k should all be 0s. With this
information, though we cannot predict the start bit of Wini+1, we could retrieve
some trailing bits. Wini+1 window could start at any bit from bj+1 to bj+k and
it could end at any bit from bj+W to b(j+k)+W−1. But irrespective of the start
bit of Wini+1, we can safely say that the bits from bj+k+1 to bj+W would always
be part of Wini+1 and would all be 0s.

While the first case, (li+1 − li) > W, leaks some bits of the key in-between li
and li+1, the second case, (li+1 − li) < W, leaks some bits after li+1. And when
(li − li+1) is equal to W, no extra bits are leaked. We call the bits that can be
predicted with the information of multiplications’ locations as predictable bits.
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k < W

bjb0 bj+kbj+1

b0 bj bj+1 bj+k

Wini

Wini

Wini+1

Wini+1

li li+1

li+1li

bj+k−W

bj+W

W bits

k < W

Fig. 5: Case 2

In the next subsection, we extend our analysis from two adjacent multiplications
to all the multiplications of the key thereby retrieving all the predictable bits
of the key.

4.2 Retrieving dependencies between two consecutive windows

In order to retrieve all the predictable bits of the secret key we consider not just
two consecutive multiplications but all the multiplications of the key iteratively
using the knowledge of bits from previous windows. Here, instead of categorizing
the relative distance between li+1 and li+2, we categorize the relative distance
between the last known bit of Wini+1 and li+2. Let Pi+1 be the Placeholder bit
in this case which points the last known bit of Wini+1. Just like the previous
analysis, there can be two cases now (li+2 − Pi+1) > W and (li+2 − Pi+1) < W.
Figure 6 illustrates a case when locations of multiplications li, li+1, li+2 satisfy
the conditions (li+1−li) < W and (li+2−Pi+1) < W (Considering an example for
RSA-2048 where W gets set as 7). By considering the condition (li+1 − li) < W
first, we find 3 bits of Wini+1 to be 0s. In the next step, instead of categorizing
the relative distance between li+2 and li+1, if we take into consideration the
knowledge of the known bits then the distance between Pi+1 and li+2, we would
be able to recover more predictable bits of the key. Hence this modification
increases the efficiency of our analysis when we consider multiple windows in
succession. To maximize the efficiency of our analysis, we start from MSB of the
key and successively consider multiplications by calculating the relative distance
of li+1 from the last known bit of Wi. By continuing the process till the LSB of
the key, we can retrieve all predictable bits of the key.
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Fig. 6: Updating the placeholder bit Pi+1

4.3 Efficiency of our analysis

Continuing our analysis from the previous section, here we mathematically ap-
proximate expected number of bits we can predict by our analysis for a randomly
chosen exponent. Assume that we have partially revealed the key till li using the
relative distance method. Pi being the last known bit of Wini, we denote E(Pi+)
as the expected number of bits we could recover in the unknown part of the key
starting from Pi down to the LSB. Based on the location of the next multipli-
cation li+1, one or more bits of the key would be predicted by considering the
relative distance between Pi and li+1 and we can define E(n) as a recurrence
relation in terms of E(n − 1). In the first case we consider the situation where
k ≥ W and it ends up in a sum of two equation, where one part reveals some
bits in between the li and lthi+1 multiplication and the other part is a recursive
call to the bits following lthi+1 multiplication.

E(n) =

n∑
k=W

[(k −W+ 1) + E(li+1+)]Pr[(li+1 − Pi) == k]

Similarly for the case where k < W,

E(n) =

W−1∑
k=1

[(W − k + 1) + E(n−W)]Pr[(li+1 − li) == k]

Solving the probability term and expectation term separately (illustrated in
details in Appendix C), and adding up the expressions we obtain the general
equation for the expectation of the number of bits predicted as E(n):
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E(n) =

(
7

3
− 1

2W

)
+

n−W∑
i=1

1

2i
E(n− i− (W − 1))

=

(
7

3
− 1

2W

)
n

W+ 1

Fig. 7: Expected Efficiency versus Observed Efficiency

The entire expectation calculation has been validated over a number of ran-
dom secret exponents and Figure 7 illustrates the correctness of the equation
since it exactly matches with our simulation results from an automation as shown
in the figure.

For RSA-2048 with a 7-bit window, we are expected to predict 29% of the
exponent bits which is nearly twice the lower bound of our analysis. Note that
the proportion of bits that can be retrieved is inversely proportional to window
size. Decreasing the size of our exponent would also reduce the window size
thereby increasing the expected proportion of bits our analysis could predict.
For instance, RSA-512 uses a 5-bit window and our expected efficiency increases
to 39%.

5 PHASE 3: Recovering the remaining secret key

In this section, we put together all the discussions from the earlier sections to
frame a full recovery attack for the windowed algorithm of the BouncyCastle
implementation of RSA. The BigInteger implementation uses Montgomery Al-
gorithm to perform fast modular multiplication and squaring, and it consists of
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Phone Squaring Mult.() subN()

Motorola MotoG2 ~1000000ns ~1440000ns ~10000ns

Motorola MotoG5 ~200000ns ~260000ns ~2600ns

Huawei Honor 8Pro ~40000ns ~50000ns ~500ns

Table 1: Platform specific function execution timings

two steps: a multiplication and a reduction. We observed that ciphertexts de-
crypted with the same secret key had similar range of decryption timings due to
the similar pattern of squarings and multiplication, but there is a small differ-
ence in their timing which arise from the varying execution time of Reduction
function, montReduce().

The subroutine subN() is executed whenever the conditional statement in
montReduce() Line 16 of Listing 1.2 is satisfied which contributes to the timing
difference. subN() is the conditional subtraction module of the montReduce()

function which performs the reduction. In the code snippet, n is the value to
be reduced and mod is the modulus, both represented as arrays of integers in
BigEndian form.

Listing 1.1: Reduction Function

private stat ic int [ ] montReduce ( int [ ] n ,
int [ ] mod , int mlen , int inv ) {

int c=0;
int l en = mlen ;
int o f f s e t =0;
do {

int nEnd = n [ n . length−1−o f f s e t ] ;
int car ry = mulAdd(n , mod , o f f s e t ,
mlen , inv ∗ nEnd ) ;
c += addOne(n , o f f s e t , mlen , car ry ) ;
o f f s e t++;

} while(−− l en > 0 ) ;
int j = 0 ;
while ( c>0){

c += subN(n , mod , mlen ) ;
}
while ( intArrayCmpToLen (n , mod , mlen ) >= 0)
{

subN(n , mod , mlen ) ;
}
return n ;

}

Multiplication takes almost fixed time given any two inputs vectors whereas
the execution time for Reduction varies depending on the modulus and the input
vector, practical measurements over separate plarforms are tabulated in Table 1.
Table 1 refers to the range of the timing observations over squaring, multiplica-
tion and subN() function for each of these phones. Since the number of times
reduction happens is dependent on both the modulus and the intermediate result
from multiplication, we show next that this could be exploited.

Figure 8 shows that the newer phone as in Figure 8a are computationally
faster and have lesser variance in timing observations than the older phone in
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(a) Distribution of decryption time on Honor 8 Pro

(b) Distribution of decryption time on Moto G2

Fig. 8: Increase in accuracy on using a newer phone for timing measurements

Figure 8b, which inherently implies that the effect of noise is lower in newer
phones than the older one.

In this paper, we focus on building up an attack algorithm using this non-
constant times of reduction. The analysis proceeds in two steps: an Offline

phase which requires sub-simulation over partially known key bits and then fol-
lowed by Online timing measurement over the pre-computed samples separated
by the Offline phase.
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1 1 1
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Squarings for unknown
bits separating two 
multiplications.

Powered Multiplication 
for the guessed sequence 
separating multiplications

Squarings for bits following
the guessed odd powered multiplication
until the next mul position.

bj bj+2 bj+kbj+1

k bits li+1 li+2

Wini bits Wini+1 bits

b1b0

li

li and li+1 appended
with a 1 for li+1.

Fig. 9: Simulating reduction on guessed sequence of bits

5.1 Enforcing Timing Difference in Reduction Function

Thus starting from the fact that the positions of multiplication operation has
been identified, we target to identify the number of unknown k bits between
two identified positions of multiplications li and li+1. These k bits are denoted
as bj , bj+1, bj+2, · · · , bj+k−1, bj+k and the number of such bits ie, k may vary
depending on how far the consecutive multiplications are separated. Continuing
our discussion from previous section, depending on the number of bits k, there
can be two cases when being compared with the window size W.

– If li+1 − li ≥ W, the number of bits in between two consecutive multiplica-
tions li and li+1 can be at most W − 1.

– On the other hand, if li+1 − li < W, then the number of unknown bits in
this case is k − 1 which is lesser than W − 1.

Thus, the number of unknown bits in between two consecutive multiplications
can either be k−1 or at most the size of the window W−1, which we denote as R
henceforth. The sequence of unknown bits can assume any of binary equivalent
values (of R bits) from the set {0, 1, · · · , 2R−1}. We use each of these 2R sequence
of binary bits and denote them as {Seq0,Seq1, · · · ,Seq2R−1}, where each of these
are considered as guesses for the Offline subsimulations.

5.2 Offline Phase

The Offline phase of our analysis assumes each of the 2R sequence of binary bits
as one of its guess and separates a set of input ciphertexts based on the number
of extra reductions. The separation of the input ciphertexts are conditioned over
the guessed sequence of binary bits. So ∀Guess ∈ {Seq0,Seq1, · · · ,Seq2R−1} as
illustrated in Figure 9, the adversary simulates the following:
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1. the squarings and multiplications for all the known bits from the MSB to
the lthi multiplication (which is assumed to be already known in an iterative
model),

2. the squarings for the sequence of all bits in between the lthi and lthi+1 multi-
plication (is constant as there should be k squarings),

3. the multiplication for the guessed odd power for li+1 (this is where the guess
is incorporated), and

4. the squaring for the bits following li+1 till the next multiplication at li+2 (the
reductions in this part which are actually getting affected from the guessed
multiplication power).

The Montgomery reductions involved in the 4th component ie, the squar-
ings for number of bits separating li+1 and li+2 are the most crucial events
which decides in the separating procedure. This is because the guessed powered
multiplication in the 3rd component takes place with the help of the precom-
puted table of odd powers. Thus the squaring operation immediately following
the multiplication directly operates on the intermediate result produced by the
multiplication with the guessed power. The guessed odd power of multiplica-
tion varies with the guessed sequence and so does the intermediate input to the
squarings following lthi+1 multiplication.

Separating inputs in bins The adversary takes a large set of ciphertexts
as input, denoted as say M. For each input ∀mi ∈ M, the adversary simulates
the windowed exponentiation algorithm for all the partial known bits and the
assumed bits till the lthi+2 multiplication and in turn calculates the number of
Montgomery reduction operations have been encountered. Based on the number
of reductions, the adversary selects the inputs mi corresponding to maximum
number of reductions di in the Max Bin and alternatively puts input with mini-
mum number of reductions in Min Bin. As illustrated in Figure 10, this effectively
generates two separate disjoint bins as Max Bin and Min Bin constituting of in-
puts having higher and lower number of reduction operations respectively. Note
that, for each guess there would be always some inputs which would not qualify
in any of the two bins. Those timing measurements are considered not to be
useful in deciding the correct guess for that particular window, but may prove
to be highly separating for some other window along the exponent. This process
is repeated for all assumed guesses.

5.3 Online Phase

In this validation phase with actual timing measurements from Android device,
we expect the correct guess to win from the 2R possible guessed binary sequences.
Offline phase generates two bins Max Binj and Min Binj constituting of input
mi’s which are having maximum and minimum number of simulated reductions.

The odd powered multiplication indexed at lthi+1 location can be identified
using the following steps:
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Fig. 10: Separating inputs based on guess and number of Simulated Reduction
Counts

– ∀j ∈ 2R, online phase prepares two more sets T ime MaxBinj and T ime MinBinj

which include timing values for the respective input ciphertexts from two bins
Max Binj and Min Binj .
T ime Highj = {ti : total decryption time for ∀mi ∈ High Binj}
T ime Lowj = {ti : total decryption time for ∀mi ∈ Low Binj}.

– We now construct Separationj based on difference of mean of the two distributions
T ime MaxBinj and T ime MinBinj .

Thus, at the end of the Online Phase, we select the correct guess as Correct guess =

j|Separationj = max(Separation0, · · · , Separation2R) using the Difference of
Mean (DoM) Analysis.

6 Experimental details from the measurement setup

6.1 Timing the conditional reductions

In this subsection, we start with the actual reason of the differences in timing.
According to the window algorithm, the major contributing factors for decryp-
tion time are the multiplications and squarings, and the number of times these
squarings and multiplications that are executed is entirely dependent on the
secret key. The implementation of Montgomery reduction following every squar-
ing and multiplication is not a constant time function as discussed earlier. We
observed that ciphertexts decrypted with the same secret key had similar de-
cryption timings due to the similar pattern of squarings and multiplication, but
there is a small difference in their timing which arise from the varying execution
time of Reduction function, montReduce().

The subroutine subN() is executed whenever the conditional statement in
montReduce() Line 16 of Listing 1.2 in Appendix D is satisfied which contributes
to the timing difference. Based on our experiments on RSA-2048 following the
FIPS 186-4 standard, we illustrate the differences in decryption time for a ci-
phertext compared to another to be based on the total number of reductions
encountered, which we denote as fi for ciphertext ci. The symbols that we use
in the subsequent discussion are detailed in Table 2.
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Symbol Representation

fx, fy
Number of subN() subroutine executions while decrypting ciphertext
cx, cy

wk,x, wk,y

Number of subN() subroutine executions of the k bits between lthi and
lthi+1 multiplications for ciphertext cx, cy,

tj,x, tj,y
Time observed for execution till the jth bit from the MSB for the secret
exponent, for ciphertexts cx, cy.

Table 2: Tabular representation of symbols

(a) Difference in timing observation for two different ciphertexts

(b) Difference in counts of the number of Montgomery reductions for
two different ciphertexts

Fig. 11: Proportionality of observed timing and the number of reductions

We chose to decrypt two example ciphertexts, say cx and cy on the same
2048-bit secret key with subN() frequencies fx = 425 and fy = 467(wlog), and
also monitor their intermediate timings. We denote tj,i as the time observed for
execution till the jth bit from the MSB for the secret exponent, for a particular
ciphertext ci. In addition, we maintain two counters counterx and countery
for the two ciphertexts. These counters are incremented whenever subN() is
executed while decrypting the ciphertexts along the secret exponent bits. In
order to show that the timing observation for a ciphertext is directly proportional
to the total number of reductions encountered, we show that the difference in
intermediate timings of the ciphertexts cx and cy is related to the difference of the
counters counterx and countery. Figure 11 shows that the variation of decryption
time and counter values along the bit positions. The variation of difference of
intermediate timings as illustrated in Figure 11a, has an exact same nature as
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Fig. 12: Frequency Distribution for fi

the difference in the number of reduction operations plotted in Figure 11b. The
difference in average decryption time between cx and cy is 359527 ns, dividing
this by ∥fy - fx∥ = 42 gives 8560 ns for every execution of subN() which lies in
the range of the expected value for MotoG2 as mentioned in Table 1.

6.2 Distribution of fi is gaussian in nature for a 2048 bit RSA

In this subsection we choose the standard RSA-2048 and select a modulus and
key pair following FIPS 186-4 standard. A random set of ciphertexts were de-
crypted using this selected secret key and observed the number of Montgomery
reductions fi for each of the ciphertexts ci. It has been observed that the distribu-
tion of the total number of Montgomery reductions encountered for a particular
secret key lies in the range from 400 to 520. Figure 12 shows the frequency
distribution for a collection of 36000 ciphertexts. We repeated the decryption
process with different random collections of ciphertexts, the frequencies of all
the collections were normally distributed around similar mean values. This re-
sult is immensely important while we understand the efficiency of partitioning
the bin.

6.3 Efficiency of bin partitioning approach

LetGuessj denote the unknown bits ofWinth
i window andGuessj == Correct Guess,

then

∑
i∈High BinGuessj

fi

|High BinGuessj |
>

∑
i∈Low BinGuessj

fi

|Low BinGuessj |
.

Let wk,i denotes the number of subN() subroutine executions of the k bits be-

tween lthi and lthi+1 multiplications for ciphertext ci, then

∑
i∈High BinGuessj

wk,i

|High BinGuessj |
>
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(a) Correct Guess

(b) Wrong Guess

Fig. 13: Difference of Mean(DoM)

∑
i∈Low BinGuessj

wk,i

|Low BinGuessj |
.

Now, if we consider the distribution of fi - wk,i, it is independent of the bits in be-
tween lthi and lthi+1 multiplications. This follows from the argument in the previous
subsection and thus it would be Gaussian as well and there wouldn’t be any corre-

lation between the bins i.e,

∑
i∈High BinGuessj

(fi − wk,i)

|High BinGuessj |
≈

∑
i∈Low BinGuessj

(fi − wk,i)

|Low BinGuessj |
.

Hence the average of the overall frequency distribution, fi, would be Gaus-
sian but with the mean High BinGuessj greater than Low BinGuessj only when
Guessj == Correct Guess.

Alternatively, for all other Guessj ̸= Correct Guess, the overall frequency
distribution, fi would be a Gaussian with the mean High BinGuessj same as the

Low BinGuessj , this is because

∑
i∈High BinGuessj

wk,i

|High BinGuessj |
≈

∑
i∈Low BinGuessj

wk,i

|Low BinGuessj |
since Guessj ̸= Correct Guess.
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j

∑
i∈Max Bin

Guessj
fi

|Max BinGuessj |

∑
i∈Min Bin

Guessj
fi

|Min BinGuessj |
Difference

115 456.32 452.87 3.45

113 454.82 452.08 2.74

109 454.92 453.15 1.78

55 455.90 454.17 1.73

105 455.33 453.78 1.55

85 455.30 453.94 1.36

43 453.63 452.56 1.07

35 454.16 453.19 0.97

65 455.40 454.60 0.80

13 455.53 454.74 0.79

Table 3: Difference Table

Figure 13 illustrates the two cases, where 13a shows the separation of mean
for the distributions from two different bins for the correct guess, while in 13b
the separation is not visible as the means are overlapping for the wrong guess.

So in general for a pair of Correct and Wrong guess,

(

∑
i∈High BinCor. Gues

fi

|High BinCor. Gues|
−

∑
i∈Low BinCor. Guess

fi

|Low BinCor. Guess|
) >

(

∑
i∈High BinWrong Guess

fi

|High BinWrong Guess|
−

∑
i∈Low BinWrong Guess

fi

|Low BinWrong Guess|
) The wrong guess does

not partition the ciphertexts into meaningful subsets, instead it could be more
or less a random partitioning with respect to wk,i. Assuming that collection of ci-

phertexts to be large, the relationship would rather be :

∑
i∈High BinWrong Guess

wk,i

|High BinWrong Guess|
≈∑

i∈Low BinWrong Guess
wk,i

|Low BinWrong Guess|
.

We experimentally verified this observation by using a 2048-bit FIPS speci-
fied secret key performing modular exponentiation with a window size of 7. As
the last bit of the sequence is a 1, we could have at most 64(26) possible combi-
nations for the unknown bits. For our experiment, the secret 7 bits were of form

1110011(115) and the difference of the mean separated as (

∑
i∈High BinGuessj fi

|High BinGuessj |
−∑

i∈Low BinGuessj fi

|Low BinGuessj |
) were calculated ∀Guessj ∈ {1, 3, · · · , 127}. Table. 3 dis-

plays the highest differences in descending order and we can verify that Guessj

with value 115 has the highest difference as expected. This validates the Differ-
ence of Mean strategy in presence of multiple bins. The overall full-key recovery
analysis can thus be iteratively performed over each sequence of unknown bits
between two known multiplication positions.
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7 Conclusion

The paper demonstrates a timing side-channel analysis on a number of avail-
able mobile platforms starting from the newest version of Android commercially
available to the older ones. This timing exploit neither requires the architectural
details of the underlying processor nor privileges to restricted sensor data or
extra equipment for measurement, which also makes this analysis platform inde-
pendent. The secret gets retrieved in 3 phases in this iterative recovery algorithm,
but interestingly the adversary requires only a single set of timing observations
in order to perform all the phases and thus faster the processor, more vulnerable
is it to this genre of timing vulnerability.
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A Identifying Multiplication positions

The execution time for the algorithm varies depending on the number of bits
of secret x (i.e. w) and its value. Let us denote the total execution time as
T = e+

∑w−1
i=0 ti , where ti is the time required for the squaring and multiplication

for i-th iteration of the loop i.e. which corresponds to the bit x[i] and e includes
the measurement error, loop overhead, and many other sources of noise. For
a fixed x, time distributions are obtained by observing the execution time for
different values of input y. Thus the variance of the distribution is: V ar(T ) =
V ar(e) + w · V ar(t) .

This iterative measurement leaks x being a squaring or multiplication starting
from its most significant bit. x[b] (where 0 ≤ b < w) can only be retrieved if all
operation for bits from x[w − 1] to x[b+ 1] are known. The attacker makes both
guesses of x∗[b] (just a squaring or a squaring and a multiplication) and obtains
the execution time (T ∗) for each of the two guesses. The detection the correct
bit is decided by the difference between the time for the two executions is

T − T ∗ = [e+

w−1∑
i=0

ti]− [t∗b +

w−1∑
i=b+1

ti] = [e+

b−1∑
i=0

ti] + tb − t∗b

Thus, if the guess is correct, the difference in the variance obtained is given
by V ar[T − T ∗] = V ar(e) + b · V ar(t) On the other hand, on a wrong guess,
V ar[T − T ∗] = V ar(e) + (b+ 2) · V ar(t) .

Therefore a correct guess causes reduction in variance, while a wrong guess
affects the variance to increase. This distinguisher can be used to validate the
guess for x[b].

B Understanding the System Noise

The effect of system noise in this set of experiments is immense. Filtering the
system noise from the useful timing samples which carry information, plays a
very important part in determining the success of the attack. Thus, to get a feel
on how varied the timing samples can be, we record intermediate timings peri-
odically after every few loop iterations. For this part of the experiment, without
loss of generality we monitor the intermediate time after every 5 iterations of
the loop. We record the timings at an interval of every 5 bits, starting from t0,
t5 all the way to t2045 for a 2048-bit secret key. Here the subscripts denote the
bit positions and modular exponentiation for decryption starts from the most
significant bit. Therefore t0 < t5 < · · · < t2045. The difference (t5∗i − t5∗i−5)
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(a) Category 1

(b) Category 2

(c) Category 3
Fig. 14: Timing Distribution for three categories

Cat. Operations Mean(ns) Threshold(ns)

1
No Mult. + Five Squar-
ings

5374837 5180000

2 1 Mult. + Five Squarings 6828097 6620000

3 2 Mult. + Five Squarings 8280845 8050000

Table 4: Categories for 5 consecutive iterations

could belong to one of three categories, as described in Table. 4, based on the
number of multiplications that take place in the five loop iterations. There can
be atmost 2 multiplications happening from two adjacent windows and also there
can be no multiplications. The adaptive window size being selected for a 2048
bit secret exponent of RSA is 7. The window though being of size 7 bits, the
lookahead buffer decides when to start the window based on the bits encoun-
tered, thus this timing analysis with timing observation after every 5 bits is no
way aligned to the actual windows being formed while the algorithm iteratively
performs modular exponentiation.

The timing for squarings are same for all the three cases, but the multiplica-
tion operation do contribute for significant timing difference for the later two
categories. Figure 14 shows the distribution of timing measurements observed
for each of the categories, where each of them are multi-modal distributions and



26 Bhattacharya et al.

the Table 4 shows the respective mean and threshold selection if we only filter
the first gaussian curve under the shaded region to be useful, and subsequently
discard the timing samples which belong to the later parts of the distribution.
Discarding timing samples which belong to the other Gaussians in such a multi-
modal distribution are not recommended as compulsory for replicating our ex-
periments. Though it has been observed that the most noisefree signal belongs
only to the Gaussian under the shaded region. Consequently, the success of ex-
periments can be converged with involvement of lesser samples as input if we
consider the timing observations under the shaded region and thus the selection
of the threshold plays an important role in filtering out useful signals.
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C Efficiency of partial key recovery analysis

The expectation of number of bits that can be revealed from the position follow-
ing the Placeholder bit Pi is represented as E(n) ie, n bits from Pi to LSB. The
quantity is actually dependent on the sum of Probabilities of the next multipli-
cation (at li+1) occurring in next k bits from the last multiplication (at li). Now
based on the window size W the expectation can be expressed in two different
forms. In the first case we consider the situation where k ≥ W and it ends up in
a sum of two equation, where one part reveals some bits in between the li and
lthi+1 multiplication and the other part is a recursive call to the bits following lthi+1

multiplication.

E(n) =

n∑
k=W

[(k −W+ 1) + E(li+1+)]∗

Pr[(li+1 − Pi) == k]

When k == W, the probability term can be written as,

k = W : Pr[(li+1 − Pi) == W]

=
1

22
+

1

24
+

1

26
+

1

28
+

1

210
+

1

212
+

1

213

=
1

3

And, when k > W, the probability term can be written as,

k = W+ t : Pr[(li+1 − Pi) == W+ t]

=
1

2t+2
+

1

2t+4
+

1

2t+6
+

1

2t+8
+

1

2t+10

+
1

2t+12
+

1

2t+13

=
1

2t ∗ 3

Now, the expectation is calculated as follows:

n∑
k=n

(k −W+ 1)∗Pr[(li+1 − li) == k] =

1

3
+

2

2 ∗ 3 +
3

4 ∗ 3 + · · ·+ n− 1

2n ∗ 3
=

4

3
· · · (1)



28 Bhattacharya et al.

Similarly for the case where k < W,

E(n) =

W−1∑
k=1

[(W − k + 1) + E(n−W)]∗

Pr[(li+1 − li) == k]

k = 1 : Pr[(li+1 − Pi) == 1] =
2k−1

2W

k = 2 : Pr[(li+1 − Pi) == 2] =
2k−2

2W
+

2k−2

2W+1

k = 3 : Pr[(li+1 − Pi) == 3] =
2k−2

2W
+

2k−3

2W+1
+

2k−3

2W+2

k = 4 : Pr[(li+1 − Pi) == 4] =
2k−2

2W
+

2k−3

2W+1
+

2k−4

2W+2

+
2k−4

2W+3

k = W − 1 : Pr[(li+1 − Pi) == W − 1] =
2k−2

2W
+

2k−3

2W+1
+

· · ·+ 2k−(W−1)

22W−2
+

2k−(W−1)

22W−2

W−1∑
k=1

(W − k + 1)Pr[(li+1 − li) == k] = 1− 1

2W
· · · (2)

Solving the recursive part of the equation from k ≥ W and k < W, we get

W−1∑
k=1

[E(n−W)] ∗ Pr[(li+1 − li) == k]

+

n∑
k=W

E(n− k) ∗ Pr[(li+1 − li) == k]

=
1

2
E(n−W)+

1

4
E(n−W − 1) + · · ·+ 1

2n−W
E(1)

=

n−W∑
i=1

1

2i
E(n− i− (W − 1)) · · · (3)

Adding up Equations (1), (2) and (3) results in the general equation of ex-
pectation of the number of bits retrieved as:

E(n) =

(
7

3
− 1

2W

)
+

n−W∑
i=1

1

2i
E(n− i− (W − 1))
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D Snippets of Montgomery Reduction

Listing 1.2 shows the Reduction function’s definition.

Listing 1.2: Reduction Function

private stat ic int [ ] montReduce ( int [ ] n ,
int [ ] mod , int mlen , int inv ) {

int c=0;
int l en = mlen ;
int o f f s e t =0;
do {

int nEnd = n [ n . length−1−o f f s e t ] ;
int car ry = mulAdd(n , mod , o f f s e t ,
mlen , inv ∗ nEnd ) ;
c += addOne(n , o f f s e t , mlen , car ry ) ;
o f f s e t++;

} while(−− l en > 0 ) ;
int j = 0 ;
while ( c>0){

c += subN(n , mod , mlen ) ;
}
while ( intArrayCmpToLen (n , mod , mlen ) >= 0)
{

subN(n , mod, mlen ) ;
}
return n ;

}
In the above code snippet n is the value to be reduced and mod is the modulus,
both represented as arrays of integers in BigEndian form.

Listing 1.3: Array Comparison

f ina l stat ic long LONGMASK = 0 x f f f f f f f f L ;

private stat ic int intArrayCmpToLen ( int [ ]
arg1 , int [ ] arg2 , int l en ) {

for ( int i =0; i<l en ; i++) {
long b1 = arg1 [ i ] & LONGMASK;
long b2 = arg2 [ i ] & LONGMASK;
i f ( b1 < b2 )

return −1;
i f ( b1 > b2 )

return 1 ;
}
return 0 ;

}


