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Abstract. We introduce a new primitive called the asymmetric trap-
door pseudorandom generator (ATPRG), which belongs to pseudoran-
dom generators with two additional trapdoors (a public trapdoor and
a secret trapdoor) or backdoor pseudorandom generators with an addi-
tional trapdoor (a secret trapdoor). Specifically, ATPRG can only gen-
erate public pseudorandom numbers pr1, . . . , prN for the users having
no knowledge of the public trapdoor and the secret trapdoor; so this
function is the same as pseudorandom generators. However, the users
having the public trapdoor can use any public pseudorandom number
pri to recover the whole pr sequence; so this function is the same as
backdoor pseudorandom generators. Further, the users having the se-
cret trapdoor can use pr sequence to generate a sequence sr1, . . . , srN of
the secret pseudorandom numbers. ATPRG can help design more space-
efficient protocols where data/input/message should respect a predefined
(unchangeable) order to be correctly processed in a computation or mal-
leable cryptographic system.
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As for applications of ATPRG, we construct the first homomorphic signa-
ture scheme (in the standard model) whose public key size is only O(T )
that is independent of the dataset size. As a comparison, the shortest
size of the existing public key is O(

√
N +

√
T ), proposed by Catalano et

al. (CRYPTO’15), where N is the dataset size and T is the dimension of
the message. In other words, we provide the first homomorphic signature
scheme with O(1)-sized public keys for the one-dimension messages.

Keywords: Pseudorandom generators · Homomoprhic signatures ·
Standard model.

1 Introduction

1.1 Background

Some primitives of public key cryptography, such as multi-key fully homomorphic
encryption and homomorphic signatures (HS), have one main limitation that
the public key size is linear with the dataset size. When the dataset is large,
the public key size may reach MB or even GB magnitude, and the resulting
storage and communication overheads are burdensome for resource-constrained
devices, e.g., mobile devices and Internet of Things (IoT) devices. To the best of
our knowledge, only Catalano et al. (CRYPTO’15) [6] proposed a HS scheme in
which the public key size is less than O(N + T ) in the past two decades, where
N is the dataset size and T is the dimension of the message.

HS schemes [21] allow a remote party to compute any function from a
class of admissible functions over signed messages and derive verifiable signa-
tures given computed results, which can verify the correctness of the corre-
sponding computed results efficiently. HS can solve many problems in cloud
computing, such as data integrity checking, verifiable computation, and elec-
tronic voting [17]. According to the identity of the verifier, HS can divide into
homomorphic MAC (HA) and signatures. The difference between the two is
that the former is privately verified, and the latter can be publicly verified. In
the past two decades, HS has undergone great development in the computed
function, especially from linearly HS that only supports addition or multiplica-
tion [1,6,8,9,14,15,19,21–23,26], to bounded polynomials [2,3,5,7] and to (level)
fully homomorphic operations that allow computing the general arithmetic cir-
cuits of a priori bounded depth [12, 16, 17]. However, as a notable limitation, in
the standard model, the public key sizes of [1–3,5,7–9,12,14,15,17,19,21–23,26]
are all restricted to be linear with the dataset size; the smallest of [6] is O(

√
N+√

T ).
It is challenging to reduce the public key size, as there is no existing uni-

versal technique. In this paper, we attempt to design a universal technique to
shorten public keys from the perspective of pseudorandom number generators
(PRGs). In cryptographic theory, the security of most cryptographic tasks crit-
ically depends on the randomness quality. Since true random bits are hard to
generate without specialized hardware, PRGs are often alternatively used in
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cryptographic schemes. PRG takes a short random seed as input and outputs
the bit-strings of arbitrary (polynomial) length. We can divide it into two cate-
gories: non-backdoor PRG and backdoor PRG (BPRG) [10,11,27], according to
whether a backdoor exists. Non-backdoor PRG can only output pseudorandom
numbers. BPRG is a standard PRG for adversary A without the backdoor tdB;
however, there also exists another adversary B in BPRG who has the back-
door tdB [10]. B can use the backdoor and any BPRG output (a pseudorandom
number) to recover all the forward and backward pseudorandom numbers of the
BPRG output.

At the high level, the public keys are just a string of pseudorandom num-
bers, and if we can compress n pseudorandom numbers into a shorter string,
it appears that we can shorten the length of the public keys. BPRG can pro-
vide similar functionality since B can use the backdoor to recover the whole
sequence of the pseudorandom numbers. Unfortunately, the public keys only ap-
pear as pseudorandom numbers but have some mappings with the secret keys
(e.g., ϕ1 : sk → pk is computationally easy, but ϕ−1

1 : pk → sk is computa-
tionally hard). Therefore, the function of the public keys cannot be completely
replaced by the pseudorandom numbers generated by BPRG. We need a new
security primitive for generating the public keys so that it not only has the func-
tion of BPRG but also can use the generated pseudorandom numbers (public
keys) to provision the corresponding secret keys. The above idea may sound like
an intuitive way to break the computationally hard condition of the ϕ−1

1 map;
counter-intuitively, we use an unusual bilinear group to build this new primitive,
as will be described later.

1.2 Our Contributions

ATPRG: We introduce a new primitive that we call the asymmetric trapdoor
pseudorandom generator (ATPRG). Then we construct an ATPRG instance
upon techniques of PRG, reverse re-randomizable encryption (RRRE), and trap-
door projection maps for bilinear groups. ATPRG has five algorithms (setup, init,
PRGen, SRGen, recB), where PRGen and SRGen are two algorithms for generat-
ing pseudorandom numbers, and setup can generate a public trapdoor tdB and
a secret trapdoor tdS . The users without tdB and tdS can only use the three
algorithms (setup, init,PRGen), which are equivalent to the non-backdoor PRG.
The users only have tdB can use the four algorithms (setup, init,PRGen, recB),
which are equivalent to BPRG. The users with tdB and tdS can run the whole
five algorithms.

More specifically, PRGen produces a sequence pr = (pr1, . . . , prN ) of pub-
lic pseudorandom numbers, and SRGen (using pr and the secret trapdoor tdS )
produces a corresponding sequence sr = (sr1, . . . , srN ) of secret pseudorandom
numbers. pr is to generate the public keys, and sr is to generate the correspond-
ing secret keys. We require the following relationships to hold among these four
sequences: ϕ1 : sk → pk, ϕ2 : pr(tdS ) → sr, and ϕ3 : sr → sk are computa-
tionally easy, but ϕ−1

1 : pk → sk and ϕ4 : pr → sr are computationally hard.
In addition, (setup, init,PRGen, recB) constitutes a BPRG; that is, one with a
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backdoor tdB (public trapdoor) that can calculate all outputs of pr by algo-
rithm recB using any PRGen output pri. Therefore, the properties of these five
mappings guarantee the confidentiality of the secret keys and the compressibility
of the public keys.

The challenge of designing ATPRG is how to construct the secret trapdoor
tdS . We address tdS construction by a trapdoor projection map for bilinear
groups. For a random element pri of elliptic curve group G, we map pri to a
torsional subgroup G1 of G by the trapdoor projection map. The resulting image
of this mapping is the corresponding secret pseudorandom number sri (random
element of group G1). We use sri ← f1(pri) represents the operation that maps
the public pseudorandom number pri to the secret pseudorandom number sri.
According to the subgroup hiding hypothesis, sr cannot be calculated effectively
from pr without knowing the secret trapdoor tdS . ATPRG provides a method
to shorten the public key size, which allows any user to recover the sequence of
public keys of any size through the public trapdoor tdB with a fixed size. At
the same time, the secret trapdoor tdS is used to ensure the confidentiality of
secret keys. In other words, ATPRG can reduce the storage and communication
overheads of the public keys of arbitrary length to a shortened size (e.g., O(1))
for some cryptographic schemes.

However, the ATPRG construction described above is insufficient to solve the
problem of constructing cryptographic schemes under the standard model since
it is difficult to simulate the schemes without using the random oracle. There-
fore, we further propose a variant of ATPRG called (ζ,N)-simulated ATPRG.
This variant adds three new algorithms init′,PRGen′, SRGen′ to the original AT-
PRG. We can initialize another simulated ATPRG using setup and init′, which
makes it feasible to use PRGen′ to generate a simulated public pseudorandom
sequence pr′ = (pr′1, . . . , pr

′
N ), then use the SRGen′ to generate a simulated se-

cret pseudorandom sequence sr′ = (sr′1, . . . , sr
′
N ). Where sr′ has the ζ elements

(we use sr′ℓ to represent them) generated without using the secret trapdoor (but
the equation sr′ℓ = f1(pr

′
ℓ) also holds), and recB can still recover the entire

pr′ sequence from any element in pr′. The requirement that generates ζ ele-
ments of sr′ without using the secret trapdoor but sr′ℓ = f1(pr

′
ℓ) also holds may

sound counter-intuitive. In a nutshell, we do this by using some of the underlying
mathematical properties of the unusual bilinear map to inversely construct the
corresponding pr′ℓ from a random sr′ℓ such that sr′ℓ = f1(pr

′
ℓ) holds simultane-

ously. We construct a (1, N)-simulated ATPRG instance again upon techniques
of PRG, RRRE, and trapdoor projection maps for bilinear groups.

Application: For the HS schemes (in the standard model), the public key
size is generally larger than or equal to O(N + T ), where N is the dataset size
and T is the dimension of the message. To the best of our knowledge, only [6]
proposed a HS scheme with O(

√
N+
√
T )-sized public keys exploiting techniques

of programmable hash and cover-free. We leverage (1, N)-simulated ATPRG to
design the first HS scheme (in the standard model) whose public key size is
independent of the dataset size, and our scheme has only O(T )-sized public keys.
Specifically, for N T -dimension messages m1, . . . ,mN , we use PRGen algorithm
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to generate N pseudorandom numbers pr1, . . . , prN , then use SRGen algorithm
to transform pr1, . . . , prN to sr1, . . . , srN . A simplified structure of our signature
Ui is as following (the signature Ui is actually the secret pseudorandom number
sri):

Ui = f1

pri · T∏
j=1

h
mi[j]
j

 ,

where mi[j] represents the j-th component of the i-th message, h1, . . . , hT are
randomly selected from group G, and f1 is the trapdoor projection map for
G → G1. For a computed result m =

∏N
i=1 ci ∗mi (ci are coefficients of linear

functions), we can verify the correctness of m by using pr1, . . . , prN through an
unusual bilinear mapping. In our HS scheme, pr1, . . . , prN and h1, . . . , hT are
the public keys, we only need to store one element pri for any i ∈ [N ] since
the algorithm recB can use pri and public trapdoor tdB to recover the whole
sequence pr1, . . . , prN . Therefore, the public key size of our scheme is O(T ).
In the security proof, we use the algorithms (setup, init′,PRGen′, SRGen′, recB)
to simulate the operations of (setup, init,PRGen, SRGen, recB) such that we can
cancel the use of the random oracle. Finally, we prove the unforgeability of our
HS scheme based on the discrete logarithm (DL) assumption and the security
property (real non-reversibility) of the (ζ,N)-simulated ATPRG. We summarize
and compare the public key sizes of different schemes in Table 1.

ATPRG can help design more space-efficient protocols where data/message
should respect a predefined (unchangeable) order to be correctly processed in a
computation or malleable cryptographic system. We believe that the shortest HS
scheme (O(1)-sized public keys for the T -dimension messages) can be obtained
asymptotically by this new primitive.

Table 1: Comparison of public key size (in the standard model)
Schemes Public keys Assumptions

[1–3,5, 7–9,12,14,15,17,19,21–23,26] O(N + T ) -
[6] O(

√
N +

√
T ) q-DHI and FDHI

Our scheme O(T ) DL and f1-SGH

1.3 Organization

In Section 2, we introduce necessary notations and definitions. In Section 3,
we give the definitions of ATPRG and (ζ,N)-simulated ATPRG, and construct
the instances of them upon techniques of PRG, RRRE, and trapdoor projection
maps for bilinear groups. In Section 4, we elaborate on the construction of our
HS scheme with shorter public keys. In Section 5, we discuss other ATPRG
applications and leave some open problems.
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2 Preliminaries

2.1 Notation

Let λ denote a security parameter, a $← A denotes that sampling uniformly at
random the value a from the distribution A. η(λ) represents a class of negligible
function on λ. [q] represents 1, . . . , q. The logarithms in this paper are to base
two.

2.2 Reverse Re-randomizable Encryption

Before introducing the reverse re-randomizable encryption scheme, we first give
two definitions of IND$-CPA-secure PKE and re-randomizable encryption since
the latter two are the basis for building the former.

Definition 1. A (t, q, δ)-IND$-CPA-secure PKE scheme [11] has three Proba-
bilistic polynomial time (PPT) algorithms (KeyGen,Enc,Dec) such that for all
adversaries A running in time t and making at most q queries, it holds that

AdvIND$−CPA
A := |Pr[(pk, sk)← KeyGen : A Enc(pk,·)(pk) = 1]−

Pr[(pk, sk)← KeyGen : A $(·)(pk) = 1]| ≤ δ,

where $(·) is such that on input a message M , it returns a random string of size
|Enc(pk,M)|.

Apparently, a (t, q, δ)-IND$-CPA-secure PKE scheme is also a (t, q, 2δ)-IND-
CPA-secure PKE scheme. Since the backdoor pseudorandom generators, re-
randomizable encryption, and reverse re-randomizable encryption in this pa-
per all use pseudorandom ciphertext, we focus on the IND$-CPA-secure PKE
scheme.

Definition 2. A (t, q, δ, ν)-IND$-CPA-secure re-randomizable encryption scheme
[20] has four PPT algorithms (KeyGen,Enc,Dec,Rand), where (KeyGen,Enc,Dec)
is a standard IND$-CPA-secure PKE scheme (which implies the correctness of
PKE). Rand is an efficiently randomised algorithm such that for all (pk, sk) ←
KeyGen, M , and R1, we have

∆(
{
R0

$← Coins(Enc) : Enc(pk,M ;R0)
}
,{

R′ $← Coins(Rand) : Rand(Enc(pk,M ;R1);R
′)
}
) ≤ ν,

where Coins(A) denotes the distribution of the internal randomness of A so that
the distribution

{
a

$← A
}

is actually
{
r

$← Coins(A) : a = A(r)
}

. That is, the
distributions of a ciphertext generated by a standard PKE scheme and a cipher-
text generated by Rand with arbitrary randomness are statistically close.

The reverse re-randomizable encryption scheme has an additional property,
reverse re-randomizable [10], compared to the re-randomizable encryption scheme.
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Definition 3. A (t, q, δ, ν)-IND$-CPA-secure reverse re-randomizable encryp-
tion scheme has five PPT algorithms (KeyGen,Enc,Dec,Rand,Rand−1), where
(KeyGen,Enc, Dec,Rand) is a (t, q, δ, ν)-IND$-CPA-secure re-randomizable en-
cryption scheme. Rand−1 is an efficient algorithm such that for all (pk, sk) ←
KeyGen, M , R0, and R1, we have

Pr[Rand−1(Rand(Enc(pk,M ;R0);R1);R1) = Enc(pk,M ;R0)] = 1.

2.3 Pseudorandom Generators

A PRG takes a short random seed as input and outputs the bit-strings of arbi-
trary (polynomial) length. Following [10,11], we also equip PRG with a param-
eter generation algorithm setup, which can simplify the following description of
the backdoor PRG.

Definition 4. A PRG has three PPT algorithms (setup, init, next) which can be
defined with two parameters (n, l) ∈ N2:

– (pp, bk) ← setup(coins) : {0, 1}∗ → {0, 1}∗ × {0, 1}∗. This algorithm takes
a random coin as input and outputs a public parameter pp and a secret
backdoor parameter bk. For a non-backdoor PRG, bk = ⊥.

– s ← init(pp, coins) : {0, 1}∗ × {0, 1}∗ → {0, 1}n. This algorithm takes a
public parameter pp and a random coin as input and outputs an initial state
s0 ∈ {0, 1}n of PRG.

– (r, s′) ← next(pp, s) : {0, 1}∗ × {0, 1}n → {0, 1}l × {0, 1}n. This algorithm
takes a public parameter pp and a state s ∈ {0, 1}n as input and outputs a
pseudorandom l-bits string and a next state s′.

According to the PRG definition, as long as we initialize a PRG, we can
iterate the next algorithm to generate a fairly long pseudorandom bit string.
Suppose that we iterate k next algorithm, we can let outk(next) = r1, . . . , rk and
statek(next) = s1, . . . , sk represent the k outputs of the pseudorandom numbers
and the states. Next, we give some security definitions of PRG.

Definition 5 (PRG Distinguishing Advantage). The distinguishing advan-
tage of A against PRG is defined as follows:

AdvPRG.distA ,q := 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(pp, bk)← setup(coins),
s0 ← init(pp, coins),

r01, . . . , r
0
q ← outq(next),

r11, . . . , r
1
q

$← {0, 1}l ,
b

$← {0, 1} ,
b′ ← A (pp, rb1, . . . , r

b
q) :

b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The adversary A receives either q PRG outputs or q random l-bits strings.
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Based on the PRG distinguishing advantage, we can define a (t, q, δ)-secure
PRG.

Definition 6 ((t, q, δ)-secure PRG). A PRG is said to be (t, q, δ)-secure if for
all adversaries A running in time t, it holds that AdvPRG.distA ,q ≤ δ.

We can define a stronger security definition of PRG if we give the extra final
state to the adversary A , called forward security.

Definition 7 (PRG Forward-security Advantage). The forward-security
advantage of A against PRG is defined as follows:

AdvPRG.fwd
A ,q := 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(pp, bk)← setup(coins),
s0 ← init(pp, coins),

r01, . . . , r
0
q ← outq(next),

r11, . . . , r
1
q

$← {0, 1}l ,
s1, . . . , sq ← stateq(next),

b
$← {0, 1} ,

b′ ← A (pp, rb1, . . . , r
b
q, sq) :

b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The adversary A receives either q PRG outputs or q random l-bits strings.

Definition 8 ((t, q, δ)-FWD-secure PRG). A PRG is said to be (t, q, δ)-FWD-
secure if for all adversaries A running in time t, it holds that AdvPRG.fwd

A ,q ≤ δ.

2.4 Backdoor Pseudorandom Generators

Differing from the standard PRG, there is another backdoor attacker B in
BPRG; that is, there exist two attackers in a BPRG system, A and B. The
goal of A is to break the security of the BPRG scheme without access to the
backdoor tdB, in this case, the security model of BPRG is the same as PRG.
However, attacker B can recover the backward/forward outputs of BPRG using
the backdoor tdB.

Definition 9. A BPRG has four PPT algorithms (setup, init, next, recB):

– (pp, bk) ← setup(coins). This algorithm takes a random coin as input and
outputs a public parameter pp and a secret backdoor parameter bk.

– s0 ← init(pp, coins). This algorithm takes a public parameter pp and a ran-
dom coin as input and outputs an initial value s0 of BPRG.

– (r, s′)← next(pp, s). This algorithm takes a public parameter pp and a BPRG
state value s as input and outputs a random bit-string and a next BPRG state
value s′. This step seems to be the same as PRG, but for the backdoor setting,
the internal process differs from PRG.
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– outB ← recB(bk, ri, i, pp). This algorithm inputs a backdoor bk = tdB, a
pseudorandom number ri generated by BPRG.next with its index i, and a
public parameter pp. It outputs some forward or backward values outB, where
outB maybe the sequence of the pseudorandom numbers r1, . . . , ri, . . . or the
sequence of BPRG state values s0, . . . , si−1, . . . .

Following [11], BPRG has three security advantages for B: AdvBPRG.distB,q ,
AdvBPRG.nextB,q , and AdvBPRG.rskB,q . And then [10] gives two stronger security advan-
tages AdvBPRG.firstB,q and AdvBPRG.outB,q . We only give the definition of AdvBPRG.outB,q

since it implies the correctness of our ATPRG to recover public pseudorandom
sequence. The original paper [10] of BPRG does not provide a direct definition
of correctness; instead, it uses AdvBPRG.outB,q to imply the correctness advantage,
probably because the authors are targeting "Big Brother" to research.

Definition 10 (BPRG Output Advantage). The output advantage of B
against BPRG is defined as follows:

AdvBPRG.outB,q := Pr


(pp, bk)← setup(coins),
s0 ← init(pp, coins),

r1, . . . , rq ← outq(next),
r∗1 , . . . , r

∗
q ← B(pp, tdB, ri, i) :

r1, . . . , rq = r∗1 , . . . , r
∗
q

 .
Based on the above five security advantages of BPRG, we can define a

(t, q, δ, (·, ϵ))(-FWD)-secure BPRG, where the · represents dist/next/rsk/first/out.

Definition 11 ((t, q, δ, (·, ϵ))-secure BPRG). A BPRG = (setup, init, next, recB)
is said to be (t, q, δ, (·, ϵ))-secure if for all adversaries B running in time t, it
holds that AdvBPRG.(·)B,q ≥ ϵ and (setup, init, next) is a (t, q, δ)-secure PRG.

Definition 12 ((t, q, δ, (·, ϵ))-FWD-secure BPRG). A BPRG = (setup, init,
next, recB) is said to be (t, q, δ, (·, ϵ))-FWD-secure if for all adversaries B run-
ning in time t, it holds that Adv

BPRG.(·)
B,q ≥ ϵ and (setup, init, next) is a (t, q, δ)-

FWD-secure PRG.

2.5 Trapdoor Projection Maps for Bilinear Groups

Since this type of bilinear mapping is unusual, we will cover some of the details
in a little more detail, and they will be used in the following constructions and
proofs.

Pairing-based cryptography is a striking illustration of the value of algebraic
structure for constructing cryptographic schemes: a richer structure allows for
a wider variety of cryptographic schemes, provided that there exists some hard
problems on which security can be based. Groups with computable pairings have
been proved to be fruitful for designing cryptographic primitives and protocols.
Meiklejohn et al. [24] give a surprising and unprecedented new structure of the
pairing-friendly elliptic curve proposed by Boneh, Rubin, and Silverberg [4]. In
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Fig. 1: TBG construction

a nutshell, their new structure (later called TBG) can project a point from the
group G onto its subgroup G1 or G2 with knowledge of a trapdoor.

We describe the TBG construction in Fig.1. For a bilinear map e : G×G→
GT (used especially for Weil pairing), TBG first generates parameters using the
following setup algorithm.

Definition 13. TBG.setup(1λ). Use the algorithms in [24, Algorithm 1] to gen-
erate a prime q, a composite Q, an elliptic curve E defined over Fq such that
G := E[Q] contains Q2 points, and two distortion-free subgroups G1 and G2

of the N-torsion group G with their generators P1 and P2. Finally, let e be the
Weil pairing and GT := µQ. Output bilinear group public parameters bgpp =
(Q,G1, G2, GT , e, P1, P2).

Because we do not need to discuss the underlying mathematics, we switch
from additive to multiplicative notation so that we use g1 and g2 to represent the
generators ofG1 andG2, respectively. Therefore, bgpp = (Q,G1, G2, GT , e, P1, P2)
can be represented as bgpp = (Q,G1, G2, GT , e, g1, g2). Note that the group G
generated by the TBG.setup(1λ) algorithm has a fact that G = G1⊕G2; in other
words, G has exponent Q but contains Q2 points, it can be represented as the
product of two cyclic groups (G1 and G2) of order Q.

Definition 14 (Trapdoor Projection Map [24]). We say that a function
f : G → G′ is a projection map if it satisfies: (1) efficiently computable; (2)
idempotent; and (3) G′ ⊂ G. If, furthermore, f is assumed to be hard to compute
without the knowledge of some additional piece of information, then we say that
it is a trapdoor projection map.

After generating bgpp, we can use the method in [24, section 3.1] to get a
trapdoor projection map tdS = f . Then, we can map the elements of G to its
torsion subgroups G1 (tdS = f1) and G2 (tdS = f2), and even further map
the elements of G1 and G2 to their subgroups G1p (tdS = f1p), G1q(tdS =
f1q), G2p(tdS = f2p), and G2q(tdS = f2q). Note that trapdoor projection map
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preserves the group structure, e.g., for an element u ∈ G and its inverse u−1 ∈ G,
f1(u)

−1 = f1(u
−1). In addition, we have the following Lemma 1 to guarantee

the quality of the above mappings.

Lemma 1. For bgpp = (Q,G1, G2, GT , e, g1, g2) ← TBG.setup, G1 ∩ G2 = O,
where O = End(E) is an order in some imaginary quadratic field K [24, Lemma
3.2.].

For ∀u ∈ G, we have a unique decomposition u = ga1 ·gb2. The computation of
f1 map is f1(u) = ga1 . Therefore, if we first select two random element Y ∈ G1

and Z ∈ G2, then compute u = Y · Z. Finally, we have f1(u) = Y . This is an
important property to construct our (1, N)-simulated ATPRG. In addition, the
following properties of the bgpp with trapdoor tdS = f are also used in this
paper: (1) u = f1(u) · f2(u), for any u ∈ G; (2) for any a, b ∈ G1 or a, b ∈ G2,
e(a, b) = 1; (3) for u, v ∈ G, e(f1(u), v) = e(u, f2(v)). Further, we use its special
case e(f1(u), g) = e(u, g2). Note that bgpp implies the group G and its generator
g. When we obtain bgpp, we actually learn about G and g at the same time.

The following two assumptions related to the f1 group are also involved in
the proofs of this paper.

Assumption 1 (f1-SGH) Given bgpp ← TBG.setup and random w
$← G for

G : G1 ×G2, it is hard to compute f1(w) [24, Assumption 4.4].

Assumption 2 (Decisional f1-SGH) Given bgpp← TBG.setup, random T ∈
GT , and random elements u, v $← G for G : G1 × G2, it is hard to tell if T =
e(f1(u), f2(v)) or T is random [24, Assumption 4.5].

2.6 Homomorphic Signatures

Definition 15 (Homomorphic Signatures). A HS scheme has four PPT
algorithms (KeyGen, Sign,Eval,Ver):

– (sk, pk) ← KeyGen(1λ). Input a security parameter λ. Output a secret key
sk, a public key pk.

– σ ← Sign(sk,m). Input the secret key sk, a message m. Output a signature
σ.

– σ ← Eval(pk, f, σ⃗). Input the public key pk, a computed function f , and a set
of signatures σ⃗ = (σ1, . . . , σN ) corresponding to the inputs of f (assuming
that f takes N inputs), where σi is generated by the Sign algorithm for all
i ∈ [N ]. Output an evaluation signature σ.

– 0/1 ← Ver(pk, f,m, σ). Input the public key pk, a computed result m with
its evaluation signature σ, and the computed function f corresponding to σ.
Output 1 represents that m is the correct result of f(m1, . . . ,mN ) and 0 is
incorrect.

HS schemes have four properties: signature correctness, evaluation correct-
ness, succinctness, and security (unforgeability).
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Definition 16 (Signature Correctness). A HS scheme satisfies signature
correctness if for any key pair (sk, pk) ← KeyGen(1λ) and any signature σ ←
Sign(sk,mi) for all i ∈ [N ], 1 ← Ver(pk, f,mi, σi) holds with all but negligible
probability.

Definition 17 (Evaluation Correctness). A HS scheme satisfies evaluation
correctness if for any key pair (sk, pk) ← KeyGen(1λ), any set of {mi, σi}Ni=1

and any function f : MN → M such that 1 ← Ver(pk, f,m, σ), where M
is the message space, m ← f(m1, . . . ,mN ), and σ ← Eval(pk, f, σ1, . . . , σN ).
In addition, this property also requires correctness for composed evaluation of
several different functions. For any g1, . . . , gℓ with gi : MN → M and any
f : Mℓ → M defines the composition (f ◦ ḡ) : MN → M by (f ◦ ḡ)(m) =
h(g1(m) . . . , gℓ(m)), any (m1, . . . ,mN ) ∈ MN , any signature (σ1, . . . , σN ) such
that 1← Ver(pk, gi,mi, σi) for i ∈ [ℓ], and σ ← Eval(pk, f, σ1, . . . , σℓ) computed
on f , we have 1← Ver(pk, (f ◦ ḡ), f(m1, . . . ,mℓ), σ).

Definition 18 (Succinctness). A HS scheme satisfies succinctness if for a
fixed security parameter λ, the size of the signatures depends at most logarith-
mically on the dataset size.

To define the security of the HS scheme, we need to define an experiment
ExpEUF−CMA

A ,HS first.

Definition 19. The experiment ExpEUF−CMA
A ,HS includes three steps (Setup, Sign

queries,Forgery):

– Setup: The challenger runs (sk, pk) ← KeyGen(1λ) and gives pk to the ad-
versary A .

– Sign queries: The adversary A asks for signatures on m. If m is the first
query, then the challenger initializes an empty list T = ∅. If m /∈ T , the
challenger runs σ ← Sign(sk,m), gives σ to A , and adds (m,σ) to T . If
m ∈ T , the challenger gives the corresponding signature σ to A .

– Forgery: The adversary A finally returns a forgery tuple (f∗,m∗, σ∗). The
output of the experiment is 1 iff the following hold: (1) f is admissible on
the message m1, . . . ,mN ; (2) m∗ ̸= m; (3) 1← Ver(pk, f∗,m∗, σ∗).

Definition 20 (Security (Unforgeability)). A HS scheme satisfies unforge-
ability if the following equation holds.

Pr[ExpEUF−CMA
A ,HS = 1] ≤ η(λ). (1)

Selective security: The selective security game requires that the adversary
A sends all messages to the challenger for signature query before receiving the
public key. Since the problem of shortening homomorphic signature public keys is
difficult, we only provide security proof under the standard model in the selective
security game.

Besides, some HS schemes may have an extra property: efficient verification,
which improves verification efficiency for the same computed function (in the
sense of amortization):
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Definition 21 (Efficient Verification). A HS scheme for multi-labeled pro-
grams satisfies efficient verification, if there exists two algorithms (VerPerp,EffVer)
such that:

– vk ← VerPerp(pk, f). Input the public key pk and the computed function f .
Output a concise verification key vk.

– 0/1← EffVer(vk,m, σ). Input the concise verification key vk and a computed
result m with its evaluation signature σ. Output 0 (reject) or 1 (accept).

VerPerp and EffVer are required to satisfy the following properties:

1. Correctness. Let (sk, pk) ← KeyGen(1λ) be honestly generated keys, given
any correct tuple (f,m, σ) such that 1 ← Ver(pk, f,m, σ), for every vk ←
VerPerp(pk, f), we have Pr[EffVer(vk,m, σ) = 1] = 1.

2. Amortized Efficiency. Given f and valid input messages m1, . . . ,mN , let
t(N) be the time of compute f(m1, . . . ,mN ), we require that the time of
EffVer(vk,m, σ) is independent of N , i.e., O(1).

3 Asymmetric Trapdoor Pseudorandom Generators

3.1 Definitions

We first introduce the definitions of ATPRG, then give its security definitions.

Definition 22. An ATPRG has five algorithms (setup, init,PRGen, SRGen, recB),
to simplify the description, we have omitted the random coins:

– (pp, tdB, tdS )← setup. Output a public parameter pp, a public trapdoor tdB

for recovering public pseudorandom sequence pr, and a secret trapdoor tdS

for generating secret pseudorandom sequence sr. In addition, this algorithm
also defines the public pseudorandom number space G and the secret pseu-
dorandom number space G1.

– s0 ← init(pp). Output an initial state of ATPRG.
– pr ← PRGen(pp, s0). Input a public parameter pp and a initial state s0.

Output a public pseudorandom sequence pr = (pr1, . . . , prN ), where pri ∈ G
for all i ∈ [N ].

– sr ← SRGen(pp, pr, tdS ). Input a public parameter pp, a public pseudoran-
dom sequence pr, and a secret trapdoor tdS . Output a secret pseudorandom
sequence sr = (sr1, . . . , srN ), where sri ∈ G1 for all i ∈ [N ].

– pr ← recB(pp, tdB, prN , N). Input a public parameter pp, a public trapdoor
tdB, a public pseudorandom number prN with its index N . Output a recov-
ered sequence pr = (pr1, . . . , prN ) of the public pseudorandom numbers.

We refer to the above ATPRG definition as the standard ATPRG definition
to distinguish it from the variant definition below.

In recB, the recovered sequence pr implies a sequence of the state values si,
but the main role of our ATPRG is to recover the sequence of public pseudoran-
dom numbers, so other recoverable information is ignored. We expect ATPRG to
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be equivalent to a standard PRG for the users having no knowledge of the public
trapdoor and the secret trapdoor, and ATPRG to be equivalent to a standard
BPRG for the uses only having the public trapdoor.

An ATPRG should satisfy four properties: pseudorandomness, PR correct-
ness, SR correctness, and non-reversibility. Where the non-reversibility is also
the security of the standard ATPRG. Pseudorandomness requires that the pub-
lic pseudorandom sequence is pseudorandom and the secret pseudorandom se-
quence is pseudorandom without the knowledge of the secret trapdoor. PR cor-
rectness requires that the public pseudorandom sequence can be recovered com-
pletely; specifically, it requires that (setup, init, PRGen, recB) is a BPRG with
AdvBPRG.outB,q = 1. SR correctness requires that any user holding the secret trap-
door tdS will compute the same sri for the same pri. Non-reversibility requires
that ψ : pr → sr is computationally hard. If ψ is computationally easy, the
adversary can easily use the public key to compute the secret key and make
the cryptographic scheme based on ATPRG insecure. The formal definitions
of these four properties are as follows (instead of giving a formal definition of
pseudorandomness, we use a short description instead since it is very intuitive):

Definition 23 (ATPRG Inverse Advantage). The inverse advantage of all
PPT adversaries A is defined as follows:

AdvATPRG.invA ,q := Pr


(pp, tdB, tdS )← setup,

s0 ← init(pp),
pr1, . . . , prq ← PRGen,
sr1, . . . , srq ← SRGen,

∃i ∈ [q], sr∗i ← A (pp, tdB, pri) :
sri = sr∗i

 .

Definition 24 (ATPRG Correctness Advantage). The correctness advan-
tage of all PPT algorithms C is defined as follows:

AdvATPRG.crtC ,q := Pr


(pp, tdB, tdS )← setup,

s0 ← init(pp),
pr1, . . . , prq ← PRGen,
sr1, . . . , srq ← SRGen,

sr∗1 , . . . , sr
∗
q ← C (pp, tdS , pr1, . . . , prq) :

sr1, . . . , srq = sr∗1 , . . . , sr
∗
q

 .

Definition 25 (Pseudorandomness). An ATPRG satisfies pseudorandomness
if:

1. The public pseudorandom sequence is pseudorandom;
2. Given the public pseudorandom sequence, the secret pseudorandom is also

pseudorandom.

Note that in the application of this paper, we do not force the second require-
ment of pseudorandomness to be true. That is, given the pseudorandom public
sequence, the secret sequence does not have to be pseudorandom since our HS
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scheme is actually a unique signature. We retain this requirement to provide a
basis for further applied research.

Definition 26 (PR Correctness). An ATPRG satisfies PR correctness if (setup,
init,PRGen, recB) is a (t, q, δ, (first/out, 1))-secure n-outputs BPRG or (t, q, δ,
(first/out, 1))-FWD-secure n-outputs BPRG.

Definition 27 (SR Correctness). An ATPRG satisfies SR correctness if the
advantage AdvATPRG.crtC ,q holds with overwhelming probability.

Definition 28 (Non-Reversibility (Security)). An ATPRG satisfies non-
reversibility if AdvATPRG.invA ,q is negligible.

3.2 A Simple ATPRG Construction

We can use a (t, q, ϵ)-FWD-secure PRG (setup, init, next), a (t, q, δ, ν)-IND$-
CPA-secure RRRE (KeyGen,Enc,Dec,Rand,Rand−1), and TBG to construct an
instance ATPRG = (setup, init,PRGen, SRGen, recB). The details are shown in
Fig.2. To simplify the description of the construction, we ignore the consistency
adjustment of parameters between different primitives and algorithms, e.g., we
assume that pri ∈ G for all i ∈ [N ]. In practice, we can adjust different param-
eters by using techniques such as one-way trapdoor function.

It is easy to see that the cryptographic scheme constructed based on the above
ATPRG can be easily proved under the random oracle model, and the security
depends on the non-reversibility7 of ATPRG. However, this paper attempts to
solve the long-standing open problem of constructing homomorphic signature
schemes with shorter public key lengths under the standard model. Although
the above simple ATPRG instance can construct the HS scheme, it is difficult
to prove its security since, without the use of hash queries, pr compressed by
ATPRG is difficult to simulate the operation of the HS scheme. In other words,
the compressibility of pr makes it easy to construct various short public key
schemes, but this compressibility also makes it difficult to simulate the schemes
in security proof under the standard model. Therefore, a novel variant of ATPRG
called (ζ,N)-simulated ATPRG is proposed to solve the above problem. We cover
the construction of this variant in detail in the next section.

In addition, the ATPRG instance in Fig.2 uses RRRE, which is directly
migrated from the BPRG. However, the BPRG uses RRRE to make it impossible
for an adversary to tell whether the PRG has a backdoor tdB. Our ATPRG
exposes tdB so that users can use it to recover pr. Therefore, we can actually
remove the use of RRRE and simply set the initial state s0 to be the public
trapdoor. However, the use of RRRE can make ATPRG more flexible. It can
not only generate pr1 . . . , prN from the initial state but also generate them from
7 The non-reversibility requirement can be adjusted appropriately according to dif-

ferent cryptographic schemes because this property is the security of ATPRG, and
the security of ATPRG will affect the security of the applications constructed by
ATPRG.
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setup :

(pk, sk)← RRRE.KeyGen;
pp′ ← PRG.setup;
tdB ← sk;
(bgpp, tdS )← TBG.setup;
pp← (pk, pp′, bgpp);
Output (pp, tdB, tdS ).

init(pp) :

(pk, pp′)← pp;
s∗0 ← PRG.init(pp′);
r0 ← RRRE.Enc(pk, s∗0);
s0 ← (r0, s

∗
0);

Output s0.

PRGen(pp, s0) :

(pk, pp′)← pp;
(r0, s

∗
0)← s;

pr0 ← r0;
(t1, . . . , tN )← outN (PRG.next(pp′, s∗0);
for j = 1, . . . , N :

prj ← RRRE.Rand(prj−1, tj);
Output pr = (pr1, . . . , prN ) .

SRGen(pp, pr, tdS ) :

bgpp← pp;
(pr1, . . . , prN )← pr;
f1 ← tdS ;
for j = 1, . . . , N :

srj ← f1(prj);
Output sr = (sr1, . . . , srN ) .

recB(pp, tdB, prN , N) :

sk ← tdB;
pp′ ← pp;
s∗0 ← RRRE.Dec(sk, prN );
(t1, . . . , tN )← outN (PRG.next(pp′, s∗0));
for i = N, . . . , 2 :

pri−1 ← RRRE.Rand−1(prN , tN );
Output pr = (pr1, . . . , prN ) .

Fig. 2: A standard ATPRG construction

an optional position i for i ∈ [N ], which is crucial for the construction of our
(ζ,N)-simulated ATPRG below. Therefore, we do not directly delete the use of
RRRE here. If the subsequent studies only construct and prove the security of
cryptographic schemes using this standard ATPRG, we recommend removing
RRRE for efficiency.

Next, we briefly demonstrate the properties of the ATPRG instance in Fig.2.

Theorem 1. The ATPRG instance satisfies pseudorandomness.

Proof. It is easy to see that the public sequence pr is pseudorandom. The pseu-
dorandomness of the secret sequence is dependent on Assumption 2.

Theorem 2. The ATPRG instance satisfies PR correctness.

Proof. From [10], the algorithms (setup, init,PRGen, recB) of the ATPRG instance
form a (t, q, δ, (out, 1))-FWD-secure BPRG.

Theorem 3. The ATPRG instance satisfies SR correctness.
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Proof. AdvATPRG.crtC ,q = 1 since f1 map is trapdoor projection maps.

Theorem 4. The ATPRG instance satisfies non-reversibility.

Proof. In a nutshell, Assumption 1 shows that, for non-reversibility advantage,
∄i ∈ [q], sr∗i ← B(pp, pri) such that sri = sr∗i . Therefore, AdvATPRG.invC ,q = η(λ).
We can easily prove the theorem in the random oracle model.

3.3 (ζ,N)-Simulated ATPRG

Definition 29. A (ζ,N)-simulated ATPRG has eight algorithms (setup, init,
init′,PRGen,PRGen′, SRGen, SRGen′, recB). Where (setup, init,PRGen, SRGen, recB)
is a standard ATPRG, the definitions of them are the same as Definition 22 ex-
cept that the SRGen adds an input of a message sequence M = (M1, . . . ,MN ).
(setup, init′,PRGen′, SRGen′, recB) called the simulated ATPRG. The definitions
of init′,PRGen′, SRGen′, SRGen are different from the standard ATPRG, the de-
tails are as follows:

– s0 ← init′(pp). Output an initial state of the simulated ATPRG.
– pr′ ← PRGen′(pp, s0). Output a simulated public pseudorandom sequence
pr′ = (pr′1, . . . , pr

′
N ) such that pr′ ← recB(pp, tdB, pr

′
N , N) and pr′i ∈ G for

all i ∈ [N ].
– sr′ ← SRGen′(pp, pr′, tdS ,M). Input a public parameter pp, a simulated

public pseudorandom sequence pr′, a secret trapdoor tdS , and a message
sequence M = (M1, . . . ,MN ). Output a simulated secret pseudorandom se-
quence sr′ = (sr′1, . . . , sr

′
N ), where sr′i ∈ G1 for all i ∈ [N ], ζ elements of

sr′ are generated without using the secret trapdoor tdS and other elements
are generated by tdS .

– sr ← SRGen(pp, pr, tdS ,M). Input a public parameter pp, a public pseudo-
random sequence pr, a secret trapdoor tdS , and a message sequence M =
(M1, . . . ,MN ). Output a secret pseudorandom sequence sr = (sr1, . . . , srN ),
where sri ∈ G1 for all i ∈ [N ].

We call the sequence pr ← PRGen as real public pseudorandom sequence
and the sequence pr′ ← PRGen′ as simulated public pseudorandom sequence
(correspondingly, sr ← SRGen is real secret pseudorandom sequence and sr′ ←
SRGen′ is simulated secret pseudorandom sequence). We require that (setup, init,
PRGen, SRGen, recB) and (setup, init′,PRGen′, SRGen′, recB) have the following
properties: pseudorandomness, PR correctness, SR correctness, and non-reversibility.
That is, both have the standard ATPRG function.

Specifically, a (ζ,N)-simulated ATPRG has eight properties: real pseudo-
randomness, simulated pseudorandomness, real PR correctness, simulated PR
correctness, real SR correctness, simulated SR correctness, real non-reversibility,
and simulated non-reversibility. The definitions associated with "real" are the
properties of algorithms (setup, init,PRGen,SRGen, recB) and the definitions as-
sociated with "simulated" are the properties of algorithms (setup, init′,PRGen′,
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SRGen′, recB). Where real and simulated pseudorandomness and real and sim-
ulated PR correctness are the same as the standard ATPRG, the real and
simulated SR correctness requires that the algorithm C also knows the mes-
sage sequence M . The real and simulated non-reversibility are different from
the standard ATPRG, we have a stronger requirement. Specifically, let mi =
(mi[1], . . . ,mi[T ]) for all i ∈ [N ] are the T -dimension vectors, given pr =
(pr1, . . . , prN ) (resp. pr′ = (pr′1, . . . , pr

′
N )), sr = (sr1, . . . , srN ) (resp. sr′ =

(sr′1, . . . , sr
′
N )), hj ∈ G for all j ∈ [T ], M =

(∏T
j=1 h

m1[j]
j , . . . ,

∏T
j=1 h

mN [j]
j

)
=

(M1, . . . ,MN )8, it should be difficult to findm∗
k ̸= mk,

∏T
j=1 h

m∗
k[j]

j ̸=
∏T

j=1 h
mk[j]
j

and sr∗k ∈ G1 for k ∈ [N ], such that f1
(
prk ·

∏T
j=1 h

m∗
k[j]

j

)
= sr∗k.9 (Note that

the condition that m∗
k ̸= mk,

∏T
j=1 h

m∗
k[j]

j =
∏T

j=1 h
mk[j]
j is not holds under the

DL assumption, the details can be found in Lemma 2.) This requirement may be
a little elusive, and the readers can further understand its meaning by the follow-
ing HS security definition; in other words, the real non-reversibility guarantees
the security of our HS scheme.

The definitions of the eight properties are as follows (to reduce redundancy,
we combine two similar definitions to describe them).

Definition 30 (Real (resp. Simulated) Pseudorandomness). A (ζ,N)-
simulated ATPRG satisfies real (resp. simulated) pseudorandomness if:

1. The real (resp. simulated) public pseudorandom sequence is pseudorandom;
2. Given the real (resp. simulated) public pseudorandom sequence, the real (resp.

simulated) secret pseudorandom is also pseudorandom.

Definition 31 (Real (resp. Simulated) PR Correctness). A (ζ,N)-simulated
ATPRG satisfies real (resp. simulated) PR correctness if the standard (resp. simu-
lated) ATPRG is the (t, q, δ, (out, 1))-secure n-outputs BPRG or (t, q, δ, (out, 1))-
FWD-secure n-outputs BPRG.

Definition 32 (Real SR Correctness). A (ζ,N)-simulated ATPRG satisfies
real SR correctness if

AdvsimATPRG.crt
C ,q := Pr


(pp, tdB, tdS )← setup,

s0 ← init,
pr1, . . . , prq ← PRGen,
sr1, . . . , srq ← SRGen,

sr∗1 , . . . , sr
∗
q ← C (pp, tdS , pr1, . . . , prq,M) :

sr1, . . . , srq = sr∗1 , . . . , sr
∗
q


8 ∏T

j=1 h
mi[j]
j is some algebraic hash function. This paper restricts the format of mes-

sages to such hash function since not all formats of messages satisfy this security
requirement.

9 In the (ζ,N)-simulated ATPRG, we add a message sequence, and we change the
computation of SRGen from sri = f1(pri) to sri = f1

(
pri ·

∏T
j=1 h

mi[j]
j

)
(resp.

sr′i = f1
(
pr′i ·

∏T
j=1 h

mi[j]
j

)
) for all i ∈ [N ].
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holds with overwhelming probability for all PPT algorithms C .

Definition 33 (Simulated SR Correctness). A (ζ,N)-simulated ATPRG sat-
isfies simulated SR correctness if AdvsimATPRG′.crt

C ,q holds with overwhelming proba-
bility for all PPT algorithms C . Where AdvsimATPRG′.crt

C ,q is obtained by replacing
the algorithms (init,PRGen, SRGen) in AdvsimATPRG.crt

C ,q with the simulated AT-
PRG algorithms (init′,PRGen′, SRGen′). Therefore, sr′1, . . . , sr′q ← SRGen′ have
ζ elements that are generated without using tdS . This property implies that the
ζ simulated secret pseudorandom elements that are generated without using tdS

also have the property (correctness) of the real secret pseudorandom numbers,
which means that they can also use the correspondingly simulated public pseudo-
random numbers and tdS to compute correctly.

Definition 34 (Real Non-Reversibility). A (ζ,N)-simulated ATPRG satis-
fies real non-reversibility if

AdvsimATPRG.inv
A ,N := Pr



(pp, tdB, tdS )← setup,

m1, . . . ,mN
$← {0, 1}∗ ,

h1, . . . , hT
$← {0, 1}∗ ,

s0 ← init(pp),
pr = (pr1, . . . , prN )← PRGen,
sr = (sr1, . . . , srN )← SRGen,
∃i ∈ [N ], sr∗i ,m

∗
i ← A (pp, tdB,

pr, sr,m1, . . . ,mN , h1, . . . , hT ) :

mi ̸= m∗
i ,
∏T

j=1 h
mi[j]
j ̸=

∏T
j=1 h

m∗
i [j]

j ,

sr∗i = SRGen(pp, pri, tdS ,
∏T

j=1 h
m∗

i [j]
j )


holds with negligible probability for all PPT adversaries A , where mi[j] ∈ ZQ

for all i ∈ [N ], j ∈ [T ], and hj ∈ G for all j ∈ [T ].10

Definition 35 (Simulated Non-Reversibility). A (ζ,N)-simulated ATPRG

satisfies simulated non-reversibility if AdvsimATPRG′.inv
A ,N is negligible, where the ad-

vantage AdvsimATPRG′.inv
A ,N is obtained by replacing the algorithms (init,PRGen, SRGen)

in AdvsimATPRG.inv
A ,N with the simulated ATPRG algorithms (init′,PRGen′, SRGen′).

In other words, we require that the pair (sr′i, pr
′
i) (sri is generated without using

pri and tdS ) and the pair (sr′j , pr
′
j) (srj is generated using prj and tdS ) are

have the same "security".

On the other hand, we actually use (setup, init,PRGen, SRGen, recB) to gener-
ate (pr, sr) to construct the homomorphic signatures in the real scheme, whereas
we use (setup, init′,PRGen′, SRGen′, recB) to generate (pr′, sr′) to simulate the
HS scheme in the security proof. Therefore, the four "simulated" properties are
intended to correspond to the four "real" properties, and their purpose is to help

10 sr∗i = SRGen(pp, pri, tdS ,
∏T

j=1 h
m∗

i [j]
j ) actually means sr∗i = f1

(
pri ·

∏T
j=1 h

m∗
i [j]

j

)
.
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the simulated scheme become indistinguishable from the real scheme in the se-
curity proof. In a nutshell, the simulated pseudorandomness and simulated PR
correctness guarantee that the adversary A cannot distinguish the real scheme
from the simulated scheme by the simulated public pseudorandom sequences.
The simulated PR and SR correctness guarantee that the simulated signatures
can also be verified correctly such that the adversary A cannot distinguish the
real scheme from the simulated scheme by the simulated secret pseudorandom se-
quences.11 The simulated non-reversibility guarantee that the simulated scheme
has the same "security" as the real scheme, such that we can reduce the security
of the real scheme to the real non-reversibility.12 In other words, the adversary A
distinguishes the real scheme from the simulated scheme by the flaws of "correct-
ness" and "randomness", and can launch the useless attacks through some flaws
in the simulated scheme [18]. The eight properties can help the challenger (which
runs the simulated scheme) to guarantee that these actions of the adversary A
are not feasible.

We give a construction13 of the (1, N)-simulated ATPRG in Fig.3. That is,
one element sr′ℓ of the simulated secret pseudorandom sequence is generated
without the use of secret trapdoor but sr′ℓ = f1(pr

′
ℓ · Mℓ) holds. Note that

pri,Mi ∈ G, sri ∈ G1 for all i ∈ [N ].
Our new construction imposes some additional requirements on RRRE and

PRG. Specifically, we require RRRE to have the following additional properties:
strong reverse re-randomness and strong decryption randomness. Strong reverse
re-randomness requires that, given a valid pseudorandom ciphertext and a pseu-
dorandom number as inputs to RRRE’s re-randomizable algorithm, the algo-
rithm can output a valid and pseudorandom reverse ciphertext. Strong decrypt
randomness requires that, given a valid pseudorandom ciphertext, the decrypt
plaintext is also pseudorandom. It is easy to see that ElGamal encryption [13]
satisfies all the requirements for RRRE in this paper. For PRG, we require that
it can use a valid random value s′0 as the initial state such that the algorithm
PRG.next can also output pseudorandom string by s′0. This requirement for PRG
is nature since the initialization algorithm of PRG is essentially to produce a
random initial state so that the process of producing a valid random value s′0 is
actually equivalent to the initialization algorithm init. Therefore, there are many

11 The verification algorithm of our HS scheme needs to use recB to recover the whole
pr sequence. Thus, here needs not only SR correctness but also PR correctness.

12 The main role of the simulated non-reversibility is to help the challenger to stop the
adversary from launching useless attacks.

13 The output state s0 of init′ in Fig.3 does not contain r0 ← RRRE.Enc(pk, s∗0) since
it does not affect any of the ATPRG properties. Specifically, the input of RRRE.Enc
algorithm implies a random coin; thus, the adversary cannot compute a r∗0 such
that r∗0 = r0 (that is, pr1 ← RRRE.Rand(r∗0 , t1)) by s∗0 and RRRE.Enc algorithm.
The adversary can only use RRRE.Rand−1(pr1, t1) to obtain the r0 such that pr1 ←
RRRE.Rand(r0, t1). In other words, if the adversary can compute a r∗0 = r0, given a
pr1, it can distinguish the real scheme from the simulated scheme based on whether
r∗0 equals RRRE.Rand−1(pr1, t1), since the simulated public pseudorandom number
pr′1 maybe not holds that RRRE.Rand−1(pr′1, t1) = r∗0 .
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PRGs that can satisfy this requirement, such as Dual EC PRG, which is studied
in [10, 11]. Note that although the Dual EC PRG has a backdoor, it does not
affect our use since our recovery algorithm recB includes the step of recalculating
the output of the PRG through the backdoor.

Definition 36 (Strong Reverse Re-Randomness of RRRE). For all PPT
adversaries A , it holds that∣∣∣∣∣∣∣∣∣∣∣

Pr


(pk, sk)← RRRE.KeyGen, b

$← {0, 1} ,
C∗ $← {0, 1}∗ , C0 $← {0, 1}∗ ,

t
$← {0, 1}∗ , C1 ← RRRE.Rand−1(C∗, t),

b′ ← A (pk, sk, Cb) :
b′ = b

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
≤ η(λ),

where C∗ and C0 are valid ciphertexts.

Definition 37 (Strong Decryption Randomness of RRRE). For all PPT
adversaries A , it holds that∣∣∣∣∣∣∣∣∣Pr


(pk, sk)← RRRE.KeyGen, b

$← {0, 1} ,
C∗ $← {0, 1}∗ ,M0 $← {0, 1}∗ ,

M1 ← RRRE.Dec(sk, C∗), b′ ← A (pk, sk,M b) :
b′ = b

− 1

2

∣∣∣∣∣∣∣∣∣ ≤ η(λ),
where C∗ is a valid ciphertext and M0 is a valid plaintext.

Next, we demonstrate the properties of (1, N)-simulated ATPRG.

Theorem 5. The (1, N)-simulated ATPRG satisfies real and simulated pseudo-
randomness.

Proof. Note that we do not force real and simulated secret pseudorandom se-
quences to be pseudorandom here, but it is clear that real and simulated secret
sequences are still pseudorandom under the decisional f1-SGH assumption. Sim-
ilar to the Theorem 1, real pseudorandomness is obvious. The pseudorandomness
of the simulated public sequence depends on the strong reverse re-randomness
and strong decryption randomness of RRRE. Specifically, in (1, N)-simulated
ATPRG, we randomly generate a simulated public pseudorandom number pr′i,
and then decrypt it to produce an initial state s′0. The strong decryption ran-
domness of RRRE guarantees that the initial state s′0 is pseudorandom. Hence,
pr′i, . . . , pr

′
N is obviously pseudorandom, which depends on the re-randomness

of RRRE. For pr′1, . . . , pr′i−1, we use the pseudorandom number generated by
PRG and pri to calculate the Rand−1 algorithm for RRRE to generate them.
Therefore, pr′1, . . . , pr′i−1 is also pseudorandom if RRRE has strong reverse re-
randomness.

Theorem 6. The (1, N)-simulated ATPRG satisfies real and simulated PR cor-
rectness.
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setup :

(pk, sk)← RRRE.KeyGen;
pp′ ← PRG.setup;
tdB ← sk;
(bgpp, tdS )← TBG.setup;
pp← (pk, pp′, bgpp);
Output (pp, tdB, tdS ).

init(pp) :

(pk, pp′)← pp;
s∗0 ← PRG.init(pp′);
r0 ← RRRE.Enc(pk, s∗0);
s0 ← (r0, s

∗
0);

Output s0.

init′(pp, tdB,Mℓ, ℓ) :

(pk′, bgpp)← pp;
sk ← tdB;

Y
$← G1;

Z
$← G2;

sr′ℓ ← Y ;
pr′ℓ ← Y · Z ·M−1

ℓ ;
s∗0 ← RRRE.Dec(sk, pr′ℓ);
s0 ← s∗0;
Output s0.

PRGen(pp, s0) :

(pk, pp′)← pp;
(r0, s

∗
0)← s0;

pr0 ← r0;
(t1, . . . , tN )← outN (PRG.next(pp′, s∗0);
for j = 1, . . . , N :

prj ← RRRE.Rand(prj−1, tj);
Output pr = (pr1, . . . , prN ) .

PRGen′(pp, s0, pr
′
ℓ, ℓ) :

(pk, pp′)← pp;
s∗0 ← s′0;
(t1, . . . , tN )← outN (PRG.next(pp′, s∗0));
for j = ℓ+ 1, . . . , N :

pr′j ← RRRE.Rand(pr′j−1, tj);
for j = ℓ− 1, . . . , 1 :

pr′j ← RRRE.Rand−1(pr′j+1, tj+1);
Output pr′ = (pr′1, . . . , pr

′
N ) .

SRGen(pp, pr, tdS ,M) :

bgpp← pp;
(pr1, . . . , prN )← pr;

(M1, . . . ,MN )←M ;
f1 ← tdS ;
for j = 1, . . . , N :

srj ← f1(prj ·Mj);
Output sr = (sr1, . . . , srN ) .

SRGen′(pp, pr′, tdS ,M, sr′ℓ, ℓ) :

bgpp← pp;
(pr′1, . . . , pr

′
N )← pr′;

(M1, . . . ,MN )←M ;
f1 ← tdS ;
for j ̸= ℓ, j ∈ [N ] :

sr′j ← f1(pr
′
j ·Mj);

Output sr′ = (sr′1, . . . , sr
′
N ) .

recB(pp, tdB, prN , N) :

sk ← tdB;
pp′ ← pp;
s∗0 ← RRRE.Dec(sk, prN );
(t1, . . . , tN )← outN (PRG.next(pp′, s∗0));
for i = N, . . . , 2 :

pri−1 ← RRRE.Rand−1(prN , tN );
Output pr = (pr1, . . . , prN ) .

Fig. 3: (1, N)-Simulated ATPRG
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Proof. It is easy to see that the recovery algorithm recB can still correctly recover
the entire real and simulated public pseudorandom sequence. That is, the input
of recB in Fig.3 also can be (pp, tdB, pr

′
N , N).

Theorem 7. The (1, N)-simulated ATPRG satisfies real and simulated SR cor-
rectness.

Proof. Similar to Theorem 3, real SR correctness is obviously found to be true.
We mainly analyze the simulated SR correctness. Let the simulated secret pseu-
dorandom number be sri, obviously, for j ̸= i, j ∈ [N ], we have

Pr


(pp, tdB, tdS )← setup,

s0 ← init′,
pr′1, . . . , pr

′
N ← PRGen′,

sr′1, . . . , sr
′
N ← SRGen′,

sr∗j ← C (pp, tdS , prj) :
sr′j = sr∗j

 = 1.

At the same time, we have sri = Y, pri = Y · Z ·M−1
i , where Y $← G1, Z

$←
G2,Mi ∈ G. Therefore, we have f1(pri ·Mi) = sri.

Theorem 8. The (1, N)-simulated ATPRG satisfies real and simulated non-
reversibility if the f1-SGH is hard.

Proof. The proof of real non-reversibility and simulated non-reversibility are
similar, and we need to prove both under the standard model. The proof of
real non-reversibility is as follows. In a nutshell, assume that A is some PPT
attacker that breaks the non-reversibility with non-negligible probability, given
an element w ∈ G, we show that how the challenger break the f1-SGH assump-
tion (obtain f1(w) without using f1). The challenger first selects two indexs
k ∈ [N ], ℓ ∈ [T ] as the simulated index, chooses hj

$← G for j ̸= ℓ, j ∈ [T ]

and xℓ
$← ZQ, sets hℓ = wxℓ . Then, it sets srk = Y for Y $← G1, prk =

Y ·Z ·
∏T

j=1 h
−mk[j]
j for Z $← G2, pri are pseudorandom numbers for i ̸= k, i ∈ [N ],

sri are f1

(
pri ·

∏T
j=1 h

mi[j]
j

)
for i ̸= k, i ∈ [N ]. Then, the challenger sends

(pp, tdB, pr1, . . . , prN , sr1, . . . , srN ,m1, . . . ,mN , h1, . . . , hT ) to the adversary A .
If the secret pseudorandom sequence and the message sequence returned by A
contains sr∗k,m∗

k ̸= mk and m∗
k differs from mk only in the ℓ-th dimension. We

have
sr∗k
srk

=
f1

(
prk · h

m∗
k[ℓ]

ℓ

)
f1

(
prk · hmk[ℓ]

ℓ

) = f1(w)
xℓ·(m∗

k[ℓ]−mk[ℓ]). (2)

The challanger can compute(
sr∗k
srk

) 1

xℓ·(m∗
k
[ℓ]−mk[ℓ])

= f1(w)
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to obtain f1(w) without using the secret trapdoor tdS to break the f1-SGH
assumption. Technically, the proof is still not complete at this point. We actu-
ally need N hybrid arguments to conclude the proof. In a nutshell, let the i-th
argument select k = i for i ∈ [N ], and the residual computation is the same as
the procedure above. Note that the equation 2 involves a transformation that
f1(w

xℓ) = f1(w)
xℓ , which is obviously true according to the details of Section

2.5.

In fact, the f1-SGH assumption is relatively obscure, previous studies only
provided the proof idea of this assumption under the random oracle model.
Our work also provides the first proof idea under the standard model of this
assumption, which can also lay a foundation for the further research.

4 Homomorphic Signature Scheme with Shorter Public
Keys

We shows an approach constructing HS scheme using (1, N)-simulated AT-
PRG, which can provide design ideas for other cryptographic schemes based
on ATPRG. Specifically, we generate secret pseudorandom sequence sr = (sr1,
. . . , srN ) by a public pseudorandom sequence pr = (pr1, . . . , prN ) and a message
sequence m1, . . . ,mN . In this construction, sri is the signature of message mi

and pr is public key. The public trapdoor tdB and pri for any i ∈ [N ] can be used
to recover the whole sequence pr1, . . . , prN . Note that the secret pseudorandom
sequence does not have to be pseudorandom since the signature is unique.

Our homomorphic signature scheme HS = (KeyGen, Sign,Eval,Ver) is as fol-
lows:

– (sk, pk)← KeyGen(1λ):
1. (pp, tdB, tdS ) ← ATPRG.setup, then run ATPRG.init to initialize AT-

PRG;
2. Randomly choose T elements h1, . . . , hT from G group, where T is the

dimension of message m, let h = (h1, . . . , hT );
3. Run ATPRG.PRGen to get V1, . . . , VN such that we have V1, . . . , VN ←

recB(pp, tdB, VN , N), where Vi ∈ G for i ∈ [N ];
4. sk ← (pp, tdS ), pk ← (pp, tdB, h, VN ).

– σi ← Sign(sk,mi): To sign a message mi = (mi[1], . . . ,mi[T ]) for mi[j] ∈
ZQ, j ∈ [T ], proceed as follows:
1. Compute

Ui = f1

Vi · T∏
j=1

h
mi[j]
j

← ATPRG.SRGen

pp, Vi, tdS ,

T∏
j=1

h
mi[j]
j

 .
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14Note that the ATPRG.SRGen algorithm we show in Fig.3 takes the
entire public pseudorandom sequence pr and message sequence M as in-
put and outputs the entire secret random sequence sr directly. However,
it can also support the operation that takes one public pseudorandom
number pri and one message mi as input and outputs one corresponding
secret pseudorandom number sri;

2. σi ← Ui.

– σ ← Eval(pk, f, σ⃗): for a linear function f : ZN
Q → ZQ described by its

coefficients f = (c1, . . . , cN )
1. (σ1, . . . , σN )← σ⃗;
2. Compute

U =

N∏
i=1

U ci
i ;

3. σ ← U .

– 0/1 ← Ver(pk, f,m, σ): for verifying the correctness of the computed result
m =

∑N
i=1 ci ·mi,

1. Run recB(pp, tdB, VN , N) to recover V1, . . . , VN ;
2. Output 1 iff the following equations are satisfied:

e(σ, g1) = 1, (3)

e(σ, g) = e

 T∏
j=1

h
m[j]
j , g2

 · e( N∏
i=1

V ci
i , g2

)
. (4)

Note that: 1. the bilinear map of TBG is non-degenerate; hence, we need to
use equation 3 first to check that the evaluation signature is still a member of
G1; 2.

∏T
j=1 h

mi[j]
j is some algebraic hash function.

Comparison of public key size: The public key of [6] is (pk′, bgpp, pek,
pek′), where pk′ is the public key of the regularly digital signature scheme,
bgpp is the parameters of bilinear group, pek = {Ai, Bi}

⌈√N⌉
i=1 , and pek′ ={

A′
j , B

′
j

}⌈√T⌉
j=1

. Therefore, [6] has O(
√
N +

√
T )-sized public keys. The public

key of our construction is pk = (pp, tdB, h, VN ), where the size of (pp, tdB, VN )
is O(1), and h = (h1, . . . , hT ). Therefore, our HS scheme only has O(T )-sized
public keys, independent of the dataset size.

Theorem 9. The scheme satisfies efficient verification.

Proof. The verification algorithm can be rewritten as:

14 To understand quickly, the readers can think of Ui as
(
Vi ·

∏T
j=1 h

mi[j]
j

)α

first; that
is, to some extent, f1 can be regarded as α. However, f1 has more functions than
α since f1 also maps the element Vi ·

∏T
j=1 h

mi[j]
j ∈ G to the corresponding element

Ui ∈ G1.
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– vk ← VerPerp(pk, f). Input the public key pk and the computed function f .
Run recB(pp, tdB, VN , N) to recover V1, . . . , VN , compute vk = f(V1, . . . , VN ) =∏N

i=1 V
ci
i . Output a concise verification key vk.

– 0/1← EffVer(vk,m, σ). Output 1 iff the following equations are satisfied:

e(σ, g1) = 1, (5)

e(σ, g) = e

 T∏
j=1

h
m[j]
j , g2

 · e (vk, g2) . (6)

Theorem 10. The scheme satisfies succinctness.

Proof. The signature size of our HS scheme is independent of the dataset size.

Theorem 11. The scheme satisfies signature correctness.

Proof. Let (sk, pk)← KeyGen(1λ) be an honestly generated key pair with (sk =
(pp, tdS ), pk = (pp, tdB, h, VN )) and let σi ← Sign(sk,mi) be an honestly gen-
erated signature. For Ver(pk, f,mi, σi), we have

e(σi, g1) = 1,

since σi = Ui ∈ G1. And

e(σi, g) = e

 T∏
j=1

h
mi[j]
j , g2

 · e(Vi, g2)
⇒ e(Ui, g) = e

 T∏
j=1

h
mi[j]
j · Vi, g2


⇒ e

f1
 T∏

j=1

h
mi[j]
j · Vi

 , g

 = e

 T∏
j=1

h
mi[j]
j · Vi, g2


⇒ e

 T∏
j=1

h
mi[j]
j · Vi, g2

 = e

 T∏
j=1

h
mi[j]
j · Vi, g2

 .

Theorem 12. The scheme satisfies evaluation correctness.

Proof. Let (sk, pk)← KeyGen(1λ) be an honestly generated key pair with (sk =

(pp, tdS ), pk = (pp, tdB, h, VN )). Given {mi, σi}Ni=1 such that 1← Ver(pk, f,mi, σi),
for all i ∈ [N ]. Let σ ← Eval(pk, f, σ1, . . . , σN ). Finally, we want to prove that
the verification algorithm Ver(pk, f,m, σ) outputs 1.
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Since each σi verifies correctly, we have σ =
∏N

i=1 U
ci
i ∈ G1, thus e(σ, g1) = 1.

And for equation 4, we have

e(σ, g) = e

 T∏
j=1

h
m[j]
j , g2

 · e( N∏
i=1

V ci
i , g2

)

⇒ e

(
N∏
i=1

U ci
i , g

)
= e

 N∏
i=1

 T∏
j=1

h
mi[j]
j

ci

·
N∏
i=1

V ci
i , g2


⇒ e

 N∏
i=1

f1

 T∏
j=1

h
mi[j]
j · Vi

ci

, g

 = e

 N∏
i=1

 T∏
j=1

h
mi[j]
j · Vi

ci

, g2


⇒ e

 N∏
i=1

 T∏
j=1

h
mi[j]
j · Vi

ci

, g2

 = e

 N∏
i=1

 T∏
j=1

h
mi[j]
j · Vi

ci

, g2

 .

Theorem 13. The scheme satisfies unforgeability if DL is hard and the (1, N)-
simulated ATPRG has real non-reversibility.

Proof. To prove this theorem, we need to define a series of games with the
adversary A and we will show that the adversary A wins (the game outputs
1) only with negligible probability. Following the notation of [6], we also write
Gi(A ) to denote that game i outputs 1, and badi represents the flag values of
game i. badi initially sets to false, if at the end of the game any of these flags is
set to true, the game outputs 0. We use Badi represents the event that badi is
set to true during the game.

– Game 1: This game is the security experiment ExpEUF−CMA
A ,HS .

– Game 2: This game is defined as Game 1 except for an additional check.
For a forgery tuple (f∗,m∗, σ∗), it computes m =

∑N
i=1 ci ·mi, and checks

whether
∏T

j=1 h
m[j]
j =

∏T
j=1 h

m∗[j]
j . If it does, sets bad2 = true.

Games 1 and 2 have the following relationship: |Pr[G1(A )] − Pr[G2(A )]| ≤
Pr[Bad2]. In Lemma 2 we show that Bad2 is negligible for adversary A under
DL assumption. In Lemma 3 we show how a challenger can use an adversary
A winning Game 2 to break the real non-reversibility of the (1, N)-simulated
ATPRG.

Lemma 2. Pr[Bad2] ≤ η(λ) if the DL assumption holds in G.

Proof. Given (g, ga) ∈ G, we show how the challenger to break DL assumption
in G. Our simulation is similar to [25].

– Setup: The challenger selects an index i ∈ [T ] and runs (sk, pk)← KeyGen(1λ)

except for the generation of the h. It chooses x1, . . . , xT
$← ZQ, sets hj = gxj

for j ̸= i and sets hi = (ga)xi . This is perfectly indistinguishable from a real
execution of this game since xj is random. Finally, the challenger gives pk
to the adversary A .
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– Sign queries: The challenger answers all queries of the adversary A faithfully.
– Forgery: The adversary A finally returns a forgery tuple (f∗,m∗, σ∗), where∏T

j=1 h
m[j]
j =

∏T
j=1 h

m∗[j]
j .

For the forgery tuple (f∗,m∗, σ∗), the challenger checks whetherm[i] ̸= m∗[i].
If not, restarts the simulation. Otherwise, we have

T∏
j=1

h
m[j]
j =

T∏
j=1,j ̸=i

gxj ·m[j] · ga·xi·m[i] =

T∏
j=1,j ̸=i

gxj ·m∗[j] · ga·xi·m∗[i] =

T∏
j=1

h
m∗[j]
j

⇒ a · xi ·m[i] +

T∑
j=1,j ̸=i

xj ·m[j] = a · xi ·m∗[i] +

T∑
j=1,j ̸=i

xj ·m∗[j].

The challenger can compute

a =
1

xi · (m∗[i]−m[i])

T∑
j=1,j ̸=i

xj · (m[j]−m∗[j]).

Lemma 3. The challenger can use an adversary A that wins in Game 2 to
break the real non-reversibility of the (1, N)-simulated ATPRG.

Proof. – Setup: The adversary A chooses the messages m1, . . . ,mN to be
signed and sends them to the challenger. The challenger guesses an in-
dex k from [T ], chooses hj

$← G for j ≠ k, j ∈ [T ] and xk
$← ZQ, sets

hk = wxk for a given element w ∈ G. This is perfectly indistinguish-
able from an honest setup since xk and hj is random. Then, the chal-
lenger runs (pp, tdB, tdS ) ← ATPRG.setup, ATPRG.init′, ATPRG.PRGen′

of the (1, N)-simulated ATPRG in sequence. Finally, the challenger gives
pk = (pp, tdB, h, V

′
N ) to the adversary A .

– Sign queries: The challenger answers all queries using the ATPRG.SRGen′ of
the (1, N)-simulated ATPRG, where the message mℓ and signature σℓ is
simulated. In other words, Uℓ = Y for Y $← G1, Vℓ = Uℓ · Z ·

∏T
j=1 h

−mℓ[j]
j

for Z
$← G2, Vi are pseudorandom numbers for i ̸= ℓ, i ∈ [N ], Ui are

f1

(
Vi ·

∏T
j=1 h

mi[j]
j

)
for i ̸= ℓ, i ∈ [N ].

– Forgery: The adversary A finally returns a forgery tuple (f∗,m∗, σ∗), where∏T
j=1 h

m[j]
j ̸=

∏T
j=1 h

m∗[j]
j .

For the forgery tuple (f∗ = (c1, . . . , cN ),m∗, σ∗), the challenger checks whether
only m[k] ̸= m∗[k]. If not, restarts the simulation. Otherwise, we have

e(U, g) · e

 T∏
j=1

h
−m[j]
j , g2

 = e(V , g2), (7)

e(U
∗
, g) · e

 T∏
j=1

h
−m∗[j]
j , g2

 = e(V , g2). (8)



Asymmetric Trapdoor Pseudorandom Generators 29

Therefore,

e(U, g) · e

 T∏
j=1

h
−m[j]
j , g2

 = e(U
∗
, g) · e

 T∏
j=1

h
−m∗[j]
j , g2

 . (9)

where U =
∏N

i=1 U
ci
i , V =

∏N
i=1 V

ci
i , m = c1 ·m1+· · ·+cN ·mN and

∏T
j=1 h

m[j]
j =∏T

j=1 h
c1·m1[j]+···+cN ·mN [j]
j . Let

U ′
ℓ =

(
U

∗∏N
i=1,i ̸=ℓ Ui

ci

)−cℓ

, m′
ℓ =

(
m∗∑N

i=1,i ̸=ℓ ci ·mi

)
/cℓ.

We multiply the left-hand side of equation 7 and 8 by both e

(
1∏N

i=1,i ̸=ℓ Ui
ci
, g

)
and e

(∏N
i=1,i ̸=ℓ

(∏T
j=1 h

mi[j]
j

)ci
, g2

)
, and then compute the whole thing to the

power of −cℓ:

(e

(
1∏N

i=1,i ̸=ℓ Ui
ci
, g

)
· e(U, g) · e

 N∏
i=1,i ̸=ℓ

 T∏
j=1

h
mi[j]
j

ci

, g2


· e

 T∏
j=1

h
−mi[j]
j , g2

)−cℓ

=

e(U cℓ
ℓ , g) · e

 T∏
j=1

h
−mℓ[j]
j

cℓ

, g2

−cℓ

=

e
Uℓ · f1

 T∏
j=1

h
−mℓ[j]
j

 , g

cℓ−cℓ

= e

Uℓ · f1

 T∏
j=1

h
−mℓ[j]
j

 , g


= e(f1(Vℓ), g)

= e(Vℓ, g2),

(10)
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(e

(
1∏N

i=1,i ̸=ℓ Ui
ci
, g

)
· e(U∗

, g) · e

 N∏
i=1,i ̸=ℓ

 T∏
j=1

h
mi[j]
j

ci

, g2


· e

 T∏
j=1

h
−m∗

i [j]
j , g2

)−cℓ

= e (U ′
ℓ, g) · e

 T∏
j=1

h
−m′

ℓ[j]
j , g2


= e

U ′
ℓ · f1

 T∏
j=1

h
−m′

ℓ[j]
j

 , g

 .

(11)

From equations 9, 10, and 11, we have

e

Uℓ · f1

 T∏
j=1

h
−mℓ[j]
j

 , g

 = e(f1(Vℓ), g) = e

U ′
ℓ · f1

 T∏
j=1

h
−m′

ℓ[j]
j

 , g

 .

Therefore,

Uℓ = f1

Vℓ · T∏
j=1

h
mℓ[j]
j

 , U ′
ℓ = f1

Vℓ · T∏
j=1

h
m′

ℓ[j]
j

 .

It is easy to see that (U ′
ℓ,m′

ℓ) is a solution of the real non-reversibility of (1, N)-
simulated ATPRG, where m′

ℓ ̸= mℓ. Technically, the proof also needs N hybrid
arguments. In a nutshell, let the i-th argument select ℓ = i for i ∈ [N ], and the
residual computation is the same as the procedure above.

5 Discussion

We first discuss some application scenarios where ATPRG might be used in ad-
dition to shortening the public key. (1) For data compression, if we use PRGen
to generate the pseudorandom data (e.g., id), then we can use recB to compress
these data to O(1) size, which even maybe close to the Shannon limit (tradi-
tional data compression algorithms are hard to compress pseudorandom data).
Further, if we use SRGen to generate the pseudorandom data, then we can obtain
a privacy-preserving data compression approach since only the users with the
secret trapdoor can recover the data correctly; (2) for information hiding, if we
use PRGen and SRGen to generate two sequences of the pseudorandom data, we
can obtain an information hiding approach, which means that the pr sequence
is superficial data, but there hides a secret sequence sr.

Next, we leave some open problems. Firstly, this paper reduces only the pub-
lic key of the linear homomorphic signature to O(T ). Whether it can be reduced
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to O(1) by constructing a new ATPRG is still an open problem. Secondly, AT-
PRG in this paper is constructed based on an unusual symmetric bilinear map.
If ATPRG can be constructed based on a common tool, it will have a better
application prospect. Thirdly, the homomorphic signature scheme in this paper
has only been proven in the selective security game, and further research into
the full security game is a good choice. Fourthly, the ATPRG in this paper can
only support linear homomorphic computation. Therefore, it is very useful to
study the ATPRG that supports fully homomorphic computation and then con-
struct the fully homomorphic signature with the shorter public key under the
standard model. Finally, theoretically, the ATPRG proposed in this paper can
try to shorten the public keys of various pairing-based cryptography schemes.
Therefore, it is feasible to study the cryptography schemes with shorter public
keys based on the standard ATPRG or the (1, N)-simulated ATPRG.
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