
Hull Attacks on the Lattice Isomorphism
Problem?

Léo Ducas1,2 and Shane Gibbons1,2

1 Cryptology Group, CWI, Amsterdam, The Netherlands
firstname.lastname@cwi.nl

2 Mathematical Institute, Leiden University, Leiden, The Netherlands

Abstract. The lattice isomorphism problem (LIP) asks one to find an
isometry between two lattices. It has recently been proposed as a founda-
tion for cryptography in two independent works [Ducas & van Woerden,
EUROCRYPT 2022, Bennett et al. preprint 2021]. This problem is the
lattice variant of the code equivalence problem, on which the notion of
the hull of a code can lead to devastating attacks.
In this work we study the cryptanalytic role of an adaptation of the hull
to the lattice setting, namely, the s-hull. We first show that the s-hull
is not helpful for creating an arithmetic distinguisher. More specifically,
the genus of the s-hull can be efficiently predicted from s and the original
genus and therefore carries no extra information.
However, we also show that the hull can be helpful for geometric attacks:
for certain lattices the minimal distance of the hull is relatively smaller
than that of the original lattice, and this can be exploited. The attack
cost remains exponential, but the constant in the exponent is halved.
This second result gives a counterexample to the general hardness con-
jecture of LIP proposed by Ducas & van Woerden.
Our results suggests that one should be very considerate about the ge-
ometry of hulls when instantiating LIP for cryptography. They also point
to unimodular lattices as attractive options, as they are equal to their
dual and their hulls, leaving only the original lattice to an attacker. Re-
markably, this is already the case in proposed instantiations, namely the
trivial lattice Zn and the Barnes-Wall lattices.

Keywords: Lattice Isomorphism, Hull, Code Equivalence, Graph iso-
morphism, Cryptanalysis.

1 Introduction

The lattice isomorphism problem (LIP) is the problem of finding an isometry
between two lattices, given that such an isometry exists. It has long been a
problem of interest in the geometry of numbers [PP85, PS97, Sch09, SHVvW20],

? © IACR 2023. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on 14th February 2023. The version published by Springer-
Verlag is available at https://doi.org/00.00000/0000000000.

in complexity theory [HR14], and has recently been proposed as a foundation
for cryptography [BGPSD21, DvW22, DPPW22].

The problem can be viewed as the lattice analogue of the code equivalence
problem; a problem that has received significant cryptanalytic attention [Leo82,
Sen00, BOST19, Beu20].

It should be noted that some of those attacks can be devastating for certain
choices of codes; in particular the code equivalence problem is easy for codes
with small or trivial hull [Sen00, BOST19].

The hull of a code is defined as the intersection of the code with its dual.
Critically, taking the hull is equivariant under isometries. The potential relevance
of the hull for lattices was notified by Couvreur and Debris-Alazard, as briefly
mentioned in [DvW22]. Ducas and van Woerden [DvW22] note that while the
näıve hull of an integral lattice L is always itself since L ⊂ L∗, one can more
generally define the s-hull Hs(L) = L ∩ sL∗ for any non-zero rational scaling
factor s ∈ R×. They left any further cryptanalytic consideration to future work.
This work explores precisely that cryptanalytic boulevard.

Prior Attacks on LIP. The algorithms to solve LIP, and its distinguishing ver-
sion ∆LIP, are based on two kinds of invariants [DvW22]. The first kind is an
arithmetic invariant, namely the genus of a lattice or a quadratic form, and is
efficiently computable (given the factorisation of the determinant)[CS13, Ch.
15], but only decide a coarser notion of equivalence. When instantiating ∆LIP,
one must therefore take care to choose two lattices in the same genus; otherwise
∆LIP becomes easy to solve.

The second kind of invariants are geometric invariants: essentially the set
of shortest vectors of that lattice. Once these shortest vectors are found in
both lattices, finding the lattice isomorphism reduces to finding a graph iso-
morphism [SHVvW20], a problem that has long been suspected to be easy,
and was finally proven to be solvable in quasipolynomial time [Bab15]. How-
ever, some lattices may have an exponential number of shortest vectors, which
leads to an exponentially-sized graph resulting in superexponential complexity
exp(nO(1)) in the dimension n in the worst-case. Alternatively, one can use the
quasi-exponential algorithm of Haviv and Regev [HR14], which also resorts to
enumeration of all short vectors up to a rather large radius in both L and its
dual L∗.

Hence, the hardness of LIP essentially appears at least as hard as finding the
shortest vectors in either the primal or the dual, and this hardness varies signifi-
cantly depending on the geometry of the lattice and its dual. This is formulated
as Conjecture 7.1 in [DvW22] for comparing the cryptographic hardness of LIP
over different lattices.

1.1 Contributions

This work is concerned with whether the hull can be helpful in mounting attacks
against LIP (or its distinguishing variant ∆LIP). More specifically, can the hull

2

be used to improve either of the two types of attacks above? Our answer is
negative for the first attack, and positive for the second attack. More specifically:

– In Section 4, we prove that the genus of the s-hull of a lattice L is entirely
determined by s and the genus of L. This means that taking the hull is not
helpful to mount an attack based solely on arithmetic invariants.

– In Section 5, we show that for certain lattices, the s-hull can have a sig-
nificantly different geometry than the original lattice, making finding an
isometry between hulls significantly easier than between the original lattices
(yet still exponential time). We can then reconstruct an isometry between
the original lattices in quasipolynomial time.

Significance. The second contribution (Section 5) directly contradicts the gen-
eral hardness conjecture made by Ducas and van Woerden in [DvW22]. Their
definition of the gap, supposedly driving the hardness of LIP, only considers the
geometry of the lattice L and its dual L∗. The conjecture should be adapted
to include the s-hull of L for all relevant s. This is a rather clean redefinition,
as L and L∗ are themselves s-hulls or a scaling of s-hulls of L for certain s.
This is detailed in our conclusion Section 6, where we prove in particular that,
fortunately, there is only a finite number of relevant values s ∈ R× to consider.

We note that the lattices we consider, which act as a counter-example, are
not necessarily a natural choice for instantiating LIP for cryptographic appli-
cation, but instead they warn that the hull attack can be relevant. This is for-
tunately inconsequential when instantiating LIP with the trivial lattice Zn as
proposed in [BGPSD21, DPPW22] since L = L∗, hence Hs(L) is merely the
scaling lcm(1, s) · L for all s ∈ Q× and Hs(L) is the zero lattice if s 6∈ Q×.

More generally, choosing a unimodular lattice (L = L∗) avoids having to
consider hull attacks. This is in fact the case for (half of) an attractive family of
lattices for LIP-based cryptography; namely the Barnes-Wall lattices with their
associated efficient decoder [MN08].

1.2 Technical Overview

Genus of the Hull. The difficulty of analysing the genus of the hull comes from
the lack of an explicit basis of it given a basis of the original lattice. However,
we note that the dual of the hull can easily be described by a generating set. It
is still possible to define a quadratic form out of such a generating set that is
not a basis, but this quadratic form is only semi-definite. Most of our technical
work lies in a careful extension of the genus theory to semi-definite forms.

A lattice with a better attack via the Hull. Contrary to codes, the hull of an
integer lattice is always full-dimensional, so the problem will not become easier
directly via a reduction in the dimension. However, it might be possible to make
its geometry weaker.

To do so, we consider construction A over a random code of length n and
rate 1/2 (i.e. a random p-ary lattice with n/2 equations). Because the hull of

3

such a code is typically trivial (i.e. empty), the hull of the associated lattice is
also “trivial”, namely it is pZn. Such a lattice has a minimal distance Θ(

√
n)

smaller than Minkowski’s bound, and is therefore heuristically easier for LIP
than a random lattice. On the contrary the lattice itself (and its dual), being
random, are close to Minkowski’s bound.

This gives a lattice for which LIP is significantly easier in the hull than the
original lattice: according to heuristics and experiments [DPPW22], an SVP or-
acle with dimension n/2 + o(n) suffices. Although this only solves LIP for the
hull, which differs from the original lattice, this is still helpful. The automor-
phism group of Zn is the group of signed permutations, that is, the orthonormal
transformations corresponding to permuting basis vectors and swapping them
with their negatives. All that remains to be recovered is an isomorphism that
is a signed permutation with respect to the canonical basis of Zn. This leftover
problem reduces to a signed permutation equivalence problem on the underlying
code we started with. Finally, since the hull of that code was trivial to start
with, this instance of the signed permutation equivalence problem is solvable
in quasipolynomial time in n by an adaptation of the algorithm of Bardet et
al. [BOST19].

2 Preliminaries

2.1 Lattices and Codes

A lattice L is a discrete additive subgroup of Rn, with inner product given by
the usual dot product or Euclidean inner product 〈 · , · 〉, that is

〈 (x1, . . . , xn) , (y1, . . . , yn) 〉 = (x1, . . . , xn) · (y1, . . . , yn) =
∑

1≤i≤n

xiyi.

A set of linearly independent column vectors B = (b0, b1, . . . , bm−1) such that
L = BZm is a basis of L. Such a lattice then has rank m. The determinant of
the lattice with basis B is

det(L) =
√

det(BTB).

This value is independent of the choice of basis. The dual L∗ of a lattice L is
then defined as

L∗ := {x ∈ span(L) : 〈x, L〉 ⊆ Z}.

For a basis B of a lattice L, the dual of this basis can be defined as the pseu-
doinverse

B∗ := BTleft inverse = B(BTB)−1. (1)

Importantly, the dual of B is a basis of the dual lattice.

Lemma 1. Let L ⊆ Rn be a full rank lattice with basis B and dual L∗. The
following are equivalent:

4

1. the lattice satisfies L ⊆ L∗,
2. for all x, y ∈ L, 〈x, y〉 ∈ Z,
3. the matrix BTB has integer coefficients,.

Proof. 1 =⇒ 2: Let x, y ∈ L. Then by 1, x, y ∈ L∗, so 〈x, y〉 = 〈y, x〉 ∈ Z.
2 =⇒ 3: Consider the i, j coefficient in BTB. This is the inner product of basis
vector i with basis vector j. By 2, this inner product is an integer.
3 =⇒ 1: Every lattice point can be written in the form Bz for some z ∈ Zn.
Let x = Bz ∈ L. Then for any y = Bw ∈ L, 〈x, y〉 = zTBTBw ∈ Z, since BTB,
z and w have integer coefficients. Thus x ∈ L∗. ut

Definition 1. A lattice that meets the conditions of Lemma 1 is called an inte-
gral lattice3.

By Lemma 1, integrality is independent of the choice of basis, and so every basis
B of the lattice has the condition that BTB has integer coefficients.

Lemma 2. Let L be a full rank integral lattice with basis B. Then

det(BTB)L∗ ⊆ L

Proof. Let B∗ = (B−1)T be a dual basis of L, and set Q := BTB. By Lemma
1, Q has integer coefficients, and thus has adjugate adj(Q) = det(Q)Q−1 with
integer coefficients.

adj(Q)B = det(Q)Q−1B = det(Q)(B−1)TB−1B = det(Q)(B−1)T = det(Q)B∗

This means MB = det(Q)B∗ for an integer matrix M ∈ Zn×n, and thus the
lattice generated by B contains the lattice generated by det(Q)B∗. ut

Definition 2. An integral lattice with unit determinant is called a unimodular
lattice.

A consequence of Lemmas 1 and 2 is that a lattice is unimodular if and only if
it satisfies L = L∗.

A particular class of integral lattices of interest are q-ary lattices, namely
lattices L such that

qZn ⊆ L ⊆ Zn,

for some q ∈ Z. Such a lattice can be written in many ways. Two useful formu-
lations that we will require later on are the following.

Definition 3. Let 0 < m ≤ n be integers, q ∈ Z and A ∈ Zn×m an integer
matrix. Define the parity check lattice

Λ⊥q (A) = {x ∈ Zn : Ax = 0 mod q} .

Define also
Λq(A) = AZm + qZn.

3 Not to be confused with an integer lattice. Every integer lattice is integral, but the
converse is not true.

5

When q is prime, such lattices correspond to the so-called Construction A over
a code [COC+17].

Definition 4. Let q be a prime power. An [n, k]q linear code is a k-dimensional
vector subspace C ⊆ Fnq . If G ∈ Fn×kq is full rank such that C = GFkq , then G is

a generator matrix for C. The dual C⊥ of the code C is the [n, n − k]q linear
subspace C⊥ ⊆ Fnq given by:

C⊥ :=
{
y ∈ Fnq : y · x = 0 ∀x ∈ C

}
.

A generator matrix for the dual is called a parity check matrix and is usually
given the symbol H.

Note that the correspondence with lattices only works for p-ary codes for primes
p, since we must include the elements of C in Zn. This is not possible with
elements of Fnq .

Definition 5 (Construction A). Let p be a prime, n > 0 an integer, and let
C be a linear code in Fnp . If π : Zn → Fnp is the coordinate-wise projection modulo
p, the Construction A lattice of C is

Lp(C) = π−1[C].

This can also be defined as

Lp(C) = ι(C) + pZn.

ι : Fnp → Zn is the obvious inclusion of elements in Fp into the integers.

By abuse of notation, we will leave out the map ι, and simply write our lattices
as C + pZn. It can be easily shown that Lp(C) and Lp(C

⊥) are the dual of one
another, up to a p-scaling. That is,

C⊥ + pZn = p (C + pZ)
∗
,

and as a consequence of duality,

C + pZn = p
(
C⊥ + pZn

)∗
.

This paper is concerned with deciding whether two lattices are isomorphic,
and if so, finding the isomorphism.

Definition 6 (Lattice Isomorphism). Two lattices L, L′ ⊆ Rn are said to
be isomorphic if there exists some orthonormal transformation O ∈ On(R) such
that

L′ = O · L.

Such an orthonormal O ∈ On(R) is sometimes called an isometry.

6

Computationally, we work in terms of bases of lattices, instead of L itself. A lat-
tice of rank greater than 1 has infinitely many bases, which differ by unimodular
basis transformations. That is, two bases B, B′ ∈ Rn×m generate isomorphic
lattices if there exists some orthonormal transformation O ∈ On(R) and some
unimodular U ∈ GLm(Z) such that

B′ = OBU.

Two computational problems arise from the idea of isomorphism. Informally,
Definition 7 below is about deciding whether two given bases generate isomorphic
lattices. Definition 8 is about finding the isomorphism, if it exists.

Definition 7 (Decision-LIP). Given two bases B, B′ ∈ Rn×m, decide whether
there exists an isometry O ∈ On(R) and a change-of-basis U ∈ GLm(Z) such
that

B′ = OBU.

Definition 8 (Search-LIP). Given two bases B, B′ ∈ Rn×m that generate
isomorphic lattices, find O ∈ On(R) and U ∈ GLm(Z) such that

B′ = OBU.

We usually call this second problem LIP instead of search-LIP. Finally, we will
use the shorthand ZLIP for instances of LIP on lattices isomorphic to the lattice
Zn.

Similar notions exist for codes. Instead of isomorphism, in coding theory we
consider whether two codes are “equivalent” or not, with finer and coarser forms
of equivalence, each of which are isometries with respect to the Hamming metric.

Definition 9 (Linear Code Equivalence). Two linear [n, k]q codes
C, C ′ ⊆ Fnq are said to be linearly equivalent (sometimes just “code equivalent”)
if there exists an n-permutation σ ∈ Sn and (a1, a2, . . . , an) ∈ (F×q)n such that

C ′ =
{

(a1xσ−1(1), a2xσ−1(2), . . . , anxσ−1(n)) : (x1, x2, . . . , xn) ∈ C
}
.

Equivalently, C and C ′ are linearly equivalent if there exists a permutation matrix
P and an n× n diagonal matrix D with non-zero diagonal entries such that

C ′ = DPC.

A matrix of the form DP is called a monomial matrix, and has one non-zero
entry on each row and column.

If we restrict a1, a2, . . . , an ∈ F×q to be only ±1, then the codes are said to be
signed permutation equivalent.

If we further restrict a1, a2, . . . , an ∈ F×q to be all 1, then the codes are said
to be permutation equivalent.

7

Permutation equivalence is a finer type of equivalence than linear equivalence.
Somewhere between these two types of equivalence is signed permutation equiva-
lence. When char(Fq) 6= 2, this is strictly coarser than permutation equivalence,
and when Fq 6= F2,F3 it is strictly finer than linear equivalence. For complete-
ness, we gave the definitions for q a power of a prime, but for our purposes, we
will only allow q to be a prime, p.

Definition 10 (CEP, SPEP, PEP). The Code Equivalence Problem (CEP)/
Signed Permutation Equivalence Problem (SPEP)/ Permutation Equivalence
Problem (PEP) is the problem of, given two linear codes C, C ′ that are lin-
early/signed permutation/permutation equivalent, finding the matrices P and D
such that C ′ = DPC.

Note that for SPEP, D has coefficients equal to ±1, while for PEP, D is
forced to be the identity matrix.

Many approaches to solving CEP, PEP or SPEP depend on the dimension
of a certain subcode called the hull. We later provide a natural generalisation of
this to lattices, and relate the hull of the Construction A lattice to the hull of
the original code.

Definition 11. Let C be an [n, k]q linear code with [n, n− k]q-linear dual C⊥.
The hull of the code C is the linear subspace

H(C) = C ∩ C⊥.

If the code C has generator matrix G, and parity check matrix H, then the hull
of C is the kernel of [

G
∣∣H] .

Knowing that the hull of a code can be useful for code equivalence, it is natural
to want to define the hull of a lattice in the same way, with the intention of using
it for LIP. But immediately we find that if we define the hull exactly the same
way we get no extra information. The dual L∗ of an integral lattice L contains
the original lattice L, so

L ∩ L∗ = L. (2)

We therefore adjust the definition of the hull in a natural way. We scale the
dual before taking the intersection, since scaling is a linear transformation that
is equivariant under the action of On(R). This maintains the property of the
hull that we want to exploit: that the geometry of the hull is equivariant under
isometries.

Definition 12 (s-Hull). For s ∈ R×, the s-hull of a lattice L is defined as the
sublattice

Hs(L) = L ∩ sL∗. (3)

We will see later that when L is an integral lattice, the hull is {0} when s 6∈ Q×.
The following lemma will later be helpful to decide which s ∈ R× give non-zero
hulls

8

Lemma 3. Let L be a full rank integral lattice with basis B and Gram matrix
Q = BTB. Then for any s ∈ R×, the s-hull of L is given by:

Hs(L) = {h ∈ L : 〈h, L〉 ⊆ sZ} . (4)

Furthermore, if s ∈ Z, then
Hs = BΛ⊥s (Q). (5)

Proof. Let L be such a lattice, with basis B and let s ∈ R×. Let h ∈ Hs(L). By
definition, h ∈ L and h = sx for some x ∈ L∗. Equivalently,

h/s ∈ L∗ ⇐⇒ 〈h/s, L〉 ⊆ Z ⇐⇒ 〈h, L〉 ⊆ sZ.

And thus
Hs(L) = {h ∈ L : 〈h, L〉 ⊆ sZ} .

Any h ∈ L can be written Bx for some x ∈ Zn. So we have

Hs(L) = {Bx : x ∈ Zn, 〈Bx,L〉 ⊆ sZ}
=
{
Bx : x ∈ Zn, xTBTBx ∈ sZn

}
.

If s is an integer then we can write the right hand side concisely as

=
{
Bx : x ∈ Λ⊥s (BTB)

}
= BΛ⊥s (Q).

ut

In Section 2.5, after we have introduced the p-adic numbers, we will show that
for integral lattices, only integer values of s that divide det(Q) are useful for our
attack.

The p-hull of a Construction A lattice relates to the hull of an Fp code in
a simple way. Note that the hull of a lattice does not have a smaller dimension
than the original lattice, while the hull of a code often does. However, the hull
of a lattice usually has a larger determinant.

Lemma 4. Let C be an [n, k]p code in Fnp for some prime p, and let
L = Lp(C) = C + pZn. Then

Hp(L) = H(C) + pZn. (6)

This is an immediate consequence of the definitions above. Thus, not only do we
have a correspondence between p-ary lattices and Fp codes, but we also have a
correspondence between their hulls.

The relative hardness of equivalence problems is well studied. For example,
[BOST19] show that when the hull of a code is trivial, PEP can be reduced
to the graph isomorphism problem, which is solvable in quasipolynomial time
[Bab15].

9

The support splitting algorithm (SSA) by Sendrier [Sen00] can efficiently find
the permutation between two codes C, C ′ when the hull has small dimension.
It relies on the fact that the weight enumerator of a code (similar to the theta
series of a lattice) is invariant up to permutation, and is easy to calculate when
the dimension of the code is small.

Finally, note that the hull of a random code is trivial with high probability
[Sen00], and therefore via (6) the p-hull of a random p-ary lattice is equal to
pZn with high probability. When this is the case, the above results about code
equivalence allow us to exploit the code-lattice correspondence for LIP.

2.2 Quadratic Forms

Definition 13. Let Q be an n×n symmetric matrix over a ring R. The quadratic
form defined by the matrix Q is the map qQ : Rn → R given by

x 7→ xTQx.

If R ⊆ R, then such a form is called positive definite if for all x ∈ Rn \ {0} we
have qQ(x) > 0. An integral quadratic form is a quadratic form over Z.

Definition 14 (Equivalence of Quadratic Forms). Let q1, q2 be quadratic
forms of dimension n over a ring R. Then q1 is equivalent to q2 over R, written
q1 ∼R q2 (or just q1 ∼ q2 if the ring is clear from context), if there exists a
matrix H ∈ GLn(R) such that for all x ∈ Rn,

q1(x) = q2(Hx).

Given two symmetric n × n matrices Q1 and Q2, the corresponding quadratic
forms are equivalent over R, written Q1 ∼R Q2 if and only if there exists a
H ∈ GLn(R) such that

Q1 = HTQ2H.

Definition 15 (Corresponding Quadratic Form). A lattice with a basis
B ∈ Rn×n has a corresponding quadratic form, whose defining matrix is given
by BTB.

Quadratic forms are more convenient to handle than lattices, because we can
avoid computation with real valued elements of On(R). Note that two isomorphic
lattices with bases B,B′ with B = OB′ for some O ∈ On(R) give the same
quadratic form:

BTB = (OB′)TOB′ = B′TOTOB′ = B′TB′.

If we consider equivalence over quadratic forms instead, we retain all geometric
information and neglect any specific embedding of the lattice. Therefore, we
often use ‘lattice’ and ‘quadratic form’ interchangeably, even though there is
no bijection between the two. Definition 14 with H ∈ GLn(Z) lead us to the
following lemma.

Lemma 5. Let L,L′ be two lattices in Rn. Then L,L′ are isomorphic if and
only if they have corresponding quadratic forms that are equivalent over Z.

10

2.3 The p-adic Numbers

The real numbers R are the completion of Q with respect to the usual absolute-
value | · |∞ : R→ R≥0. That is to say, every Cauchy sequence in Q converges to
an element of R. If we define another valuation on Q, then we may get another
inequivalent completion. For any prime p ∈ Z≥0, one can construct the p-adic
valuation:

| · |p : Q→ R≥0
x 7→ p−c

where c ∈ Z is such that x = pc ab , and a and b are coprime to p. By convention,
| 0 |p = 0 (but this also follows intuitively from the fact that pn | 0 for all n ∈ N).

Definition 16 (p-adic Numbers). The completion of Q with respect to the
p-adic absolute value is called the p-adic numbers (or p-adic rationals), denoted
Qp.

Qp ∼=

{ ∞∑
r=−∞

arp
r : 0 ≤ ar < p, ar 6= 0 for finitely many negative indices r

}
.

These sums always converge with respect to the p-adic absolute value. Addition
and multiplication are defined in the natural way: for example, if p = 2, any
element of Q2 can be expressed as an infinite binary expansion to the left, with
the usual rules for adding and multiplying. The completion Qp is a field, and
has a ring of integers Zp.

Zp ∼=

{ ∞∑
r=0

arp
r : 0 ≤ ar < p

}
=
{
a0 + a1p

1 + a2p
2 + . . . : 0 ≤ ar < p

}
.

The units of the ring of integers Z×p are those with non-zero a0. This type of
construction is an example of a local field. Arithmetic in Qp or Zp is said to
happen locally at the prime p. Note that there is a canonical inclusion Z ↪→ Zp,
and Q ↪→ Qp, which maps an integer or rational number to its (finite) base-p
expansion.

Definition 17 (p-Part, p-Prime-Part, Valuation). Let p be a prime, and
let α ∈ Qp. Then α can be written in the form

α = psβ

for some s ∈ Z and β coprime to p. The p-part of α is ps, while the p-prime-part
of α is β. The p-adic order or valuation of α is s.

11

Definition 18. The Legendre symbol at an odd prime p,
(
·
p

)
: Z → {0,±1}

is given by

(
n

p

)
=

0 if p | n
1 if ∃ a ∈ F∗p such that a2 = n mod p

−1 if @ a ∈ F∗p such that a2 = n mod p.

The Legendre symbol is not defined at p = 2; instead there is an analogous
symbol that we will use later.

Definition 19. The Kronecker symbol
(·
2

)
: Z→ {0,±1} is given by

(n
2

)
:=

0 if n is even,

1 if n ≡ ±1 mod 8,

−1 if n ≡ ±3 mod 8.

2.4 Genus Symbol

Definition 20 (Genus). Two quadratic forms Q1 and Q2 lie in the same genus
if they are equivalent over R and over the p-adic integers Zp for all primes p.

The genus is coarser than the integer equivalence class of a quadratic form (i.e.
Definition 14 with R = Z). Locally, we may consider the equivalence class of
a quadratic form at a single prime p. The Jordan decomposition of a quadratic
form f at a prime p is defined as follows. For any odd finite prime p, an integer
quadratic form is equivalent over Zp to a direct sum:

f = f1 ⊕ pfp ⊕ p2fp2 ⊕ . . . , (7)

where each fpi is a quadratic form over the p-adic integers and whose determinant
is not divisible by p. The Jordan decomposition at −1 is the decomposition

f = f1 ⊕ (−1)f−1,

where both f1 and f−1 are positive definite.4

Quadratic forms corresponding to lattices are always postivie definite, and
so they are always equivalent over R. This is because for any basis B, and any
non-zero x ∈ Rn, the quadratic form BTB has the condition that
xTBTBx = ‖Bx‖2 > 0.

The Jordan decomposition at p = 2 is a direct sum of blocks of the form(
qx
)
, or

(
qa qb
qb qc

)
4 Here, −1 is the preferred notation for the infinite prime or ∞. As Conway and

Sloane say in [CS13], ‘Unfortunately the pernicious habit has grown up of calling
them “infinite primes” instead. [...] the unconventional name −1 made things so
much more simple that its omission would be indefensible.’

12

with x, b, ac−b2 coprime to 2, and a, c divisible by 2. If the elements in the main
diagonal of a block are all divisible by 2, then it is called type II. If there is at
least one element coprime to 2 in the main diagonal, then it is called type I,
and the block has another invariant called the oddity relating to its trace. This
diagonalisation is not unique, since different combinations of type I and type II
submatrices can represent the same quadratic form. What is unique, however,
is a canonical symbol representing the quadratic form, which we briefly discuss
later.

For all p, the Jordan decomposition has an associated p-adic symbol, and any
two forms with the same p-adic symbol are equivalent over Zp[O’M71, Cas78].

Definition 21 (Genus Symbol). For p 6= 2, the symbol at p of a quadratic
form with Jordan decomposition

f = f1 ⊕ pfp ⊕ p2fp2 ⊕ . . .⊕ prfpr ,

is the sequence

1ε0n0 , pε1n1 , (p2)ε2n2 , . . . , (pr)εrnr

where εq =
(

det fq
p

)
and nq = dim fq for each q a power of p

If any of these terms have dimension zero, they are not included in the symbol
(e.g. if there is no f1 component in the decomposition, then n0 = 0 and we omit
1ε0n0). Two quadratic forms are equivalent over Zp for an odd p if and only if
they have the same genus symbol at p [O’M71, Cas78].

The same is not fully true for p = 2. The symbol at p = 2 is more complicated
to define, but we know sufficient and necessary conditions for two forms to be
equivalent over Z2[O’M71, CS13].To any quadratic form f over Z2, one can
associate an oddity, which is an integer modulo 8. We refer to [CS13, Chapter 15,
5.1] for the definition and the properties that we need. Suppose f has Jordan
decomposition

f = f1 ⊕ 2f2 ⊕ 4f4 ⊕ . . .⊕ 2rf2r .

The sign εq of fq is the Kronecker symbol
(

det(fq)
2

)
∈ {±1}. To such a Jor-

dan decomposition one associates a genus symbol depending on the dimension,
sign, type and oddity of each fq. A form over Z2 may have multiple Jordan
decompositions with different signs and oddities of the fq. Still, one may attach
a canonical symbol to each form in such a way that two forms are equivalent
over Z2 if and only if their canonical symbols agree. For a complete description
of the canonical symbol, see [CS13, Chapter 15, 7.3–7.6].

Finally, we note here that “computing the genus” of Q really amounts to com-
puting the genus symbol at each prime dividing 2 det(Q). For any prime, com-
puting with Zp can be seen as computing in Z/pkZ, where k = ordp(det(Q)) + 1
[DH14]. In particular, computing the genus symbol at p can be done in time
polynomial in n, log(det(Q)), ordp(det(Q)), and log(p). There still remains the
matter of factorising 2 det(Q).

13

2.5 Relevant Values of s for the s-Hull

In this section, we reduce the amount of values of s ∈ R× that can give a different
s-hull attack. That is, we find a finite set of representatives S ⊂ R such that
every s-hull is a scaling of Ht(L) for some t ∈ S. Recall from Lemma 3 that the
s-hull can be written as

Hs(L) = {h ∈ L : 〈h, L〉 ⊆ sZ} , (8)

and when s is an integer, it can be written as

Hs(L) = BΛ⊥s (BTB). (9)

In particular, for an integral lattice this means that only rational values of s are

relevant. Otherwise, 〈h,λ〉s would never be an integer for λ ∈ Λ, so the hull would
be {0}. Furthermore, if s = a/b ∈ Q×, then Hs(L) = Ha(L). This can be seen
by noting that for all h = Bx ∈ Hs(L), xTBTBx = v for some v ∈ Zn. Equation
(8) tells us that v = (a/b)u for some u ∈ Zn, and a, b are coprime, we must have
that b | ui for all ui ∈ u. Therefore, v ∈ aZn. So we need only consider integer
values of s.

The set of integers is still a countably infinite set, but below we see that in
general, an s-hull is a scaling of the s′-hull for some s′ that divides det(Q). In
geometric terms, there are only finitely many different hulls. The below lemma
shows that we do not need to consider the factors of s that are coprime to det(Q).

Lemma 6. Let L be a full rank integral lattice with basis B ∈ Rn×m and cor-
responding quadratic form Q = BTB ∈ Zm×m. For any nonzero s ∈ Z, let
s = s′s′′, where s′, s′′ ∈ Z and s′′ is coprime to det(Q). Then

Hs(L) = s′′Hs′(L).

Proof. Let s = s′s′′ be as above. Using Equation (9), we know Hs(L) = BΛ⊥s (Q).
Now, Λ⊥s (Q) = {x ∈ Zn : Qx = 0 mod s}. Since s′, s′′ are coprime, a solution
x to equation Qx = 0 mod s must be a solution modulo s′ and modulo s′′ also.
Since Q is full rank modulo s′′, the only solution is x = 0 mod s′′. Via the
Chinese remainder theorem,

Λ⊥s (Q) = {x ∈ Zn : Qx = 0 mod s}
= {s′′x ∈ Zn : Qx = 0 mod s′}
= s′′Λ⊥s′(Q),

and the result follows. ut

The above result now means that if det(Q) = pe11 . . . perr for some primes pi
and exponents, then all s-hulls are either {0} or a scaling of a t-hull where t is
a product of the pi’s to any exponent. Finally, we can show that an s-hull for
some s - det(Q) is simply a scaling of one of the s′-hulls for some s′ | det(Q).

14

Lemma 7. Let L be a integral lattice with basis B and corresponding quadratic
form Q = BTB. For any nonzero s ∈ Z, and any prime p, let s = qpk+r for
some integer q, where k is the largest power of p dividing det(Q), and r an
integer greater than or equal to 0. Then

Hs(L) = prHqpk(L). (10)

Proof. Via the Chinese remainder theorem, we need only show that this is true
for s = pk+r. This is equivalent to showing Λ⊥pk+r (Q) = prΛ⊥pk(Q), via Equation

(9). It can be shown that Λ⊥pt(Q) = pt(Λpt(Q)∗), for any t. Thus taking the dual
of both lattices means that instead of Equation (10) we equivalently want to
show

Λpk+r (Q) = Λpk(Q). (11)

The inclusion ⊆ is immediate from the definition of the q-ary lattices. The reverse
inclusion is proven by showing pkZm ⊆ Λpk+r (Q) = QZm+pk+rZm. That is, for
every Y ∈ Zm, there exists a solution X ∈ Z/pk+rZ to

QX = pkY mod pk+r. (12)

Consider the equation in Qp, the p-adic numbers. Then

Q−1 ∈ 1

det(Q)
Zm×mp =

1

pk
Zm×mp .

The second equality is because the p-prime part of det(Q) is a unit in Zp. So set
Q−1 = p−kQ′−1 for some Q′ ∈ Zm×mp . Let X := Q′Y ∈ Zp. Reducing modulo

pk+r gives a solution to Equation (12) ut

Corollary 1. Let m > 0 and A ∈ Zm×m be a square matrix with non-zero
determinant. Then for any prime p, there exists some k ≤ ordp(det(A)) such
that

Λpr (A) = Λpk(A)

for all r ≥ k.

The above discussion, particularly Lemmas 6 and 7 say that any s-hull is either
{0} or a scaling of a t-hull for some integer t | det(Q). In summary, we have the
following lemma.

Lemma 8. Let L be a integral lattice with basis B and corresponding quadratic
form Q = BTB, and let s ∈ R×. Denote the s-hull of L by Hs(L).

1. If s is irrational, then Hs(L) = {0}.
2. If s = a/b ∈ Q, then Hs(L) = Ha(L).

3. If s = rt ∈ Z, where t ∈ Z is the largest over all factorisations of s such that
t | det(Q), then Hs(L) = rHt(L).

15

3 Extensions of the Definition of the Genus

The genus is well-defined for integral lattices. We would like a more generalised
version of this for rational quadratic forms and even for semidefinite forms.
Semidefinite forms arise when we consider a generating set of a lattice rather
than a basis. This will be useful when calculating the genus of the hull of a
lattice. The concept of equivalence over Zp is still valid when the entries are
elements of Qp, similar to how Z-equivalence is still relevant to quadratic forms
with rational coefficients. We therefore provide a natural extension of the genus
definition above, which applies to quadratic forms over Q (and Qp). Consider two
rational quadratic forms Q,Q′ that are equivalent over Zp. Then ∃H ∈ GLn(Zp)
such that

HTQH = Q′.

Any scaling λQ, λQ′, with non-zero λ ∈ Q are also equivalent via the same
H. This motivates the following definition of the genus symbol of a rational
quadratic form. The difference is that we only need to multiply by the p-part
of a least common multiple (LCM) of the denominators, ensuring that λQ has
coefficients in Zp.

Definition 22 (Genus Symbol for Rational Forms). For p 6= 2, let f be a
positive definite rational quadratic form and let λ = ps be the p-part of the LCM
of the denominators of the coefficients in f . If λf has Jordan decomposition

λf = f1 ⊕ pfp ⊕ p2fp2 ⊕ . . .⊕ prfpr ,

and genus symbol

1ε0n0 , pε1n1 , (p2)ε2n2 , . . . , (pr)εrnr ,

then the symbol at p of f is

(p−s)ε0n0 , (p1−s)ε1n1 , (p2−s)ε2n2 , . . . , (pr−s)εrnr .

This is consistent with the original definition of the genus symbol at p when f
has coefficients in Z. In that case, λ = 1.

The effect on the symbol at 2 is the same for the sign, dimension, and powers
of p, however the oddity and type of each fi would remain the same. This is
because these last two values are independent of the powers of 2 in the decom-
position. We do not include an explicit definition of the symbol here, because
for our purposes, we only need the fact that the quadratic forms are equivalent
over Z2, not necessarily their genus symbols.

Next we define an equivalence relation that allows us to augment the genus
symbol further to include semi-definite forms.

Definition 23. Define the equivalence relation ≡ of quadratic forms as follows.
Let Q be a semidefinite symmetric matrix. Then

Q ≡
(
Q 0
0 0

)
and

(
Q 0
0 0

)
≡ Q (13)

16

where the larger matrix is the square block matrix consisting of Q and a zero row
and zero column.

In particular, this means that a quadratic form Q is equivalent via ≡ to the
same quadratic form with any number of zero rows and zero columns added on
(so long as the matrix remains square). This is not too drastic, since integral
quadratic forms can also be written in terms of polynomials. If (Qij)1≤i,j≤n is a
quadratic form, the corresponding polynomial in n variables is∑

1≤i,j≤n

QijXiXj .

Including zero-rows and zero-columns to the matrix Q amounts to adding extra
variables to this sum whose coefficients are always zero. This does not change
the polynomial itself, only the number of variables in the polynomial. The above
equivalence essentially says that quadratic forms whose polynomials are equal
but with different numbers of variables are equivalent.

The following definition combines ≡ and ∼ into one type of equivalence.

Definition 24. Let R be an integral domain with field of fractions F . Let Q1

and Q2 be two symmetric semidefinite n×n matrices with coefficients in F such
that

Q1 ∼
(
Q′1 0
0 0

)
and

Q2 ∼
(
Q′2 0
0 0

)
,

where Q′1, Q
′
2 are positive definite of rank m and the 0 blocks are size (n−m)×m,

(n −m) × (n −m) and m × (n −m) as required. The corresponding quadratic
forms are equivalent over R, written Q1

∼= Q2, when there exists H ∈ GLm(R)
such that

Q′1 = HTQ′2H.

Proposition 1. Let Q, Q′, S, S′, be quadratic forms such that Q ≡ S and
Q′ ≡ S′ where Q, Q′ have the same dimension and S, S′ have the same dimen-
sion. Then Q ∼ Q′ if and only if S ∼ S′.

Informally, in the following diagram we want to show that when Q, Q′ have
the same dimension, S ∼ S′ if and only if Q ∼ Q′, where S, S′ are the result of
adding the same number of zero-rows and zero-columns to Q,Q′, respectively.

Q S

Q′ S′

≡

∼
∼= ∼

≡

17

Proof. Let Q,Q′ be n × n positive definite symmetric matrices. The positive
definiteness assumption is without loss of generality since for any symmetric
semidefinite matrices, A,B,C, equivalence means A ≡ B and B ≡ C implies
A ≡ C. Graphically, the equivalence looks like this:

Q

(
Q 0n×1

01×n 01×1

)

(
Q 0n×k

0k×n 0k×k

)

≡

≡
≡

We also know by assumption that S ∼ T :=

(
Q 0
0 0

)
and S′ ∼ T ′ :=

(
Q′ 0
0 0

)
,

where the 0’s are zero matrices of size n× k, k×n, and k× k, ensuring S and S′

are square. This is by definition of the equivalence ∼. If Q and Q′ are equivalent

via some U , then T, T ′ are equivalent via

(
U 0
0 Ik

)
, and therefore S ∼ S′.

For the other direction, assume that S ∼ S′. Then T ∼ T ′, and there exists
some unimodular matrix U such that UTTU = T ′. Let

U :=

(
U1 U2

U3 U4

)
,

where the U1 is size n×n, U2 is size n× k, U3 is size k×n, and U4 is size k× k.
Then we have (

UT1 QU1 U
T
1 QU2

UT2 QU1 U
T
2 QU2

)
=

(
Q′ 0
0 0

)
.

BecauseQ is positive definite, U2 is the zero matrix. Since det(U) = det(U1) det(U4)
is a unit, then det(U1) is a unit, and U1 is unimodular. ut

Finally, a fact that we use in Section 4 is that if Q ∼ Q′ via the action of
some H ∈ GLn(R), then Q−1 ∼ Q′−1 via the action of H−T ∈ GLn(R). Thus
the genus of the dual of a lattice is decided by the genus of the primal lattice,
and vice versa.

4 The Genus of the Hull

The below proposition can be summed up by saying that knowing the genus of
the s-hull of a lattice L does not provide any more information than knowing s
and the genus of L. Equivalently, the s-hull of two lattices are equivalent over
Zp if the original lattices are equivalent over Zp.

18

Proposition 2. Let L and L′ be two integral lattices admitting respective quadratic
forms Q, Q′ ∈ Zm×m that are equivalent over Zp, via some transformation

UTQU = Q′.

Then any quadratic forms corresponding to the s-hulls of these lattices, QH and
QH′ , are also equivalent over Zp.

Proof. Let s = αpv for some α coprime to p. Then, when considered as a lattice
over Zp, sL∗ = pv(αL∗) = pvL∗. So without loss of generality5, let s = pv for
some non-negative v. Let Hs be the s-hull of L. A convenient path when dealing
with intersections is to note that for two lattices, the sum of their duals is the
dual of their intersection. Applying this principle to Equation (3), we get that
the dual of the s-hull can be written as

H∗s = L∗ + (sL∗)∗

= L∗ +
1

s
L.

Thus H∗s has a column-wise generating set

1

s

(
B sB∗

)
,

which has corresponding quadratic form

QH∗ =
1

s2

(
BTB sI
sI s2(B∗TB∗)

)
. (14)

For ease of notation, let Q = BTB, Q−1 = B∗TB∗ = (BTB)−1. Thus

QH∗ =
1

s2

(
Q sI
sI s2Q−1

)
.

The same is true for L′, the dual of whose s-hull has quadratic form given by

Q′H∗ =
1

s2

(
Q′ sI
sI s2Q′−1

)
.

Now, let U be the unimodular transform in Zp such that

UTQU = Q′.

Let Û :=

(
UT 0
0 U−1

)
, which is unimodular in Zp. One can verify that

ÛQH∗Û
T = Q′H∗ ,

which is the required result. ut
5 In general, if L = B ·Rm is a lattice, then αL = L when α is a unit in R.

19

The matrix Up ∈ Zm×mp which sends a basis of the hull of L to the same for
L′ can be found in the following manner. The generating set of H∗s we saw above
differs by a unimodular transformation to a basis (BM)∗ of H∗s , where M is a
basis of Λ⊥s (Q). The same is true for (H ′s)

∗. The quadratic forms of the generating
sets of the duals differ by the matrix Û from the proof. Combining these three
transformations in the correct order gives us the matrix U that satisfies

UT
(

(BM)∗ 0
0 0

)
U =

(
(B′M ′)∗ 0

0 0

)
.

Since BM and B′M ′ are full rank, n× n matrices, this forces the top-left n× n
submatrix of U , which we may call U1, to satisfy

UT1 (BM)∗U1 = (B′M ′)∗.

Thus Up = U−T1 .

5 A Lattice with a Better Attack via the Hull

This section demonstrates how the hull attack can be useful on certain types
of lattice. This is ultimately acts as a counterexample to [DvW22, Conjecture
7.1] (Conjecture 1 below). They compare the length of the shortest vectors in
the lattice to the expected length of a shortest vector in a random lattice of the
same volume, i.e. the Gaussian heuristic.

gh(L) := det(L)
1/n · 1√

π
· Γ (1 + n/2)1/n ≈ det(L)

1/n ·
√

n

2πe
.

The first minimum of L and its dual L∗ are both expected to be near the expected
length of a shortest vector in a random lattice of the same dimension n.

Since LIP attacks can also be launched in the dual, they define the quantity

gap(L) = max

{
gh(L)

λ1(L)
,

gh(L∗)

λ1(L∗)

}
as driving the hardness of attacks. A gap of 1 means that LIP is essentially as
hard as solving SVP in a random lattice with the same dimension as n; larger
gaps allow one to resort to the BKZ algorithm, and only solve SVP in dimension
β < n. Using our notation, the conjecture is as follows.

Conjecture 1. For any two lattices L0, L1 admitting quadratic forms Q0, Q1 in
the same genus, and 1 ≤ gap(Li) ≤ f , the best attack against an instance of
∆LIP with L and L′ requires solving f -approx-SVP for both L0 and L1.

In this statement, f is not quantified, but an existence quantification would
be vacuously satisfied by any sufficiently large f . Indeed, this conjecture is mo-
tivated by attacks that solve f -SVP with f = min{gap(Li)}. We therefore take

f = min{gap(L0), gap(L1)}

20

as their original estimate for hardness.
Choose parameters p, n, k. Let C be a random, rate 1/2, p-ary code of length

n. Then let L = C + pZn be the Construction A lattice associated to this code.
Direct LIP attacks based on SVP on lattices such as these (or their duals) cost
20.292n+o(n) [BDGL16]. But with high probability, the p-hull of such a lattice is
pZn. An instance of ZLIP can be solved using the Blockwise Korkine Zolotarev
(BKZ) algorithm with block size β = n/2 + o(n) [DvW22, DPPW22], in time
20.292β+o(β) = 20.292n/2+o(n) [BDGL16]. Section 5.1 tells us that for lattices with
trivial hull, if an isomorphism from these hulls to Zn can be found, then LIP can
be reduced to an instance of SPEP on codes of length n, via a Karp reduction.
Meanwhile, Section 5.2 shows that these instances of SPEP are equivalent to
solving PEP on codes of length 2n with trivial hull. We also show that the PEP
instances relevant to LIP are exactly those cases that reduce via [BOST19] to
an instance of graph isomorphism, GI, of size 2n , and in particular are solvable
in quasipolynomial time [Bab15], or 2O((log n)c) for some c.

5.1 When the Hull is Trivial

In Section 2.1, Lemma 4, we saw that the hull of a p-lattice corresponds to the
hull of a code over Fp. From [Sen00], we know that the hull of a random code
is trivial with high probability, which implies that the hull of a Construction
A lattice is pZn with high probability. We consider LIP for lattices that are
isomorphic to C + pZn, where C has trivial hull.

Lemma 9. Let C ⊆ Fnp be an [n, k]p code whose hull is {0}. For i = 1, 2, let
Oi ∈ On(R) be two orthonormal transformations, and Li = Oi(C + pZn) be two
lattices which are isomorphic. An instance of LIP on L1, L2 can be solved using
two oracle calls to ZLIP and one oracle call to SPEP on C.

Proof. A lattice L = O(C + pZn) has determinant pn−k. Therefore if p is not
known, it can be found by taking i-th roots of det(L) (which is efficiently calcu-
lable) for i ∈ {n− k, n− k − 1, . . . , 1}, and checking if the answer is an integer.
Since L is a lattice isomorphic to a Construction A lattice, Lemma 4 gives that:

Hp(L) = pOZn,

that is, the p-hull is isomorphic to pZn via the same rotation O. If we then
solved ZLIP to find an isomorphism from pZn to Hp(L), then we would get

some isomorphism Ô := Oσ, where O ∈ On(R) and σ is a signed permutation.
This is because every such isomorphism is in the coset OAut(pZn) ⊆ On(R),
where Aut(pZn) = {O ∈ On(R) : pOZn = pZn}. To see this, consider two
isomorphisms

ϕ : Hp(L)→ pZn

and

ψ : Hp(L)→ pZn.

21

Then ψϕ−1 ∈ Aut(pZn), and therefore it must be a signed permutation. There-
fore, any ϕ and ψ as above differ only by a signed permutation.

Now, if we apply the inverse of isomorphism Ô to L, we get some lattice
L′ := Ô−1L = σ−1C + pZn. If we reduce this modulo p, we then get a basis for
the code σ−1C over Fp.

If instead we are given two lattices of the form Oi(C + pZn) for i = 1, 2,
then we can apply the above argument to get two codes over Fp that differ by a
signed permutation, i.e.

σ−11 C1 = C = σ−12 C2,

or equivalently
C1 = σ1σ

−1
2 C2.

We therefore have reduced the problem of finding the isomorphism between these
two lattices to the problem of finding the signed permutation sending one code
to another. ut

It still remains to analyse the hardness of these instances of SPEP.

5.2 Signed Permutation Equivalence and Graph Isomorphism

Below, we adapt a method by Sendrier and Simos in [SS13a], involving the closure
of a code, to show how SPEP on an instance of two length n codes reduces to
PEP on an instance of two length 2n codes. Crucially, we show that if a code
has trivial hull, and char(Fq) 6= 2, then the length 2n closure in Definition 25
also has a trivial hull, unlike the closure in [SS13a]. Using Bardet, Otmani and
Saeed-Taha’s reduction [BOST19] from PEP to Graph Isomorphism when the
hull is trivial, we can conclude that SPEP on linear codes with trivial hulls is
solvable in quasipolynomial time [Bab15].

The closure C̃ in [SS13b] is with respect to In×F∗q (where In = {1, . . . , n}),
and allows a reduction from linear code equivalence of C and C ′ to permutation
code equivalence of C̃ and C̃ ′. This new code has length (q − 1)n, and is self-
dual when q ≥ 5. The weak self-duality of the closure means that the hull has
maximal possible dimension. But the expected run time of the SSA [Sen00]
algorithm is exponential in the dimension of the hull, as is the reduction to
graph isomorphism [BOST19].

Instead, we use the closure with respect to In × {±1} (Definition 25). The
critical difference this makes is that the hull of the signed closure of the code
is equal to the signed closure of the hull. In this case, signed permutation on
a code of length n with trivial hull reduces to permutation equivalence on a
code of length 2n with trivial hull. One can use this closure to reduce signed
permutation equivalence to graph isomorphism.

Definition 25. Let C ⊆ Fnq be a linear code of dimension k. The signed closure
C± of the code C is the linear code of length 2n and dimension k over Fq given
by:

C± := {(x1,−x1, x2,−x2, . . . , xn,−xn) : (xi)i∈In ∈ C} .

22

When q 6= 2, 3 the following lemma is not an immediate corollary of Theorem
1 in [SS13b], since we are using a different concept of closure. However, the proof
follows the exact same strategy as Lemma 4 from [SS13a], using the set of indices
In × {±1} instead of In × F∗q .

Lemma 10. Let C, C ′ ⊆ Fnq be linear codes. Then C and C ′ are signed permu-
tation equivalent if and only if C± and C ′± are permutation equivalent.

Constructive Proof. Let C and C ′ be signed permutation equivalent, via σ ∈ Sn
and (v1, v2, . . . , vn) ∈ {±1}n. Thus

C ′ =
{(
v1xσ−1(1), v2xσ−1(2), . . . , vnxσ−1(n)

)
: (x1, x2, . . . , xn) ∈ C

}
.

Let C± and C ′± be their respective signed closures. Throughout the proof, for a
code C ′′, we denote AutP(C ′′) for the group of permutations on the coordinates
of C ′′ that leave C ′′ unchanged. Similarly, we write AutSP(C ′′) to be the group
of signed permutations on the coordinates of C ′′ that leave C ′′ unchanged.

The permutation π such that

C ′± =
{(
x±π−1(1), x

±
π−1(2), . . . , x

±
π−1(2n)

)
: (x±1 , x

±
2 , . . . , x

±
2n) ∈ C±

}
is constructed as follows. For any i ∈ {1, . . . , n} with ai = −1, permute rows
2i− 1 and 2i in the code C±. Then for all i, swap row 2i− 1 with 2σ−1(i)− 1,
and swap row 2i with row 2σ−1(i). By construction, this permutation sends the
closure of C to the closure of C ′.

The other direction is the construction from Lemma 4 of [SS13a], trans-
lated to the simpler case we are dealing with. Let C and C ′ have permutation-
equivalent closures. That is,

C ′± =
{(
x±π−1(1), x

±
π−1(2), . . . , x

±
π−1(n)

)
: (x±1 , x

±
2 , . . . , x

±
n) ∈ C±

}
for some π ∈ S2n.

Let G± and G′± be generator matrices of C± and C ′± respectively, with rows
(g±i)i∈In and (g′±i)i∈In . We call {g±2i−1, g

±
2i} the ith pair of rows of G±, and we

say that a permutation π ∈ S2n preserves the pair {g±2i−1, g
±
2i} if

{π(2i− 1), π(2i)} = {2k − 1, 2k}

for some k. That is, the ith pair of C± becomes the kth pair of C ′±, even though
π does not necessarily preserve the ordering of the pair.

From [SS13a], if π ∈ S2n preserves all pairs, then it can be lifted to some
(σ, v) ∈ Sn × {±1}n. For all i ∈ {1, . . . , n}, define

vi =

{
1 if π(2i− 1) = 2k − 1 for some k (i.e. the ordering is preserved)

−1 if π(2i− 1) = 2k for some k (i.e. the ordering is not preserved),

and v = (v1, . . . , vn). In both cases above, the ith pair of C± is sent to the kth

pair of C ′±, and so define σ(i) = k. The details of why this is correct are left to

23

the proof of [SS13a, Lemma 4]. That proof does not make explicit what happens
when the permutation π does not preserve all pairs i = 1, . . . n. We make this
explicit below for our definition of the closure.

The key point is that if π : C± → C ′± does not preserve all pairs, then there
exists an α ∈ AutP(C ′±) such that απ : C± → C ′± does preserve all pairs, and
can then be lifted back to some signed permutation (σ, v) ∈ Sn × {±1}n.

We construct the automorphism α as a product of permutations αi that swap
rows. Let i ∈ {1, . . . , n}. If π preserves the ith pair, then set αi = id. If π does
not preserve the ith pair, then either

(a) π(2i− 1) is odd, or
(b) π(2i− 1) is even

In case (a), {π(2i− 1), π(2i)} = {2k − 1, r} for some arbitrary index r. The
action of π on C± sends the closure of a codeword in C to the closure of a
codeword in C ′. So

g′±2k−1 = −g′±r ,

since rows in the same pair in C ′± are the negative of one another. But also,
because rows in C± in the same pair are the negative of one another we have

g′±2k = −g′±2k−1 = g′±r .

Therefore, we can define αi ∈ AutP(C ′±) to be the automorphism of C ′± that
swaps row 2k for row r (i.e. swapping the identical row vectors g′±2k and g′±r).

In case (b), {π(2i−1), π(2i)} = {2k, r} for some arbitrary index r. The action
of π on C± sends the closure of a codeword in C to the closure of a codeword
in C ′. So again since rows in the same pair of C± are negatives of one another,

g′±2k = −g′±r .

But also, the same is true for C ′±, so

g′±2k−1 = −g′±2k = g′±r .

So we can define αi ∈ AutP(C ′±) to be the automorphism of C ′± that swaps
row 2k − 1 for row r (i.e. swapping the identical row vectors g′±2k−1 and g′±r).

Now, we construct α by first finding α1 using π, then finding α2 using α1π and
so on, finding αi using αi−1αi−2 . . . α1π. Each αi only swaps rows that are not
already preserved by αi−1αi−2 . . . α1π. Therefore, α1π preserves the first pair,
and by induction, αiαi−1 . . . α1π preserves the first i pairs. Finally, αn . . . α1π
preserves every pair. Thus we set

α = αn . . . α1 ∈ AutP(C ′±).

The permutation απ : C± → C ′± preserves pairs and therefore lifts to some
element in (σ, v) ∈ Sn × {±1}. ut

We have therefore reduced from SPEP on a code of length n to PEP on a
code of length 2n. One of the problems that [SS13b] find with this approach

24

is that the closure of a code is almost always a hard instance of PEP. That is,
the closure is almost always weakly self-dual, with hull of maximal dimension.
The following result shows that this is not the case for the signed closure when
char(Fq) 6= 2. In fact, we have a stronger statement.

Lemma 11. Let C be a linear code over finite field Fq whose characteristic is
not 2. The signed closure of the hull of a code C is the hull of the signed closure
C±.

Proof. C and C± have the same dimension. Let x, y ∈ C have closures x̃ and ỹ
respectively.

x̃ · ỹ = x1y1 + (−x1)(−y1) + . . . xnyn + (−xn)(−yn) = 2(x · y).

If x · y = 0, then x̃ · ỹ = 0. If x · y 6= 0, then x̃ · ỹ 6= 0, using char(Fq) 6= 2. So for
any two codewords in x̃, ỹ ∈ C±, we have x̃ · ỹ 6= 0 if and only if x · y 6= 0. The
result follows. ut

6 Conclusion

6.1 Revising LIP Hardness Conjecture

We have demonstrated that there are some lattices for which the hull attack
is relevant: finding shortest vectors in the hull is easier than in the original
lattice, and once they are found the isomorphism between the original lattices
can be recovered in quasipolynomial time. This constitutes a counter-example
to the (Strong) hardness conjecture made by Ducas and van Woerden [DvW22,
Conjecture 7.1] (Conjecture 1 in the present paper).

Our attack mandates the following revision, replacing the gap by the hull-gap
as follows:

hullgap(L) = max
s∈R×

gap(Hs(L)).

Note that the set we are maximising over includes the one from the original
definition so that hullgap(L) ≥ gap(L); indeed, for an integral lattice we have
H1(L) = L.

One may also be concerned that the above definition requires considering
infinitely many different s ∈ R×; this is in fact not the case. The gap of a lattice
is the same as the gap of any non-zero scaling of that lattice. So, using Lemma
8, we need only check the gap of the s-Hull for those integers s|det(BTB). For
example, for q-ary lattices of determinant qk, one need only consider integer
divisors of qk. If q is prime, only s ∈ {qi : i ∈ 0, . . . k} are relevant.

The above two remarks are explained for integral lattices, but also apply to
lattices whose Gram matrices are rational, simply by scaling the lattice up by

25

the gcd of the denominators of the Gram matrix. Thus we replace the gap in
[DvW22, Conjecture 7.1] with the quantity below.

hullgap(L) = max
s∈Z

s|det(Q)
gcd(Q)|s

gap(Hs(L)).

6.2 Unimodular Lattices

We recall that an integral lattice is unimodular if it is equal to its dual; and this
is equivalent to its associated quadratic form being unimodular. In particular,
all the hulls of such lattices are merely scalings of the original lattice, and taking
the hull is therefore not helpful. Such choices of lattice avoid the consideration
discussed above. This is the case of the trivial lattice Zn, as used in [BGPSD21,
DPPW22].

Half the Barnes-Wall lattices are unimodular (up to scaling). Another lattice of
interest in cryptography to instantiate LIP with is the Barnes-Wall lattice, as
suggested in [DPPW22]. A simple construction for the Barnes-Wall lattices is
given in [NRS00], which shows that they are a scaling of a unimodular lattice.
This means that they are equal to their own hull, and not subject to any hull
attack.

For convenience, we give the construction by Miccianccio and Nicolosi [MN08],
showing that at least half of them are unimodular, and therefore are not subject
to any hull attack. More specifically, the Barnes-Wall lattices have ranks n = 2k

for integers k, and we will show that they are unimodular when k is odd.
Miccianccio and Nicolosi [MN08] propose a simple and explicit construction

of the Barnes-Wall lattice over the Gaussian integers Z[i], via an explicit column
basis:

Bk =

[
1 0
1 1 + i

]⊗k
.

Note that this lattice has rank n = 2k+1 over the rational integers Z. The
associated hermitian form over Z[i] is given by :

Qk = (B1
T
B1)⊗k =

[
2 1− i

1 + i 2

]⊗k
.

Furthermore, Q2k = Q⊗k2 , and one can check that:

1

2
·Q2 =

2 1 + i 1 + i i

1− i 2 1 1 + i
1− i 1 2 1 + i
−i 1− i 1− i 2

is indeed integral over Z[i], and has determinant 1 over Z[i]. It is therefore also
the case that Q2k/2

k has determinant 1 for any integer k ≥ 1. That is, the
Barnes-Wall lattices of ranks 22k+1 are unimodular (up to scaling).

26

6.3 Open question

The counter-example we have provided remains mild: it only increases the gap
from 1 to O(

√
n), and therefore only halves the blocksize required for an attack.

A natural question is whether one can find lattices for which the gap of the hull
increases much more consequentially, and whether this indeed leads to an attack
on LIP, in either its distinguishing or search version.

Acknowledgements The authors would like to thank Peter Bruin, Eamonn
Postlethwaite, Ludo Pulles, Wessel van Woerden and the anonymous reviewers
for their helpful discussion and feedback. Authors Léo Ducas and Shane Gibbons
are supported by ERC Starting Grant 947821 (ARTICULATE).

References

[Bab15] László Babai. Graph isomorphism in quasipolynomial time, 2015. https:
//arxiv.org/abs/1512.03547.

[BDGL16] Anja Becker, Leo Ducas, Nicolas Gama, and Thijs Laarhoven. New direc-
tions in nearest neighbor searching with applications to lattice sieving.
In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algo-
rithms, volume 1, page 10 – 24, 2016.

[Beu20] Ward Beullens. Not enough LESS: An improved algorithm for solving
code equivalence problems over Fq. In International Conference on Se-
lected Areas in Cryptography, pages 387–403. Springer, 2020.

[BGPSD21] Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-
Davidowitz. Just how hard are rotations of Zn? algorithms and cryp-
tography with the simplest lattice. Cryptology ePrint Archive, Paper
2021/1548, 2021.

[BOST19] Magali Bardet, Ayoub Otmani, and Mohamed Saeed-Taha. Permutation
code equivalence is not harder than graph isomorphism when hulls are
trivial. In 2019 IEEE International Symposium on Information Theory
(ISIT). IEEE, jul 2019.

[Cas78] John William Scott Cassels. Rational Quadratic Forms. Academic Press,
New York, 1978.

[COC+17] Sueli I. R. Costa, Frédérique Oggier, Antonio Campello, Jean-Claude
Belfiore, and Emanuele Viterbo. Lattices from Codes, pages 37–58.
Springer International Publishing, Cham, 2017.

[CS13] John Horton Conway and Neil James Alexander Sloane. Sphere packings,
lattices and groups, volume 290. Springer Science & Business Media,
2013.

[DH14] Chandan Dubey and Thomas Holenstein. Computing the p-adic canon-
ical quadratic form in polynomial time, 2014.

[DPPW22] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel van
Woerden. Hawk: Module LIP makes lattice signatures fast, compact
and simple. In Shweta Agrawal and Dongdai Lin, editors, Advances
in Cryptology – ASIACRYPT 2022, pages 65–94, Cham, 2022. Springer
Nature Switzerland.

27

https://arxiv.org/abs/1512.03547
https://arxiv.org/abs/1512.03547

[DvW22] Léo Ducas and Wessel van Woerden. On the lattice isomorphism prob-
lem, quadratic forms, remarkable lattices, and cryptography. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, pages 643–673, Cham, 2022. Springer International
Publishing.

[HR14] Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 391–404. SIAM, 2014.

[Leo82] Jeffrey Leon. Computing automorphism groups of error-correcting codes.
IEEE Transactions on Information Theory, 28(3):496–511, 1982.

[MN08] Daniele Micciancio and Antonio Nicolosi. Efficient bounded distance
decoders for barnes-wall lattices. In 2008 IEEE International Symposium
on Information Theory, pages 2484–2488, 2008.

[NRS00] Gabriele Nebe, E. M. Rains, and N. J. A. Sloane. A simple construction
for the barnes-wall lattices, 2000.

[O’M71] Onorato Timothy O’Meara. Introduction to quadratic forms. Springer
Verlag, 1971.

[PP85] Wilhelm Plesken and Michael Pohst. Constructing integral lattices with
prescribed minimum. i. mathematics of computation, 45(171):209–221,
1985.

[PS97] Wilhelm Plesken and Bernd Souvignier. Computing isometries of lattices.
Journal of Symbolic Computation, 24(3-4):327–334, 1997.

[Sch09] Achill Schurmann. Computational geometry of positive definite quadratic
forms: Polyhedral reduction theories, algorithms, and applications, vol-
ume 48. American Mathematical Soc., 2009.

[Sen00] N. Sendrier. Finding the permutation between equivalent codes: the
support splitting algorithm. IEEE Transactions on Information Theory,
46(4):1193–1203, July 2000.

[SHVvW20] Mathieu Dutour Sikiric, Anna Haensch, John Voight, and WP van Woer-
den. A canonical form for positive definite matrices. In ANTS, volume 14,
page 179, 2020.

[SS13a] Nicolas Sendrier and Dimitris Simos. How easy is code equivalence
over fq. In International Workshop on Coding and Cryptography -
WCC 2013, Apr 2013, Bergen, Norway, 2013. https://hal.inria.fr/

hal-00790861v2.
[SS13b] Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence

over Fq and its application to code-based cryptography. In Philippe Ga-
borit, editor, Post-Quantum Cryptography, pages 203–216, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg.

28

https://hal.inria.fr/hal-00790861v2
https://hal.inria.fr/hal-00790861v2

	Hull Attacks on the Lattice Isomorphism Problem

