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Abstract. Recently, SIKE was broken by the Castryck-Decru attack in
polynomial time. To avoid this attack, Fouotsa et al. proposed a SIDH-
like scheme called M-SIDH, which hides the information of auxiliary
points. The countermeasure also leads to huge parameter sizes, and cor-
respondingly the public key size is relatively large.
In this paper, we propose compressed M-SIDH, which is reminiscent
of compressed SIDH. Compared with SIDH, the isogeny degrees in M-
SIDH consist of many factor primes, and thus most of the techniques
used in compressed SIDH can not be applied into compressed M-SIDH
directly. To overcome this issue, we apply several novel techniques to
compress the public key of M-SIDH. We also show that our approach to
compress the public key of M-SIDH is valid and prove that compressed
M-SIDH is secure as long as M-SIDH is secure. In addition, we present
new algorithms to accelerate the performance of public-key compression
in M-SIDH.
We provide a proof-of-concept implementation of compressed M-SIDH
in SageMath. Experimental results show that our approach fits well with
compressed M-SIDH. It should be noted that most techniques proposed
in this work could be also utilized into other SIDH-like protocols.

Keywords: M-SIDH · Post-quantum Cryptography · Public-key Com-
pression · SIDH

1 Introduction

Since supersingular isogeny Diffie-Hellman (SIDH) [24] was proposed by Jao
et al., isogeny-based cryptosystems are attractive in post-quantum cryptogra-
phy. As the NIST [1] round 4 finalist, supersingular isogeny key encapsulation
(SIKE) [4] is famous for its small public key size.

To make SIDH/SIKE more attractive, a large variety of works target public-
key compression in SIDH/SIKE to reduce the public key size. Public-key com-
pression in SIDH was first proposed by Azarderakhsh et al. [5]. The key was
further compressed by Costello et al. [15]. There are three main procedures in



public-key compression in SIDH: torsion basis generation, pairing computation
and discrete logarithm computation. Zanon et al. [42] utilized several techniques
to accelerate the implementation significantly. Later, Naehrig et al. [31] adapted
the dual isogeny to speed up the performance of pairing computation, while
Pereira et al. [33] extended the work of [42] and gave a fast method to gen-
erate binary torsion basis. However, most of the techniques require large stor-
age for precomputation. An efficient method to compute discrete logarithms
with smaller lookup tables was proposed in [22]. Lin et al. [25] improved the
Miller evaluation, making the implementation faster with less storage. Several
works [26,32] also managed to compress the key using other approaches.

Recently, Castryck and Decru [10] proposed an efficient attack to break SIDH
and SIKE in polynomial time if the endomorphism ring of the starting curve is
known. Maino et al. [28] gave a subexponential algorithm to attack SIDH with
arbitrary starting curves. Inspired by these two works, Robert [37] presented
a deterministic polynomial time attack on SIDH in all cases. The attacks also
apply to Séta [17] and B-SIDH [14].

However, not all is lost. All the mentioned attacks entirely rely on the fol-
lowing information:

– the degree of the secret isogeny;
– the torsion point images.

Therefore, the attacks do not apply to a few SIDH-based schemes such the
isogeny-based Proof of Knowledge proposed in [16]. Furthermore, one could con-
struct new schemes by hiding either of the above information to avoid the at-
tacks. Moriya managed to hide the degree of the secret isogenies and proposed
a new SIDH-like scheme, while Fouosta proposed another scheme, called M-
SIDH (Masked torsion points SIDH), to avoid the attacks by masking auxiliary
points [30,18,19]. However, to satisfy the desired security, both of SIDH-like
schemes require relatively large parameter sizes, resulting in larger public key
size compared with that of SIDH. Since the new isogeny degrees consist of many
factor primes, the approach to compress the public key of SIDH can not be
directly extended to the case of M-SIDH and MD-SIDH. Therefore, how to com-
press the public key in M-SIDH and MD-SIDH is still an open problem.

In this paper, we give an approach to overcome this problem and propose
several new techniques to compress the public key of M-SIDH, whose size is
6 log2 p bits. We summarize our work as follows:

– We propose compressed M-SIDH to compress the public key of M-SIDH.
Reminiscent of compressed SIDH/SIKE, our method to compress the key
also involves torsion basis generation, pairing computation and discrete log-
arithm computation. We prove that the problem underlying compressed M-
SIDH is the same as that of M-SIDH, and the key size is reduced from 6 log2 p
bits to 4 log2 p bits.

– We propose several techniques to enhance the performance of compressed
M-SIDH. Firstly, we propose a novel way to generate torsion basis. In par-
ticular, to determine whether two points could form a torsion basis we utilize
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compressed pairings and Lucas sequences. Secondly, an efficient approach is
proposed for discrete logarithm computation. Finally, we utilize the Chinese
Remainder Theorem to further compress the public key, reducing the key
size to around 3.5 log2 p bits.

– We give the first instantiation of compressed M-SIDH in SageMath. Exper-
imental results verify the validity of our algorithms.

The rest of this paper is as follows. In Section 2 we recall the reduced Tate
pairing, compressed pairings, Lucas sequences, M-SIDH and public-key compres-
sion in SIDH/SIKE. Section 3 sketches our approach to compress the public key
of M-SIDH and prove that compressed M-SIDH is secure if M-SIDH is secure.
In Section 4 we present several novel techniques to compress the public key of
M-SIDH efficiently. Section 5 reports our implementation and we conclude in
Section 6.

2 Preliminaries

In this section, we first introduce the reduced Tate pairings, compressed pair-
ings and Lucas sequences. Next, we recall M-SIDH. Finally, we review several
techniques used in public-key compression in SIDH/SIKE.

2.1 Reduced Tate pairings

Let E be an elliptic curve over the finite field Fq, where q is a power of a prime p.
Denote µn to be the cyclic group of order n in F∗

q with n|q− 1, and fn,R to be a
rational function on E satisfying div(fn,R) = n(R)− n(O), where R ∈ E(Fq)[n]
and O is the point at infinity. The reduced Tate pairing [20] is defined as:

en : E(Fq)[n]× E(Fq)/nE(Fq) → µn,

(R,S) 7→ fn,R(S)
q−1
n .

Similar with the Tate pairing [40], the reduced Tate pairing has the following
properties:

– Bilinearity: ∀R,R1, R2 ∈ E(Fq)[n], ∀S, S1, S2 ∈ E(Fq)/nE(Fq),

en(R,S1 + S2) = en(R,S1) · en(R,S2),

en(R1 +R2, S) = en(R1, S) · en(R2, S).

– Non-degeneracy: If en(R,S) = 1 for all S ∈ E(Fq)/nE(Fq) then R = O, and
if en(R,S) = 1 for all R ∈ E(Fq)[n] then S ∈ nE(Fq).

– Compatibility with isogenies: Assume ϕ : E → E′ is a non-zero isogeny
of degree m defined over Fq. For R ∈ E(Fq)[n], S ∈ E(Fq)/nE(Fq), R′ ∈
E′(Fq)[n],

en(ϕ(R), ϕ(S)) = en(R,S)
m,

en(R
′, ϕ(S)) = en(ϕ̂(R

′), S).
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2.2 Compressed pairings and Lucas sequences

Compressed pairings were first introduced by Scott et al. [38]. This kind of
pairings reduces to the bandwidth of pairing values by taking the trace map.
Assume that the elliptic curve is supersingular and it is defined over Fp2 =
Fp[i]/〈i2+1〉 with p ≡ 3 mod 43. In this case, computing the trace of the pairing
value is more efficient than computing the pairing value itself.

The final exponentiation of pairings consists of a raising to the power of p−1
and the power of (p+1)/n. The former one is an easy part, but the latter requires
relatively large computational resources. Thanks to Lucas sequences [36, Section
3.6.3], one could efficiently obtain trFp2/Fp

(γz) from trFp2/Fp
(γ) for any γ ∈ µp+1

and z = (z0z1 · · · zt)2 ∈ N, as shown in Algorithm 1. Therefore, this technique
can improve the costly part of the final exponentiation.

Algorithm 1 LS: Lucas sequences
Require: trF

p2
/Fp(γ) with γ ∈ µp+1, z = (z0z1 · · · zt)2 ∈ N;

Ensure: trF
p2

/Fp(γ
z).

1: v0 ← 2, v1 ← trF
p2

/Fp(γ), tmp← v1;
2: for each j ∈ {0, 1, · · · , t} do
3: if zj = 1 then
4: v0 ← v0 · v1, v0 ← v0 − tmp, v1 ← v21 , v1 ← v1 − 2;
5: else
6: v0 ← v20 , v0 ← v0 − 2, v1 ← v0 · v1, v1 ← v1 − tmp;
7: end if
8: end for
9: return v0.

Lucas sequences have potential to improve the exponentiation in the group
µp+1 as well. According to the observation in [38], for any element γ = γ1+γ2 ·i ∈
µp+1 and z ∈ N,

(γ1 + γ2 · i)z =
LS(γ, z)

2
+
γ1 · LS(γ, z)− LS(γ, z − 1)

2γ21 − 2
· γ2 · i.

Note that when computing LS(γ,z − 1), the explicit value of LS(γ,z) is also
obtained. When the inverse operation is not costly (for instance one can adapt
the binary GCD algorithm) and z is large, utilizing Lucas sequences will improve
the performance significantly. The main idea is summarized in Algorithm 2.

3 Indeed, the techniques proposed in this subsection also works when the elliptic curve
is defined over Fq2 , where q is a prime power.
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Algorithm 2 ELS: Exponentiation using Lucas sequences
Require: γ = γ1 + γ2 · i ∈ µp+1, z ∈ N+;
Ensure: γz.
1: tmp1 ← LS(γ, z), tmp2 ← LS(γ, z − 1);

//when computing LS(γ,z − 1), LS(γ,z) is also obtained
2: tmp1 ← tmp1/2, tmp2 ← tmp2/2;
3: tmp2 ← γ1 · tmp1 − tmp2, tmp2 ← tmp2/(γ

2
1 − 1), tmp2 ← tmp2 · γ2;

4: return tmp1 + tmp2 · i.

2.3 M-SIDH

Let p = 4 · f · ℓ1 · ℓ2 · · · ℓt − 1, where the primes ℓ1, ℓ2, · · · , ℓt are the first t
odd primes and f is a small cofactor such that p is a prime. Denote ℓ0 = 2,
NA = ℓ0 · ℓ2 · · · ℓt−1 and NB = ℓ1 · ℓ3 · · · ℓt. Define E0 be a supersingular curve
over Fp2 together with E0[NA] = 〈PA, QA〉 and E0[NB ] = 〈PB , QB〉. Similar to
the SIDH protocol, M-SIDH proceeds as follows:

– Key Generation: Alice chooses a random integer sA ∈ Z/NAZ as her se-
cret key. She computes the point PA + [sA]QA and constructs the NA-
isogeny ϕA with kernel 〈PA + [sA]QA〉. Then she evaluates two torsion
point images ϕA(PB), ϕA(QB) and the image curve EA. Finally, she trans-
mits the tuple (EA, [a]ϕA(PB), [a]ϕA(QB)) to Bob, where a ∈ µ2(NB) =
{x ∈ Z/NBZ|x2 ≡ 1 mod NB}. Similar to Alice, Bob selects a random
integer sB ∈ Z/NBZ to compute PB + [sB ]QB as the kernel generator
of the NB-isogeny ϕB . His public key is (EB , [b]ϕB(PA), [b]ϕB(QA)) with
b ∈ µ2(NA) = {x ∈ Z/NAZ|x2 ≡ 1 mod NA}.

– Key Agreement: Alice begins her key agreement phase after receiving Bob’s
public key. She first checks whether eNA

([b]ϕB(PA), [b]ϕB(QA)) is equal to
eNA

(PA, QA)
NB , if not she aborts. Then she computes the point [b]ϕB(PA)+

[sA]([b]ϕB(QA)) to construct the NA-isogeny ϕ′A with kernel 〈ϕB(PA) +
[sA]ϕB(QA)〉 and regards the j-invariant j(EBA) of the image curve as her
shared key. Analogously, Bob checks whether eNB

([a]ϕA(PB), [a]ϕA(QB)) is
equal to eNB

(PB , QB)
NA , if not he aborts. He computes the image curve

EAB of the NB-isogeny ϕ′B and the shared key j(EAB).

The security of M-SIDH relies on the hardness of Problem 1:

Problem 1. Let NA = ℓ0ℓ2 · · · ℓt−1 and NB = ℓ1ℓ3 · · · ℓt be two smooth prime
integers, and f be a small cofactor such that p = NANBf − 1 is a prime, which
NA ≈ NB . Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) =
(p+1)2 = (NANBf)

2, set E0[NA] = 〈PA, QA〉. Let ϕ : E0 → EB be a uniformly
random NA-isogeny and let b be a uniformly random element of µ2(NA) = {x ∈
Z/NAZ|x2 ≡ 1 mod NA}.
Given E0, PA, QA, EB , [b]ϕB(PA), [b]ϕB(QA), compute ϕA.
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2.4 Public-key compression in SIDH/SIKE

In this subsection, we briefly review the main techniques utilized in public-key
compression in SIDH/SIKE. For simplicity, we only consider how to compress
the key (EB , ϕB(PA), ϕB(QA)).

The main idea of public-key compression is to implement a deterministic
pseudorandom number generator to generate a basis of the NA-torsion group,
and use this basis to linearly represent ϕB(PA) and ϕB(QA), i.e.,[

ϕB (PA)
ϕB (QA)

]
=

[
a0 b0
a1 b1

] [
UA

VA

]
. (1)

After revealing a0, a1, b0 and b1, Bob checks whether a0 is invertible in Z/NAZ×.
If so, Bob sends (EB , 0, a

−1
0 b0, a

−1
0 a1, a

−1
0 b1) to Alice. Otherwise, the element b0

must be invertible in Z/NAZ× and Bob transmits (EB , 1, b
−1
0 a0, b

−1
0 a1, b

−1
0 b1)

instead.
Assume that a0 ∈ Z/NAZ×, while the other case is similar. After receiving

Bob’s public key, Alice could compute the kernel of the isogeny ϕ′A [15]:

〈ϕB(PA) + [sA]ϕB(QA)〉 = 〈[a0]UA + [b0]VA + [sAa1]UA + [sAb0]VA〉
= 〈UA + [a−1

0 b0]VA + [sAa
−1
0 a1]UA + [sAa

−1
0 b0]VA〉

= 〈[1 + sA(a
−1
0 a1)]UA + [(a−1

0 b0) + sA(a
−1
0 b0)]VA〉.

Therefore, Alice could complete the key agreement phase without recovering
ϕA(PB) and ϕA(QB).

It remains how to obtain a−1
0 b0, a−1

0 a1 and a−1
0 b1. Zanon et al. [42] proposed

a new technique to speed up the performance. Since ϕB(PA) and ϕB(QA) also
form a basis of EB [NA], they can also linearly represent UA and VA, i.e.,[

UA

VA

]
=

[
c0 d0
c1 d1

] [
ϕB (PA)
ϕB (QA)

]
. (2)

It is easy to verify that

(a−1
0 b0, a

−1
0 a1, a

−1
0 b1) = (−d−1

1 d0/D,−d−1
1 c1/D, d

−1
1 c0/D),

where D = c0d1 − c1d0 mod NA. With the help of bilinear pairings,

h0 = eNA
(ϕB (PA) , ϕB (QA)) = eNA

(PA, QA)
NB ,

h1 = eNA
(ϕB (PA) , UA) = eNA

(ϕB (PA) , c0ϕB (PA) + d0ϕB (QA)) = hd0
0 ,

h2 = eNA
(ϕB (PA) , VA) = eNA

(ϕB (PA) , c1ϕB (PA) + d1ϕB (QA)) = hd1
0 ,

h3 = eNA
(ϕB (QA) , UA) = eNA

(ϕB (QA) , c0ϕB (PA) + d0ϕB (QA)) = h−c0
0 ,

h4 = eNA
(ϕB (QA) , VA) = eNA

(ϕB (QA) , c1ϕB (PA) + d1ϕB (QA)) = h−c1
0 .

(3)
Note that h0 only depends on public parameters. Therefore, one can recover c0,
c1, d0, d1 by computing four discrete logarithms of h1, h2, h3, h4 to the base
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h0 efficiently with precomputed lookup tables [42,22,31,25]. Another approach
is to compute only three discrete logarithms of h1, h3, h4 (resp. h2, h3, h4) to
the base h2 (resp. h1) without precomputation as h2 (resp. h1) could not be
computed in advance [26].

3 Public-key Compression in M-SIDH

In this section, we sketch our approach to compress the public key of M-SIDH
and give Proposition 2 to show that compressed M-SIDH is secure if Problem 1
is hard.

3.1 Setup Modification

Different from the setup in M-SIDH, we make a minor modification of the
parameter p, NA and NB for compressed M-SIDH. In our implementation, we
set the parameter p as

p = 4 · ℓ1 · ℓ2 · · · ℓt−1 · ℓt · ℓt+1 − 1,

where ℓ1, ℓ2, · · · , ℓt are the first t odd primes, while the prime ℓt+1 is slightly
larger than ℓt such that p is a prime. Correspondingly, define NA = ℓ1 · ℓ3 · · · ℓt
and NB = ℓ2 · ℓ4 · · · ℓt+1.

Clearly, this modification does not affect the hardness of Problem 1. The
main reason why we modify the parameters is to compress the public key with
the help of the reduced Tate pairing correctly. We will give a more detailed
explanation in the following. Another advantage of applying the reduced Tate
pairing is that the pairing computation would be more efficient compared to the
case when using the Weil pairing [29].

3.2 Our approach to compress the key

Our approach to compress the public key of M-SIDH is reminiscent of public-key
compression in SIDH/SIKE. Given a secret NB-isogeny from E0 to EB , a sketch
of our approach to compress the key is as follows:

1. Torsion basis generation: Generate {UA, VA} such that 〈UA, VA〉 = EB [NA];
2. Pairing computation: Compute the following four pairings:

h1 = eNA
(ϕB(PA), UA) , h2 =eNA

(ϕB(PA), VA) ,

h3 = eNA
(ϕB(QA), UA) , h4 = eNA

(ϕB(QA), VA) ;
(4)

3. Discrete logarithm computation: Compute discrete logarithms of hi, i =
1, 2, 3, 4 to the base h0 = eNA

(PA, QA)
NB . Randomly select b ∈ µ2(NA) and

then compute si = b · logh0
(hi).
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The public key is (EB , s1, s2, s3, s4). A question raised here is whether Equa-
tion (3) is correct in compressed M-SIDH when applying the reduced Tate pair-
ing, because in general we do not have eNA

(P, P ) = 1 for any P ∈ EB(Fp2)[NA].
Now we prove the following lemma to confirm that Equation (3) still holds in
this situation.

Lemma 1. Let E be a supersingular elliptic curve defined over Fp2 with p ≡
3 mod 4. Suppose that N is odd and it divides p+1. Then eN (P, P ) = 1 for any
P ∈ E(Fp2)[N ].

Proof. Since isogeny graphs for supersingular elliptic curves have the Ramanujan
property [34], there exists an isogeny ψ : E → E′ of degree 2•, where the elliptic
curve E′ : y2 = x3 + x has j-invariant 1728. Since N is odd, we can deduce that
ψ(P ) has order N for any P ∈ E(Fp2)[N ]. Therefore,

eN (ψ(P ), ψ(P )) = eN (P, P )2
•
.

This implies that eN (P, P ) = 1 for any P ∈ E(Fp2)[N ] if and only if eN (P ′, P ′) =
1 for any P ′ ∈ E′(Fp2)[N ]. In the following, we prove that eN (P ′, P ′) = 1 for
any P ′ ∈ E′(Fp2)[N ].

From E′(Fp) ∼= Z/(p+ 1)Z, we can find a point P0 ∈ E′(Fp)[N ] of order N .
Since the distortion map

ι : E′ → E′,

(x, y) 7→ (−x, iy).

is an isomorphism of E′ such that P0 and ι(P0) are linearly independent. This
implies that 〈P0, ι(P0)〉 = E′(Fp2)[N ]. Hence, for any P ′ there exist r, s ∈ Z/NZ
such that P ′ = [r]P0 + [s]ι(P0). As a consequence,

eN (P ′, P ′) = eN ([r]P0 + [s]ι(P0), [r]P0 + [s]ι(P0))

= eN (P0, P0)
r2eN (P0, ι(P0))

rseN (ι(P0), P0)
rseN (ι(P0), ι(P0))

s2

= eN (P0, P0)
r2eN (P0, ι(P0))

rseN (P0, ι̂(P0))
rseN (P0, P0)

deg(ι)s2

= eN (P0, P0)
r2+deg(ι)s2eN (P0, ι(P0) + ι̂(P0))

rs.

Since the trace of ι is 0 and deg(ι) = 1, we have

eN (P ′, P ′) = eN (P0, P0)
r2+s2eN (P0,O)rs = eN (P0, P0)

r2+s2 . (5)

Note that P0 ∈ E′(Fp)[N ] and the final exponentiation is (p−1) · p+1
N . Therefore,

eN (P0, P0) is equal to 1. It follows from Equation (5) that eN (P ′, P ′) = 1 for
any P ′ ∈ E′(Fp2)[N ], i.e., eN (P, P ) = 1 for any P ∈ E(Fp2)[N ]. This completes
the proof. ■

From Lemma 1, it is easy to see that our method to compress the key is
valid.

Proposition 1. One can compress the public key by performing the above pro-
cedures.
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Remark 1. In the compressed SIDH protocol, it is impossible that none of hi is a
generator. However, it happens in compressed M-SIDH with small possibility. For
example, in Equation (2) the prime ℓ2 may divide c0 and d1, while ℓ4 may divide
d0 and c1. This is the reason why Bob needs to compute four discrete logarithms
to the base h0 instead of computing three discrete logarithms to one of hi. In
addition, it is possible that none of si is invertible in Z/NAZ. Hence, we can not
further compress the key by directly applying the technique proposed by Costello
et al. [15, Section 6]. In Section 4.3, we will propose a method to overcome this
issue, compressing the key size from 4 log2 p bits to around 3.5 log2 p bits.

Remark 2. As mentioned in Section 1, one could utilize dual isogenies to optimize
pairing computation [31,25] in compressed SIDH. However, the dual isogeny
construction in compressed M-SIDH is much more costly compared to that of
compressed SIDH. According to our experiments, directly computing h1, h2, h3
and h4 in Equation (4) without the dual isogeny technique is more efficient. This
is the reason why we do not utilize the dual isogeny technique.

In the following, we show that compressed M-SIDH is secure as long as Prob-
lem 1 is hard. Without loss of generality, now we only consider Bob’s case, while
the other case is similar. Obviously, from the compressed key one can deduce
that [

[b]ϕB(PA)
[b]ϕB(QA)

]
=

1

D

[
s2 −s1
s4 −s3

] [
UA

VA

]
. (6)

where D = s1s4 − s2s3 mod NA and b ∈ µ2(NA) is unknown. Conversely, given
the uncompressed key (EB , [b]ϕB(PA), [b]ϕB(QA)) where b is unknown, one can
compress it by adapting the above procedures. Therefore, compressed M-SIDH
is secure as long as M-SIDH is secure, i.e., Problem 1 is hard.

Proposition 2. Compressed M-SIDH is secure if Problem 1 is hard.

4 Optimizations on Compressed M-SIDH

It is easy to see that compressed M-SIDH saves two large scalar multiplications
of length ≈ √

p as M-SIDH does. However, it should be noted that the perfor-
mance of compressed M-SIDH is still not as efficient as that of M-SIDH because
of torsion basis generation, pairing computation and discrete logarithm compu-
tation. In this section we will optimize the performance of key compression to
close the gap. As before, we only handle Bob’s case and Alice could also adapt
all the techniques to accelerate the performance.

4.1 Torsion basis generation

Since NA and NB are not the power of 2 and 3, torsion basis generation in
compressed M-SIDH could not benefit from several techniques such as shared
Elligator [42] and 3-descent of elliptic curves [15]. In this subsection we propose a
new method to generate {UA, VA} such that 〈UA, VA〉 = EB [NA], while torsion
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basis generation of the NB-torsion group of EA is similar. For simplicity, we
abbreviate UA and VA to U and V , respectively.

Generating one of the torsion points is relatively easy: we can choose a point
of order NA and then set it as U . After U is successfully generated, we generate
another point V such that 〈U, V 〉 = EB [NA].

As for the first torsion point, a naive way is to sample a random point R ∈
EB(Fp2), and then check whether the order of [4NB ]R is NA. Here we propose
Algorithm 3 to generate U , which is more efficient than the naive approach.
We also output {Uj |j ∈ I} with I = {j|ℓj divides NA}, which is useful for the
generation of the second torsion point V .

Algorithm 3 GenerationU: generate a point of order NA

Require: EB/Fp2 : a supersingular curve, I : {j|ℓj divides NA};
Ensure: A point U ∈ EB(Fp2) of order NA, {Uj |j ∈ I}.
1: Generate a point R ∈ EB(Fp2) using Elligator;
2: U ← [4NB ]R;
3: {Uj} ←BCM(U, I); // Algorithm 4
4: IU ← {j|Uj = O};
5: while IU ̸= ∅ do
6: Generate a point R ∈ EB(Fp2) using Elligator;
7: U ′ ← [4NB ]R;
8: U ′ ← [

∏
j∈I\IU

ℓj ]U
′;

9: {U ′
j} ←BCM(U ′, IU ); // Algorithm 4

10: for each j ∈ {k|U ′
k ̸= O} do

11: U ← U + U ′
j , Uj ← U ′

j ;
12: end for
13: IU ← {j|U ′

j = O};
14: end while
15: return U , {Uj |j ∈ I}.

The main idea of Algorithm 3 is as follows:
Firstly, we randomly generate a point R using Elligator [8] and set U =

[4NB ]R.
Next, we use Algorithm 4 to compute Uj = [NA/ℓj ]U , where j ∈ I =

{j|ℓj divides NA}. It is easy to see that Uj is a point of order ℓj if ℓj divides the
order of U . Otherwise, Uj is the point at infinity.

Denote IU = {j|Uj = O}. If IU is not empty, we randomly sample an-
other point R and compute U ′ = [4NB ]R. According to IU , we compute U ′

j =
[NA/ℓj ]U

′ where j ∈ IU . If U ′
j is not the point at infinity, set U = U + U ′

j .
Finally, let IU = {j|U ′

j = O}. We repeat the above progress to generate U ′ until
IU is empty. As a result, for each j ∈ I we have Uj 6= O. Therefore, U is a point
of order NA.

Remark 3. The approach to compute Uj is inspired by the public-key valida-
tion of CSIDH [11]. The authors check the key by generating a point and then
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check the order of the point using a divide-and-conquer approach [39]. Although
this approach consumes slightly larger memory, it performs more efficient than
directly computing each Uj .

Algorithm 4 BCM: Batch cofactor multiplication
Require: U : a point on EB [NA], IU : a subset of I = {j|ℓj divides NA};
Ensure: {Uk|k ∈ IU}, where Uk = [

∏
j∈IU\{k} ℓj ]U .

1: n′ ← #IU ;
2: if n′ = 1 then
3: return {U};
4: end if
5: m′ ← ⌊n′/2⌋;
6: Divide IU into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
7: L1 ←

∏
i∈I2

ℓi, L2 ←
∏

i∈I1
ℓi;

8: left← [L1]U ;
9: right← [L2]U ;

10: r1 ←BCM(left,I1);
11: r2 ←BCM(right,I2);
12: return r1 ∪ r2.

In the following we focus on how to generate another point V such that
〈U, V 〉 = EB [NA]. A naive approach is to generate V with respect to the above
method, and then check if U and V can generate the NA-torsion group. However,
this method is not so practical because the success probability is relatively small.
Here we present a more efficient method to generate V thanks to Proposition 3.

Proposition 3. Assume that U is a point of order NA = ℓ1ℓ3 · · · ℓt on EB, and
V a random point on EB(Fp2). Let I = {j|ℓj divides NA}, Uk = [

∏
j∈I\{k} ℓj ]U .

Denote by ord(γ) the order of γ in µNA
. Then

ord(eNA
(U, V )) =

∏
j∈I

eℓj (Uj ,V )̸=1

ℓj . (7)

In particular, eNA
(U, V ) is a generator of µNA

if and only if 〈U, V 〉 = EB [NA].

Proof. Let sk =
∏

j∈I\{k}
ℓj and s′k = s−1

k mod ℓk. From Uk = [
∏

j∈I\{k} ℓj ]U we

have U =
∑

k∈I [s
′
k]Uk. Utilizing the bilinearity of the reduced Tate pairing,

eNA
(U, V )

=eNA
([s′1]U1, V ) · eNA

([s′3]U3, V ) · · · eNA
([s′t]Ut, V )

=eNA
(U1, V )s

′
1 · eNA

(U3, V )s
′
3 · · · eNA

(Ut, V )s
′
t .

(8)

11



From [21, Theorem IX.9], we have

eNA
(Uk, V ) = eℓk(Uk, V ).

Let Vk = [
∏

j∈I\{k} ℓj ]V . Obviously, eℓk(Uk, V ) = 1 if and only if eℓk(Uk, Vk) = 1.
In the following, we will prove that Vk and Uk are linearly dependent if and

only if eℓk(Uk, Vk) = 1, i.e., eNA
(Uk, V ) = 1.

We first assume that Vk and Uk are linearly dependent. Then we have

– Vk = O, or
– Vk 6= O, but Vk ∈ 〈Uk〉,

and vice versa. It follows from Lemma 1 that eℓk(Uk, Vk) = 1. Conversely, if Vk
and Uk are linearly independent, we can easily deduce that eNA

(Uk, V ) 6= 1 from
the non-degeneracy of the reduced Tate pairing. In this case, eNA

(Uk, V ) is a
generator of the group µℓk .

It is clear that eNA
(Uk, V ) 6= 1 if and only if eNA

(Uk, V )s
′
k 6= 1. According to

Equation (8), the order of eNA
(U, V ) depends on the order of each eNA

(Uk, V ):

ord (eNA
(U, V )) =

∏
k∈I

ord
(
eNA

(Uk, V )s
′
k

)
=

∏
k∈I

ord(eNA
(Uk, V )).

If eNA
(Uk, V ) is not equal to 1, then eNA

(U, V ) has order ℓk. Otherwise, we
know that ℓk does not divide the order of eNA

(U, V ). Consequently, we have
Equation (7).

If eNA
(U, V ) is a generator of µNA

, for each k we have eℓk(Uk, Vk) 6= 1, thus
Uk and Vk are linearly independent. Hence, 〈Uk, Vk〉 = EB [ℓk] for each k. It
should be noted that

EB [NA] ∼= EB [ℓ1]⊕ EB [ℓ3]⊕ · · · ⊕ EB [ℓt]. (9)

Therefore, 〈U, V 〉 = EB [NA]. Suppose that 〈U, V 〉 = EB [NA], and now we are
going to prove eNA

(U, V ) ∈ µNA
is of order NA. Assume that ℓk does not divide

the order of eNA
(U, V ) ∈ µNA

. Then

eNA
(U, V )NA/ℓk = eNA

([NA/ℓk]U, V ) = eNA
(Uk, V ) = eℓk(Uk, Vk) = 1.

This induces 〈Uk, Vk〉 ∼= Z/ℓkZ. From Equation (9), {U, V } is not the torsion
basis of EB [NA], which completes the proof. ■

Proposition 3 gives an approach to test whether two points could generate the
torsion group EB [NA] by checking the order of the pairing value in the group
µNA

. One can randomly generate a point V ∈ EB(Fp2)[NA] using Elligator,
and compute the order of eNA

(U, V ) in µNA
. Then we have a subset IV =

{jk|eℓjk (Ujk , V ) = 1} of the set I = {j|ℓj divides NA}. Similar to the method to
generate the point U , we generate another point V ′ 6= V and compute:

f ′ = e∏
jk∈IV

ℓjk
(
∑

jk∈IV

Ujk ,
∏

j∈I\IV

[ℓj ]V
′). (10)
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After that, we check whether ℓjk divides the order of f ′ ∈ µNA
for each jk ∈ IV .

If so, set V = V + V ′
jk

, where V ′
jk

= [NA/ℓjk ]V
′. We generate another new point

V ′ and repeat the procedure until the set IV = {jk|f ′jk = 1} is empty. Finally, we
have a point V such that eNA

(U, V ) is a generator of µNA
, then 〈U, V 〉 = EB [NA]

according to Proposition 3.
It seems that once we would like to generate V , we need to randomly generate

a point R on E(Fq) and then perform a large scalar multiplication V = [4NB ]R
such that ord(V )|NA. Fortunately, this large scalar multiplication is not neces-
sary when just computing ord(eNA

(U, V )). It is obvious that 4NB and NA are
coprime and therefore,

ord(eNA
(U, V ))=ord

(
(eNA

(U,R))
4NB

)
=ord(eNA

(U,R)).

It confirms that we can just randomly generate a point R ∈ E(Fq) to compute
ord(eNA

(U, V )) = ord(eNA
(U,R)). For the same reason we can save the scalar

multiplication of V ′ in Equation (10) as well.
Checking the order of the pairing value is also a costly step. Indeed, the aim

of the pairing computation is not to compute the precise pairing value but its
order. Here we give a lemma, which allows us to compute compressed pairings
to reach the goal.

Lemma 2. If γ ∈ µp+1 = {x ∈ Fp[i]/〈i2 + 1〉} and p ≡ 3 mod 4, then γ = 1 if
and only if trFp2/Fp

(γ) = 2.

Proof. The necessity is obvious. Now we show the sufficiency. Suppose that γ =
γ1 + γ2 · i. From trFp2/Fp

(γ) = 2, we have 2γ1 = 2 and hence γ1 = 1. Since
γ ∈ µp+1, γp+1 = γ21 + γ22 = 1. It implies that γ2 = 0. ■

Therefore, to check the order of the pairing value f ′, one can first compute
trFp2/Fp

(f ′), and then utilize Lucas sequences to obtain trFp2/Fp

(
(f ′)NA/ℓk

)
for

each k ∈ IV . Similar to Algorithm 4, we present Algorithm 5 to compute them
efficiently.

After that, we check if each of them is equal to 2 or not. Thanks to Lemma 2,
we can deduce whether (f ′)NA/ℓk is equal to 1, and thus its order could be
determined.

In a nutshell, we present Algorithm 6 to generate V .

Remark 4. During the torsion basis generation, the first batch cofactor multipli-
cation of U in Line 3 of Algorithm 3 and the first pairing computation in Line 2
of Algorithm 6 consume large computational resources. To eliminate these two
expensive parts for Alice, Bob could send her the initial IU (in Line 4 of Algo-
rithm 3) and IV (in Line 4 of Algorithm 6). They can be translated into two
(t + 1)/2-bit strings. It would be a trade-off between the compressed key size
and efficiency.
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Algorithm 5 BCE: Batch cofactor exponentiation

Require: f ′ ∈ trF
p2

/Fp(µNA), IV : a subset of I = {j|ℓj divides NA};

Ensure: {f ′
k|k ∈ IV }, where f ′

k = trF
p2

/Fp

(
(f ′

k)
∏

j∈IV \{k} ℓj
)

.
1: n′ ← #IV ;
2: if n′ = 1 then
3: return {f ′};
4: end if
5: m′ ← ⌊n′/2⌋;
6: Divide IV into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
7: L1 ←

∏
i∈I2

ℓi, L2 ←
∏

i∈I1
ℓi;

8: left← LS(f ′, L1); // Algorithm 1
9: right← LS(f ′, L2); // Algorithm 1

10: r1 ← BCE(left,I1);
11: r2 ← BCE(right,I2);
12: return r1 ∪ r2.

4.2 Discrete logarithm computation

Different from the case we handle in SIDH, one should compute discrete loga-
rithms in the multiplicative group µNA

. Since NA is smooth, one can use the
Pohlig-Hellman algorithm [35] to simplify a discrete logarithm in µNA

to discrete
logarithms in the groups µℓj with j ∈ I = {j|ℓj divides NA}, and finally use the
Chinese Remainder Theorem to recombine.

Firstly, we should compute hNA/ℓj
i with j ∈ I and i = 1, 2, 3, 4 using a divide-

and-conquer approach. Note that this step could be also accelerated with the
help of Lucas sequences [38, Section 3], as we proposed in Algorithm 7.

After that, for each j ∈ I we compute the discrete logarithms of hNA/ℓj
i

to the base hNA/ℓj
0 , where h0 = eNA

(PA, QA)
NB . Since PA and QA are fixed,

all the values hNA/ℓj
0 can be precomputed to accelerate the performance. From

Equation (2), it is clear that di = logh0
hi, ci = − logh0

hi+2, i = 0, 1. For each
j ∈ I = {j|ℓj divides NA}, let c(j)i = ci mod ℓj , d(j)i = di mod ℓj , i = 0, 1.

Finally, from d
(j)
i , c(j)i with j ∈ I we respectively recover di = logh0

hi, ci =
− logh0

hi+2, i = 0, 1. This step is fast with the help of the Chinese Remainder
Theorem.

Algorithm 8 is the pseudocode summarizing our ideas to compute discrete
logarithms.

4.3 Further compression

In this subsection we propose an approach to overcome the issue mentioned in
Remark 1. The technique further reduces the public key size and simultaneously
improve the performance of discrete logarithm computation. We also prove that
the modification does not affect the security of compressed M-SIDH.
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Algorithm 6 GenerationV: generate a point of order NA such that 〈U, V 〉 =
EB [NA]

Require: EB/Fp2 : a supersingular curve, I : {j|ℓj divides NA}, U and {Uk}: output
of Algorithm 3;

Ensure: A point V ∈ EB(Fp2) of order NA such that ⟨U, V ⟩ = EB [NA].
1: Generate a point V ∈ EB(Fp2) using Elligator;
2: f ′ ← trF

p2
/Fp (eNA(U, V ));

3: {f ′
j} ←BCE(f ′, I); // Algorithm 5

4: IV ← {jk|f ′
jk

= 2};
5: while IV ̸= ∅ do
6: Generate a point V ′ ∈ EB(Fp2) using Elligator;
7: U ′ ←

∑
jk∈IV

Ujk , L←
∏

jk∈IV
ℓjk ;

8: f ′ ← trF
p2

/Fp (eL(U
′, V ′));

9: {f ′
jk
} ←BCE(f ′, IV ); // Algorithm 5

10: if f ′
jk
̸= 2 for some jk then

11: V ′ ← [
∏

j∈I\IV
ℓj ]V

′;
12: {V ′

jk
} ←BCM(V ′, IV ); // Algorithm 4

13: end if
14: for each jk ∈ {jk|f ′

jk
̸= 2} do

15: V ← V + V ′
jk

;
16: end for
17: IV ← {jk|f ′

jk
= 2};

18: end while
19: V ← [2fNB ]V ;
20: return V .

As mentioned in Remark 1, none of si is invertible in Z/NAZ when none of
hi is a generator of µp+1. Nevertheless, from Equation (2) we have[

Uj

Vj

]
=

[
c
(j)
0 d

(j)
0

c
(j)
1 d

(j)
1

] [
[NA/ℓj ]ϕB (PA)
[NA/ℓj ]ϕB (QA)

]
. (11)

where c(j)i = ci mod ℓj , d(j)i = di mod ℓj , i = 0, 1 and j ∈ I = {j|ℓj divides NA}.
Note that 〈U, V 〉 = 〈ϕB(PA), ϕB(QA)〉 = EB [NA] and ℓj is prime. Therefore,
either d(j)0 or d(j)1 is invertible, i.e., either hNA/ℓj

1 or hNA/ℓj
2 is a generator of µℓj .

From this observation, we can compute the discrete logarithms as follows:
Firstly, compute h

NA/ℓj
i with j ∈ I and i = 1, 2, 3, 4 using a divide-and-

conquer approach. This procedure is the same as that of the method presented
in Section 4.2.

Secondly, for each j ∈ I we check whether hNA/ℓj
1 is the generator of µℓj . Note

that it is equivalent to check whether hNA/ℓj
1 is equal to 1 since ℓj is a prime. If

h
NA/ℓj
1 generates µℓj , compute discrete logarithms of hNA/ℓj

2 , hNA/ℓj
3 , hNA/ℓj

4 to
the base hNA/ℓj

1 . Otherwise, we can deduce that hNA/ℓj
2 is a generator and then

compute discrete logarithms of hNA/ℓj
3 , hNA/ℓj

4 to the base hNA/ℓj
2 . Suppose that
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Algorithm 7 BCEA: Batch cofactor exponentiation in µNA

Require: h′ ∈ µNA , I ′: a subset of I = {j|ℓj divides NA};
Ensure: {h′

1, h
′
2, · · · , h′

n′}, where h′
k =

(
(f ′

k)
∏

j∈I′\{k} ℓj
)

and n′ = #I ′.
1: if n′ = 1 then
2: return {h′};
3: end if
4: m′ ← ⌊n′/2⌋;
5: Divide I ′ into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
6: L1 ←

∏
i∈I2

ℓi, L2 ←
∏

i∈I1
ℓi;

7: left← ELS(h, L1); // Algorithm 2
8: right→ ELS(h, L2); // Algorithm 2
9: r1 ←BCEA(left,I1);

10: r2 ←BCEA(right,I2);
11: return r1 ∪ r2.

Algorithm 8 Discrete logarithm computation
Require: : I: {j|ℓj divides NA}; h1, h2, h3, h4: the values computed in Equation (4);
Ensure: : c0, c1, d0, d1: Integers in {0, 1, · · · , NA − 1} such that h1 = hd0

0 , h2 = hd1
0 ,

h3 = h−c0
0 and h4 = h−c1

0 .
1: for k ∈ {1, 2, 3, 4} do
2: {h(j)

k } ← BCEA(hk, I); // Algorithm 7
3: end for
4: for k ∈ {1, 2} do
5: for each j ∈ I do

6: find d
(j)
k such that h

(j)
k =

(
h
(j)
0

)d
(j)
k , find c

(j)
k such that h

(j)
k+2 =

(
h
(j)
0

)−c
(j)
k ;

7: end for
8: Use the Chinese remainder theorem to compute dk mod NA and ck mod NA

such that dk ≡ d
(j)
k mod ℓj and ck ≡ c

(j)
k mod ℓj with j ∈ I;

9: end for
10: return c0, c1, d0, d1.

S
(j)
i i = 1, 2, 3 are the solutions and the label labelj is used to mark whether
h
NA/ℓj
1 is the generator. Hence, we have

(
S
(j)
1 , S

(j)
2 , S

(j)
3 , labelj

)
=


(
(d

(j)
0 )−1d

(j)
1 ,−(d

(j)
0 )−1c

(j)
0 ,−(d

(j)
0 )−1c

(j)
1 , 1

)
, if d(j)0 6= 0,(

1,−(d
(j)
1 )−1c

(j)
0 ,−(d

(j)
1 )−1c

(j)
1 , 0

)
, otherwise.

(12)
Thanks to the Chinese Remainder Theorem, one could obtain Si mod NA

such that Si ≡ S
(j)
i mod ℓj for each j ∈ I.

Using the above method, the public key is (EB , S1, S2, S3, label), where

label = label1 + label3 · 2 + · · ·+ labelt · 2(t−1)/2. (13)

The pesudocode to compute the discrete logarithms is proposed in Algorithm 9.
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Algorithm 9 Another approach to compute discrete logarithms
Require: I: {j|ℓj divides NA}; h1, h2, h3, h4: the values computed in Equation (4);
Ensure: : label: A (t + 1)/2-bit integer defined in Equation (13); S1, S2, S3: Integers

in {0, 1, · · · , NA − 1} defined as above, which satisfy Equation (12).
1: for k ∈ {1, 2, 3, 4} do
2: {h(j)

k } ← BCEA(hk, I); // Algorithm 7
3: end for
4: for each j ∈ I do
5: if h

(j)
1 ̸= 1 then

6: for each k ∈ {1, 2, 3} do
7: find S

(j)
k such that h

(j)
k+1 = (h

(j)
1 )S

(j)
k ;

8: end for
9: else

10: S
(j)
1 = 1;

11: for each k ∈ {2, 3} do
12: find S

(j)
k such that h

(j)
k+1 = (h

(j)
2 )S

(j)
k ;

13: end for
14: end if
15: end for
16: for each k ∈ {1, 2, 3} do
17: Use the Chinese remainder theorem to compute Sk mod NA such that Sk ≡

S
(j)
k mod ℓj with j ∈ I;

18: end for
19: label←

∑
j∈I labelj · 2

(j−1)/2;
20: return S1, S2, S3, label.

It is obvious that Bob can compress the public key successfully, but a ques-
tion raised here is how Alice generates a kernel generator GA of the group
〈ϕB(PA) + [skA]ϕB(QA)〉 = 〈[d1 − c1 · skA]U + [−d0 + c0 · skA]V 〉 according
to (EB , S1, S2, S3, label).

Using Algorithms 3 and 6, Alice obtains U and V . Besides, she could con-
struct

S
(j)
4 ≡ 1 mod ℓj if labelj = 1, or S(j)

4 ≡ 0 mod ℓj otherwise. (14)

Utilizing the Chinese Remainder Theorem, Alice could recover S4 mod NA such
that S4 ≡ S

(j)
4 mod ℓj from Equation (14). Let

GA = [S1 + S3 · skA]U − [S4 + S2 · skA]V.

Now we show that GA is a kernel generator of 〈ϕB(PA) + [skA]ϕB(QA)〉. It
is equivalent to show that for each k ∈ I,

〈[NA/ℓk]GA〉 = 〈[d1 − c1 · skA]Uk + [−d0 + c0 · skA]Vk〉, (15)

where Uk = [NA/ℓk]U and Vk = [NA/ℓk]V . If labelj = 1, then S4 ≡ 1 mod ℓj
and hence

[NA/ℓk]GA = [S1 + S3 · skA]Uk − [1 + S2 · skA]Vk.
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Note that
[S1 + S3 · skA]Uk − [1 + S2 · skA]Vk

=[S
(j)
1 + S

(j)
3 · skA]Uk − [S

(j)
1 + S

(j)
2 · skA]Vk

=[(d
(j)
0 )−1d

(j)
1 − (d

(j)
0 )−1c

(j)
1 · skA]Uk − [1− (d

(j)
0 )−1c

(j)
0 · skA]Vk

=[(d
(j)
0 )−1] ·

(
[d

(j)
1 − c

(j)
1 · skA]Uk + [−d(j)0 + c

(j)
0 · skA]Vk

)
.

In other words, we have

[NA/ℓk]GA ∈ 〈[d1 − c1 · skA]Uk + [−d0 + c0 · skA]Vk〉

when S(j)
4 = 1. Similarly, we can deduce that [NA/ℓk]GA and [d1− c1 · skA]Uk +

[−d0 + c0 · skA]Vk are linearly dependent when S
(j)
4 = 0. Therefore, the point

GA satisfies Equation (15).

Proposition 4. After applying Algorithm 9 and modifying the compressed key,
one can still compress the public key or decompress the compressed key success-
fully.

Now we show that the modification we propose in this subsection does not
affect the security of compressed M-SIDH. From the compressed public key
(EB , S1, S2, S3, label), we can recover S4 using the Chinese Remainder Theo-
rem, thus we are able to compute

P ′
A = [S1]UA − [S4]VA = [b]ϕB(PA),

Q′
A = [S3]UA − [S2]VA = [b]ϕB(QA),

where b ∈ Z/NAZ× satisfies{
bd

(j)
0 ≡ 1 mod ℓj , if labelj = 1,

bd
(j)
1 ≡ 1 mod ℓj , if labelj = 0.

(16)

On the other hand, it is clear that one can also compress the public key to the
compressed key successfully by applying the above procedures. Therefore, the
problem underlying the security of compressed M-SIDH is Problem 2.

Problem 2. Let NA = ℓ0ℓ2 · · · ℓt−1 and NB = ℓ1ℓ3 · · · ℓt be two smooth prime
integers, and f be a small cofactor such that p = NANBf − 1 is a prime, where
NA ≈ NB . Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) =
(p + 1)2 = (NANBf)

2. Suppose that E0[NA] = 〈PA, QA〉. Let E0 → EA be
a uniformly random NB-isogeny and let a be a uniformly random element of
Z/NAZ×.
Given E0, PA, QA, EB , [b]ϕB(PA) and [b]ϕB(QA), compute ϕA.

The main difference between Problem 1 and Problem 2 is that the former
one has an additional restriction that b ∈ µ2(NA). It seems that Problem 1 is
hard if Problem 2 is hard. Indeed, according to [19, Section 3.1], Problem 2 can
be solved as long as Problem 1 is easy. Then we have Proposition 5:
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Proposition 5. After applying Algorithm 9 and modifying the public key, com-
pressed M-SIDH is still secure whenever Problem 1 is hard.

Compared to the former method in Section 4.2, the new method not only
further compresses the key but performs better. The main reason is that the
latter method saves at least one discrete logarithm in µℓj for each j ∈ I. Fur-
thermore, it saves considerable storage for precomputation since there is no need
to compute discrete logarithms to the base h0.

5 Implementation Results

In this section, we implement compressed M-SIDH in SageMath (version 9.5) [2]
and give our experimental results.

Isogeny computation is the most expensive part of (compressed) M-SIDH.
There are mainly two ways to construct the isogeny. One is the traditional Vélu’s
formula [41], and the other is a more efficient formula to construct the large
degree isogeny [7]. We combine both of them to implement compressed M-SIDH.
For small degree isogeny computations we use traditional Vélu’s formula, and
use the method proposed in [7] to compute the large degree isogeny.

Based on the code1 from [7], we give a proof-of-concept implementation of
compressed M-SIDH in SageMath. Our code is available at

https://github.com/CompressedMSIDH/CompressedMSIDH.

Table 1 reports the performance of the key generation phase. For discrete
logarithm computation we apply the method proposed in Section 4.3.

Procedure Alice Bob
Isogeny Computation 304.67s 305.89s
Torsion Basis Generation 18.00s 18.81s
Pairing Computation 15.75s 15.66s
Discrete Logarithm Computation 5.68s 5.61s
Total Cost (the whole key generation phase) 344.10s 345.97s

Table 1. Experimental results of key generation of Alice in compressed M-SIDH for
the NIST-1 level of security.

As shown in Table 1, isogeny computation dominates the cost of key genera-
tion. One may try to utilize several techniques proposed in the literature to speed
up the compressed M-SIDH implementation. We adapt the technique proposed
in [27, Section 5.2] to recover the image coefficient of the isogeny, which offers
a significant speedup to isogeny computation. Besides, there are several works
on the optimizations of CSIDH [11]. For example, the approach [13] to find an
optimal strategy of CSIDH could be easily extended to the isogeny computation
1 https://velusqrt.isogeny.org/
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of M-SIDH. It is also possible to improve the performance by changing the per-
mutation of the ℓj-isogeny computation [23]. The improvement of large degree
isogeny computation is explored by [3].

Torsion basis generation and pairing computation are the efficiency bottle-
necks of public-key compression in M-SIDH. The computational cost of discrete
logarithm computation is approximately one third of that of torsion basis gen-
eration. We leave the exploration of the faster implementation of compressed
M-SIDH for future work.

6 Conclusion

In this paper, we proposed compressed M-SIDH, reducing the public key size of
M-SIDH from 6 log2 p bits to around 3.5 log2 p bits. We proved that compressed
M-SIDH is secure as long as M-SIDH is secure. In addition, several novel tech-
niques were proposed to accelerate the performance. It should be noted that
some techniques proposed in this paper have potential to optimize other isogeny-
based cryptosystems. For example, our method for torsion basis generation may
improve finding full-torsion points in SQALE [12] and dCSIDH [9].

Very recently, Basso et al. [6] proposed new SIDH-like protocols called bin-
SIDH and terSIDH. Our work could be also extended easily to these SIDH-like
schemes. Although the implementation of SIDH-like schemes is not so efficient
now because of the huge characteristic of the base field and expensive isogeny
computation, we believe that compressed SIDH-like schemes could find their
positions with further research.
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