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Abstract. We define the Generic Group Action Model (GGAM), an adaptation of the Generic
Group Model to the setting of group actions (such as CSIDH). Compared to a previously proposed
definition by Montgomery and Zhandry (ASIACRYPT ’22), our GGAM more accurately abstracts
the security properties of group actions.
We are able to prove information-theoretic lower bounds in the GGAM for the discrete logarithm
assumption, as well as for non-standard assumptions recently introduced in the setting of threshold
and identification schemes on group actions. Unfortunately, in a natural quantum version of the
GGAM, the discrete logarithm assumption does not hold.
To this end we also introduce the weaker Quantum Algebraic Group Action Model (QAGAM),
where every set element (in superposition) output by an adversary is required to have an explicit
representation relative to known elements. In contrast to the Quantum Generic Group Action
Model, in the QAGAM we are able to analyze the hardness of group action assumptions: We prove
(among other things) the equivalence between the discrete logarithm assumption and non-standard
assumptions recently introduced in the setting of QROM security for Password-Authenticated Key
Exchange, Non-Interactive Key Exchange, and Public-Key Encryption.
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1 Introduction

Group Actions. Group actions are considered a promising candidate for building post-quantum secure
cryptography. While similar to the well-known prime-order groups, group actions are more limited and
provide less structure. For a group (G, ◦) with neutral element e ∈ G and a set X , a group action is a
map

? : G × X → X

that is compatible with the group operation in G. That is, e ?x = x for all x ∈ X and (g◦h)?x = g?(h?x)
for all g, h ∈ G and x ∈ X . It can be thought of as an analogue to the exponentiation in a multiplicative
prime-order group, which leads to natural analogues of problems such as the discrete logarithm problem
in group actions (GA-DLOG). The similarity to prime-order groups allows the adaptation of several basic
schemes to group actions [18,39,15,43,30,20]. Crucially, there is no group law on X . This makes group
actions resilient against well-known quantum attacks on groups such as Shor’s algorithm [41]. To date,
the best known quantum attacks on group actions are based on Kuperberg’s algorithm [31] which has
subexponential runtime.

The most prominent example for a cryptographic group action to date is the CSIDH group action
[15], which is based on isogenies between supersingular elliptic curves. While promising, isogeny-based
cryptography is still fairly new and has not been as thoroughly studied as traditional cryptography based
on the discrete logarithm problem in prime order groups or the RSA problem. This lack of analysis was
exemplified by the recent attacks on the SIDH assumption [14,32,38], which completely break SIDH and
related schemes, but have no impact on the security of CSIDH.
Generic Models. A useful tool for analyzing cryptographic problems are generic models. One popular
model in the setting of prime-order groups is Shoup’s Generic Group Model (GGM) [42]. The GGM
replaces group elements with random labels (without any algebraic meaning) and only allows computation
of the group law via an oracle. In the GGM one can provide information-theoretic lower bounds on the
number of calls to the group oracle for certain cryptographic problems. For example, in the GGM the
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discrete logarithm problem over groups of prime order p can only be solved with at least √p calls to the
group oracle.

Another useful model in the setting of prime-order groups is the Algebraic Group Model (AGM)
[23]. In the AGM all algorithms know the group structure and can compute group operations. However,
adversaries are restricted to only producing new group elements by combining previously known group
elements via the group law, i.e. they have to behave “algebraically”. This is enforced by requiring algebraic
adversaries to provide a representation of their output group elements relative to their inputs. While this
model cannot be used to prove lower bounds for cryptographic assumptions, it has proven useful for
relating the hardness of different assumptions and cryptographic protocols [23,34,8].
Generic Models for Group Actions. The GGM has recently been adapted to the group action
setting by Montgomery and Zhandry [35] in order to prove the generic quantum equivalence of GA-DLOG
and GA-CDH in the setting of restricted effective group actions (REGA).1 We refer to this as the MZ-
Generic Group Action Model (MZ-GGAM). The MZ-GGAM encodes elements from the group G and
the set X with random labels and provides oracles for both the group law in G and the group action ? on
X . Additionally, they define the MZ-Quantum Generic Group Action Model (MZ-QGGAM), a quantum
analogue of the MZ-GGAM providing quantum access to the two oracles.

While the definition of the MZ-GGAM seems reasonable when considering REGAs, we believe that
it does not accurately capture the security properties of general effective group actions (EGA). Why?
One could simply use group G and ignore set X and mapping ?. In the MZ-GGAM one can prove the
hardness of standard assumption like the discrete logarithm in group G, even though group actions are
“not supposed” to source their hardness from problems over G. This simple observation allows to provably
port all standard group-based cryptography to the MZ-GGAM. That is, in the MZ-GGAM group actions
actually have more structure than prime-order groups (though they should not). Furthermore, in the
MZ-Quantum Generic Group Action Model one can efficiently compute discrete logarithms over G by
applying Shor’s algorithm [41], hence learn the entire group structure of G. This shows that hiding the
structure of group G with random labels is useless in a quantum setting.

1.1 Contributions

We propose an alternative definition of the generic group model for group actions (GGAM) and analyze
several standard and non-standard assumptions in it. We also consider a quantum version, QGGAM, and
show that the group action discrete logarithm problem (GA-DLOG) does not hold in it. Furthermore, we
define a (quantum) algebraic group model for group actions, AGAM and QAGAM, and use it to relate
the hardness of several useful group-action assumptions.

We will now go over our results in a bit more detail.

Generic Group Action Model. We propose a new definition of the Generic Group Action Model
(GGAM), which differs from the previous definition MZ-GGAM of [35] in that we only encode elements
from the set X and not from group G. Our definition assumes G to be cyclic of order N (see Appendix A
for a generalization to non-cyclic abelian group actions). In a quantum setting the isomorphism between
G and ZN is efficiently computable with Shor’s algorithm, so we can assume it to be known with some
quantum precomputation. Hence in our GGAM we set G := ZN , which also models the fact that a group
action should not source its hardness from group G, an important security feature of group actions.
Relation to the Generic Group Model. While it seems intuitive that hardness results in the GGM
(over prime-order groups) should carry over to the more restricted GGAM (over group actions), there
are some subtleties in formalizing this. We prove a “lifting lemma” which states that all hardness results
in the GGM for a group of prime order p carry over to the GGAM if the order N of the group action
satisfies N = p−1. Looking ahead, this restriction is a consequence of how the GGAM can be embedded
in the GGM.
Generic Group Action Model with Twists. We extend the definition of the GGAM to the GGAM
with Twists (GGAM>), which models group actions like CSIDHmore closely. More specifically, we include
1 In a REGA (not considered in this work) the group action evaluation cannot be performed efficiently for
arbitrary group elements, but it is necessary to find a suitable representation of the element first. In particular,
this is the case when the group structure is unknown.
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a twisting algorithm that allows to compute −a ? x from a ? x efficiently for any a ∈ ZN and x ∈ X . This
allows us to capture a wider variety of practical group action instantiations. Unfortunately, there is no
analogue to twisting in the prime order group setting, therefore we can not prove a lifting lemma from
the GGM to the GGAM>.
Generic Lower Bounds. Next, we prove explicit lower bounds on the success probability of generic
adversaries on GA-DLOG, as well as two non-standard assumptions in the GGAM> that were recently
introduced in the context of threshold schemes [19], identification schemes [6] and password-authenticated
key exchange [1]. Our proofs are rather straightforward and adapt well-known proof techniques from the
GGM. The resulting bounds are almost the same bounds as in the GGM except for constant factors due
to the (potentially) composite order of the group action. This actually highlights that there are cases
where group action based assumptions become potentially easier. Our analysis makes it simple to detect
and to subsequently exclude those cases in the assumption.

Generic Models in the Quantum Setting. We define the Quantum Generic Group Action Model
(QGGAM), an extension of the GGAM to the quantum setting where the adversary has quantum access
to the group action oracle. Similar to the classical setting, the group G is simply modeled as ZN . We first
show that our QGGAM is in fact equivalent to the MZ-GGAM, while it is conceptually much simpler.
Unfortunately, we observe that even GA-DLOG is information-theoretically easy in the QGGAM. This is
due to a generic algorithm by Ettinger and Høyer [22], which breaks GA-DLOG with polynomially many
quantum group-action queries plus (classical) exponential time to solve the Trigonometric Approximation
Problem (TAP). TAP is a purely combinatorial problem which is independent of the group action. Since
the QGGAM is an information-theoretic model which only counts the number of oracle queries, this
constitutes an efficient quantum attack against GA-DLOG in the QGGAM. One interpretation of this
result is that the quantum hardness of GA-DLOG is a combinatorial property rather than an algebraic
one.
Algebraic Group Action Model. We define the group action analogue of the AGM [23] in the
quantum setting, which we call the Quantum Algebraic Group Action Model with twists (QAGAM>)
and without twists (QAGAM). While there cannot exist any meaningful bounds in the QGGAM, we are
still able to quantum-relate the following assumptions in the QAGAM/QAGAM>.
– Assumptions for KEM/NIKE. The Group Action Quantum Strong Computational Diffie-Hellman

assumption (GA-QSt-CDH) is the CDH assumption for group actions, where the adversary is further-
more given quantum access to (fixed-base) DDH oracles. GA-QSt-CDH assumptions are required to
prove active security of group-action Hashed ElGamal encryption and Diffie-Hellman NIKE proto-
cols in the QROM (used, for example, in Post-Quantum WireGuard and OPTLS) [20]. There is no
known security analysis of GA-QSt-CDH. We prove that GA-QSt-CDH is equivalent to the GA-DLOG
assumption in the QAGAM>, therefore giving the first indication towards its quantum security. Our
proof relies on the semi-classical one-way to hiding lemma.

– Assumptions for PAKE. We consider the Group Action Quantum Strong Square-Inverse Diffie-
Hellman (GA-QSt-SqInvDH) assumption [1] in the QAGAM>. This non-standard assumption is a
combination of the Square-DH and Inversion-DH assumption relative to a flexible base, where an
adversary is furthermore given quantum access to DDH oracles as in the GA-QSt-CDH assumption.
The GA-QSt-SqInvDH assumption is required to prove security of a recently proposed PAKE protocol
in the QROM [1]. We again prove that GA-QSt-SqInvDH is equivalent to the GA-DLOG assumption
in the QAGAM>, therefore giving the first indication towards its quantum security.

– Assumptions for ElGamal.We study the Quantum CCA1 (QCCA1) security of the Group Action
plain (unhashed) ElGamal KEM. QCCA1 security means that the adversary is allowed to ask the
decryption oracle with ciphertexts in superposition, but only before seeing the challenge ciphertext.
We prove its QCCA1 security to be equivalent to the Group Action q-Decisional Diffie-Hellman
Problem (GA-q-DDH) in the QAGAM>.

2 Preliminaries

In this section, we fix some notation that will be used throughout the paper and recall standard defini-
tions.
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2.1 Notation

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ...,n}. For m = 1, we simply write [n].
By log(x) we denote the logarithm over the reals with base 2. For a (finite) set S , s $← S denotes that
s is sampled uniformly and independently at random from S . y ← A(x1, x2, ...) denotes that on input
x1, x2, ... the probabilistic algorithm A returns y. AO denotes that algorithm A has access to oracle O.
An adversary is a probabilistic algorithm. The notation JBK, where B is a boolean statement, refers to
a bit that is 1 if the statement is true and 0 otherwise.

2.2 Security Games

We define code based security games similar to [9]. A game G is defined as an algorithm (which we call
the challenger) that provides a main procedure and (possibly zero) oracle procedures. An algorithm A
playing game G gets an initial input from the challenger and can subsequently interact with (possibly
zero) oracles. In the case of quantum algorithms, the oracles can be queried in superposition. At the end
of its execution, A has to provide some output to the challenger. We say that A wins (or solves) the game
G if the challenger accepts the output, which we write as GA ⇒ 1. We define the success probability of
A as Pr[GA ⇒ 1]. Note that we will use the words “game” and “problem” interchangeably.

2.3 Quantum Preliminaries

We recall some quantum computation preliminaries and notation as stated in [21].
Qubit. A qubit |x〉 = α |0〉+β |1〉 is a 2-dimensional unit vector with coefficients in C, i.e. x = (α, β) ∈ C2

fulfilling the normalization constraint |α|2 + |β|2 = 1. When neither α = 1 nor β = 1, we say that |x〉 is
in superposition.

n-qubit state. An n-bit quantum register |x〉 =
∑2n−1

i=1 αi |i〉 is a unit vector of C2n = (C2)⊗n, that is
αi ∈ C and

∑2n−1
i=0 |αi |2 = 1. We call the set {|0〉 , |1〉 , . . . , |2n − 1〉} the computational basis. When |x〉

can not be written as the tensor product of single qubits, we say that |x〉 is entangled.
Measurement. Unless otherwise stated, measurements are done in the computational basis. After
measuring a quantum register |x〉 =

∑2n−1
i=0 αi |i〉 in the computational basis, the state collapses and

|x〉 = ± |i〉 with probability |αi |2.
Quantum Algorithms. A quantum algorithm A is a series of unitary operations Ui , where unitary
operations are defined as to map unit vectors to unit vectors, preserving the normalization constraint of
quantum registers. A quantum oracle algorithm AO is defined similarly, except it can query the oracle
O after (or before) executing a unitary Ui . Since quantum computation needs to be reversible, we model
an oracle O : X → Y by a unitary UO that maps |x〉 |y〉 7→ |x〉 |y ⊕O(x)〉. We only consider sequential
quantum algorithms.
Quantum-Access of Oracles. For an oracle O, we are going to write |O〉 to denote that it can be
queried on quantum inputs and O if it can not (which means that its inputs are implicitly measured).
For an oracle which allows partial quantum-access, we write |·〉 to denote the inputs which are quantum
(i.e., not measured), for example O(·, |·〉) means that the first input is classical (i.e., implicitly measured
on query) and the second is quantum. Alternatively to |O〉 we might also write O(|·〉 , |·〉), if O takes two
inputs. While such a (partially) quantum oracle formally needs an additional ancillary input to write its
result, we omit this to keep the interfaces between classical and quantum oracles aligned.
Oneway-to-Hiding Lemma. We recall the oneway-to-hiding lemma, which is used to reprogram (ran-
dom) oracle values. Informally, the lemma states that if an oracle is reprogrammed on a set S ⊂ R of
inputs, the probability of an adversary A behaving differently can be related to the success probability
of an extractor algorithm B which extracts at least one element of S by measuring the query register of
one of A’s randomly chosen oracle queries.

Specifically, we use the semi-classical variant of the oneway-to-hiding lemma from [5]. We recall the
definition of semi-classical oracles in Definition 1 and the lemma itself in Theorem 1.

Definition 1 (Semi-Classical and Punctured Oracles). Let f : X → {0, 1} be a function and
S ⊂ X a subset s.t. f (x) = 1 if and only if x ∈ S. The semi-classical oracle OSC

f (or equivalently OSC
S )
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is defined as the composition of the unitary Uf and a measurement of the output register in the standard
basis.

Let AOSC
f (z) be a quantum algorithm which gets arbitrary input z and access to OSC

f . We call the event
that A queries OSC

f on an input that yields 1 Find.
Let H be another quantum oracle with domain X and some codomain Y . We define the punctured

oracle H \ S as a quantum oracle that first runs OSC
S and then H on the result.

Note that as long as Find does not occur, H and H \ S behave identically.
Query Depth and Query Parallelism. Following [5] we are going to consider the query depth d of an
adversary making in total q random oracle queries. This is important in practice since for highly-parallel
adversaries we have d � q. We obtain the bounds for sequential adversaries by setting d := q.

Theorem 1 (Semi-Classical O2H ([5], Theorem 1)). Let S ⊂ R be random. Let G,H be random
functions satisfying ∀r /∈ S : G(r) = H(r). Let z be a random classical value. (S,G,H, z may have
arbitrary joint distribution.) Let A be a quantum oracle algorithm with query depth d, expecting input z
and

Pleft := Pr
[
b = 1

∣∣ b ← AG(z)
]

Pright := Pr
[
b = 1

∣∣ b ← AH(z)
]

Pfind := Pr
[
Find

∣∣∣ AG\S
]

Then
|Pleft − Pright| ≤ 2

√
(d + 1)PFind (1)

and
|
√
Pleft −

√
Pright| ≤ 2

√
(d + 1)PFind . (2)

3 Group Actions

In this section, we introduce cyclic effective group actions (with twists). We explain that this abstract
framework models the group action underlying the isogeny-based protocol CSIDH [15]. Further we define
the two standard group action assumptions in our setting: Group Action Discrete Logarithm Problem and
the Group Action Computational Diffie-Hellman Problem.

3.1 Definitions

We first recall the definition of (effective) group actions from [3] and then introduce cyclic effective group
actions (with twists).

Definition 2 (Group Action). Let (G, ◦) be a group with identity element e ∈ G, and X a set. A map

? : G × X → X

is a group action if it satisfies the following properties:
1. Identity: e ?x = x for all x ∈ X .
2. Compatibility: (g ◦ h) ? x = g ? (h ? x) for all g, h ∈ G and x ∈ X .
We use the shorthand notation (G,X , ?) to denote the group action. A group action is called regular, if
for all x, y ∈ X , there exists precisely one g ∈ G s.t. y = g ? x.

Example 1. Let (G, ◦) be a group of prime order p. Then the group (Z∗p, ·) acts on G in a natural way:

? : Z∗p ×G→ G,
(a, g) 7→ ga = (g ◦ · · · ◦ g)︸ ︷︷ ︸

a times

.
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The identity property is trivially satisfied: 1 ? g = g1 = g. Compatibility is verified as follows:

(a · b) ? g = ga·b = (ga)b = a ? (b ? g).

Note that the group action is not regular since ga 6= e ∈ G for all a ∈ Z∗p. However it can be easily made
regular by restricting the action to the set X = G \ {e}.

We would like to stress that exponentiation does not define a group action of (Zp,+) on G, since
consecutive exponentiation behaves multiplicatively.

Definition 3 (Effective Group Action). Let (G,X , ?) be a group action satisfying the following
properties:
1. G is finite and there exist efficient algorithms for membership testing, equality testing, (random)

sampling, group operation and inversion.
2. The set X is finite and there exist efficient algorithms for membership testing and to compute a

unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to compute g ? x given g and x.
Then we call x̃ ∈ X the origin and (G,X , ?, x̃) an effective group action (EGA).

For an EGA it is a priori not assumed that the structure of the group G is known. Indeed this reflects
the reality for some group actions used in cryptography. However, the security of these protocols should
not be based on the difficulty of computing the group structure. Consequently, in this work we focus on
known-order groups (see also [3, Definition 3.9]). Moreover, we restrict our attention to cyclic groups of
known order. This is not a serious restriction. For example in isogeny-based group actions, the group G
is guaranteed to be “almost” cyclic, hence the security is dominated by its largest cyclic component (cf.
Section 3.2). For completeness, we provide an alternative set of definitions for non-cyclic abelian groups
in Appendix A.

Definition 4 (Cyclic Effective Group Action). Let (G,X , ?, x̃) be an effective group action satis-
fying the following properties:
1. The group G is cyclic of order N for some known N ∈ N.
2. There exists a generator g ∈ G with known representation (that is G = 〈g〉).
3. For any element h ∈ G, the element a ∈ ZN satisfying h = ga is efficiently computable.
4. The group action is regular.
Then we say that (G,X , ?, x̃) is a cyclic (known-order) effective group action (CEGA). In other words, a
CEGA is an EGA for which there exists an isomorphism φ : (ZN ,+) → (G, ◦) efficiently computable in
both directions. We therefore denote any CEGA equivalently by (ZN ,X , �, x̃) where

� : ZN ×X → X ,
(a, x) 7→ (g ◦ · · · ◦ g)︸ ︷︷ ︸

a times

? x .

Remark 1. We stress that for a CEGA the compatibility property of a group action turns into a�(b�x) =
(a+ b) � x.

Similar to the framework suggested in [1], we also introduce CEGA with twists which reflects a property
inherent to CSIDH-based group actions.

Definition 5 (Cyclic Effective Group Action with Twists). Let (ZN ,X , �, x̃) be a CEGA. We call
it a Cyclic Effective Group Action with Twists (CEGAT) if there is an efficient algorithm that, given
x = a � x̃ , computes xt = −a � x̃ .

Remark 2. In practice, the requirements from the definition of EGA are often too strong. Therefore the
weaker notion of restricted effective group actions (REGA) is introduced in [3]. In the design of protocols
it is important to have this limitation in mind. For instance, the CSIDH protocol [15] is modeled as a
REGA. For certain CSIDH parameter sets, the group structure has already been computed in [10] which
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converts it into a known-order REGA. Moreover the authors show that in this case it can even be modeled
as a known-order EGA.2

In any case, in this work we are only concerned with analyzing the security of protocols. It is clear
that the security should not be based on the difficulty of computing the group structure. Even more,
knowing the group structure only makes a potential adversary stronger. Consequently, it makes sense to
only consider known-order effective group actions.

3.2 The CSIDH group action

An important example of group actions used in cryptography are provided by isogeny-based group
actions, in particular by CSIDH [15].

Let p be a large prime of the form p = 4 · `1 · · · `n − 1, where the `i are small distinct odd primes. Fix
the elliptic curve E0 : y2 = x3+x over Fp. This is a supersingular curve and its Fp-rational endomorphism
ring is O = Z[π], where π is the Frobenius endomorphism. Let È `p(O) be the set of elliptic curves defined
over Fp, with endomorphism ring O. The ideal class group cl(O) acts on the set È `p(O), i.e. there is a
map

? : cl(O)× È `p(O)→ È `p(O)

satisfying the properties from Definition 2 [15, Theorem 7].

CSIDH-512 is a CEGAT. The structure of the group cl(O) is unknown for large parameter sets.
Assuming the Generalized Riemann Hypothesis, it can be computed in classical subexponential time
using the Hafner–McCurley algorithm [25]. Moreover there exist quantum algorithms by Biasse and
Song [11] to compute the class group cl(O) in polynomial time. The class group computation has been
successfully performed for the parameters of CSIDH-512 [10]. In particular, the authors showed that
cl(O) is a cyclic group of order

N = 3 · 37 · 1407181 · 51593604295295867744293584889
· 31599414504681995853008278745587832204909

≈ 2257
(3)

generated by the element g = (3, π − 1) ∈ cl(O). Moreover it is shown that cl(O) can be identified with
ZN via an efficiently computable isomorphism

φ : ZN → cl(O), a 7→ ga.

Consequently, the CSIDH-512 group action can be viewed as a CEGA. Moreover as any CSIDH-based
group action, it is possible to compute twists of elements efficiently, hence it may also be viewed as a
CEGAT.

Remark 3. While not all class groups appearing in isogeny-based cryptography are cyclic, it makes
sense to model these groups as CEGATs when analyzing their security. This is justified by the fact
that heuristically the class groups are close to being cyclic, see also [15, §7.1]. More precisely, the odd
part of a randomly chosen class group of an imaginary quadratic field is very likely to be cyclic. In case it
is not cyclic, the group is with overwhelming probability of the form ZN1 ×ZN2 with N2 � N1, hence its
complexity is dominated by the cyclic component ZN1 . More details on these heuristics can be found in
[17, §9.1]. Further, we note that genus theory implies that the even part of cl(O) is trivial for all CSIDH
parameters.

2 As is pointed out in [3], knowing the group structure of a REGA does not automatically covert it to an EGA,
but there are some subtleties to consider. In particular, the evaluation of the group action might require to
solve a lattice problem. However, in all known instantiations this problem is easy to solve [10].
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3.3 Group Action Assumptions

For cryptographic applications, we are interested in CEGA(T)s that come equipped with the following
two properties:
– Given x ∈ X , it is hard to find a ∈ ZN with a � x̃ = x.
– Given x = a � x̃, y = b � x̃, it is hard to find z ∈ X with z = (a+ b) � x̃.

In [3] such group actions are called cryptographic group actions, and in [18] they are called hard homo-
geneous spaces. The two hardness assumptions are the natural generalizations of the discrete logarithm
assumption and the Diffie-Hellman assumption in the traditional group based setting. In analogy to this
setting, we make the following definitions.

Definition 6 (Group Action Discrete Logarithm Problem). Let CEGA(T) = (ZN ,X , �, x̃) be a
cyclic effective group action (with twists). We say that an adversary A solves the group action discrete
logarithm problem (GA-DLOG) if A(x̃, a � x̃) = a for a $← ZN .

Definition 7 (Group Action Computational Diffie-Hellman Problem). Let CEGA(T) = (ZN ,X ,
�, x̃) be a cyclic effective group action (with twists). We say that an adversary A solves the group ac-
tion computational Diffie-Hellman problem (GA-CDH) if A(x̃, a � x̃, b � x̃) = (a+ b) � x̃ for a, b $← ZN .

4 Generic Group Action Model

In this section we adapt the well-known Generic Group Model (GGM) of Shoup [42] to the group action
setting. In Section 4.1 we introduce the Generic Group Action Model and relate it to the GGM. We
extend the definition to also include twists in Section 4.2 and quantum queries in Section 4.3. There, we
also show that GA-DLOG does not hold when allowing quantum queries. Finally, we compare our model
to the model of [35] in Section 4.4.

As explained in the preceding section, we focus on CEGAs for the underlying group action of our
generic models. For completeness a natural extension to known-order effective group actions is explained
in Appendix A.

4.1 Definitions and Relations

Generic Group Model. Recall that in the GGM we associate to a group (G,�, e) of prime order p
and neutral element e a set of labels T ⊂ {0, 1}∗ and an injective labeling function σG : G → T . We
require |T | = |G|, but we assume that labels are sufficiently long to ensure that finding a label that has
a corresponding preimage in G is hard. A generic algorithm is subsequently given abstract access to G
via two oracles Oop : T × T → T and Oexp : Z∗p × T → T .3 The first oracle takes as input two labels
σG(g) and σG(h) and returns σG(g � h). Similarly, the second oracle takes as input a label σG(g) and
an exponent k ∈ Z∗p and returns σG(gk). Here we restrict the exponent k to be in Z∗p instead of Zp.
This restriction is without loss of generality, as Oexp(0, σG(g)) = σG(e) for all g ∈ G, which is trivial to
compute even without the oracle. However, it allows us to view Oexp as the regular group action shown
in Example 1. Lastly, we call p the order of the GGM.

Let A be a generic algorithm playing a game G. We say A is a (ε, t, q)-algorithm if its has success
probability Pr[GA ⇒ 1] = ε, time complexity t and query complexity q. Here, the query complexity
refers to the amount of queries to Oexp and Oop. We call a generic (ε, t, q)-algorithm pseudoefficient if
q ∈ O(poly(log p)) and simply efficient if both t, q ∈ O(poly(log p)).

Generic Group Action Model (GGAM). The Generic Group Action Model is now defined similarly
to the GGM. We associate to a cyclic effective group action CEGA = (ZN ,X , �, x̃) a set of labels S ⊂
{0, 1}∗ and an injective labeling function σX : X → S. We again assume that X and S have the same
cardinality. Subsequently, a generic group action algorithm has access to an oracle Oexp : ZN × S → S
which abstractly computes the group action. In particular, on input a ∈ ZN and a label σX (x) for x ∈ X ,
the oracle returns σX (a � x). While this is slightly ambiguous with the Oexp in the GGM, it is easy
3 We include Oexp as a distinct oracle for convenience even though it can be simulated efficiently via Oop and a
square-and-multiply approach.
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Prime-Order GroupCyclic Effective
Group Action

EXP : Z∗p ×G→ G � : G × G → G

Oop : T × T → TOexp : Z∗p × T → T

� : ZN × X → X

Oexp : ZN × S → S

G
G
M

G
G
M

ψ : Z∗p → ZN

S = T \ {σG(e)}

G
G
A
M

Fig. 1. Schematic overview of the relation between GGAM and GGM where N = p − 1.

to see that the Oexp in the GGM and the Oexp in the GGAM are virtually identical and, as we will
argue next, can be translated into one another. We call N the order of the GGAM. Lastly, a generic
(ε, t, q)-algorithm playing a game G is called pseudoefficient if q ∈ O(poly(logN )) and overall efficient if
t, q ∈ O(poly(logN )).

One can now observe that the definition of the GGAM almost matches the definition of the GGM
except for the Oop oracle. In fact, the only other difference between both models is the fact that in the
GGM, Oexp takes as input an exponent in Z∗p whereas in the GGAM, the exponents are in ZN . Assuming
N = p − 1, this change is w.l.o.g. as there exists an isomorphism ψ : Z∗p → ZN which a (pseudoefficient)
generic algorithm can easily compute. Also note that S and T can be identified except for the label
σG(e) = σG(g0) since 0 /∈ Z∗p, but this label can simply be ignored. The relation between the GGM and
the GGAM is visualized in Figure 1.

From the construction of the GGAM we easily see that it is a stronger (i.e. more restricted) version
of the GGM if we assume N + 1 being prime. We therefore get the following observation.

Lemma 1 (Lifting Lemma). Let p be a prime and define N = p− 1. Let G be a game in the GGAM
of order N and let A be a generic (ε, t, q)-algorithm winning G in the GGAM. Then there exists a generic
(ε, t′, q)-algorithm B that wins G in the GGM of order p with runtime t′ ≤ q + t.

Proof. From the observations above, it is straight forward to translate the algorithm A in the GGAM to
an algorithm B in the GGM: Because the label sets S and T can be identified except for σG(e), we just
have to worry about translating oracle queries between the GGAM and GGM. As Figure 1 shows, this
boils down to computing the isomorphism ψ in the backwards direction, i.e. computing ψ−1 : ZN → Z∗p.
This can be done efficiently via a 7→ ga for some generator g ∈ Z∗p. Therefore the runtime of B increases
by the number of evaluations of ψ−1, which itself is exactly the amount q of oracle queries that A issues.

ut

Remark 4. Note that when viewing G in the GGM we might lose some (trivial) instances. More specifi-
cally, the game G in Lemma 1 is defined in the GGAM first, which means that the label σG(e) cannot
occur in an instance of G as it is not defined in the GGAM. For example, in the case of DLOG this means
that the instance (g, g0) = (g, e) cannot occur in the GGM as ψ(0) is undefined and therefore this does
not have a corresponding instance in GA-DLOG. Yet this is only a formal restriction that does not affect
the hardness of G in the GGM.

Intuitively, Lemma 1 states that hardness result in the GGM can be lifted to the GGAM as long as
N = p − 1. Most importantly the lemma also applies to the hardness of solving GA-DLOG and GA-CDH
[42].

Corollary 1. Assume N + 1 being prime. For a generic (ε, t, q)-algorithm solving either GA-DLOG or
GA-CDH in the GGAM of order N we have ε ≤ q2/N.

Note that the Baby-Step Giant-Step Algorithm [40] can be easily adapted to the group action setting.
This adaption yields a generic algorithm for solving GA-DLOG which matches the bound from Corollary 1.
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We remark again that Lemma 1 and Corollary 1 only apply if N + 1 is a prime number. Therefore
hardness results in the GGM only carry over to the GGAM under this restriction. For specific assumptions
we can prove their hardness irrespective of N +1 being prime as we show in the next section, however a
universal lifting theorem might not be achievable. We leave this as an interesting topic for future work.

4.2 Generic Group Action Model with Twists

We introduce the Generic Group Action Model with Twists (GGAM>) which extends the above GGAM
for CEGATs. Recall that current instantiations of group actions like CSIDH are indeed modeled more
accurately by a CEGAT as they come with an additional twisting functionality which allows to efficiently
compute −a � x̃ from a � x̃. Since this functionality is not present in the current definition of the GGAM,
some attacks may not be captured for a large class of widely used group actions. This makes an important
difference when analyzing the generic hardness of non-standard assumptions. It is therefore desirable to
adapt the GGAM to this setting. In particular, we extend the definition of the GGAM by an additional
oracle Otw : S → S that computes σX (−a � x̃) for a given input σX (a � x̃).

Note that twists do not have an analogue in the standard prime order group setting. This means
that Lemma 1 does not apply to the GGAM> even if N + 1 is prime. Below we provide two separating
examples.

Example 2. The security of the password-autheticated key exchange scheme TBPEKE [37] relies on the
so-called Simultaneous Diffie-Hellman assumption. Translated to the group action notation, an adversary
is given three elements x = g � x̃, y1 = a1 � x, y2 = a2 � x ∈ X and is supposed to output three elements
z, r1, r2 ∈ X satisfying r1 = −a1 �z and r2 = −a2 �z. The authors show that a generic (ε, t, q)-algorithm
solving this problem in the GGM of order p, has success probability ε ≤ q2 + 20/2p. In contrast to that,
an adversary in the GGAM> only needs three calls to the Otw oracle in order to find a valid solution:
z = Otw(x), r1 = Otw(y1), r2 = Otw(y2).

Example 3. Another simple separating example is the Inverse Diffie-Hellman Problem (IDHP). Adapted
to our group action notation, an adversary is given a� x̃ for a $← ZN and is asked to compute −a� x̃. From
the definition of Otw it is obvious that IDHP is easy in GGAM>. In the GGAM, however, IDHP must
be as hard as CDH (assuming N + 1 being prime). The reason is that IDHP and CDH are equivalent in
the GGM [7], implying that both have the same lower bound in the GGM. Due to Lemma 1, the lower
bound for IDHP must therefore hold in the GGAM. We thus have that IDHP is easy in the GGAM>
but provably hard in the GGAM if N + 1 is prime.

The two examples show that results in the GGAM> and the GGAM are incomparable. However,
we can still analyze specific problems directly in the GGAM> by adapting the information theoretic
arguments used in the GGM. With this we get a similar bound for the discrete logarithm assumption,
as well as bounds for the non-standard Group Action k-power Decisional Diffie-Hellman Problem (Def-
inition 8) and the Group Action Discrete Logarithm Problem with Auxilary Input (Definition 9). Our
analysis further shows that some assumptions possess instances which are potentially easier to solve. We
are further able to argue that information-theoretically there are only a hand full of these cases which
are all linked to the composite nature of N . Before we proceed to study these problems, we recall a useful
lemma needed for our analysis.

Lemma 2. Let a, b ∈ Z, N ∈ N and denote d = gcd(a,N ). Then the equation a · x ≡ b (mod N ) has
precisely d solutions if d divides b and no solutions otherwise.

Theorem 2. For every generic (ε, t, q)-algorithm A winning the GA-DLOG game in the GGAM> of
order N , we have ε ≤ 2q2/N.

Note that the bound differs from the GGM bound by a factor of 2. This is due to the fact that N
is potentially composite, leading to polynomials of degree 1 with two roots in the reduction. This factor
can be removed by requiring that gcd(2,N ) = 1. The latter is always true when instantiating the group
action with CSIDH.

10



Proof. The proof idea is very similar to classical proofs of DLOG in the GGM. The discrete logarithm
challenge is replaced by an indeterminate X and the labeling function is extended to polynomials fi(X).
If the value of X (and therefore the DLOG solution) is only chosen after the adversary finished, the
probability of success is exactly 1/N . However, we have to ensure that this change is undetected. The
only problem that can occur is that the adversary makes two queries (which are now on polynomials
fi(X), fj(X)) that result in different labels since fi(X) 6= fj(X), but both polynomials evaluate to the
same value on the chosen challenge. However, we can bound the probability of this event by predicting
the number of roots of fi(X)− fj(X), yielding the well-known bounds.

While our proof follows the same idea, there are some intricacies we have to consider. First, the order
N of the group action is potentially composite, so by Lemma 2, for a polynomial of the form aX+ b ≡ 0
(mod N ), there are d = gcd(a,N ) many roots if d divides b and none otherwise. On the other hand, an
adversary is limited to the Oexp and the Otw, so all equations that it can compute are of the form g±X
or g± 2X, thus every equation has at most two roots.

Overall with exactly the same argument as in the GGM the theorem follows with the additional
factor 2. ut

In [19] the authors define the so called k-power Decisional Diffie-Hellman Group Action Problem in
order to build threshold schemes. We give an equivalent definition that is written in additive notation
and analyze its hardness in the GGAM>.

Definition 8 (Group Action k-power Decisional Diffie-Hellman Problem). Let CEGAT =
(ZN ,X , �, x̃) and 1 < k < N − 1. For a, c $← ZN define w0 = k · a � x̃ and w1 = c � x̃ . We say that
an adversary A solves the Group Action k-power Decisional Diffie-Hellman Problem (GA-k-PDDH) if

A(k, a � x̃,wb,w1−b) = b

for b $← {0, 1}.

Theorem 3. For every generic (ε, t, q)-algorithm A winning GA-k-PDDH in the GGAM> of order N ,
we have

ε ≤ 1
2 + 2 · dmax · q2

N ,

where dmax = max{gcd(2k,N ), gcd(k ± 1,N )}.

Proof. The proof uses an argument similar to the original proof of DDH in the GGM by Shoup [42],
however there are again some subtleties. Fix some 1 < k < N − 1. We define indeterminates X,Y,Z
that represent the values a � x̃, wb and w1−b, respectively. An algorithm can implicitly build polynomials
fi(X,Y,Z) of the following forms:

g, g±X, g±Y, and g± Z (mod N ) .

As in the proof of Theorem 2 we are now interested in the number of roots of fi(X,Y,Z)− fj(X,Y,Z).
More specifically, we have to keep in mind that either Y or Z is set to k · X at the end of the game,
meaning that we have to bound the probability that either

fi(X,Y, k ·X)− fj(X,Y, k ·X) ≡ 0 mod N (4)

or
fi(X, k ·X,Z)− fj(X, k ·X,Z) ≡ 0 mod N (5)

for a random assignment of X, Y and Z. Listing all possibilities for these differences is tedious, therefore
we restrict our attention to the polynomial in X and leave the remaining polynomials (in either Y or Z)
unspecified. In the case of eq. (4) we get

±k ·X+ f (Y), ±(k + 1)X+ f (Y), ±(k − 1)X+ f (Y),

±X+ f (Y), ±2X+ f (Y), ±2k ·X+ f (Y) .
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and analogously for eq. (5). The likelihood of an assignment being a root now mainly depends on the
choice of X. Recall from Lemma 2 that an equation of the form aX + b ≡ 0 (mod N ) has at most
gcd(a,N ) solutions. In our setting, a ∈ {±1,±2,±k,±(k − 1),±(k + 1),±2k}, hence

gcd(a,N ) ≤ dmax = max{gcd(2k,N ), gcd(k ± 1,N )} .

In conclusion, the probability that an assignment for X is a root of one polynomial in eq. (4) is bounded
by dmax/N and the same holds for polynomials in eq. (5). Therefore, choosing the bit b after the adversary
has finished fails with probability 2 ·dmax/N . Of course, an adversary can still guess the (now information
theoretically hidden) bit b with constant probability 1/2, which immediately yields the overall bound. ut

Remark 5. The authors in [19] already noted that in the presence of twists GA-k-PDDH is easy for
k = N − 1. Generically, the problem can be solved by sending one query to the twist oracle. Therefore
we excluded this case in our definition of the problem. Moreover our analysis in the GGAM> indicates
that there are more choices for 1 < k < N − 1 for which GA-k-PDDH becomes potentially easier. In light
of Theorem 3, we advise to only use a stronger version of GA-k-PDDH, where it is additionally assumed
that dmax = max{gcd(2k,N ), gcd(k ± 1,N )} = 1.

Remark 6. It is also possible to consider a version of GA-k-PDDH where all elements are given relative
to some x = h � x̃. A correct GA-k-PDDH tuple would thus contain the element z = (k · a+ h) � x̃. This
makes the analysis more intricate but does not change the overall bound.

Baghery, Cozzo and Pederson [6] introduce the vectorization problem with auxiliary inputs to con-
struct a new identification scheme and thus a signature scheme based on CSIDH. The problem has
already been analyzed by [28] in the standard model. It is similar to q-DLOG [12] or DLOG with aux-
iliary inputs [16] in the prime-order group setting. In the following we first recall the problem and then
analyze its hardness in the GGAM>.

Definition 9 (Group Action Discrete Logarithm Problem with Auxilary Input [6]). Let
CEGAT = (ZN ,X , �, x̃). We say that an adversary A solves the Group Action Discrete Logarithm Problem
with Auxilary Input (GA-DLAI) if

A(k0, . . . , km−1, x0, . . . , xm−1) = a

where the ki are given by
k0 = 0, k1 = 1 and 1 < ki < N for i > 1

under the restriction

∀i 6= j : gcd(ki − kj ,N ) = 1 and ∀i, j : gcd(ki + kj ,N ) = 1

and the xi are given by xi = ki · a � x̃ for a $← ZN .

Theorem 4. For any generic (ε, q, t)-adversary A winning GA-DLAI in the GGAM> of order N , we
have ε ≤ q2/N.

Proof. The proof is almost identical to the proofs of Theorem 2 and Theorem 3. Here, the cases where
an equation has more than one root are excluded by the requirement that gcd(ki − kj ,N ) = 1 for i 6= j
and gcd(ki + kj ,N ) = 1 for all i, j. ut

4.3 Quantum Generic Group Action Model

Isogeny-based group actions are a strong candidate for post-quantum secure cryptography. Therefore,
group action based assumptions should also be analyzed in the presence of quantum adversaries. One
might hope that the GGAM can be adapted to the quantum setting where a quantum algorithm can
query Oexp in superposition. Formally this change is simple, that is, we define the quantum oracle
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Oexp(
∑

x,y,z αx,y,z |x, y, z〉) =
∑

x,y,z αx,y,z |x, y, z ⊕Oexp(x, y)〉4. In the following, we will denote this
model by QGGAM and naturally extend the notion of a (ε, t, q)-algorithm to the quantum setting. In
practice, however, making the oracle quantum accessible creates a lot of problems, especially regarding
one of the main purposes of the GGAM: information-theoretic lower bounds.

The most glaring issue is an algorithm by Ettinger and Høyer [22] that can be used to solve GA-DLOG
pseudoefficiently in the QGGAM.

Theorem 5. There exists a generic quantum (ε, t, q)-algorithm that solves GA-DLOG in the QGGAM
of order N with ε = 1− 1

2N , t ∈ O(
√
N ) and q = d64 lnN e.

In its purest form the Ettinger-Høyer algorithm solves the well-known Dihedral Hidden Subgroup
Problem (DHSP) with polynomially many quantum oracle queries (see [29] for a survey on the DHSP).
Because GA-DLOG and many other group action based assumptions reduce to some form of the DHSP,
its hardness plays a central role in group action based cryptography [36]. Although there have been
improvements towards solving the DHSP more efficiently, the currently fastest (generic) algorithm still
has an overall subexponential complexity.

Theorem 6 (Kuperberg’s algorithm, [31]). There exists a generic quantum (ε, t, q)-algorithm that
solves GA-DLOG in the QGGAM of order N with ε ≈ 1 and t, q ∈ O(2

√
logN ).

In the standard model, Kuberberg’s algorithm has the more favorable trade off between the time
complexity t and query complexity q, therefore making it the best currently known algorithm against
DHSP. Because of its overall subexponential complexity, the DHSP (and by extension GA-DLOG) remain
hard in the standard model, which starkly contrasts the situation in the QGGAM.

We conclude that in the QGGAM we cannot give lower bounds on computational problems because
even GA-DLOG can be solved with polynomial oracle complexity. Since the exponential time of the
Ettinger-Høyer algorithm stems from solving a combinatorial problem, one can assume that the hardness
of GA-DLOG is thus not an algebraic one but a combinatorial one. We discuss this more in Appendix B.

4.4 Comparison with the Generic Model by Montgomery and Zhandry

In [35] the authors define a different variant of the GGAM, which we call the MZ-GGAM, where the
group G of a group action (G,X , ?, x̃) is also modeled as a generic group. Consequently, the authors define
two labeling functions, one for G and one for X , as well as corresponding oracles for the operation in G
and for the group action. In particular, DLOG is assumed to be hard in the group G. In the following,
we want to argue that this model and especially its quantum counterpart does not capture the widely
used class of (cyclic) effective group actions very well. To simplify the exposition, we assume that in line
with our setup the group G is cyclic. Clearly, the discussion translates to the setting of a general abelian
group as well. For more details on the functionality of our GGAM in this setting, the reader is referred
to Appendix A.

For the discussion we introduce the (somewhat informal) notation [X ] resp. [G] to denote that a set
(resp. group) is idealized in the sense of the generic group model. That is, its elements are represented
by labels and algorithms are provided with oracles to compute the group action (resp. group operation).
With this notation our GGAM would be written as (ZN , [X ], �, x̃), while the MZ-GGAM of [35] can be
seen as ([G], [X ], ?, x̃).

Our discussion mainly focuses on the generic group [G], which is the main difference between the
two models. We first cover the classical setting where we observe that the MZ-GGAM can be used to
simulate a classical GGM. The reason for this is straightforward: Per definition, the MZ-GGAM provides
an algorithm with a generic group [G]. In fact, any game or algorithm in the GGM can be compiled in the
MZ-GGAM by just ignoring [X ] and solely using [G] for computations. We thus have that, intuitively,
the GGM is fully contained in the MZ-GGAM. A more formal statement would be that the GGM is
indifferentiable from the MZ-GGAM (see [33] for a definition of indifferentiability). We leave out this
rigorous discussion in the interest of space. This connection is not desirable as the computational hardness
of group actions should not stem from the hardness of the group itself but instead should stem from the
4 This was already observed in [35]. A more thorough comparison can be found in Section 4.4
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hardness of inverting the group action. Phrased differently: even if DLOG were easy in G, we still require
that GA-DLOG is hard in (G, [X ], ?, x̃).

The last fact is emphasized when looking at the quantum setting. Here, we can easily compute an
isomorphism ψ : [G]→ ZN via Shor’s algorithm [41] for a suitable N ∈ N, making the generic group [G]
obsolete for algebraic purposes. Additionally, even constructions like the random oracle from a generic
group in [44] are likely to be adaptable to the QGGAM as they only require access to a random labeling
function.

Of course, the issues discussed in Section 4.3 regarding the quantum hardness of GA-DLOG also
apply to the MZ-QGGAM. Hence there is no reason to insist on a generic group [G] as any hardness
assumption imposed on G can be circumvented by quantum preprocessing. We therefore believe that even
in the classical setting, our weaker definition models the computational complexity of (cyclic) effective
group actions in a more realistic way.

5 Algebraic Group Action Model

In this section we introduce the Algebraic Group Action Model and use it to prove several results. In
Section 5.1 we formally define the Algebraic Group Action Model in several variants (classic/quantum
and with/without twists). In Section 5.2 we use the quantum version to reduce different non-standard
assumptions to GA-DLOG.

5.1 Definition and Relations

We define the Algebraic Group Action Model (AGAM) similar to the AGM of [23] with the difference
that the underlying algebraic structure is now an effective group action instead of a prime-order group.
Like in the GGAM, we assume that DLOG is easy in G and therefore make exclusive use of cyclic effective
group actions.5

Definition 10 ((Quantum) Algebraic Group Action Algorithms). Let CEGA = (ZN ,X , �, x̃)
be a fixed cyclic effective group action. An algorithm A is called algebraic if for each output element
y ∈ X it additionally provides a representation relative to a previously received set element. Concretely,
if (x1, . . . , x`) ∈ X ` is the list of received set elements so far, A additionally provides a group element
a ∈ ZN and an index i ∈ {1, . . . , `} such that y = a � xi. We denote

y(i,a) = a � xi .

If an oracle is queried on some set elements, then A also has to provide a representation for each set
element contained in that query.

Analogously, a quantum adversary is algebraic if for every output state |y〉 it additionally outputs a
quantum representation, i.e. a quantum state |i, a〉 s.t. |y〉 = |a � xi〉. Similarly to the classical case, we
write

∣∣y(i,a)〉. Note that the representation is entangled with the group element.
Additionally, if the group action supports twists (i.e. it is a CEGAT), we extend the representation by

a bit b, indicating whether the base element was twisted before applying the group action. Formally, we
then have

y(i,a,b) =
{
a � xi if b = 0,
a � xi t if b = 1.

As in the AGM we require that all auxiliary input provided to the adversary which is not in X does not
depend on elements from X .

Remark 7. As noted in [45,27], it is somewhat imprecise to require auxiliary inputs to be independent of
set element inputs, as there might be arbitrary, information theoretically hidden set elements encoded
in them. However, generally it is clear in practice whether such dependencies exist, so we do not specify
this further. Additionally, all adversaries that we consider only receive set elements as inputs, so it is
clear either way that there are no “hidden” set elements.
5 To capture general abelian groups, a similar approach as described for the GGAM in Appendix A applies.
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Remark 8. We assume that all representations provided by an adversary in the QAGAM are correct.
While it is not as straight forward as in the classical setting to actually check this correctness, this is
without loss of generality. Instead of providing the representation and the group element itself, we could
instead require the adversary to only provide the representation and have the reduction/oracle compute
the group element itself. This makes everything consistent and correct. Alternatively, an approach similar
to the semi-classical O2H is possible, where the reduction measures whether the representation is correct,
however this introduces a small error probability.

Let G1,G2 be two security games in the (Q)AGAM and assume that there exists an algebraic (ε, t)-
algorithm A winning game G2. We say that G1 reduces to G2 if there exists an efficient (quantum)
algorithmR (called the reduction) such thatRA is an (ε′, t′)-algorithm that wins G1 with time complexity
t′ ∈ O(poly(t)) and success probability ε′ ∈ Ω(poly(ε)). If R is algebraic, then we have that RA is an
algebraic algorithm as well.

While the GGAM can not be lifted (in a useful way) to the quantum setting (see Section 4.3), the
QAGAM is indeed useful for studying the relation between assumptions in the presence of a quantum
adversary. Firstly, this is due to the fact that the AGAM is not used to prove lower bounds but instead
upper bounds via reductions as described above. This means that all reductions from the AGAM can
be immediately lifted to the QAGAM, as a quantum algorithm can perform all classical operations.
Secondly, some assumptions are inherently quantum. They can for example include oracles which can
be queried on quantum superpositions. For such queries, a classical representation is implausible, as it
potentially has exponential size and would require an adversary to always know all amplitudes of the
states it queries to oracles, which is unreasonable even for algebraic adversaries. Therefore, the QAGAM
is necessary when considering such assumptions. We analyze two inherently quantum assumptions in
Section 5.2.

Relation between AGAM and AGM. Similarly to the GGM and GGAM, it is possible relate the
AGM to the AGAM. While the intuition behind this relation is similar to the generic case, it is a lot more
complicated to formalize. The main complication stems from the fact that we do not have the useful
formal limitations of the generic group model. Specifically, while it is easy to simply omit an oracle in
an idealized model, formalizing the set of allowed operations of an arbitrary algorithm on some group
or group action requires more rigor in order to make no arbitrary limitations. While this is possible via
the abstraction of group schemes [2,4,26] (which can also be adapted to group actions), it is not very
insightful.

Additionally, relating the AGAM to the AGM is not very useful. While we can adapt lower bounds
from the GGM to the GGAM, we could only hope to adapt upper bounds from the AGAM to the AGM.
However, it is very likely that there are actually better upper bounds that can be proven in the AGM as
we have more freedom there. So we only get “upper bounds on upper bounds”, which are of limited use.

Relation between AGAM and AGAM>. As in the GGAM, one generally can not directly translate
results from the AGAM to the AGAM> or vice versa. For the direction from AGAM to AGAM>, the
examples from Section 4.2 apply as well. In the other direction, the situation is a bit more nuanced. Since
the reduction can depend on the representations provided by the adversary, there are situations where
the reduction only uses the twisting functionality of the group action, if the adversary does so as well.
In this case the reduction can be moved from the AGAM> to the AGAM. In all other cases, directly
transfering reductions seems impossible and both models have to be considered.

5.2 Results in the Quantum Algebraic Group Action Model with Twists

As a warm-up, we show the equivalence of GA-DLOG and GA-CDH in the (Q)AGAM>. As the implication
from GA-CDH to GA-DLOG is obvious, we only show the non-trivial implication.

Theorem 7 (GA-DLOG⇒ GA-CDH in the (Q)AGAM>). Let A be an algebraic (quantum) (εA, tA)-
adversary against the GA-CDH problem, then there exists an (εB, tB)-adversary B against the GA-DLOG
problem with

εA ≤ εB and tA ≈ tB .
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Formally, we prove the theorem in the AGAM>. However, there are no quantum oracles and the proof
adapts to the quantum setting without change.

Proof. We construct a reduction B against GA-DLOG as follows. B gets as input x1 := a � x̃ and chooses
r $← ZN . It computes x2 := r � x1 and then runs the algebraic adversary A against GA-CDH on (x1, x2).
At some point A will output a solution z as well as a representation (i, s, b). Note that if A wins, then
z = (2a+ r) � x̃. For each i ∈ {0, 1, 2} and b ∈ {0, 1}, we show how we can solve the GA-DLOG challenge
from s.
– Case 1 (i = 0): Since the twist maps the origin x̃ to itself, we get s � x̃ = (2a + r) � x̃ for both

b ∈ {0, 1}. Thus, we have to solve 2a = s − r mod N . If gcd(2,N ) = 2 and 2 divides s − r, then we
get two solutions and we test which is the correct one. Otherwise, there exists exactly one solution.

– Case 2 (i = 1): For b = 0, we get s � (a � x̃) = (2a+ r) � x̃. Thus, we get a = s− r mod N . For b = 1,
we get s � (−a � x̃) = (2a+ r) � x̃ and we have to solve 3a = s− r. If gcd(3,N ) = 3 and 3 divides s− r,
then we get three solutions and we test which is the correct one. Otherwise, there exists exactly one
solution.

– Case 3 (i = 2): For b = 0, we get s � ((a+ r) � x̃) = (2a+ r) � x̃. Thus, a = s is exactly the GA-DLOG
solution. For b = 1, we get s � ((−a− r) � x̃) = (2a+ r) � x̃ and we have to solve 3a = s− 2r, which
we can do similar to case 2.

This concludes the proof of Theorem 7. ut

An interesting new problem and its necessity to prove IND-CCA security of (plain) hashed ElGamal
was put forward by [20]. They define different variants of the strong CDH problem, some of them
allowing quantum queries to the decision oracle. We first recall the definition of the strongest version of
their problem.

Definition 11 (Group Action Quantum Strong Computational Diffie-Hellman). Let CEGA(T) =
(ZN ,X , �, x̃) be a cyclic effective group action (with twists). We say that an adversary A solves the group
action quantum strong computational Diffie-Hellman problem (GA-QSt-CDH) if AO(x̃, a � x̃, b � x̃) =
(a+b)� x̃ for a, b $← ZN , where A has access to decision oracles O := {GA-DDHa(|·, ·〉),GA-DDHb(|·, ·〉)}.

On basis-state inputs (y, z), GA-DDHa returns 1 if a � y = z and 0 otherwise. GA-DDHb is defined
equivalently. Note that superposition queries are then implicitly defined by linearity (i.e., O(

∑
x αxx) =∑

x αxO(x)).

Remark 9. The GA-QSt-CDH assumption is called Double-Sided Fully Quantum Group Action Strong
Computational Diffie-Hellman Problem in [20]. They define additional variants where the adversary can
only access one of the two decision oracles or has only partial quantum access (i.e. one of the inputs is
implicitly measured). The GA-QSt-CDH assumption is the strongest of these assumptions, so the result
we show in Theorem 8 applies to the weaker assumptions as well.

Now we show that in the QAGAM>, this problem can actually be reduced to GA-DLOG using the
semi-classical oneway-to-hiding lemma (see Theorem 1).

Theorem 8 (GA-DLOG⇒ GA-QSt-CDH in the QAGAM>). Let A be an algebraic quantum (εA, tA)-
adversary against the GA-QSt-CDH problem making at most q decision oracle queries, then there exist
(εB, tB)-adversary B and (εC , tC)-adversary C against GA-DLOG with

εA ≤
√
(q + 1) · εB + εC and tA ≈ tB ≈ tC .

Proof. The main difficulty of the proof is to show that the reduction can simulate the quantum GA-DDH
oracles. The main observation then is that if the algebraic adversary queries GA-DDH on points where
it might learn something interesting, it already had to solve GA-DLOG. Therefore, we can assume that
the adversary does not query those points (with noticeable probability amplitude) and we can remove
them from the oracle using the semi-classical O2H lemma. This is done in the gamehop G0 to G1. On
the remaining points where the adversary does not learn anything of interest, the reduction knows how
to simulate GA-DDH perfectly and we can solve GA-DLOG from the algebraic GA-CDH solution, which
bounds the probability of winning in G1. We proceed with the formal proof.

Let A be a quantum algebraic adversary against the GA-QSt-CDH game. Consider the games given
in Figure 2.
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G0,G1

00 a, b, r $← ZN
01 x1 := a � x̃
02 x2 := b � x̃ \\G0

03 x2 := r � x1 \\G1

04 z(i,c,b) ← AOa,Ob(x1, x2)
05 return Jz = (a+ b) � x̃K

Oracle Oa

(∣∣y(i,c,b1), z(j,d,b2)
〉)

06 (ib, ia) := (msb(i), lsb(i)) \\G1

07 (jb, ja) := (msb(j), lsb(j))
08 if d 6= 0
09 return 0
10 res := J((−1)b2 jb − (−1)b1 ja)r+ d− c = 0K
11 return res
12 return |Ja � y = zK〉

Fig. 2. Games G0-G1 for the proof of Theorem 8. The oracle Ob is simulated in the same way as Oa except for
an additional r in the boolean test in line 10. The variable d is defined as in eq. (8). Lines 06 and 07 interpret i
and j as a two digit binary number. Note that i, j ≤ 2.

Game G0. This is the definition of the GA-QSt-CDH game where we write Oa for GA-DDHa and likewise
for Ob. We have

Pr[G0 ⇒ 1] = εA .

Game G1. Here, we make two changes. The first change is a simple conceptual change. We use the
random self-reducibility of GA-DLOG to set x2 to r � x1 instead of b � x̃ for r $← ZN . The second change
is in the simulation of the decision oracles. We reprogram certain points of the decision oracle Oa and
Ob to always output 0. More specifically, we reprogram those points to 0 which would allow us to solve
GA-DLOG if the adversary gave us elements where GA-DDH returns 1. By the semi-classical oneway-to-
hiding lemma (Theorem 1) we can bound the difference between the games G0 and G1 by the probability
of the adversary finding an element from the reprogrammed set of points S. That is

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤
√

(q + 1)Pr
[
Find

∣∣ AG\S
]
,

where we define S as the set where the function SetTest defined in Figure 3 returns 1.
We bound the right-hand-side, showing that

Pr
[
Find

∣∣∣ AG\S
]
≤ εB , (6)

in the reduction B described in Figure 3. The reduction simulates the oracles as in G1 and simulates the
semi-classical O2H oracle by considering the cases described below.

Essentially, there are three cases when the algebraic adversary queries the decision oracle Oa. The
first possibility is that the explanation of the adversary leads to an equation which we could solve for
a if GA-DDH returns 1 on that input. In that case the reduction solves GA-DLOG. If a vanishes in the
expression, we can simply simulate the GA-DDH oracle, since all variables necessary are known to the
reduction. In the third case, a does not vanish from the expression, but there is no solution, in which case
0 would have been returned anyway. To give a simple example of the first case, assume that y = c � x1
and z = d � x̃, then a = d− c. To cover all cases we use variables ia, ib, ja and jb as defined in Figure 2
and can then derive the DDH expression

a+ c+ (−1)b1(iaa+ ib(r+ a))︸ ︷︷ ︸
�x̃=y

≡ d+ (−1)b2(jaa+ jb(r+ a))︸ ︷︷ ︸
�x̃=z

mod N . (7)

This equation can be rearranged to

(1 + (−1)b1(ia + ib)− (−1)b2(ja + jb))︸ ︷︷ ︸
=:d∈[−1,3]

a ≡ ((−1)b2 jb − (−1)b1 ja)r

+ d− c mod N (8)

which we can use to either solve GA-DLOG when a does not vanish and otherwise simulate Oa. Clearly,
the variable a vanishes in the expression if d = 0, enabling us to extract a solution if d 6= 0. This is tested
in G1 before using the expression to simulate Oa. However, in the case d 6= 0 we still have to consider
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Reduction B(x1 := a � x̃)
00 r $← ZN
01 x2 := r � x1
02 T ← Run AO\S(x1, x2) until Find

and measure query register inputs
03 return FindSolution(T , x1, x2)

Oracle OSC
S (|ψin , 0〉)

04 Parse ψin as
∣∣y(i,c,b1), z(j,d,b2)

〉
05 b := 0
06 b ← Measure

[
SetTest

(∣∣y(i,c,b1), z(j,d,b2)
〉)]

07 return (|ψ′in〉 , b)

SetTest
(∣∣y(i,c,b1), z(j,d,b2)

〉)
08 if d 6= 0
09 T := Solve(a+c+(−1)b1(iaa+ ib(r+a)) =

d+ (−1)b2(jaa+ jb(r+ a)))
10 return ∃a′ ∈ T : Ja′ � x̃ = x1K
11 return 0

Oracle Oa \ S(|ψin , ψout〉)
12 |ψ′in , b〉 ← OSC

S (|ψin , 0〉)
13 if b = 1
14 Find := 1
15 return UO(|ψ′in , ψout〉)

FindSolution(T , x1, x2)
16 Parse T as (y(i,c,b1), z(j,d,b2))
17 Run SetTest(y(i,c,b1), z(j,d,b2))

returning a′ s.t. a′ � x̃ = x1
18 return a′

Fig. 3. Reduction B for bounding the difference between G0 and G1 for the proof of Theorem 8. The function
Solve solves for a and outputs a set of (possibly multiple) solutions. The oracle Oa is simulated as in G1. The
simulation of Ob is similar and explained in the proof. Line 17 is abuse of notation and queries a search version
of SetTest instead of the decisional version. The variables ia, ib, ja and jb are defined as in Figure 2. The variable
d is defined as in eq. (8).

the fact that d | N but d does not divide the right hand side of eq. (8). Referring back to Lemma 2 we
therefore have no solutions for a. This is a non-issue as we can just return 0 in that case as well. If d = 0 we
test whether the right hand side evaluates to 0 as well. For simulating Ob(y, z) = Or+a(y, z) = Oa(r�y, z)
we proceed in the same way except that r is added to the left side of eq. (7).

We have just shown Equation 6. It remains to reduce G1 to GA-DLOG. That is,

Pr[G1 ⇒ 1] ≤ εC .

This is straightforward, the reduction C gets the GA-DLOG challenge x1 = a � x̃, samples r $← ZN and
sets x2 = r � x1. Then C simulates G1 and receives the GA-CDH solution and solves GA-DLOG as in
Theorem 7. Adding up the terms yields the claimed bound and concludes the proof. ut

Now we want to analyze the strong square inverse Diffie-Hellman assumption introduced in [1] to prove
security of their password-authenticated key exchange protocol. As pointed out in [20], a security proof
in the quantum random oracle model will rely on a stronger version of the assumption, where decision
oracles are queried in quantum superposition. This is similar to the case of hashed ElGamal and the
GA-QSt-CDH assumption.

Definition 12 (Group Action Quantum Strong Square-Inverse Diffie-Hellman). Let CEGA(T) =
(ZN ,X , �, x̃) be a cyclic effective group action (with twists). We say that an adversary A solves the
group action quantum strong square-inverse Diffie-Hellman problem (GA-QSt-SqInvDH) if AO(x̃, a �
x̃) = (y, 2a � y,−a � y) for a $← ZN and some y ∈ X . Here A has access to decision oracles O :=
{GA-DDHa(|·〉 , |·〉),GA-DDH2a(|·〉 , |·〉)} which are defined similarly to those in Definition 11.

Theorem 9. Let A be an (εA, tA)-algebraic quantum adversary against the GA-QSt-SqInvDH problem
that issues at most q decision oracle queries, then there exist an (εB, tB)-adversary B and an (εC , tC)-
adversary C against the GA-DLOG problem with

εA ≤
√
(q + 1) · εB + εC and tA ≈ tB ≈ tC .

Here the square-root term comes from the fact that we allow quantum queries to the decision oracles.
When allowing for classical queries only, the bound would be tight. The proof is very similar to that of
Theorem 8 and we defer it to Appendix C.
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Game IND-CCA1(A)
00 (pk, sk)← Gen
01 b′ ← AEnc,Decaps(pk)
02 return Jb = b′K

Oracle Enc \\only once
03 b $← {0, 1}
04 (ct∗,K0)← Encaps(pk)
05 K1

$← K
06 return (ct∗,Kb)

Oracle Decaps(ct) \\only before Enc
07 return Dec(sk, ct)

Fig. 4. The IND-CCA1 game for a key encapsulation mechanism KEM.

Gen
00 sk := a $← ZN
01 pk := a � x̃
02 return (pk, sk)

Encaps(pk)
03 b $← ZN
04 ct := b � x̃
05 K := b � pk
06 return (ct,K)

Decaps(sk, ct)
07 K := sk � ct
08 return K

Fig. 5. The ElGamal KEM for CEGA(T) = (ZN ,X , �, x̃).

5.3 Security Analysis of ElGamal in the Quantum Algebraic Group Action Model with
Twists

Similar to the analysis in the AGM of [23], we can prove IND-CCA1 security of group action ElGamal.
Going even one step further, we are also able to analyze IND-QCCA1 security in the QAGAM>. This se-
curity notion, where the adversary is allowed to ask for decapsulation queries in quantum superposition,
was first proposed by Boneh and Zhandry in [13]. We recall the definition of a key encapsulation mecha-
nism and the group action q-decisional Diffie-Hellman assumption below. This assumption is similar to
those in Definitions 8 and 9. Lastly, we define the ElGamal KEM in Figure 5.
Key Encapsulation Mechanism. Let PK, SK, C, K be sets. A key encapsulation mechanism KEM =
(Gen,Encaps,Decaps) consists of the following three algorithms:
– Gen: The key generation algorithm outputs a public key pk ∈ PK and a secret key sk ∈ SK.
– Encaps(pk): On input a public key pk, the encapsulation algorithm returns a ciphertext ct ∈ C and

a key K ∈ K, where ct is an encapsulation of K .
– Decaps(sk, ct): On input a secret key sk and a ciphertext ct, the decapsulation algorithm returns a

key K ∈ K or a special failure symbol ⊥.
We require perfect correctness, i.e. for all (pk, sk)← Gen, (ct,K )← Encaps(pk), we have Decaps(sk, ct) =
K .
IND-CCA1 Security. We define the IND-CCA1 security game (aka. lunchtime security) in Figure 4.
We say that an adversary A solves the IND-CCA1 game if the game outputs 1. Analogously, we define
the IND-QCCA1 security game, where the only difference from the regular IND-CCA1 game is that an
adversary has quantum access to the decapsulation oracle.

Definition 13 (Group Action q-Decisional Diffie-Hellman). Let CEGA(T) = (ZN ,X , �, x̃). We
say that an adversary A solves the group action q-decisional Diffie-Hellman (GA-q-DDH) if

A(x̃, a � x̃, 2a � x̃, . . . , qa � x̃, b � x̃, zr) = r ,

where a, b $← ZN , z0 := (a+ b) � x̃ , z1 $← X and r $← {0, 1}.

Theorem 10 (GA-q-DDH =⇒ IND-QCCA1 of ElGamal). Let A be an algebraic quantum (εA, tA)-
adversary against the IND-QCCA1 security of ElGamal KEM making at most q−1 quantum decapsulation
queries, then there exists a quantum (εB, tB)-adversary B against GA-q-DDH with

εA ≤ εB and tA ≈ tB .

Proof. We describe how the reduction works classically. Simulation of the quantum decapsulation oracle
follows from linearity of quantum states and from the fact that all computations are deterministic from
their inputs.
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Let (x1, x2, . . . , xq, y, z) := (a � x̃,2a � x̃,. . . ,qa � x̃, b � x̃, z) be the GA-q-DDH challenge. The main idea
of the proof is to use the xi to simulate the decapsulation oracle together with the algebraic explanation
provided by the algebraic adversary. If the adversary A uses twists, the reduction B can still simulate
decapsulation queries by twisting the appropriate xi . We will therefore define x−i := xti . The main
observation is that an adversary can learn higher “powers” of a � x̃, i.e. ka � x̃ for k ∈ [q], by querying
a� x̃ to the decapsulation oracle. A can then query the decapsulation oracle on ciphertexts which depend
on answers to previous decapsulations and so on. Then the i-th answer to the decapsulation oracle can
be written as

Ki = di � xji = (jia+ di) � x̃

where |ji | ≤ i. For the i + 1-th decapsulation query, we then have

Decapsa(c(k,d,r)) = a � c = (a + d) �K r
k

= (a+ (−1)tika+ dk + d) � x̃ = (d+ dk) � x(−1)tik+1 ,

where K r
k = Kk if b = 0 and K t

k otherwise. With ij+1 := (−1)tik + 1 and di := d + dk , we get a
representation for Kj+1 as above, which can in turn be used to simulate the next decapsulation. Since A
makes at most q − 1 decapsulation queries, we always have |ik | ≤ q, so the simulation always works.

Being able to simulate decapsulation queries, the adversary sets the ElGamal randomness carrier to
be b � x̃ and sets the KEM key to be z and uses the distinguishing bit to decide if it is in the real or
random case of the GA-q-DDH problem. ut
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A Generic Models for General Abelian Group Actions

In the models presented in our paper, we restricted our attention to group actions (G,X , ?), where G is
cyclic. This choice is based on the fact that for all known and cryptographically relevant instantiations,
the group G is at least close to being cyclic, cf. Section 3.2. Since it is possible that future developments
in cryptography might lead to new examples of group actions, we now explain how our definitions can
be extended to general abelian group actions.

We start by defining the natural generalization of a CEGA (Definition 4). In essence, this is the same
as a known-order effective group action introduced in [3].

Definition 14 (Abelian Known-Order Effective Group Action). Let (G,X , ?, x̃) be an effective
group action satisfying the following properties:
1. The group G is finite of known rank r ∈ N and there exist known integers N1, . . . ,Nr with Ni+1 | Ni

for i ∈ {1, . . . , r − 1} such that
G ∼= Z/N1Z× · · · × Z/NrZ.

2. There exists a generating set (g1, . . . , gr) ∈ Gr with ord(gi) = Ni, i.e. G = 〈g1, . . . , gr〉 with known
representation.

3. For any element h ∈ G, the elements (a1, . . . , ar) with ai ∈ Z/NiZ so that h = ga1
1 ◦ · · · ◦ garr are

efficiently computable.
Then we say that (G,X , ?, x̃, (g1, . . . , gr)) is an abelian known-order effective group action (KEGA).

In other words, an abelian known-order effective group action is an EGA for which there exists an
isomorphism φ : G → ZN1 × · · · × ZNr efficiently computable in both directions. We therefore denote any
KEGA equivalently by (ZN1 × · · · × ZNr ,X , �, x̃), where

� : (ZN1 × · · · × ZNr )×X → X
((a1, . . . , ar), x) 7→ (ga1

1 ◦ · · · ◦ garr ) ? x.

The order of the group is denoted by N =
∏r

i=1 Ni. To specify the orders of the cylic subgroups in the
decomposition, we use the notation N = (N1, . . . ,Nr).

Similar to the definition of CEGAs, we also define known-order group actions with twists.

Definition 15 (Abelian Known-Order Effective Group Action with Twists). Let (ZN1 × · · · ×
ZNr ,X , �, x̃) be a KEGA. We call it Abelian Known-Order Group Action with Twists (KEGAT) if there is
an efficient algorithm that, given x = a � x̃ , computes xt = −a � x̃ .

Generic Group Action Models. Essentially, the definitions of the GGAM and the GGAM> do not
change when replacing CEGA by a KEGA. In the following, we call the resulting models KEGA-GGAM and
KEGA-GGAM> respectively. Proofs in these models become technically more intricate. This is mostly
due to the fact that group elements are now of the form a = (a1, . . . , ar) ∈ ZN1 × · · · ×ZNr . To illustrate
the application of such models, we prove the following theorem which is the analogue of Theorem 2 in
the GGAM>.

Theorem 11. Let KEGA-GGAM> be of order N = (N1, . . . ,Nr). For every generic (ε, t, q)-algorithm
A winning the GA-DLOG game we have

ε ≤ 2r∗q2

N , where r∗ = #{i | gcd(2,Ni) = 2}.

Proof. The proof follows the same idea as the proof of Theorem 2. The main difference is that an
indeterminate X now has to be understood as a vector, where the entry i is viewed as a variable over
ZNi . We denote X = (X1, . . . ,Xr) and a polynomial f (X) is defined as system of polynomials. In other
words:

f (X) =


f1(X1) ∈ ZN1 [X1]
...

fr(Xr) ∈ ZNr [Xr ]

 .
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We need to bound the probability that an adversary makes two queries f (X) and g(X) that result
in different labels but both polynomials evaluate to the same value. Note that two polynomials f (X)
and g(X) evaluate to the same value if and only if fi(Xi) and gi(Xi) evaluate to the same value for all
i ∈ {1, . . . , r}.

An adversary only has access to Oexp and Otw, hence the differences of polynomials it can compute
are of the form

g±X =


g1 ±X1 ∈ ZN1 [X1]
...

gr ±Xr ∈ ZNr [Xr ]

 , g± 2X =


g1 ± 2X1 ∈ ZN1 [X1]
...

gr ± 2Xr ∈ ZNr [Xr ]

 .

Just as in the proof of Theorem 2 an equation gi±Xi = 0 has precisely one solution, and an equation
gi ± 2Xi = 0 has at most two solutions if 2 | N and one solution otherwise. In conclusion, the equation
g ±X = 0 has precisely one solution. And the equation g ± 2X = 0 has at most 2r∗ solutions, where
r∗ = #{i | gcd(Ni , 2) = 2}. The overall bound follows. ut

In a similar way, it is also possible to translate the proof of Theorem 3 to the KEGA-GGAM> which
results in the following theorem.

Theorem 12. For every generic (ε, t, q)-algorithm A winning GA-k-PDDH in the KEGA-GGAM> of
order N = (N1, . . . ,Nr) we have

ε ≤ 1
2 + 2 · dmax · q2

N ,

where dmax =
∏r

i=1 di,max and di,max = max{gcd(2k,Ni), gcd(k ± 1,Ni)} for i ∈ {1, . . . , r}.

Proof. The proof follows the same idea as the proof of Theorem 3 for generic adversaries in the GGAM>.
The adaptions to KEGA-GGAM> are similar to those in the proof of Theorem 11. ut

B Ettinger-Høyer Algorithm

In [22] the authors reduce the DHSP to the following computational problem which we call the Trigono-
metric Approximation Problem.

Definition 16 (Trigonometric Approximation Problem). Let M ,m ∈ N be public parameters. For
some uniformly random k0 $← N with k0 < M denote by Z the discrete random variable defined by the
probability mass function

Pr[Z = z] = α cos2(πk0z/M ) (0 ≤ z < M )

where α = 1/M if k0 = 0 or k0 = M/2 and α = 2/M otherwise. On input m independent random samples
z1, . . . , zm from Z, the Trigonometric Approximation Problem (TAP) requires to compute the secret k0.

Here the parameters of TAP relate to GA-DLOG in the following way: For a fixed CEGA = (ZN ,X ,
�, x̃) the parameter M is equivalent to the order N , m is equal to the number of queries q to Oexp and
k0 corresponds to the secret exponent a. Specifically, k0 yields the solution to an instance of the DHSP
problem, which in turn can be used to solve the GA-DLOG instance a � x̃.

Ettinger and Høyer solve TAP for m ≥ d64 lnMe by observing that any κ ∈ {1, . . . , bM/2c} that
maximizes the sum

m∑
i=1

cos(2πκzi/M )

is equal to k0 with probability at least 1− 1
2M . The corresponding value of κ is found via a Grover search

[24]. Therefore the Ettinger-Høyer algorithm is a (ε, t, q)-algorithm against GA-DLOG with ε = 1− 1
2N ,

t ∈ O(
√
N ) and q = d64 lnN e, striking a specific trade-off between t and q that is asymptotically optimal

with respect to the number of oracle queries.
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G0,G1

00 a $← ZN
01 x := a � x̃
02 (y0, y1, y2)← AOa,O2a(x̃, x)
03 return Jy1 = 2a � y0 ∧ y2 = −a � y0K

Oracle Oa

(∣∣y(i,c,b1), z(j,d,b2)
〉)

04 if (1 + (−1)b1 i − (−1)b2 j) 6= 0 \\G1

05 return 0
06 return Jc = dK
07 return |Ja � y = zK〉

Oracle O2a
(∣∣y(i,c,b1), z(j,d,b2)

〉)
08 if (2 + (−1)b1 i − (−1)b2 j) 6= 0 \\G1

09 return 0
10 return Jc = dK
11 return |J2a � y = zK〉

Fig. 6. Games G0-G1 for the proof of Theorem 9. Note that for the solution (y0, y1, y2) the adversary also provides
a representation (i0, s0, b0), (i1, s1, b1) and (i2, s2, b2), respectively.

C Proof of Theorem 9

This section is dedicated to the proof of Theorem 9. For the convenience of the reader, we first repeat
the statement of the theorem.

Theorem 9. Let A be an (εA, tA)-algebraic quantum adversary against the GA-QSt-SqInvDH problem
that issues at most q decision oracle queries, then there exist an (εB, tB)-adversary B and an (εC , tC)-
adversary C against the GA-DLOG problem with

εA ≤
√
(q + 1) · εB + εC and tA ≈ tB ≈ tC .

Proof. Let A be a quantum algebraic adversary against the GA-QSt-SqInvDH game. Consider the games
given in Figure 6.

Game G0. This is the definition of the GA-QSt-SqInvDH game, where we write Oa and O2a for the
corresponding decision oracles GA-DDHa and GA-DDH2a. We have

Pr[G0 ⇒ 1] = εA .

Game G1. In game G1, we change the simulation of the decision oracles. We reprogram certain points
of the decision oracle Oa and O2a to always output 0. More specifically, we reprogram those points to 0
which would allow us to solve GA-DLOG if the adversary gave us elements where GA-DDH returns 1. By
the semi-classical oneway-to-hiding lemma (Theorem 1) we can bound the difference between the games
G0 and G1 by the probability of the adversary finding an element from the reprogrammed set of points
S. This means

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤
√

(q + 1)Pr
[
Find

∣∣ AG\S
]
,

where S is defined as the set where the function SetTest defined in Figure 7 returns 1.
We bound the right-hand-side, showing that

Pr
[
Find

∣∣∣ AG\S
]
≤ εB , (9)

in the reduction B described in Figure 7. The reduction simulates the oracles as in G1 and simulates the
semi-classical O2H oracle by considering the cases described below.

The first oracle is identical to the GA-DDHa oracle of in the GA-QSt-CDH assumption. Specifically,
B can either simulate the oracle correctly or already extract a solution a′ for its GA-DLOG challenge. To
cover all cases, we derive one expression based on the representations the adversary provides. Recall that
any input to Oa will be of the form

∣∣y(i,c,b1)z(j,d,b2)
〉
. If the adversary queries a real DDH tuple, then the

following holds:
a+ c+ (−1)b1 ia︸ ︷︷ ︸

�x̃=y

≡ d+ (−1)b2 ja︸ ︷︷ ︸
�x̃=z

mod N ,
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Reduction B(x̃, x := a � x̃)
00 T ← Run AO\S(x̃, x) until Find

and measure query register inputs
01 return FindSolution(T , x̃, x)

Oracle OSC
S (|ψin , 0〉)

02 Parse ψin as
∣∣y(i,c,b1), z(j,d,b2)

〉
03 b := 0
04 b ← Measure

[
SetTest

(∣∣y(i,c,b1), z(j,d,b2)
〉)]

05 return (|ψ′in〉 , b)

SetTest
(∣∣y(i,c,b1), z(j,d,b2)

〉)
06 d := (1 + (−1)b1 i − (−1)b2 j)
07 if d 6= 0
08 T := Solve(da = d− c)
09 return ∃a′ ∈ T : Ja′ � x̃ = x1K
10 return 0

Oracle Oa \ S(|ψin , ψout〉)
11 |ψ′in , b〉 ← OSC

S (|ψin , 0〉)
12 if b = 1
13 Find := 1
14 return UO(|ψ′in , ψout〉)

FindSolution(T , x̃, x)
15 Parse T as (y(i,c,b1), z(j,d,b2))
16 Run SetTest(y(i,c,b1), z(j,d,b2))

returning a′ s.t. a′ � x̃ = x1
17 return a′

Fig. 7. Reduction B for bounding the difference between G0 and G1 for the proof of Theorem 9. The function
Solve solves for a and outputs a set of (possibly multiple) solutions. The oracle Oa is simulated as in G1. The
simulation of O2a is similar and explained in the proof.

which we can rearrange to

(1 + (−1)b1 i − (−1)b2 j)︸ ︷︷ ︸
=:d∈[−1,3]

·a ≡ d− c mod N .

If a does not vanish, i.e., d 6= 0, we can extract one or multiple candidate solutions and check their
correctness. If d = 0, we can simply simulate the oracle correctly by checking whether c = d. Also, note
that in contrast to the above, it is not guaranteed that a solution for the congruence exists because we
cannot assume that the input is a valid DDH tuple. In that case, the oracle outputs 0.

The simulation of the second decision oracle works similarly. Note that on input |y, z〉 the oracle is
supposed to check whether 2a � y = z. Thus, if we get

∣∣y(i,c,b1), z(j,d,b2)
〉
and they indeed form a valid

tuple, then it holds that
(2 + (−1)b1 i − (−1)b2 j)︸ ︷︷ ︸

=:d∈[0,4]

·a ≡ d− c mod N .

We proceed as above. If d 6= 0 and the input forms a valid tuple, we can extract the correct solution. If
no solution exists, then the input cannot be a valid tuple and we output 0. If d = 0, we check whether
c = d and output the corresponding bit.

It remains to reduce G1 to GA-DLOG. That is,

Pr[G1 ⇒ 1] ≤ εC .

We construct a reduction C against GA-DLOG as follows. C gets as input the origin x̃ and a set element
a � x̃ and forwards both to the algebraic adversary A. We simulate quantum queries to the decision
oracles as described before.

At the end of the execution, A will output a solution (y0, y1, y2) along with representations (i0, s0, b0),
(i1, s1, b1) and (i2, s2, b2).

Assuming that A produces a valid solution, namely

y1 = 2a � y0 and y2 = −a � y0 ,

the following two equations hold:

s1 + (−1)b1 i1a ≡ 2a+(−1)b0 i0a+ s0 mod N
s2 + (−1)b2 i2a ≡ −a+(−1)b0 i0a+ s0 mod N

Combining the two equations and solving for a yields(
3− (−1)b1 i1 + (−1)b2 i2

)︸ ︷︷ ︸
=:d∈[1,5]

·a ≡ s1 − s2 mod N .
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A solution to this congruence always exists since the above equation is a consequence of the (assumed)
correctness of A and the prior choice of a. However, there could exist multiple solutions in case d > 1
and gcd(d,N ) divides s1 − s2. Then, we can find the correct one by computing a′ � x̃ for all candidates
a′ and compare it with the challenge. This concludes the proof of Theorem 9. ut
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