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Abstract. A b-error-correcting m-server Private Information Retrieval
(PIR) protocol enables a client to privately retrieve a data item of a
database from m servers even in the presence of b malicious servers.
List-decodable PIR is a generalization of error-correcting PIR to achieve
a smaller number of servers at the cost of giving up unique decoding. Pre-
vious constructions of error-correcting and list-decodable PIR have expo-
nential computational complexity in m or cannot achieve sub-polynomial
communication complexity no(1), where n is the database size. Recently,
Zhang, Wang and Wang (ASIACCS 2022) presented a non-explicit con-
struction of error-correcting PIR with no(1) communication and polyno-
mial computational overhead in m. However, their protocol requires the
number of servers to be larger than the minimum one m = 2b + 1 and
they left it as an open problem to reduce it. As for list-decodable PIR,
there is no construction with no(1) communication.

In this paper, we propose new generic constructions of error-correcting
and list-decodable PIR from any one-round regular PIR. Our construc-
tions increase computational complexity only by a polynomial factor
in m while the previous generic constructions incur

(
m
b

)
multiplicative

overheads. Instantiated with the best-known protocols, our construction
provides for the first time an explicit error-correcting PIR protocol with
no(1) communication, which reduces the number of servers of the proto-
col by Zhang, Wang and Wang (ASIACCS 2022). For sufficiently large
b, we also show the existence of b-error-correcting PIR with no(1) com-
munication achieving the minimum number of servers, by allowing for
two rounds of interaction. Furthermore, we show an extension to list-
decodable PIR and obtain for the first time a protocol with no(1) com-
munication. Other instantiations improve the communication complexity
of the state-of-the-art t-private protocols in which t servers may collude.
Along the way, we formalize the notion of locally surjective map fami-
lies, which generalize perfect hash families and may be of independent
interest.
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1 Introduction

Private Information Retrieval (PIR) [10] is a cryptographic primitive that en-
ables a client to retrieve a data item aτ of his choice from a database a =
(a1, . . . , an) while hiding the identity τ from m servers who hold copies of the
database. PIR has many real-world applications including private messaging
[27,25], password checkup [29], private media browsing [19] and Safe Browsing
[21]. A trivial solution is to send the entire database a to the client, whose com-
munication complexity is proportional to the database size n. When m = 1,
the trivial solution cannot be improved since it was shown in [10] that an
information-theoretically secure single-server PIR protocol must have commu-
nication complexity Ω(n). Single-server PIR protocols were then constructed
based on computational assumptions (e.g., [24,26,11] and references therein).
This paper focuses on information-theoretically secure multi-server PIR proto-
cols, which are typically more efficient than single-server protocols. Chor et al.
[10] considered PIR protocols with o(n) communication assuming m ≥ 2 non-
colluding servers. The privacy requirement is naturally generalized to t-private
PIR, which keeps τ private from any collusion of t out of m servers. Since then,
many multi-server PIR protocols have been developed to improve communica-
tion complexity [1,5,6,9,10,13,14,20,32].

As more servers are involved, there is a higher possibility that servers return
incorrect answers. For example, servers may be malicious or faulty, or compute
answers from an out-of-date copy of the database. Beimel and Stahl [7] intro-
duced b-error-correcting PIR, in which a client can obtain a correct value aτ
even in the presence of b malicious servers. It is known that b-error correction
is possible only if m ≥ 2b + 1 [7]. To further reduce the number of servers (or
equivalently handle a larger number of errors), Goldberg [17] proposed a gener-
alized notion of (b, L)-list-decodable PIR, which allows a client to output a list
of L possibilities one of which is correct. Indeed, (b, L)-list-decoding is possible
even for a smaller number of servers m > b(L+ 1)/L.5

First of all, there are generic constructions of error-correcting PIR. Beimel
and Stahl [7] proposed a generic construction of b-error-correcting m-server PIR
from any regular k-server PIR for m ≥ 2b+k. Recently, it was shown in [16] that
the number of servers can be reduced if a small probability ϵ that a client fails to
obtain a correct value is allowed6. However, the constructions of [7,16] increase
client-side computational complexity by

(
m
b

)
times, which is exponential in gen-

eral. The exponential multiplicative overheads can be serious in practice if we
have to tolerate a large number of malicious servers. Several works then directly
constructed error-correcting and list-decodable PIR protocols whose communi-
cation and computational complexity is polynomial in m.

5 This result is a folklore and is included in Appendix A for completeness.
6 We call error-correcting or list-decodable PIR perfect if ϵ = 0 and statistical if ϵ > 0.
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For t ≥ 1, Kurosawa [23] showed a t-private perfect b-error-correcting PIR
protocol. The number of servers was then reduced at the cost of statistical error
correction [16]. These protocols cannot attain sub-polynomial communication
complexity no(1). Recently, Zhang, Wang and Wang [34] presented a 1-private
perfect b-error-correcting protocol with no(1) communication. However, the pro-
tocol in [34] is not explicitly given and requires the number of servers to be at
least m ≥ 8b + 4. Constructing an explicit protocol with a smaller number of
servers than [34] is an open problem. More generally, it is unknown whether
there exists a b-error-correcting m-server PIR protocol with no(1) communica-
tion achieving both the minimum number of servers m = 2b+1 and polynomial
computational complexity in m.

As for list-decodable PIR, Goldberg [17] proposed a t-private perfect (b, L)-
list-decodable protocol for t ≥ 1. The number of servers was then reduced at
the cost of statistical error correction [12]. However, the list-decodable protocols
of [17,12] only achieve communication complexity

√
n, omitting a polynomial

factor in m. It is an open problem whether there exists a (b, L)-list-decodable
m-server PIR protocol with o(

√
n) communication for b(L+ 1)/L < m ≤ 2b.

1.1 Our Contributions

In this paper, we propose new generic constructions of error-correcting and list-
decodable PIR protocols from any one-round regular PIR protocol, with different
trade-offs. Our constructions only incur polynomial multiplicative overheads in
m to communication and computational complexity. We refer to Table 1 for a
comparison between the previous generic constructions. Our technical novelty is
devising different techniques to verify the correctness of answers from servers. We
successfully get around the necessity of carrying out an exhaustive search over all
the possible sets of honest servers, which caused the

(
m
b

)
multiplicative overheads

in [7,16]. Along the way, we introduce a new combinatorial object called a locally
surjective map family, which is an extension of a perfect hash family and may
be of independent interest. More technical details will be provided in Section 2.

By instantiating our generic constructions with existing regular PIR proto-
cols, we advance the state of the art in error-correcting and list-decodable PIR.

Error-Correcting PIR. We propose for the first time an explicit 1-private per-

fect b-error-correcting PIR protocol with no(1) communication, which reduces
the number of servers in [34] by half. We also propose a non-explicit proto-
col, further reducing the number of servers. Moreover, for sufficiently large b,
we non-explicitly show the existence of a 1-private statistical b-error-correcting
PIR protocol with no(1) communication achieving both the minimum number of
servers m = 2b+1 and polynomial computational complexity in m, by allowing
for two rounds of interaction. For t ≥ 1, we improve the communication com-
plexity of the t-private error-correcting protocol in [16] in terms of n, by allowing
for O(m2) rounds of interaction. See Table 2 for a comparison.
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List-Decodable PIR. For sufficiently large b, we non-explicitly show the existence
of a 1-private statistical (b, L)-list-decodable PIR protocol with no(1) communi-
cation achieving both the minimum number of servers m > b(L+1)/L and poly-
nomial computational complexity in m, by allowing for two rounds of interaction.
Note that this is the first list-decodable PIR protocol with no(1) communication
for b(L+1)/L < m ≤ 2b. In addition, for t ≥ 1, we non-explicitly present a two-
round t-private statistical list-decodable protocol with o(

√
n) communication.

See Table 3 for a comparison.

In what follows, we discuss our contributions in more detail.

Table 1. Generic constructions from t-private regular k-server PIR to a t′-private
b-error-correcting m-server PIR protocol Π.

Multiplicative overhead to Num. of servers Privacy
Reference client-side computation m Rounds of Π Remarks

P
er
fe
ct

[7] mO(b)2O(k) 2b+ k 1 t

Ours
(Thm. 2)

O(bm2) 2b+ Ω̃(k) 1 t non-explicit

Ours
(Thm. 3)

O(m) (2b+ 1)k 1 t

S
ta
ti
st
ic
a
l

[16] mO(b) max{2b+ 1, b+ k} 1 t

Ours
(Thm. 5)

Õ(bm5) max{2b+ 1, b+ Ω̃(k)} 2 t− 1 non-explicit

Ours
(Thm. 6)

Õ(m5) max{2b+ 1, b+ k} O(m2) t b ≤ t

Computational complexity omits a factor of log ϵ−1 for the probability of failure ϵ. The nota-

tions Õ(·) and Ω̃(·) hide a logarithmic factor of k or m.

Generic Construction of Perfect Error-Correcting PIR. We propose a
generic construction of one-round perfect b-error-correcting m-server PIR proto-
cols from any one-round regular k-server PIR protocol for m ≥ 2b+Ω(k log k).
The construction in [7] incurs a multiplicative overhead

(
m
b

)
= mO(b) to compu-

tational complexity while attaining a smaller number of servers m ≥ 2b+k. Our
construction only incurs a multiplicative overhead O(bm2) to communication
and computational complexity. To obtain our result, we introduce a new combi-
natorial object called a locally surjective map family, which we believe to be of
independent interest. Roughly speaking, our error-correcting protocol replicates
queries generated by a regular PIR protocol using a map from a locally surjec-
tive map family (see Section 2.1 for details). We note that the above number of
servers is based on a probabilistic construction of locally surjective map families.
We also show an explicit construction, but with worse parameters. As a result,
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Table 2. Comparison between t-private b-error-correcting m-server PIR protocols
with polynomial computational complexity in m.

Reference Error correction Num. of servers m Communication Rounds Remarks

t
=

1

[34] perfect (2b+ 1)2r exp(Õr((log n)
1/r)) 1 non-explicit

Ours
(Cor. 1)

perfect 2b+Ω(r2r) exp(Õr((log n)
1/r)) 1 non-explicit

Ours
(Cor. 2)

perfect (2b+ 1)2r−1 exp(Õr((log n)
1/r)) 1

Ours
(Cor. 4)

statistical max{2b+ 1, b+Ω(r4r)} exp(Õr((log n)
1/r)) 2 non-explicit

t
≥

1

[23] perfect 2b+Ω(td) n1/d 1

[16] statistical max{2b+ 1, b+Ω(td)} n1/d log n 1

Ours
(Cor. 5)

statistical max{2b+ 1, b+Ω(td)} n1/d O(m2) b ≤ t

Communication complexity omits a polynomial factor in m and log ϵ−1 for the probability of

failure ϵ. The notation Õr(·) hides a factor of log log n and constants that depend on r only.

Note that exp(Õr((logn)1/r)) = no(1) if r ≥ 2.

Table 3. Comparison between t-private (b, L)-list-decodable m-server PIR protocols
with polynomial computational complexity in m.

Reference List decoding Num. of servers m Communication Rounds Remarks

t
=

1 Ours
(Cor. 4)

statistical max

{
L+ 1

L
b+ 1, b+Ω(r4r)

}
exp(Õr((log n)

1/r)) 2 non-explicit

t
≥

1

[17] perfect
L+ 1

L
b+Ω(Lt) n1/2 1

[12] statistical
L+ 1

L
b+Ω(t) n1/2 1

Ours
(Cor. 3)

statistical max

{
L+ 1

L
b+ 1, b+Ω(td)

}
n1/d 2 non-explicit

Communication complexity omits a polynomial factor in m and log ϵ−1 for the probability of

failure ϵ. The notation Õr(·) hides a factor of log log n and constants that depend on r only.

Note that exp(Õr((logn)1/r)) = no(1) if r ≥ 2.
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we explicitly construct a b-error-correcting m-server PIR protocol from any reg-
ular k-server PIR protocol for m ≥ (2b + 1)k. Instantiating our constructions
with the best-known 2r−1-server protocol in [13], we show that there exist a
1-private perfect b-error-correcting m-server PIR protocol with communication
complexity Ln[r

−1, Or(1)]·bm2 for m ≥ 2b+max{r2r−1, 15}; and an explicit one
with communication complexity Ln[r

−1, Or(1)] ·m for m ≥ (2b+ 1)2r−1, where
Ln[s, c] := exp(c(log n)s(log log n)1−s) = no(1) if s < 1. As a comparison, the
protocol in [34] needs m ≥ (2b + 1)2r servers to achieve the same communica-
tion complexity Ln[r

−1, Or(1)] ·m. It is not explicitly given due to the necessity
of linear codes with special properties (see also Section 1.2). Ours is thus the
first explicit error-correcting protocol achieving both no(1) communication and
polynomial computational complexity in m. Note that it is impossible to realize
perfect b-error-correcting (2b + 1)-server PIR with o(n) communication since it
implies single-server PIR [16]. Below, we achieve the minimum number of servers
m = 2b+ 1 by allowing for statistical error correction.

Generic Construction of Statistical List-Decodable PIR. We propose a
generic construction of statistical (b, L)-list-decodable m-server PIR protocols
from any one-round regular k-server PIR protocol for m ≥ max{b(L + 1)/L +
1, b+Ω(k log k)}, where a client outputs L candidates of a correct value. If L = 1,
it further reduces the number of servers of our perfect error-correcting protocols
at the cost of allowing for a negligible probability of failure. Note that we do not
relax the privacy requirement to statistical privacy, i.e., it still satisfies perfect
privacy. Our construction only incurs a multiplicative overhead bmO(1) to com-
munication and computational complexity while the construction in [16] incurs
an
(
m
b

)
overhead. As a drawback, our resulting protocol runs in two rounds and

is (t− 1)-private if an initial protocol is t-private. Nevertheless, we can compen-
sate the loss of a privacy level by combining our construction with the method
to increase t-privacy [4]. As a result, our construction instantiated with the 2r-
server protocol in [14] provides a 1-private statistical b-error-correcting m-server

PIR protocol with communication complexity Ln[r
−1, Or(1)] ·Õ(bm3 log ϵ−1) for

m ≥ max{2b+ 1, b+ 3r4r}. When r = 2 and b ≥ 68, we obtain the first b-error-
correcting PIR protocol with no(1) communication, achieving both the minimum
number of servers m = 2b + 1 and polynomial computational complexity in m,
at the cost of two rounds of interaction. Similarly, we obtain the first 1-private
(b, L)-list-decodable PIR protocol with no(1) communication. For t ≥ 1, our con-
struction instantiated with [30] provides a t-private (b, L)-list-decodablem-server

PIR protocol with communication complexity Õ(n1/dbm2 log ϵ−1) for d ≥ 2 and
m ≥ max{b(L+1)/L+1, b+Ω(td)}. As a comparison, the previous list-decodable
protocols [17,12] cannot achieve o(

√
n) communication.

Generic Construction of Statistical Error-Correcting PIR Preserving
a Privacy Threshold. We propose a generic construction of O(m2)-round sta-
tistical b-error-correcting m-server PIR protocols from any one-round regular
k-server PIR protocol for m ≥ max{2b + 1, b + k}. It has an advantage over
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our above construction that it preserves the privacy threshold of the underly-
ing regular PIR protocol. If we instantiate it with [30], we obtain a t-private
statistical b-error-correcting m-server PIR protocol with communication com-
plexity n1/d(log ϵ−1)m5+o(1) for m ≥ max{2b + 1, b + (td + 1)/2}. In terms of
n, it improves the communication complexity n1/d(log nϵ−1)m2+o(1) of [16] with
the same number of servers. A drawback is that our resulting protocol assumes
b ≤ t, that is, it cannot correct more errors than the privacy threshold. For
that reason, our protocol is especially important to guarantee the privacy of a
client and the correctness of an output against an adversary who corrupts some
b servers actively and other t− b servers passively.

1.2 Related Work

Error-correcting PIR was also considered in a special setting where the length of
each entry of a database is sufficiently large (see [3,31] and references therein).
An efficiency measure considered there is download rate, which is defined as the
asymptotic ratio between the total length of servers’ answers to a query and the
length of each entry. The error-correcting PIR protocols in [3,31] assume that
the length of each entry of a database is at least (m − 2b)n. Hence they result
in exponentially large communication complexity in n.

Zhang et al. [34] showed that there exists a 1-private perfect b-error-correcting
(2b + 1)2r-server PIR protocol with no(1) communication. We note that their
construction does not give an explicit protocol. This is because their decoding
algorithm works for a suitable linear code but the existence of such a code is
only demonstrated by a non-constructive proof and by a brute-force algorithm.

Beimel and Stahl [7] showed a construction of error-correcting PIR from any
regular k-server PIR protocol. They constructed a (k,m)-robust PIR protocol
with 2O(k)m logm multiplicative overhead, in which a client can compute a cor-
rect value from any k out of m answers. They then showed that the (k,m)-robust
protocol is b-error-correcting if m ≥ 2b+ k. However, a client needs to check the
consistency of answers for every potential set of m − b honest servers, which
incurs an

(
m
b

)
multiplicative overhead to computational complexity. Eriguchi et

al. [16] showed a similar result for statistical b-error-correcting PIR. In their con-
struction, a regular PIR protocol is first transformed into a b-error-detecting PIR
protocol, in which a client can detect up to b errors7. As in [7], a client then exe-
cutes independent instances of the error-detecting protocol with every potential
set of honest servers, which again incurs an

(
m
b

)
multiplicative overhead.

Goldberg [17] proposed a t-private perfect (b, L)-list-decodable PIR protocol
with communication complexity O(

√
nm) for m ≥ b(L + 1)/L + Ω(Lt). They

chose L = Θ(
√

m/t) to maximize the number of tolerable errors. The proto-
col in [12] was based on [17] but their decoding algorithm collects L tuples of
servers’ answers and decode them simultaneously. It can then decode at most
b ≤ (m− t−1)L/(L+1) errors and hence m > b(L+1)/L+Ω(t). Kurosawa [23]

7 See Appendix E for the formal definition of error-detecting PIR.
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showed a t-private perfect b-error-correcting protocol with communication com-
plexity n1/d for m ≥ 2b+Ω(td), omitting a polynomial factor in m. Augot et al.
[2] proposed a 1-private b-error-correcting m-server PIR protocol with O(n1/d)
communication for m ≥ 2b+Ω(d), based on Reed-Muller codes. It is subsumed
by the protocol in [23]. The PIR protocols in [33] detect errors made by servers
with high probability but cannot correct errors, while supporting a more general
kind of queries expressed by low-degree polynomials.

2 Technical Overview

In this section, we provide an overview of our techniques. We give more detailed
descriptions and security proofs in the following sections.

2.1 Generic Construction of Perfect Error-Correcting PIR

A high-level idea is to enable a client C to find a pair of servers such that at least
one of them is malicious, and remove their answers in a reconstruction phase. Let
Π be an underlying k-server PIR protocol and T be the set of m servers. Note
that any map f : T → [k] := {1, 2, . . . , k} defines a partition T = G1 ∪ · · · ∪Gk

of T , where Gℓ = f−1(ℓ). As a simple example, we first consider a map f such
that |Gℓ| ≥ 2b + 1 for all ℓ ∈ [k]. The basic observation is that C can compute
the correct output once C obtains a correct answer to each of k queries in Π. For
this goal, C sends the ℓ-th query to every server in Gℓ and receives |Gℓ| ≥ 2b+1
answers. Then C can determine the correct answer just by using a majority vote.
In this protocol, the number of servers needs to be m ≥ (2b + 1)k. Even this
simple protocol improves the number of servers of the protocol in [34].

We show a refined way to reduce m = (2b + 1)k to m = 2b + Ω(k log k).
Consider a family F of maps from T to [k]. We have |F| different partitions
(Gf,1, . . . , Gf,k)f∈F of T , where (Gf,1, . . . , Gf,k) is a partition defined by Gf,ℓ =
{Si : f(Si) = ℓ}. Instead of removing all malicious servers at once as in the above
example, here C executes instances of Π in parallel with the |F| partitions of T .
Our strategy is that C proceeds in b steps in total to detect and remove at least
one new malicious server per step. In each step,

– If for every (f, ℓ), all the remaining servers in Gf,ℓ return the same answer
ansf,ℓ, then C computes an output xf of Π from (ansf,1, . . . , ansf,k) for each
f and decides the final output by the majority vote over the xf ’s;

– Otherwise, i.e., if two remaining servers in some Gf,ℓ give different answers,
then C removes these two servers and proceeds to the next step.

Observe that in the latter case, at least one of the two servers is malicious and
hence at least one malicious server is always removed. The requirement for C to
succeed is that if he is in the former case, more than half of the xf ’s are correct.
A sufficient condition is that there remains at least one honest server in each of
Gf,1, . . . , Gf,k for more than half of the f ’s. Indeed, for such f ’s, C receives the
correct answer from servers in each of Gf,1, . . . , Gf,k, or proceeds to the latter
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case and remove a malicious server. Since there remains at least m− 2b honest
servers at every step, the condition can be formulated as the family F of maps
satisfying that for any subset H ⊆ T of size m− 2b, f(H) = [k] holds for more
than half of the f ’s. We name such a family as a locally surjective map family.

We can prove by a probabilistic argument the existence of a locally surjective
map family F of size O(m) if k = O((m − 2b)/ log(m − 2b)). Therefore, we
can obtain a b-error-correcting PIR protocol from any regular k-server one if
m ≥ 2b+Ω(k log k). It incurs a O(bm|F|) = O(bm2) multiplicative overhead to
communication and computational complexity.

2.2 Generic Construction of Statistical List-Decodable PIR

First, we show a construction of a b-error-correcting m-server PIR protocol as-
suming m > 2b, i.e., the majority of servers are honest. Let Π be an (m− b,m)-
robust PIR protocol, in which a client C can obtain a correct value from any
m − b out of m answers. It is known that if k ≤ (m − b)/ ln(m − b), i.e.,
m ≥ b + Ω(k log k), an (m − b,m)-robust PIR protocol can be constructed
from any regular k-server one with O(m2) multiplicative overhead [7]. We start
with a naive way that: In the first round, C receives answers from m servers
in Π as usual; In the second round, C asks a special common query (specified
below) to all servers. He then finds a set A of at least m− b servers who returns
the same reply to the common query, and performs the reconstruction of Π by
trusting their m − b answers in the first round. This set A is unique as we as-
sume m − b > m/2, and contains all honest servers. Hence, a malicious server
is successfully excluded if it behaves maliciously in the second round. However,
there is an obvious attack that a malicious server behaves honestly in the second
round not to be excluded, but maliciously in the first round to cause errors in
the reconstruction.

Our countermeasure is to choose a target server Sℓ uniformly at random and
ask “What is Sℓ’s correct answer to the query in the first round?” to all servers
other than Sℓ. It leaks one additional query in Π and decreases the privacy level
from t to t − 1. In the reconstruction phase, C forms a set A of all the servers
who sent the same reply to the above query, where we fix the reply of Sℓ to
its answer in the first round. Clearly, Sℓ ∈ A if Sℓ is honest. This successfully
prevents the above attack if a malicious server is chosen as a target server Sℓ,
but the success probability is only 1/m. To make it overwhelming, we let C run
many (say, κ) independent instances in parallel. C then defines a final set A to
be the intersection of the A’s in all instances, which is still unique and contains
all honest servers. He determines a final output as the majority of outputs in
all instances (if it exists). Now, C outputs an incorrect result only if a coalition
of b malicious servers cause errors in at least κ/2 instances. It implies that
one of them must behave maliciously without being detected in at least κ/(2b)
instances. We can show that such a probability of failure is made negligible in
a parameter λ if we set κ = Ω(bmλ). To summarize, we obtain a two-round
(t−1)-private statistical b-error-correcting m-server PIR protocol from any one-
round regular t-private k-server PIR protocol if m ≥ max{2b+1, b+Ω(k log k)}.
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The communication and computational overhead is a multiplicative polynomial
factor in m.

Finally, we show how to extend the above construction to the case of list
decoding. The only remaining problem is that if the number of servers does not
satisfy m > 2b, the above set A of at least m− b servers is no longer unique in
general. Nevertheless, if m > b(L + 1)/L for a list size L ≥ 2, the number of
such sets A is still bounded by L since (L+1)(m− b) > m. More concretely, we
define that two servers are equivalent if their replies in the second round are the
same in all instances, and redefine A as each equivalence class of size at least
m− b. This makes the above protocol (b, L)-list-decodable.

2.3 Generic Construction of Statistical Error-Correcting PIR
Preserving a Privacy Threshold

Our basic idea is similar to our previous method to construct perfect error-
correcting PIR: In each execution of a regular k-server PIR protocol, a client
C not only detects errors but finds a pair of servers containing malicious ones.
However, if C removes such pairs, the number of remaining servers is reduced
to m − 2b in the end, which requires the number of servers to be at least m ≥
2b + k. To achieve m = max{2b + 1, b + k}, we introduce a stronger notion of
b-conflict-finding PIR. Specifically, it guarantees that as long as there are at
most b malicious servers, C obtains a correct result aτ or a non-trivial partition
(G0, G1) of the set of servers such that either of G0 or G1 contains all honest
servers (and hence the other group consists of malicious servers only)8.

More concretely, we consider a graph G with m vertices each of which repre-
sents a server. Our protocol starts with G being a complete graph, and repeats
the following step: C executes a conflict-finding PIR protocol Π with some set V
of servers forming a connected subgraph of size k in G (which can be efficiently
found [28]). If all servers in V are honest (or some of them are malicious but
behave honestly in this round), then C obtains the correct output. Otherwise C
can find a partition (G0, G1) of V thanks to the conflict-finding property of Π.
Note that there is always an edge between G0 and G1 since G0 ∪G1 = V is con-
nected. C removes an arbitrary edge between G0 and G1 from G and goes back
to the first step. Since all edges in the set H of honest servers remain unremoved
(and hence H remains connected), C successfully chooses a set of m− b honest
servers within O(m2) rounds. Note that in the above construction, C chooses a
set of servers with which he interacts, depending on answers that are maliciously
computed in the previous rounds. Thus servers may learn some information on
a client’s index by seeing which servers C removes. To address this problem, we
impose an additional property on conflict-finding PIR that the distribution of
the partition (G0, G1) is independent of a client’s index τ regardless of how mali-
cious servers behave. Then, an edge removed in each round leaks no information
on τ and hence the t-privacy is preserved.

8 We say that a partition (G0, G1) is non-trivial if neither of G0 nor G1 is empty.
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Instantiation of Conflict-Finding PIR. The remaining problem is how to
construct a b-conflict-finding k-server PIR protocol Π from a regular k-server
protocol Π0. For simplicity suppose that k = 3, b = 1, and S1 is malicious. Let λ
be a parameter. In Π, C randomly chooses µ ∈ [λ] and computes λ independent

queries (que
(h)
1 , que

(h)
2 , que

(h)
3 )h∈[λ] using Π0 on input τ ′, where τ ′ = τ (his true

input) if h = µ, and τ ′ = 1 otherwise. After he receives λ tuples of answers

(ans
(h)
1 , ans

(h)
2 , ans

(h)
3 )h∈[λ], C broadcasts (que

(h)
1 , que

(h)
2 , que

(h)
3 )h ̸=µ to all servers.

Each server Sj returns an answer verify
(h)
ij to que

(h)
i as Si would answer to que

(h)
i .

If S1 behaves honestly in the first round, it holds that ans
(h)
1 = verify

(h)
12 =

verify
(h)
13 for any h ̸= µ. If S1 returns an incorrect answer to the h-th query for

some h ̸= µ, it is different from verify
(h)
12 or verify

(h)
13 . From this observation, C

computes and outputs a desired value from (ans
(µ)
1 , ans

(µ)
2 , ans

(µ)
3 ) if every vi :=

(verify
(h)
1i , verify

(h)
2i , verify

(h)
3i )h ̸=µ takes the same value. Otherwise, he partitions

the set of servers into equivalence classes by placing Si and Sj into the same class
if and only if vi = vj , and outputs a non-trivial partition (G0, G1) in some way.
Since v2 = v3, honest servers S2, S3 are placed in the same class. We note that S1
successfully submits an incorrect answer without being detected only if it guesses
µ correctly. If Π0 is b-private, it happens with probability at most O(λ−1). Note

that (G0, G1) is determined by the answers (ans
(h)
1 , ans

(h)
2 , ans

(h)
3 )h ̸=λ, which are

independent of τ due to the b-privacy of Π0 since they can be simulated from one

query que
(µ)
1 for τ . This implies that (G0, G1) leaks no information on τ . The

cheating probability of malicious servers can be made negligible by executing
sufficiently many (say, κ) instances in parallel. If a conflict is found in some
instance, C outputs the non-trivial partition obtained in that instance. If he
obtains valid values in all instances, he outputs the majority of the κ values if it
exists. To let this modified protocol fail, malicious servers need to let the basic
protocol output valid but incorrect values in at least κ/2 instances. The failure
probability is thus O(λ−κ/2), which is negligible.

To summarize, we obtain an O(m2)-round t-private statistical b-error-correcting
m-server PIR protocol from any one-round regular t-private k-server PIR proto-
col if m ≥ max{2b+1, b+ k} and t ≥ b. The communication and computational
overhead is a multiplicative polynomial factor in m.

3 Preliminaries

3.1 Notations

For m ∈ N, define [m] = {1, . . . ,m}. Let X,Y be sets. If X ⊆ Y , we define
Y \ X = {y ∈ Y : y /∈ X} and simply denote it by X if Y is clear from the
context. We write u←$X if u is chosen uniformly at random from X. Define(
X
k

)
as the set of all subsets of X of size k. Define Map(X,Y ) as the set of all

maps from X to Y . If X = [m] and Y = [k], we simply denote it by Map(m, k).
Let RA denote the set of all random strings for a probabilistic algorithm A.
Namely, on input x, A outputs A(x; r) for r←$RA. For a vector x, let xi denote

11



the i-th entry. Let log x denote the base-2 logarithm of x and lnx denote the
base-e logarithm of x, where e is the Napier’s constant. Let Ln[s, c] denote a
function exp(c(log n)s(log log n)1−s) of n, where 0 ≤ s ≤ 1 and c > 0. Note that
Ln[s, c] = no(1) if s < 1.

Throughout the paper, we use the following notations:

– m denotes the total number of servers.
– t denotes a privacy threshold: no coalition of t servers learns a client’s query.
– b denotes the number of malicious servers.
– Xn is the universe of databases: n is the number of elements in a database

and X is the set from which each element takes a value.

The notation Õ(·) hides a polylogarithmic factor in b and m, and Or(·) hides
any constant depending on a parameter r.

3.2 Private Information Retrieval (PIR)

We first recall the definition of one-round PIR schemes.

Definition 1 (One-round PIR). A one-round t-private m-server PIR scheme
Π consists of three algorithms Π = (Q,A,D), where:

– A query algorithm Q takes a search index τ ∈ [n] as input. It then samples
a random string r←$RQ and outputs quei ∈ {0, 1}cque for i ∈ [m] and aux ∈
{0, 1}caux . That is, Q(τ ; r) = (que1, . . . , quem; aux);

– An answer algorithm A takes i ∈ [m], quei ∈ {0, 1}cque and a ∈ Xn as input
and outputs ansi ∈ {0, 1}cans . That is, A(i, quei,a) = ansi;

– A reconstruction algorithm D takes (ans1, . . . , ansm) ∈ ({0, 1}cans)m and aux ∈
{0, 1}caux as input, and outputs y ∈ X . That is, D(ans1, . . . , ansm; aux) = y;

satisfying the following properties:

Correctness. For any database a = (a1, . . . , an) ∈ Xn and any search index
τ ∈ [n], it holds that Pr[r←$RQ : D(ans1, . . . , ansm; aux) = aτ ] = 1, where
(que1, . . . , quem; aux) = Q(τ ; r) and ansi = A(i, quei,a) for i ∈ [m].

Privacy. For any X ∈
(
[m]
t

)
and any τ, τ ′ ∈ [n], the distributions of (quei)i∈X

and (que′i)i∈X are perfectly identical, where r, r′←$RQ, (que1, . . . , quem; aux) =
Q(τ ; r) and (que′1, . . . , que

′
m; aux′) = Q(τ ′; r′).

Define the (total) communication complexity Comm(Π) of Π as m(cque + cans).
Define the client-side computational complexity c-Comp(Π) as the total running
time of Q and D, and the server-side computational complexity s-Comp(Π) as
the running time of A.

As described below, a PIR scheme can be identified with a one-round protocol
between C, S1, . . . , Sm, where C is a client who has a search index τ and each Si
is a server who holds a copy of a database a:

12



Query. On input τ ∈ [n], C chooses r←$RQ and computes (que1, . . . , quem; aux) =
Q(τ ; r). C then sends quei to Si for each i ∈ [m].

Answer. On input a ∈ {0, 1}n, each Si returns ansi = A(i, quei,a) to C.
Output. C outputs y = D(ans1, . . . , ansm; aux).

The definition of one-round PIR can be generalized to the multi-round setting
in a natural way.

Definition 2 (Multi-round PIR). A t-private m-server PIR protocol is an
interactive protocol Π between a client C holding an index τ ∈ [n] and m servers
S1, . . . , Sm holding a database a = (a1, . . . , an) ∈ X n, satisfying the following
properties:

Interaction pattern. The servers do not communicate with each other;
Correctness. If all servers behave honestly, C obtains aτ at the end of Π with

probability 1;
Privacy. For any set X of t servers, the joint distribution of all queries that

servers in X receive during execution of Π is independent of τ .

We say that Π is ℓ-round if it requires at most ℓ rounds of queries and answers.
Define the communication complexity Comm(Π) of Π as the total number of bits
communicated between C and S1, . . . , Sm. Define the client-side computational
complexity c-Comp(Π) as the total running time of local computations performed
by C and the server-side computational complexity s-Comp(Π) as the maximum
(over i) of the total running time of local computations performed by Si.

Note that Definition 2 with ℓ = 1 coincides with Definition 1.

3.3 Robust PIR

Next, we introduce the notion of one-round (k,m)-robust PIR [7], which allows
a client to obtain a data item from any k out of m answers.

Definition 3 (Robust PIR). A one-round PIR scheme Π = (Q,A,D) is said
to be (k,m)-robust if

– D takes X ∈
(
[m]
k

)
, (ansi)i∈X ∈ ({0, 1}cans)k and aux ∈ {0, 1}caux as input,

and outputs y ∈ X ;
– For any database a ∈ Xn, any τ ∈ [N ] and any X ∈

(
[m]
k

)
, it holds that

Pr[r←$RQ : D(X, (ansi)i∈X ; aux) = aτ ] = 1, where (que1, . . . , quem; aux) =
Q(τ ; r) and ansi = A(i, quei,a) for i ∈ [m].

Beimel and Stahl [7] showed constructions of robust PIR schemes from any
regular PIR scheme. One of their constructions is based on the following combi-
natorial object.

Definition 4. Let m,h, k ∈ N and F be a family of maps from [m] to [k]. We

call F an (m,h, k)-nearly perfect hash family if for any H ∈
(
[m]
h

)
, there exists

a map f ∈ F such that f(H) = [k].
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There is a probabilistic construction of (m,h, k)-nearly perfect hash families
for k = O(h/ log h) [7]. In the original construction in [7], the size of F is upper
bounded by (h logm)/(log log h) = O((m logm)/(log log h)). We show a slightly
different analysis on |F| and obtain an upper bound of |F| ≤ 8m. If h = Θ(m),
our bound is better than [7]. See Appendix C for a formal proof.

Proposition 1. Let m,h, k ∈ N be such that m ≥ h ≥ 3 and k ≤ h/ lnh. Then,
there exists an (m,h, k)-nearly perfect hash family F such that |F| ≤ 8m.

Although both of the construction in [7] and the above one are probabilistic
and not explicit, we can make the success probability overwhelming in λ at
the cost of incurring an O(λ) additive overhead to |F|. We formally prove it in
Appendix C.

Beimel and Stahl [7] showed that given an (m,h, k)-nearly perfect hash family
of size w, an (h,m)-robust PIR scheme can be obtained from any k-server PIR
scheme with O(mw) communication overhead. We thus have the following fact.

Proposition 2. Let m ≥ h ≥ 3 and k ≤ h/ lnh. Let Π0 be a one-round t-
private k-server PIR protocol. Then, there exists a one-round t-private (h,m)-
robust m-server PIR protocol Π such that Comm(Π) = O(m2 · Comm(Π0)),
c-Comp(Π) = O(m2 · c-Comp(Π0)) and s-Comp(Π) = O(m · s-Comp(Π0)).

3.4 Existing Constructions of PIR

First, we recall a fundamental combinatorial object.

Definition 5. Let ℓ ∈ Z and S ⊆ Zm \ {0}. We say that U = (u1, . . . ,un)
and V = (v1, . . . , vn), where ui,vi ∈ Zh

ℓ , form an S-matching vector code if
⟨ui,vi⟩ = 0 for every i ∈ [n] and ⟨ui,vj⟩ ∈ S for every i ̸= j.

There exists an explicit construction of matching vector codes.

Proposition 3 ([18]). Let r ≥ 2 and p1 < · · · < pr be the smallest r primes.
Set ℓr = p1 · · · pr. For any integer n > 1, there exists an S-matching vector

code U = V = (u1, . . . ,un) over Zhr(n)
ℓ such that hr(n) = Ln[r

−1, cr], where
cr = O(r log r) is independent of n.

Next, there are PIR schemes with sub-polynomial communication based on
matching vector codes.

Proposition 4 ([13]). For r ≥ 2, there exists a one-round 1-private 2r−1-server
PIR scheme ΠDG

r such that

– Comm(ΠDG
r ) = O(2rℓr(log ℓr)) · hr(n) log |X |;

– c-Comp(ΠDG
r ) = 2O(r) · hr(n) log |X |;

– s-Comp(ΠDG
r ) = rO(1) · nhr(n) log |X |.

Proposition 5 ([14]). For r ≥ 2, there exists a one-round 1-private 2r-server
PIR scheme ΠEfr

r such that
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– The query length is cEfr
que = O((log ℓr)hr(n)) and the answer length is cEfr

ans =

O((log ℓr) log |X |). In particular, Comm(ΠEfr
r ) = O(2r(log ℓr)hr(n) log |X |);

– c-Comp(ΠEfr
r ) = 2O(r) · hr(n) log |X |;

– s-Comp(ΠEfr
r ) = rO(1) · nhr(n) log |X |.

Although the original PIR schemes in [13,14] assume that X = {0, 1} or X is
a finite field, it is straightforward to extend them to the case of an arbitrary set
X . Indeed, a client and servers run the schemes in parallel in such a way that
the client inputs the same index τ while servers input the i-th bit of data items
in the i-th instance. This incurs a multiplicative factor of O(log |X |). Note that
these O(log |X |) executions need not be independent. In particular, the query
length does not involve a factor of log |X |.

Let Π be a t-private m-server PIR scheme whose query length is cque and
whose answer length is cans. It is known that Π can be generically transformed
into a 2t-private m2-server PIR scheme whose query length is 2cque and whose
answer length is c2ans [4]. In particular, by applying this transformation to the
1-private 2r-server PIR scheme ΠEfr

r with X = {0, 1}, we obtain a 2-private
4r-server PIR scheme with X = {0, 1} whose communication complexity is
O(4r(log ℓr)

2hr(n)). We can extend the resulting scheme to the case of |X | > 2
by allowing for a multiplicative factor of O(log |X |). We summarize this fact in
the following proposition.

Proposition 6 ([14,4]). For r ≥ 2, there exists a one-round 2-private 4r-server

PIR scheme Π̃Efr
r such that

– Comm(Π̃Efr
r ) = O(4r(log ℓr)

2) · hr(n) log |X |;
– c-Comp(Π̃Efr

r ) = 2O(r)(log ℓr) · hr(n)
2 log |X |;

– s-Comp(Π̃Efr
r ) = 2O(r)(log ℓr) · nhr(n)

2 log |X |.

Finally, we recall a construction of t-private robust PIR schemes.

Proposition 7 ([30]). Let d, k ∈ N be such that k ≤ m and d ≤ (2k − 1)/t.
There exists a one-round t-private (k,m)-robust PIR scheme ΠWY

d,k such that

– Comm(ΠWY
d,k ) = O(m logm) · dn1/d log |X |;

– c-Comp(ΠWY
d,k ) = mO(1) · n1/d log |X |;

– s-Comp(ΠWY
d,k ) = (logm)O(1) · n1+1/d log |X |.

3.5 Error-Correcting PIR

Error-correcting PIR enables a client to obtain a correct value even if some
servers return incorrect answers. We consider a malicious adversary B who cor-
rupts at most b servers. Corrupted servers can deviate from a PIR protocol
arbitrarily. The following definition is a generalization of those of [7,17] to the
multi-round setting.
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Definition 6. A PIR protocol is said to be (b, L; 1− ϵ)-list-decodable if for any
a ∈ Xn, any τ ∈ [n] and any adversary B who corrupts at most b servers, the
probability that a client C outputs a list Y such that aτ ∈ Y and |Y| ≤ L at
the end of the protocol is at least 1− ϵ. We call a (b, 1; 1− ϵ)-list-decodable PIR
protocol (b; 1− ϵ)-error-correcting.

We define the t-privacy of a multi-round (b, L; 1 − ϵ)-error-correcting PIR
protocol as follows: For any set X of t servers and any adversary B who corrupts
at most b servers, the joint distribution of all queries that servers in X receive
during the protocol is independent of τ even if the servers corrupted by B behave
maliciously.

If ϵ = 0, error correction or list decoding is said to be perfect and otherwise,
statistical.

List decoding is a trivial task if |X | ≤ L since a client can then achieve the
task just by outputting Y = X . In addition, it can be seen that there exists a
(b, L; 1 − ϵ)-list-decodable m-server PIR protocol for negligible ϵ if and only if
m > b(L+ 1)/L. We include the proof in Appendix A for completeness.

Without loss of generality, we assume that the behavior of malicious servers
is deterministic. Indeed, Definition 6 allows malicious servers to modify their
answers in an arbitrary way based on messages from a client. Thus, as long
as the randomness of malicious servers is independent of the client’s private
randomness, the probability of failure is at most ϵ even if the behavior of servers
is randomized.

4 Generic Construction of Perfect Error-Correcting PIR

4.1 Generic Construction

In this section, we show a construction of one-round (b; 1)-error-correcting m-
server PIR protocols from regular k-server PIR schemes for m ≥ 2b+Ω(k log k).
The resulting protocols achieve perfect error correction, i.e., ϵ = 0.

We first introduce a notion of locally surjective map families.

Definition 7. Let m,h, k ∈ N and F be a family of maps from [m] to [k].
We call F an (m,h, k)-locally surjective map family if |AH | > |F|/2 for any

H ∈
(
[m]
h

)
, where AH = {f ∈ F : f(H) = [k]}.

We show a probabilistic construction of an (m,h, k)-locally surjective map
family of size O(m) for k = O(h/ log h). The formal proof is given in Appendix B.

Proposition 8. Let m,h, k ∈ N be such that h ≥ 15, m ≥ 15 and k ≤ h/(γ lnh),
where γ := 1 + (ln 3 − ln ln 15)/(ln 15) < 1.04. Then, there exists an (m,h, k)-
locally surjective map family F such that w := |F| = 14m.

Remark 1. Although our construction of locally surjective map families is not
explicit, we can make the success probability of our probabilistic construction
overwhelming in λ at the cost of incurring an O(λ) additive overhead to m. The
formal proof is given in Appendix C.
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We show that given an (m,m−2b, k)-locally surjective map family, a perfect
b-error-correcting m-server PIR protocol can be constructed from any regular
k-server PIR scheme.

Theorem 1. Let h = m − 2b. Let k ∈ N be such that there exists an (m,h, k)-
locally surjective map family F of size w. Let Π be a one-round t-private k-server
PIR protocol. Then, there exists a one-round t-private (b; 1)-error-correcting m-
server PIR protocol Π ′ such that

– Comm(Π ′) = O(bwm · Comm(Π));
– c-Comp(Π ′) = O(bwm · c-Comp(Π));
– s-Comp(Π ′) = O(bw · s-Comp(Π)).

Proof. The PIR protocol Π ′ is described in Fig. 1. The t-privacy of Π ′ follows
from that of Π. Indeed, the view of any set of t servers consists of b + 1 tuples
of t queries for Π independent of how malicious servers behave. As for the
correctness, assume that all servers behave honestly. Consider the output phase
of the protocol Π ′. At Step 3 in the first iteration (i.e., ℓ = 1), for all u ∈ [w],

p ∈ [k] and Si ∈ Gu,p, it holds that ãns
(u,1)
i = A(p, que(u,1)p ,a), that is, we have

that α
(u)
p = A(p, que(u,1)p ,a). Therefore, the client C obtains x(u) = aτ for all

u ∈ [w] and hence goes to Step 3(a)-i and obtains y = aτ .
We prove that Π ′ is (b; 1)-error-correcting. If all malicious servers behave

honestly in the ℓ-th instance for some ℓ, then C goes to Step 3(a)-i in the ℓ-th
iteration in the output phase, and computes the correct value y = aτ . Hence,
in every instance, at least one malicious server Si must submit an incorrect

answer ãns
(u,ℓ)
i ̸= A(fu(i), que(u,ℓ)fu(i)

,a) for some u ∈ [w] to let the client output

an incorrect value. Let H be the set of all honest servers. Let bℓ be the number
of malicious servers remaining in T ′ after iterating Step 3 of the output phase ℓ
times. Observe that b0 = b.

Consider the first iteration, i.e., ℓ = 1. We have that T ′ = T and |H| ≥
m − 2b = h. We will show that either of the following two events occurs: (1) C
goes to Step 3(a)-i and outputs the correct result y = aτ ; (2) C goes to Step 3(b)
and removes at least one malicious server from T ′. In other words, C never goes
to Step 3(a)-ii. Let BAD be the set of maps fu ∈ F such that at least one
malicious server submits an incorrect answer in the instance corresponding to
fu. If |BAD| ≥ w/2, there exists fu ∈ BAD such that fu(H) = [k] due to the
property of the locally surjective map family F .9 Let Si be a malicious server

submitting an incorrect answer ãns
(u,1)
i . If Si ∈ Gu,p, an answer submitted by

an honest server Sj ∈ Gu,p conflicts with ãns
(u,1)
i . Then, C goes to Step 3(b)

in the output phase, i.e., the second case (2) occurs. Since any honest servers
Si, Sj with fu(i) = fu(j) return the same answer, at least one malicious server
is then removed from T ′. In particular, we obtain that b1 ≤ b− 1. On the other
hand, suppose that |BAD| < w/2 and C goes to Step 3(a). Note that x(u) =

9 Here, we identify H with the set of indices of honest servers.
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Notations.
– Let h = m − 2b and k ∈ N be such that there exists an (m,h, k)-locally

surjective map family F = {f1, . . . , fw} of size w.
– Let Π = (Q,A,D) be a one-round k-server PIR protocol.
– A client C has an index τ ∈ [n] and each server Si has the database a ∈ Xn.

Protocol.
Query.

1. Let T be the set of m servers. For each u ∈ [w] and p ∈ [k], let Gu,p =
{Si : fu(i) = p}.

2. For each u ∈ [w] and ℓ ∈ [b+ 1], C computes

(que
(u,ℓ)
1 , . . . , que

(u,ℓ)
k ; aux(u,ℓ))← Q(τ).

3. For each u ∈ [w], p ∈ [k] and ℓ ∈ [b+ 1], C sends que(u,ℓ)p to all servers in
Gu,p.

Answer. Each server Si does the following:
1. For each u ∈ [w] and ℓ ∈ [b + 1], Si computes ans

(u,ℓ)
i = A(p, que(u,ℓ)p ,a),

where p = fu(i), i.e., Si ∈ Gu,p.

2. Si sends (ans
(u,ℓ)
i )u∈[w],ℓ∈[b+1] to C.

Output.
1. Let ãns

(u,ℓ)
i be the answer returned by Si as ans

(u,ℓ)
i . That is, ãns

(u,ℓ)
i =

ans
(u,ℓ)
i if Si is honest and otherwise, ãns

(u,ℓ)
i may be modified arbitrarily.

2. C sets ℓ← 1 and T ′ ← T .
3. If T ′ = ∅ or ℓ > b + 1, C outputs a default value x0 ∈ X . Otherwise, C

does the following:
(a) If for all u ∈ [w] and p ∈ [k], there exists α

(u)
p such that

{ãns(u,ℓ)i : Si ∈ Gu,p ∩ T ′} = {α(u)
p }, (1)

then C computes x(u) = D(α(u)
1 , . . . , α

(u)
k ; aux(u,ℓ)).

i. If there exists y ∈ X such that |{u ∈ [w] : x(u) = y}| > w/2, then
C outputs y.

ii. Otherwise, C outputs a default value x0 ∈ X .
(b) Otherwise, let (u, p) be such that the condition (1) does not hold, and

(Si, Sj) be a pair of servers in T ′ ∩Gu,p such that ãns
(u,ℓ)
i ̸= ãns

(u,ℓ)
j .

C sets ℓ← ℓ+ 1 and T ′ ← T ′ \ {Si, Sj}. C repeats Step 3.

Fig. 1. A construction of perfect error-correcting PIR from regular PIR
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D((A(p, que(u,1)p ,a))p∈[k]; aux
(u,1)) = aτ for any u ∈ [w] such that fu /∈ BAD. It

holds that |{u ∈ [w] : x(u) = aτ}| > w/2 and C obtains y = aτ , i.e., the first
case (1) occurs.

Consider the case where the second case (2) continues to occur and C proceeds
to the (ℓ+ 1)-th iteration for ℓ ≤ b. We prove by induction that bℓ ≤ b− ℓ. We
have shown above that b1 ≤ b− 1. Assume that it holds that bℓ ≤ b− ℓ after the
ℓ-th iteration ends. In the (ℓ + 1)-th iteration, we have that |T ′| = m − 2ℓ. We
also have that h′ := |H ∩ T ′| ≥ (m− b)− ℓ ≥ m− 2b = h. The property of the
locally surjective map family F implies that |{f ∈ F : f(H ∩ T ′) = [k]}| > w/2.
On the other hand, as in the first iteration, the adversary must submit incorrect

answers ãns
(u,ℓ+1)
i for at least w/2 u’s in order for C not to output the correct

value. Then, C goes to Step 3(b) in this iteration again and successfully removes
at least one malicious server. We obtain that bℓ+1 ≤ bℓ − 1 ≤ b− (ℓ+ 1).

It follows from the induction on ℓ that we have bℓ = 0 for some ℓ ≤ b. In
the (ℓ + 1)-th iteration, there is no remaining malicious server. Now C goes to
Step 3(a)-i and outputs the correct value.

As for the communication complexity of Π ′, observe that the client needs to

send O(bw) queries {que(u,ℓ)p : u ∈ [w], ℓ ∈ [b + 1]} for Π to all servers in Gu,p.
Since |Gu,p| ≤ m, we have that Comm(Π ′) = O(bwm · Comm(Π)). As for the
computational complexity, the client needs to generate O(bw) queries of Π and
to make O(m) copies of each of them. In the output phase, the client needs to
check consistency among O(wm) answers in each of b+ 1 iterations and finally
runs the decoding algorithm D. We note that it is possible to find the majority
of a sequence x(1), . . . , x(w) ∈ X in time O(w log |X |), e.g., by the Boyer-Moore
algorithm [8]. Thus, we have that c-Comp(Π ′) = O(bwm · c-Comp(Π)). It can
be easily seen that s-Comp(Π ′) = O(bw · s-Comp(Π)). ⊓⊔

To obtain a concrete construction from Theorem 1, we plug in the (m,h, k)-
locally surjective map family in Proposition 8 with h = m− 2b.

Theorem 2. Suppose that m ≥ 2b+ 15. Let

k ≤ m− 2b

γ ln(m− 2b)
,

where 1 < γ < 1.04 is the constant in Proposition 8. Let Π be a one-round
t-private k-server PIR protocol. Then, there exists a one-round t-private (b; 1)-
error-correcting m-server PIR protocol Π ′ such that

– Comm(Π ′) = O(bm2 · Comm(Π));
– c-Comp(Π ′) = O(bm2 · c-Comp(Π));
– s-Comp(Π ′) = O(bm · s-Comp(Π)).

Remark 2. The computational complexity of the construction in Theorem 2 does
not take into account that of finding a locally surjective map family F . We note
that the choice of F does not affect the security of a protocol. Hence we can
construct it before the protocol starts and the family is reusable any number
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of times. Furthermore, even if such offline complexity is taken into account, the
overhead in computational complexity is still polynomial in m, as we show a
polynomial-time method to obtain F in Appendix C. A price to pay is that
the resulting protocol is statistical since that construction has a negligible but
non-zero probability of failure.

We can also plug in the following locally surjective map family: Assume that
m ≥ (2b+1)k and let (G1, . . . , Gk) be a partition of [m] such that |Gp| ≥ 2b+1
for all p ∈ [k]. Define a map f : [m] → [k] as f(i) = p if and only if i ∈ Gp.
Then, F = {f} is an (m,m− 2b, k)-locally surjective map family since H ⊉ Gp

for any H ∈
(

[m]
m−2b

)
and p ∈ [k]. This construction gives an explicit way to

obtain an error-correcting PIR protocol from a regular one. Furthermore, since
|Gp| ≥ 2b+1, each group Gp has a majority of honest servers. This implies that
we can determine the correct answer that servers in Gp should return using a
majority vote and can remove dishonest servers at one time. Thus, we do not
need to execute many instances in parallel while we did so in Theorem 1, which
reduces the multiplicative factor in communication complexity.

Theorem 3. Suppose that m ≥ 2b + 1. Let k ≤ m/(2b + 1). Let Π be a one-
round t-private k-server PIR protocol. Then, there exists a one-round t-private
(b; 1)-error-correcting m-server PIR protocol Π ′ such that Comm(Π ′) = O(m ·
Comm(Π)), c-Comp(Π ′) = O(m · c-Comp(Π)) and s-Comp(Π ′) = s-Comp(Π).

4.2 Instantiations

If m ≥ 2b + r2r−1 for r ≥ 2, then (m − 2b)/(γ ln(m − 2b)) ≥ 2r−1. We thus
obtain the following corollary by instantiating Theorem 2 with the 2r−1-server
PIR scheme ΠDG

r in Proposition 4.

Corollary 1. Let r ≥ 2. Suppose that m ≥ 2b + max{r2r−1, 15}. Then, there
exists a one-round 1-private (b; 1)-error-correcting m-server PIR protocol Π ′

such that

– Comm(Π ′) = Or(bm
2) · hr(n) log |X |;

– c-Comp(Π ′) = Or(bm
2) · hr(n) log |X |;

– s-Comp(Π ′) = Or(bm) · nhr(n) log |X |.

We obtain the following corollary by instantiating Theorem 3 with the 2r−1-
server PIR scheme ΠDG

r in Proposition 4.

Corollary 2. Let r ≥ 2. Suppose that m ≥ (2b + 1)2r−1. Then, there exists a
one-round 1-private (b; 1)-error-correcting m-server PIR protocol Π ′ such that

– Comm(Π ′) = Or(m) · hr(n) log |X |;
– c-Comp(Π ′) = Or(m) · hr(n) log |X |;
– s-Comp(Π ′) = rO(1) · nhr(n) log |X |.
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5 Generic Construction of Statistical List-Decodable PIR

5.1 Generic Construction

In this section, we show a construction of two-round (b, L; 1 − ϵ)-list-decodable
m-server PIR protocols from regular k-server PIR schemes for m ≥ max{b(L+
1)/L+1, b+Ω(k log k)}. The resulting protocol has a non-zero probability of fail-
ure, which can be negligible in λ with O(λ) multiplicative overhead. Its privacy
threshold t is lower by 1 than the underlying regular PIR scheme.

Theorem 4. Suppose that m > b(L+1)/L. Let Π be a one-round (t+1)-private
(m − b,m)-robust PIR scheme. Then, for any ϵ > 0, there exists a two-round
t-private (b, L; 1− ϵ)-list-decodable m-server PIR protocol Π ′ such that

– Comm(Π ′) = O(bm log(bϵ−1) · Comm(Π));
– c-Comp(Π ′) = O(bm3 log(bϵ−1) · c-Comp(Π));
– s-Comp(Π ′) = O(bm log(bϵ−1) · s-Comp(Π)).

Proof. Let κ ∈ N be the smallest integer such that κ ≥ 2bm ln(bϵ−1). Consider
the protocol Π ′ described in Fig. 2. Note that the sub-protocol Π1 is t-private
since any t servers obtain at most t+ 1 queries of the (t+ 1)-private scheme Π.
Since Π ′ simply executes Π1 in parallel, Π ′ also satisfies t-privacy. As for the
correctness, if every server Si is honest, it holds that

ãns
(u)
i (1, i) = A(i, que(u)i ,a) and ãns

(u)

ℓ(u)(2, i) = A(ℓ(u), que
(u)

ℓ(u) ,a)

for all u ∈ [κ], where que
(u)
i is the query for Si generated at the u-th instance of

Π1. All servers are then equivalent under the equivalence relation of Step 3 of

Π ′ and hence q = 1 and A1 = {S1, . . . , Sm}. A client C has that x
(u)
1 = aτ for

all u ∈ [κ] and outputs Y = {aτ}.
We show that Π ′ is (b, L; 1− ϵ)-list-decodable. Let H be the set of all m− b

honest servers. Any pair of honest servers Si, Sj ∈ H are equivalent under the
equivalence relation defined at Step 3 of Π ′. This is because

ãns
(u)

ℓ(u)(2, i) = ãns
(u)

ℓ(u)(2, j) = A(ℓ(u), que
(u)

ℓ(u) ,a).

for all u ∈ [κ]. Therefore, there exists p ∈ [q] such that H ⊆ Ap at Step 4 of
Π ′, which in particular implies that C never outputs the default value x0 at this
step. In addition, we can see that q ≤ L. Indeed, if q ≥ L + 1, we would have
that (m − b)(L + 1) ≤ m and hence m ≤ b(L + 1)/L, which contradicts the
assumption m > b(L+ 1)/L.

Let F be the event that C outputs a list Y such that aτ /∈ Y . Note that
the size of Y is at most L with probability 1 since q ≤ L. Let r(u) ∈ RQ
be a random string used to generate queries in the u-th instance of Π1, i.e.,

(que
(u)
1 , . . . , que

(u)
m ; aux(u)) = Q(τ ; r(u)). For r(1), . . . , r(κ) ∈ RQ let E(r(1), . . . , r(κ))

be the event that C actually chooses these strings r(1), . . . , r(κ) at the first round
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Notations.
– Let Π = (Q,A,D) be a one-round (m− b,m)-robust PIR protocol.
– Let κ ∈ N.
– A client C has an index τ ∈ [n] and each server Si has the database a ∈ Xn.

Sub-protocol Π1.
First round.

Query.
1. C computes (que1, . . . , quem; aux)← Q(τ).
2. C sends quei to each server Si.

Answer. Each server Si sends ansi(1, i) := A(i, quei,a) to C.

Second round.
Query.

1. C chooses ℓ←$ [m].
2. C sends queℓ to servers Si for i ∈ [m] \ {ℓ}.

Answer. A server Si for i ∈ [m] \ {ℓ} sends ansℓ(2, i) := A(ℓ, queℓ,a) to C.

Output.
1. Let ãnsi(1, i) and ãnsℓ(2, i) denote the answers returned by Si at the first

and second rounds, respectively, where we define ãnsℓ(2, ℓ) := ãnsℓ(1, ℓ).
2. Output (ãnsi(1, i), ãnsℓ(2, i))i∈[m] and aux.

Protocol Π ′.
1. C and S1, . . . , Sm execute κ independent instances of Π1 in parallel.
2. For u ∈ [κ], let ℓ(u) be the index chosen by C in the u-th instance of Π1 and let

(ãns
(u)
i (1, i), ãns

(u)

ℓ(u)(2, i))i∈[m] and aux(u) be the outputs of the u-th instance
of Π1.

3. C partitions the set of servers into equivalence classes under the following
equivalence relation:

Si ∼ Sj
def⇐⇒ ãns

(u)

ℓ(u)(2, i) = ãns
(u)

ℓ(u)(2, j) (∀u ∈ [κ]).

4. Let A1, . . . , Aq be all the equivalence classes of size at least m − b. If there
does not exist such a class, C outputs a default value x0 ∈ X .

5. For each p ∈ [q], C does the following:
(a) C computes

x(u)
p = D(Ap, (ãns

(u)
i (1, i))i∈Ap ; aux

(u))

for all u ∈ [κ].

(b) If there exists y ∈ X such that |{u ∈ [κ] : x
(u)
p = y}| > κ/2, then C sets

yp := y. Otherwise, C sets yp to the default value x0.
6. C outputs Y = {yp : p ∈ [q]}.

Fig. 2. A construction of list-decodable PIR from robust PIR
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of Π1. It is sufficient to show that Pr
[
F
∣∣E(r(1), . . . , r(κ)) ] ≤ ϵ since we then

obtain that

Pr[F ] =
∑

r(1),...,r(κ)

Pr
[
E(r(1), . . . , r(κ))

]
· Pr

[
F
∣∣∣E(r(1), . . . , r(κ)) ] ≤ ϵ.

Fix random strings r(1), . . . , r(κ) ∈ RQ such that Pr
[
F
∣∣E(r(1), . . . , r(κ)) ] > 0.

Note that (ãns
(u)
i (1, i))i∈[m] is also fixed since we assume that servers’ (possibly

malicious) behavior is deterministic. Let B0 ⊆ H be the set of malicious servers

Si such that ãns
(u)
i (1, i) ̸= A(i, que(u)i ,a) for some u ∈ [κ]. For i ∈ [m] with

Si ∈ B0, let Ki ⊆ [κ] be the set of all u’s such that ãns
(u)
i (1, i) ̸= A(i, que(u)i ,a).

The event F happens only if there exists B1 ⊆ B0 such that servers in B1

successfully submit incorrect answers along with honest servers and let C output
an incorrect result, i.e.,

B1 ∪H ⊆ Ap and

∣∣∣∣∣ ⋃
i∈B1

Ki

∣∣∣∣∣ ≥ κ

2
.

Since |B1| ≤ b, there exists Si ∈ B1 ⊆ H such that |Ki| ≥ κ/(2b). For this server
Si, it follows from Si ∈ Ap that ℓ(u) ̸= i for all u ∈ Ki. The probability that it
happens is at most (

1− 1

m

)κ/(2b)

≤ exp
(
− κ

2bm

)
≤ ϵ

b
.

It therefore follows from the union bound that the probability that F happens
is at most ϵ.

As for the communication complexity of Π ′, observe that the communication
complexity of the sub-protocol Π1 is at most twice larger than that of Π. Since
the client and servers run κ = O(bm log(bϵ−1)) instances of Π1, we obtain that
Comm(Π ′) = O(bm log(bϵ−1) · Comm(Π)).

As for the computational complexity, first observe that the client needs to
generate one query for Π and receive two sets of answers for Π in each in-
stance of Π1. Hence the client-side computational complexity of Step 1 of Π ′

is at most 2κ · c-Comp(Π). Next, the computational complexity of Step 3 is
at most m2κ · Comm(Π) ≤ m2κ · c-Comp(Π). This is because the client can
verify the equivalence between each pair of servers in O(Comm(Π) · κ) time.
The computational complexity of Step 5 is at most qκ · c-Comp(Π) ≤ mκ ·
c-Comp(Π). It is possible to find the majority of a sequence x(1), . . . , x(κ) ∈ X
in time O(κ log |X |), e.g., by the Boyer-Moore algorithm [8]. Thus we obtain that
c-Comp(Π ′) = O(bm3 log(bϵ−1) · c-Comp(Π)). Finally, the server-side computa-
tional complexity of Π ′ is clearly at most κ · s-Comp(Π1) ≤ 2κ · s-Comp(Π) =
O(bm log(bϵ−1) · s-Comp(Π)). ⊓⊔

It is known that an (m− b,m)-robust PIR scheme can be constructed from a
regular k-server PIR scheme with poly(m, k ) multiplicative overhead if k = (m−
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b)/ ln(m − b) (see Proposition 2). We therefore obtain our generic construction
of list-decodable PIR from regular PIR.

Theorem 5. Suppose that m > b(L+ 1)/L. Let

k ≤ m− b

ln(m− b)
.

Let Π0 be a one-round (t+1)-private k-server PIR protocol. Then for any ϵ > 0,
there exists a two-round t-private (b, L; 1−ϵ)-list-decodable m-server PIR protocol
Π ′ such that

– Comm(Π ′) = O(bm3 log(bϵ−1) · Comm(Π0));
– c-Comp(Π ′) = O(bm5 log(bϵ−1) · c-Comp(Π0));
– s-Comp(Π ′) = O(bm2 log(bϵ−1) · s-Comp(Π0)).

5.2 Instantiations

If d ≤ (2(m − b) − 1)/(t + 1), then there exists a (t + 1)-private (m − b,m)-
robust PIR scheme ΠWY

d,m−b (Proposition 7). We obtain the following corollary

by instantiating Theorem 4 with ΠWY
d,m−b.

Corollary 3. Let d ≥ 2. Suppose that

m ≥ max

{
L+ 1

L
b+ 1, b+

(t+ 1)d+ 1

2

}
.

Then for any ϵ > 0, there exists a two-round t-private (b, L; 1− ϵ)-list-decodable
m-server PIR protocol Π ′ such that

– Comm(Π ′) = Õ(bm2 log ϵ−1) · dn1/d log |X |;
– c-Comp(Π ′) = mO(1) log ϵ−1 · n1/d log |X |;
– s-Comp(Π ′) = Õ(bm log ϵ−1) · n1+1/d log |X |

It can be seen that (m− b)/ ln(m− b) ≥ 4r if m ≥ b+ 3r4r. We thus obtain
the following corollary by instantiating Theorem 5 with the 2-private 4r-server
PIR scheme Π̃Efr

r in Proposition 6.

Corollary 4. Let r ≥ 2. Suppose that

m ≥ max

{
L+ 1

L
b+ 1, b+ 3r4r

}
.

Then for any ϵ > 0, there exists a two-round 1-private (b, L; 1− ϵ)-list-decodable
m-server PIR protocol Π ′ such that

– Comm(Π ′) = Õr(bm
3 log ϵ−1) · hr(n) log |X |;

– c-Comp(Π ′) = Õr(bm
5 log ϵ−1) · hr(n)

2 log |X |;
– s-Comp(Π ′) = Õr(bm

2 log ϵ−1) · nhr(n)
2 log |X |.

Remark 3. If r = 2 and m ≥ b+68, then (m−b)/ ln(m−b) ≥ 4r = 16. Therefore,
if b ≥ 68 ·L, Corollary 4 provides a statistical (b, L)-list-decodable m-server PIR
protocol with no(1) communication achieving the minimum number of servers
m > b(L+ 1)/L and polynomial computational complexity in m.
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6 Generic Construction of Statistical Error-Correcting
PIR Preserving a Privacy Threshold

In this section, we show a generic construction of O(m2)-round (b; 1 − ϵ)-error-
correcting m-server PIR protocols from regular k-server PIR protocols for m ≥
max{2b+1, b+k}. It has an advantage over the construction in Section 5 that it
does not decrease the privacy threshold of the underlying regular PIR protocols.

We first introduce a notion of conflict-finding PIR. We next construct error-
correcting PIR from conflict-finding PIR. Finally we show a generic construction
of conflict-finding PIR from regular PIR, and its instantiation.

Graph Theory. To begin with, we recall the standard terminology of graph
theory (see [22, Chapter 2] for instance). A (simple and undirected) graph G is
a pair (V,E), where V is a set of vertices and E is a set of edges (i, j) ∈ V × V .
A graph G is called connected if there is a walk between each pair of vertices.
It is a standard result in graph theory that any graph can be decomposed into
connected components in linear time O(|V | + |E|) [28]. For S ⊆ V , we denote
by G[S] the induced subgraph, i.e., the graph whose vertex set is S and whose
edge set consists of the edges in E that have both endpoints in S.

Let G = (V,E) be a connected graph with at least k vertices. There is a
simple way to find a connected subgraph of G with exactly k vertices in time
O(k(|V | + |E|)). Indeed, it is clear for k = 1. Suppose that we have found a
connected subgraph C = (V ′, E′) with k vertices. One can choose a pair of
vertices i ∈ V ′ and j ∈ V \ V ′, and a walk (i0 = i, i1, . . . , iℓ = j) between them
in linear time O(|V |+ |E|), e.g., by breadth-first search. Then, C′ = G[V ′ ∪{ip}]
is a connected subgraph with k+1 vertices, where p is the smallest integer such
that ip /∈ V ′. The claim follows from the induction on k.

6.1 Construction of Error-Correcting PIR from Conflict-Finding
PIR

Let V be the set of m servers. We consider a variant of an m-server PIR protocol
as follows: Instead of just outputting a value x ∈ X , a client outputs (y, z) such
that (1) y ∈ X and z = ⋆, (2) y = conflict and z = (G0, G1), which is a partition
of V such that G0 ̸= ∅ and G1 ̸= ∅, or (3) y = ⊥ and z = failure. We call the first
(resp. second) component of a client’s output the y-output (resp. z-output).

Definition 8 (Conflict-finding PIR). We say that the above variant of an
m-server PIR protocol is (b; 1−ϵ)-conflict-finding if for any a ∈ Xn, any τ ∈ [n]
and any adversary B who corrupts at most b servers, the following holds:

Correctness. If all servers behave honestly, a client C outputs (y, z) = (aτ , ⋆)
with probability 1.

Soundness. The probability that C outputs y ∈ X \ {aτ} and z = ⋆, or (y, z) =
(⊥, failure) is at most ϵ.
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Conflict finding. Let H be the set of honest servers. We say that a partition
(G0, G1) of V is bad if H ⊈ G0 and H ⊈ G1. The client C never outputs a
bad partition (G0, G1).

z-Independence. The distribution of the z-output over {⋆, failure}∪{(G0, G1) :
G0 ∪G1 = V,G0 ̸= ∅, G1 ̸= ∅} is independent of τ .

We construct multi-round error-correcting PIR from conflict-finding PIR.

Proposition 9. Suppose that m > 2b. Let ϵ1 > 0 and k ≤ m − b. Let ΠCF be
an ℓ-round t-private (b; 1− ϵ1)-conflict-finding k-server PIR protocol. Then, for
any ϵ ≥ 2

(
m
2

)
ϵ1, there exists an O(ℓm2)-round t-private (b; 1−ϵ)-error-correcting

m-server PIR protocol Π such that

– Comm(Π) = O(m2 · Comm(ΠCF));
– c-Comp(Π) = O(m2 · c-Comp(ΠCF) +m5);
– s-Comp(Π) = O(m2 · c-Comp(ΠCF)).

Notations.
– Let k ≤ m− b.
– Let ΠCF be a conflict-finding k-server PIR protocol.
– A client C has an index τ ∈ [n] and each server Si has the database a ∈ Xn.

Protocol.
1. C sets Y = ∅ and G = (V,E) as the complete graph such that V =
{S1, . . . , Sm}.

2. C decomposes G into connected components C1 = (V1, E1), . . . , Cq = (Vq, Eq).
3. If |Vp| < k for all p, C outputs Y. Otherwise, C chooses Cp such that |Vp| ≥ k

uniformly at random, and chooses a connected subgraph C′p = (V ′
p , E

′
p) of Cp

with exactly k vertices (see the remarks before Section 6.1).
4. C executes ΠCF with servers in V ′

p .
5. Let (y, z) be the output of ΠCF.
6. If Y ̸= ∅, C chooses an edge e ∈ E′

p uniformly at random and goes to Step 7.
Otherwise, C does the following:
(a) If z = ⋆, C adds y = x ∈ X to Y and chooses an edge e ∈ E′

p uniformly at
random.

(b) If z = (G0, G1), where (G0, G1) is a partition of V ′
p , C chooses an edge

e = (Si, Sj) ∈ E′
p such that Si ∈ G0 and Sj ∈ G1 uniformly at random.

(c) If z = failure, C chooses an edge e ∈ E′
p uniformly at random.

7. C sets G ← (V,E \ {e}) and goes back to Step 2.

Fig. 3. A construction of error-correcting PIR from conflict-finding PIR

Proof. Consider a PIR protocol Π described in Fig. 3. We first see that the
protocol always terminates. Observe that at least one edge of G is removed
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in each iteration and the protocol ends when there is no connected subgraph
of size at least k. Therefore ΠCF is executed at most

(
m
2

)
times. Hence the

communication complexity of Π is at most O(m2 · Comm(ΠCF)). To prove the
correctness, we consider the first iteration. If all servers are honest, then q = 1
and C1 = G is the complete graph on V . C executes ΠCF with some set of k
servers and obtains (aτ , ⋆). He then sets Y = {aτ} and just loops Steps 2 to 7
without changing Y. Finally, he outputs the correct result Y = {aτ}.

We next see that the protocol is t-private. Let eℓ be the edge removed in the
ℓ-th round and zℓ be the z-output of ΠCF in the ℓ-th round. We see that the
joint distribution of e1, . . . , eℓ is independent of τ for any ℓ. To prove it by the
induction on ℓ, assume that the claim holds for e1, . . . , eℓ−1. The set V

′
p of servers

with which ΠCF is executed in the ℓ-th round is determined by e1, . . . , eℓ−1. Note
that zℓ depends only on V ′

p and is independent of τ due to the z-independence
property in Definition 8. Since a client C chooses eℓ depending on e1, . . . , eℓ−1

and zℓ, the claim also holds for e1, . . . , eℓ. Let A be any set of t servers and

Qℓ = {que(ℓ)i }i∈Xℓ
be the queries that servers in A receive from the client C

in the ℓ-th round, where Xℓ is the subset of A participating in ΠCF in that
round. We prove that the joint distribution of Q1, . . . , Qℓ is independent of τ for
any ℓ, which implies the t-privacy of the protocol. Assume that the claim holds
for Q1, . . . , Qℓ−1. The set Xℓ can be simulated only from e1, . . . , eℓ−1, which
are independent of τ . Since ΠCF is t-private and C runs ΠCF on independent
randomness in each round, Qℓ can be simulated only from Xℓ and hence is
independent of τ . The claim follows from the induction on ℓ.

We see that Π is (b; 1−ϵ)-error-correcting. Let H be a set of k honest servers.
Let Y be an output of Π. Assume that Y ̸= {aτ}. There are two possible cases:
Y = ∅ or Y = {x} for x ̸= aτ . The first case occurs only if G has no connected
components of size at least k just before Π terminates. In particular, the set H
of size k must have become a non-connected subset. Therefore an edge between
two honest servers Si, Sj ∈ H must be removed at some iteration. It is not at
Step 6(b) that the edge is removed since the conflict finding property in Def-
inition 8 ensures that C never outputs a bad partition (G0, G1). Thus it must
be at Step 6(c). That is, there is a set T of servers such that the z-output of
ΠCF executed with servers in T is z = failure. Since T includes at most b mali-
cious servers, this event happens with probability at most ϵ1 from the soundness
property of ΠCF. On the other hand, the second case that Y = {x} for x ̸= aτ
happens only if C obtains the incorrect result x ̸= aτ at Step 6(a). It implies
that the y-output of ΠCF executed with servers in V ′

p is incorrect. Since there
are at most b malicious servers in V ′

p , this event also happens with probability
at most ϵ1 from the soundness property of ΠCF. Since ΠCF is executed at most(
m
2

)
times, the failure probability of Π is at most 2

(
m
2

)
ϵ1 ≤ ϵ.

Finally, we analyze the computational complexity of Π. From the facts in
graph theory, in each iteration, the client can decompose G into connected com-
ponents in time O(m2) and can find a connected subgraph with k vertices in
time O(km2) = O(m3) (see the remarks before Section 6.1). Since the total
number of iterations is

(
m
2

)
, the client-side computational complexity is at most
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O(m2 · c-Comp(ΠCF) +m5). It is easy to see that the server-side computational
complexity is O(m2 · c-Comp(ΠCF)). ⊓⊔

Remark 4. Proposition 9 can be applied to a (b; 1)-conflict-finding PIR protocol
(i.e., ϵ1 = 0) and then a resulting PIR protocol satisfies perfect error correction
(i.e., ϵ = 0). Although we here use it only to obtain a statistical error-correcting
protocol, Proposition 9 might be used to obtain some results in the prefect case
if an instantiation of (b; 1)-conflict-finding PIR is found.

6.2 Construction of Conflict-Finding PIR from Regular PIR

First, we construct a basic two-round PIR protocol that is (b; 1 − ϵ0)-conflict-
finding for non-negligible ϵ0.

Proposition 10. Suppose that t ≥ b. Let λ ∈ N and ϵ0 = m/λ. Let Π be a one-
round t-private m-server PIR protocol. Then, there exists a two-round t-private
(b; 1− ϵ0)-conflict-finding m-server PIR protocol Π0 such that

– Comm(Π0) = O(mλ · Comm(Π));
– c-Comp(Π0) = O(m2λ · c-Comp(Π));
– s-Comp(Π0) = O(mλ · s-Comp(Π)).

Proof. Consider a PIR protocol Π0 described in Fig. 4. The communication
complexity in the first round is the same as that of Π. In the second round, the
client sends at most mλ queries for Π to every server. Thus, the communication
complexity of Π0 is O(mλ · Comm(Π)). The t-privacy follows from that of Π
since any t servers only see at most t queries regarding a client’s index τ . It can be

seen that the correctness holds as follows. If all servers are honest, ãns
(h)
i (2, i) =

ãns
(h)
i (1, i) for all i ∈ [m] and h ∈ [λ] \ {µ}, and ãns(2, i) = ãns(2, j) for all i, j ∈

[m] at the output stage. Then the client C outputs D((ãns(µ)i (1, i))i∈[m]; aux
(µ)) =

D((A(i, que(µ)i ,a))i∈[m]; aux
(µ)) = aτ since ((que

(µ)
i )i∈[m]; aux

(µ))← Q(τ).
We see that Π0 is (b; 1− ϵ0)-conflict-finding. Let B be the set of b corrupted

servers. Assume that the y-output of Π0 is y = conflict and the z-output is a

partition of the set of m servers. It implies that ãns
(h)
i (1, i) ̸= ãns

(h)
i (2, i) for some

i ∈ [m] and h ∈ [λ]\{µ} at Step 2 in the output stage, or that q ≥ 1 at Step 3. In
the former case, Si is clearly malicious and H := B ⊆ {Sj : j ̸= i}. In the latter
case, it holds that H = B ⊆ G′

p for some 0 ≤ p ≤ q since ãns(2, i) = ãns(2, j) for
all Si, Sj ∈ H. Thus the conflict-finding property in Definition 8 holds.

As for the soundness, it clearly follows from the description of Π0 that a
client never outputs (y, z) = (⊥, failure). Let F be the event that Π0 outputs
y ∈ X \ {aτ} and z = ⋆. Also, for i ∈ [m], let Fi be the event that y ∈ X ,
z = ⋆ and ãns

(µ)
i (1, i) ̸= A(i, que(µ)i ,a). From the union bound, we have that

Pr[F ] ≤
∑

Si∈B Pr[Fi ]. We show that Pr[Fi ] ≤ 1/λ for all i in the following. If Fi

occurs, it must hold that ãns
(h)
i (1, i) = ãns

(h)
i (2, i) = ãns

(h)
i (2, j) = A(i, que(h)i ,a)

for all h ∈ [λ]\{µ} and j ∈ [m] such that Sj is an honest server. Define a random
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Notations.
– Let Π = (Q,A,D) be a one-round m-server PIR protocol.
– Let λ ∈ N.
– A client C has an index τ ∈ [n] and each server Si has the database a ∈ Xn.

First round.
Query.

1. C chooses µ←$ [λ] and computes

(que
(h)
1 , . . . , que(h)m ; aux(h))←

{
Q(τ), if h = µ,

Q(1), otherwise,

for all h ∈ [λ].

2. C sends (que
(h)
i )h∈[λ] to each server Si.

Answer.
1. Each server Si computes ans

(h)
i (1, i) = A(i, que(h)i ,a) for all h ∈ [λ].

2. Si sends (ans
(h)
i (1, i))h∈[λ] to C.

Second round.
Query. C sends (que

(h)
1 , . . . , que(h)m )h∈[λ]\{µ} to all servers.

Answer.
1. Each server Si computes ans

(h)
k (2, i) = A(k, que(h)k ,a) for all k ∈ [m] and

h ∈ [λ] \ {µ}.
2. Si sends (ans

(h)
1 (2, i), . . . , ans

(h)
m (2, i))h∈[λ]\{µ} to C.

Output.
1. Let (ãns

(h)
i (1, i))h∈[λ] and ãns(2, i) = (ãns

(h)
1 (2, i), . . . , ãns(h)m (2, i))h∈[λ]\{µ} de-

note the answers returned by Si at the first and second rounds, respectively.
2. If ãns

(h)
i (1, i) ̸= ãns

(h)
i (2, i) for some i ∈ [m] and h ∈ [λ] \ {µ}, then C chooses

such i uniformly at random. C outputs y = conflict and z = ({Si}, {Sj : j ̸= i}).
3. C partitions the set of servers into equivalence classes under the following

equivalence relation:

Si ∼ Sj
def⇐⇒ ãns(2, i) = ãns(2, j).

C shuffles the equivalence classes uniformly at random and labels them
G′

0, G
′
1, . . . , G

′
q.

4. If all servers are equivalent, i.e., q = 0, C outputs

y = D(ãns(µ)1 (1, 1), . . . , ãns(µ)m (1,m); aux(µ))

and z = ⋆. Otherwise, C outputs y = conflict and z = (G0, G1), where G0 = G′
0

and G1 = G′
1 ∪ · · · ∪G′

q.

Fig. 4. A basic construction of conflict-finding PIR from regular PIR
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variable Zi as follows: Zi takes a value µ′ ∈ [λ] if ãns
(µ′)
i (1, i) ̸= A(i, que(µ

′)
i ,a)

and ãns
(h)
i (1, i) = A(i, que(h)i ,a) for all h ̸= [λ] \ {µ′}, and Zi = 0 otherwise.

Let U be a random variable representing µ←$ [λ] chosen by the client. Since Π

is t-private and b ≤ t, the view (que
(h)
i′ )h∈[λ],Si′∈B of corrupted servers at the

first round is independent of U . In particular, (ãns
(h)
i (1, i))h∈[λ] (and hence Zi)

is independent of U . Therefore we have that Pr[Fi ] ≤ Pr[Zi = U ] ≤ 1/λ, which
implies that Pr[F ] ≤ m/λ = ϵ0 and that the soundness holds.

To see the z-independence property in Definition 8, observe that the z-output

of Π0 is determined by (ãns
(h)
i (1, i))i∈[m],h∈[λ]\{µ} and (ãns(2, i))i∈[m]. For Si ∈

B, (ãns
(h)
i (1, i))h∈[λ]\{µ} and ãns(2, i) are determined by (que

(µ)
i′ )i′∈B and other

queries for the index 1 ∈ [n], which are independent of τ due to the t-privacy of

Π. Furthermore, for Si /∈ B, (ãns
(h)
i (1, i))h∈[λ]\{µ} and ãns(2, i) are determined

by queries for the index 1. We conclude that the z-output is independent of τ .
Finally, we analyze the computational complexity of Π. In the first and

second rounds, the client needs to compute λ queries for Π and then the com-
putational complexity is at most O(λ · c-Comp(Π)). The computational com-
plexity of Step 3 in the output phase is at most m2λ · Comm(Π) ≤ m2λ ·
c-Comp(Π) since the client can verify the equivalence between each pair of
servers in O(λ · Comm(Π)) time. The computational complexity of Step 4 is at
most O(c-Comp(Π)). Thus, we have that c-Comp(Π0) = O(m2λ · c-Comp(Π)).
Every server computes answers to at most O(mλ) queries for Π and hence
s-Comp(Π0) = O(mλ · s-Comp(Π)). ⊓⊔

Next, we construct a two-round PIR protocol that is (b; 1−ϵ)-conflict-finding
for negligible ϵ. We defer the proof to Appendix D.

Proposition 11. Suppose that t ≥ b. Let Π be a one-round t-private m-server
PIR protocol. Then, for any ϵ1 > 0, there exists a two-round t-private (b; 1−ϵ1)-
conflict-finding m-server PIR protocol Π1 such that

– Comm(Π1) = O(m2(log ϵ−1
1 ) · Comm(Π));

– c-Comp(Π1) = O(m3(log ϵ−1
1 ) · c-Comp(Π));

– s-Comp(Π1) = O(m2(log ϵ−1
1 ) · s-Comp(Π)).

Finally, by combining Propositions 9 and 11, we obtain our generic construc-
tion of O(m2)-round statistical b-error-correcting m-server PIR from one-round
regular k-server PIR for m ≥ max{2b+ 1, b+ k}.

Theorem 6. Suppose that m > 2b and t ≥ b. Let k ≤ m − b. Let Π be a
one-round t-private k-server PIR protocol. Then, for any ϵ > 0, there exists an
O(m2)-round t-private (b; 1− ϵ)-error-correcting m-server PIR protocol Π1 such
that

– Comm(Π1) = O(m4 log(mϵ−1) · Comm(Π));
– c-Comp(Π1) = O(m5 log(mϵ−1) · c-Comp(Π));
– s-Comp(Π1) = O(m4 log(mϵ−1) · s-Comp(Π)).
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6.3 Instantiation

We obtain the following corollary by instantiating Theorem 6 with the scheme
ΠWY

d,m−b in Proposition 7.

Corollary 5. Let d ≥ 2. Suppose that t ≥ b and m ≥ max{2b+1, b+(td+1)/2}.
Then, for ϵ > 0, there exists an O(m2)-round t-private (b; 1− ϵ)-error-correcting
m-server PIR protocol Π1 such that

– Comm(Π1) = Õ(m5 log ϵ−1) · dn1/d log |X |;
– c-Comp(Π1) = mO(1) log ϵ−1 · n1/d log |X |;
– s-Comp(Π1) = Õ(m4 log ϵ−1) · n1+1/d log |X |.

Remark 5. Corollary 3 also provides a t-private (b; 1 − ϵ)-error-correcting m-
server PIR protocol. The advantage of Corollary 5 is that it achieves a smaller
number of servers max{2b+1, b+(td+1)/2} while Corollary 3 assumes max{2b+
1, b+ ((t+ 1)d+ 1)/2} servers.
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A (Im)possibility for List-Decodable PIR

We show that there exists a (b, L; 1− ϵ)-list-decodable m-server PIR protocol for
negligible ϵ only if m > b(L+ 1)/L.

Proposition 12. Let Π be a (possibly multi-round) (b, L; 1 − ϵ)-list-decodable
m-server PIR protocol for a universe of databases Xn. If m ≤ b(L + 1)/L and
|X | ≥ L+ 1, then ϵ ≥ 1/(L+ 2).

Proof. Since (L+ 1)(m− b) ≤ m, there exists a partition (G1, . . . , GL+1) of the
set of servers such that |Gj | ≥ m− b for all j ∈ [L+1]. Let x(1), . . . , x(L+1) ∈ X
be distinct elements. Let a(1), . . . ,a(L+1) ∈ Xn be L+1 databases such that the

first element of a(j) is x(j), i.e., a
(j)
1 = x(j) for all j ∈ [L+ 1].

Consider an experiment in which the client has an input 1 ∈ [n] and for any
j ∈ [L+1], servers in Gj follow the rules of Π with input a(j). Let Ej be an event
that a list Y outputted by the client contains x(j) in the experiment. For any
j ∈ [L+1], the experiment can be viewed as an attack where the correct database
is a(j), servers in Gj are honest, and servers in Gk for k ̸= j behave honestly
except that they compute their answers based on a(k) instead of a(j). Since
|Gj | ≤ b and Π is (b, L; 1 − ϵ)-list-decodable, the probability that Ej occurs in
the experiment is at least 1−ϵ. Thus, the probability that all Ej ’s simultaneously
occur is at least 1 − (L + 1)ϵ. On the other hand, the probability that the size
of Y exceeds L is at most ϵ. Since |Y| ≥ L + 1 if all Ej ’s simultaneously occur,
we obtain that 1− (L+ 1)ϵ ≤ ϵ and hence ϵ ≥ 1/(L+ 2). ⊓⊔

Since list decoding is a trivial task if |X | ≤ L, it is reasonable to assume that
|X | ≥ L+ 1.

Conversely, if m > b(L + 1)/L, it is possible to realize (b, L)-list-decodable
PIR with communication complexity O(nm log |X |): Each server sends the entire
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database to a client. Given m answers a(1), . . . ,a(m), the client outputs a list of

L values appearing most frequently among the m values a
(1)
τ , . . . , a

(m)
τ .

B Proof of Proposition 8

Fix H ∈
(
[m]
h

)
. We first show that Pr[f ←$Map(m, k) : f(H) ̸= [k]] < 1/3. In-

deed, if f(H) ̸= [k], there is j ∈ [k] such that f(s) ̸= j for any s ∈ H. Since the
total number of maps f such that f(s) ̸= j for any s ∈ H is at most km−h(k−1)h,
we obtain that

Pr[f ←$Map(m, k) : f(H) ̸= [k]] ≤ km−h(k − 1)hk

km
≤ k

(
1− 1

k

)h

.

Since 1 − x ≤ exp(−x) and k ≤ h/(γ lnh), this probability is further upper
bounded by

k · exp
(
−h

k

)
≤ h

γ lnh
exp(−γ lnh) ≤ 1

hγ−1 lnh
≤ 1

15γ−1 ln 15
=

1

3
.

Let X be a random variable over {0, 1} defined as X = 1 if and only if
f(H) = [k], where f ←$Map(m, k). Let p = Pr[X = 1]. We have that p ≥ 2/3.
Let X1, . . . , Xw be i.i.d. random variables over {0, 1} such that Pr[Xu = 1] = p

for all u. Note that p = E
[
(1/w)

∑
u∈[w] Xu

]
. From the Chernoff bound, we

obtain that

Pr

 ∑
u∈[w]

Xu ≤
w

2

 = Pr

 1

w

∑
u∈[w]

Xu ≤ p−
(
p− 1

2

)
≤

((
p

1/2

)1/2(
1− p

1/2

)1/2
)w

= (4p(1− p))w/2

≤
(
8

9

)w/2

≤ exp
(
− w

18

)
.

From the definition of Xu, we have that

Pr
[
f1, . . . , fw←$Map(m, k) : |{u ∈ [w] : fu(H) = [k]}| ≤ w

2

]
≤ exp

(
− w

18

)
.
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It follows from the union bound that

Pr

[
f1, . . . , fw←$Map(m, k) : ∃H ∈

(
[m]

h

)
, |{u ∈ [w] : fu(H) = [k]}| ≤ w

2

]
≤
(
m

h

)
exp

(
− w

18

)
≤ 2m exp

(
− w

18

)
= exp

(
m ln 2− w

18

)
.

We can also see that if f1, . . . , fw←$Map(m, k), the probability that there
are i, j ∈ [w] such that fi = fj is at most(

w

2

)
1

km
<

w2

2
· 1

2m
=

w2

2m+1
.

Therefore, if f1, . . . , fw←$Map(m, k), the probability that the set F = {f1, . . . , fw}
is of size w and |{f ∈ F : f(H) = [k]}| > w/2 for all H ∈

(
[m]
h

)
is at least

1− exp
(
m ln 2− w

18

)
− w2

2m+1
.

If we set w = 14m, then the above value is

1− exp

(
−
(
7

9
− ln 2

)
m

)
− 142m2

2m+1

≥ 1− exp

(
−
(
7

9
− ln 2

)
· 15
)
− 142 · 152

216

= 1− 0.2809 · · · − 0.6729 · · ·
> 0

since m ≥ 15 and 7/9 − ln 2 > 0. Therefore, an (m,h, k)-locally surjective map
family of size w = 14m indeed exists.

C Refined Constructions of Locally Surjective Map
Families

We show that it is possible to make overwhelming the success probabilities of
probabilistic constructions of nearly perfect hash families and locally surjective
map families in Propositions 1 and 8.

Proposition 13. Let ϵ > 0 and m,h, k ∈ N be such that m ≥ h ≥ 3 and
k ≤ h/ lnh. Let w be any integer such that

w > 8m+
ln ϵ−1

ln ln 3
. (2)

35



If we choose w functions f1, . . . , fw independently and uniformly at random from
Map(m, k), then F = {f1, . . . , fw} is an (m,h, k)-nearly perfect hash family with
probability at least 1− ϵ.

Proof. Fix H ∈
(
[m]
h

)
. As in the proof of Proposition 8, we have that

Pr[f ←$Map(m, k) : f(H) ̸= [k]] ≤ k

(
1− 1

k

)h

≤ 1

lnh
.

We then obtain that

Pr[f1, . . . , fw←$Map(m, k) : ∀u ∈ [w], fu(H) ̸= [k]] ≤ 1

(lnh)w
.

It follows from the union bound that

Pr

[
f1, . . . , fw←$Map(m, k) : ∃H ∈

(
[m]

h

)
, ∀u ∈ [w], fu(H) ̸= [k]

]
≤

(
m
h

)
(lnh)w

≤ 2m

(lnh)w

≤ exp(−(w ln ln 3−m ln 2)).

If we set w = 8m, then the above value is less than 1 and we obtain Proposition 1.
If we choose w satisfying the condition (2), then the above probability is less
than ϵ. ⊓⊔

Proposition 14. Let ϵ > 0 and m,h, k ∈ N be such that h ≥ 15,

m ≥ 18 +
ln ϵ−1

1− ln 2
and k ≤ h

γ lnh
,

where γ = 1 + (ln 3 − ln ln 15)/(ln 15) < 1.04. If we choose w := 18m functions
f1, . . . , fw independently and uniformly at random from Map(m, k), then F =
{f1, . . . , fw} is an (m,h, k)-locally surjective map family with probability at least
1− ϵ.

Proof. From the proof of Proposition 8, the probability that F is not an (m,h, k)-
locally surjective map family is upper bounded by

q := exp
(
m ln 2− w

18

)
+

w2

2m+1
.

Since m ≥ 15, we have that

m2

√
2
m ≤

152
√
2
15 =: c1.
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We thus obtain that

q ≤ exp (−m(1− ln 2)) +
182c1
2
· (
√
2)−m

= exp (−m(1− ln 2)) + c2 exp
(
−m ln

√
2
)
,

where c2 := 182c1/2. From the condition on m and the fact that 18(1 − ln 2) >
ln(c2 + 1), we have that exp (−m(1− ln 2)) ≤ ϵ/(c2 + 1). In addition, since
1− ln 2 < ln

√
2, it holds that

m ≥ ln(c2 + 1)

1− ln 2
+

ln ϵ−1

ln
√
2
≥ ln(c2 + 1) + ln ϵ−1

ln
√
2

and hence that exp
(
−m ln

√
2
)
≤ ϵ/(c2 + 1). We thus obtain that q ≤ ϵ/(c2 +

1) + c2 · ϵ/(c2 + 1) = ϵ. ⊓⊔

D Proof of Proposition 11

Notations.
– Let Π0 be the conflict-finding m-server PIR protocol described in Fig. 4.
– Let κ ∈ N.
– A client C has an index τ ∈ [n] and each server Si has the database a ∈ Xn.

Protocol.
1. C executes κ independent instances of Π0 in parallel.
2. Let

(x(1), ⋆), . . . , (x(κ1), ⋆), (conflict, (G
(1)
0 , G

(1)
1 )), . . . , (conflict, (G

(κ2)
0 , G

(κ2)
1 ))

be the (rearranged) outputs of the κ instances of Π0, where κ1, κ2 ≥ 0, κ1 +

κ2 = κ, x(h) ∈ X and (G
(h)
0 , G

(h)
1 ) is a partition of the set of m servers.

3. C does the following:
(a) If κ2 ≥ 1, C chooses h ∈ [κ2] uniformly at random and outputs

(conflict, (G0, G1)), where G0 = G
(h)
0 and G1 = G

(h)
1 .

(b) If κ2 = 0 and there exists y ∈ X such that |{h ∈ [κ] : x(h) = y}| > κ/2,
then C outputs (y, ⋆).

(c) Otherwise, C outputs (⊥, failure).

Fig. 5. A construction of conflict-finding PIR from regular PIR

Let Π0 be a t-private (b; 1 − ϵ0)-conflict-finding PIR protocol for ϵ0 = m/λ
given by Proposition 10. Consider a PIR protocol Π1 described in Fig. 5. The t-
privacy follows from that of Π0. The correctness easily follows since if all servers
behave honestly, then κ1 = κ, κ2 = 0 and x(h) = aτ for all h.
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To see that Π1 satisfies the soundness property in Definition 8, first observe
that a client outputs (y, z) = (⊥, failure) only if he proceeds to Step 3(c), which
means that κ1 = κ and |{h ∈ [κ] : x(h) ̸= aτ}| ≥ κ/2. Since Π0 is (b; 1 − ϵ0)-
conflict-finding, the probability that it occurs is at most

ϵ
κ/2
0 ·

(
κ

κ/2

)
≤
(m
λ

)κ/2
· 2κ =

(
2

√
m

λ

)κ

≤ ϵ1

if we set λ = 16m and κ = log ϵ−1
1 . Similarly, we can see that y ∈ X \ {aτ} and

z = ⋆ with probability at most ϵ1 since the adversary now must make sure that
|{h ∈ [κ] : x(h) = y}| > κ/2 for some y ̸= aτ . Next, if y = conflict, we have that

for any h ∈ [κ2], either H ⊆ G
(h)
0 or H ⊆ G

(h)
1 occurs with probability 1, where

H is the set of all honest servers. In particular, neither G0 nor G1 is the empty
set and either H ⊆ G0 or H ⊆ G1 occurs. Thus Π1 satisfies the conflict finding
property in Definition 8. Finally, the z-output of Π1 is determined only by the
z-outputs of Π0, which are independent of a client’s index τ . Hence Π1 satisfies
the z-independence property in Definition 8.

If we set λ = 16m and κ = log ϵ−1
1 , the communication complexity of Π1

is O(κ · Comm(Π0)) = O(m2(log ϵ−1
1 ) · Comm(Π)). It can also be seen that

s-Comp(Π1) = O(m2(log ϵ−1
1 ) · s-Comp(Π)). Observe that the client-side com-

putational complexity of Step 1 is κ·c-Comp(Π0) = O(m3(log ϵ−1
1 )·c-Comp(Π)).

The other steps can be done in time O(mκ log |X |) = O(m(log ϵ−1
1 )·c-Comp(Π)).

Note that it is possible to find the majority of a sequence x(1), . . . , x(κ1) ∈ X
in time O(κ1 log |X |) by the Boyer-Moore algorithm [8]. Thus we have that
c-Comp(Π1) = O(m3(log ϵ−1

1 ) · c-Comp(Π)).

E Definition of Error-Detecting PIR

For completeness, we provide the formal definition of b-error-detecting PIR [15],
which allows a client to detect up to b errors.

Definition 9 (Error-detecting PIR). A PIR protocol Π is said to be (b; 1−
ϵ)-error-detecting if the following conditions hold:

– Π satisfies correctness in Definition 2;
– A client C is allowed to output a special symbol ⊥ and for any a ∈ Xn, any

τ ∈ [n] and any malicious adversary B who corrupts at most b servers, the
probability that C outputs aτ or ⊥ at the end of the protocol is at least 1− ϵ.
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