
Optimized Quantum Implementation of AES

Da Lin, Zejun Xiang*, Runqing Xu, Shasha Zhang
and Xiangyong Zeng

Faculty of Mathematics and Statistics, Hubei Key Laboratory of
Applied Mathematics, Hubei University, Wuhan, 430062, China.

*Corresponding author(s). E-mail(s): xiangzejun@hubu.edu.cn;
Contributing authors: linda@stu.hubu.edu.cn;

xurq5953@stu.hubu.edu.cn; amushasha@163.com;
xzeng@hubu.edu.cn;

Abstract

In this paper, we research the implementation of the AES family with
Pauli-X gates, CNOT gates and Toffoli gates as the underlying quantum
logic gate set. First, we investigate the properties of quantum circuits
and the influence of Pauli-X gates, CNOT gates and Toffoli gates on the
performance of the circuits constructed with those gates. Based on the
properties of quantum circuits as well as our observations on the classical
ones built by Boyar et al. and Zou et al., we research the construction
of reversible circuits for AES’s Substitution-box (S-box) and its inverse
(S-box−1) by rearranging the classical implementation to three parts.
Since the second part is treated as a 4-bit S-box in this paper and can be
dealt with by existing tools, we propose a heuristic to search optimized
reversible circuits for the first part and the third part. The applica-
tion of our method reveals that the reversible circuits constructed for
AES S-box and its inverse consume fewer qubits with optimized CNOT
gate consumption and Toffoli depth. In addition, we study the construc-
tion of reversible circuits for the key schedule and the round function
of AES by applying various number of S-boxes in parallel. As a result,
we report quantum circuits of AES-128, AES-192 and AES-256 with
269, 333 and 397 qubits, respectively. If more qubits are allowed, quan-
tum circuits that outperform state-of-the-art schemes in the metric of
T ·M value for the AES family can be reported, and it needs only 474,
538 and 602 qubits for AES-128, AES-192 and AES-256, respectively.

Keywords: AES, reversible circuit, quantum gate, Toffoli depth

1

2 Optimized Quantum Implementation of AES

1 Introduction

The development of quantum technology challenges the security of modern
cryptography, especially the overwhelming advantage of quantum computers in
solving mathematical problems over the classical ones, which benefits from the
quantum algorithms such as Grover’s Algorithm [11], Simon’s Algorithm [26]
and Shor’s algorithm [25]. In addition, the successful design of quantum proces-
sors such as Sycamore [3] further increases the need for modern cryptography
to prepare in advance for the rapid development of the construction of quantum
computers.

Developing ciphers that are secure in both classical and quantum envi-
ronment is the main research goal of post-quantum cryptography (PQC). In
2016, NIST (National Institute of Standards and Technology) started a pro-
cess to develop new cryptography standards, which was aimed at developing
new standards that resist to quantum attacks. Based on the strength offered by
the existing standards1,2, NIST suggested classifying the security strength of
the submissions into five categories in [22], where the categories 1, 3 and 5 are
related to the quantum resource required to conduct an exhaustive key search
on the AES family [7]. On the other hand, the Grover’s algorithm can achieve
a square root speed-up when searching for a certain element in an unordered
set. Therefore, the research on designing quantum circuits for AES and evalu-
ating the quantum resource of exhaustively searching for the key of the AES
family combined with the Grover’s algorithm have received wide attention.

The researches on the quantum implementation of the AES family mainly
focus on building the circuits with the Pauli-X gate (or NOT gate), the
controlled-NOT gate (also known as C-NOT gate or CNOT gate) and the
Toffoli gate (see [21] for definitions) as the underlying quantum logic gate set
(NCT gate set for short) [1, 10, 13, 14, 17, 18, 28, 32]. In 2016, Grassl et
al. [10] first systematically investigated the construction of quantum circuits
for the three variants of AES. Afterwards, Almazrooie et al. [1] optimized the
reversible circuit of the multiplicative inverse over finite fields with the help of
Itoh-Tsujii algorithm [12] and designed a quantum circuit for AES-128 with
fewer qubits. Based on the reversible circuits proposed in [10], the authors
of [17] improved the cost of computing multiplicative inverse and researched
the time-space complexity for searching the key of the AES family. In [18],
the classical hardware implementation of AES S-box given in [5] was adopted
to construct a reversible one, benefit from which, Langenberg et al. proposed
optimized quantum implementations for the AES family with reduced con-
sumption of qubits and quantum logic gates compared with the previous work.
Along the research direction of designing quantum circuits for AES with the
help of classical implementations, Zou et al. [32] presented optimized quan-
tum circuits for the S-box and S-box−1 simultaneously at ASIACRYPT 2020,
combined with their proposed methods to implement the key schedule and the
round function, both the qubit cost and the T ·M value (the product of the

1https://doi.org/10.6028/NIST.FIPS.197
2https://doi.org/10.6028/NIST.FIPS.202.

https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.202.

Optimized Quantum Implementation of AES 3

Toffoli depth and the number of qubits) of the reversible circuits built for the
AES family were reduced. In [28], Wang et al. also reported a quantum circuit
for the case that the output qubits of the S-box are not all 0s to optimize the
implementation of the key schedule for AES-128, by which they saved quantum
gates and qubits at the same time. Recently, new reversible circuits for AES
S-box and its inverse were given to design quantum circuits for AES in [13].
Besides, the authors introduced a method to construct reversible circuit for
the S-box−1 from the S-box circuit by adding some linear transformations.
The circuits of AES S-box with low depth presented in [13] were also applied
by Jang et al. [14], and the T ·M value of the circuits constructed in [14] for
the AES family decreased significantly.

As quantum computation technology develops, the number of qubits that
can be handled by quantum simulators will gradually increase. However, the
progress is very slow [3, 31, 33]. Some early researches investigated qubit
reduction by proposing improved algorithms focus on saving input qubits
for factoring an integer when Shor’s algorithm is adopted, such as [9, 23],
where the number of input qubits can be reduced from 2n to (1 + o(1))n and
(1/2 + o(1))n, respectively. Recently, the authors of [19] studied the problem
of period finding with fewer output qubits based on Simon’s algorithm and
Shor’s algorithm, where they can reduce the number of output qubits from
n to 1. As the authors stated in [19], “although there is steady progress in
constructing larger quantum computers, within the next years the number of
qubits seems to be too limited for tackling problems of interesting size” and
“quantum computers with a very limited number of qubits might still serve as
a powerful oracle that assists us in speeding up classical computations”. Note
that the method of [19] assumed the oracle access of the quantum embedding
of underlying functions, and reduced qubits from the structure of Simon’s algo-
rithm or Shor’s algorithm. However, it is also of great significance to reduce
the oracle qubit consumption of the underlying function itself. Only by com-
bining these two efforts, we can achieve a quantum circuit with a reduced
overall qubit consumption. It is widely believed that algorithms and circuits
with better performance in qubit requirements may be physically implemented
earlier in a real quantum computer [4, 31, 33]. Therefore, as the authors did
in [1, 10, 17, 18, 28, 32], in this paper we focus on constructing quantum circuits
for AES with fewer qubits, as it is the core component to construct quantum
embeddings of oracles for quantum attacks. Note that the Clifford+T gate set
is also adopted when designing quantum circuits of the AES family [13–15].
However, a Toffoli gate can be constructed by several Clifford gates and T
gates. On the other hand, the classical And gates can be simulated by Toffoli
gates, which helps to make better use of classical circuits to construct quan-
tum ones. Thus, we investigate the construction of quantum circuits for AES
with Toffoli gates in this paper. Since depth is also an important metric, as the
authors did in [14, 32], we adopt the metric T ·M value (i.e., the product of
the Toffoli depth and the number of qubits) to evaluate the trade-off of depth
and qubits.

4 Optimized Quantum Implementation of AES

1.1 Our Contributions

First, we outline the influence of Pauli-X gates, CNOT gates and Toffoli gates
on the Toffoli depth of an NCT-based circuit, based on which we illustrate how
the CNOT gate consumption is affected by the s-Xor operations. Meanwhile,
the influence of the operation order on the Toffoli depth of NCT-based circuits
and the conditions under which two consecutive operations are commutative
are also discussed.

Then, we rearrange both the classical implementation of AES S-box and its
inverse into three parts. Specifically, the tower fields architecture decomposes
both the S-box of AES and its inverse into three functions, the top function, the
middle function and the bottom function. We derive the circuit for calculating
the multiplicative inverse over F24 from the circuit of the middle function and
treat it as the second part, the first part of our rearranged circuit consists of
the operations in the circuit of the middle function for generating the inputs
of the second part, while the third part consists of the remaining operations
in the circuit of the middle function and the bottom function. Both the first
part and the third part of our rearranged circuit take the outputs of the top
function as auxiliary variables.

Furthermore, we investigate the construction of optimized quantum cir-
cuits for AES S-box and its inverse based on our rearranged circuits with three
parts. We treat the second part that calculates the multiplicative inverse over
F24 as a 4-bit S-box for the first time, and the public tools LIGHTER [16] and
LIGHTER-R [8] are taken into account to design its in-place implementation.
Moreover, we try to detect an quantum style implementation of the third part
by adding unit row vectors and making use of the heuristic in [30]. As far as we
know, this is the first time that the heuristic proposed for searching optimized
s-Xor implementation of linear layers has been applied to build reversible cir-
cuits for AES S-box and its inverse. In addition, we propose an algorithm to
search optimized NCT-based circuits for the remaining two parts based on our
observations on quantum circuits. The heuristic is designed on the premise of
optimizing the Toffoli depth. Moreover, the strategy of randomization is also
used to save CNOT gates. Our researches on the construction of NCT-based
circuits for S-box and S-box−1 enrich the method to build quantum implemen-
tations of AES S-box and its inverse based on the classical implementations
produced by tower fields architecture.

We applied our methods to the hardware circuits of AES S-box and S-
box−1 presented in [5] and [32], respectively. The results reveal that the circuits
obtained by our method consume fewer qubits, the CNOT gate consumption
and the Toffoli depth are also optimized on the premise of saving qubits. The
details of the quantum resource consumption of AES S-box and its inverse are
listed in Table 7. In order to implement the key schedule without introducing
extra storage qubits, we investigate the implementation of AES S-box with
the initial values of outputs are not all 0s and report an optimized circuit that
maps |x⟩|y⟩|0⟩⊗5 to |x⟩|y ⊕ S(x)⟩|0⟩⊗5. Moreover, since removing the previous
rounds when expanding the round function can save qubits, we then investigate

Optimized Quantum Implementation of AES 5

the implementation of the inverse of AES S-box with the initial values of
outputs are not all 0s and report an optimized circuit that maps |x⟩|y⟩|0⟩⊗5 to
|x⟩|y ⊕ S−1(x)⟩|0⟩⊗5. The comparison of the quantum resource consumption
is shown in Table 8.

Finally, we investigate the implementation of AES with various number of
S-boxes applied in parallel by the method we call partial zig-zag. Combined
with our new technique, we construct reversible circuits for all instances of
the AES family only with 269, 333 and 397 qubits, respectively. Moreover,
considering the metric of T ·M value, our methods guarantee that the NCT-
based circuits for the AES family outperform state-of-the-art schemes in the
metric of T ·M value. The corresponding schemes consume only 474, 538 and
602 qubits. The details are shown in Table 1, Table 2 and Table 3, where m is
the number of S-boxes3 applied in parallel.

Table 1 The quantum resource of different NCT-based circuits for AES-128.

Source #Qubits Toffoli Depth #Toffoli #CNOT #Pauli-X T ·M
[10] 984 12672 151552 166548 1456 12469248
[1] 976 not reported 150528 192832 1370 not reported
[18] 864 1880 16940 107960 1570 1624320
[32] 512 2016 19788 128517 4528 1032192

[28]
656 not reported 18040 101174 1976 not reported
400 not reported 19064 118980 4528 not reported

[13]∗
492 820

17888 126016 2528
403440

374 1558 582692

[14]⋄
3936 76 12920 84120

800
299136

6368 40 12240 81312 254720

This work

m = 1 269 7396

19608

77408

2224

1989524
m = 1† 274 6480 78448 1775520
m = 2 282 3720 77408 1049040
m = 2† 287 3306 78416 948822
m = 3 295 2622 77444 773490
m = 4 308 1970 77408 606760
m = 4† 313 1700 78272 532100
m = 5 321 1736 77444 557256
m = 6 334 1304 77552 435536
m = 7 347 1304 77480 452488
m = 8 360 1106 77408 398160
m = 8† 365 908 77984 331420
m = 9 373 872 77660 325256
m = 10 386 872 77624 336592
m = 11 399 872 77588 347928
m = 12 412 872 77552 359264
m = 13 425 872 77516 370600
m = 14 438 872 77480 381936
m = 15 451 872 77444 393272
m = 16 464 674 77408 312736
m = 16† 474 476 77984 225624

∗ The quantum resource consumption listed in the table is from Table 6 in [13].
⋄ Only the circuit costs fewest qubits and the one with lowest T ·M value in [14] are listed.
† The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round
function or the S-box−1es for removing the previous round by adding 5 or 10 ancilla qubits.

3Applying m S-boxes in parallel when implementing the SubBytes of the current round also
means that one can apply m S-box−1es in parallel to remove the previous round, since the circuits
we designed for AES S-box and its inverse can always be implemented with the same number of
ancilla qubits.

6 Optimized Quantum Implementation of AES

Table 2 The quantum resource of different NCT-based circuits for AES-192.

Source #Qubits Toffoli Depth #Toffoli #CNOT #Pauli-X T ·M
[10] 1112 11088 172032 189432 1608 12329856
[18] 896 1640 19580 125580 1692 1469440
[32] 640 2022 22380 152378 5128 1294080

[14]⋄
4256 92 14688 96112

896
391552

6688 48 14008 92856 321024

This work

m = 1 333 8844

22800

90384

2568

2945052
m = 1† 338 7904 91408 2671552
m = 2 346 4444 90384 1537624
m = 2† 351 4026 91360 1413126
m = 3 359 3190 90428 1145210
m = 4 372 2310 90384 859320
m = 4† 377 2068 91184 779636
m = 5 385 2112 90428 813120
m = 6 398 1584 90560 630432
m = 7 411 1584 90472 651024
m = 8 424 1254 90384 531696
m = 8† 429 1100 90832 471900
m = 9 437 1056 90692 461472
m = 10 450 1056 90648 475200
m = 11 463 1056 90604 488928
m = 12 476 1056 90560 502656
m = 13 489 1056 90516 516384
m = 14 502 1056 90472 530112
m = 15 515 1056 90428 543840
m = 16 528 726 90384 383328
m = 16† 538 572 90832 307736

⋄ Only the circuit costs fewest qubits and the one with lowest T ·M value in [14] are listed.
† The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round
function or the S-box−1es for removing the previous round by adding 5 or 10 ancilla qubits.

Table 3 The quantum resource of different NCT-based circuits for AES-256.

Source #Qubits Toffoli Depth #Toffoli #CNOT #Pauli-X T ·M
[10] 1336 14976 215040 233836 1943 20007936
[18] 1232 2160 23760 151011 1992 2661120
[32] 768 2292 26774 177645 6103 1760256

[14]⋄
4576 108 18088 117704

1103
494208

6976 56 17408 113744 390656

This work

m = 1 397 10622

27816

109856

3069

4216934
m = 1† 402 9322 111416 3747444
m = 2 410 5324 109830 2182840
m = 2† 415 4724 111312 1960460
m = 3 423 3736 109908 1580328
m = 4 436 2826 109856 1232136
m = 4† 441 2436 111104 1074276
m = 5 449 2488 109908 1117112
m = 6 462 1864 110064 861168
m = 7 475 1844 109920 875900
m = 8 488 1556 109856 759328
m = 8† 493 1270 110688 626110
m = 9 501 1218 110220 610218
m = 10 514 1218 110168 626052
m = 11 527 1218 110116 641886
m = 12 540 1218 110064 657720
m = 13 553 1218 110012 673554
m = 14 566 1218 109960 689388
m = 15 579 1218 109908 705222
m = 16 592 932 109856 551744
m = 16† 602 646 110688 388892

⋄ Only the circuit costs fewest qubits and the one with lowest T ·M value in [14] are listed.
† The S-boxes for the key schedule that are applied in parallel with the S-boxes for the round
function or the S-box−1es for removing the previous round by adding 5 or 10 ancilla qubits.

Optimized Quantum Implementation of AES 7

1.2 Organization

In Section 2, we introduce the notations used throughout this paper and give
a brief introduction to AES. Then, some properties of quantum circuit are
presented in Section 3. In Section 4, the heuristic for searching optimized
reversible circuits for the first and the third parts of our rearranged circuits are
reported, as well as the reversible circuits for AES S-box and its inverse. The
method to implement the key schedule and the round function are introduced
in Section 5, followed by the applications to the AES family in Section 6.
Finally, the conclusion and the future work are discussed in Section 7.

2 Preliminaries

2.1 Notations

Z+ the set of all positive integers
F2 the finite field containing elements 0 and 1
F2k the finite field containing 2k elements
a⊕ b the Xor of bits a and b over F2

a · b the And of bits a and b over F2

a the inversion of bit a over F2

To avoid confusion, we clarify the NCT-based circuit as follows.

Definition 1 (NCT-based Circuit) An NCT-based circuit is a quantum circuit
constructed based on Pauli-X gates, CNOT gates and Toffoli gates.

The circuit symbols and functions of the Pauli-X gate, CNOT gate and
Toffoli gate are depicted in Figure 1, where a, b, c ∈ F2.

R1

R2

R3

R4

R6

R8

R9

R5

R7

R10

R1

R2

R3

R4

Rr-1

Rr Output

|0128

|0128

|0128

|0
128

|0128

|0128

R1

R2

R3

R4

|0128

|0128

|0128

|0128

R1
-1

R3
-1

R2
-1

R5

R6

R7

R5
-1

R6
-1

R8

R9

R8
-1 R10 Output

R1

R2

|0128

|0128

R1
-1 R3

R2
-1

R3
-1

R4

R5

OutputR4
-1 R6

R5
-1 R7

R6
-1 R8

R7
-1 R9 R9

-1

R8
-1 R10

Output|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

Input Key

Input Key

Input Key

Input Key

Output

Input Key

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1 𝑅2

𝑅2

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅2
−
1
4

𝑅3

𝑅8

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

𝑅7
−
1
4

𝑅8
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅10

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

… 4 round AES …

|0160

|032

3 15

ShiftRows

(f)(g)(h)

(e)

(e)

MixColumns SubByte(s)

Apply m S-box-1(es)n InvMixColumn(s)InvShiftRows

|0128

Input Key

Plaintext

SubBytes

Apply 4 InvS-boxes

The first round

AddRoundKey

The second round

|08m

Plaintext R2 R4 Rr-1 Rr Ciphertext

rk0 rk1 rk4 rkr

ShiftRows

(b)(c)(d)

(e)
8 12

(a)

MixColumns AddRoundKeySubBytes

R3

rk2

R1

rk3 rkr-1

...

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-281

W0

W1

W2

W3

X

Anc

Anc

X

X

W0

W3

Anc

X W4

AncAnc

S
h

if
tR

o
w

s

M
ix

C
o

lu
m

n
s

Anc

W5

W6

W7

(a) (b) (c) (d) (e)

𝑆𝑜𝑢𝑡
1

𝑆𝑖𝑛
1

𝑆𝑖𝑛
3

𝑆𝑜𝑢𝑡
3

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

0

0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
2

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
2

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc
10

Anc
20

Anc
10

𝑆𝑜𝑢𝑡
4

Anc
20

0

M
ix

C
o

lu
m

n
s

S
h

if
tR

o
w

s

W3

W2

W3

W1

Anc
20

W2

W3

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

W0 X W8

W9

W10

W11

(a) (b) (c) (d)

𝑆𝑖𝑛
16

𝑆𝑜𝑢𝑡
8

W6

W7

W4

0

W5

288-319 0

320-351

352-383 0

𝑆𝑜𝑢𝑡
4

0

M
C

S
R

W1

384-415

416-447

448-479

480-487

0

0

0

0

Anc

𝑆𝑜𝑢𝑡
16

S
h

if
tR

o
w

s

M
ix

C
o
lu

m
n

s

A
d
d

R
o

u
n

d
K

e
y

𝑆𝑖𝑛
8

Anc

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
8

𝑆𝑜𝑢𝑡
8

Anc

𝑆𝑖𝑛
−8

X

W2

W3

𝑆𝑖𝑛
−8

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
4

Anc

0

0

0

0

W7
S

R

M
C

A
K

A
K

W4

W5

W6

W7

|a

|b

|a

|b⊕a

CNOT gate

|a |a⊕1

Pauli-X gate

|a

|b

|a

|b

Toffoli gate

|c |c⊕a·b

X

Anc
16

W1

A
d
d

R
o

u
n

d
K

e
y

W4

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

(a) (b) (c)

𝑆𝑖𝑛
4

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h

e
F

ir
st

 R
o
u

n
d

0

0

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

10

5

0

3

14

9

4

7

2

13

8

11

6

1

12

(a) (b) (c) (d)

R1

𝑅2

1
4

|032

Input Key

|032

|032

|032

|032

R2

𝑅2

1
4

𝑅2

1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

 𝑅1
−
1
4

𝑅1
−
1
4

|032

SB*

H 128

SB*

SB*

SB*

RC

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

Anc
4

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

P P Rcon P

P

P

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h

e
F

ir
st

 R
o

u
n

d

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

Anc
20

Rcon

W0

W1

W2

W3

X

𝑅𝑆𝑖𝑛
4

Anc
20

Rcon

X

P

𝑅𝑆𝑖𝑛
4

(a)

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

0

Anc
20

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑅𝑆𝑖𝑛
1

Anc
20

𝑅𝑆𝑖𝑛
4

invMC+invSR

S
u

b
B

y
te

s

𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

Fig. 1 The description of the underlying quantum gates.

Besides, a CNOT gate can be regarded as the transformation that maps
|a⟩|b⟩ to |a⟩|b⊕ a⟩, the operand b is updated as b = b ⊕ a. Consequently, the
application of CNOT gates can be simulated by Xor operations under s-Xor
metric, which is originally a concept for the implementation of matrices.

Definition 2 (s-Xor [16]) Let M be an invertible matrix over F2 with size n × n.
Assuming that x0, x1, ..., xn−1 are the n input bits of M . It is always possible to
perform a sequence of Xor operations xi = xi ⊕ xj with 0 ≤ i, j ≤ n− 1, such that

8 Optimized Quantum Implementation of AES

the n input bits are updated to the n output bits. The s-Xor count of M is defined
as the minimal number of such Xor operations to update the inputs to the outputs.

2.2 Description of the AES Family

The AES family [7] contains three instances, denoted as AES-128, AES-192
and AES-256 respectively according to the length of the key.
Round Function The round function of the AES family consists of
four transformations, i.e., SubBytes, ShiftRows, MixColumns and
AddRoundKey as shown in Figure 2, where r is the round number and
equals 10, 12 and 14 for AES-128, AES-192 and AES-256, respectively. The
SubBytes replaces each byte in the state by another one according to the S-
box. The ShiftRows changes the position of the bytes in the grid by cyclically
rotating the bytes in the ith row to the left by i bytes, where i = 0, 1, 2, 3. The
MixColumns is a linear transformation and it multiplies the right circulant
matrix (0x02, 0x03, 0x01, 0x01) over F28 with each column of the state. Note
that the MixColumns is absent in the last round. The AddRoundKey adds
the round key to the state by bitwise Xor.

R1

R2

R3

R4

R6

R8

R9

R5

R7

R10

R1

R2

R3

R4

Rr-1

Rr Output

|0128

|0128

|0128

|0
128

|0128

|0128

R1

R2

R3

R4

|0128

|0128

|0128

|0128

R1
-1

R3
-1

R2
-1

R5

R6

R7

R5
-1

R6
-1

R8

R9

R8
-1 R10 Output

R1

R2

|0128

|0128

R1
-1 R3

R2
-1

R3
-1

R4

R5

OutputR4
-1 R6

R5
-1 R7

R6
-1 R8

R7
-1 R9 R9

-1

R8
-1 R10

Output|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

Input Key

Input Key

Input Key

Input Key

Output

Input Key

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1 𝑅2

𝑅2

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅2
−
1
4

𝑅3

𝑅8

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

𝑅7
−
1
4

𝑅8
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅10

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

… 4 round AES …

|0160

|032

3 15

ShiftRows

(f)(g)(h)

(e)

(e)

MixColumns SubByte(s)

Apply m S-box-1(es)InvMixColumnInvShiftRows

|0128

Input Key

Plaintext

SubBytes

Apply 4 InvS-boxes

The first round

AddRoundKey

The second round

|08m

Plaintext R2 R4 Rr-1 Rr Ciphertext

rk0 rk1 rk4 rkr

ShiftRows

(b)(c)(d)

(e)
8 12

(a)

MixColumns AddRoundKeySubBytes

R3

rk2

R1

rk3 rkr-1

...

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-281

W0

W1

W2

W3

X

Anc

Anc

X

X

W0

W3

Anc

X W4

AncAnc

S
h
if

tR
o
w

s

M
ix

C
o

lu
m

n
s

Anc

W5

W6

W7

(a) (b) (c) (d) (e)

𝑆𝑜𝑢𝑡
1

𝑆𝑖𝑛
1

𝑆𝑖𝑛
3

𝑆𝑜𝑢𝑡
3

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

0

0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
2

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
2

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc

AncAnc

𝑆𝑜𝑢𝑡
4

Anc

Anc

0

M
ix

C
o

lu
m

n
s

S
h

if
tR

o
w

s

W3

W2

W3

W1

Anc

W2

W3

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

W0 X W8

W9

W10

W11

(a) (b) (c) (d)

𝑆𝑖𝑛
16

𝑆𝑜𝑢𝑡
8

W6

W7

W4

0

W5

288-319 0

320-351

352-383 0

𝑆𝑜𝑢𝑡
4

0

M
C

S
R

W1

384-415

416-447

448-479

480-487

0

0

0

0

Anc

𝑆𝑜𝑢𝑡
16

S
h
if

tR
o
w

s

M
ix

C
o

lu
m

n
s

A
d
d

R
o

u
n

d
K

e
y

𝑆𝑖𝑛
8

Anc

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
8

𝑆𝑜𝑢𝑡
8

Anc

𝑆𝑖𝑛
−8

X

W2

W3

𝑆𝑖𝑛
−8

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
4

Anc

0

0

0

0

W7

S
R

M
C

A
K

A
K

W4

W5

W6

W7

|a

|b

|a

|b⊕a

CNOT gate

|a |a⊕1

Pauli X gate

|a

|b

|a

|b

Toffoli gate

|c |c⊕a·b

X

Anc

Anc

Anc

W1

A
d
d

R
o

u
n

d
K

e
y

W4

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

(a) (b) (c)

𝑆𝑖𝑛
4

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

Anc

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u
n
d

0

0

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
−4

Anc

𝑆𝑖𝑛
−4

Anc

𝑆𝑜𝑢𝑡
4

Anc

𝑆𝑖𝑛
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

Anc

𝑆𝑜𝑢𝑡
4

Anc

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

Anc

𝑆𝑜𝑢𝑡
4

Anc

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc

X

W10

W11

W9

W8

S
R

M
C

A
K

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

10

5

0

3

14

9

4

7

2

13

6

11

6

1

12

(a) (b) (c) (d)

Fig. 2 The encryption of the AES family.

Key Schedule The key schedule of AES is based on 32-bit words. Denote
the master key by W0,W1, ...,Ws−1, where s = 4 for AES-128, = 6 for AES-
192, = 8 for AES-256. Except the given words (i.e., the words in the master
key), 40, 46 and 52 words are required by AES-128, AES-192 and AES-256
respectively.

For AES-128, the word Wi can be calculated by

Wi =

{
Wi−4 ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/4), if i ≡ 0 mod 4,

Wi−4 ⊕Wi−1, otherwise,

where i = 4, 5, ..., 43.
For AES-192, the word Wi can be calculated by

Wi =

{
Wi−6 ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/6), if i ≡ 0 mod 6,

Wi−6 ⊕Wi−1, otherwise,

Optimized Quantum Implementation of AES 9

where i = 6, 7, ..., 51.
For AES-256, the word Wi can be calculated by

Wi =

Wi−8 ⊕ SubWord(RotWord(Wi−1))⊕Rcon(i/8), if i ≡ 0 mod 8,

Wi−8 ⊕ SubWord(Wi−1), if i ≡ 4 mod 8,

Wi−8 ⊕Wi−1, otherwise,

where i = 8, 9, ..., 59.
The SubWord applies four S-boxes to the bytes in one word. The Rot-

Word cyclically rotates the bytes in the word to the left by one byte. The
Rcon adds the round constant to the word by bitwise Xor.

2.3 Classical Implementations of AES Building Blocks

2.3.1 Classical Implementations of MixColumn

The transformation of MixColumn can be represented as a 32 × 32 binary
matrix over F2. Among the methods of matrix implementation, LUP-type
decomposition [27] can be used to generate an implementation of MixColumn
under s-Xor metric. In an s-Xor implementation, the outputs are stored in
the input registers and no extra registers are needed. Meanwhile, one can
easily simulate an Xor operation under s-Xor metric by a CNOT gate. This
is an important reason why the LUP-type decomposition method is commonly
used when constructing quantum circuits for MixColumn [1, 10, 15, 18, 29].
Also based on matrix decomposition theory, Xiang et al. [30] presented an
implementation of MixColumn with 92 Xor operations. Considering the
convenience of being converted to a quantum implementation and the CNOT
gate consumption, we use the s-Xor implementation given in [30] to build the
quantum circuit for the MixColumns.

2.3.2 Classical Implementations of AES S-box and S-box−1

As the only nonlinear building block of AES, the implementation of S-box
has a crucial impact on the overall implementation performance of the cipher.
Due to the advantage in obtaining an efficient implementation of AES S-box
with a lower gate count, tower fields architecture is widely used in the field of
constructing circuits for AES in hardware application scenarios [5, 6, 20, 29].
Designing quantum circuits from these classical implementations seems to be a
popular approach in recent years. In this work, we investigate the construction
of efficient reversible circuits for AES based on the circuit of the S-box reported
in [5] and the circuit of the S-box−1 given in [32]. By exploiting the tower fields
architecture, Boyar et al. [5] decomposed AES S-box into three transformations
and represented the S-box as S(x) = B · F (U · x), where x is the 8-bit input
of the S-box. Similarly, Zou et al. [32] represented the S-box−1 of AES as
S−1(x) = B

′ ·F ′
(U

′ · x), where x is the 8-bit input of S-box−1. For simplicity,
we only list the classical circuit reported in [5].

10 Optimized Quantum Implementation of AES

Top Function U Denote the input of S-box by (x0, x1, ..., x7), the function
U takes (x0, x1, ..., x7) as its input and generates (y0, y1, ..., y21), which can be
calculated as

y0 = x7, y14 = x3 ⊕ x5, y13 = x0 ⊕ x6, y9 = x0 ⊕ x3, y8 = x0 ⊕ x5,
t0 = x1 ⊕ x2, y1 = t0 ⊕ x7, y4 = y1 ⊕ x3, y12 = y13 ⊕ y14, y2 = y1 ⊕ x0,
y5 = y1 ⊕ x6, y3 = y5 ⊕ y8, t1 = x4 ⊕ y12, y15 = t1 ⊕ x5, y20 = t1 ⊕ x1,
y6 = y15 ⊕ x7, y10 = y15 ⊕ t0, y11 = y20 ⊕ y9, y7 = x7 ⊕ y11, y17 = y10 ⊕ y11,
y19 = y10 ⊕ y8, y16 = t0 ⊕ y11, y21 = y13 ⊕ y16, y18 = x0 ⊕ y16.

Middle Function F The function F takes (y0, y1, ..., y21) as its inputs and
generates (z0, z1, ..., z17), which can be calculated as

t2 = y12 · y15, t3 = y3 · y6, t4 = t3 ⊕ t2, t5 = y4 · y0, t6 = t5 ⊕ t2,
t7 = y13 · y16, t8 = y5 · y1, t9 = t8 ⊕ t7, t10 = y2 · y7, t11 = t10 ⊕ t7,
t12 = y9 · y11, t13 = y14 · y17, t14 = t13 ⊕ t12, t15 = y8 · y10, t16 = t15 ⊕ t12,
t17 = t4 ⊕ y20, t18 = t6 ⊕ t16, t19 = t9 ⊕ t14, t20 = t11 ⊕ t16, t21 = t17 ⊕ t14,
t22 = t18 ⊕ y19, t23 = t19 ⊕ y21, t24 = t20 ⊕ y18, t25 = t21 ⊕ t22, t26 = t21 · t23,
t27 = t24 ⊕ t26, t28 = t25 · t27, t29 = t28 ⊕ t22, t30 = t23 ⊕ t24, t31 = t22 ⊕ t26,
t32 = t31 · t30, t33 = t32 ⊕ t24, t34 = t23 ⊕ t33, t35 = t27 ⊕ t33, t36 = t24 · t35,
t37 = t36 ⊕ t34, t38 = t27 ⊕ t36, t39 = t29 · t38, t40 = t25 ⊕ t39, t41 = t40 ⊕ t37,
t42 = t29 ⊕ t33, t43 = t29 ⊕ t40, t44 = t33 ⊕ t37, t45 = t42 ⊕ t41, z0 = t44 · y15,
z1 = t37 · y6, z2 = t33 · y0, z3 = t43 · y16, z4 = t40 · y1, z5 = t29 · y7,
z6 = t42 · y11, z7 = t45 · y17, z8 = t41 · y10, z9 = t44 · y12, z10 = t37 · y3,
z11 = t33 · y4, z12 = t43 · y13, z13 = t40 · y5, z14 = t29 · y2, z15 = t42 · y9,
z16 = t45 · y14, z17 = t41 · y8.

Bottom Function B Denote the output of the S-box by (s0, s1, ..., s7). The
function B takes (z0, z1, ..., z17) as inputs and generates (s0, s1, ..., s7), which
can be calculated as

t46 = z15 ⊕ z16, t47 = z10 ⊕ z11, t48 = z5 ⊕ z13, t49 = z9 ⊕ z10, t50 = z2 ⊕ z12,
t51 = z2 ⊕ z5, t52 = z7 ⊕ z8, t53 = z0 ⊕ z3, t54 = z6 ⊕ z7, t55 = z16 ⊕ z17,
t56 = z12 ⊕ t48, t57 = t50 ⊕ t53, t58 = z4 ⊕ t46, t59 = z3 ⊕ t54, t60 = t46 ⊕ t57,
t61 = z14 ⊕ t57, t62 = t52 ⊕ t58, t63 = t49 ⊕ t58, t64 = z4 ⊕ t59, t65 = t61 ⊕ t62,
t66 = z1 ⊕ t63, s0 = t59 ⊕ t63, s6 = t56 ⊕ t62, s7 = t48 ⊕ t60, t67 = t64 ⊕ t65,
s3 = t53 ⊕ t66, s4 = t51 ⊕ t66, s5 = t47 ⊕ t65, s1 = t64 ⊕ s3, s2 = t55 ⊕ t67.

3 Observations on NCT-based Circuits

Quantum Toffoli Depth Although linear operations themselves are con-
sidered not to increase the Toffoli depth, but the propagation of Toffoli depth
caused by CNOT gates cannot be ignored. If the Toffoli depth of two variables

Optimized Quantum Implementation of AES 11

are the same before they are taken as the inputs of a CNOT gate, the depth of
these two variables remain unchanged after the CNOT gate, which is beyond
doubt. But if the Toffoli depth of the operands of a CNOT gate are not the
same, the Toffoli depth for one of the operands should be changed. We give the
following properties to illustrate the update of Toffoli depth caused by logic
gates in an NCT-based circuit.

Property 1 For a Pauli-X gate that maps |a⟩ to |a⊕ 1⟩, the application of the
Pauli-X gate will not change the Toffoli depth of a.

Property 2 For a CNOT gate that maps |a⟩|b⟩ to |a⟩|b⊕ a⟩, denote the input Toffoli
depth of a and b by da and db respectively. After the application of the CNOT gate,
da and db are updated as

da = db = max{da, db}.

Property 3 For a Toffoli gate that maps |a⟩|b⟩|c⟩ to |a⟩|b⟩|c⊕ a · b⟩, denote the
input Toffoli depth of a, b and c by da, db and dc respectively. After the application
of the Toffoli gate, da, db and dc are updated as

da = db = dc = max{da, db, dc}+ 1.

We give the following example to demonstrate the update of Toffoli depth
caused by CNOT gates and Toffoli gates.

Example 1 Take Circuit 1 and Circuit 2 listed in Table 4 as an example. Suppose that
the initial Toffoli depth of all variables is zero. Denote the Toffoli depth of a, b, ..., g
by (da, db, ..., dg), where di is the Toffoli depth of variable i and i ∈ {a, b, ..., g}.
The evolution of the Toffoli depth vector at each step are listed in the 3rd and 6th
columns in Table 4.

Table 4 The Toffoli depth of each operation.

No. Circuit 1 Toffoli depth No. Circuit 2 Toffoli depth
1 a = a⊕ b (0, 0, 0, 0, 0, 0, 0) 1 b = b⊕ a (0, 0, 0, 0, 0, 0, 0)
2 c = c⊕ a · d (1, 0, 1, 1, 0, 0, 0) 2 c = c⊕ b · d (0, 1, 1, 1, 0, 0, 0)
3 b = b⊕ e (1, 0, 1, 1, 0, 0, 0) 3 b = b⊕ a⊕ e (1, 1, 1, 1, 1, 0, 0)
4 f = f ⊕ b · g (1, 1, 1, 1, 0, 1, 1) 4 f = f ⊕ b · g (1, 2, 1, 1, 1, 2, 2)

One can easily check that both circuits listed in Table 4 perform the same
function. However, Circuit 2 costs one more CNOT gate than Circuit 1 (caused
by the third operation in Circuit 2). Besides, the Toffoli depth of Circuit 2 is
two, while the Toffoli depth of Circuit 1 is one. The only difference between
Circuit 1 and Circuit 2 is the variable chosen to store the intermediate value
a⊕ b in the first operation, by which, the circuits in Table 4 show the effect of

12 Optimized Quantum Implementation of AES

selecting a specific bit to store the result of an s-Xor operation on the overall
Toffoli depth of a quantum circuit. We summarize this with the following
observation.

Observation 1 Given a quantum circuit with Toffoli gates involved, the Toffoli
depth and the CNOT gate consumption of the quantum circuit may be affected by the
specific arrangement of CNOT gates.

In addition, take the third operation of Circuit 2 in Table 4 (i.e., b =
b⊕ a⊕ e) as an example, among the three operands, the Toffoli depth of b is
1 while other operands are with Toffoli depth 0. The execution of the third
operation causes the Toffoli depth of a and e to increase by 1 due to the
influence of b, which has a higher Toffoli depth. But what if the value b ⊕ e
(the target value of the third operation) can be obtained before the Toffoli
depth of b is increased? This inspires us to investigate the effect of the order
of operations on Toffoli depth and give rise to the following observation.

Observation 2 Given a quantum circuit with Toffoli gates involved, the Toffoli depth
of the circuit may be affected by the order of operations.

Example 2 For a quantum circuit denoted by Circuit 3 in Table 5, a is not the
operand of the second operation, and d is not the operand of the first operation.
Consequently, the first two operations in Circuit 3 are commutative, as shown with
Circuit 4 in Table 5. Thus, the Toffoli depth can be reduced by 1 as listed in the
sixth column of Table 5.

Table 5 The Toffolil depth of the operations.

No. Circuit 3 Depth vector No. Circuit 4 Depth vector
1 a = a⊕ b · c (1, 1, 1, 0, 0, 0) 1 d = d⊕ b (0, 0, 0, 0, 0, 0)
2 d = d⊕ b (1, 1, 1, 1, 0, 0) 2 a = a⊕ b · c (1, 1, 1, 0, 0, 0)
3 e = e⊕ d · f (1, 1, 1, 2, 2, 2) 3 e = e⊕ d · f (1, 1, 1, 1, 1, 1)

Note that it is not always possible to exchange two consecutive operations,
we denote qubit by variable t in the following facts, ti and tj are two different
qubits if and only if i ̸= j.

Fact 1 Given a quantum circuit with m qubits t0, t1, ..., tm−1, if two consecutive
operations are in the form of ta = ta ⊕ tb, tc = tc ⊕ td, where a, b, c, d ∈ [0,m − 1],
a ̸= b and c ̸= d, the order of these two operations can be exchanged when one of the
following conditions holds: (i) a = c; (ii) a ̸= c, d and b ̸= c.

Optimized Quantum Implementation of AES 13

Fact 2 Given a quantum implementation with the m involved qubits are denoted by
t0, t1, ..., tm−1, if two consecutive operations are in the form of ta = ta ⊕ tb, tc =
tc ⊕ td · te or vice versa, where a, b, ..., e ∈ [0,m− 1], a ̸= b and c ̸= d ̸= e, the order
of these two operations can be exchanged when one of the following conditions holds:
(i) a = c; (ii) a ̸= c, d, e and b ̸= c.

Fact 3 Given a quantum circuit with m qubits t0, t1, ..., tm−1, if two consecutive
operations are in the form of ta = ta⊕tb·tc, td = td⊕te·tf , where a, b, ..., f ∈ [0,m−1],
a ̸= b ̸= c, d ̸= e ̸= f , the order of these two operations can be exchanged when one
of the following conditions holds: (i) a = d; (ii) a ̸= d, e, f and d ̸= b, c.

The proof of Fact 1 is given in Appendix A, Fact 2 - 3 can be proved in the
same way.

4 New NCT-based Circuits of AES S-box and
S-box−1

The quantum circuit of AES S-box−1 can be constructed from the classical one
presented in [32], which was decomposed in the same way as the authors did
in [5] to represent the AES S-box, or from the reversible circuit designed for
the S-box by adding some linear transformations [13], which dose not affect the
structure of the classical circuit presented in [5]. Therefore, we only discuss the
optimized quantum implementation of AES S-box in this section, the S-box−1

of AES can be implemented similarly.

4.1 Observations on the Adopted Classical Circuits of
S-box

Middle Functions F For the implementation of F reported in [5] (as listed
in Subsection 2.3), Zou et al. [32] pointed out that the outputs of F can be
calculated with the knowledge of t29, t33, t37, t40 and the inputs of AES S-box.
Furthermore, one can easily find that t29, t33, t37, t40 are the outputs of the
multiplicative inverse in F24 , and t21, t22, t23, t24 are the inputs. Essentially,
the function that maps (t21, t22, t23, t24) to (t29, t33, t37, t40) is a permutation
and thus can be regarded as a 4-bit S-box as shown in Table 6.

Table 6 The 4-bit S-box within F .

(t21, t22, t23, t24) 0 1 2 3 4 5 6 7 8 9 a b c d e f
(t29, t33, t37, t40) 0 6 2 4 9 3 d 5 1 e c 7 8 a b f

Compared with searching the s-Xor implementation for linear layers, the
design of the quantum implementation of S-boxes is tricky, especially for large
S-boxes. Nevertheless, for a 4-bit S-box, the public tools LIGHTER4 and

4http://jeremy.jean.free.fr/pub/fse2018 layer implementations.tar.gz

 http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz

14 Optimized Quantum Implementation of AES

LIGHTER-R5, which are proposed in [16] and [8] respectively, can be used to
search an optimized reversible circuit with fewer logic gates. However, we only
use LIGHTER in this paper for the 4-bit S-box shown in Table 6. We present
our discussion on LIGHTER and LIGHTER-R in Appendix B.
Bottom Functions B The function B generates the outputs of AES S-box,
which are linear expressions of zi, where i = 0, 1, ..., 17. As pointed in [32], B
can be expressed as a matrix. Note that the matrix corresponding to B is of
size 8× 18 and rank 8. In order to obtain an optimized s-Xor implementation
of B, we can extend its corresponding matrix to be invertible by adding unit
row vectors. Then, the heuristic6 proposed in [30] can be used.

4.2 Heuristic for Searching Optimized NCT-based
Circuits for S-box

According to the analysis in Subsection 4.1, the middle functions F can be
divided into three parts. The first part takes (y0, y1, ..., y21) (i.e., the outputs of
the top function U) as inputs and generates (t21, t22, t23, t24) as outputs. In our
heuristic, we combine the first part of the middle function F and the top func-
tion U , and denote it by f1 which takes (x0, x1..., x7) as inputs and generates
(t21, t22, t23, t24) as outputs. The second part of the middle function F is a 4-
bit S-box which is denoted by S4 as shown in Table 6. S4 takes (t21, t22, t23, t24)
as inputs and generates (t29, t33, t37, t40) as outputs. Similarly, we combine the
third part of the middle function F , the top function U and the bottom func-
tion B, and denote it by f2 which takes (t29, t33, t37, t40) (i.e., the outputs
of the 4-bit S-box) and (x0, x1..., x7) as inputs and calculates (s0, s1..., s7) as
outputs. The reversible circuit of S4 can be obtained with LIGHTER by intro-
ducing an additional variable. Consequently, in this subsection, we focus on
constructing reversible circuits for f1 and f2 with a lower Toffoli depth as it
is another important factor that affects the metric of T ·M value. The main
idea is to try to execute more nonlinear operations in parallel.

In the following, we take f1 as an example to illustrate how to get an
optimized reversible circuit. Denote X and S the input set and the output set
of f1, i.e., X = {x0, x1, ..., x7} and S = {t21, t22, t23, t24}. According to the
classical implementation of the S-box, the implementation of f1 is listed as
follows.

t21 = t21 ⊕ y12 · y15, t22 = t22 ⊕ t21, t21 = t21 ⊕ y3 · y6, t22 = t22 ⊕ y4 · y0,
t22 = t22 ⊕ y8 · y10, t23 = t23 ⊕ y14 · y17, t21 = t21 ⊕ t23, t23 = t23 ⊕ y5 · y1,
t23 = t23 ⊕ y13 · y16, t24 = t24 ⊕ y2 · y7, t24 = t24 ⊕ y13 · y16, t24 = t24 ⊕ y8 · y10,
a = a⊕ y9 · y11, t21 = t21 ⊕ a, t22 = t22 ⊕ a, t23 = t23 ⊕ a,
t24 = t24 ⊕ a, a = a⊕ y9 · y11, t21 = t21 ⊕ y20, t22 = t22 ⊕ y19,
t23 = t23 ⊕ y21, t24 = t24 ⊕ y18,

5https://github.com/vdasu/lighter-r
6https://github.com/xiangzejun/Optimizing Implementations of Linear Layers

https://github.com/vdasu/lighter-r
https://github.com/xiangzejun/Optimizing_Implementations_of_Linear_Layers

Optimized Quantum Implementation of AES 15

where a is an ancilla qubit, and yi (i = 0, 1, ..., 21) is the output of the top
function U and linear related to x0, x1, ..., x7.

The circuit shown above is obtained by simply eliminating redundant tem-
porary variables in the classical implementation and rewriting it in a quantum
style. Note that we allocate one ancilla qubit for f1, this is due to the fact
that the 4-bit S-box S4 is an odd permutation, and at least one ancilla qubit
is needed to construct its in-place implementation [24]. Thus, we can use this
ancilla qubit in f1 before the implementation of S4, however, it should be reset
to 0 and be reused to construct the reversible circuit for S4.

We denote the set of auxiliary variables by Y , and we have Y =
{y0, y1, ..., y21} for f1. Note that we do not precompute all the values of yi when
implementing f1 in order to saving qubits, as this needs at lest 22 − 8 = 14
extra qubits. Specifically, we compute the values of yi on the fly. Taking
t21 = t21⊕y12 ·y15 as an example, the values of y12 and y15 are computed in an
in-place manner when needed, that is the s-Xor metric is adopted to update
the value of two qubits of (x0, x1, ..., x7) to be equal to y12 and y15. After the
computation of t21 is completed, we can update (x0, x1, ..., x7) for the follow-
ing operations in a similar way. Moreover, in order to reduce the depth of the
circuit, we would like to parallelly execute as much nonlinear operations as
possible. If we want to parallelly execute, for example, t21 = t21⊕ y12 · y15 and
t22 = t22 ⊕ y4 · y0, it requires that we can update (x0, x1, ..., x7) under the s-
Xor metric such that four of which equal to the value of y12, y15, y4 and y0.
However, this is not always possible.

Property 4 Let yi, i ∈ [0,m− 1] be m linear combinations of x0, x1, ..., xn−1, with
m ≤ n. x0, x1, ..., xn−1 can be updated under s-Xor metric such that m of which
are equal to y0, y1, ..., ym−1 if and only if y0, y1, ..., ym−1 are linear independent. In
this case, the s-Xor implementations of y0, y1, ..., ym−1 can be stored in m qubits of
x0, x1, ..., xn−1.

We present in Algorithm 1 a procedure to classify the nonlinear operations
of f1 and f2 that can be performed concurrently. We take f1 as an example to
illustrate the usage of Algorithm 1.

Example 3 First, the set E used to store the classification of the nonlinear operations
should be initialized to be empty. Update C0 as C0 = {t21 = t21 ⊕ y12 · y15} since
the first operation is nonlinear and the set E is empty. The next nonlinear operation
t21 = t21⊕y3 ·y6 can not be moved to be adjacent with the operation in C0 due to the
second operation in the implementation. Thus, it should be added to C1. The third
nonlinear operation t22 = t22⊕y4 ·y0 can be moved to be adjacent with the operation
in C0, and y12, y15, y4, y0 are linear independent. According to Property 4, the third
nonlinear operation can be executed in parallel with the operation in C0. Hence, we
add t22 = t22 ⊕ y4 · y0 to C0. The fourth nonlinear operation t22 = t22 ⊕ y8 · y10
shares the operand t22 with the second operation in C0 and can be added to C1.
The remaining nonlinear operations can be analyzed similarly and the process ends
by returning E = {{t21 = t21⊕y12 ·y15, t22 = t22⊕y4 ·y0, t23 = t23⊕y14 ·y17, t24 =

16 Optimized Quantum Implementation of AES

Algorithm 1 Classification of the Nonlinear Operations

Input: The implementation (denoted by Imp) for fi (i = 1, 2) with input set X
and output set S, the expressions of the auxiliary variables in Y ;

Output: The classification of the nonlinear operations Classify(Imp, Y) of Imp;
1: E ← ∅; ▷ The set of classified nonlinear operations;
2: l← |Imp|; ▷ The number of operations in Imp;
3: N ← 0; ▷ The number of elements in E;
4: for i = 0, l − 1 do
5: flag ← false;
6: if the ith operation oi is nonlinear, i.e., formed as ti0 = ti0 ⊕ yj0 · yj1 then
7: if E = ∅ then
8: C0 ← ∅;
9: C0 = C0 ∪ {oi};

10: else
11: for j = 0, N − 1 do
12: if oi can be moved to be adjacent to the last operation in Cj then
13: if oi shares no operand with any operation in Cj then
14: if all y′s in oi ∪ Cj are linear independent then
15: Cj = Cj ∪ {oi};
16: flag ← true;
17: break;
18: end if
19: end if
20: end if
21: end for
22: if flag = false then
23: N = N + 1;
24: CN ← ∅;
25: CN = CN ∪ {oi};
26: end if
27: end if
28: end if
29: end for
30: return E = {C0, C1, ..., CN};

t24 ⊕ y2 · y7}, {t21 = t21 ⊕ y3 · y6, t22 = t22 ⊕ y8 · y10, t24 = t24 ⊕ y13 · y16}, {t23 =
t23⊕y5 ·y1, t24 = t24⊕y8 ·y10, a = a⊕y9 ·y11}, {t23 = t23⊕y13 ·y16, a = a⊕y9 ·y11}}.

Based on our classification of nonlinear operations and the observations
introduced in Section 3, we present in Algorithm 2 a procedure to search
optimized NCT-based circuits for f1 and f2.

Due to space limitations, we take the set E returned in Example 3 as an
example and introduce how to implement the operations in C0.

Example 4 According to Example 3, C0 = {t21 = t21 ⊕ y12 · y15, t22 = t22 ⊕ y4 ·
y0, t23 = t23⊕y14 ·y17, t24 = t24⊕y2 ·y7}. First, we initialize Index to be empty and
move the operations in C0 to be adjacent. According to the classical implementation

Optimized Quantum Implementation of AES 17

Algorithm 2 Search Optimized NCT-based Circuits

Input: The implementation (denoted by Imp) for fi (i = 1, 2) with input set X and
output set S, the expressions of the auxiliary variables in Y ;

Output: Optimized NCT-based circuit of fi;
1: E ← ∅; ▷ The set to be expanded;
2: Rearrange Imp randomly according to Fact 1 - 3;
3: E ← Classify(Imp, Y); ▷ Algorithm 1
4: N ← |E|; ▷ The number of elements in E;
5: for i = 0, N − 1 do
6: Move the operations in Ci to be adjacent;
7: Index← ∅;
8: l← |Ci|; ▷ The number of elements in Ci;
9: for j = 0, l − 1 do

10: t← the number of auxiliary variables in the jth element of Ci;
11: for k = 0, t− 1 do
12: if yk is linear related to δ elements of X, denoted by xi0 , ..., xiδ−1

then

13: xi′ ← rand(xi0 , xi1 , ..., xiδ−1
); ▷ to store the value of yk;

14: while xi′ ∈ Index do
15: xi′ ← rand(xi0 , xi1 , ..., xiδ−1

);
16: end while
17: Index = Index ∪ {xi′ };
18: add the s-Xor implementation of yk to Imp before operations in

Ci;
19: update X and replace yk by xi′ in the operation of Ci;
20: end if
21: end for
22: end for
23: end for
24: return Imp;

of auxiliary variables, we have y12 = x0 ⊕ x3 ⊕ x5 ⊕ x6. Suppose that x0 is chosen
randomly from {x0, x3, x5, x6} to store the value of y12 under s-Xor metric. Thus,
x0 can not be used to store the value of any other auxiliary variables in C0. Then
Index is updated as Index = {x0} and x0 = x0⊕x3⊕x5⊕x6 is added to Imp before
t21 = t21⊕y12 ·y15. Next, we consider y15 which can be recomputed as x0⊕x4⊕x5,
where x0 has been updated as x0 = x0 ⊕ x3 ⊕ x5 ⊕ x6. Since x0 has been used to
store the value of y12, we can only choose x4 or x5 to store the value of y15 under
s-Xor metric. Assuming that x4 is chosen, then we add x4 to Index and insert x4 =
x4⊕x5⊕x0 before the operation t21 = t21⊕y12 ·y15. The remaining elements of C0

can be updated in the same way. Replace the y′s in C0 by the corresponding elements
in Index and Algorithm 2 returns {x0 = x0 ⊕ x3 ⊕ x5 ⊕ x6, x4 = x4 ⊕ x5 ⊕ x0, x1 =
x1 ⊕ x2 ⊕ x3 ⊕ x7, x3 = x3 ⊕ x5, x2 = x2 ⊕ x0 ⊕ x6, x6 = x6 ⊕ x5 ⊕ x1 ⊕ x0, x5 =
x5⊕x1⊕x2⊕x3⊕x4, t21 = t21⊕x0 ·x4, t22 = t22⊕x1 ·x7, t23 = t23⊕x3 ·x2, t24 =
t24 ⊕ x6 · x5} as one of the in-place implementation of the elements of C0.

The strategy of randomization is adopted in Algorithm 2. The step of
randomly rearranging Imp by using Fact 1 - 3 (i.e., line 2) is aimed at providing
different input for Algorithm 1, which is related to the Toffoli depth. According

18 Optimized Quantum Implementation of AES

to Observation 1, each time when we randomly choose a variable from the
input set for calculating an auxiliary variable from Y (i.e., line 13 to line 16),
we can obtain different implementations of the auxiliary variable. Therefore,
for each call to Algorithm 2, a different NCT-based circuit may be returned.
Thus, we can run Algorithm 2 several times and keep the best one with the
Toffoli depth as the primary consideration.

4.3 Reversible Circuits of AES S-box

4.3.1 Circuits for |x⟩|0⟩⊗n S-box−−−→ |x⟩|S(x)⟩|0⟩⊗(n−8)

We allocate five qubits to build the reversible circuit for f1, four of which are
used to store the values of t21, t22, t23, t24, and the rest one is an ancilla qubit.
Applying Algorithm 2 to f1, we can get an NCT-based circuit of f1 which
costs 5 ancilla qubits, 12 Toffoli gates, and 45 CNOT gates. The Toffoli depth
of the circuit is 3. The implementation is listed in Appendix D.1.

The reversible circuit of S4 with Toffoli depth 6 is listed in Appendix D.2,
which only costs one ancilla qubit (denoted by a). The ancilla qubit allocated
for this part can reuse the one from f1. Since f2 requires no ancilla qubits, we
do not reset the ancilla qubit in the reversible circuits of S4 for saving Toffoli
gates and reducing Toffoli depth. The circuit for S4 consumes 6 Toffoli gates
and 4 CNOT gates. If 2 ancilla qubits are allocated for S4, the Toffoli depth
of the circuit listed in Appendix D.2 can be reduced from 6 to 5. As listed in
Appendix D.3, in which a and b represent ancilla qubits, the circuit consumes
6 Toffoli gates and 5 CNOT gates.

Different from f1, when devising a quantum style implementation of f2, we
first generate an implementation of the bottom function B based on the obser-
vation presented in Subsection 4.1. The bottom function B takes (z0, z1, ..., z17)
as inputs and generates the outputs of AES S-box. Among the 18 inputs of B, 8
of them store the outputs of AES S-box under s-Xor metric. Using the imple-
mentation of the bottom function, a quantum style implementation of f2 can
be derived, which is listed in Appendix C. It is worth noting that the auxiliary
variable set Y for f2 consists of t29, t33, t37, t40, t41, t42, t43, t44, t45, y0, y1, ..., y21
where ti (i = 41, 42, ..., 45) are linear combinations of the outputs of the
4-bit S-box, i.e., t29, t33, t37, t40, and yj (j = 0, 1, ..., 21) are linear expres-
sions of the inputs of AES S-box. Thus, the input set for f2 is X =
{t29, t33, t37, t40, x0, x1, ..., x7}. Then, we apply Algorithm 2 and obtain an opti-
mized NCT-based circuit which costs 21 Toffoli gates, 55 CNOT gates and
4 Pauli-X gates. The Toffoli depth of the circuit is 6. The implementation is
listed in Appendix D.4.

When devising a complete NCT-based circuit for AES S-box, we first apply
f1, S4 and f2 to get the outputs of AES S-box, then the inverse circuits of S4

and f1 will be applied in order to reset ancilla qubits. However, after being
updated by the circuit of f1 in an in-place manner, the inputs of AES S-box
(i.e., x0, x1, ..., x7) are then updated by the circuit of f2 with s-Xor operations.
Besides, the outputs of S4 are also updated by the circuit of f2 similarly.

Optimized Quantum Implementation of AES 19

Consequently, we should apply the linear operations applied to t29, t33, t37, t40
and x0, x1, ..., x7 in the circuit of f2 one more time to recover their values to
be equal to the outputs of S4 and f1 respectively before applying the inverse
circuits of S4 and f1.
Circuits for the S-box−1 When designing reversible circuit for the S-
box−1 with the classical one proposed in [32], Algorithm 2 returns a circuit
with Toffoli depth 26. If the method proposed in [13] is adopted, we combine
the 4 Pauli-X gates and linear transformation L−1 (given in [13]) applied to the
inputs of the S-box with the top function U of the classical circuit given in [5],
without changing the middle function F and the bottom function B. Thus,
the reversible circuit constructed for the S4 of AES S-box can also be used for
designing the circuit of the S-box−1. By applying Algorithm 2, a circuit with
Toffoli depth 24 can be acquired. The circuit is listed in Appendix E and will
be used to construct the NCT-based circuits for AES in this paper.

The quantum resource consumption of different NCT-based circuits are
summarized in Table 7.

Table 7 The comparison of different NCT-based circuits for outputs are |0⟩⊗8.

Operation Source #Qubits #Toffoli #CNOT #Pauli-X Toffoli Depth

S-box

[18] 16 55 314 4 40
[28] 16 55 322 4 40
[15] 120 34 186 4 6

[32]
6 52 326 4 41
7 48 330 4 39
8 46 332 4 37

[13]
120 34 212 4 4
202 78 355 4 3

This work
5 57 193 4 24
6 57 195 4 22

S-box−1

[13] 6 52 368 8 41

This work
5 58 187 10 26∗

5 57 205 8 24†

6 57 207 8 22†

∗ Constructed based on the classical circuit given in [32].
† Constructed based on the classical circuit given in [5].

4.3.2 Circuits for |x⟩|y⟩|0⟩⊗(n−8) S-box−−−→ |x⟩|y ⊕ S(x)⟩|0⟩⊗(n−8)

As shown in Subsection 2.3, B generates the outputs of the S-box with the out-

puts of F . Therefore, the only difference between the circuits for |x⟩|0⟩⊗n S-box−−−→
|x⟩|S(x)⟩|0⟩⊗(n−8) and |x⟩|y⟩|0⟩⊗(n−8) S-box−−−→ |x⟩|y ⊕ S(x)⟩|0⟩⊗(n−8) is the
implementation of F and B.

The construction of our NCT-based circuit for function B is based on the
heuristic given in [30], and the output qubits s0, s1, ..., s7 have never been
involved in any nonlinear operation. That is, the influence of y can be removed
by applying a sequence of CNOT gates for the circuit shown in Appendix D.

Take the output bit s0 in our proposed circuit shown in Appendix D.4 as
an example. The bit s0 is only used to update the values of s1, s2 and s6 by

20 Optimized Quantum Implementation of AES

applying CNOT gates. As a result, the influence of the initial value in s0 can
be removed by Xoring s0 to s1, s2 and s6 before s0 is updated. In short, before
applying the circuit shown in Appendix D.4, adding the operations formed as
si = si⊕sj in the circuit listed in Appendix D.4 in an inverse order can remove
the propagation of initial values, where i, j ∈ [0, 7] and i ̸= j. Finally, the
circuit built for the S-box when outputs are all 0s can be transformed to the
one that maps |x⟩|y⟩|0⟩⊗5 to |x⟩|y ⊕ S(x)⟩|0⟩⊗5. The operations added before
the circuit shown in Appendix D.4 are listed as follows.

s1 = s1 ⊕ s0, s4 = s4 ⊕ s3, s6 = s6 ⊕ s7, s7 = s7 ⊕ s4, s3 = s3 ⊕ s1,
s0 = s0 ⊕ s3, s2 = s2 ⊕ s0, s5 = s5 ⊕ s2, s2 = s2 ⊕ s6, s4 = s4 ⊕ s6,
s3 = s3 ⊕ s5, s1 = s1 ⊕ s6, s7 = s7 ⊕ s2, s6 = s6 ⊕ s0, s0 = s0 ⊕ s4.

Compared with the circuit that maps |x⟩|0⟩⊗13 to |x⟩|S(x)⟩|0⟩⊗5, the circuit
for the S-box with nonzero output values costs 15 CNOT gates more than the
one shown in Appendix D.

Similarly, we can deduce the circuit for the transformation that maps
|x⟩|y⟩|0⟩⊗5 to |x⟩|y ⊕ S−1(x)⟩|0⟩⊗5 from the one shown in Appendix E by
adding the operations listed in Appendix F. The cost of different NCT-based
circuits built for the S-box and the S-box−1 with outputs are not all 0s are
listed in Table 8.

Table 8 The comparison of different NCT-based circuits for outputs are not |0⟩⊗8.

Operation Source #Qubits #Toffoli #CNOT #Pauli-X Toffoli Depth

S-box

[32]
7 68 352 4 60
8 64 356 4 58
9 62 358 4 56

[28] 16 55 322 4 40
[13] 6 52 336 4 41

This work
5 57 208 4 24
6 57 210 4 22

S-box−1

[32]

7 69 335 24 62
8 67 337 24 60
9 65 339 24 60
10 63 341 24 60

This work
5 58 200 10 26∗

5 57 226 8 24†

6 57 228 8 22†

∗ Constructed based on the classical circuit given in [32].
† Constructed based on the classical circuit given in [5].

5 Schemes for the Round Function and the
Key Schedule

5.1 The Partial Zig-zag Method for Round Function

The pipeline, zig-zag and improved zig-zag methods are often used to design
the overall structure for AES with a complete round function and its inverse

Optimized Quantum Implementation of AES 21

for reducing depth. However, those methods require much qubits. In order to
save qubits, we adopt the method of constructing a partial round function and
its inverse. The mechanism was adopted in [2] to design quantum circuits for
SHA-2/SHA-3, and also be discussed in [13] to construct quantum circuits for
AES based on double-depth S-box circuits, by which, two sequential S-boxes
will be applied. In this paper, the implementation of a partial round function
and its inverse will be discussed more widely by using what we call partial
zig-zag method.

Assuming a0, a1, ..., a15 are the 16 8-qubit inputs, and a16 is an 8-qubit
tuple. The partial zig-zag method works as follows. First, the circuit |x⟩|0⟩ →
|x⟩|S(x)⟩ to |a0⟩|a16⟩ is applied to get the output of the first S-box. Then,
the circuit |x⟩|y⟩ → |x⟩|y ⊕ S−1(x)⟩ is applied to |a16⟩|a0⟩. This means once
the S-box circuit has been applied to update a certain byte, the qubits of the
corresponding input byte can be reset to zero by using the reversible circuit of
S-box−1, in this case, the S-box output of the first byte is stored in a16 and the
input byte a0 is reset to zero. Thus, a0 can be reused to store the S-box output
of the second byte in a similar way. Therefore, the partial zig-zag method can
execute the S-box layer of AES in sequential, and one S-box is performed each
time. Moreover, one can parallelly execute more S-boxes if more ancilla qubits
are available. In the following, we denote m the number of S-boxes that are
parallelly executed. Clearly, m = 1 is the case that we described as above,
m = 16 is equivalent to the improved zig-zag method. Generally, more S-boxes
are applied in parallel means more qubits are needed to store the outputs of
S-boxes. At the same time, more ancilla qubits are needed for these parallelly
executed S-boxes. In the case that m S-boxes are applied in paralleled, the
number of allocated storage qubits for the next round is 8m. In other words,
only 128 + 8m qubits are required using the partial zig-zag method.

Denote the state of the ith round byRi, the partial zig-zag method for AES-

128 when m = 4 is shown in Figure 3, where R
1
4
i represents the application of

S-boxes to four bytes for the ith round, and R
− 1

4
i means resetting four bytes

of the ith round.

R1

R2

R3

R4

R6

R8

R9

R5

R7

R10

R1

R2

R3

R4

Rr-1

Rr Output

|0128

|0128

|0
128

|0128

|0128

|0128

R1

R2

R3

R4

|0128

|0128

|0128

|0128

R1
-1

R3
-1

R2
-1

R5

R6

R7

R5
-1

R6
-1

R8

R9

R8
-1 R10 Output

R1

R2

|0128

|0128

R1
-1 R3

R2
-1

R3
-1

R4

R5

OutputR4
-1 R6

R5
-1 R7

R6
-1 R8

R7
-1 R9 R9

-1

R8
-1 R10

Output|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

Input Key

Input Key

Input Key

Input Key

Output

Input Key

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1 𝑅2

𝑅2

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅2
−
1
4

𝑅3

𝑅8

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

𝑅7
−
1
4

𝑅8
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅10

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

… 4 round AES …

|0160

|032

3 15

ShiftRows

(f)(g)(h)

(e)

(e)

MixColumns SubByte(s)

Apply m S-box-1(es)n InvMixColumn(s)InvShiftRows

|0128

Input Key

Plaintext

SubBytes

Apply 4 InvS-boxes

The first round

AddRoundKey

The second round

|08m

Plaintext R2 R4 Rr-1 Rr Ciphertext

rk0 rk1 rk4 rkr

ShiftRows

(b)(c)(d)

(e)
8 12

(a)

MixColumns AddRoundKeySubBytes

R3

rk2

R1

rk3 rkr-1

...

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-281

W0

W1

W2

W3

X

Anc

Anc

X

X

W0

W3

Anc

X W4

AncAnc

S
h
if

tR
o
w

s

M
ix

C
o
lu

m
n
s

Anc

W5

W6

W7

(a) (b) (c) (d) (e)

𝑆𝑜𝑢𝑡
1

𝑆𝑖𝑛
1

𝑆𝑖𝑛
3

𝑆𝑜𝑢𝑡
3

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

0

0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
2

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
2

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc
12

Anc
20

Anc
10

𝑆𝑜𝑢𝑡
4

Anc
24

0

M
ix

C
o
lu

m
n
s

S
h
if

tR
o
w

s

W3

W2

W3

W1

Anc
20

W2

W3

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

W0 X W8

W9

W10

W11

(a) (b) (c) (d)

𝑆𝑖𝑛
16

𝑆𝑜𝑢𝑡
8

W6

W7

W4

0

W5

288-319 0

320-351

352-383 0

𝑆𝑜𝑢𝑡
4

0

M
C

S
R

W1

384-415

416-447

448-479

480-487

0

0

0

0

Anc

𝑆𝑜𝑢𝑡
16

S
h
if

tR
o
w

s

M
ix

C
o
lu

m
n
s

A
d
d

R
o

u
n

d
K

e
y

𝑆𝑖𝑛
8

Anc

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
8

𝑆𝑜𝑢𝑡
8

Anc

𝑆𝑖𝑛
−8

X

W2

W3

𝑆𝑖𝑛
−8

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
4

Anc

0

0

0

0

W7

S
R

M
C

A
K

A
K

W4

W5

W6

W7

|a

|b

|a

|b⊕a

CNOT gate

|a |a⊕1

Pauli-X gate

|a

|b

|a

|b

Toffoli gate

|c |c⊕a·b

X

Anc
16

W1

A
d
d

R
o

u
n

d
K

e
y

W4

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

(a) (b) (c)

𝑆𝑖𝑛
4

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u
n
d

0

0

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

10

5

0

3

14

9

4

7

2

13

8

11

6

1

12

(a) (b) (c) (d)

R1

𝑅2

1
4

|032

Input Key

|032

|032

|032

|032

R2

𝑅2

1
4

𝑅2

1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

 𝑅1
−
1
4

𝑅1
−
1
4

|032

SB*

H 128

SB*

SB*

SB*

RC

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

Anc
8

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

P P Rcon P

P

P

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u
n
d

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

Anc
20

Rcon

W0

W1

W2

W3

X

𝑅𝑆𝑖𝑛
4

Anc
20

Rcon

X

P

𝑅𝑆𝑖𝑛
4

(a)

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

0

Anc
20

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑅𝑆𝑖𝑛
1

Anc
20

𝑅𝑆𝑖𝑛
4

invMC+invSR

S
u

b
B

y
te

s

𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

0

M
ix

C
o
lu

m
n
s

S
h
if

tR
o
w

s

W3

W2

W3

W1

A
d
d

R
o

u
n

d
K

e
y

W4

P P Rcon P

P

P

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

Anc
20

Anc
20

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

X

W10

W11

W9

W8

Anc
8

Anc
20

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

T
h
e

F
ir

st
 R

o
u
n
d

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc
10

Anc
20

𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

Anc
8

Anc
12

Anc
4

Anc
16

Anc
10

0

0

0

0

0

0

0

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
−4

X

W10

W11

W9

W8

Anc
8

Anc
24

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-479

0

0

0

0

0

0

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
16

Anc
16

𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

Anc
16

Anc
8

Anc
24

0

0

0

0

0

0

0

Rcon

Anc
8

480-483 0

T
h
e

F
ir

st
 R

o
u
n
d

0 Anc
20

Anc
4 0

Fig. 3 The procedure for the SubBytes when m = 4.

22 Optimized Quantum Implementation of AES

5.2 Scheme for the Key Schedule

The research in [15] reveals that a reversible circuit that maps |x⟩|y⟩|0⟩⊗(n−8)

to |x⟩|y ⊕ S(x)⟩|0⟩⊗(n−8) can be used to reduce the qubit consumption of the
key schedule. Based on such circuit, the authors of [14, 15, 28] implemented the
key schedule without introducing storage qubits. In this paper, we adopt the
framework presented in [15] to implement the key schedules for all instances of
AES. The scheme for AES-128 is shown in Figure 4 as an example to illustrate
the procedure.

R1

R2

R3

R4

R6

R8

R9

R5

R7

R10

R1

R2

R3

R4

Rr-1

Rr Output

|0128

|0128

|0
128

|0128

|0128

|0128

R1

R2

R3

R4

|0128

|0128

|0128

|0128

R1
-1

R3
-1

R2
-1

R5

R6

R7

R5
-1

R6
-1

R8

R9

R8
-1 R10 Output

R1

R2

|0128

|0128

R1
-1 R3

R2
-1

R3
-1

R4

R5

OutputR4
-1 R6

R5
-1 R7

R6
-1 R8

R7
-1 R9 R9

-1

R8
-1 R10

Output|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

Input Key

Input Key

Input Key

Input Key

Output

Input Key

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1 𝑅2

𝑅2

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅2
−
1
4

𝑅3

𝑅8

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

𝑅7
−
1
4

𝑅8
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅10

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

… 4 round AES …

|0160

|032

3 15

ShiftRows

(f)(g)(h)

(e)

(e)

MixColumns SubByte(s)

Apply m S-box-1(es)n InvMixColumn(s)InvShiftRows

|0128

Input Key

Plaintext

SubBytes

Apply 4 InvS-boxes

The first round

AddRoundKey

The second round

|08m

Plaintext R2 R4 Rr-1 Rr Ciphertext

rk0 rk1 rk4 rkr

ShiftRows

(b)(c)(d)

(e)
8 12

(a)

MixColumns AddRoundKeySubBytes

R3

rk2

R1

rk3 rkr-1

...

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-281

W0

W1

W2

W3

X

Anc

Anc

X

X

W0

W3

Anc

X W4

AncAnc

S
h

if
tR

o
w

s

M
ix

C
o

lu
m

n
s

Anc

W5

W6

W7

(a) (b) (c) (d) (e)

𝑆𝑜𝑢𝑡
1

𝑆𝑖𝑛
1

𝑆𝑖𝑛
3

𝑆𝑜𝑢𝑡
3

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

0

0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
2

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
2

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc
12

Anc
20

Anc
10

𝑆𝑜𝑢𝑡
4

Anc
24

0

M
ix

C
o
lu

m
n

s

S
h
if

tR
o

w
s

W3

W2

W3

W1

Anc
20

W2

W3

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

W0 X W8

W9

W10

W11

(a) (b) (c) (d)

𝑆𝑖𝑛
16

𝑆𝑜𝑢𝑡
8

W6

W7

W4

0

W5

288-319 0

320-351

352-383 0

𝑆𝑜𝑢𝑡
4

0

M
C

S
R

W1

384-415

416-447

448-479

480-487

0

0

0

0

Anc

𝑆𝑜𝑢𝑡
16

S
h
if

tR
o
w

s

M
ix

C
o
lu

m
n

s

A
d
d

R
o

u
n

d
K

e
y

𝑆𝑖𝑛
8

Anc

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
8

𝑆𝑜𝑢𝑡
8

Anc

𝑆𝑖𝑛
−8

X

W2

W3

𝑆𝑖𝑛
−8

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
4

Anc

0

0

0

0

W7

S
R

M
C

A
K

A
K

W4

W5

W6

W7

|a

|b

|a

|b⊕a

CNOT gate

|a |a⊕1

Pauli-X gate

|a

|b

|a

|b

Toffoli gate

|c |c⊕a·b

X

Anc
16

W1

A
d
d

R
o

u
n

d
K

e
y

W4

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

(a) (b) (c)

𝑆𝑖𝑛
4

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u

n
d

0

0

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

10

5

0

3

14

9

4

7

2

13

8

11

6

1

12

(a) (b) (c) (d)

R1

𝑅2

1
4

|032

Input Key

|032

|032

|032

|032

R2

𝑅2

1
4

𝑅2

1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

 𝑅1
−
1
4

𝑅1
−
1
4

|032

SB*

SB*

SB*

SB*

RC

|

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

Anc
8

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

P P Rcon P

P

P

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u
n

d

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

Anc
20

Rcon

W0

W1

W2

W3

X

𝑅𝑆𝑖𝑛
4

Anc
20

Rcon

X

P

𝑅𝑆𝑖𝑛
4

(a)

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

0

Anc
20

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑅𝑆𝑖𝑛
1

Anc
20

𝑅𝑆𝑖𝑛
4

invMC+invSR

S
u

b
B

y
te

s

𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

0

M
ix

C
o

lu
m

n
s

S
h

if
tR

o
w

s

W3

W2

W3

W1

A
d
d

R
o

u
n

d
K

e
y

W4

P P Rcon P

P

P

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

Anc
20

Anc
20

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

X

W10

W11

W9

W8

Anc
8

Anc
20

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

T
h
e

F
ir

st
 R

o
u

n
d

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc
10

Anc
20

𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

Anc
8

Anc
12

Anc
4

Anc
16

Anc
10

0

0

0

0

0

0

0

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
−4

X

W10

W11

W9

W8

Anc
8

Anc
24

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-479

0

0

0

0

0

0

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
16

Anc
16

𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

Anc
16

Anc
8

Anc
24

0

0

0

0

0

0

0

Rcon

Anc
8

480-483 0

T
h

e
F

ir
st

 R
o

u
n

d

0 Anc
20

Anc
4 0

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

𝑘𝑖
0

| 𝑘𝑖
1

| 𝑘𝑖
2

| 𝑘𝑖
3

| 𝑘𝑖
5

| 𝑘𝑖
6

| 𝑘𝑖
7

| 𝑘𝑖
10

| 𝑘𝑖
13

| 𝑘𝑖
15

|

| 𝑘𝑖
4

| 𝑘𝑖
8

| 𝑘𝑖
9

|

| 𝑘𝑖
14

𝑘𝑖
12

𝑘𝑖
11

Fig. 4 The scheme for the key schedule of AES-128, where kji represents the jth byte in
the ith round key, SB∗ is the modified SubBytes, RC is the Xor of the round constant.

6 NCT-based Circuits of AES

6.1 The Scheme for the AES Family

We investigate the performance of the circuit with m parallel S-boxes. For a
given m, the allocated qubits for AES are also determined, i.e., k qubits for the
master key (k = 128, 192 and 256 for the three instances of AES, respectively),
128 qubits for the first round, (8 + 5)m qubits7 for the m parallel S-boxes,
where m ∈ [1, 16]. We take m = 4 for AES-128 as an example to illustrate the
encryption of the AES family.
The First Round In the process of the key whitening, the plaintext is
Xored to the master key for saving qubits. For a given plaintext, the key

7Note that we have also designed the NCT-based circuit that costs 6 ancilla qubits for AES
S-box, however, in order to save qubits, only 5 ancilla qubits are allocated for each S-box in the
very beginning.

Optimized Quantum Implementation of AES 23

whitening can be implemented by inverting the qubits in the master key cor-
responding to the bits in the plaintext with a value of 1. Therefore, at most
128 Pauli-X gates are required to implement the key whitening. For m = 4,
there are 128 + 4 × 13 = 180 qubits with zero value for the first round. The
first round requires 20 S-boxes, 4 for the key schedule and 16 for the round
function. Due to the qubit consumption of the reversible circuits constructed
for the S-box in Section 4, 180 qubits with zero value is enough for us to imple-
ment the first round within an S-box depth of 2. The implementation of the
first round is depicted in Figure 5, where X represents the Pauli-X gate, Ancn

represents the usage of n ancilla qubits, Sj
in and Sj

out are the inputs and the
outputs of j S-boxes. Specifically, the first round starts with applying 12 S-
boxes to the bytes in the state, after which 84 qubits with value zero are left.
Inverting the bits in the state according to the plaintext again can recover 64
bits of the master key, by which we can generate partial words of the round
key. Note that the first word of the round key, i.e.,W4, should be calculated
with the knowledge of W0 and W3. Hence, among the 12 S-boxes applied in
step (b), 8 should be applied to the first and the fourth words in the state as
shown in Figure 5 with step (b).

R1

R2

R3

R4

R6

R8

R9

R5

R7

R10

R1

R2

R3

R4

Rr-1

Rr Output

|0128

|0128

|0
128

|0128

|0128

|0128

R1

R2

R3

R4

|0128

|0128

|0128

|0128

R1
-1

R3
-1

R2
-1

R5

R6

R7

R5
-1

R6
-1

R8

R9

R8
-1 R10 Output

R1

R2

|0128

|0128

R1
-1 R3

R2
-1

R3
-1

R4

R5

OutputR4
-1 R6

R5
-1 R7

R6
-1 R8

R7
-1 R9 R9

-1

R8
-1 R10

Output|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

Input Key

Input Key

Input Key

Input Key

Output

Input Key

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1 𝑅2

𝑅2

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅2
−
1
4

𝑅3

𝑅8

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

𝑅7
−
1
4

𝑅8
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅10

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

… 4 round AES …

|0160

|032

3 15

ShiftRows

(f)(g)(h)

(e)

(e)

MixColumns SubByte(s)

Apply m S-box-1(es)n InvMixColumn(s)InvShiftRows

|0128

Input Key

Plaintext

SubBytes

Apply 4 InvS-boxes

The first round

AddRoundKey

The second round

|08m

Plaintext R2 R4 Rr-1 Rr Ciphertext

rk0 rk1 rk4 rkr

ShiftRows

(b)(c)(d)

(e)
8 12

(a)

MixColumns AddRoundKeySubBytes

R3

rk2

R1

rk3 rkr-1

...

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-281

W0

W1

W2

W3

X

Anc

Anc

X

X

W0

W3

Anc

X W4

AncAnc

S
h

if
tR

o
w

s

M
ix

C
o

lu
m

n
s

Anc

W5

W6

W7

(a) (b) (c) (d) (e)

𝑆𝑜𝑢𝑡
1

𝑆𝑖𝑛
1

𝑆𝑖𝑛
3

𝑆𝑜𝑢𝑡
3

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

0

0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

 𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
8

Anc
24

𝑆𝑜𝑢𝑡
4

Anc
24

0

M
ix

C
o
lu

m
n
s

S
h

if
tR

o
w

s

W3

W2

W3

W1

Anc
20

W2

W3

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

W0 X W8

W9

W10

W11

(a) (b) (c) (d)

𝑆𝑖𝑛
16

𝑆𝑜𝑢𝑡
8

W6

W7

W4

0

W5

288-319 0

320-351

352-383 0

𝑆𝑜𝑢𝑡
4

0

M
C

S
R

W1

384-415

416-447

448-479

480-487

0

0

0

0

Anc

𝑆𝑜𝑢𝑡
16

S
h

if
tR

o
w

s

M
ix

C
o
lu

m
n

s

A
d
d

R
o

u
n

d
K

e
y

𝑆𝑖𝑛
8

Anc

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
8

𝑆𝑜𝑢𝑡
8

Anc

𝑆𝑖𝑛
−8

X

W2

W3

𝑆𝑖𝑛
−8

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
4

Anc

0

0

0

0

W7

S
R

M
C

A
K

A
K

W4

W5

W6

W7

|a

|b

|a

|b⊕a

CNOT gate

|a |a⊕1

Pauli-X gate

|a

|b

|a

|b

Toffoli gate

|c |c⊕a·b

X

W1

A
d
d

R
o

u
n

d
K

e
y

W4

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

(a) (b) (c)

𝑆𝑖𝑛
4

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u
n

d

0

0

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

10

5

0

3

14

9

4

7

2

13

8

11

6

1

12

(a) (b) (c) (d)

R1

𝑅2

1
4

|032

Input Key

|032

|032

|032

|032

R2

𝑅2

1
4

𝑅2

1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

 𝑅1
−
1
4

𝑅1
−
1
4

|032

SB*

SB*

SB*

SB*

RC

|

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

|0

Anc
16

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

P P Rcon P

P

P

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u
n

d

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

Anc
20

Rcon

W0

W1

W2

W3

X

𝑅𝑆𝑖𝑛
4

Anc
20

Rcon

X

P

𝑅𝑆𝑖𝑛
4

(a)

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

0

Anc
20

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

Anc
20

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑖𝑛
4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑅𝑆𝑖𝑛
1

Anc
20

𝑅𝑆𝑖𝑛
4

invMC+invSR

S
u

b
B

y
te

s

𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

 𝑅𝑆𝑖𝑛
1

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

0

M
ix

C
o
lu

m
n

s

S
h
if

tR
o
w

s

W3

W2

W3

W1

A
d
d

R
o

u
n

d
K

e
y

W4

P P Rcon P

P

P

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
20

Anc
20

Anc
20

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

X

W10

W11

W9

W8

Anc
8

Anc
20

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-473

0

0

0

0

0

0

T
h

e
F

ir
st

 R
o
u
n

d

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc
10

Anc
20

𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

Anc
8

Anc
12

Anc
4

Anc
16

Anc
10

0

0

0

0

0

0

0

Rcon

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

𝑆𝑖𝑛
4

0

0

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

0 𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
−4

X

W10

W11

W9

W8

Anc
8

Anc
24

(a) (b) (c) (d)

288-319

320-351

352-383

384-415

416-447

448-479

0

0

0

0

0

0

0

0

0

0

0

0

Anc
20

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
4

Anc
4

Anc
12

Anc
20

Anc
16

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

Anc
16

Anc
16

𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

 𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

𝑆𝑖𝑛
−4

Anc
16

Anc
8

Anc
24

0

0

0

0

0

0

0

Rcon

Anc
8

480-483 0

T
h
e

F
ir

st
 R

o
u
n

d

0 Anc
20

Anc
4 0

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

𝑘𝑖
0

| 𝑘𝑖
1

| 𝑘𝑖
2

| 𝑘𝑖
3

| 𝑘𝑖
5

| 𝑘𝑖
6

| 𝑘𝑖
7

| 𝑘𝑖
10

| 𝑘𝑖
13

| 𝑘𝑖
15

|

| 𝑘𝑖
4

| 𝑘𝑖
8

| 𝑘𝑖
9

|

| 𝑘𝑖
14

𝑘𝑖
12

𝑘𝑖
11

Anc
8

Anc
16

Anc
4

Fig. 5 The quantum circuit for the first round of AES-128.

Besides, the round keys are generated in an in-place way, and no additional
storage qubits are required by the key schedule. It means that the 4 S-boxes
for computing W4 and the remaining 4 S-boxes applies to the bytes in the
state can be implemented in parallel. The procedure is shown in Figure 5 with
step (c), after which 52 qubits with zero value are left. The first round is
completed with step (d), which contains the implementation of ShiftRows,
MixColumns and AddRoundKey.
The Rest Rounds The implementation of the second round is shown in
Figure 6, where S−j

in and S−j
out are the inputs and the outputs of j S-box−1es.

After the first round, there are 52 qubits with zero value. Each time we
apply 4 S-boxes for the round function, it increases both the S-box depth and
the S-box−1 depth by 4 (as shown in Figure 6 with step (a)), while the key

24 Optimized Quantum Implementation of AES

R1

R2

R3

R4

R6

R8

R9

R5

R7

R10

R1

R2

R3

R4

Rr-1

Rr Output

|0128

|0128

|0128

|0
128

|0128

|0128

R1

R2

R3

R4

|0128

|0128

|0128

|0128

R1
-1

R3
-1

R2
-1

R5

R6

R7

R5
-1

R6
-1

R8

R9

R8
-1 R10 Output

R1

R2

|0128

|0128

R1
-1 R3

R2
-1

R3
-1

R4

R5

OutputR4
-1 R6

R5
-1 R7

R6
-1 R8

R7
-1 R9 R9

-1

R8
-1 R10

Output|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

|0128

Input Key

Input Key

Input Key

Input Key

Output

Input Key

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

𝑅2

1
4

𝑅1 𝑅2

𝑅2

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅3

1
4

𝑅3

1
4

𝑅2
−
1
4

𝑅2
−
1
4

𝑅3

𝑅8

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

1
4

𝑅9

1
4

𝑅8
−
1
4

𝑅9

𝑅7
−
1
4

𝑅8
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅9
−
1
4

𝑅10

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

𝑅10

1
4

… 4 round AES …

|0160

|032

3 15

ShiftRows

(f)(g)(h)

(e)

(e)

MixColumns SubByte(s)

Apply m S-box-1(es)n InvMixColumn(s)InvShiftRows

|0128

Input Key

Plaintext

SubBytes

Apply 4 InvS-boxes

The first round

AddRoundKey

The second round

|08m

Plaintext R2 R4 Rr-1 Rr Ciphertext

rk0 rk1 rk4 rkr

ShiftRows

(b)(c)(d)

(e)
8 12

(a)

MixColumns AddRoundKeySubBytes

R3

rk2

R1

rk3 rkr-1

...

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

|s7

|s6

|s5

|s4

|s3

|s2

|s1

|s0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-281

W0

W1

W2

W3

X

Anc

Anc

X

X

W0

W3

Anc

X W4

AncAnc

S
h

if
tR

o
w

s

M
ix

C
o

lu
m

n
s

Anc

W5

W6

W7

(a) (b) (c) (d) (e)

𝑆𝑜𝑢𝑡
1

𝑆𝑖𝑛
1

𝑆𝑖𝑛
3

𝑆𝑜𝑢𝑡
3

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

0

0

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

X W0 X W4

W5

W6

W7

(a) (b) (c) (d)

𝑆𝑖𝑛
4

𝑆𝑖𝑛
2

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
2

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
4

X

X

X

0

0

0

288-307

0

0

𝑆𝑖𝑛
2

𝑆𝑜𝑢𝑡
2

Anc
10

Anc
20

Anc
10

𝑆𝑜𝑢𝑡
4

Anc
20

0

M
ix

C
o

lu
m

n
s

S
h

if
tR

o
w

s

W3

W2

W3

W1

Anc
20

W2

W3

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

X

W0 X W8

W9

W10

W11

(a) (b) (c) (d)

𝑆𝑖𝑛
16

𝑆𝑜𝑢𝑡
8

W6

W7

W4

0

W5

288-319 0

320-351

352-383 0

𝑆𝑜𝑢𝑡
4

0

M
C

S
R

W1

384-415

416-447

448-479

480-487

0

0

0

0

Anc

𝑆𝑜𝑢𝑡
16

S
h
if

tR
o
w

s

M
ix

C
o

lu
m

n
s

A
d
d

R
o

u
n

d
K

e
y

𝑆𝑖𝑛
8

Anc

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
8

𝑆𝑜𝑢𝑡
8

Anc

𝑆𝑖𝑛
−8

X

W2

W3

𝑆𝑖𝑛
−8

𝑆𝑜𝑢𝑡
−8

Anc

𝑆𝑖𝑛
4

Anc

0

0

0

0

W7

S
R

M
C

A
K

A
K

W4

W5

W6

W7

|a

|b

|a

|b⊕a

CNOT gate

|a |a⊕1

Pauli X gate

|a

|b

|a

|b

Toffoli gate

|c |c⊕a·b

X

Anc
16

W1

A
d
d

R
o

u
n

d
K

e
y

W4

Qubits

0-31

32-63

64-95

96-127

128-159

160-191

192-223

224-255

256-287

W0

W1

W2

W3

W4

W5

W6

W7

(a) (b) (c)

𝑆𝑖𝑛
4

0

0

0

288-307

0

0

0

M
C

S
R

W6

W7

W5

A
K

W8

T
h
e

F
ir

st
 R

o
u
n
d

0

0

𝑆𝑜𝑢𝑡
4

𝑆𝑜𝑢𝑡
−4

𝑆𝑖𝑛
−4

𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0 𝑆𝑜𝑢𝑡
4

𝑆𝑖𝑛
−4

 𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
−4

0

𝑆𝑖𝑛
4

𝑆𝑜𝑢𝑡
4

X

W10

W11

W9

W8

S
R

M
C

A
K

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

10

5

0

3

14

9

4

7

2

13

8

11

6

1

12

(a) (b) (c) (d)

R1

𝑅2

1
4

|032

Input Key

|032

|032

|032

|032

R2

𝑅2

1
4

𝑅2

1
4

𝑅2

1
4

𝑅1
−
1
4

𝑅1
−
1
4

 𝑅1
−
1
4

𝑅1
−
1
4

|032

SB*

H 128

SB*

SB*

SB*

RC

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

|08

Anc
4

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

Anc
20

P P Rcon P

P

P

Rcon

Fig. 6 The quantum circuit for the second round of AES-128.

schedule only increases the S-box depth by 1 (as shown in Figure 6 with step
(b)). The remaining operations of the second round are shown in Figure 6 with
step (c). The rest rounds can be implemented in the same way as the second
round.

6.2 The Quantum Resource Estimate

The circuits constructed for AES S-box and it inverse are the only two nonlin-
ear components used for designing NCT-based circuits of AES. However, due
to the number of ancilla qubits allocated for each S-box or S-box−1, different
quantity of various circuits constructed for S-box and S-box−1 will be applied.
The S-boxes in the first round can be implemented with different circuits that
consume 5 or 6 ancilla qubits, which will be discussed later. For the rest rounds,
it can be easily verified that the last (16 mod m) S-boxes in the round func-
tion, the last (16 mod m) S-box−1es for removing the previous round and the
4 S-boxes for the key schedule can alway be implemented by the reversible
circuits that consume 6 ancilla qubits if 16

m /∈ Z+. For the case that 16
m ∈ Z+,

the 4 S-boxes for the key schedule can also be implemented by the reversible
circuit that consumes 6 ancilla qubits. Denote the circuits constructed for

|x⟩|0⟩⊗(n+8) S-box−−−→ |x⟩|S(x)⟩|0⟩⊗n and |x⟩|S(x)⟩|0⟩⊗n S-box−1

−−−−−→ |x⟩|0⟩⊗(n+8)

by Sn and S−1∗
n respectively, where n ∈ {5, 6} is the number of allocated

ancilla qubits. Similarily, the circuit for |x⟩|y⟩|0⟩⊗14 S-box−−−→ |x⟩|y ⊕ S(x)⟩|0⟩⊗6

is denoted by S∗
6 . Denote by CnotS5

the CNOT gate consumption of the
circuit constructed for S5, the cost of other gates are denoted in the same
way. The total number of applied SubWord operations and the number of
applied SubWord except the first round are denoted by w and w

′
, where

w = 10, 8, 13, w
′
= 9, 7, 13 for the three instances of AES respectively. Denote

by r the round number and r = 10, 12, 14 for AES-128, AES-192 and AES-
256, respectively. For simplicity, (16 mod m) is denoted by z and (16 − (16
mod m)) is denoted by z

′
in the following equations.

Optimized Quantum Implementation of AES 25

The number of CNOT gates consumed by an NCT-based circuit of AES
except the nonlinear component in the first round can be calculated by

128r + 4 · CnotS∗
6
· w

′
+ (4 · 92 + 16 · CnotS5+

16 · CnotS−1∗
5

)(r − 1) + t, if
16

m
∈ Z+,

128r + 4 · CnotS∗
6
· w

′
+ (4 · 92 + z

′
· CnotS5

+

z · CnotS6 + z
′
· CnotS−1∗

5
+ z · CnotS−1∗

6
)(r − 1) + t, otherwise,

where t = 3 · 32w for AES-128 and AES-256, = 3 · 32w − 2 · 32 + 4 · 32(r −w)
for AES-192.

The number of Pauli-X gates consumed by an NCT-based circuit of AES
except the nonlinear component in the first round can be calculated by
128 · 2 +HW (Rcon) + 4 ·XS∗

6
· w

′
+ 16(XS5

+XS−1∗
5

)(r − 1), if
16

m
∈ Z+,

128 · 2 +HW (Rcon) + 4 ·XS∗
6
· w

′
+ (z

′
·XS5 + z ·XS6+

z
′
·XS−1∗

5
+ z ·XS−1∗

6
)(r − 1), otherwise,

where HW (Rcon) is the Hamming weight of all the round constants.
The number of Toffoli gates consumed by an NCT-based circuit of AES

except the nonlinear component in the first round can be calculated by
4 · ToffoliS∗

6
· w

′
+ 16(ToffoliS5

+ ToffoliS−1∗
5

)(r − 1), if
16

m
∈ Z+,

4 · ToffoliS∗
6
· w

′
+ (z

′
· ToffoliS5

+ z · ToffoliS6
+

z
′
· ToffoliS−1∗

5
+ z · ToffoliS−1∗

6
)(r − 1), otherwise.

Assuming that the partial zig-zag method executes m S-boxes in parallel,
and we allocate l extra ancilla qubits for the key schedule (which will be
explained later). The number of consumed qubits is

128 + k + 13m+ l,

where k is the key length.
Denote by dS5

the Toffoli depth of the circuit constructed for S5, the Toffoli
depth of other circuits designed for the S-box and the S-box−1 are denoted in
the same way.
Case for l = 0 Assuming that m S-boxes are applied each time. If 16

m ∈ Z+,
the 16 S-box in the round function and the 16 S-box−1 for removing the
previous round will be implemented with the circuits that consume 5 ancilla
qubits. The SubWord of the key schedule can be implemented by using the
circuit that costs 6 ancilla qubits within ⌈ 24

13m⌉ S-box depth (case 1). Otherwise,

26 Optimized Quantum Implementation of AES

if 16
m /∈ Z+, 2 of the S-boxes for the key schedule can be implemented in

parallel with last (16 mod m) S-boxes for the SubBytes, and the remaining
2 S-boxes can be implemented in parallel with last (16 mod m) S-box−1es
for removing the previous round (case 2). In this case, only the circuits that
consume 6 ancilla qubits will be used, since (16 mod m) · 14+ 2 · 6 ≥ 13m and
((16 mod m) ·6+2 ·6) ≥ (13m−(16 mod m) ·8) always hold. The Toffoli depth
of the circuit except the first round can be calculated by

Case 1:

(
16

m
· dS5 +

16

m
· dS−1∗

5
)(r − 1) + ⌈ 24

13m
⌉ · dS∗

6
· w

′
.

Case 2:

⌊16
m

⌋(dS5 + dS−1∗
5

)(r − 1) + (dS6 + dS−1∗
6

)(r − w
′
− 1) + (max{dS6 , dS∗

6
}+

max{dS−1∗
6

, dS∗
6
})w

′
.

Case for l > 0 According to the analysis for l = 0, the S-boxes in the key
schedule do not increase the S-box depth if 16

m /∈ Z+. Therefore, we only discuss
the cases that 16

m ∈ Z+ for l > 0. In this case, the increased S-box depth
caused by updating the key schedule can be reduced by adding some ancilla
qubits. For the cases that m = 1, 2, 4 or 8, one S-box for the key schedule can
be executed in parallel with m S-boxes for the round function or with m S-
box−1es for removing the previous round. Only 5 ancilla qubits are required.
For the case that m = 16, the encryption of one round can be completed with
an S-box depth and S-box−1 depth of 1. The Toffoli depth can be reduced by
applying 2 S-boxes for the key schedule with 16 S-boxes for the round function
and another 2 S-boxes with 16 S-box−1es. This requires 10 ancilla qubits. Note
that for l > 0, once the 4 S-boxes for the key schedule have been applied, the
ancilla qubits for the key schedule can be used by the round function if the 16
S-boxes or 16 S-box−1es have not been fully applied. In this case, the circuits
of S-box and S-box−1 that cost 6 ancilla qubits can be applied to reduce the
Toffoli depth if l ≥ m, since all the m S-boxes or S-box−1es after this can
be applied in parallel by using the circuits with Toffoli depth 22. The Toffoli
depth of the circuit except the first round is

(2(max{dS5

, dS∗
5
}+max{dS−1∗

5
, dS∗

5
}) + (

16

m
− 2)(dS6

+

dS−1∗
6

))(r − 1), if m = 1, 2, 4, 8,

(max{dS5
, dS∗

5
}+max{dS−1∗

5
, dS∗

5
})(r − 1), if m = 16.

Depth of the First Round The first round of AES dose not need to apply
S-box−1, and only AES-128 and AES-192 apply SubWord in the first round.
Assuming that l (l = 0, 5, 10) ancilla qubits are allocated for the S-boxes in

Optimized Quantum Implementation of AES 27

the key schedule of AES, there are 128 + 13m+ l zero qubits available for the
first round. The S-box depth for the first round of AES with various m are
presented in Table 9. Each S-box and S-box−1 are allocated 6 ancilla qubits
unless otherwise specified.

Table 9 The S-box depth of the first round of AES.

AES-128/AES-192 AES-256

l

S-box depth m
1 2 3 ≥ 4 1 2 3-5 6 7 ≥ 8

0 4 3 3 2 3 2† 2 2 1⋆ 1
5 3⋆ 3 2⋇ 2 3 2 2 1⋆ 1 1

10 3† 3 2 2 3 2 2 1⋆ 1 1
⋆ All the S-boxes and S-box−1es are allocated 5 ancilla qubits.
⋇ Only the 13 S-boxes in the first S-box depth are allocated 5 ancilla qubits.
† Only the 11 S-boxes in the first S-box depth are allocated 5 ancilla qubits.

The resource estimate of different NCT-based circuits constructed for three
instances of the AES family are listed in Table 1, Table 2 and Table 3.

7 Conclusion

In this paper, we researched the construction of optimized NCT-based circuits
for the AES family. First of all, we investigated the construction of optimized
NCT-based circuits for AES S-box and its inverse based on the classical ones.
To this end, we investigated the properties of NCT-based circuits, and illus-
trated the factors that affect the Toffoli depth and CNOT gate consumption of
the quantum implementation. Moreover, we divided both the classical imple-
mentation of AES S-box and its inverse into three parts, and the application of
the existing tools or heuristic on those parts were investigated. In addition, we
proposed a heuristic to search optimized NCT-based circuits for the first part
and the third part of the rearranged S-box and S-box−1 circuits. The exper-
imental results reveal that our quantum circuits for AES S-box and S-box−1

with optimized CNOT gate consumption and Toffoli depth have advantages
in qubit consumption. Then, we researched the implementation for the key
schedule and the round function of AES. By applying the framework based on
partial round functions which we call partial zig-zag method, we constructed
different NCT-based circuits for the AES family. The results show that it
requires only 269, 333 and 397 qubits by our method to implement the three
instances of AES with NCT gate set. Besides, taking the trade-off of Toffoli
depth and qubits into consideration, NCT-based circuits for AES-128, AES-
192 and AES-256 that outperform state-of-the-art schemes in the metric of
T ·M value can be constructed with only 474, 538 and 602 qubits.

When evaluating the depth of the quantum circuit, we focus on the Tof-
foli depth in this paper. Since a Toffoli gate can be decomposed into several
Clifford gates and T gates, one can also research the construction of quantum
circuits for AES with Clifford+T gates and the T -depth should be considered

28 Optimized Quantum Implementation of AES

in this case. On the other hand, construction of the NCT-based circuits for
odd permutations can also be a direction for future research.

References

[1] Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum
reversible circuit of AES-128. Quantum Inf. Process. 17(5), 112 (2018)

[2] Amy, M., Matteo, O Di., Gheorghiu, V., Mosca, M., Parent, A., Schanck,
J M.: Estimating the cost of generic quantum pre-image attacks on SHA-
2 and SHA-3. In: Avanzi,R., Howard M. Heys, (eds.), Selected Areas in
Cryptography - SAC 2016 - 23rd International Conference, St. John’s,
NL, Canada, August 10-12, 2016, Revised Selected Papers, vol. 10532 of
Lecture Notes in Computer Science, pp. 317–337. Springer, (2016)

[3] Arute, F., Arya, K., Babbush, R. et al.: Quantum supremacy using a
programmable superconducting processor. Nature. 574(7779), 505–510
(2019)

[4] Bernstein, D.J., Biasse, JF., Mosca, M.: A low-resource quantum factoring
algorithm. In: Lange, T., Takagi, T. (eds.), Post-Quantum Cryptography
- 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands,
June 26-28, 2017, Proceedings, vol 10346 of Lecture Notes in Computer
Science, pp. 330–346. Springer, (2017)

[5] Boyar, J., Peralta, R.: A new combinational logic minimization technique
with applications to cryptology. In: Festa, Paola., (eds.), Experimen-
tal Algorithms, 9th International Symposium, SEA 2010, Ischia Island,
Naples, Italy, May 20-22, 2010. Proceedings, vol. 6049 of Lecture Notes
in Computer Science, pages 178–189. Springer, (2010)

[6] Canright, David.: A very compact s-box for AES. In Rao, Josyula R.,
Sunar, Berk., editors, Cryptographic Hardware and Embedded Systems
- CHES 2005, 7th InternationalWorkshop, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, vol. 3659 of Lecture Notes in Computer
Science, pp. 441—455. Springer, (2005)

[7] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer.
(2002)

[8] Dasu, V.A., Baksi, A., Sarkar, S., Chattopadhyay, A.: LIGHTER-R: opti-
mized reversible circuit implementation for sboxes. In: Zhao, D. (eds.),
SOCC 2019 - 32nd IEEE International System-on-Chip Conference,
Singapore, September 3-6, pp. 260-265. IEEE, (2019)

Optimized Quantum Implementation of AES 29

[9] Eker̊a ,M., H̊astad, J.: Quantum algorithms for computing short discrete
logarithms and factoring RSA integers. In: Lange, T., Takagi, T. (eds.),
Post-Quantum Cryptography - 8th International Workshop, PQCrypto
2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, vol. 10346
of Lecture Notes in Computer Science, pp. 347–363. Springer, (2017)

[10] Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Apply-
ing grover’s algorithm to AES: quantum resource estimates. In: Tak-
agi,T., (eds.), Post-Quantum Cryptography - 7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, vol.
9606 of Lecture Notes in Computer Science, pp. 29–43. Springer, (2016)

[11] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Gary L. Miller, (ed), In: Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia, Pennsylva-
nia, USA, May 22-24, 1996, pp. 212–219. ACM, (1996)

[12] Guajardo, J., Paar, C.: Itoh-tsujii inversion in standard basis and its appli-
cation in cryptography and codes. Des. Codes Cryptogr. 25(2), 207–216
(2002)

[13] Huang, Z., Sun, S.: Synthesizing quantum circuits of aes with lower t-
depth and less qubits. IACR Cryptol. ePrint Arch. 2022, 620 (2022)

[14] Jang, K., Baksi, A., Song, G., Kim, H., Seo, H., Chattopadhyay, A.:
Quantum analysis of aes. IACR Cryptol. ePrint Arch. 2022, 683 (2022)

[15] Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover
oracles for quantum key search on AES and lowmc. In: Canteaut, A.,
Ishai, Y., (eds.), Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part II, volume 12106 of Lecture Notes in Computer Science, pp. 280–310.
Springer, (2020)

[16] Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementa-
tions of lightweight building blocks. IACR Trans. Symmetric Cryptol.
2017(4), 130–168 (2017)

[17] Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search
algorithms in symmetric cryptanalysis: applying to AES and SHA-2.
Quantum Inf. Process. 17(12), 1–39 (2018)

[18] Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of imple-
menting the advanced encryption standard as a quantum circuit. IEEE
Transactions on Quantum Engineering. 2020(1), 1–12 (2020)

30 Optimized Quantum Implementation of AES

[19] May, A., Schlieper, L.: Quantum period finding is compression robust.
IACR Trans. Symmetric Cryptol. 2022(1), 183-211 (2022)

[20] Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic
Evaluation of Compact Hardware Implementations for the Rijndael S-
Box. In: Menezes, A. (eds.), Topics in Cryptology - CT-RSA 2005 - The
Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA,
USA, February 14-18, 2005, Proceedings, volume 3376 of Lecture Notes
in Computer Science, pp. 323–333. Springer, (2005)

[21] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum
Information (10th Anniversary edition). Cambridge University Press.
Cambridge (2016)

[22] NIST: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process. (2016)

[23] Seifert J.: Using fewer qubits in shor’s factorization algorithm via simul-
taneous diophantine approximation. In: Naccache, D. (eds.), Topics in
Cryptology - CT-RSA 2001 - The Cryptographers’ Track at the RSA
Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceed-
ings, volume 2020 of Lecture Notes in Computer Science, pp. 319-327.
Springer,(2001)

[24] Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of
reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 22(6), 710–722 (2003)

[25] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput. 26(5),
1484–1509 (1997)

[26] Simon, D.R.: On the power of quantum computation. SIAM J. Comput.
26(5), 1474–1483 (1997)

[27] Trefethen, L.N., Bau, D.: Numerical linear algebra. SIAM. (1997)

[28] Wang, Z., Wei, S., Long, G.: A quantum circuit design of aes requiring
fewer quantum qubits and gate operations. Frontiers of Physics. 17(4),
1–7 (2022)

[29] Wei, Z., Sun, S., Hu, L., Wei, M., Boyar, J., Peralta, R.: Scrutinizing the
tower field implementation of the F8

2 inverter - with applications to AES,
Camellia, and SM4. IACR Cryptol. ePrint Arch. (2019)

[30] Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementa-
tions of linear layers. IACR Trans. Symmetric Cryptol. 2020(2), 120–145

Optimized Quantum Implementation of AES 31

(2020)

[31] Zou, J., Li, L., Wei, Z., Luo, Y., Liu, Q., Wu, W.: New quantum circuit
implementations of SM4 and SM3. Quantum Inf. Process. 21(5), 1–38
(2022)

[32] Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementa-
tions of aes with fewer qubits. In: Advances in Cryptology - ASIACRYPT
2020 - the 26th Annual International Conference on the Theory and
Application of Cryptology and Information Security, Lecture Notes in
Computer Science, pp. 697–726. Springer, (2020)

[33] Zou, J., Wei, Z., Sun, S., Luo, Y., Liu, Q., Wu, W.: Some efficient quantum
circuit implementations of camellia. Quantum Inf. Process. 21(4), 1–27
(2022)

32 Optimized Quantum Implementation of AES

A The Proof of Fact 1

Proof Based on the values of a and c, the proof proceeds in two cases:
Case 1: if a = c, the two operations can be rewritten as ta = ta⊕ tb, ta = ta⊕ tc,

after which the value of qubit ta is ta ⊕ tb ⊕ tc. Assume that the operations are
changed to ta = ta ⊕ tc, ta = ta ⊕ tb, the final value of ta is not changed. Thus, the
order of these two operations can be exchanged.

Case 2: if a ̸= c, d and b ̸= c, we can deduce that a, c, d are pairwise distinct since
a ̸= b and c ̸= d. In addition, the operations have no influence on the values of tb
and td. Therefore, exchanging the order of these two operations does not result in
any change of the values stored in ta and tc. □

B Discussion on LIGHTER and LIGHTER-R

Before we present our method of using LIGHTER, we introduce the following
definition according to [24].

Definition 3 (odd permutation) A permutation is called odd if it can be written as
the product of an odd number of transpositions.

The even permutation can be defined in the similar way.
It is obviously that the 4-bit S-box shown in Table 6 is odd (as well as the

one derived from the inverse of AES S-box). The researches of [24] reveal that
the NCT-based circuit for an even permutation can be constructed without
temporary storage, but for an odd permutation, one wire of temporary storage
is required. It means that one can not construct a quantum circuit for an odd
permutation by using the tool LIGHTER-R only based on NCT gate set. To
this end, we investigate the following strategies to construct an NCT-based
circuit for an odd permutation.
Strategy 1 First, we can expand a 4-bit odd permutation to be a 5-bit one
by adding one bit in the most significant bit of the inputs, whose corresponding
output bit is identical to the input. There is no doubt that the resulting 5-bit
permutation is even. Then, modify the code to make the tool LIGHTER-R
compatible with 5-bits permutation as its input and search the NCT-based
circuit for the resulting 5-bit even permutation. Unfortunately, due to the large
search space, none implementation for the S-box shown in Table 6 returned.
Strategy 2 The underlying logic gate set of the tool LIGHTER can be
customized as needed. Considering the relation between the NCT gate set
and the classical And gate, Xor gate and Not gate, we can specify that the
tool LIGHTER only uses And gates, Xor gates and Not gates to search an
optimized in-place implementation for a 4-bit odd permutation. Certainly, this
comes at the cost of an auxiliary variable, which means an ancilla qubit will
be consumed by LIGHTER in this case.

Optimized Quantum Implementation of AES 33

C The Quantum Style Circuit of f2 of AES
S-box

s6 = s6 ⊕ t44 · y15, s1 = s1 ⊕ t37 · y6, s0 = s0 ⊕ t43 · y16, s4 = s4 ⊕ t40 · y1,
s3 = s3 ⊕ t44 · y12, s5 = s5 ⊕ t37 · y3, s2 = s2 ⊕ t43 · y13, s7 = s7 ⊕ t40 · y5,
s0 = s0 ⊕ s4, s6 = s6 ⊕ s0, s2 = s2 ⊕ t42 · y9, s0 = s0 ⊕ t42 · y11,
s5 = s5 ⊕ t45 · y14, s0 = s0 ⊕ t45 · y17, s7 = s7 ⊕ s2, s1 = s1 ⊕ s6,
s2 = s2 ⊕ t29 · y2, s3 = s3 ⊕ s5, s6 = s6 ⊕ t33 · y0, s4 = s4 ⊕ s6,
s4 = s4 ⊕ t29 · y7, s5 = s5 ⊕ t33 · y4, s3 = s3 ⊕ t42 · y9, s6 = s6 ⊕ t45 · y17,
s6 = s6 ⊕ t41 · y10, s7 = s7 ⊕ t45 · y14, s2 = s2 ⊕ s6, s5 = s5 ⊕ s2,
s2 = s2 ⊕ s0, s0 = s0 ⊕ s3, s3 = s3 ⊕ s1, s7 = s7 ⊕ s4,
s2 = s2 ⊕ t41 · y8, s6 = s6 ⊕ s7, s4 = s4 ⊕ s3, s1 = s1 ⊕ s0.

D The Reversible Circuit of AES S-box

D.1 The Reversible Circuit for Generating t21, t22, t23, t24.
x6 = x6 ⊕ x5 ⊕ x3 ⊕ x0, x4 = x6 ⊕ x5 ⊕ x4, x1 = x7 ⊕ x3 ⊕ x2 ⊕ x1,
x5 = x5 ⊕ x3, x2 = x5 ⊕ x2 ⊕ x0, x3 = x3 ⊕ x1 ⊕ x0,
x0 = x4 ⊕ x3 ⊕ x2 ⊕ x0, t21 = t21 ⊕ x6 · x4, t22 = t22 ⊕ x1 · x7,
t23 = t23 ⊕ x5 · x2, t24 = t24 ⊕ x3 · x0, t22 = t22 ⊕ t21,
t21 = t21 ⊕ t23, x5 = x6 ⊕ x5, x4 = x4 ⊕ x2,
x1 = x6 ⊕ x1, x7 = x7 ⊕ x4 ⊕ x2, x3 = x5 ⊕ x3 ⊕ x1,
x0 = x7 ⊕ x4 ⊕ x0, x6 = x6 ⊕ x5 ⊕ x3, x2 = x2 ⊕ x0,
t23 = t23 ⊕ x5 · x4, t21 = t21 ⊕ x1 · x7, t24 = t24 ⊕ x3 · x0,
a = a⊕ x6 · x2, t21 = t21 ⊕ a, t22 = t22 ⊕ a,
t23 = t23 ⊕ a, t24 = t24 ⊕ a, x1 = x3 ⊕ x1,
x7 = x7 ⊕ x0, t22 = t22 ⊕ x3 · x0, t23 = t23 ⊕ x1 · x7,
t24 = t24 ⊕ x5 · x4, a = a⊕ x6 · x2, x6 = x6 ⊕ x2,
t21 = t21 ⊕ x6, x3 = x3 ⊕ x0, t22 = t22 ⊕ x3,
x5 = x5 ⊕ x4, t23 = t23 ⊕ x5, x5 = x7 ⊕ x5 ⊕ x1,
t24 = t24 ⊕ x5.

D.2 The Reversible Circuit for S4 with Toffoli Depth 6.

t23 = t23 ⊕ t22 · t24, t24 = t24 ⊕ t23, t22 = t22 ⊕ t21 · t24, t24 = t24 ⊕ t22 · t23,
t23 = t23 ⊕ t24, t22 = t22 ⊕ t21, t21 = t21 ⊕ t22 · t24, a = a⊕ t23 · t22,
t24 = t24 ⊕ a · t21, t21 = t21 ⊕ t22, t29 = t21, t33 = t23,
t37 = t24, t40 = t22.

D.3 The Reversible Circuit for S4 with Toffoli Depth 5.

t23 = t23 ⊕ t22 · t24, t24 = t24 ⊕ t23, t22 = t22 ⊕ t21 · t24, t24 = t24 ⊕ t22 · t23,
t23 = t23 ⊕ t24, t22 = t22 ⊕ t21, b = b⊕ t22, a = a⊕ t23 · t22,
t21 = t21 ⊕ b · t24, t24 = t24 ⊕ a · t21, t21 = t21 ⊕ t22, t29 = t21,
t33 = t23, t37 = t24, t40 = t22.

34 Optimized Quantum Implementation of AES

D.4 The Reversible Circuit for the Outputs of AES
S-box.

x3 = x3 ⊕ x1 ⊕ x0, x0 = x4 ⊕ x2 ⊕ x0, x6 = x6 ⊕ x2,
t22 = t22 ⊕ t21, t23 = t24 ⊕ t23, t21 = t24 ⊕ t23 ⊕ t21,
s0 = s0 ⊕ t22 · x4, s5 = s5 ⊕ t24 · x3, s6 = s6 ⊕ t23 · x0,
s2 = s2 ⊕ t21 · x6, x5 = x7 ⊕ x5 ⊕ x4 ⊕ x1, x3 = x6 ⊕ x3 ⊕ x1,
t23 = t23 ⊕ t22, t24 = t24 ⊕ t23 ⊕ t21, s2 = s2 ⊕ t22 · x5,
s5 = s5 ⊕ t23 · x3, s4 = s4 ⊕ t24 · x7, s0 = s0 ⊕ s4,
s6 = s6 ⊕ s0, s7 = s7 ⊕ s2, s1 = s1 ⊕ s6,
s3 = s3 ⊕ s5, x7 = x7 ⊕ x4 ⊕ x2, x4 = x4 ⊕ x0,
t22 = t24 ⊕ t22 ⊕ t21, s6 = s6 ⊕ t22 · x7, s3 = s3 ⊕ t21 · x6,
s0 = s0 ⊕ t23 · x4, s4 = s4 ⊕ s6, x5 = x5 ⊕ x1,
t22 = t22 ⊕ t21, s6 = s6 ⊕ t23 · x4, s0 = s0 ⊕ t21 · x2,
s7 = s7 ⊕ t24 · x1, s2 = s2 ⊕ t22 · x5, x4 = x4 ⊕ x2,
x0 = x7 ⊕ x0, x7 = x7 ⊕ x2, x1 = x5 ⊕ x3 ⊕ x1,
t23 = t23 ⊕ t21, t24 = t24 ⊕ t23, t21 = t24 ⊕ t22 ⊕ t21,
s6 = s6 ⊕ t23 · x4, s1 = s1 ⊕ t24 · x0, s4 = s4 ⊕ t22 · x7,
s3 = s3 ⊕ t21 · x1, s2 = s2 ⊕ s6, s5 = s5 ⊕ s2,
s2 = s2 ⊕ s0, s0 = s0 ⊕ s3, s3 = s3 ⊕ s1,
s7 = s7 ⊕ s4, x6 = x6 ⊕ x3, x5 = x6 ⊕ x5 ⊕ x3,
t22 = t24 ⊕ t23 ⊕ t22 ⊕ t21, t21 = t24 ⊕ t21, s2 = s2 ⊕ t23 · x6,
s7 = s7 ⊕ t22 · x3, s5 = s5 ⊕ t21 · x5, s6 = s6 ⊕ s7,
s4 = s4 ⊕ s3, s1 = s1 ⊕ s0, s6 = s6 ⊕ 1,
s7 = s7 ⊕ 1, s1 = s1 ⊕ 1, s2 = s2 ⊕ 1.

E The Reversible Circuit of AES S-box−1

E.1 The Reversible Circuit for Generating t21, t22, t23, t24.

x6 = x7 ⊕ x6 ⊕ x1 ⊕ x0 ⊕ 1, x1 = x5 ⊕ x3 ⊕ x2 ⊕ x1, x3 = x6 ⊕ x3 ⊕ x0,
x0 = x5 ⊕ x2 ⊕ x0 ⊕ 1, x4 = x4 ⊕ x1 ⊕ x0, x5 = x7 ⊕ x6 ⊕ x5 ⊕ x4 ⊕ 1,
x7 = x7 ⊕ x5 ⊕ x2 ⊕ x1, x2 = x3 ⊕ x2 ⊕ 1, t21 = t21 ⊕ x6 · x1,
t22 = t22 ⊕ x3 · x0, t23 = t23 ⊕ x4 · x5, t24 = t24 ⊕ x7 · x2,
x6 = x6 ⊕ x4, x5 = x5 ⊕ x1, x3 = x6 ⊕ x4 ⊕ x3,
x0 = x1 ⊕ x0, x7 = x7 ⊕ x6 ⊕ x3, x2 = x5 ⊕ x2 ⊕ x0,
x4 = x7 ⊕ x4, x1 = x5 ⊕ x2 ⊕ x1, t22 = t22 ⊕ t21,
t21 = t21 ⊕ t23, t23 = t23 ⊕ x6 · x5, t21 = t21 ⊕ x3 · x0,
t24 = t24 ⊕ x7 · x2, a = a⊕ x4 · x1, t21 = t21 ⊕ a,
t22 = t22 ⊕ a, t23 = t23 ⊕ a, t24 = t24 ⊕ a,
x3 = x7 ⊕ x3, x0 = x2 ⊕ x0, a = a⊕ x4 · x1,
t22 = t22 ⊕ x7 · x2, t23 = t23 ⊕ x3 · x0, t24 = t24 ⊕ x6 · x5,
x4 = x4 ⊕ x1, t21 = t21 ⊕ x4, x2 = x7 ⊕ x2,
t22 = t22 ⊕ x2, x5 = x6 ⊕ x5, t23 = t23 ⊕ x5,
x5 = x5 ⊕ x3 ⊕ x0, t24 = t24 ⊕ x5.

Optimized Quantum Implementation of AES 35

E.2 The Reversible Circuit for the Outputs of AES
S-box−1.

t22 = t22 ⊕ t21, t21 = t23 ⊕ t21, t23 = t24 ⊕ t23,
x5 = x6 ⊕ x5 ⊕ x3 ⊕ x0, x4 = x4 ⊕ x1, x2 = x7 ⊕ x5 ⊕ x2 ⊕ x1,
x7 = x7 ⊕ x3, s2 = s2 ⊕ t22 · x5, s4 = s4 ⊕ t21 · x4,
s3 = s3 ⊕ t23 · x2, s7 = s7 ⊕ t24 · x7, t24 = t24 ⊕ t23 ⊕ t22 ⊕ t21,
t23 = t23 ⊕ t22, x7 = x7 ⊕ x4 ⊕ x3, s4 = s4 ⊕ t22 · x6,
s1 = s1 ⊕ t21 · x4, s0 = s0 ⊕ t24 · x0, s7 = s7 ⊕ t23 · x7,
s2 = s2 ⊕ s0, s3 = s3 ⊕ s2, s6 = s6 ⊕ s4,
s5 = s5 ⊕ s3, s1 = s1 ⊕ s7, t24 = t24 ⊕ t22 ⊕ t21,
t22 = t23 ⊕ t22, t21 = t24 ⊕ t21, x0 = x5 ⊕ x1 ⊕ x0,
x7 = x7 ⊕ x6, x5 = x5 ⊕ x2, x6 = x6 ⊕ x3,
s3 = s3 ⊕ t24 · x0, s1 = s1 ⊕ t22 · x7, s2 = s2 ⊕ t23 · x5,
s4 = s4 ⊕ t21 · x6, s0 = s0 ⊕ s3, t22 = t24 ⊕ t22,
t24 = t24 ⊕ t21, x0 = x1 ⊕ x0, x2 = x2 ⊕ x1 ⊕ x0,
s3 = s3 ⊕ t23 · x5, s0 = s0 ⊕ t21 · x0, s5 = s5 ⊕ t22 · x2,
s2 = s2 ⊕ t24 · x1, t24 = t24 ⊕ t23, x1 = x5 ⊕ x1,
x7 = x7 ⊕ x6 ⊕ x3, s3 = s3 ⊕ t24 · x1, s6 = s6 ⊕ t23 · x7,
s4 = s4 ⊕ s3, s7 = s7 ⊕ s4, t22 = t24 ⊕ t22,
t21 = t24 ⊕ t23 ⊕ t21, x7 = x7 ⊕ x4, x6 = x6 ⊕ x4,
s4 = s4 ⊕ t24 · x7, s6 = s6 ⊕ t22 · x3, s7 = s7 ⊕ t21 · x6,
s6 = s6 ⊕ s2, s0 = s0 ⊕ s6, s1 = s1 ⊕ s4,
s4 = s4 ⊕ s0, s2 = s2 ⊕ s5, s0 = s0 ⊕ s3,
s4 = s4 ⊕ s7, s2 = s2 ⊕ s7, s7 = s7 ⊕ s1,
s1 = s1 ⊕ s6, s1 = s1 ⊕ s5, s3 = s3 ⊕ s6,
s5 = s5 ⊕ s0.

F The Reversible Circuit Added If Not All
Output Qubits Are 0s.

s5 = s5 ⊕ s0, s3 = s3 ⊕ s6, s1 = s1 ⊕ s5, s1 = s1 ⊕ s6, s7 = s7 ⊕ s1,
s2 = s2 ⊕ s7, s4 = s4 ⊕ s7, s0 = s0 ⊕ s3, s2 = s2 ⊕ s5, s4 = s4 ⊕ s0,
s1 = s1 ⊕ s4, s0 = s0 ⊕ s6, s6 = s6 ⊕ s2, s7 = s7 ⊕ s4, s4 = s4 ⊕ s3,
s0 = s0 ⊕ s3, s1 = s1 ⊕ s7, s5 = s5 ⊕ s3, s6 = s6 ⊕ s4, s3 = s3 ⊕ s2,
s2 = s2 ⊕ s0.

	Introduction
	Our Contributions
	Organization

	Preliminaries
	Notations
	Description of the AES Family
	Classical Implementations of AES Building Blocks
	Classical Implementations of MixColumn
	Classical Implementations of AES S-box and S-box-1

	Observations on NCT-based Circuits
	New NCT-based Circuits of AES S-box and S-box-1
	Observations on the Adopted Classical Circuits of S-box
	Heuristic for Searching Optimized NCT-based Circuits for S-box
	Reversible Circuits of AES S-box
	Circuits for x0nS-box xS(x)0(n-8)
	Circuits for xy0(n-8)S-boxxyS(x)0(n-8)

	Schemes for the Round Function and the Key Schedule
	The Partial Zig-zag Method for Round Function
	Scheme for the Key Schedule

	NCT-based Circuits of AES
	The Scheme for the AES Family
	The Quantum Resource Estimate

	Conclusion
	The Proof of Fact1
	Discussion on LIGHTER and LIGHTER-R
	The Quantum Style Circuit of f2 of AES S-box
	The Reversible Circuit of AES S-box
	The Reversible Circuit for Generating t21, t22, t23, t24.
	The Reversible Circuit for S4 with Toffoli Depth 6.
	The Reversible Circuit for S4 with Toffoli Depth 5.
	The Reversible Circuit for the Outputs of AES S-box.

	The Reversible Circuit of AES S-box-1
	The Reversible Circuit for Generating t21, t22, t23, t24.
	The Reversible Circuit for the Outputs of AES S-box-1.

	The Reversible Circuit Added If Not All Output Qubits Are 0s.

