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Abstract. The elliptic curve family of schemes has the lowest computa-
tional latency, memory use, energy consumption, and bandwidth require-
ments, making it the most preferred public key method for adoption into
network protocols. Being suitable for embedded devices and applicable
for key exchange and authentication, ECC is assuming a prominent po-
sition in the field of IoT cryptography. The attractive properties of the
relatively new curve Curve448 contribute to its inclusion in the TLS1.3
protocol and pique the interest of academics and engineers aiming at
studying and optimizing the schemes. When addressing low-end IoT de-
vices, however, the literature indicates little work on these curves. In this
paper, we present an efficient design for both protocols based on Mont-
gomery curve Curve448 and its birationally equivalent Edwards curve
Ed448 used for key agreement and digital signature algorithm, specif-
ically the X448 function and the Ed448 DSA, relying on efficient low-
level arithmetic operations targeting the ARM-based Cortex-M4 plat-
form. Our design performs point multiplication, the base of the Elliptic
Curve Diffie-Hellman (ECDH), in 3,2KCCs, resulting in more than 48%
improvement compared to the best previous work based on Curve448,
and performs sign and verify, the main operations of the Edwards-curves
Digital Signature Algorithm (EdDSA), in 6,038KCCs and 7,404KCCs,
showing a speedup of around 11% compared to the counterparts. We
present novel modular multiplication and squaring architectures reach-
ing ⇠ 25% and s 35% faster runtime than the previous best-reported
results, respectively, based on Curve448 key exchange counterparts, and
s 13% and s 25% better latency results than the Ed448-based digital
signature counterparts targeting Cortex-M4 platform.

Keywords: Elliptic Curve Cryptography, Curve448, Elliptic Curve Diffie-
Hellman (ECDH), Edwards-Curve Digital Signature Algorithm (EdDSA), Cortex-
M4.



1 Introduction

The use of Public Key Cryptography, often known as PKC, protects the con-
fidentiality of data by ensuring its secure transmission through an unsecured
channel, such as the internet, relying on hard mathematical problems to protect
the privacy of the information. The NP-hard factorization and (Elliptic Curve)
Discrete Logarithm Problems (DLP) are the foundations upon which traditional
cryptosystems are constructed. Elliptic Curve Cryptography (ECC), which is en-
trenched in the complexity of solving ECDLP, delivers high-security levels while
demonstrating minimal computational latency and small key sizes in comparison
to other classical cryptosystems. As a consequence, ECC-based cryptoschemes
are essential for network protocols, as they are frequently used for key agreement
and digital signature algorithms. Despite the minimal resource requirements of
ECC schemes, public key cryptography remains challenging to implement and
deploy on low-end real-time devices which feature scarce memory, limited battery
life, and restricted bandwidth.

The continuous advancement of technology leads to its integration into daily
life activities, producing the vast universe of the Internet of Things (IoT), which
implies an improved standard of living. The widespread usage of real-time em-
bedded systems over the last several decades has created a demand for ef-
ficient cryptographic scheme implementation on resource-constrained devices.
The specifications of the ARMv7-based Cortex-M4 processor, suitable for cost-
conscious and power-constrained development, position the platform among the
most widely used embedded devices in the IoT market. This is the reason why
the National Institute of Standards and Technology (NIST) [1] selected it as a
target platform for evaluating the performance of the cryptographic primitives.

The classical cryptosystems, believed to be robust against today’s computers,
are, however, shown to be vulnerable to quantum attacks as presented by Shor

in [2]. The hard mathematical problems underpinning classical schemes could be
broken in polynomial time, rather than exponential, when a large-scale quantum
computer is developed. Although the availability of such a class of quantum com-
puters cannot be predicted, the need for quantum-robust encryption prompted
NIST to initialize a Post-Quantum (PQ) standardization process in 2016. The
newly proposed PQ primitives are being evaluated and optimized during the
standardization effort. The use of stand-alone post-quantum primitives in net-
work protocols, however, is not in accordance with industry and government
standards; hence, hybrid systems based on classical and PQ algorithms are the
primary focus of cryptography researchers for transitioning from classical- to PQ-
robust environment, thus, the optimal implementation of classical schemes such
as ECDH and EdDSA, focus of this work, remains critical for the performance
of cryptographic network protocols.

ECC is a critical component of the majority of cryptographic libraries. Yet, in
recent years, certain NIST curves have been a subject of further investment and
analysis, rising concerns about their security. Due to the resolved backdoor is-
sues associated with existing NIST curves introduced in [3], the recently proposed
Montgomery curves Curve25519 and Curve448 and their birationally equivalent



(un)twisted Edwards curves Ed25519 and Ed448 have been widely used and rec-
ommended by NIST. Providing 128- and 224-bit security, the curves are suitable
for implementing key agreement and digital signature protocols. As a result, they
have been included in the TLS1.3 version of the widely used Transport Layer
Security protocol from 2018. The interest in the curves leads to several target-
specific optimizations, resulting in better performance and energy outcomes.
Due to its low calculation latency and reduced resource requirements, several
research teams are concentrating on Curve25519 and Ed25519 on different sys-
tems, according to the literature. To the best of our knowledge, Curve448 and
Ed448 have not yet been explored in such depth, particularly on low-end devices,
due to the challenging implementation of long-integer finite field arithmetic on
such resource-constrained targets. In this work, we present a new performance
record of the key exchange protocol based on Curve448 and the digital signature
algorithm based on Ed448 targeting low-end embedded devices based on ARM
Cortex-M4 platform.

1.1 Related Work

The implementation of cryptographic primitives on low-end IoT devices is a
challenge, especially when designing public key cryptography, due to the enor-
mous resource needs of such schemes. This is why academics and engineers are
focusing on the ideal development of asymmetric schemes for embedded devices,
where ECC has been the dominant choice when addressing resource-constrained
devices due to its efficiency and low bandwidth needs.

Bernstein introduced the new-generation elliptic curve Curve25519 and its
birationally equivalent twisted Edwards curve Ed25519 in [4] and [5], respec-
tively, to achieve a high level of security and optimal performance outcomes
for the Elliptic Curve Diffie-Hellman (ECDH) key agreement and the Edwards-
curves Digital Signature Algorithm (EdDSA). Some of the most recent work
on Curve25519 and Ed25519 is presented in [6,7,8] aimed at optimizing the
finite field and group computations on high-end platforms. Time-efficient imple-
mentation of Curve25519 arithmetic targeting embedded devices is presented in
[9,10,11] based on optimal register utilization and careful instruction scheduling.
Another research focus is the optimization on hardware presented in [12,13,14].
Extensive study on side-channel protection of the scheme is also present in the
literature [15,16,17].

Curve448 along with its birationally equivalent untwisted Edwards curve
Ed448, proposed by Hamburg in [18], offers higher security level than the dis-
cussed Curve25519. The optimizations for Curve448, however, to the best of our
knowledge, have not been as exhaustive, specifically when targeting low-ended
devices with scarce resources due to the higher security level and thus more
computationally intensive arithmetic operations.

Recent enhancements to the 224-bit secure ECDH/EdDSA over Curve448
targeting Haswell and the Skylake microarchitectures are presented in [19] where
Oliveira et al. present an optimal fixed-point multiplication strategy based on
precomputation of constant values derived from the fixed point and its multiples.



Later, in [20], Seo presents an optimized implementation of Curve448 arithmetic
targeting low-end 8-bit AVR and 16-bit MSP processors, where the main con-
tribution consists of the adoption of two- and three-level subtractive Karatsuba
method for the execution of the multi-precision multiplication and squaring sub-
routines. Faz-Hernandez et al. present speed optimizations of the Curve448 in [6]
targeting the Intel AVX2 vector instruction set, reaching 10-30% of performance
improvements for key agreement and digital signature cryptographic schemes.
Finally Seo et al. present the first implementation of Curve448 ECDH target-
ing the low-end embedded platform ARM Cortex-M4 [21] and Anastasova et

al. show optimal target-specific implementation of EdDSA algorithm based on
Ed448 [22].

The Elliptic Curve Cryptography has a pyramid-like layered structure, where
the computation of high-layer group operations is based on low-layer finite field
arithmetic. The pyramidal structure enables high-level improvements aimed at
breaking speed records for group operations. The low-level arithmetic computa-
tions, the topic of this study, result in an overall acceleration of the ECC prim-
itives, with the platform characteristics dictating the optimization tactics used
to create the architecture. The primary challenge when implementing Curve448
and Ed448 field arithmetic is that the operands frequently exceed the avail-
able CPU resources, particularly on low-end platforms. Due to the unavoidable
necessity for safe and efficient cryptographic protocols, the ECC architectural
design undergoes continual research and optimization efforts on both high- and
low-level enhancements.

The high-level improvements include representing the curve elements in pro-
jective coordinates rather than affine coordinates to minimize the number of
costly arithmetic operations required for scalar-point multiplication. Montgomery
ladder [23], significantly lowers the latency of ECC-based protocols by combin-
ing Montgomery’s doubling formulae with Montgomery’s differential-addition
formulas and enables the use of X-only coordinate calculations.

Several efforts to optimize low-level field arithmetic operations are docu-
mented in the literature, with optimal execution strategies resulting in record
performance of the cryptographic protocols. Due to the complexity of the long-
integer operations’ execution flow, there is no implementation option that can be
considered ideal. Indeed, different platforms offer a diversity of capabilities, each
of which facilitates a specific set of instructions, hence favors the deployment of
a specific multi-precision approach. The adaptation of Product Scanning (PS)
or Operand Scanning (OS) methodologies, with a focus on long-integer opti-
mal solutions, for low-end devices, has been rigorously investigated and tested.
The literature also proposes combination of multi-precision strategies to provide
further performance improvements.

In [24] Hutter et al. present the first implementation of Operand Caching
(OC) multiplication technique which outperforms the pervious best hybrid im-
plementation architectures. Based on the OC strategy, Seo et al. present in [25]
and [26] optimized variant of the multi-precision arithmetic where the execution
flow of the inner loop is re-arranged to optimally re-use common operands be-



tween previous and new partial products reporting significant speedup results.
Optimization of long-integer multiplication and squaring techniques based on
the Cortex-M4 platform is presented by Seo et al. in [27], where the authors pro-
pose Refined-OC multiplication technique based on increased number of cached
limbs in the register bank of the processor. The article offers optimal field op-
erations independently of the post-quantum nature of the target protocol since
classical ECC techniques, as well as the post-quantum Supersingular Isogeny
Key Encapsulation (SIKE) mechanism, are defined over large finite fields and so
operate on big integers, thus, implement the same lowest layer arithmetic for the
performance of the high layer group operations. Further work on the finite field
operations of the elliptic curve-based PQ protocol is presented in [28,27,29,30]
targeting specifically the ARM Cortex-M4 platform.

Literature indicates that little effort has been spent optimizing 448-bit inte-
ger finite field arithmetic for the entry-level ARM-based Cortex-M4 architecture.
Multiple research teams are implementing and enhancing the lowest layer of ECC
primitives. Using a novel architecture for finite field arithmetic, we extend this
study by demonstrating a new performance benchmark for Curve448 and Ed448.
[21] and [22] show the most relevant research based on Curve448 that focuses on
low-end RISC devices. In this paper, we extend this area of research by intro-
ducing a novel method for long-integer operations and compare its performance
to that of prior work. In addition, the long-integer implementation subroutines
are an excellent fit for the PQ protocol SIKE.

1.2 Contributions

In this work, we demonstrate novel implementation techniques for accelerat-
ing the execution of the Curve448- and Ed448-based key derivation and digital
signature protocols. Our contributions include the following:

1. We present a novel design for the underlying finite field operations multi-
precision multiplication and squaring targeting the ARM Cortex-M4 plat-
form. We observe a speedup of 25% and 35%, respectively for modular multi-
plication and squaring functions when compared to the Curve448-based key
exchange protocol counterparts in [21] and 13% and 24% when compared
to the previously best-reported results for the Ed448-based digital signature
algorithm presented in [22].

2. We present the first handcrafted assembly implementation of multi-precision
squaring procedure with the goal of improving Curve448 and Ed448 for the
ARMv7-M architecture. Both multi-precision multiplication and squaring
are implemented using a novel architecture in which we combine multipli-
cation techniques. We allocate a fixed number of registers for storing words
from A and lower the number of registers for storing operand B’s limbs,
where we compute current and successive column-wise partial results. Thus,
we present the first multi-precision multiplication architecture, combining
product- and operand-scanning techniques in the inner multiplication loop
execution flow.



Algorithm 1 Montgomery ladder
Input: P = (XP : ZP ), k =

Pl�1
i=0 ki2

i where kl�1 = 1
Output: R = k · P
1: R (XR, ZR) = (1, 0)
2: Q (XQ, ZQ) = (XP , 1)
3: for (i = 447; i >= 0; i��) do

4: if ki = 0 then

5: (R,Q) = ladderstep(XP , R,Q)
6: else

7: (Q,R) = ladderstep(XP , Q,R)
8: end if

9: end for

10: return xR = XR/ZR

3. We present a speedup of around 48% and 11% for the X448 and Ed448
DSA protocols, compared to the best previously reported results in [21] and
[22], respectively on the target platform when running on STM32F407VG
discovery board @24MHz to avoid zero wait state and to disregard memory
controller stalls.

4. We evaluate and analyze the proposed design’s performance by conducting
benchmarking experiments at 24MHz, which presents the exact number of
clock cycles on the target platform regardless of the microcontroller’s speci-
fications, and 168MHz, which boosts the performance of the STM32F407VG
board to obtain real-world values.

The rest of the paper is organized as follows. In Section 2 we present an overview
of the mathematical concepts underlying X448 and Ed448 DSA protocols and
summarize the main features of the target architecture. Section 3 presents the
proposed finite field arithmetic architecture and overviews the performance re-
sults of the newly implemented functions. In Section 4 we perform latency evalu-
ation of the entire protocols after integrating our new function implementations.
Finally, we conclude our work in Section 5.

2 Preliminaries

This section provides an overview of the mathematical ideas underpinning the
Curve448 and Ed448 key exchange and digital signature protocols. We discuss
both protocols and illustrate their execution flow, as well as the primary prop-
erties of the target platform.

2.1 ECC Mathematical Background

A Montgomery Elliptic Curve Curve448 over a finite field Fp is defined by the
solutions of the equation:

EM/Fp : v2 ⌘ u
3 +Au

2 + u



Algorithm 2 Montgomery ladder step
Input: xP , R = (XR, ZR), Q = (XQ, ZQ)
Output: PPD = 2 ·R, PPA = R+Q

1: XPD = (XR � ZR)2 · (XR + ZR)2

2: ZPD = 4XRZR · (X2
R + 39081XRZR + Z

2
R)

3: XPA = 4(XRXQ � ZRZQ)2

4: ZPA = 4xp(XRZQ � ZRXQ)2

5: return PPD = (XPD, ZPD), PPA = (XPA, ZPA)

where the value of A is defined as 156326 and p = 2448�2224�1. Montgomery
curves have their birationally analogue Edwards curves, where Curve448 can be
represented by the solutions to the equation:

EEd/Fp : ax2 + y
2 = 1 + dx

2
y
2

with d = �39081 and a = 1 since the value of the prime number is congruent
to 3mod4 and thus the curve is untwisted Edwards curve called Ed448. The
elements of Curve448 are represented by two coordinated (u, v) 2 Fp ⇥ Fp. The
birational map to project a point to Montgomery from Edwards curve is as
follow:

(u, v) = ((y � 1)/(y + 1), sqrt(156324) ⇤ u/x)

where to map the point back to Edwards curve the next formula is applied:

(x, y) = (sqrt(156324) ⇤ u/v, (1 + u)/(1� u))

Elliptic Curve Cryptography’s nature is based on the difficulty of solving the
Elliptic Curve Discrete Logarithm Problem (ECDLP). Executing scalar-point
multiplications with the point P = [k] ·Q results in the addition of point Q with
itself k times, where the value of k is difficult to resolve given P and Q.

Point multiplication requires several point additions and point doublings,
where various techniques can be applied to obtain the resulting coordinates
such as Double-And-Add (and its constant time variants) or Montgomery lad-
der Algorithm 1, where the latter requires p steps of combined point addition
(PA) and point doubling (PD) function (referred to as Montgomery ladder step)
offering better performance results.

To further increase the speed of the scalar-point multiplication, the point
is transformed from affine (x, y) to projective representation (X,Y, Z) with
x, y = (X · Z�1

, Y · Z�1), which relaxes group operations by reducing the num-
ber of costly operations such as modular inversions. Algorithm 2 illustrates the
Montgomery ladder step, a more thorough illustration of the execution steps for
point addition and point doubling unified formula.

The usage of Montgomery ladder enables the computing of time-efficient
X�only formulae in which the Y coordinate is not required for point multi-
plication computations and is restored once the method is done, which results



Algorithm 3 X448 algorithm. G represents the value of the base point
Alice Bob

skA 2R Z/Fp skB 2R Z/Fp

pkA = [skA] ·G pkB = [skB ] ·G

exchange

pkA ! pkB

ssA = [skA] · pkB ssB = [skB ] · pkA
ssA = [skA] · skB ·G ssA = ssB ssB = [skB ] · skA ·G

in further speed optimizations and it represents the method deployed in most
implementations, including this work.

2.2 X448

Elliptic Curve Diffie-Hellman (ECDH) protocol implementation enables commu-
nication parties to agree on a shared secret that is later utilized in low-cost sym-
metric encryption schemes. To execute ECDH over a finite field using Curve448
requires both computing parties to generate secret key values represented by
a long-integer value. Later on, each must apply the scalar-point multiplication
function X448 depending on the scalar value of their secret key and a public
base point G, for instance using the Montgomery ladder Algorithm 1. The newly
computed points, representing the public keys of each party, are exchanged and
another point multiplication is computed, applying their own secret key scalar
value and the received point public key value. Algorithm 3 provides a represen-
tation of the ECDH algorithm in detail.

Following the execution of the two-point multiplications, as presented in
Algorithm 3, both parties can ensure the privacy of their communication via effi-
cient symmetric encryption scheme. The symmetric key is being derived through
the equivalent values of the shared secrets and is then being used to encrypt data
based on symmetric algorithm such as AES.

2.3 Ed448

The digital signature algorithm is mainly used to verify that the communi-
cation was sent by the intended recipient. The Edwards-Curve Digital Signature
Algorithm (EdDSA) is defined in three phases - Key Generation, Sign and Verify.
Ed448 DSA has a thorough explanation of these procedures, which may be found
in Algorithm 4. The key generation uses a seed value to produce a secret key and
its respective public key that are generated using a eXtendable Output Function
(XOF) SHAKE256 (denoted with capital letter H in Algorithm 4) and scalar-
point multiplication function. After running the signing function, it returns a



Algorithm 4 Ed448 algorithm [31]. H denotes SHAKE256. L represents the
order of Ed448 curve. G represents the value of the base point
Key Generation
Input: seed

Output: (p, s), pkA
1. skA 2seedR Z/Fp

2. (p, s) H(skA)
3. pkA  encode([s] ·G)
Return (p, s), pkA

Sign
Input: pkA, (p, s),M
Output: sign ⌘ R||S
1. r  (H(p||M))(modL)
2. R encode([r] ·G)
3. k  (H(R||pkA||M))(modL)
4. S  encode((r + k ⇤ s)(modL))
Return R||S

Verify
Input: pkA,M,R||S
Output: true/fasle

1. k  H(R||pkA||M)(modL)
2. A decode(pkA)
Return [S] ·G == R+ [k] ·A

signature R||S generated based on the secret key and the message value. Fi-
nally, the verification is executed based on the public key and the message value
and returns success upon the correctness of the equation [S] ·G == R+ [k] ·A.

As noted, the scalar multiplication subroutine is forming the basis of both
- elliptic curve based key agreement and digital signature algorithms, thus, its
optimization is the main focus of this work. A new design and a performance
record of the multi-precision multiplication and squaring, the base operations
of point multiplication, are described later in the paper and the timing results
of both cryptographic primitives are reported based on the proposed finite field
arithmetic design.

2.4 Target Architecture

The ARM Cortex-M4 processor’s Reduced Instruction Set Computer (RISC)
architecture delivers a set of basic yet powerful instructions that are devoid of
structural hazards and data dependence delays. This is why it is in such great
demand in the realm of IoT and real-time systems. Furthermore, NIST recom-
mended ARMv7-M Cortex-M4-based STM32F407VG discovery board microcon-



Table 1. ARMv7-M ISA [32] for memory access and MAC instructions

Instruction Functionality
Latency
(CC)

(V)LDR/

(V)STR

Rn  memory

memory  Rn

Sn  memory

memory  Sn

2

VMOV
Rn  Sm

Sm  Rn
1

UMULL Rd1, Rd2  Rn ⇥ Rm 1

UMAAL Rd1, Rd2  Rn ⇥ Rm + Rd1 + Rd2 1

troller for low-end device performance assessment, featuring 192KB of RAM and
1MB of flash memory, thus, it represents the board chosen by NIST for perfor-
mance evaluation of the cryptographic algorithms and is, therefore, the target
platform of this article.

The limited register set of just 16 32-bit General-Purpose Registers (GPRs)
R0-R15 where two of them are reserved for the Stack Pointer SP and the Pro-
gram Counter PC and are not accessible by the programmer, converts the im-
plementation of multi-precision arithmetic operations into a challenging task.
The ARMv7-M architecture offers another 32 32-bit Floating-Point Registers
(FPRs) S0-S31. The transition of register values between the two register banks
is ensured to be instant via the powerful VMOV instruction. The single clock
cycle instruction latency, specific for the ARMv7-M 3-stage pipeline, has as only
exception the memory access LDR/STR instructions where if not properly sched-
uled they can induce an additional clock cycle before another instruction can
be processed. The nature of the long-integer arithmetic does not always allow
to schedule the instructions, thus, to avoid stalling the pipeline. To maximize
the performance of a hand-crafted assembly code, a thorough structure of the
instruction flow and an in-depth examination of the Instruction Set Architecture
(ISA) Table 1 are required. The precise order of the instruction flow is a combi-
natoric problem which requires careful analysis and deployment to provide the
most optimal execution path.

The ARMv7-M ISA supports powerful multiplication instructions, referred
to as Multiply ACcumulate (MAC), ensuring the execution of 32 ⇥ 32-bit mul-
tiplication, resulting in a 64-bit long value. The simple long multiply UMULL

instruction offers an accumulative variant UMAAL executing another two 32-bit
accumulative additions. The single clock cycle latency of the MAC instruction
considerably improves the performance of long integer multi-precision multi-
plication and squaring subroutines when utilized correctly as presented in this
work.
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Tn+m-1
0

High

+

Fig. 1. Instruction set notation in dot format for the rhombus representation of
the arithmetic operations multiplication and squaring.

3 Proposed Design for Field Arithmetic

3.1 Notation

The proposed architecture for multi-precision multiplication and squaring may
be presented in a variety of ways, the most visually appealing of which is through
the use of a rhombus representation. The implementation of finite field proce-
dures needs distinct instruction sequences, which we represent with dots on the
rhombus figures.

We utilize a different pattern of dots to a different color of dots, as shown
in Figure 1, to denote various MAC instructions. The white color dot indicates
the execution of Unsigned Multiply with double Accumulate Long UMAAL where
the multiplication of two 32-bit registers is performed, resulting in a 64-bit value
accumulated with the content of the destination registers as two 32-bit numbers.
The black dot represents an Unsigned MULtiply Long UMUUL with the destination
registers containing the result’s low and high 32-bits. Finally, the implementation
of the multi-precision squaring routine requires the accumulation of a single 32-
bit value to the 64-bit multiplication result, thus, we use the UMAAL and zero out
one of the accumulated values. We denote the use of this instruction by a gray
dot on the rhombus schemes.

For our implementation, we refer to the previous multi-precision strategies,
such as Product-Scanning (PS), Operand-Scanning (OS) and Refined Operand-
Caching techniques (R-OC). OS method is predicated on the concept of reusing
a single limb from one operand while employing the whole set of limbs from
the second operand. In particular, each calculation step should accumulate the
previously stored partial result limb with a single partial result value. The
computation of a partial result limb in each iteration can be represented as
Ti = Ti + AkBi�k with k being the iteration count. Finally, the product limb
Ri = Ti when the iteration count equals the result index being computed. There-
fore, the computation of R4 requires the execution of 5 iterations, where in each
iteration one partial result is being computed and accumulated to the current
partial result value.



The PS method is based on computing the entire set of accumulative partial
multiplication results at once, allowing to obtain the final result, and, thus, not
re-load any partial product values. Therefore, for the computation of the result
limb Ri all partial multiplications would be computed and accumulated, i.e.
Ri =

Pi
k=0 AkBi�k. Both techniques are the base of the modern multi-precision

multiplication strategies and are combined, depending on the characteristics of
the target device, to offer optimal performance results.

One such combination among PS and OS is the so called Operand Caching
(and its variants), where the multiplication implementation is split into different
sections, referred as rows, and each row consists of straightforward implemen-
tation of the product scanning multiplication technique. The size of the row
represents the number of consecutive accumulated partial results computed in
each iteration. Each row, thus, produces row-size number of accumulated partial
results. The rows among them employ the OS approach, wherein the previously
computed partial result is accumulated with the newly computed partial value at
each iteration. The multi-precision multiplication design is also referred to as a
combination of two loops - inner and outer multiplication loop. The OC deploys
PS in the inner loop, i.e. the computations inside the scope of the rows. The
outer loop in OC implements OS method which is applied among the different
rows. The size of the row is one of the factors to determine the variant of the
OC multiplication method, where the latest and most efficient variant of the OC
targeting the Cortex-M4 platform is the Refined-OC (R-OC) method with row
size equal to four.

The use of one or another multi-precision multiplication approach to en-
hance performance is entirely dependent on the platform being targeted. Large
processors, for instance, have a large register set bank, so they can store more
operand limbs and favor the PS technique. In addition, modern processors fea-
ture instant memory access instructions, therefore, multiple operand re-loading
is inexpensive. However, the usage of low-end devices, such as the intended ARM
Cortex-M4 chip, makes long-integer computations difficult due to register bank
constraints and expensive memory accesses. We disclose the obtained speedup
for the provided arithmetic and the performance record after incorporating our
design into the ECDH and EdDSA cryptographic algorithms in this paper.

3.2 Multi-precision multiplication

The design and implementation of the multi-precision multiplication subrou-
tines are extremely important for the efficiency of the cryptographic protocols
when based on long-integer values. The nature of the multi-precision multipli-
cation places it into the most frequently invoked routines in Elliptic Curve and
Isogeny-based protocols. Additionally, due to the high computational cost of
these procedures, optimizing them results in an overall speedup of the protocols.
This is why several academics have concentrated their efforts on optimizing it
for various platforms.

In this paper, we present a novel multi-precision multiplication approach,
demonstrating a speed record on the target platform.
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Fig. 2. Proposed architecture for 448-bit multi-precision multiplication. Black
lines denote inner loop execution flow.

We illustrate our architecture in detail in Figure 2, where the diagonal lines
in the rhombus indicate the operands A and B and the dots represent the word-
level operand partial operations. Numerous studies in the literature focus on the
combinatorics of this topic with the goal of optimizing the performance outcomes
of this function. The primary multiplication approaches are frequently used in
high-level implementation designs that include product- or operand-scanning.
However, owing to resource limits, a single application of one of the multiplication
algorithms is not practical. Additionally, both have some significant downsides.
To be more precise, the former requires numerous accesses to the value of the
(partial) product in order to compute the result, whereas the latter requires
continual reloading of the operand words in the accessible register set. Which
approach is the most optimal is entirely dependent on the technical requirements
of the target platform.

To optimize multiplication performance, the authors in [33,24,25,27] provide
designs that combine the two major approaches to take use of the benefits of each
one, namely the Hybrid, Operand Caching, Consecutive Operand Caching, and
Refined-Operand Caching (R-OC) multi-precision multiplication. The methods
already proposed in the literature apply one of the major techniques to the outer
multiplication loop and one to the inner loop. The primary goal of routine opti-
mization for low-end devices is to minimize memory accesses, since it can cause
additional stalls when no cache memory is available, which is frequently the case
with embedded low-cost devices. The R-OC, the most efficient multiplication in
the literature, method’s concept is to load operands into the register set and
reuse the operands’ values. To do so, the authors in [27] introduce a method for
storing four words of both operands in the instant memory units, thus, increase
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Fig. 3. Proposed design, register utilization and carry propagation for the multi-
precision multiplication outer (left) and inner (right) loop execution flow.

the size of the inner loop (i.e., row size) to four 32⇥ 32-bit multiplications. This
technique optimizes the memory accesses by reusing the four loaded limbs from
the second operand, when the growing operand index is switched (i.e., at the
middle of the inner loop).

In this work, we present a novel technique for multi-precision multiplication,
with an emphasis on increasing row (inner loop) size and hence decreasing mem-
ory accesses for partial value accumulation. To accomplish this aim of creating
rows of size five, we reserve five registers for the value of operand A, and three
registers for operand B (further detail of the register utilization is provided in
Figure 3). In our approach, two partial results are computed for the current col-
umn of calculation and one multiplication is performed for the subsequent three
columns. This reduces register requirement for the storage of the second operand.
Therefore, we maximize the available registers and increase the row size to five
32-bit multiplications per iteration, as there are sufficient free registers for the
partial column-wise results. A close view of the inner loop operations is shown in
Figure 3, where it is presented that each step computes a single partial column
value, stores it into memory and keeps another four columns partial values in
the register set.

The row’s length implies that further six registers should be reserved for the
32-bit partial results. In the previous best performance implementation design
(i.e., R-OC) in [27], the authors use a single register to hold the current column’s



Algorithm 5 Proposed design (pseudocode), register utilization and carry prop-
agation for the multi-precision multiplication inner loop execution flow.
VMOV R0, S12 // R12
UMAAL R0, R10, R2, R6 // a6b6
UMAAL R11, R10, R3, R6 // a7b6
UMAAL R12, R10, R4, R6 // a8b6
UMAAL R14, R10, R5, R6 // a9b6
LDR R7, [R8, #4*7] // b7
UMAAL R0, R9, R1, R7 // a5b7
VMOV S12, R0 // R12

lower 32-bit accumulative result and another four registers to store four separate
upper 32-bit partial values.

In contrast to this strategy, in our work, we utilize a single register for the
upper 32-bit value, which is continually propagated to the subsequent column,
and another five registers for the lower 32-bit values. Figure 2 illustrates graph-
ically our architecture design with each inner loop iteration denoted by a black
line. A more detailed view is shown in Figure 3 and a pseudocode is presented in
Algorithm 5, where one register Rn+1+m stores the low results of An+1Bm accumu-
lated to AnBm+1, Rn+2+m stores low An+2Bm, Rn+3+m stores low An+3Bm, Rn+4+m stores low
An+4Bm and Rn+5+m stores high An+4Bm result, which has accumulated all previously
created upper 32 bits (carry propagation).

To our knowledge, this new combination of product scanning and operand
scanning approaches in the inner loop of multi-precision multiplication is intro-
duced for the first time in the literature. As described in Figure 3, this hybrid-
inner loop design enables a reduction in the number of words allotted for operand
B to only two. We reserve three to minimize the cost of reloading operands in
the midst of the multiplication; consequently, we require just two more reloads
per row above R-OC. By utilizing the register set optimally and following the
new instruction flow, we optimize the R-OC approach by raising the row widths,
which lowers access to partial results for accumulation.

3.3 Multi-precision Squaring

Due to the high invocation ratio of the multi-precision squaring routine, its
performance optimization benefits the overall execution time and resource re-
quirements of Curve448- and Ed448-based key exchange and digital signature
algorithm protocols. In this work, we propose and implement the first multi-
precision squaring procedure in hand-crafted assembly target-specific ARMv7
architecture code for the finite field of length 448 bits.

Due to the fact that the bottom portion of the rhombus representation mir-
rors the top part, the software design of the squaring benefits from the duplica-
tion of some of the partial result values, and so can produce higher performance
results than multi-precision multiplication. Since the result of AnAm equals the
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Fig. 4. Proposed architecture for 448-bit multi-precision multiplication with
14th index word for the doubled operand value (red line).

result of AmAn the accumulation of bottom and top rhombus sides may be im-
plemented by doubling one of both values. The computation for the rhombus
diagonal consists of operands with coinciding indexes (e.g. AkAk), as seen in
Figure 4 where they are marked with a red line. Their partial outcomes occur
just once and are hence not duplicated. Additionally, because only one operand
is involved in the operation, loading the operand words into the register set is
eased. Numerous teams have worked in the literature to exploit these aspects of
the subroutine and optimize the output for low-end target systems. There has
been no software implementation of multi-precision squaring for the Curve448
and Ed448 protocols; hence, this work covers this gap by offering the first and
most optimal design of 448-bit multi-precision squaring on the Cortex-M4 plat-
form in comparison to other similar research.

Scott et al. provide one of the first attempts for multi-precision squaring
function aiming low-end devices in [34]. The authors propose a carry catcher
approach with an additional number of registers dedicated to storing and accu-
mulating the generated carry. Later, Lee et al. propose lazy doubling method in
[35] the authors, where each computed column is doubled and then accumulated
to the non-doubled values. While this approach is the closest similar to our novel
design, it does not produce ideal results due to the numerous result doublings
and accumulations required.

In this work, we propose a new design for the implementation of finite field
long-integer squaring. Our implementation’s inner loop is based on the operand
scanning mechanism. The rationale for picking this method is the enormous
amount of free registers available due to the routine’s single operand nature.
Our primary goal is to raise the row size. For our design, we used the double-
operand approach presented in [27]. Additionally, we use the improved execution
flow described in [29], which decreases the row number.
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Fig. 5. Proposed design, register utilization and carry propagation for the multi-
precision squaring with coinciding indexes of the operand (left) and with the
carry word produced after doubling the operand (right).

We should note that due to the exact fit of the prime number consisting of
448-bits into 14 32-bit value registers, the doubling the operand A may produce
a carry. The carry bit specifies whether the doubled value of A is 448 or 449
bits. Thus, we simulate an additional word with index 14 of the duplicated A to
obtain accurate results. We draw a red line through the word with index 14 of
the doubled A in Figure 4 and regard it as a regular limb of 2xA.

A thorough depiction of the implemented design is shown in Figure 5 which
illustrates the execution flow of one inner step iteration. On the left is a repre-
sentation of the 32-bit partial multiplication of four doubled operand words with
the original A. As with multiplication, the carry is kept in a single register and is
propagated across subsequent short multiplications through the MAC UMAAL
instruction. The right side of Figure 5 depicts the execution flow when the 2xA

is utilized. As it could be noticed, there is not much difference with the rest of
the iterations, except that the value of the carry A13 is dynamically computed
during the execution of the program.

3.4 Side-channel implications

Side-channel analysis (SCA) attack uses data leakage based on timing, power
consumption, or electromagnetism information to recover secret information
about the communication parties.

In this work, we propose new constant-time implementation of the multi-
precision multiplication and squaring architectures for our Curve448-based key
agreement and digital signature algorithms. Our subroutines’ designs do not
contain conditional execution flow, thus, are robust against timing attacks.



A question that can emerge is based on the fact that multiplication and
squaring deploy different architectures and, therefore, show different latencies.
This, however, should not present an issues in terms of information leakage since
we deploy Montgomery ladder point multiplication design, where in each Mont-
gomery ladder step one point doubling and one point addition are executed,
independently of the secret key bit values. The sequence of multi-precision mul-
tiplication/squaring is known and is the same in each Montgomery ladder step.
We should note again that this work is focused on the multi-precision modular
operations, not on the group operations. Thus, our proposed design is not di-
rectly dependent on the users’ secret information, but rather forms part of the
multiple executions of the Montgomery ladder step.

3.5 Implementation Results

The next section compares the implemented multi-precision multiplication and
squaring methods to their literature counterparts.

We present the execution time of low-level finite field arithmetic operations
and the speedup obtained by integrating them into group operations. We base
our experiment results on the STM32F407VG microcontroller running at 24MHz
in order to remove memory controller stalls and deliver more exact findings that
remain relatively similar on any ARMv7-M-based board.

We compare our work with the best-known counterparts in the literature
targeting the same platform for Curve448- and Ed448-based algorithms and we
present the latency results in number of clock cycles in Table 2. In this work, we
achieve 25% of improvement compared to [21] for finite field multiplication when
integrating our new multi-precision designs. Additionally we observe another
35% of speedup after introducing the first 448-bit modular squaring subroutine.
The low-level arithmetic optimization leads to a 31% speedup for the inversion
routine.

The group operations point addition and point doubling show 49% of perfor-
mance improvement for the execution of the point doubling and addition. Our
design is based on the execution of Montgomery ladder step where the doubling
and addition are performed by the subroutine. After integrating the low-level
finite field arithmetic along with the Montgomery ladder point multiplication
strategy we observe more than 48% improvement for the execution of point
multiplication.

The work on Ed448 we compare with the recently published work [22] where
we achieve 13.1% and 24.5% latency speedup for the execution of the multipli-
cation and squaring routine. Sequentially, we observe around 24% better results
for the execution of the inversion and another 13.5% for the execution of the
Montgomery ladder step. Finally, we observe 12% better performance for the
Montgomery ladder based scalar multiplication routine.

In the following section, we perform a more exhaustive report of the overall
elliptic curve based key agreement and digital signature algorithms latencies
when integrating our new low-level architecture designs.



Table 2. Finite field operations for Curve448/Ed448 targeting ARMv7-M

Ref.

Arithmetic Performance Evaluation

Fp Group

Mul Sqr Inv AddDouble Multiply

Curve448

Seo et al.1 821 821 363,485 6,566 6,567 6,218,135

This work 613 532 247,707 6,640(total) 3,220,682

25.33% 35.20% 31.85% 49.44% 48.21%
Ed448

Anastasova et al.2 705 705 325,997 8,465(total) 3,703,755

This work 613 532 247,934 7,323(total) 3,259,379

13.05% 24.54% 23.95% 13.49% 12.00%
Refer to:1 [21], 2 [22]

4 Performance Evaluation

The next section analyzes the acquired findings in terms of performance. We re-
port on the latency of our designs when they are executed on the STM32F407VG
discovery board, which features a Cortex-M4 CPU. We run our results at 24MHz
to assure a zero-wait condition and hence eliminate memory control unit stalls.
Additionally, we report our results when the Curve448 ECDH key exchange and
Ed448 DSA protocols are run at 168MHz in order to simulate a real-world sce-
nario on the given microcontroller. Note that the high frequency measurement
is extremely reliant on the target platform and varies between devices based on
the memory control unit’s clock speed.

We base our results on the version gcc-arm-none-eabi-10.3-2021.07 cross-
compiler setting the -O3 optimization flag for optimized performance results. We
compare our work with Curve25519- and Curve448-based implementations where
we note that the results presented for Curve25519 are significantly better than
our results due to the size of the prime number and thus the minimal length of
the operands.

We provide the performance findings in Table 3 in terms of clock cycles ⇥103.
We notice that we obtain s 3.6⇥ slower results for Curve448 in comparison to
the Curve25519 results reported in [10] targeting the same platform. However, we
should note that the Curve448 offers a much higher security level, in particular,
224-bit compared to 128-bit of Curve25519. We present more than 22⇥ better
results for executing scalar-point multiplication X448 function than the work
presented in [10]. However, we find that the limited resources available on their
low-end target systems necessitate more extensive outcome improvements. Thus,
a portion of the reason for the enormous latency discrepancy is due to the target
restrictions experienced by the writers on such low-end architecture device.

We compare the best performance results on the target platform, as pro-
vided by Seo et al. in [21] and Anastasova et al. in [22], by assessing the X448



Table 3. Curve 25519 and Curve448 key exchange and digital signature com-
putation latency performance on IoT platforms

Work Platform
Freq.

X448 Ed448 KeyGen Ed448 Sign Ed448 Verify[MHz]
Curve255191 Cortex-M4 84 894 390 544 1,331

Curve4482 AVR 32 103,229 - - -
MSP 25 73,478 - - -

Curve4483 Cortex-M4 24 6,218 - - -
168 6,286 - - -

Ed4484 Cortex-M4 24 - 4,069 6,571 8,452
168 - 4,195 6,699 8,659

This work Cortex-M4 24 3,221 3,536 6,038 7,404

168 3,975 4,282 6,787 8,854

Refer to:1 [10],2 [20], 3 [21], 4 [22]

point multiplication function and the Ed448 DSA key generation, sign, and ver-
ify functions. We mark around 48.2% and 36.8% of speedup when comparing our
optimized X448 design running at 24MHz and 168MHz, respectively. The gains
realized are a result of the novel arithmetic architecture introduced in this study.
Thus, we report the execution of point multiplication in 3, 221⇥103CCs. We also
report a speedup of 13.1%, 8.1%, and 12.4% compared to the most recent liter-
ature equivalents while analyzing Ed448 EdDSA on the STM32F407 discovery
board. We note that our implementation design shows a 1.4% of latency in-
crease when running the digital signature procedures at the maximum platform
frequency of 168MHz. This is due to the floating-point register set being utilized
as a storage unit rather than memory. This change, however, is negligible and is
mostly due to the board’s increased speed, a scenario that may not exist with
other microcontrollers with different features.

5 Conclusion
In this work, we present a novel design for time-efficient finite field arithmetic
over Curve448 and its birationally equivalent Ed448, where the pyramid-like
structure of the protocols, results in an overall speedup of the key derivation
and digital signature protocols based on the Montgomery and Edwards rep-
resentation of Curve448. We describe an optimum multi-precision multiplica-
tion architecture and the first hybrid implementation of operand and product
scanning techniques in the multiplication routine’s inner loop. Additionally, we
provide the first multi-precision squaring technique for 448-bit finite field arith-
metic, where the carry of the operand doubling is represented as a new word
and utilized to compute the right final value.
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