Optimized Quantum Implementation of AES

Da Lin, Zejun Xiang*, Runqing Xu, Shasha Zhang and Xiangyong Zeng
Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, 430062, China.
*Corresponding author(s). E-mail(s): xiangzejun@hubu.edu.cn;
Contributing authors: linda@stu.hubu.edu.cn; xurq5953@stu.hubu.edu.cn; amushasha@163.com; xzeng@hubu.edu.cn;

Abstract

In this paper, we research the implementation of the AES family with Pauli-X gates, CNOT gates and Toffoli gates as the underlying quantum logic gate set. First, we investigate the properties of quantum circuits and the influence of Pauli-X gates, CNOT gates and Toffoli gates on the performance of the circuits constructed with those gates. Based on the properties of quantum circuits as well as our observations on the classical ones built by Boyar et al. and Zou et al., we research the construction of reversible circuits for AES's Substitution-box (S-box) and its inverse (S-box ${ }^{-1}$) by rearranging the classical implementation to three parts. Since the second part is treated as a 4 -bit S-box in this paper and can be dealt with by existing tools, we propose a heuristic to search optimized reversible circuits for the first part and the third part. The application of our method reveals that the reversible circuits constructed for AES S-box and its inverse consume fewer qubits with optimized CNOT gate consumption and Toffoli depth. In addition, we study the construction of reversible circuits for the key schedule and the round function of AES by applying various number of S-boxes in parallel. As a result, we report quantum circuits of AES-128, AES-192 and AES-256 with 269, 333 and 397 qubits, respectively. If more qubits are allowed, quantum circuits that outperform state-of-the-art schemes in the metric of $\boldsymbol{T} \cdot \boldsymbol{M}$ value for the AES family can be reported, and it needs only 474, 538 and 602 qubits for AES-128, AES-192 and AES-256, respectively.

Keywords: AES, reversible circuit, quantum gate, Toffoli depth

1 Introduction

The development of quantum technology challenges the security of modern cryptography, especially the overwhelming advantage of quantum computers in solving mathematical problems over the classical ones, which benefits from the quantum algorithms such as Grover's Algorithm [11], Simon's Algorithm [26] and Shor's algorithm [25]. In addition, the successful design of quantum processors such as Sycamore [3] further increases the need for modern cryptography to prepare in advance for the rapid development of the construction of quantum computers.

Developing ciphers that are secure in both classical and quantum environment is the main research goal of post-quantum cryptography (PQC). In 2016, NIST (National Institute of Standards and Technology) started a process to develop new cryptography standards, which was aimed at developing new standards that resist to quantum attacks. Based on the strength offered by the existing standards ${ }^{1,2}$, NIST suggested classifying the security strength of the submissions into five categories in [22], where the categories 1,3 and 5 are related to the quantum resource required to conduct an exhaustive key search on the AES family [7]. On the other hand, the Grover's algorithm can achieve a square root speed-up when searching for a certain element in an unordered set. Therefore, the research on designing quantum circuits for AES and evaluating the quantum resource of exhaustively searching for the key of the AES family combined with the Grover's algorithm have received wide attention.

The researches on the quantum implementation of the AES family mainly focus on building the circuits with the Pauli-X gate (or NOT gate), the controlled-NOT gate (also known as C-NOT gate or CNOT gate) and the Toffoli gate (see [21] for definitions) as the underlying quantum logic gate set (NCT gate set for short) $[1,10,13,14,17,18,28,32]$. In 2016, Grassl et al. [10] first systematically investigated the construction of quantum circuits for the three variants of AES. Afterwards, Almazrooie et al. [1] optimized the reversible circuit of the multiplicative inverse over finite fields with the help of Itoh-Tsujii algorithm [12] and designed a quantum circuit for AES-128 with fewer qubits. Based on the reversible circuits proposed in [10], the authors of [17] improved the cost of computing multiplicative inverse and researched the time-space complexity for searching the key of the AES family. In [18], the classical hardware implementation of AES S-box given in [5] was adopted to construct a reversible one, benefit from which, Langenberg et al. proposed optimized quantum implementations for the AES family with reduced consumption of qubits and quantum logic gates compared with the previous work. Along the research direction of designing quantum circuits for AES with the help of classical implementations, Zou et al. [32] presented optimized quantum circuits for the S-box and S-box ${ }^{-1}$ simultaneously at ASIACRYPT 2020, combined with their proposed methods to implement the key schedule and the round function, both the qubit cost and the $T \cdot M$ value (the product of the

[^0]Toffoli depth and the number of qubits) of the reversible circuits built for the AES family were reduced. In [28], Wang et al. also reported a quantum circuit for the case that the output qubits of the S-box are not all 0 s to optimize the implementation of the key schedule for AES-128, by which they saved quantum gates and qubits at the same time. Recently, new reversible circuits for AES S-box and its inverse were given to design quantum circuits for AES in [13]. Besides, the authors introduced a method to construct reversible circuit for the S -box ${ }^{-1}$ from the S-box circuit by adding some linear transformations. The circuits of AES S-box with low depth presented in [13] were also applied by Jang et al. [14], and the $T \cdot M$ value of the circuits constructed in [14] for the AES family decreased significantly.

As quantum computation technology develops, the number of qubits that can be handled by quantum simulators will gradually increase. However, the progress is very slow [3, 31, 33]. Some early researches investigated qubit reduction by proposing improved algorithms focus on saving input qubits for factoring an integer when Shor's algorithm is adopted, such as [9, 23], where the number of input qubits can be reduced from $2 n$ to $(1+o(1)) n$ and $(1 / 2+o(1)) n$, respectively. Recently, the authors of [19] studied the problem of period finding with fewer output qubits based on Simon's algorithm and Shor's algorithm, where they can reduce the number of output qubits from n to 1 . As the authors stated in [19], "although there is steady progress in constructing larger quantum computers, within the next years the number of qubits seems to be too limited for tackling problems of interesting size" and "quantum computers with a very limited number of qubits might still serve as a powerful oracle that assists us in speeding up classical computations". Note that the method of [19] assumed the oracle access of the quantum embedding of underlying functions, and reduced qubits from the structure of Simon's algorithm or Shor's algorithm. However, it is also of great significance to reduce the oracle qubit consumption of the underlying function itself. Only by combining these two efforts, we can achieve a quantum circuit with a reduced overall qubit consumption. It is widely believed that algorithms and circuits with better performance in qubit requirements may be physically implemented earlier in a real quantum computer $[4,31,33]$. Therefore, as the authors did in $[1,10,17,18,28,32]$, in this paper we focus on constructing quantum circuits for AES with fewer qubits, as it is the core component to construct quantum embeddings of oracles for quantum attacks. Note that the Clifford $+T$ gate set is also adopted when designing quantum circuits of the AES family [13-15]. However, a Toffoli gate can be constructed by several Clifford gates and T gates. On the other hand, the classical And gates can be simulated by Toffoli gates, which helps to make better use of classical circuits to construct quantum ones. Thus, we investigate the construction of quantum circuits for AES with Toffoli gates in this paper. Since depth is also an important metric, as the authors did in $[14,32]$, we adopt the metric $T \cdot M$ value (i.e., the product of the Toffoli depth and the number of qubits) to evaluate the trade-off of depth and qubits.

1.1 Our Contributions

First, we outline the influence of Pauli-X gates, CNOT gates and Toffoli gates on the Toffoli depth of an NCT-based circuit, based on which we illustrate how the CNOT gate consumption is affected by the s-Xor operations. Meanwhile, the influence of the operation order on the Toffoli depth of NCT-based circuits and the conditions under which two consecutive operations are commutative are also discussed.

Then, we rearrange both the classical implementation of AES S-box and its inverse into three parts. Specifically, the tower fields architecture decomposes both the S-box of AES and its inverse into three functions, the top function, the middle function and the bottom function. We derive the circuit for calculating the multiplicative inverse over $\mathbb{F}_{2^{4}}$ from the circuit of the middle function and treat it as the second part, the first part of our rearranged circuit consists of the operations in the circuit of the middle function for generating the inputs of the second part, while the third part consists of the remaining operations in the circuit of the middle function and the bottom function. Both the first part and the third part of our rearranged circuit take the outputs of the top function as auxiliary variables.

Furthermore, we investigate the construction of optimized quantum circuits for AES S-box and its inverse based on our rearranged circuits with three parts. We treat the second part that calculates the multiplicative inverse over $\mathbb{F}_{2^{4}}$ as a 4-bit S-box for the first time, and the public tools LIGHTER [16] and LIGHTER-R [8] are taken into account to design its in-place implementation. Moreover, we try to detect an quantum style implementation of the third part by adding unit row vectors and making use of the heuristic in [30]. As far as we know, this is the first time that the heuristic proposed for searching optimized s-XOR implementation of linear layers has been applied to build reversible circuits for AES S-box and its inverse. In addition, we propose an algorithm to search optimized NCT-based circuits for the remaining two parts based on our observations on quantum circuits. The heuristic is designed on the premise of optimizing the Toffoli depth. Moreover, the strategy of randomization is also used to save CNOT gates. Our researches on the construction of NCT-based circuits for S-box and S-box ${ }^{-1}$ enrich the method to build quantum implementations of AES S-box and its inverse based on the classical implementations produced by tower fields architecture.

We applied our methods to the hardware circuits of AES S-box and Sbox $^{-1}$ presented in [5] and [32], respectively. The results reveal that the circuits obtained by our method consume fewer qubits, the CNOT gate consumption and the Toffoli depth are also optimized on the premise of saving qubits. The details of the quantum resource consumption of AES S-box and its inverse are listed in Table 7. In order to implement the key schedule without introducing extra storage qubits, we investigate the implementation of AES S-box with the initial values of outputs are not all 0 s and report an optimized circuit that maps $|x\rangle|y\rangle|0\rangle^{\otimes 5}$ to $|x\rangle|y \oplus S(x)\rangle|0\rangle^{\otimes 5}$. Moreover, since removing the previous rounds when expanding the round function can save qubits, we then investigate
the implementation of the inverse of AES S-box with the initial values of outputs are not all 0 s and report an optimized circuit that maps $|x\rangle|y\rangle|0\rangle^{\otimes 5}$ to $|x\rangle\left|y \oplus S^{-1}(x)\right\rangle|0\rangle^{\otimes 5}$. The comparison of the quantum resource consumption is shown in Table 8.

Finally, we investigate the implementation of AES with various number of S-boxes applied in parallel by the method we call partial zig-zag. Combined with our new technique, we construct reversible circuits for all instances of the AES family only with 269, 333 and 397 qubits, respectively. Moreover, considering the metric of $T \cdot M$ value, our methods guarantee that the NCTbased circuits for the AES family outperform state-of-the-art schemes in the metric of $T \cdot M$ value. The corresponding schemes consume only 474, 538 and 602 qubits. The details are shown in Table 1, Table 2 and Table 3, where m is the number of S-boxes ${ }^{3}$ applied in parallel.

Table 1 The quantum resource of different NCT-based circuits for AES-128.

* The quantum resource consumption listed in the table is from Table 6 in [13].
\diamond Only the circuit costs fewest qubits and the one with lowest $T \cdot M$ value in [14] are listed.
\dagger The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round
function or the $\mathrm{S}-\mathrm{box}^{-1}$ es for removing the previous round by adding 5 or 10 ancilla qubits.

[^1]Table 2 The quantum resource of different NCT-based circuits for AES-192.

Source		\#Qubits	Toffoli Depth	\#Toffoli	\#CNOT	\#Pauli-X	$T \cdot M$
[10]		1112	11088	172032	189432	1608	12329856
[18]		896	1640	19580	125580	1692	1469440
[32]		640	2022	22380	152378	5128	1294080
$[14]^{\diamond}$		$\begin{aligned} & 4256 \\ & 6688 \end{aligned}$	$\begin{aligned} & 92 \\ & 48 \end{aligned}$	$\begin{aligned} & 14688 \\ & 14008 \end{aligned}$	$\begin{aligned} & 96112 \\ & 92856 \end{aligned}$	896	$\begin{aligned} & 391552 \\ & 321024 \end{aligned}$
This work	$m=1$	333	8844		90384		2945052
	$m=1^{\dagger}$	338	7904		91408		2671552
	$m=2$	346	4444		90384		1537624
	$m=2^{\dagger}$	351	4026		91360		1413126
	$m=3$	359	3190		90428		1145210
	$m=4$	372	2310		90384		859320
	$m=4^{\dagger}$	377	2068		91184		779636
	$m=5$	385	2112		90428		813120
	$m=6$	398	1584		90560		630432
	$m=7$	411	1584		90472		651024
	$m=8$	424	1254	22800	90384	2568	531696
	$m=8^{\dagger}$	429	1100	22800	90832	2568	471900
	$m=9$	437	1056		90692		461472
	$m=10$	450	1056		90648		475200
	$m=11$	463	1056		90604		488928
	$m=12$	476	1056		90560		502656
	$m=13$	489	1056		90516		516384
	$m=14$	502	1056		90472		530112
	$m=15$	515	1056		90428		543840
	$m=16$	528	726		90384		383328
	$m=16^{\dagger}$	538	572		90832		307736

\diamond Only the circuit costs fewest qubits and the one with lowest $T \cdot M$ value in [14] are listed.
\dagger The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round function or the S-box ${ }^{-1}$ es for removing the previous round by adding 5 or 10 ancilla qubits.

Table 3 The quantum resource of different NCT-based circuits for AES-256.

Source		\#Qubits	Toffoli Depth	\#Toffoli	\#CNOT	\#Pauli-X	$T \cdot M$
[10]		1336	14976	215040	233836	1943	20007936
[18]		1232	2160	23760	151011	1992	2661120
[32]		768	2292	26774	177645	6103	1760256
$[14]^{\diamond}$		$\begin{aligned} & 4576 \\ & 6976 \end{aligned}$	$\begin{gathered} 108 \\ 56 \end{gathered}$	$\begin{aligned} & 18088 \\ & 17408 \end{aligned}$	$\begin{aligned} & 117704 \\ & 113744 \end{aligned}$	1103	$\begin{aligned} & 494208 \\ & 390656 \end{aligned}$
This work	$m=1$	397	10622		109856		4216934
	$m=1^{\dagger}$	402	9322		111416		3747444
	$m=2$	410	5324		109830		2182840
	$m=2^{\dagger}$	415	4724		111312		1960460
	$m=3$	423	3736		109908		1580328
	$m=4$	436	2826		109856		1232136
	$m=4^{\dagger}$	441	2436		111104		1074276
	$m=5$	449	2488		109908		1117112
	$m=6$	462	1864		110064		861168
	$m=7$	475	1844		109920		875900
	$m=8$	488	1556	27816	109856	3069	759328
	$m=8^{\dagger}$	493	1270	27816	110688	3069	626110
	$m=9$	501	1218		110220		610218
	$m=10$	514	1218		110168		626052
	$m=11$	527	1218		110116		641886
	$m=12$	540	1218		110064		657720
	$m=13$	553	1218		110012		673554
	$m=14$	566	1218		109960		689388
	$m=15$	579	1218		109908		705222
	$m=16$	592	932		109856		551744
	$m=16^{\dagger}$	602	646		110688		388892

\diamond Only the circuit costs fewest qubits and the one with lowest $T \cdot M$ value in [14] are listed.
\dagger The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round function or the S -box ${ }^{-1}$ es for removing the previous round by adding 5 or 10 ancilla qubits.

1.2 Organization

In Section 2, we introduce the notations used throughout this paper and give a brief introduction to AES. Then, some properties of quantum circuit are presented in Section 3. In Section 4, the heuristic for searching optimized reversible circuits for the first and the third parts of our rearranged circuits are reported, as well as the reversible circuits for AES S-box and its inverse. The method to implement the key schedule and the round function are introduced in Section 5, followed by the applications to the AES family in Section 6. Finally, the conclusion and the future work are discussed in Section 7.

2 Preliminaries

2.1 Notations

> | \mathbb{Z}_{+} | the set of all positive integers |
| :--- | :--- |
| \mathbb{F}_{2} | the finite field containing elements 0 and 1 |
| $\mathbb{F}_{2^{k}}$ | the finite field containing 2^{k} elements |
| $a \oplus b$ the XoR of bits a and b over \mathbb{F}_{2} | |
| $a \cdot b$ | the AND of bits a and b over \mathbb{F}_{2} |
| \bar{a} | the inversion of bit a over \mathbb{F}_{2} |

To avoid confusion, we clarify the NCT-based circuit as follows.

Definition 1 (NCT-based Circuit) An NCT-based circuit is a quantum circuit constructed based on Pauli-X gates, CNOT gates and Toffoli gates.

The circuit symbols and functions of the Pauli-X gate, CNOT gate and Toffoli gate are depicted in Figure 1, where $a, b, c \in \mathbb{F}_{2}$.

Toffoli gate

Fig. 1 The description of the underlying quantum gates.

Besides, a CNOT gate can be regarded as the transformation that maps $|a\rangle|b\rangle$ to $|a\rangle|b \oplus a\rangle$, the operand b is updated as $b=b \oplus a$. Consequently, the application of CNOT gates can be simulated by Xor operations under s-Xor metric, which is originally a concept for the implementation of matrices.

Definition 2 (s-Xor [16]) Let M be an invertible matrix over \mathbb{F}_{2} with size $n \times n$. Assuming that $x_{0}, x_{1}, \ldots, x_{n-1}$ are the n input bits of M. It is always possible to perform a sequence of XOR operations $x_{i}=x_{i} \oplus x_{j}$ with $0 \leq i, j \leq n-1$, such that
the n input bits are updated to the n output bits. The s-XOR count of M is defined as the minimal number of such Xor operations to update the inputs to the outputs.

2.2 Description of the AES Family

The AES family [7] contains three instances, denoted as AES-128, AES-192 and AES-256 respectively according to the length of the key.
Round Function The round function of the AES family consists of four transformations, i.e., SubBytes, ShiftRows, MixColumns and AddRoundKey as shown in Figure 2, where r is the round number and equals 10, 12 and 14 for AES-128, AES-192 and AES-256, respectively. The SubBytes replaces each byte in the state by another one according to the Sbox. The ShiftRows changes the position of the bytes in the grid by cyclically rotating the bytes in the i th row to the left by i bytes, where $i=0,1,2,3$. The MixColumns is a linear transformation and it multiplies the right circulant matrix $(0 x 02,0 x 03,0 x 01,0 x 01)$ over $\mathbb{F}_{2^{8}}$ with each column of the state. Note that the MixColumns is absent in the last round. The AddRoundKey adds the round key to the state by bitwise Xor.

Fig. 2 The encryption of the AES family.

Key Schedule The key schedule of AES is based on 32-bit words. Denote the master key by $W_{0}, W_{1}, \ldots, W_{s-1}$, where $s=4$ for AES-128, $=6$ for AES$192,=8$ for AES-256. Except the given words (i.e., the words in the master key), 40, 46 and 52 words are required by AES-128, AES-192 and AES-256 respectively.

For AES-128, the word W_{i} can be calculated by
$W_{i}= \begin{cases}W_{i-4} \oplus \operatorname{SubWord}\left(\boldsymbol{\operatorname { R o t }} \operatorname{Word}\left(W_{i-1}\right)\right) \oplus \boldsymbol{\operatorname { R c o n }}(i / 4), & \text { if } i \equiv 0 \bmod 4, \\ W_{i-4} \oplus W_{i-1}, & \text { otherwise },\end{cases}$
where $i=4,5, \ldots, 43$.
For AES-192, the word W_{i} can be calculated by
$W_{i}= \begin{cases}W_{i-6} \oplus \operatorname{SubWord}\left(\boldsymbol{\operatorname { R o t }} \operatorname{Word}\left(W_{i-1}\right)\right) \oplus \boldsymbol{\operatorname { R c o n }}(i / 6), & \text { if } i \equiv 0 \bmod 6, \\ W_{i-6} \oplus W_{i-1}, & \text { otherwise },\end{cases}$
where $i=6,7, \ldots, 51$.
For AES-256, the word W_{i} can be calculated by
$W_{i}= \begin{cases}W_{i-8} \oplus \mathbf{S u b W o r d}\left(\boldsymbol{\operatorname { R o t } W o r d}\left(W_{i-1}\right)\right) \oplus \boldsymbol{\operatorname { R c o n }}(i / 8), & \text { if } i \equiv 0 \bmod 8, \\ W_{i-8} \oplus \mathbf{S u b W o r d}\left(W_{i-1}\right), & \text { if } i \equiv 4 \bmod 8, \\ W_{i-8} \oplus W_{i-1}, & \text { otherwise, },\end{cases}$
where $i=8,9, \ldots, 59$.
The SubWord applies four S-boxes to the bytes in one word. The RotWord cyclically rotates the bytes in the word to the left by one byte. The Rcon adds the round constant to the word by bitwise Xor.

2.3 Classical Implementations of AES Building Blocks

2.3.1 Classical Implementations of MixColumn

The transformation of MixColumn can be represented as a 32×32 binary matrix over \mathbb{F}_{2}. Among the methods of matrix implementation, LUP-type decomposition [27] can be used to generate an implementation of MixColumn under s-Xor metric. In an s-Xor implementation, the outputs are stored in the input registers and no extra registers are needed. Meanwhile, one can easily simulate an Xor operation under s-Xor metric by a CNOT gate. This is an important reason why the LUP-type decomposition method is commonly used when constructing quantum circuits for MixColumn [1, 10, 15, 18, 29]. Also based on matrix decomposition theory, Xiang et al. [30] presented an implementation of MixColumn with 92 Xor operations. Considering the convenience of being converted to a quantum implementation and the CNOT gate consumption, we use the s-Xor implementation given in [30] to build the quantum circuit for the MixColumns.

2.3.2 Classical Implementations of AES S-box and S-box ${ }^{-1}$

As the only nonlinear building block of AES, the implementation of S-box has a crucial impact on the overall implementation performance of the cipher. Due to the advantage in obtaining an efficient implementation of AES S-box with a lower gate count, tower fields architecture is widely used in the field of constructing circuits for AES in hardware application scenarios [5, 6, 20, 29]. Designing quantum circuits from these classical implementations seems to be a popular approach in recent years. In this work, we investigate the construction of efficient reversible circuits for AES based on the circuit of the S-box reported in [5] and the circuit of the S-box ${ }^{-1}$ given in [32]. By exploiting the tower fields architecture, Boyar et al. [5] decomposed AES S-box into three transformations and represented the S-box as $S(x)=B \cdot F(U \cdot x)$, where x is the 8 -bit input of the S-box. Similarly, Zou et al. [32] represented the S-box ${ }^{-1}$ of AES as $S^{-1}(x)=B^{\prime} \cdot F^{\prime}\left(U^{\prime} \cdot x\right)$, where x is the 8 -bit input of S-box ${ }^{-1}$. For simplicity, we only list the classical circuit reported in [5].

Top Function U Denote the input of S-box by $\left(x_{0}, x_{1}, \ldots, x_{7}\right)$, the function U takes $\left(x_{0}, x_{1}, \ldots, x_{7}\right)$ as its input and generates $\left(y_{0}, y_{1}, \ldots, y_{21}\right)$, which can be calculated as

$$
\begin{aligned}
& y_{0}=x_{7}, \quad y_{14}=x_{3} \oplus x_{5}, y_{13}=x_{0} \oplus x_{6}, \quad y_{9}=x_{0} \oplus x_{3}, \quad y_{8}=x_{0} \oplus x_{5}, \\
& t_{0}=x_{1} \oplus x_{2}, \quad y_{1}=t_{0} \oplus x_{7}, \quad y_{4}=y_{1} \oplus x_{3}, \quad y_{12}=y_{13} \oplus y_{14}, y_{2}=y_{1} \oplus x_{0}, \\
& y_{5}=y_{1} \oplus x_{6}, \quad y_{3}=y_{5} \oplus y_{8}, \quad t_{1}=x_{4} \oplus y_{12}, \quad y_{15}=t_{1} \oplus x_{5}, \quad y_{20}=t_{1} \oplus x_{1}, \\
& y_{6}=y_{15} \oplus x_{7}, \quad y_{10}=y_{15} \oplus t_{0}, y_{11}=y_{20} \oplus y_{9}, \quad y_{7}=x_{7} \oplus y_{11}, \quad y_{17}=y_{10} \oplus y_{11}, \\
& y_{19}=y_{10} \oplus y_{8}, y_{16}=t_{0} \oplus y_{11}, y_{21}=y_{13} \oplus y_{16}, y_{18}=x_{0} \oplus y_{16} \text {. }
\end{aligned}
$$

Middle Function F The function F takes $\left(y_{0}, y_{1}, \ldots, y_{21}\right)$ as its inputs and generates $\left(z_{0}, z_{1}, \ldots, z_{17}\right)$, which can be calculated as

$$
\begin{array}{lllll}
t_{2}=y_{12} \cdot y_{15}, & t_{3}=y_{3} \cdot y_{6}, & t_{4}=t_{3} \oplus t_{2}, & t_{5}=y_{4} \cdot y_{0}, & t_{6}=t_{5} \oplus t_{2}, \\
t_{7}=y_{13} \cdot y_{16}, & t_{8}=y_{5} \cdot y_{1}, & t_{9}=t_{8} \oplus t_{7}, & t_{10}=y_{2} \cdot y_{7}, & t_{11}=t_{10} \oplus t_{7}, \\
t_{12}=y_{9} \cdot y_{11}, & t_{13}=y_{14} \cdot y_{17}, & t_{14}=t_{13} \oplus t_{12}, & t_{15}=y_{8} \cdot y_{10}, & t_{16}=t_{15} \oplus t_{12}, \\
t_{17}=t_{4} \oplus y_{20}, & t_{18}=t_{6} \oplus t_{16}, & t_{19}=t_{9} \oplus t_{14}, & t_{20}=t_{11} \oplus t_{16}, t_{21}=t_{17} \oplus t_{14}, \\
t_{22}=t_{18} \oplus y_{19}, & t_{23}=t_{19} \oplus y_{21}, t_{24}=t_{20} \oplus y_{18}, & t_{25}=t_{21} \oplus t_{22}, t_{26}=t_{21} \cdot t_{23}, \\
t_{27}=t_{24} \oplus t_{26}, & t_{28}=t_{25} \cdot t_{27}, & t_{29}=t_{28} \oplus t_{22}, & t_{30}=t_{23} \oplus t_{24}, t_{31}=t_{22} \oplus t_{26}, \\
t_{32}=t_{31} \cdot t_{30}, & t_{33}=t_{32} \oplus t_{24}, & t_{34}=t_{23} \oplus t_{33}, & t_{35}=t_{27} \oplus t_{33}, t_{36}=t_{24} \cdot t_{35}, \\
t_{37}=t_{36} \oplus t_{34}, & t_{38}=t_{27} \oplus t_{36}, & t_{39}=t_{29} \cdot t_{38}, & t_{40}=t_{25} \oplus t_{39}, t_{41}=t_{40} \oplus t_{37}, \\
t_{42}=t_{29} \oplus t_{33}, & t_{43}=t_{29} \oplus t_{40}, & t_{44}=t_{33} \oplus t_{37}, & t_{45}=t_{42} \oplus t_{41}, & z_{0}=t_{44} \cdot y_{15}, \\
z_{1}=t_{37} \cdot y_{6}, & z_{2}=t_{33} \cdot y_{0}, & z_{3}=t_{43} \cdot y_{16}, & z_{4}=t_{40} \cdot y_{1}, & z_{5}=t_{29} \cdot y_{7}, \\
z_{6}=t_{42} \cdot y_{11}, & z_{7}=t_{45} \cdot y_{17}, & z_{8}=t_{41} \cdot y_{10}, & z_{9}=t_{44} \cdot y_{12}, & z_{10}=t_{37} \cdot y_{3}, \\
z_{11}=t_{33} \cdot y_{4}, & z_{12}=t_{43} \cdot y_{13}, & z_{13}=t_{40} \cdot y_{5}, & z_{14}=t_{29} \cdot y_{2}, & z_{15}=t_{42} \cdot y_{9}, \\
z_{16}=t_{45} \cdot y_{14}, & z_{17}=t_{41} \cdot y_{8} . & &
\end{array}
$$

Bottom Function B Denote the output of the S-box by $\left(s_{0}, s_{1}, \ldots, s_{7}\right)$. The function B takes $\left(z_{0}, z_{1}, \ldots, z_{17}\right)$ as inputs and generates $\left(s_{0}, s_{1}, \ldots, s_{7}\right)$, which can be calculated as
$t_{46}=z_{15} \oplus z_{16}, t_{47}=z_{10} \oplus z_{11}, t_{48}=z_{5} \oplus z_{13}, t_{49}=z_{9} \oplus z_{10}, t_{50}=z_{2} \oplus z_{12}$,
$t_{51}=z_{2} \oplus z_{5}, \quad t_{52}=z_{7} \oplus z_{8}, \quad t_{53}=z_{0} \oplus z_{3}, \quad t_{54}=z_{6} \oplus z_{7}, \quad t_{55}=z_{16} \oplus z_{17}$,
$t_{56}=z_{12} \oplus t_{48}, t_{57}=t_{50} \oplus t_{53}, t_{58}=z_{4} \oplus t_{46}, \quad t_{59}=z_{3} \oplus t_{54}, t_{60}=t_{46} \oplus t_{57}$,
$t_{61}=z_{14} \oplus t_{57}, t_{62}=t_{52} \oplus t_{58}, t_{63}=t_{49} \oplus t_{58}, t_{64}=z_{4} \oplus t_{59}, t_{65}=t_{61} \oplus t_{62}$,
$t_{66}=z_{1} \oplus t_{63}, \quad s_{0}=t_{59} \oplus t_{63}, \quad s_{6}=\overline{t_{56} \oplus t_{62}}, \quad s_{7}=\overline{t_{48} \oplus t_{60}}, t_{67}=t_{64} \oplus t_{65}$,
$s_{3}=t_{53} \oplus t_{66}, \quad s_{4}=t_{51} \oplus t_{66}, \quad s_{5}=t_{47} \oplus t_{65}, \quad s_{1}=\overline{t_{64} \oplus s_{3}}, \quad s_{2}=\overline{t_{55} \oplus t_{67}}$.

3 Observations on NCT-based Circuits

Quantum Toffoli Depth Although linear operations themselves are considered not to increase the Toffoli depth, but the propagation of Toffoli depth caused by CNOT gates cannot be ignored. If the Toffoli depth of two variables
are the same before they are taken as the inputs of a CNOT gate, the depth of these two variables remain unchanged after the CNOT gate, which is beyond doubt. But if the Toffoli depth of the operands of a CNOT gate are not the same, the Toffoli depth for one of the operands should be changed. We give the following properties to illustrate the update of Toffoli depth caused by logic gates in an NCT-based circuit.

Property 1 For a Pauli-X gate that maps $|a\rangle$ to $|a \oplus 1\rangle$, the application of the Pauli-X gate will not change the Toffoli depth of a.

Property 2 For a CNOT gate that maps $|a\rangle|b\rangle$ to $|a\rangle|b \oplus a\rangle$, denote the input Toffoli depth of a and b by d_{a} and d_{b} respectively. After the application of the CNOT gate, d_{a} and d_{b} are updated as

$$
d_{a}=d_{b}=\max \left\{d_{a}, d_{b}\right\}
$$

Property 3 For a Toffoli gate that maps $|a\rangle|b\rangle|c\rangle$ to $|a\rangle|b\rangle|c \oplus a \cdot b\rangle$, denote the input Toffoli depth of a, b and c by d_{a}, d_{b} and d_{c} respectively. After the application of the Toffoli gate, d_{a}, d_{b} and d_{c} are updated as

$$
d_{a}=d_{b}=d_{c}=\max \left\{d_{a}, d_{b}, d_{c}\right\}+1
$$

We give the following example to demonstrate the update of Toffoli depth caused by CNOT gates and Toffoli gates.

Example 1 Take Circuit 1 and Circuit 2 listed in Table 4 as an example. Suppose that the initial Toffoli depth of all variables is zero. Denote the Toffoli depth of a, b, \ldots, g by $\left(d_{a}, d_{b}, \ldots, d_{g}\right)$, where d_{i} is the Toffoli depth of variable i and $i \in\{a, b, \ldots, g\}$. The evolution of the Toffoli depth vector at each step are listed in the 3rd and 6th columns in Table 4.

Table 4 The Toffoli depth of each operation.

No.	Circuit 1	Toffoli depth	No.	Circuit 2	Toffoli depth
1	$a=a \oplus b$	$(0,0,0,0,0,0,0)$	1	$b=b \oplus a$	$(0,0,0,0,0,0,0)$
2	$c=c \oplus a \cdot d$	$(1,0,1,1,0,0,0)$	2	$c=c \oplus b \cdot d$	$(0,1,1,1,0,0,0)$
3	$b=b \oplus e$	$(1,0,1,1,0,0,0)$	3	$b=b \oplus a \oplus e$	$(1,1,1,1,1,0,0)$
4	$f=f \oplus b \cdot g$	$(1,1,1,1,0,1,1)$	4	$f=f \oplus b \cdot g$	$(1,2,1,1,1,2,2)$

One can easily check that both circuits listed in Table 4 perform the same function. However, Circuit 2 costs one more CNOT gate than Circuit 1 (caused by the third operation in Circuit 2). Besides, the Toffoli depth of Circuit 2 is two, while the Toffoli depth of Circuit 1 is one. The only difference between Circuit 1 and Circuit 2 is the variable chosen to store the intermediate value $a \oplus b$ in the first operation, by which, the circuits in Table 4 show the effect of
selecting a specific bit to store the result of an s-XOR operation on the overall Toffoli depth of a quantum circuit. We summarize this with the following observation.

Observation 1 Given a quantum circuit with Toffoli gates involved, the Toffoli depth and the CNOT gate consumption of the quantum circuit may be affected by the specific arrangement of CNOT gates.

In addition, take the third operation of Circuit 2 in Table 4 (i.e., $b=$ $b \oplus a \oplus e$) as an example, among the three operands, the Toffoli depth of b is 1 while other operands are with Toffoli depth 0 . The execution of the third operation causes the Toffoli depth of a and e to increase by 1 due to the influence of b, which has a higher Toffoli depth. But what if the value $b \oplus e$ (the target value of the third operation) can be obtained before the Toffoli depth of b is increased? This inspires us to investigate the effect of the order of operations on Toffoli depth and give rise to the following observation.

Observation 2 Given a quantum circuit with Toffoli gates involved, the Toffoli depth of the circuit may be affected by the order of operations.

Example 2 For a quantum circuit denoted by Circuit 3 in Table 5, a is not the operand of the second operation, and d is not the operand of the first operation. Consequently, the first two operations in Circuit 3 are commutative, as shown with Circuit 4 in Table 5. Thus, the Toffoli depth can be reduced by 1 as listed in the sixth column of Table 5.

Table 5 The Toffolil depth of the operations.

No.	Circuit 3	Depth vector	No.	Circuit 4	Depth vector
1	$a=a \oplus b \cdot c$	$(1,1,1,0,0,0)$	1	$d=d \oplus b$	$(0,0,0,0,0,0)$
2	$d=d \oplus b$	$(1,1,1,1,0,0)$	2	$a=a \oplus b \cdot c$	$(1,1,1,0,0,0)$
3	$e=e \oplus d \cdot f$	$(1,1,1,2,2,2)$	3	$e=e \oplus d \cdot f$	$(1,1,1,1,1,1)$

Note that it is not always possible to exchange two consecutive operations, we denote qubit by variable t in the following facts, t_{i} and t_{j} are two different qubits if and only if $i \neq j$.

Fact 1 Given a quantum circuit with m qubits $t_{0}, t_{1}, \ldots, t_{m-1}$, if two consecutive operations are in the form of $t_{a}=t_{a} \oplus t_{b}, t_{c}=t_{c} \oplus t_{d}$, where $a, b, c, d \in[0, m-1]$, $a \neq b$ and $c \neq d$, the order of these two operations can be exchanged when one of the following conditions holds: (i) $a=c$; (ii) $a \neq c, d$ and $b \neq c$.

Fact 2 Given a quantum implementation with the m involved qubits are denoted by $t_{0}, t_{1}, \ldots, t_{m-1}$, if two consecutive operations are in the form of $t_{a}=t_{a} \oplus t_{b}, t_{c}=$ $t_{c} \oplus t_{d} \cdot t_{e}$ or vice versa, where $a, b, \ldots, e \in[0, m-1], a \neq b$ and $c \neq d \neq e$, the order of these two operations can be exchanged when one of the following conditions holds: (i) $a=c$; (ii) $a \neq c, d, e$ and $b \neq c$.

Fact 3 Given a quantum circuit with m qubits $t_{0}, t_{1}, \ldots, t_{m-1}$, if two consecutive operations are in the form of $t_{a}=t_{a} \oplus t_{b} \cdot t_{c}, t_{d}=t_{d} \oplus t_{e} \cdot t_{f}$, where $a, b, \ldots, f \in[0, m-1]$, $a \neq b \neq c, d \neq e \neq f$, the order of these two operations can be exchanged when one of the following conditions holds: (i) $a=d$; (ii) $a \neq d, e, f$ and $d \neq b, c$.

The proof of Fact 1 is given in Appendix A, Fact 2-3 can be proved in the same way.

4 New NCT-based Circuits of AES S-box and S-box ${ }^{-1}$

The quantum circuit of AES S-box ${ }^{-1}$ can be constructed from the classical one presented in [32], which was decomposed in the same way as the authors did in [5] to represent the AES S-box, or from the reversible circuit designed for the S-box by adding some linear transformations [13], which dose not affect the structure of the classical circuit presented in [5]. Therefore, we only discuss the optimized quantum implementation of AES S-box in this section, the S-box ${ }^{-1}$ of AES can be implemented similarly.

4.1 Observations on the Adopted Classical Circuits of S-box

Middle Functions F For the implementation of F reported in [5] (as listed in Subsection 2.3), Zou et al. [32] pointed out that the outputs of F can be calculated with the knowledge of $t_{29}, t_{33}, t_{37}, t_{40}$ and the inputs of AES S-box. Furthermore, one can easily find that $t_{29}, t_{33}, t_{37}, t_{40}$ are the outputs of the multiplicative inverse in $\mathbb{F}_{2^{4}}$, and $t_{21}, t_{22}, t_{23}, t_{24}$ are the inputs. Essentially, the function that maps $\left(t_{21}, t_{22}, t_{23}, t_{24}\right)$ to $\left(t_{29}, t_{33}, t_{37}, t_{40}\right)$ is a permutation and thus can be regarded as a 4 -bit S-box as shown in Table 6 .

Table 6 The 4-bit S-box within F.

$\left(t_{21}, t_{22}, t_{23}, t_{24}\right)$	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$\left(t_{29}, t_{33}, t_{37}, t_{40}\right)$	0	6	2	4	9	3	d	5	1	e	c	7	8	a	b	f

Compared with searching the s-Xor implementation for linear layers, the design of the quantum implementation of S-boxes is tricky, especially for large S-boxes. Nevertheless, for a 4-bit S-box, the public tools LIGHTER ${ }^{4}$ and

[^2]LIGHTER- ${ }^{5}$, which are proposed in [16] and [8] respectively, can be used to search an optimized reversible circuit with fewer logic gates. However, we only use LIGHTER in this paper for the 4 -bit S-box shown in Table 6. We present our discussion on LIGHTER and LIGHTER-R in Appendix B.
Bottom Functions B The function B generates the outputs of AES S-box, which are linear expressions of z_{i}, where $i=0,1, \ldots, 17$. As pointed in [32], B can be expressed as a matrix. Note that the matrix corresponding to B is of size 8×18 and rank 8 . In order to obtain an optimized s-Xor implementation of B, we can extend its corresponding matrix to be invertible by adding unit row vectors. Then, the heuristic ${ }^{6}$ proposed in [30] can be used.

4.2 Heuristic for Searching Optimized NCT-based Circuits for S-box

According to the analysis in Subsection 4.1, the middle functions F can be divided into three parts. The first part takes $\left(y_{0}, y_{1}, \ldots, y_{21}\right)$ (i.e., the outputs of the top function U) as inputs and generates $\left(t_{21}, t_{22}, t_{23}, t_{24}\right)$ as outputs. In our heuristic, we combine the first part of the middle function F and the top function U, and denote it by f_{1} which takes $\left(x_{0}, x_{1} \ldots, x_{7}\right)$ as inputs and generates $\left(t_{21}, t_{22}, t_{23}, t_{24}\right)$ as outputs. The second part of the middle function F is a 4 bit S-box which is denoted by S_{4} as shown in Table 6. S_{4} takes $\left(t_{21}, t_{22}, t_{23}, t_{24}\right)$ as inputs and generates $\left(t_{29}, t_{33}, t_{37}, t_{40}\right)$ as outputs. Similarly, we combine the third part of the middle function F, the top function U and the bottom function B, and denote it by f_{2} which takes $\left(t_{29}, t_{33}, t_{37}, t_{40}\right)$ (i.e., the outputs of the 4 -bit S-box) and $\left(x_{0}, x_{1} \ldots, x_{7}\right)$ as inputs and calculates $\left(s_{0}, s_{1} \ldots, s_{7}\right)$ as outputs. The reversible circuit of S_{4} can be obtained with LIGHTER by introducing an additional variable. Consequently, in this subsection, we focus on constructing reversible circuits for f_{1} and f_{2} with a lower Toffoli depth as it is another important factor that affects the metric of $T \cdot M$ value. The main idea is to try to execute more nonlinear operations in parallel.

In the following, we take f_{1} as an example to illustrate how to get an optimized reversible circuit. Denote X and S the input set and the output set of f_{1}, i.e., $X=\left\{x_{0}, x_{1}, \ldots, x_{7}\right\}$ and $S=\left\{t_{21}, t_{22}, t_{23}, t_{24}\right\}$. According to the classical implementation of the S-box, the implementation of f_{1} is listed as follows.

$$
\begin{array}{llll}
t_{21}=t_{21} \oplus y_{12} \cdot y_{15}, & t_{22}=t_{22} \oplus t_{21}, & t_{21}=t_{21} \oplus y_{3} \cdot y_{6}, & t_{22}=t_{22} \oplus y_{4} \cdot y_{0}, \\
t_{22}=t_{22} \oplus y_{8} \cdot y_{10}, & t_{23}=t_{23} \oplus y_{14} \cdot y_{17}, & t_{21}=t_{21} \oplus t_{23}, & t_{23}=t_{23} \oplus y_{5} \cdot y_{1}, \\
t_{23}=t_{23} \oplus y_{13} \cdot y_{16}, & t_{24}=t_{24} \oplus y_{2} \cdot y_{7}, & t_{24}=t_{24} \oplus y_{13} \cdot y_{16}, & t_{24}=t_{24}^{\oplus} y_{8} \cdot y_{10}, \\
a=a \oplus y_{9} \cdot y_{11}, & t_{21}=t_{21} \oplus a, & t_{22}=t_{22} \oplus a, & t_{23}=t_{23} \oplus a, \\
t_{24}=t_{24} \oplus a, & a=a \oplus y_{9} \cdot y_{11}, & t_{21}=t_{21} \oplus y_{20}, & t_{22}=t_{22} \oplus y_{19},
\end{array}
$$

$$
t_{23}=t_{23} \oplus y_{21}, \quad t_{24}=t_{24} \oplus y_{18}
$$

[^3]where a is an ancilla qubit, and $y_{i}(i=0,1, \ldots, 21)$ is the output of the top function U and linear related to $x_{0}, x_{1}, \ldots, x_{7}$.

The circuit shown above is obtained by simply eliminating redundant temporary variables in the classical implementation and rewriting it in a quantum style. Note that we allocate one ancilla qubit for f_{1}, this is due to the fact that the 4 -bit S-box S_{4} is an odd permutation, and at least one ancilla qubit is needed to construct its in-place implementation [24]. Thus, we can use this ancilla qubit in f_{1} before the implementation of S_{4}, however, it should be reset to 0 and be reused to construct the reversible circuit for S_{4}.

We denote the set of auxiliary variables by Y, and we have $Y=$ $\left\{y_{0}, y_{1}, \ldots, y_{21}\right\}$ for f_{1}. Note that we do not precompute all the values of y_{i} when implementing f_{1} in order to saving qubits, as this needs at lest $22-8=14$ extra qubits. Specifically, we compute the values of y_{i} on the fly. Taking $t_{21}=t_{21} \oplus y_{12} \cdot y_{15}$ as an example, the values of y_{12} and y_{15} are computed in an in-place manner when needed, that is the s-Xor metric is adopted to update the value of two qubits of $\left(x_{0}, x_{1}, \ldots, x_{7}\right)$ to be equal to y_{12} and y_{15}. After the computation of t_{21} is completed, we can update ($x_{0}, x_{1}, \ldots, x_{7}$) for the following operations in a similar way. Moreover, in order to reduce the depth of the circuit, we would like to parallelly execute as much nonlinear operations as possible. If we want to parallelly execute, for example, $t_{21}=t_{21} \oplus y_{12} \cdot y_{15}$ and $t_{22}=t_{22} \oplus y_{4} \cdot y_{0}$, it requires that we can update $\left(x_{0}, x_{1}, \ldots, x_{7}\right)$ under the sXOR metric such that four of which equal to the value of y_{12}, y_{15}, y_{4} and y_{0}. However, this is not always possible.

Property 4 Let $y_{i}, i \in[0, m-1]$ be m linear combinations of $x_{0}, x_{1}, \ldots, x_{n-1}$, with $m \leq n . x_{0}, x_{1}, \ldots, x_{n-1}$ can be updated under s-Xor metric such that m of which are equal to $y_{0}, y_{1}, \ldots, y_{m-1}$ if and only if $y_{0}, y_{1}, \ldots, y_{m-1}$ are linear independent. In this case, the s-XOR implementations of $y_{0}, y_{1}, \ldots, y_{m-1}$ can be stored in m qubits of $x_{0}, x_{1}, \ldots, x_{n-1}$.

We present in Algorithm 1 a procedure to classify the nonlinear operations of f_{1} and f_{2} that can be performed concurrently. We take f_{1} as an example to illustrate the usage of Algorithm 1.

Example 3 First, the set E used to store the classification of the nonlinear operations should be initialized to be empty. Update C_{0} as $C_{0}=\left\{t_{21}=t_{21} \oplus y_{12} \cdot y_{15}\right\}$ since the first operation is nonlinear and the set E is empty. The next nonlinear operation $t_{21}=t_{21} \oplus y_{3} \cdot y_{6}$ can not be moved to be adjacent with the operation in C_{0} due to the second operation in the implementation. Thus, it should be added to C_{1}. The third nonlinear operation $t_{22}=t_{22} \oplus y_{4} \cdot y_{0}$ can be moved to be adjacent with the operation in C_{0}, and $y_{12}, y_{15}, y_{4}, y_{0}$ are linear independent. According to Property 4, the third nonlinear operation can be executed in parallel with the operation in C_{0}. Hence, we add $t_{22}=t_{22} \oplus y_{4} \cdot y_{0}$ to C_{0}. The fourth nonlinear operation $t_{22}=t_{22} \oplus y_{8} \cdot y_{10}$ shares the operand t_{22} with the second operation in C_{0} and can be added to C_{1}. The remaining nonlinear operations can be analyzed similarly and the process ends by returning $E=\left\{\left\{t_{21}=t_{21} \oplus y_{12} \cdot y_{15}, t_{22}=t_{22} \oplus y_{4} \cdot y_{0}, t_{23}=t_{23} \oplus y_{14} \cdot y_{17}, t_{24}=\right.\right.$

```
Algorithm 1 Classification of the Nonlinear Operations
Input: The implementation (denoted by \(\operatorname{Imp}\) ) for \(f_{i}(\mathrm{i}=1,2)\) with input set \(X\)
    and output set \(S\), the expressions of the auxiliary variables in \(Y\);
Output: The classification of the nonlinear operations Classify (Imp, Y) of Imp;
    \(E \leftarrow \varnothing\); \(\quad \triangleright\) The set of classified nonlinear operations;
    \(l \leftarrow|I m p| ; \quad \triangleright\) The number of operations in \(\operatorname{Imp}\);
    \(N \leftarrow 0 ; \quad \triangleright\) The number of elements in \(E\);
    for \(i=0, l-1\) do
        flag \(\leftarrow\) false;
        if the \(i\) th operation \(o_{i}\) is nonlinear, i.e., formed as \(t_{i_{0}}=t_{i_{0}} \oplus y_{j_{0}} \cdot y_{j_{1}}\) then
            if \(E=\varnothing\) then
                \(C_{0} \leftarrow \varnothing\);
                \(C_{0}=C_{0} \cup\left\{o_{i}\right\} ;\)
            else
                    for \(j=0, N-1\) do
                        if \(o_{i}\) can be moved to be adjacent to the last operation in \(C_{j}\) then
                        if \(o_{i}\) shares no operand with any operation in \(C_{j}\) then
                        if all \(y^{\prime}\) s in \(o_{i} \cup C_{j}\) are linear independent then
                                    \(C_{j}=C_{j} \cup\left\{o_{i}\right\} ;\)
                                    flag \(\leftarrow\) true;
                                    break;
                                    end if
                                    end if
                    end if
                end for
                    if flag \(=\) false then
                    \(N=N+1 ;\)
                        \(C_{N} \leftarrow \varnothing\);
                        \(C_{N}=C_{N} \cup\left\{o_{i}\right\} ;\)
                end if
        end if
        end if
    end for
    return \(E=\left\{C_{0}, C_{1}, \ldots, C_{N}\right\} ;\)
```

$\left.t_{24} \oplus y_{2} \cdot y_{7}\right\},\left\{t_{21}=t_{21} \oplus y_{3} \cdot y_{6}, t_{22}=t_{22} \oplus y_{8} \cdot y_{10}, t_{24}=t_{24} \oplus y_{13} \cdot y_{16}\right\},\left\{t_{23}=\right.$ $\left.\left.t_{23} \oplus y_{5} \cdot y_{1}, t_{24}=t_{24} \oplus y_{8} \cdot y_{10}, a=a \oplus y_{9} \cdot y_{11}\right\},\left\{t_{23}=t_{23} \oplus y_{13} \cdot y_{16}, a=a \oplus y_{9} \cdot y_{11}\right\}\right\}$.

Based on our classification of nonlinear operations and the observations introduced in Section 3, we present in Algorithm 2 a procedure to search optimized NCT-based circuits for f_{1} and f_{2}.

Due to space limitations, we take the set E returned in Example 3 as an example and introduce how to implement the operations in C_{0}.

Example 4 According to Example 3, $C_{0}=\left\{t_{21}=t_{21} \oplus y_{12} \cdot y_{15}, t_{22}=t_{22} \oplus y_{4}\right.$. $\left.y_{0}, t_{23}=t_{23} \oplus y_{14} \cdot y_{17}, t_{24}=t_{24} \oplus y_{2} \cdot y_{7}\right\}$. First, we initialize Index to be empty and move the operations in C_{0} to be adjacent. According to the classical implementation

```
Algorithm 2 Search Optimized NCT-based Circuits
Input: The implementation (denoted by \(\operatorname{Imp})\) for \(f_{i}(i=1,2)\) with input set \(X\) and
    output set \(S\), the expressions of the auxiliary variables in \(Y\);
Output: Optimized NCT-based circuit of \(f_{i}\);
    \(E \leftarrow \varnothing ; \quad \triangleright\) The set to be expanded;
    Rearrange \(\operatorname{Imp}\) randomly according to Fact 1-3;
    \(E \leftarrow\) Classify \((\operatorname{Imp}, Y) ; \quad \triangleright\) Algorithm 1
    \(N \leftarrow|E|\); \(\quad \triangleright\) The number of elements in \(E\);
    for \(i=0, N-1\) do
        Move the operations in \(C_{i}\) to be adjacent;
        Index \(\leftarrow \varnothing\);
        \(l \leftarrow\left|C_{i}\right| ; \quad \triangleright\) The number of elements in \(C_{i}\);
        for \(j=0, l-1\) do
            \(t \leftarrow\) the number of auxiliary variables in the \(j\) th element of \(C_{i}\);
            for \(k=0, t-1\) do
                if \(y_{k}\) is linear related to \(\delta\) elements of \(X\), denoted by \(x_{i_{0}}, \ldots, x_{i_{\delta-1}}\) then
                    \(x_{i^{\prime}} \leftarrow \operatorname{rand}\left(x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{\delta-1}}\right) ; \quad \triangleright\) to store the value of \(y_{k} ;\)
                    while \(x_{i^{\prime}} \in\) Index do
                        \(x_{i^{\prime}} \leftarrow \operatorname{rand}\left(x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{\delta-1}}\right) ;\)
                    end while
                    Index \(=\) Index \(\cup\left\{x_{i^{\prime}}\right\}\);
                    add the s-Xor implementation of \(y_{k}\) to \(\operatorname{Imp} p\) before operations in
    \(C_{i} ;\)
                    update \(X\) and replace \(y_{k}\) by \(x_{i^{\prime}}\) in the operation of \(C_{i}\);
                end if
            end for
        end for
    end for
    return \(I m p\);
```

of auxiliary variables, we have $y_{12}=x_{0} \oplus x_{3} \oplus x_{5} \oplus x_{6}$. Suppose that x_{0} is chosen randomly from $\left\{x_{0}, x_{3}, x_{5}, x_{6}\right\}$ to store the value of y_{12} under s-Xor metric. Thus, x_{0} can not be used to store the value of any other auxiliary variables in C_{0}. Then Index is updated as Index $=\left\{x_{0}\right\}$ and $x_{0}=x_{0} \oplus x_{3} \oplus x_{5} \oplus x_{6}$ is added to Imp before $t_{21}=t_{21} \oplus y_{12} \cdot y_{15}$. Next, we consider y_{15} which can be recomputed as $x_{0} \oplus x_{4} \oplus x_{5}$, where x_{0} has been updated as $x_{0}=x_{0} \oplus x_{3} \oplus x_{5} \oplus x_{6}$. Since x_{0} has been used to store the value of y_{12}, we can only choose x_{4} or x_{5} to store the value of y_{15} under s-Xor metric. Assuming that x_{4} is chosen, then we add x_{4} to Index and insert $x_{4}=$ $x_{4} \oplus x_{5} \oplus x_{0}$ before the operation $t_{21}=t_{21} \oplus y_{12} \cdot y_{15}$. The remaining elements of C_{0} can be updated in the same way. Replace the y^{\prime} s in C_{0} by the corresponding elements in Index and Algorithm 2 returns $\left\{x_{0}=x_{0} \oplus x_{3} \oplus x_{5} \oplus x_{6}, x_{4}=x_{4} \oplus x_{5} \oplus x_{0}, x_{1}=\right.$ $x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{7}, x_{3}=x_{3} \oplus x_{5}, x_{2}=x_{2} \oplus x_{0} \oplus x_{6}, x_{6}=x_{6} \oplus x_{5} \oplus x_{1} \oplus x_{0}, x_{5}=$ $x_{5} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}, t_{21}=t_{21} \oplus x_{0} \cdot x_{4}, t_{22}=t_{22} \oplus x_{1} \cdot x_{7}, t_{23}=t_{23} \oplus x_{3} \cdot x_{2}, t_{24}=$ $\left.t_{24} \oplus x_{6} \cdot x_{5}\right\}$ as one of the in-place implementation of the elements of C_{0}.

The strategy of randomization is adopted in Algorithm 2. The step of randomly rearranging Imp by using Fact 1-3 (i.e., line 2) is aimed at providing different input for Algorithm 1, which is related to the Toffoli depth. According
to Observation 1, each time when we randomly choose a variable from the input set for calculating an auxiliary variable from Y (i.e., line 13 to line 16), we can obtain different implementations of the auxiliary variable. Therefore, for each call to Algorithm 2, a different NCT-based circuit may be returned. Thus, we can run Algorithm 2 several times and keep the best one with the Toffoli depth as the primary consideration.

4.3 Reversible Circuits of AES S-box

4.3.1 Circuits for $|x\rangle|0\rangle{ }^{\otimes n} \xrightarrow{\text { S-box }}|x\rangle|S(x)\rangle|0\rangle^{\otimes(n-8)}$

We allocate five qubits to build the reversible circuit for f_{1}, four of which are used to store the values of $t_{21}, t_{22}, t_{23}, t_{24}$, and the rest one is an ancilla qubit. Applying Algorithm 2 to f_{1}, we can get an NCT-based circuit of f_{1} which costs 5 ancilla qubits, 12 Toffoli gates, and 45 CNOT gates. The Toffoli depth of the circuit is 3 . The implementation is listed in Appendix D.1.

The reversible circuit of S_{4} with Toffoli depth 6 is listed in Appendix D.2, which only costs one ancilla qubit (denoted by a). The ancilla qubit allocated for this part can reuse the one from f_{1}. Since f_{2} requires no ancilla qubits, we do not reset the ancilla qubit in the reversible circuits of S_{4} for saving Toffoli gates and reducing Toffoli depth. The circuit for S_{4} consumes 6 Toffoli gates and 4 CNOT gates. If 2 ancilla qubits are allocated for S_{4}, the Toffoli depth of the circuit listed in Appendix D. 2 can be reduced from 6 to 5. As listed in Appendix D.3, in which a and b represent ancilla qubits, the circuit consumes 6 Toffoli gates and 5 CNOT gates.

Different from f_{1}, when devising a quantum style implementation of f_{2}, we first generate an implementation of the bottom function B based on the observation presented in Subsection 4.1. The bottom function B takes $\left(z_{0}, z_{1}, \ldots, z_{17}\right)$ as inputs and generates the outputs of AES S-box. Among the 18 inputs of $B, 8$ of them store the outputs of AES S-box under s-Xor metric. Using the implementation of the bottom function, a quantum style implementation of f_{2} can be derived, which is listed in Appendix C. It is worth noting that the auxiliary variable set Y for f_{2} consists of $t_{29}, t_{33}, t_{37}, t_{40}, t_{41}, t_{42}, t_{43}, t_{44}, t_{45}, y_{0}, y_{1}, \ldots, y_{21}$ where $t_{i}(i=41,42, \ldots, 45)$ are linear combinations of the outputs of the 4 -bit S-box, i.e., $t_{29}, t_{33}, t_{37}, t_{40}$, and $y_{j}(j=0,1, \ldots, 21)$ are linear expressions of the inputs of AES S-box. Thus, the input set for f_{2} is $X=$ $\left\{t_{29}, t_{33}, t_{37}, t_{40}, x_{0}, x_{1}, \ldots, x_{7}\right\}$. Then, we apply Algorithm 2 and obtain an optimized NCT-based circuit which costs 21 Toffoli gates, 55 CNOT gates and 4 Pauli-X gates. The Toffoli depth of the circuit is 6 . The implementation is listed in Appendix D.4.

When devising a complete NCT-based circuit for AES S-box, we first apply f_{1}, S_{4} and f_{2} to get the outputs of AES S-box, then the inverse circuits of S_{4} and f_{1} will be applied in order to reset ancilla qubits. However, after being updated by the circuit of f_{1} in an in-place manner, the inputs of AES S-box (i.e., $x_{0}, x_{1}, \ldots, x_{7}$) are then updated by the circuit of f_{2} with s-Xor operations. Besides, the outputs of S_{4} are also updated by the circuit of f_{2} similarly.

Consequently, we should apply the linear operations applied to $t_{29}, t_{33}, t_{37}, t_{40}$ and $x_{0}, x_{1}, \ldots, x_{7}$ in the circuit of f_{2} one more time to recover their values to be equal to the outputs of S_{4} and f_{1} respectively before applying the inverse circuits of S_{4} and f_{1}.
Circuits for the S-box ${ }^{-1}$ When designing reversible circuit for the Sbox ${ }^{-1}$ with the classical one proposed in [32], Algorithm 2 returns a circuit with Toffoli depth 26. If the method proposed in [13] is adopted, we combine the 4 Pauli-X gates and linear transformation L^{-1} (given in [13]) applied to the inputs of the S-box with the top function U of the classical circuit given in [5], without changing the middle function F and the bottom function B. Thus, the reversible circuit constructed for the S_{4} of AES S-box can also be used for designing the circuit of the S-box ${ }^{-1}$. By applying Algorithm 2, a circuit with Toffoli depth 24 can be acquired. The circuit is listed in Appendix E and will be used to construct the NCT-based circuits for AES in this paper.

The quantum resource consumption of different NCT-based circuits are summarized in Table 7.

Table 7 The comparison of different NCT-based circuits for outputs are $|0\rangle^{\otimes 8}$.

Operation	Source	\#Qubits	\#Toffoli	\#CNOT	\#Pauli-X	Toffoli Depth
S-box	[18]	16	55	314	4	40
	[28]	16	55	322	4	40
	[15]	120	34	186	4	6
		6	52	326	4	41
	[32]	7	48	330	4	39
		8	46	332	4	37
		120	34	212	4	4
	[13]	202	78	355	4	3
	This work	5	57	193	4	24
	This wor	6	57	195	4	22
S-box ${ }^{-1}$	[13]	6	52	368	8	41
	This work	5	58	187	10	26^{*}
		5	57	205	8	24^{\dagger}
		6	57	207	8	22^{\dagger}

* Constructed based on the classical circuit given in [32].
\dagger Constructed based on the classical circuit given in [5].

4.3.2 Circuits for $|x\rangle|y\rangle|0\rangle \otimes(n-8) \xrightarrow{\text { S-box }}|x\rangle|y \oplus S(x)\rangle|0\rangle^{\otimes(n-8)}$

As shown in Subsection 2.3, B generates the outputs of the S -box with the outputs of F. Therefore, the only difference between the circuits for $|x\rangle|0\rangle^{\otimes n} \xrightarrow{\text { S-box }}$ $|x\rangle|S(x)\rangle|0\rangle^{\otimes(n-8)}$ and $|x\rangle|y\rangle|0\rangle^{\otimes(n-8)} \xrightarrow{\text { S-box }}|x\rangle|y \oplus S(x)\rangle|0\rangle^{\otimes(n-8)}$ is the implementation of F and B.

The construction of our NCT-based circuit for function B is based on the heuristic given in [30], and the output qubits $s_{0}, s_{1}, \ldots, s_{7}$ have never been involved in any nonlinear operation. That is, the influence of y can be removed by applying a sequence of CNOT gates for the circuit shown in Appendix D.

Take the output bit s_{0} in our proposed circuit shown in Appendix D. 4 as an example. The bit s_{0} is only used to update the values of s_{1}, s_{2} and s_{6} by
applying CNOT gates. As a result, the influence of the initial value in s_{0} can be removed by Xoring s_{0} to s_{1}, s_{2} and s_{6} before s_{0} is updated. In short, before applying the circuit shown in Appendix D.4, adding the operations formed as $s_{i}=s_{i} \oplus s_{j}$ in the circuit listed in Appendix D. 4 in an inverse order can remove the propagation of initial values, where $i, j \in[0,7]$ and $i \neq j$. Finally, the circuit built for the S -box when outputs are all 0 s can be transformed to the one that maps $|x\rangle|y\rangle|0\rangle^{\otimes 5}$ to $|x\rangle|y \oplus S(x)\rangle|0\rangle^{\otimes 5}$. The operations added before the circuit shown in Appendix D. 4 are listed as follows.

$$
\begin{aligned}
& s_{1}=s_{1} \oplus s_{0}, s_{4}=s_{4} \oplus s_{3}, s_{6}=s_{6} \oplus s_{7}, s_{7}=s_{7} \oplus s_{4}, s_{3}=s_{3} \oplus s_{1}, \\
& s_{0}=s_{0} \oplus s_{3}, s_{2}=s_{2} \oplus s_{0}, s_{5}=s_{5} \oplus s_{2}, s_{2}=s_{2} \oplus s_{6}, s_{4}=s_{4} \oplus s_{6} \\
& s_{3}=s_{3} \oplus s_{5}, s_{1}=s_{1} \oplus s_{6}, s_{7}=s_{7} \oplus s_{2}, s_{6}=s_{6} \oplus s_{0}, s_{0}=s_{0} \oplus s_{4} .
\end{aligned}
$$

Compared with the circuit that maps $|x\rangle|0\rangle^{\otimes 13}$ to $|x\rangle|S(x)\rangle|0\rangle{ }^{\otimes 5}$, the circuit for the S-box with nonzero output values costs 15 CNOT gates more than the one shown in Appendix D.

Similarly, we can deduce the circuit for the transformation that maps $|x\rangle|y\rangle|0\rangle^{\otimes 5}$ to $|x\rangle\left|y \oplus S^{-1}(x)\right\rangle|0\rangle^{\otimes 5}$ from the one shown in Appendix E by adding the operations listed in Appendix F. The cost of different NCT-based circuits built for the S-box and the S-box ${ }^{-1}$ with outputs are not all 0s are listed in Table 8.

Table 8 The comparison of different NCT-based circuits for outputs are not $|0\rangle^{\otimes 8}$.

Operation	Source	\#Qubits	\#Toffoli	\#CNOT	\#Pauli-X	Toffoli Depth
S-box	[32]	7	68	352	4	60
		8	64	356	4	58
		9	62	358	4	56
	[28]	16	55	322	4	40
	[13]	6	52	336	4	41
	This work	5	57	208	4	24
		6	57	210	4	22
S-box ${ }^{-1}$	[32]	7	69	335	24	62
		8	67	337	24	60
		9	65	339	24	60
		10	63	341	24	60
	This work	5	58	200	10	26^{*}
		5	57	226	8	24^{\dagger}
		6	57	228	8	22^{\dagger}

* Constructed based on the classical circuit given in [32].
\dagger Constructed based on the classical circuit given in [5].

5 Schemes for the Round Function and the Key Schedule

5.1 The Partial Zig-zag Method for Round Function

The pipeline, zig-zag and improved zig-zag methods are often used to design the overall structure for AES with a complete round function and its inverse
for reducing depth. However, those methods require much qubits. In order to save qubits, we adopt the method of constructing a partial round function and its inverse. The mechanism was adopted in [2] to design quantum circuits for SHA-2/SHA-3, and also be discussed in [13] to construct quantum circuits for AES based on double-depth S-box circuits, by which, two sequential S-boxes will be applied. In this paper, the implementation of a partial round function and its inverse will be discussed more widely by using what we call partial zig-zag method.

Assuming $a_{0}, a_{1}, \ldots, a_{15}$ are the 168 -qubit inputs, and a_{16} is an 8 -qubit tuple. The partial zig-zag method works as follows. First, the circuit $|x\rangle|0\rangle \rightarrow$ $|x\rangle|S(x)\rangle$ to $\left|a_{0}\right\rangle\left|a_{16}\right\rangle$ is applied to get the output of the first S-box. Then, the circuit $|x\rangle|y\rangle \rightarrow|x\rangle\left|y \oplus S^{-1}(x)\right\rangle$ is applied to $\left|a_{16}\right\rangle\left|a_{0}\right\rangle$. This means once the S-box circuit has been applied to update a certain byte, the qubits of the corresponding input byte can be reset to zero by using the reversible circuit of S-box ${ }^{-1}$, in this case, the S-box output of the first byte is stored in a_{16} and the input byte a_{0} is reset to zero. Thus, a_{0} can be reused to store the S-box output of the second byte in a similar way. Therefore, the partial zig-zag method can execute the S-box layer of AES in sequential, and one S-box is performed each time. Moreover, one can parallelly execute more S-boxes if more ancilla qubits are available. In the following, we denote m the number of S-boxes that are parallelly executed. Clearly, $m=1$ is the case that we described as above, $m=16$ is equivalent to the improved zig-zag method. Generally, more S-boxes are applied in parallel means more qubits are needed to store the outputs of S-boxes. At the same time, more ancilla qubits are needed for these parallelly executed S-boxes. In the case that m S-boxes are applied in paralleled, the number of allocated storage qubits for the next round is 8 m . In other words, only $128+8 m$ qubits are required using the partial zig-zag method.

Denote the state of the i th round by R_{i}, the partial zig-zag method for AES128 when $m=4$ is shown in Figure 3, where $R_{i}^{\frac{1}{4}}$ represents the application of S-boxes to four bytes for the i th round, and $R_{i}^{-\frac{1}{4}}$ means resetting four bytes of the i th round.

Fig. 3 The procedure for the SubBytes when $m=4$.

5.2 Scheme for the Key Schedule

The research in [15] reveals that a reversible circuit that maps $|x\rangle|y\rangle|0\rangle^{\otimes(n-8)}$ to $|x\rangle|y \oplus S(x)\rangle|0\rangle^{\otimes(n-8)}$ can be used to reduce the qubit consumption of the key schedule. Based on such circuit, the authors of $[14,15,28]$ implemented the key schedule without introducing storage qubits. In this paper, we adopt the framework presented in [15] to implement the key schedules for all instances of AES. The scheme for AES-128 is shown in Figure 4 as an example to illustrate the procedure.

Fig. 4 The scheme for the key schedule of AES-128, where k_{i}^{j} represents the j th byte in the i th round key, SB^{*} is the modified SubBytes, RC is the Xor of the round constant.

6 NCT-based Circuits of AES

6.1 The Scheme for the AES Family

We investigate the performance of the circuit with m parallel S-boxes. For a given m, the allocated qubits for AES are also determined, i.e., k qubits for the master key ($k=128,192$ and 256 for the three instances of AES, respectively), 128 qubits for the first round, $(8+5) m$ qubits 7 for the m parallel S-boxes, where $m \in[1,16]$. We take $m=4$ for AES-128 as an example to illustrate the encryption of the AES family.
The First Round In the process of the key whitening, the plaintext is Xored to the master key for saving qubits. For a given plaintext, the key

[^4]whitening can be implemented by inverting the qubits in the master key corresponding to the bits in the plaintext with a value of 1 . Therefore, at most 128 Pauli-X gates are required to implement the key whitening. For $m=4$, there are $128+4 \times 13=180$ qubits with zero value for the first round. The first round requires 20 S-boxes, 4 for the key schedule and 16 for the round function. Due to the qubit consumption of the reversible circuits constructed for the S-box in Section 4, 180 qubits with zero value is enough for us to implement the first round within an S-box depth of 2 . The implementation of the first round is depicted in Figure 5, where X represents the Pauli-X gate, Anc ${ }^{n}$ represents the usage of n ancilla qubits, $S_{\text {in }}^{j}$ and $S_{\text {out }}^{j}$ are the inputs and the outputs of j S-boxes. Specifically, the first round starts with applying 12 Sboxes to the bytes in the state, after which 84 qubits with value zero are left. Inverting the bits in the state according to the plaintext again can recover 64 bits of the master key, by which we can generate partial words of the round key. Note that the first word of the round key, i.e., W_{4}, should be calculated with the knowledge of W_{0} and W_{3}. Hence, among the 12 S -boxes applied in step $(b), 8$ should be applied to the first and the fourth words in the state as shown in Figure 5 with step (b).

Fig. 5 The quantum circuit for the first round of AES-128.

Besides, the round keys are generated in an in-place way, and no additional storage qubits are required by the key schedule. It means that the 4 S -boxes for computing W_{4} and the remaining 4 S-boxes applies to the bytes in the state can be implemented in parallel. The procedure is shown in Figure 5 with step (c), after which 52 qubits with zero value are left. The first round is completed with step (d), which contains the implementation of ShiftRows, MixColumns and AddRoundKey.
The Rest Rounds The implementation of the second round is shown in Figure 6, where $S_{\text {in }}^{-j}$ and $S_{\text {out }}^{-j}$ are the inputs and the outputs of j S-box ${ }^{-1}$ es.

After the first round, there are 52 qubits with zero value. Each time we apply 4 S-boxes for the round function, it increases both the S-box depth and the S-box ${ }^{-1}$ depth by 4 (as shown in Figure 6 with step (a)), while the key

Fig. 6 The quantum circuit for the second round of AES-128.
schedule only increases the S-box depth by 1 (as shown in Figure 6 with step $(b))$. The remaining operations of the second round are shown in Figure 6 with step (c). The rest rounds can be implemented in the same way as the second round.

6.2 The Quantum Resource Estimate

The circuits constructed for AES S-box and it inverse are the only two nonlinear components used for designing NCT-based circuits of AES. However, due to the number of ancilla qubits allocated for each S-box or S-box ${ }^{-1}$, different quantity of various circuits constructed for S -box and S -box ${ }^{-1}$ will be applied. The S-boxes in the first round can be implemented with different circuits that consume 5 or 6 ancilla qubits, which will be discussed later. For the rest rounds, it can be easily verified that the last $(16 \bmod m)$ S-boxes in the round function, the last $(16 \bmod m) S$-box ${ }^{-1}$ es for removing the previous round and the 4 S-boxes for the key schedule can alway be implemented by the reversible circuits that consume 6 ancilla qubits if $\frac{16}{m} \notin \mathbb{Z}_{+}$. For the case that $\frac{16}{m} \in \mathbb{Z}_{+}$, the 4 S -boxes for the key schedule can also be implemented by the reversible circuit that consumes 6 ancilla qubits. Denote the circuits constructed for $|x\rangle|0\rangle^{\otimes(n+8)} \xrightarrow{\text { S-box }}|x\rangle|S(x)\rangle|0\rangle^{\otimes n}$ and $|x\rangle|S(x)\rangle|0\rangle^{\otimes n} \xrightarrow{\text { S-box }{ }^{-1}}|x\rangle|0\rangle^{\otimes(n+8)}$ by S_{n} and $S_{n}^{-1 *}$ respectively, where $n \in\{5,6\}$ is the number of allocated ancilla qubits. Similarily, the circuit for $|x\rangle|y\rangle|0\rangle^{\otimes 14} \xrightarrow{\mathrm{~S} \text {-box }}|x\rangle|y \oplus S(x)\rangle|0\rangle^{\otimes 6}$ is denoted by S_{6}^{*}. Denote by $\operatorname{Cnot}_{S_{5}}$ the CNOT gate consumption of the circuit constructed for S_{5}, the cost of other gates are denoted in the same way. The total number of applied SubWord operations and the number of applied SubWord except the first round are denoted by w and w^{\prime}, where $w=10,8,13, w^{\prime}=9,7,13$ for the three instances of AES respectively. Denote by r the round number and $r=10,12,14$ for AES-128, AES-192 and AES256 , respectively. For simplicity, $(16 \bmod m)$ is denoted by z and $(16-(16$ $\bmod m)$) is denoted by z^{\prime} in the following equations.

The number of CNOT gates consumed by an NCT-based circuit of AES except the nonlinear component in the first round can be calculated by

$$
\begin{cases}128 r+4 \cdot \operatorname{Cnot}_{S_{6}^{*}} \cdot w^{\prime}+\left(4 \cdot 92+16 \cdot \text { Cnot }_{S_{5}}+\right. \\ \left.16 \cdot \operatorname{Cnot}_{S_{5}^{-1 *}}\right)(r-1)+t, & \text { if } \frac{16}{m} \in \mathbb{Z}_{+} \\ 128 r+4 \cdot \operatorname{Cnot}_{S_{6}^{*}} \cdot w^{\prime}+\left(4 \cdot 92+z^{\prime} \cdot \operatorname{Cnot}_{S_{5}}+\right. & \\ \left.z \cdot \operatorname{Cnot}_{S_{6}}+z^{\prime} \cdot \text { Cnot }_{S_{5}^{-1 *}}+z \cdot \operatorname{Cnot}_{S_{6}^{-1 *}}\right)(r-1)+t, & \text { otherwise },\end{cases}
$$

where $t=3 \cdot 32 w$ for AES-128 and AES-256, $=3 \cdot 32 w-2 \cdot 32+4 \cdot 32(r-w)$ for AES-192.

The number of Pauli-X gates consumed by an NCT-based circuit of AES except the nonlinear component in the first round can be calculated by

$$
\begin{cases}128 \cdot 2+H W(R \operatorname{con})+4 \cdot X_{S_{6}^{*}} \cdot w^{\prime}+16\left(X_{S_{5}}+X_{S_{5}^{-1 *}}\right)(r-1), & \text { if } \frac{16}{m} \in \mathbb{Z}_{+}, \\ 128 \cdot 2+H W(R \operatorname{con})+4 \cdot X_{S_{6}^{*}} \cdot w^{\prime}+\left(z^{\prime} \cdot X_{S_{5}}+z \cdot X_{S_{6}}+\right. & \\ \left.z^{\prime} \cdot X_{S_{5}^{-1 *}}+z \cdot X_{S_{6}^{-1 *}}\right)(r-1), & \text { otherwise },\end{cases}
$$

where $H W$ (Rcon) is the Hamming weight of all the round constants.
The number of Toffoli gates consumed by an NCT-based circuit of AES except the nonlinear component in the first round can be calculated by

$$
\begin{cases}4 \cdot \text { Toffoli }_{S_{6}^{*}} \cdot w^{\prime}+16\left(\text { Toffol }_{S_{5}}+\text { Toffoli }_{S_{5}^{-1 *}}\right)(r-1), & \text { if } \frac{16}{m} \in \mathbb{Z}_{+} \\ 4 \cdot \text { Toffoli }_{S_{6}^{*}} \cdot w^{\prime}+\left(z^{\prime} \cdot \text { Toffol }_{S_{5}}+z \cdot \text { Toffoli }_{S_{6}}+\right. & \\ \left.z^{\prime} \cdot \text { Toffoli }_{S_{5}^{-1 *}}+z \cdot \text { Toffoli }_{S_{6}^{-1 *}}\right)(r-1), & \text { otherwise. }\end{cases}
$$

Assuming that the partial zig-zag method executes m S-boxes in parallel, and we allocate l extra ancilla qubits for the key schedule (which will be explained later). The number of consumed qubits is

$$
128+k+13 m+l
$$

where k is the key length.
Denote by $d_{S_{5}}$ the Toffoli depth of the circuit constructed for S_{5}, the Toffoli depth of other circuits designed for the S -box and the S -box ${ }^{-1}$ are denoted in the same way.
Case for $l=0 \quad$ Assuming that m S-boxes are applied each time. If $\frac{16}{m} \in \mathbb{Z}_{+}$, the 16 S -box in the round function and the $16 \mathrm{~S}_{\mathrm{S}} \mathrm{box}^{-1}$ for removing the previous round will be implemented with the circuits that consume 5 ancilla qubits. The SubWord of the key schedule can be implemented by using the circuit that costs 6 ancilla qubits within $\left\lceil\frac{24}{13 m}\right\rceil$ S-box depth (case 1). Otherwise,
if $\frac{16}{m} \notin \mathbb{Z}_{+}, 2$ of the S-boxes for the key schedule can be implemented in parallel with last $(16 \bmod m)$ S-boxes for the SubBytes, and the remaining 2 S-boxes can be implemented in parallel with last $(16 \bmod m) S$-box ${ }^{-1}$ es for removing the previous round (case 2). In this case, only the circuits that consume 6 ancilla qubits will be used, since $(16 \bmod m) \cdot 14+2 \cdot 6 \geq 13 m$ and $((16 \bmod m) \cdot 6+2 \cdot 6) \geq(13 m-(16 \bmod m) \cdot 8)$ always hold. The Toffoli depth of the circuit except the first round can be calculated by

Case 1:

$$
\left(\frac{16}{m} \cdot d_{S_{5}}+\frac{16}{m} \cdot d_{S_{5}^{-1 *}}\right)(r-1)+\left\lceil\frac{24}{13 m}\right\rceil \cdot d_{S_{6}^{*}} \cdot w^{\prime}
$$

Case 2:

$$
\begin{aligned}
& \left\lfloor\frac{16}{m}\right\rfloor\left(d_{S_{5}}+d_{S_{5}^{-1 *}}\right)(r-1)+\left(d_{S_{6}}+d_{S_{6}^{-1 *}}\right)\left(r-w^{\prime}-1\right)+\left(\max \left\{d_{S_{6}}, d_{S_{6}^{*}}\right\}+\right. \\
& \left.\max \left\{d_{S_{6}^{-1 *}}, d_{S_{6}^{*}}\right\}\right) w^{\prime}
\end{aligned}
$$

Case for $l>0$ According to the analysis for $l=0$, the S-boxes in the key schedule do not increase the S-box depth if $\frac{16}{m} \notin \mathbb{Z}_{+}$. Therefore, we only discuss the cases that $\frac{16}{m} \in \mathbb{Z}_{+}$for $l>0$. In this case, the increased S-box depth caused by updating the key schedule can be reduced by adding some ancilla qubits. For the cases that $m=1,2,4$ or 8 , one S -box for the key schedule can be executed in parallel with m S-boxes for the round function or with $m \mathrm{~S}$ box ${ }^{-1}$ es for removing the previous round. Only 5 ancilla qubits are required. For the case that $m=16$, the encryption of one round can be completed with an S-box depth and S-box ${ }^{-1}$ depth of 1 . The Toffoli depth can be reduced by applying 2 S-boxes for the key schedule with 16 S -boxes for the round function and another 2 S -boxes with 16 S -box ${ }^{-1}$ es. This requires 10 ancilla qubits. Note that for $l>0$, once the 4 S -boxes for the key schedule have been applied, the ancilla qubits for the key schedule can be used by the round function if the 16 S-boxes or $16 \mathrm{~S}^{-b o x}{ }^{-1}$ es have not been fully applied. In this case, the circuits of S-box and S-box ${ }^{-1}$ that cost 6 ancilla qubits can be applied to reduce the Toffoli depth if $l \geq m$, since all the m S-boxes or $\mathrm{S}^{-b o{ }^{-1}}{ }^{\text {es after this can }}$ be applied in parallel by using the circuits with Toffoli depth 22. The Toffoli depth of the circuit except the first round is

$$
\begin{cases}\left(2\left(\max \left\{d_{S_{5}}, d_{S_{5}^{*}}\right\}+\max \left\{d_{S_{5}^{-1 *}}, d_{S_{5}^{*}}\right\}\right)+\left(\frac{16}{m}-2\right)\left(d_{S_{6}}+\right.\right. & \\ \left.\left.d_{S_{6}^{-1 *}}\right)\right)(r-1), & \text { if } m=1,2,4,8, \\ \left(\max \left\{d_{S_{5}}, d_{S_{5}^{*}}\right\}+\max \left\{d_{S_{5}^{-1 *}}, d_{S_{5}^{*}}\right\}\right)(r-1), & \text { if } m=16 .\end{cases}
$$

Depth of the First Round The first round of AES dose not need to apply S-box ${ }^{-1}$, and only AES-128 and AES-192 apply SubWord in the first round. Assuming that $l(l=0,5,10)$ ancilla qubits are allocated for the S-boxes in
the key schedule of AES, there are $128+13 m+l$ zero qubits available for the first round. The S-box depth for the first round of AES with various m are presented in Table 9. Each S-box and S-box ${ }^{-1}$ are allocated 6 ancilla qubits unless otherwise specified.

Table 9 The S-box depth of the first round of AES.

	AES-128/AES-192				AES-256						
S-box depth m	1	2	3	≥ 4	1	2	$3-5$	6	7	≥ 8	
l	4	3	3	2	3	2^{\dagger}	2	2	1^{\star}	1	
0	3^{\star}	3	2^{*}	2	3	2	2	1^{\star}	1	1	
5	3^{\dagger}	3	2	2	3	2	2	1^{\star}	1	1	
10											

\star All the S-boxes and S-box ${ }^{-1}$ es are allocated 5 ancilla qubits.

* Only the 13 S-boxes in the first S-box depth are allocated 5 ancilla qubits.
\dagger Only the 11 S-boxes in the first S-box depth are allocated 5 ancilla qubits.

The resource estimate of different NCT-based circuits constructed for three instances of the AES family are listed in Table 1, Table 2 and Table 3.

7 Conclusion

In this paper, we researched the construction of optimized NCT-based circuits for the AES family. First of all, we investigated the construction of optimized NCT-based circuits for AES S-box and its inverse based on the classical ones. To this end, we investigated the properties of NCT-based circuits, and illustrated the factors that affect the Toffoli depth and CNOT gate consumption of the quantum implementation. Moreover, we divided both the classical implementation of AES S-box and its inverse into three parts, and the application of the existing tools or heuristic on those parts were investigated. In addition, we proposed a heuristic to search optimized NCT-based circuits for the first part and the third part of the rearranged S-box and S-box ${ }^{-1}$ circuits. The experimental results reveal that our quantum circuits for AES S-box and S-box ${ }^{-1}$ with optimized CNOT gate consumption and Toffoli depth have advantages in qubit consumption. Then, we researched the implementation for the key schedule and the round function of AES. By applying the framework based on partial round functions which we call partial zig-zag method, we constructed different NCT-based circuits for the AES family. The results show that it requires only 269,333 and 397 qubits by our method to implement the three instances of AES with NCT gate set. Besides, taking the trade-off of Toffoli depth and qubits into consideration, NCT-based circuits for AES-128, AES192 and AES-256 that outperform state-of-the-art schemes in the metric of $T \cdot M$ value can be constructed with only 474,538 and 602 qubits.

When evaluating the depth of the quantum circuit, we focus on the Toffoli depth in this paper. Since a Toffoli gate can be decomposed into several Clifford gates and T gates, one can also research the construction of quantum circuits for AES with Clifford $+T$ gates and the T-depth should be considered
in this case. On the other hand, construction of the NCT-based circuits for odd permutations can also be a direction for future research.

References

[1] Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible circuit of AES-128. Quantum Inf. Process. 17(5), 112 (2018)
[2] Amy, M., Matteo, O Di., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J M.: Estimating the cost of generic quantum pre-image attacks on SHA2 and SHA-3. In: Avanzi,R., Howard M. Heys, (eds.), Selected Areas in Cryptography - SAC 2016-23rd International Conference, St. John's, NL, Canada, August 10-12, 2016, Revised Selected Papers, vol. 10532 of Lecture Notes in Computer Science, pp. 317-337. Springer, (2016)
[3] Arute, F., Arya, K., Babbush, R. et al.: Quantum supremacy using a programmable superconducting processor. Nature. 574(7779), 505-510 (2019)
[4] Bernstein, D.J., Biasse, JF., Mosca, M.: A low-resource quantum factoring algorithm. In: Lange, T., Takagi, T. (eds.), Post-Quantum Cryptography - 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, vol 10346 of Lecture Notes in Computer Science, pp. 330-346. Springer, (2017)
[5] Boyar, J., Peralta, R.: A new combinational logic minimization technique with applications to cryptology. In: Festa, Paola., (eds.), Experimental Algorithms, 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010. Proceedings, vol. 6049 of Lecture Notes in Computer Science, pages 178-189. Springer, (2010)
[6] Canright, David.: A very compact s-box for AES. In Rao, Josyula R., Sunar, Berk., editors, Cryptographic Hardware and Embedded Systems - CHES 2005, 7th InternationalWorkshop, Edinburgh, UK, August 29 September 1, 2005, Proceedings, vol. 3659 of Lecture Notes in Computer Science, pp. 441-455. Springer, (2005)
[7] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer. (2002)
[8] Dasu, V.A., Baksi, A., Sarkar, S., Chattopadhyay, A.: LIGHTER-R: optimized reversible circuit implementation for sboxes. In: Zhao, D. (eds.), SOCC 2019 - 32nd IEEE International System-on-Chip Conference, Singapore, September 3-6, pp. 260-265. IEEE, (2019)
[9] Ekerå ,M., Håstad, J.: Quantum algorithms for computing short discrete logarithms and factoring RSA integers. In: Lange, T., Takagi, T. (eds.), Post-Quantum Cryptography - 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, vol. 10346 of Lecture Notes in Computer Science, pp. 347-363. Springer, (2017)
[10] Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover's algorithm to AES: quantum resource estimates. In: Takagi,T., (eds.), Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, vol. 9606 of Lecture Notes in Computer Science, pp. 29-43. Springer, (2016)
[11] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Gary L. Miller, (ed), In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pp. 212-219. ACM, (1996)
[12] Guajardo, J., Paar, C.: Itoh-tsujii inversion in standard basis and its application in cryptography and codes. Des. Codes Cryptogr. 25(2), 207-216 (2002)
[13] Huang, Z., Sun, S.: Synthesizing quantum circuits of aes with lower tdepth and less qubits. IACR Cryptol. ePrint Arch. 2022, 620 (2022)
[14] Jang, K., Baksi, A., Song, G., Kim, H., Seo, H., Chattopadhyay, A.: Quantum analysis of aes. IACR Cryptol. ePrint Arch. 2022, 683 (2022)
[15] Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search on AES and lowmc. In: Canteaut, A., Ishai, Y., (eds.), Advances in Cryptology - EUROCRYPT 2020-39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer Science, pp. 280-310. Springer, (2020)
[16] Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130-168 (2017)
[17] Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algorithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf. Process. 17(12), 1-39 (2018)
[18] Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the advanced encryption standard as a quantum circuit. IEEE Transactions on Quantum Engineering. 2020(1), 1-12 (2020)
[19] May, A., Schlieper, L.: Quantum period finding is compression robust. IACR Trans. Symmetric Cryptol. 2022(1), 183-211 (2022)
[20] Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation of Compact Hardware Implementations for the Rijndael SBox. In: Menezes, A. (eds.), Topics in Cryptology - CT-RSA 2005 - The Cryptographers' Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings, volume 3376 of Lecture Notes in Computer Science, pp. 323-333. Springer, (2005)
[21] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary edition). Cambridge University Press. Cambridge (2016)
[22] NIST: Submission requirements and evaluation criteria for the postquantum cryptography standardization process. (2016)
[23] Seifert J.: Using fewer qubits in shor's factorization algorithm via simultaneous diophantine approximation. In: Naccache, D. (eds.), Topics in Cryptology - CT-RSA 2001 - The Cryptographers' Track at the RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, volume 2020 of Lecture Notes in Computer Science, pp. 319-327. Springer,(2001)
[24] Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710-722 (2003)
[25] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484-1509 (1997)
[26] Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474-1483 (1997)
[27] Trefethen, L.N., Bau, D.: Numerical linear algebra. SIAM. (1997)
[28] Wang, Z., Wei, S., Long, G.: A quantum circuit design of aes requiring fewer quantum qubits and gate operations. Frontiers of Physics. 17(4), 1-7 (2022)
[29] Wei, Z., Sun, S., Hu, L., Wei, M., Boyar, J., Peralta, R.: Scrutinizing the tower field implementation of the \mathbb{F}_{2}^{8} inverter - with applications to AES, Camellia, and SM4. IACR Cryptol. ePrint Arch. (2019)
[30] Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of linear layers. IACR Trans. Symmetric Cryptol. 2020(2), 120-145
(2020)
[31] Zou, J., Li, L., Wei, Z., Luo, Y., Liu, Q., Wu, W.: New quantum circuit implementations of SM4 and SM3. Quantum Inf. Process. 21(5), 1-38 (2022)
[32] Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of aes with fewer qubits. In: Advances in Cryptology - ASIACRYPT 2020 - the 26th Annual International Conference on the Theory and Application of Cryptology and Information Security, Lecture Notes in Computer Science, pp. 697-726. Springer, (2020)
[33] Zou, J., Wei, Z., Sun, S., Luo, Y., Liu, Q., Wu, W.: Some efficient quantum circuit implementations of camellia. Quantum Inf. Process. 21(4), 1-27 (2022)

A The Proof of Fact 1

Proof Based on the values of a and c, the proof proceeds in two cases:
Case 1: if $a=c$, the two operations can be rewritten as $t_{a}=t_{a} \oplus t_{b}, t_{a}=t_{a} \oplus t_{c}$, after which the value of qubit t_{a} is $t_{a} \oplus t_{b} \oplus t_{c}$. Assume that the operations are changed to $t_{a}=t_{a} \oplus t_{c}, t_{a}=t_{a} \oplus t_{b}$, the final value of t_{a} is not changed. Thus, the order of these two operations can be exchanged.

Case 2: if $a \neq c, d$ and $b \neq c$, we can deduce that a, c, d are pairwise distinct since $a \neq b$ and $c \neq d$. In addition, the operations have no influence on the values of t_{b} and t_{d}. Therefore, exchanging the order of these two operations does not result in any change of the values stored in t_{a} and t_{c}.

B Discussion on LIGHTER and LIGHTER-R

Before we present our method of using LIGHTER, we introduce the following definition according to [24].

Definition 3 (odd permutation) A permutation is called odd if it can be written as the product of an odd number of transpositions.

The even permutation can be defined in the similar way.
It is obviously that the 4-bit S-box shown in Table 6 is odd (as well as the one derived from the inverse of AES S-box). The researches of [24] reveal that the NCT-based circuit for an even permutation can be constructed without temporary storage, but for an odd permutation, one wire of temporary storage is required. It means that one can not construct a quantum circuit for an odd permutation by using the tool LIGHTER-R only based on NCT gate set. To this end, we investigate the following strategies to construct an NCT-based circuit for an odd permutation.
Strategy 1 First, we can expand a 4-bit odd permutation to be a 5 -bit one by adding one bit in the most significant bit of the inputs, whose corresponding output bit is identical to the input. There is no doubt that the resulting 5 -bit permutation is even. Then, modify the code to make the tool LIGHTER-R compatible with 5 -bits permutation as its input and search the NCT-based circuit for the resulting 5 -bit even permutation. Unfortunately, due to the large search space, none implementation for the S-box shown in Table 6 returned.
Strategy 2 The underlying logic gate set of the tool LIGHTER can be customized as needed. Considering the relation between the NCT gate set and the classical And gate, Xor gate and Not gate, we can specify that the tool LIGHTER only uses And gates, Xor gates and Not gates to search an optimized in-place implementation for a 4 -bit odd permutation. Certainly, this comes at the cost of an auxiliary variable, which means an ancilla qubit will be consumed by LIGHTER in this case.

C The Quantum Style Circuit of f_{2} of AES S-box

$s_{6}=s_{6} \oplus t_{44} \cdot y_{15}$,	$s_{1}=s_{1} \oplus t_{37} \cdot y_{6}$,	$s_{0}=s_{0} \oplus t_{43} \cdot y_{16}$,	$s_{4}=s_{4} \oplus t_{40} \cdot y_{1}$,
$s_{3}=s_{3} \oplus t_{44} \cdot y_{12}$,	$s_{5}=s_{5} \oplus t_{37} \cdot y_{3}$,	$s_{2}=s_{2} \oplus t_{43} \cdot y_{13}$,	$s_{7}=s_{7} \oplus t_{40} \cdot y_{5}$,
$s_{0}=s_{0} \oplus s_{4}$,	$s_{6}=s_{6} \oplus s_{0}$,	$s_{2}=s_{2} \oplus t_{42} \cdot y_{9}$,	$s_{0}=s_{0} \oplus t_{42} \cdot y_{11}$,
$s_{5}=s_{5} \oplus t_{45} \cdot y_{14}$,	$s_{0}=s_{0} \oplus t_{45} \cdot y_{17}$,	$s_{7}=s_{7} \oplus s_{2}$,	$s_{1}=s_{1} \oplus s_{6}$,
$s_{2}=s_{2} \oplus t_{29} \cdot y_{2}$,	$s_{3}=s_{3} \oplus s_{5}$,	$s_{6}=s_{6} \oplus t_{33} \cdot y_{0}$,	$s_{4}=s_{4} \oplus s_{6}$,
$s_{4}=s_{4} \oplus t_{29} \cdot y_{7}$,	$s_{5}=s_{5} \oplus t_{33} \cdot y_{4}$,	$s_{3}=s_{3} \oplus t_{42} \cdot y_{9}$,	$s_{6}=s_{6} \oplus t_{45} \cdot y_{17}$,
$s_{6}=s_{6} \oplus t_{41} \cdot y_{10}$,	$s_{7}=s_{7} \oplus t_{45} \cdot y_{14}$,	$s_{2}=s_{2} \oplus s_{6}$,	$s_{5}=s_{5} \oplus s_{2}$,
$s_{2}=s_{2} \oplus s_{0}$,	$s_{0}=s_{0} \oplus s_{3}$,	$s_{3}=s_{3} \oplus s_{1}$,	$s_{7}=s_{7} \oplus s_{4}$,
$s_{2}=s_{2} \oplus t_{41} \cdot y_{8}$,	$s_{6}=s_{6} \oplus s_{7}$,	$s_{4}=s_{4} \oplus s_{3}$,	$s_{1}=s_{1} \oplus s_{0}$.

D The Reversible Circuit of AES S-box

D. 1 The Reversible Circuit for Generating $t_{21}, t_{22}, t_{23}, t_{24}$.
$x_{6}=x_{6} \oplus x_{5} \oplus x_{3} \oplus x_{0}, x_{4}=x_{6} \oplus x_{5} \oplus x_{4}, x_{1}=x_{7} \oplus x_{3} \oplus x_{2} \oplus x_{1}$,
$x_{5}=x_{5} \oplus x_{3}, \quad x_{2}=x_{5} \oplus x_{2} \oplus x_{0}, x_{3}=x_{3} \oplus x_{1} \oplus x_{0}$,
$x_{0}=x_{4} \oplus x_{3} \oplus x_{2} \oplus x_{0}, t_{21}=t_{21} \oplus x_{6} \cdot x_{4}, t_{22}=t_{22} \oplus x_{1} \cdot x_{7}$,
$t_{23}=t_{23} \oplus x_{5} \cdot x_{2}, \quad t_{24}=t_{24} \oplus x_{3} \cdot x_{0}, t_{22}=t_{22} \oplus t_{21}$,
$t_{21}=t_{21} \oplus t_{23}, \quad x_{5}=x_{6} \oplus x_{5}, \quad x_{4}=x_{4} \oplus x_{2}$,
$x_{1}=x_{6} \oplus x_{1}, \quad x_{7}=x_{7} \oplus x_{4} \oplus x_{2}, x_{3}=x_{5} \oplus x_{3} \oplus x_{1}$,
$x_{0}=x_{7} \oplus x_{4} \oplus x_{0}, \quad x_{6}=x_{6} \oplus x_{5} \oplus x_{3}, x_{2}=x_{2} \oplus x_{0}$,
$t_{23}=t_{23} \oplus x_{5} \cdot x_{4}$,
$a=a \oplus x_{6} \cdot x_{2}$,
$t_{23}=t_{23} \oplus a$,
$x_{7}=x_{7} \oplus x_{0}$,
$t_{24}=t_{24} \oplus x_{5} \cdot x_{4}$
$t_{21}=t_{21} \oplus x_{1} \cdot x_{7}, t_{24}=t_{24} \oplus x_{3} \cdot x_{0}$,
$t_{21}=t_{21} \oplus a, \quad t_{22}=t_{22} \oplus a$,
$t_{24}=t_{24} \oplus a, \quad x_{1}=x_{3} \oplus x_{1}$,
$t_{22}=t_{22} \oplus x_{3} \cdot x_{0}, t_{23}=t_{23} \oplus x_{1} \cdot x_{7}$,
$a \oplus x_{6} \cdot x_{2}, \quad x_{6}=x_{6} \oplus x_{2}$,
$t_{21}=t_{21} \oplus x_{6}, \quad x_{3}=x_{3} \oplus x_{0}, \quad t_{22}=t_{22} \oplus x_{3}$,
$x_{5}=x_{5} \oplus x_{4}$, $t_{24}=t_{24} \oplus x_{5}$.

D. 2 The Reversible Circuit for S_{4} with Toffoli Depth 6.

$$
\begin{array}{lll}
t_{23}=t_{23} \oplus t_{22} \cdot t_{24}, & t_{24}=t_{24} \oplus t_{23}, t_{22}=t_{22} \oplus t_{21} \cdot t_{24}, & t_{24}=t_{24} \oplus t_{22} \cdot t_{23}, \\
t_{23} & =t_{23} \oplus t_{24}, & t_{22}=t_{22} \oplus t_{21}, t_{21}=t_{21} \oplus t_{22} \cdot t_{24}, \\
t_{24}=t_{24} \oplus a \cdot t_{21}, & t_{21}=t_{21} \oplus t_{22}, t_{29}=t_{21}, & t_{33}=t_{23}, \\
t_{37} & =t_{24}, & t_{40}=t_{22} .
\end{array}
$$

D. 3 The Reversible Circuit for S_{4} with Toffoli Depth 5.

$$
\begin{array}{llll}
t_{23}=t_{23} \oplus t_{22} \cdot t_{24}, & t_{24}=t_{24} \oplus t_{23}, & t_{22}=t_{22} \oplus t_{21} \cdot t_{24}, & t_{24}=t_{24} \oplus t_{22} \cdot t_{23}, \\
t_{23}=t_{23} \oplus t_{24}, & t_{22}=t_{22} \oplus t_{21}, & b=b \oplus t_{22}, & a=a \oplus t_{23} \cdot t_{22}, \\
t_{21}=t_{21} \oplus b \cdot t_{24}, & t_{24}=t_{24} \oplus a \cdot t_{21}, & t_{21}=t_{21} \oplus t_{22}, & t_{29}=t_{21}, \\
t_{33}=t_{23}, & t_{37}=t_{24}, & t_{40}=t_{22} . &
\end{array}
$$

D. 4 The Reversible Circuit for the Outputs of AES S-box.

$x_{3}=x_{3} \oplus x_{1} \oplus x_{0}$,	$x_{0}=x_{4} \oplus x_{2} \oplus x_{0}$,	$x_{6}=x_{6} \oplus x_{2}$,
$t_{22}=t_{22} \oplus t_{21}$,	$t_{23}=t_{24} \oplus t_{23}$,	$t_{21}=t_{24} \oplus t_{23} \oplus t_{21}$,
$s_{0}=s_{0} \oplus t_{22} \cdot x_{4}$,	$s_{5}=s_{5} \oplus t_{24} \cdot x_{3}$,	$s_{6}=s_{6} \oplus t_{23} \cdot x_{0}$,
$s_{2}=s_{2} \oplus t_{21} \cdot x_{6}$,	$x_{5}=x_{7} \oplus x_{5} \oplus x_{4} \oplus x_{1}, x_{3}=x_{6} \oplus x_{3} \oplus x_{1}$,	
$t_{23}=t_{23} \oplus t_{22}$,	$t_{24}=t_{24} \oplus t_{23} \oplus t_{21}$,	$s_{2}=s_{2} \oplus t_{22} \cdot x_{5}$,
$s_{5}=s_{5} \oplus t_{23} \cdot x_{3}$,	$s_{4}=s_{4} \oplus t_{24} \cdot x_{7}$,	$s_{0}=s_{0} \oplus s_{4}$,
$s_{6}=s_{6} \oplus s_{0}$,	$s_{7}=s_{7} \oplus s_{2}$,	$s_{1}=s_{1} \oplus s_{6}$,
$s_{3}=s_{3} \oplus s_{5}$,	$x_{7}=x_{7} \oplus x_{4} \oplus x_{2}$,	$x_{4}=x_{4} \oplus x_{0}$,
$t_{22}=t_{24} \oplus t_{22} \oplus t_{21}$,	$s_{6}=s_{6} \oplus t_{22} \cdot x_{7}$,	$s_{3}=s_{3} \oplus t_{21} \cdot x_{6}$,
$s_{0}=s_{0} \oplus t_{23} \cdot x_{4}$,	$s_{4}=s_{4} \oplus s_{6}$,	$x_{5}=x_{5} \oplus x_{1}$,
$t_{22}=t_{22} \oplus t_{21}$,	$s_{6}=s_{6} \oplus t_{23} \cdot x_{4}$,	$s_{0}=s_{0} \oplus t_{21} \cdot x_{2}$,
$s_{7}=s_{7} \oplus t_{24} \cdot x_{1}$,	$s_{2}=s_{2} \oplus t_{22} \cdot x_{5}$,	$x_{4}=x_{4} \oplus x_{2}$,
$x_{0}=x_{7} \oplus x_{0}$,	$x_{7}=x_{7} \oplus x_{2}$,	$x_{1}=x_{5} \oplus x_{3} \oplus x_{1}$,
$t_{23}=t_{23} \oplus t_{21}$,	$t_{24}=t_{24} \oplus t_{23}$,	$t_{21}=t_{24} \oplus t_{22} \oplus t_{21}$,
$s_{6}=s_{6} \oplus t_{23} \cdot x_{4}$,	$s_{1}=s_{1} \oplus t_{24} \cdot x_{0}$,	$s_{4}=s_{4} \oplus t_{22} \cdot x_{7}$,
$s_{3}=s_{3} \oplus t_{21} \cdot x_{1}$,	$s_{2}=s_{2} \oplus s_{6}$,	$s_{5}=s_{5} \oplus s_{2}$,
$s_{2}=s_{2} \oplus s_{0}$,	$s_{0}=s_{0} \oplus s_{3}$,	$x_{5}=x_{6} \oplus x_{5} \oplus x_{3}$,
$s_{7}=s_{7} \oplus s_{4}$,	$x_{6}=x_{6} \oplus x_{3}$,	$s_{2}=s_{2} \oplus t_{23} \cdot x_{6}$,
$t_{22}=t_{24} \oplus t_{23} \oplus t_{22} \oplus t_{21}$,	$t_{21}=t_{24} \oplus t_{21}$,	$s_{6}=s_{6} \oplus s_{7}$,
$s_{7}=s_{7} \oplus t_{22} \cdot x_{3}$,	$s_{5}=s_{5} \oplus t_{21} \cdot x_{5}$,	$s_{6}=s_{6} \oplus 1$,
$s_{4}=s_{4} \oplus s_{3}$,	$s_{1}=s_{1} \oplus s_{0}$,	$s_{2}=s_{2} \oplus 1$.
$s_{7}=s_{7} \oplus 1$,	$s_{1}=s_{1} \oplus 1$,	

E The Reversible Circuit of AES S-box ${ }^{-1}$

E. 1 The Reversible Circuit for Generating $t_{21}, t_{22}, t_{23}, t_{24}$.

$x_{6}=x_{7} \oplus x_{6} \oplus x_{1} \oplus x_{0} \oplus 1$,	$x_{1}=x_{5} \oplus x_{3} \oplus x_{2} \oplus x_{1}$,	$x_{3}=x_{6} \oplus x_{3} \oplus x_{0}$,
$x_{0}=x_{5} \oplus x_{2} \oplus x_{0} \oplus 1$,	$x_{4}=x_{4} \oplus x_{1} \oplus x_{0}$,	$x_{5}=x_{7} \oplus x_{6} \oplus x_{5} \oplus x_{4} \oplus 1$,
$x_{7}=x_{7} \oplus x_{5} \oplus x_{2} \oplus x_{1}$,	$x_{2}=x_{3} \oplus x_{2} \oplus 1$,	$t_{21}=t_{21} \oplus x_{6} \cdot x_{1}$,
$t_{22}=t_{22} \oplus x_{3} \cdot x_{0}$,	$t_{23}=t_{23} \oplus x_{4} \cdot x_{5}$,	$t_{24}=t_{24} \oplus x_{7} \cdot x_{2}$,
$x_{6}=x_{6} \oplus x_{4}$,	$x_{5}=x_{5} \oplus x_{1}$,	$x_{3}=x_{6} \oplus x_{4} \oplus x_{3}$,
$x_{0}=x_{1} \oplus x_{0}$,	$x_{7}=x_{7} \oplus x_{6} \oplus x_{3}$,	$x_{2}=x_{5} \oplus x_{2} \oplus x_{0}$,
$x_{4}=x_{7} \oplus x_{4}$,	$x_{1}=x_{5} \oplus x_{2} \oplus x_{1}$,	$t_{22}=t_{22} \oplus t_{21}$,
$t_{21}=t_{21} \oplus t_{23}$,	$t_{23}=t_{23} \oplus x_{6} \cdot x_{5}$,	$t_{21}=t_{21} \oplus x_{3} \cdot x_{0}$,
$t_{24}=t_{24} \oplus x_{7} \cdot x_{2}$,	$a=a \oplus x_{4} \cdot x_{1}$,	$t_{21}=t_{21} \oplus a$,
$t_{22}=t_{22} \oplus a$,	$t_{23}=t_{23} \oplus a$,	$t_{24}=t_{24} \oplus a$,
$x_{3}=x_{7} \oplus x_{3}$,	$x_{0}=x_{2} \oplus x_{0}$,	$a=a \oplus x_{4} \cdot x_{1}$,
$t_{22}=t_{22} \oplus x_{7} \cdot x_{2}$,	$t_{23}=t_{23} \oplus x_{3} \cdot x_{0}$,	$t_{24}=t_{24} \oplus x_{6} \cdot x_{5}$,
$x_{4}=x_{4} \oplus x_{1}$,	$t_{21}=t_{21} \oplus x_{4}$,	$x_{2}=x_{7} \oplus x_{2}$,
$t_{22}=t_{22} \oplus x_{2}$,	$x_{5}=x_{6} \oplus x_{5}$,	$t_{23}=t_{23} \oplus x_{5}$,
$x_{5}=x_{5} \oplus x_{3} \oplus x_{0}$,	$t_{24}=t_{24} \oplus x_{5}$.	

E. 2 The Reversible Circuit for the Outputs of AES S-box ${ }^{-1}$.

$t_{22}=t_{22} \oplus t_{21}$,	$t_{21}=t_{23} \oplus t_{21}$,	$t_{23}=t_{24} \oplus t_{23}$,
$x_{5}=x_{6} \oplus x_{5} \oplus x_{3} \oplus x_{0}$,	$x_{4}=x_{4} \oplus x_{1}$,	$x_{2}=x_{7} \oplus x_{5} \oplus x_{2} \oplus x_{1}$,
$x_{7}=x_{7} \oplus x_{3}$,	$s_{2}=s_{2} \oplus t_{22} \cdot x_{5}$,	$s_{4}=s_{4} \oplus t_{21} \cdot x_{4}$,
$s_{3}=s_{3} \oplus t_{23} \cdot x_{2}$,	$s_{7}=s_{7} \oplus t_{24} \cdot x_{7}$,	$t_{24}=t_{24} \oplus t_{23} \oplus t_{22} \oplus t_{21}$,
$t_{23}=t_{23} \oplus t_{22}$,	$x_{7}=x_{7} \oplus x_{4} \oplus x_{3}$,	$s_{4}=s_{4} \oplus t_{22} \cdot x_{6}$,
$s_{1}=s_{1} \oplus t_{21} \cdot x_{4}$,	$s_{0}=s_{0} \oplus t_{24} \cdot x_{0}$,	$s_{7}=s_{7} \oplus t_{23} \cdot x_{7}$,
$s_{2}=s_{2} \oplus s_{0}$,	$s_{3}=s_{3} \oplus s_{2}$,	$s_{6}=s_{6} \oplus s_{4}$,
$s_{5}=s_{5} \oplus s_{3}$,	$s_{1}=s_{1} \oplus s_{7}$,	$t_{24}=t_{24} \oplus t_{22} \oplus t_{21}$,
$t_{22}=t_{23} \oplus t_{22}$,	$t_{21}=t_{24} \oplus t_{21}$,	$x_{0}=x_{5} \oplus x_{1} \oplus x_{0}$,
$x_{7}=x_{7} \oplus x_{6}$,	$x_{5}=x_{5} \oplus x_{2}$,	$x_{6}=x_{6} \oplus x_{3}$,
$s_{3}=s_{3} \oplus t_{24} \cdot x_{0}$,	$s_{1}=s_{1} \oplus t_{22} \cdot x_{7}$,	$s_{2}=s_{2} \oplus t_{23} \cdot x_{5}$,
$s_{4}=s_{4} \oplus t_{21} \cdot x_{6}$,	$s_{0}=s_{0} \oplus s_{3}$,	$t_{22}=t_{24} \oplus t_{22}$,
$t_{24}=t_{24} \oplus t_{21}$,	$x_{0}=x_{1} \oplus x_{0}$,	$x_{2}=x_{2} \oplus x_{1} \oplus x_{0}$,
$s_{3}=s_{3} \oplus t_{23} \cdot x_{5}$,	$s_{0}=s_{0} \oplus t_{21} \cdot x_{0}$,	$s_{5}=s_{5} \oplus t_{22} \cdot x_{2}$,
$s_{2}=s_{2} \oplus t_{24} \cdot x_{1}$,	$t_{24}=t_{24} \oplus t_{23}$,	$x_{1}=x_{5} \oplus x_{1}$,
$x_{7}=x_{7} \oplus x_{6} \oplus x_{3}$,	$s_{3}=s_{3} \oplus t_{24} \cdot x_{1}$,	$s_{6}=s_{6} \oplus t_{23} \cdot x_{7}$,
$s_{4}=s_{4} \oplus s_{3}$,	$s_{7}=s_{7} \oplus s_{4}$,	$t_{22}=t_{24} \oplus t_{22}$,
$t_{21}=t_{24} \oplus t_{23} \oplus t_{21}$,	$x_{7}=x_{7} \oplus x_{4}$,	$x_{6}=x_{6} \oplus x_{4}$,
$s_{4}=s_{4} \oplus t_{24} \cdot x_{7}$,	$s_{6}=s_{6} \oplus t_{22} \cdot x_{3}$,	$s_{7}=s_{7} \oplus t_{21} \cdot x_{6}$,
$s_{6}=s_{6} \oplus s_{2}$,	$s_{0}=s_{0} \oplus s_{6}$,	$s_{1}=s_{1} \oplus s_{4}$,
$s_{4}=s_{4} \oplus s_{0}$,	$s_{2}=s_{2} \oplus s_{5}$,	$s_{0}=s_{0} \oplus s_{3}$,
$s_{4}=s_{4} \oplus s_{7}$,	$s_{2}=s_{2} \oplus s_{7}$,	$s_{7}=s_{7} \oplus s_{1}$,
$s_{1}=s_{1} \oplus s_{6}$,	$s_{1}=s_{1} \oplus s_{5}$,	$s_{3}=s_{3} \oplus s_{6}$,
$s_{5}=s_{5} \oplus s_{0}$.		

F The Reversible Circuit Added If Not All Output Qubits Are 0s.

$$
\begin{aligned}
& s_{5}=s_{5} \oplus s_{0}, s_{3}=s_{3} \oplus s_{6}, s_{1}=s_{1} \oplus s_{5}, s_{1}=s_{1} \oplus s_{6}, s_{7}=s_{7} \oplus s_{1}, \\
& s_{2}=s_{2} \oplus s_{7}, s_{4}=s_{4} \oplus s_{7}, s_{0}=s_{0} \oplus s_{3}, s_{2}=s_{2} \oplus s_{5}, s_{4}=s_{4} \oplus s_{0}, \\
& s_{1}=s_{1} \oplus s_{4}, s_{0}=s_{0} \oplus s_{6}, s_{6}=s_{6} \oplus s_{2}, s_{7}=s_{7} \oplus s_{4}, s_{4}=s_{4} \oplus s_{3}, \\
& s_{0}=s_{0} \oplus s_{3}, s_{1}=s_{1} \oplus s_{7}, s_{5}=s_{5} \oplus s_{3}, s_{6}=s_{6} \oplus s_{4}, s_{3}=s_{3} \oplus s_{2}, \\
& s_{2}=s_{2} \oplus s_{0}
\end{aligned}
$$

[^0]: ${ }^{1}$ https://doi.org/10.6028/NIST.FIPS. 197
 ${ }^{2}$ https://doi.org/10.6028/NIST.FIPS.202.

[^1]: ${ }^{3}$ Applying m S-boxes in parallel when implementing the SubBytes of the current round also means that one can apply m S-box ${ }^{-1}$ es in parallel to remove the previous round, since the circuits we designed for AES S-box and its inverse can always be implemented with the same number of ancilla qubits.

[^2]: ${ }^{4}$ http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz

[^3]: ${ }^{5}$ https://github.com/vdasu/lighter-r
 ${ }^{6}$ https://github.com/xiangzejun/Optimizing_Implementations_of_Linear_Layers

[^4]: ${ }^{7}$ Note that we have also designed the NCT-based circuit that costs 6 ancilla qubits for AES S-box, however, in order to save qubits, only 5 ancilla qubits are allocated for each S-box in the very beginning.

