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Abstract. Partially Oblivious Pseudorandom Functions (POPRFs) are
2-party protocols that allow a client to learn pseudorandom function
(PRF) evaluations on inputs of its choice from a server. The client sub-
mits two inputs, one public and one private. The security properties
ensure that the server cannot learn the private input and the client can-
not learn more than one evaluation per POPRF query. POPRFs have
many applications including password-based key exchange and privacy-
preserving authentication mechanisms. However, most constructions are
based on classical assumptions, and those with post-quantum security
suffer from large efficiency drawbacks.
In this work, we construct a novel POPRF from lattice assumptions and
the “Crypto Dark Matter” PRF candidate (TCC’18) in the random or-
acle model. At a conceptual level, our scheme exploits the alignment of
this family of PRF candidates, relying on mixed modulus computations,
and programmable bootstrapping in the torus fully homomorphic encryp-
tion scheme (TFHE). We show that our construction achieves malicious
client security based on circuit-private FHE, and client privacy from the
semantic security of the FHE scheme. We further explore a heuristic
approach to extend our scheme to support verifiability based on the dif-
ficulty of computing cheating circuits in low depth. This would yield a
verifiable (P)OPRF. We provide a proof-of-concept implementation and
benchmarks of our construction using the tfhe-rs software library. For
the core online OPRF functionality, we require amortised 5.0kB commu-
nication per evaluation and a one-time per-client setup communication
of 16.8MB.
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1 Introduction

Oblivious pseudorandom functions allow two parties to compute a pseudoran-
dom function (PRF) z := Fk(x) together: a server supplying a key k and a user
supplying a private input x. The server does not learn x or z and the user does
not learn k. If the user can be convinced that z is correct (i.e. that evaluation



is performed under the correct key), then the function is “verifiable oblivious”
(VOPRF), otherwise it is only “oblivious” (OPRF). Both can be efficiently re-
alised from Diffie-Hellman (DH) and may be used in many cryptographic appli-
cations. Example applications include anonymous credentials (e.g. Cloudflare’s
PrivacyPass [DGS+18]) and Private Set Intersection (PSI) enabling e.g. privacy-
preserving contact look-up on chat platforms [CHLR18].

The obliviousness property can be too strong in many applications where it
is sufficient or even necessary to only hide part of the client’s input. In this case,
the public and private inputs are separated by requiring an additional public
input t, called the tag. Then we say that we have a Partially Oblivious PRF
(POPRF). POPRFs are typically used in protocols where a server may wish to
rate-limit OPRF evaluations made by a client. Such example protocols include
Password-Authenicated Key Exchanges (e.g. OPAQUE [JKX18], which is in the
process of Internet Engineering Task Force (IETF) standardisation) and the
Pythia PRF service [ECS+15]. This latter work also proposed a bilinear pairing-
based construction of a Verifiable POPRF (VPOPRF), which is the natural
inclusion of both properties: some of the input is revealed to the server and the
client is able to check the correct evaluation of its full input.

Despite the wide use of (VP)OPRFs, most constructions are based on classical
assumptions, such as DH, RSA or even pairing-based assumptions. The latest in
this line of research is a recent VPOPRF construction based on a novel DH-like
assumption [TCR+22] and DH-based OPRFs are currently being standardised
by the IETF. Their vulnerability to quantum adversaries makes it desirable to
find post-quantum solutions. However, known candidates are much less efficient.

Given fully homomorphic encryption (FHE), there is a natural (P)OPRF
candidate. The client FHE encrypts input x and sends it with tag t. The server
then evaluates the PRF homomorphically or “blindly” using a key derived from
t and its own secret key. Finally, the client decrypts the resulting ciphertext to
obtain the PRF output. The first challenge with this approach is performance,
PRFs tend to have sufficiently deep circuits that FHE schemes struggle to eval-
uate them efficiently. Even special purpose PRFs such as the LowMC construc-
tion [ARS+15] require depth ten or more, making them somewhat impractical.
More generally, in a binary circuit model we expect to require depth Θ(logλ) to
obtain a PRF resisting attacks with complexity 2Θ(λ).

Yet, if we expand our circuit model to arithmetic circuits with both mod p and
mod q gates for p ̸= q both primes, shallow proposals exist [BIP+18,DGH+21].
In particular, the (weak) PRF candidate in [BIP+18] is

z :=
∑

(A · x mod 2) mod 3

where arithmetic operations are over the Integers and A is the secret key. The
same work also contains a proposal to “upgrade” this weak PRF, defined for
uniformly random inputs x, to a full PRF, taking any x. Furthermore, the
works [BIP+18,DGH+21] already provide oblivious PRF candidates based on
this PRF and MPC, but with non-optimal round complexity. Thus, a natural
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question to ask is if we can construct a round-optimal (or, 2 message) POPRF
based on this PRF candidate using the FHE-based paradigm mentioned above.

1.1 Contributions
Our starting point is the observation that the computational model in [BIP+18]
aligns well with that of the TFHE encryption scheme [CGGI20] and its “pro-
grammable bootstrapping” technique [MP20,Joy21]. Programmable bootstrap-
ping allows us to realise arbitrary, not necessarily low degree, small look-up
tables and thus function evaluations on (natively) single inputs. Thus, it is well
positioned to realise the required gates.5 Indeed, FHE schemes natively compute
plaintexts modulo some P ∈ Z and programmable bootstrapping allows us to
switch between these plaintext moduli, e.g. from mod P1 to mod P2. This im-
plies a weak PRF with two levels of bootstrapping only.6 We believe this simple
observation and conceptual contribution will have applications beyond this work.
We further hope that by giving another application domain for the PRF candi-
date from [BIP+18] – it is not just MPC-friendly but also FHE-friendly – we
encourage further cryptanalysis on it.

After some preliminaries in Section 2 we specify our POPRF candidate in
Section 3. As is typical with FHE-based schemes, we require the involved parties
– here the client – to prove that its inputs are well-formed. We also make use
of the protected encoded-input PRF (PEI-PRF) paradigm from [BIP+18] where
the client performs some computations not dependent on secret key material and
then submits the output together with a NIZK proof of well-formedness to the
server for processing.

We prove our construction secure in the random oracle model in Section 4.
We show that our construction meets the security definitions from [TCR+22]:
pseudorandomness even in the presence of malicious clients (POPRF security)
and privacy for clients. This latter property has two flavours based on the capa-
bilities of the adversary, POPRIV1 (which we achieve) captures security against
an honest-but-curious server whereas POPRIV2 ensures security even when the
server is malicious. Here, the client maintains privacy by detecting malicious
behaviour of the server. POPRF security for the server essentially rests on a
variant of circuit-privacy obtained from TFHE bootstrapping and client NIZK.
The NIZK is made online extractable in the POPRF proof using a trapdoor and
thus avoids any rewinding issues outlined in e.g. [SG98], and similarly mitigates
the problem of rewinding for post-quantum security, cf. [Unr12]. POPRIV1 secu-
rity for the client against a semi-honest server essentially relies on the IND-CPA
security of TFHE.

Initially, we focus on oblivious rather than verifiable oblivious PRFs. This
is motivated by the presumed high cost associated with zero-knowledge proofs
5 The security of the PRF candidate in [BIP+18] rests on the absence of any low-

degree polynomial interpolating it, ruling out efficient implementations using FHE
schemes that only provide additions and multiplications.

6 We require two, not one, levels because we appeal to the circuit-privacy properties
of a final bootstrapping operation.
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for performing FHE computations. In Section 5, we explore a different approach
to adding verifiability to our OPRF, inspired by and based on a discussion
in [ADDS21]. The idea here is that the server commits to a set of evaluation
“check” points and that the client can use the oblivious nature of the PRF
to request PRF evaluations of these points to catch a cheating server. However,
achieving security of this “cut-and-choose” approach in this setting is non-trivial
as the server may still obliviously run a cheating circuit that agrees on those
check points but diverges elsewhere.

We explore the feasibility of such a cheating circuit using direct cryptanalysis.
In more detail, inspired by the heuristic approach in [CHLR18] for achieving ma-
licious security – forcing the server to compute a deep circuit in FHE parameters
supporting only shallow circuits – we explore cheating circuits in bootstrapping
depth two. While we were unable to find such a cheating circuit, and conjecture
that one does not exist, we stress that this part of our work is highly speculative.
Under the heuristic assumption that our construction is verifiable, in Appendix C
we then show that it also satisfies POPRIV2. We hope that our work encourages
further exploration of such strategies, as these will have applications elsewhere
to upgrade FHE-based schemes to malicious security.7

We present our proof-of-concept Rust implementation in Section 6, and pro-
vide benchmarks that illustrate how quickly the core OPRF functionality (with-
out (verifying the) NIZK proofs) can be run. Our implementation is open-source8

and makes use of Zama’s tfhe-rs library for implementing TFHE. While the
public key material sent by the client to the server is large (16.8MB) this cost
can be amortised by reusing the same material for several evaluations. Individual
PRF evaluations can then cost about 30.4kB or as little as 5.0kB when amortis-
ing client NIZK proofs across several OPRF queries. In terms of runtimes, client
online functions run in 36ms on one core and server online functions are expected
to run in 123ms on 64 cores. We discuss the (significantly worse) performance
of our VOPRF in Section 5.

In Appendix B we then estimate costs of the required non-interactive zero-
knowledge proofs. First, we use [BS22] (with a zero-knowledge “shim”) to proof
well-formedness of the bootstrapping key material. Second, as previously men-
tioned, our OPRF construction makes use of the PEI-PRF paradigm [BIP+18]
which must be made compatible with our zero-knowledge proofs. Here we rely
on and specialise the proofs in [LNP22]. We also show this is extendable to the
stronger property of non-unique encoding required in our verifiable OPRF.

1.2 Related Work

Oblivious PRFs and variants thereof are an active area of research. A survey
of constructions, variants and applications was given in [CHL22]. In this work
we are interested in plausibly post-quantum and round-optimal constructions.
7 We note that a hybrid approach of ours and proving correct evaluation would be to

prove that only a limited-depth circuit was evaluated.
8 https://anonymous.4open.science/r/oprf-fhe-C726
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The first candidate construction was given in [ADDS21], which built a verifiable
oblivious PRF from lattice assumptions following the blueprint of Diffie-Hellman
constructions with additive blinding (a construction for multiplicative blinding
is given in an appendix of the full version of [ADDS21]). The work provides both
semi-honest and malicious secure candidates with the latter being significantly
more expensive. We stress that in the former, both parties are semi-honest.

In [BKW20] two candidate constructions from isogenies were proposed. One,
a VOPRF related to SIDH, was unfortunately shown to not be secure [BKM+21].
The other, an OPRF related to CSIDH, achieves sub megabyte communication
in a malicious setting assuming the security of group-action decisional Diffie-
Hellman. In [Bas23] a fixed-and-improved SIDH-based candidate was proposed
and in [HMR23] an improved CSIDH-based candidate is presented. Either of
these rely on trusted setups. In [SHB21] an OPRF based on the Legendre PRF
is proposed based on solving sparse multi-variate quadratic systems of equations.
In [DGH+21], which also builds on [BIP+18], an MPC-based OPRF is proposed
that is secure against semi-honest adversaries. It achieves much smaller com-
munication complexity compared to all other post-quantum candidates, but in
a preprocessing model where correlated randomness is available to the parties.
A protocol computing this correlated randomness, e.g. [BCG+22], would add
two rounds (or more) and thus make the overall protocol not round-optimal.
The question of upgrading security to full malicious security is left as an open
problem in [DGH+21].9

We give a summary comparison of our construction with prior work in Table 1.
The only 2-round construction without preprocessing or trusted-setup in Table 1
is that from [ADDS21], where our construction compares favourably by offering
stronger security at smaller size. In particular, even in a semi-honest setting, our
construction outperforms that from [ADDS21] in terms of bandwidth for L = 16
queries.10

1.3 Open Problems
The most immediate open problem posed by this work is to provide a full, end-to-
end, implementation of our OPRF candidate. As we will discuss in Section 6, the
tfhe-rs API does not enable us to obtain full performance in terms of server
running time. Furthermore, we did not implement the NIZK proofs attesting
well-formedness of inputs.

Another pressing open problem is to refine our understanding of the security
of the PRF candidate from [BIP+18]. In particular, our parameter choices may
prove to be too aggressive, and we hope that our work inspires cryptanalysis.

Our verifiability approach throws up a range of interesting avenues to explore
for VOPRFs but also for verifiable homomorphic computation, more generally.
9 We note that [DGH+21] may also serve as an indication for the best-case performance

of OPRFs built from generic MPC techniques.
10 We note that while the large sizes for achieving malicious security in [ADDS21] can

be avoided using improved NIZKs, the semi-honest base size of 2MB per query stems
from requiring q ≈ 2256 for statistical correctness and security arguments.
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Table 1. Post-quantum (P)OPRF candidates in the literature

work assumption r communication cost flavour model

[ADDS21] R(LWE) & SIS 2 ≈ 2MB plain semi-honest, QROM
[SHB21] Legendre PRF 3 ≈ λ· 13K plain semi-honest, pp, ROM
[BKW20] CSIDH 3 424KB plain malicious client
[Bas23] SIDH 2 3.0MB plain malicious, ts, ROM
[HMR23] CSIDH 2 21KB plain semi-honest, ts
[HMR23] CSIDH 4 35KB plain malicious client, ts
[HMR23] CSIDH 258 25KB plain semi-honest
[DGH+21] [BIP+18] 2 80B plain semi-honest, pp

Section 3 lattices, [BIP+18] 2 16.8MB + 41.42KB plain malicious client, ROM
+ 0.5kB + 26.7kB + 3.2kB

Section 3 lattices, [BIP+18] 2 16.8MB + 41.42KB plain malicious client, ROM
+ 0.5kB + 1.3kB + 3.2kB L = 64, per query

The column “r” gives the number of rounds. ROM is the random oracle model, QROM
the quantum random oracle model, “pp” stands for “preprocessing”, and “ts” for
“trusted setup”. When reporting on our work, the summands are: pk size, pk proof
size, client message size, client message proof size, server message size. Our client mes-
sage proofs can be amortised to e.g. 83.4kB/64 = 1.3kB per query, when amortising
over L = 64 queries.

First, our OPRF construction relies on programmable bootstrapping. This re-
stricts the choice of FHE scheme we might instantiate our protocol with, but also
gives the server the choice which function to evaluate, something our application
does not require. That is, we may not need to rely on evaluator programmable
bootstrapping if it is possible for the client to define the non-linear functions
available to a server (encrypter programmable bootstrapping). This would enable
reasoning about malicious server security more easily.

Related works, e.g. [CHLR18], have also used similar assumptions as our
work over the hardness of computing deep circuits in low FHE depth. There is
growing evidence that such assumptions allow for new, interesting or more effi-
cient constructions of cryptographic primitives. However, the hardness of these
computational problems needs to be better understood.

Finally, we estimate that our VOPRF is orders of magnitude less efficient
than our OPRF candidate and we discuss plausible avenues for alleviating that
difference in Section 5. A more direct approach would be to construct a NIZK
for correct bootstrapping evaluation, which would have applications beyond this
work.

2 Preliminaries

We use ⌊·⌋, ⌈·⌉ and ⌊·⌉ to denote the standard floor, ceiling and rounding to the
nearest integer functions (rounding down in the case of a tie). We denote the
Integers by Z and for any positive p ∈ Z, the integers modulo p are denoted by Zp.
We typically use representatives of Zp in {−p/2, . . . , (p/2)− 1} if p is even and
{−⌊p/2⌋, . . . , ⌊p/2⌋} if p is odd, but we will also consider Zp as {0, 1, . . . , p− 1}.
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Since it will always be clear from context or stated explicitly which representation
we use, this does not create ambiguity. The p-adic decomposition of an integer
x ≥ 0 is a tuple (xi)0≤i<⌈logp(x)⌉ with 0 ≤ xi < p such that x =

∑
pi · xi. We

denote the set Sm to be the permutation group of m elements.
Let Z[X] denote the polynomial ring in the variable X whose coefficients

belong to Z. We also denote power-of-two cyclotomic rings R := Z[X]/(Xd + 1)
where d is a power-of-two, and Rq := R/(qR) for any integer “modulus” q. Bold
letters denote vectors and upper case letters denote matrices. Abusing notation
we write (x,y) for the concatenation of the vectors x and y. We extend this
notation to scalars, too. Additionally, ∥ · ∥and ∥ · ∥∞ denote standard Euclidean
and infinity norms respectively.

For a distribution D, we write x←$ D to denote that x is sampled according
to the distribution D. An example of a distribution is the discrete Gaussian
distribution over Z with parameter σ > 0 denoted as DZ,σ. This distribution
has its probability mass function proportional to the Gaussian function ρσ(x) :=
exp(−πx2/σ2). We use λ to denote the security parameter. We use the standard
asymptotic notation (Ω,O, ω etc.) and use negl(λ) to denote a negligible function,
i.e. a function that is λω(1). Further, we write poly(λ) to denote a polynomial
function i.e. a function that is O(nc) for some constant c. An algorithm is said
to be polynomially bounded if it terminates after poly(λ) steps and uses poly(λ)-
sized memory. Two distribution ensembles D1(1

λ) and D2(1
λ) are said to be

computationally indistinguishable if for any probabilistic polynomially bounded
algorithm A, Adv(A) := ∥Pr[1 ←$ AX(1λ)] − Pr[1 ←$ AY (1

λ)]∥ ≤ negl(λ). In
such a case we write D1(1

λ) ≈c D2(1
λ). The distribution ensembles are said to

be statistically indistinguishable if the same holds for all unbounded algorithms,
in which case we write D1(1

λ) ≈s D2(1
λ).

For a keyspace K, input space X and output space Z, a PRF is a function
F : K×X −→ Z with a pseudorandomness property. Rather than writing F (k, x)
for k ∈ K and x ∈ X , we write Fk(x). The pseudorandomness property of a
PRF requires that over a secret and random choice of k ←$ K, the single input
function Fk(·) is computationally indistinguishable from a uniformly random
function. Note here that the dependence of the parameters on λ is present, but
is not explicitly written for simplicity. We also use the standard cryptographic
notion of a (non-interactive) zero-knowledge proof/argument. For more details
on these standard cryptographic notions, see e.g. [Gol04].

2.1 Random Oracle Model

We will prove security by modelling hash functions as random oracles. Since
our schemes will make use of more than one hash function, it will be useful to
have a general abstraction for the use of ideal primitives, following the treatment
in [TCR+22]. A random oracle RO specifies algorithms RO.Init and RO.Eval. The
initialisation algorithm has syntax stRO ←$ RO.Init(1λ). The stateful evaluation
algorithm has syntax y ←$ RO.Eval(x, stRO). We sometimes use ARO as shorthand
for giving algorithm A oracle access to RO.Eval(·, stRO). We combine access to
multiple random oracles RO = RO0 × . . .× ROm−1 in the obvious way. We may
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arbitrarily label our random oracles to aid readability e.g. ROkey to denote a
random oracle applied to some “key”.

2.2 (Verifiable) (Partial) Oblivious Pseudorandom Functions

We adopt the notation and definitions for oblivious pseudorandom functions
from [TCR+22]. An OPRF is a protocol between two parties: a server S who
holds a private key and a client who wants to obtain evaluations of Fk on inputs
of its choice. We write z := Fk(x). We say that an OPRF is a partial OPRF
(OPRF) if part of the client’s input is given to the server. In this case, we write
z := Fk(t, x) where t is in the clear and x is hidden from S. When C can verify
that the PRF was evaluated correctly we speak of a verifiable OPRF (VOPRF)
or VPOPRF when the protocol also supports partially known inputs t.

Definition 1 (Partial Oblivious PRF [TCR+22]). A partial oblivious PRF
(POPRF) F is a tuple of PPT algorithms

(F .Setup,F .KeyGen,F .Request,F .BlindEval,F .Finalise,F .Eval)

The setup and key generation algorithm generate public parameter pp and a pub-
lic/secret key pair (pk, sk). Oblivious evaluation is carried out as an interactive
protocol between C and S, here presented as algorithms F .Request, F .BlindEval,
F .Finalise working as follows:

1. First, C runs the algorithm F .RequestRO
pp (pk, t, x) taking a public key pk, a

tag or public input t and a private input x. It outputs a local state st and a
request message req, which is sent to the server.

2. S runs F .BlindEvalRO
pp (sk, t, req) taking as input a secret key sk, a tag t and

the request message req. It produces a response message rep sent back to C.
3. Finally, C runs F .Finalise(rep, st) which takes the response message and its

previously constructed state st and either outputs a PRF evaluation or ⊥ if
rep is rejected.

The unblinded evaluation algorithm F .Eval is deterministic and takes as input a
secret key sk, an input pair (t, x) and outputs a PRF evaluation z.

We also define sets F .SK, F .PK, F .T, F .X and F .Out representing the secret
key, public key, tag, private input, and output space, respectively. We define the
input space F .In = F .T×F .X. We assume efficient algorithms for sampling and
membership queries on these sets.

Remark 1. Fixing t, e.g. t = ⊥, recovers the definition of an OPRF.

Remark 2. In Figure 1, the oracle Prim(x) captures access to the random oracle
used in the POPRF construction. For b = 0 (the case where the adversary
interacts with a simulator and truly random function) the simulator may only
use a limited number of random function queries to simulate the random oracle
accessed via Prim(x).
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Game POPRFA,b
F,S,RO(λ)

qs,t, qt ← 0, 0

stFn ←$ ROFn.Init(1λ) // F.In → F .Out

stRO ←$ RO.Init(1λ)
pp1 ←$ F .Setup(1λ)
(stS, pk0, pp0)←$ S.Init(pp1)

(sk, pk1)←$ F .KeyGenRO
pp1(1

λ)

b′ ←$ AEval,BlindEval,Prim(ppb, pkb)

return b′

Oracle Eval(t, x)

z0 ← ROFn.Eval((t, x), stFn)

z1 ← F .EvalRO
pp1(sk, t, x)

return zb

Oracle LimitEval(t, x)

qt,s ← qt,s + 1

if qt,s ≤ qt then
return Eval(t, x)

return ⊥

Oracle BlindEval(t, req)

qt ← qt + 1

(rep0, stS)←$ S.BlindEvalLimitEval(t, req, stS)

rep1 ←$ F .BlindEvalRO
pp1(sk, t, req)

return repb

Oracle Prim(x)

(h0, stS)←$ S.EvalLimitEval(x, stS)

h1 ←$ RO.Eval(x, stRO)

return hb

Fig. 1. Pseudorandomness against malicious clients.

We adapt the correctness notion from [TCR+22], permitting a small failure
probability.

Definition 2 (POPRF Correctness (adapted from [TCR+22])). A par-
tial oblivious PRF (POPRF)

(F .Setup,F .KeyGen,F .Request,F .BlindEval,F .Finalise,F .Eval)

is correct if

Pr

z = F .EvalRO
pp (sk, t, x)

∣∣∣∣∣∣∣∣∣∣∣

pp←$ F .Setup(1λ)
(pk, sk)←$ F .KeyGenRO

pp (1λ)

(st, req)←$ F .RequestRO
pp (pk, t, x)

rep←$ F .BlindEvalRO
pp (sk, t, req)

z ←$ F .FinaliseRO
pp (rep, st)

 = 1− negl(λ).

We target the same pseudorandomness guarantees against malicious clients
as [TCR+22].

Definition 3 (Pseudorandomness (POPRF) [TCR+22]). We say a par-
tial oblivious PRF F is pseudorandom if for all PPT adversaries A, there exists
a PPT simulator S such that the following advantage is negl(λ):

Advpo−prf
F,S,RO,A(λ) =

∣∣∣Pr
[
POPRFA,1

F,S,RO(λ)⇒ 1
]
− Pr

[
POPRFA,0

F,S,RO(λ)⇒ 1
]∣∣∣ .

Remark 3. The intuition of this definition is that it requires the simulator to
explain a random output (defined via ROFn) as an evaluation point of the PRF.
The simulator provides its own public key and public parameters, but it gets
at most one query to ROFn() per BlindEval query that it has to simulate. The
simulator queries ROFn through calls to LimitEval, where the check qt,s ≤ qt
enforces the number of queries per BlindEval query and tag t. This implies that
BlindEval and Eval queries essentially leak nothing beyond the evaluation at this
exact point to the client.
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Game POPRIV1A,b
F,RO(λ)

pp←$ F .Setup(1λ)
(pk, sk)←$ F .KeyGenRO

pp (1
λ)

b′ ←$ ARun,RO(pp, pk, sk)
return b′

Oracle Run(t, x0, x1)

for j ∈ {0, 1} do
(stj , reqj)←$ F .RequestRO

pp (pk, t, xj)

repj ←$ F .BlindEvalRO
pp (sk, t, reqj)

zj ←$ F .FinaliseRO
pp (repj , stj)

τ0 ← (reqb, repb, z0)

τ1 ← (req1−b, rep1−b, z1)

return (τ0, τ1)

Game POPRIV2A,b
F,RO(λ)

pp←$ F .Setup(1λ)
i← 0

b′ ←$ ARequest,Finalise,RO(pp)
return b′

Oracle Request(pk, t, x0, x1)

i← i+ 1

(sti,0, req0)←$ F .RequestRO
pp (pk, t, x0)

(sti,1, req1)←$ F .RequestRO
pp (pk, t, x1)

return (reqb, req1−b)

Oracle Finalise(j, rep0, rep1)

if j > i then return ⊥
zb ←$ F .FinaliseRO

pp (rep0, stj,b)

z1−b ←$ F .FinaliseRO
pp (rep1, stj,1−b)

if z0 = ⊥ or z1 = ⊥ then return ⊥
return (z0, z1)

Fig. 2. Request privacy against honest-but-curious servers (left) and against malicious
servers (right).

Moreover, the simulator is restricted in that LimitEval oracle will error if
more queries are made to it than the number of BlindEval queries (on t) at
any point in the game. Meaningful relaxations of this definition are discussed in
[TCR+22] but for completeness we opt for the full definition.

Definition 4 (Request Privacy (POPRIV) [TCR+22]). We say a partial
oblivious PRF F has request privacy against honest-but-curious and malicious
servers respectively if for all PPT adversary A the following advantage is negl(λ)
for k = 1 and k = 2 respectively:

Advpo−privk
F,S,RO,A(λ) =

∣∣∣Pr
[
POPRIV kA,1

F,RO(λ)⇒ 1
]
− Pr

[
POPRIV kA,0

F,RO(λ)⇒ 1
]∣∣∣ .

2.3 Hard Lattice Problems

We will rely on both the M -SIS and the M -LWE problems. Instantiating these
over R = Z recovers the SIS and LWE problems respectively. Further, instan-
tiating these over some ring of integer of some number field and with n = 1,
recovers the Ring-SIS and Ring-LWE problems respectively.

Definition 5 (M-SIS, adapted from [LS15]). Let R, q, n, ℓ, β depend on λ.
The Module-SIS (or M-SIS) problem, denoted M -SISRq,n,ℓ,β∗ , is: Given a uniform
A←$Rn×ℓ

q find some u ̸= 0 ∈ Rℓ such that ∥u∥ ≤ β∗ and A · u ≡ 0 mod q.

Definition 6 (M-LWE, adapted from [LS15]). Let R, q, n,m depend on
λ and let χs, χe be distributions over Rq. Denote by M -LWERq,n,m,χs,χe the

10



probability distribution on Rm×n
q × Rm

q obtained by sampling the coordinates
of the matrix A ∈ Rm×n

q independently and uniformly over Rq, sampling the
coordinates of s ∈ Rn

q , e ∈ Rm independently from χs and χe respectively, setting
b := A ·s+e mod q and outputting (A, b). The M -LWE problem is to distinguish
the uniform distribution over Rm×n

q ×Rm
q from M -LWERq,n,m,χs,χe

.

2.4 Matrix NTRU Trapdoors

The original formulation [HPS96] of the NTRU problem considers rings of inte-
gers of number fields or polynomial rings, but a matrix version is implicit and
considered for cryptanalysis in the literature.

Definition 7. Given integers n, p, q, β where p and q are coprime, the matrix-
NTRU assumption (denoted mat-NTRUn,p,q,β) states that no PPT algorithm can
distinguish between A and B where

– A←$ Zn×n
q

– B = p−1 ·G−1 · F mod q with

F ←$ {0,±1, . . . ,±β}n×n,G←$ {0,±1, . . . ,±β}n×n ∩
(
Zn×n
q

)∗
where

(
Zn×n
q

)∗ denotes the set of invertible (n× n) matrices over Zq.

We will use the matrix-NTRU assumption to define a trapdoor. In what
follows, we assume an odd q and an even p that is coprime to q. In particular,
we define the following algorithms:

NTRUTrapGen(n, q, p, β): Sample

F ←$ {0,±1, . . . ,±β}n×n
,G←$ {0,±1, . . . ,±β}n×n ∩

(
Zn×n
q

)∗
and output public information pp := (p−1 ·G−1 ·F mod q, q) and a trapdoor
τ := (F ,G, p).

NTRUDec(c, τ): For c ∈ Zn
q , τ := (F ,G, p), compute c1 = p · G · c mod q,

c2 = c1 mod (p/2), c3 = c − p−1 · G−1 · c2 mod q. Finally, compute and
output m′ :=

⌊
2

q−1 · c3
⌉

where the multiplication and rounding is done over
the rationals.

The trapdoor functionality is summarised in the lemma below.

Lemma 1. Suppose that p, q are coprime where p is even and q is odd. Suppose
also that β ·β′

s ·n < p/4, and that β′
s, β

′
e ∈ R satisfies β ·n ·(β′

s+p ·(2β′
e+1)/2) <

q/2. Sample (pp := (B, q), τ)←$ NTRUTrapGen(n, q, p, β). Then:

1. B is indistinguishable from uniform over Zn×n
q if the mat-NTRUn,p,q,β as-

sumption holds.
2. If c = B·s+e+⌊q/2⌉·m mod q where m ∈ Zn

2 , (∥s∥∞ ≤ β′
s ∨ ∥s∥2 ≤ β′

s ·
√
n)

and (∥e∥∞ ≤ β′
e ∨ ∥e∥e ≤ β′

e ·
√
n), then NTRUDec(c, τ) = m.
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Proof. For the first part, simply note that distinguishing B from uniform is
exactly the matrix-NTRU problem for (n, p, q, β). For the second part, reusing
the same notation from the description of NTRUDec(c, τ := (F ,G, p)) gives

c1 = F · s+ p ·G · (e+ ((q − 1)/2) ·m) mod q

= F · s+ (p/2) ·G · (2 e−m) mod q

= F · s+ (p/2) ·G · (2 e−m)

over Z because ∥F · s + (p/2) · G · (2 e −m)∥∞ < q/2. We then have c2 =
F ·s mod p/2 = F ·s over Z because ∥F ·s∥∞ < p/4. Next, c3 = e+((q−1)/2)·m.
Note that the conditions in the lemma statement imply that 2β′

e ·
√
n < (q−1)/2.

This gives the final output ⌊m+ 2
q−1 · e⌉ = m because ∥ 2e

q−1∥∞ < 1/2. ⊓⊔

Choosing Parameters. Looking ahead, we will instantiate this trapdoor for
q ≈ 232 and n = 211. So, we require β · β′

s < p/(4n) and, say, β · β′
e < q/(4n · p).

Picking p = 216, we get log(β)+ log(β′
s) < 16−2−11 = 3 and log(β)+ log(β′

e) <
32 − 2 − 11 − 16 = 3. Picking β ≈ 22 and β′

s = β′
e ≈ 2 we obtain an NTRU

instance requiring BKZ block size 333 to solve (using the (overstretched) NTRU
estimator [DvW21]) and an LWE instance requiring BKZ block size 594 to solve
(using the lattice estimator [APS15]). According to the cost model from [MAT22]
this costs about 2132 classical operations.11

2.5 Homomorphic Encryption and TFHE

Fully homomorphic encryption (FHE) allows to perform computations on plain-
texts by performing operations on ciphertexts. In slightly more detail, an FHE
scheme consists of four algorithms: FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec.
The key generation, encryption and decryption algorithms all work similarly
to normal public key encryption. Together, they provide privacy (i.e. IND-CPA
security) and decryption correctness. The interesting part of FHE is its homo-
morphic property. Assume that M is the message space, e.g. M := ZP . The
homomorphic property is enabled by the FHE.Eval function which takes as in-
put a public key pk, an arbitrary function f : Mk −→ M, a sequence of ci-
phertexts (ci)i∈[Zk] encrypting plaintexts (mi)i∈Zk

, and outputs a ciphertext
c′ ← FHE.Eval(pk, f, (c0, . . . , ck−1)). The homomorphic property ensures that
c′ is an encryption of f(m0, . . . ,mk−1). Intuitively, FHE allows to perform arbi-
trary computation on encrypted data without having to decrypt. Importantly,
the privacy of the plaintext is maintained. In addition, an FHE scheme may also
maintain the privacy of the evaluated computation (see below).

FHE was first realised by Gentry [Gen09]. A considerable amount of influ-
ential follow-up research provides the basis of most practically feasible schemes
[FV12,BGV11,GSW13,CKKS17]. We will be focusing on an extension of the
11 We note that quantum algorithms offer only marginal, i.e. less than square-root,

speedups here [AGPS20].
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third of these works known as TFHE [CGGI20] because its programmable boot-
strapping technique lends itself well to our construction. For a good summary
of TFHE, see the guide [Joy21].

Programmable bootstrapping. A crucial ingredient of any FHE scheme is a
bootstrapping procedure. Essentially, homomorphic evaluation increases cipher-
text noise, meaning that after a prescribed number of evaluations, a ciphertext
becomes so noisy that it cannot be decrypted correctly. Bootstrapping provides
a method of resetting the size of the noise in a ciphertext to allow for correct
decryption using some bootstrapping key material. Note that the bootstrapping
operation can either produce a ciphertext encrypted under the original key or a
new one depending on the bootstrapping key material used.12

In TFHE we have access to look-up tables from Zd to ZP which we will
denote by LUTf(x)() when realising f(·) : Zd →M. For example we may write
LUTx mod 3() for the table interpreting entries in Zd as integer ∈ {0, . . . , d−1} and
returning the result modulo 3 and treating {0, 1, 2} as elements of the plaintext
space. TFHE generalises bootstrapping by applying the look-up table to the
plaintext at the same time as resetting the size of the noise. Here, d is the
degree of a cyclotomic ring R = Z[X]/(Xd + 1) and ZP is the plaintext space.
There is a slight problem here in that the look-up table does not take plaintext-
space inputs. However, this is overcome by using appropriate approximations
between Zn and ZQ where n is a plain LWE dimension and Q the ciphertext
modulus [CGGI20,Joy21]. We note that this functionality also implies the ability
to map from a plaintext space ZP0 (which is interpreted as an element in Zd) to
a plaintext space ZP1 with P0 ̸= P1.13

Ax-hiding. In order to prevent an attacker from discovering details of the cir-
cuit, circuit privacy ensures that the resulting evaluated ciphertext does not leak
anything about the circuit (beyond the evaluation of the circuit on a particu-
lar point). We relax this notion to allow the client to learn some structure of
the circuit, but not the secret input of the server. In our setting we will not be
interested in hiding the circuit but only part of the input (the secret key A).
In particular, we do not aim to hide the lookup tables which are public (essen-
tially: mod p and mod q operations). We call this property Ax-hiding, and give
the formal definition below. We note, however, that all techniques we are aware
of for achieving Ax-hiding (see below), including heuristic approaches, seem to
also achieve circuit privacy. We still believe formalising the security goal more
precisely is a useful approach.

Definition 8. Let LUT be an arbitrary lookup table. Let (A,x1), (B,x2) have
matching dimensions, matching base rings and satisfy LUT(A · x1) = LUT(B ·
x2). We say an FHE scheme is Ax-hiding if for any such (A,x1), (B,x2), any
12 This allows to restrict the number of sequential bootstrappings that can be per-

formed, a fact we will rely on below.
13 This is accomplished by picking the “test polynomial” [Joy21, Sec. 5.3] appropriately.
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(FHE.pk,FHE.sk)←$ FHE.KeyGen(), any ct1, ct2 such that FHE.Dec(sk, ct1) = x1

and FHE.Dec(sk, ct2) = x2, given FHE.sk we have

FHE.Eval(FHE.pk, LUT(A · ⋆), ct1) ≈s FHE.Eval(FHE.pk, LUT(B · ⋆), ct2).

A first approach to achieving circuit privacy and thus Ax-hiding is to rely
on noise drowning [Gen09]. An improvement to this technique was proposed by
Ducas and Stehlé [DS16]. Instead of applying super-polynomial noise flooding
in one step, Ducas and Stehlé proceed by iteratively applying the following κ
times: perform bootstrapping and add some modest noise flooding (close to the
size of the ciphertext noise). For FHEW [DM15] and TFHE, it is estimated that
κ may be chosen between 8 and 16. Note that all of the extra bootstrapping is
done once at the end of the homomorphic evaluation to “sanitise” the ciphertext
and remove all remnants of the circuit that was applied.14

An alternative, also achieving full circuit privacy, is to use the work of Klucz-
niak [Klu22] that applies a randomised bootstrapping procedure. Heuristically,
plugging the bounds of [Klu22, Theorem 1] into [Klu22, Lemma 7] suggests the
noise grows modestly by a rough factor of

√
λ ·
√
Bbr where Bbr is an infinity

norm bound on the bootstrapping key noise. We consider this the most promising
approach. We give a third, heuristic approach in Appendix A.

Malicious security. Finally, note that the definition above is required to hold
for “any” FHE.pk,FHE.sk, ct1 and ct2 generated honestly. More precisely, this
means for any possible (i.e. valid) outputs of the appropriate FHE algorithms.
For example, the word “any” for an error term distributed as a discrete Gaussian
would mean any value satisfying some appropriate bound. Intuitively, malicious
circuit privacy (or in our case Ax-hiding) requires that an adversary cannot
learn anything about the circuit (or (A,x)) even in the presence of maliciously
generated keys and ciphertexts. Thus if we can ensure the well-formedness of keys
and ciphertexts, then a semi-honest circuit private FHE scheme is also secure
against malicious adversaries. In the random oracle model, we can achieve this
with NIZKs that show well-formedness of the keys and that the ciphertext is a
valid ciphertext under that public key. Then, FHE.Eval could explicitly check that
the proof verifies and abort otherwise. As noted in [OPP14], the circuit privacy
of FHE needs to hold even if the error distributions of the ciphertext are not
generated according some canonical distribution, and are simply in the support
of valid key/ciphertext pairs. For simplicity, we effectively ignore this fact and
note that this caveat has been discussed in prior works, such as in [OPP14]. We
note that the techniques from [BdMW16] achieve this enhanced version of circuit
privacy.

14 This adds about 3 seconds of running time to Fpoprf.BlindEval using our implementa-
tion from Section 6. We note, however, that this approach is incompatible with our
heuristic VOPRF construction.
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Table 2. PRF Parameters

λ = 128 Explanation λ = 128 Explanation

p 2 modulus of x,A np,mp 256 dimensions of A
q 3 modulus of z,Ginp,Gout n 128 dim. of x (mod p)
nq 192 rows of Ginp m 128 dim. of z (mod q)

2.6 Crypto Dark Matter PRF

Let p, q be two primes where p < q. We now describe the “Crypto Dark Mat-
ter” PRF candidate [BIP+18,DGH+21]. It is built from the following weak PRF
proposal Fweak : Zmp×np

p × Znp
p → Zq where

Fweak(A,x) =

mp−1∑
j=0

(A · x mod p)j mod q.

Here A is the secret key, x is the input and (A · x mod p)j denotes the j-th
component of A · x mod p. In order to describe the strong PRF construction,
we introduce a fixed public matrix Ginp ∈ Znq×n

q and a p-adic decomposition
operation decomp : Znq

q → Z⌈logp(q)⌉·nq

p where ⌈logp(q)⌉ · nq = np. The strong
PRF candidate is Fone : Z

mp×np
p × Zn

p → Zq where

Fone(A,x) := Fweak(A, decomp(Ginp · x mod q)).

In order to extend the small output of the above PRF constructions, the authors
of [BIP+18] introduce another matrix Gout ∈ Zm×mp

q (with m < mp) which is the
generating matrix of some linear code. Then full PRF is Fstrong : Zmp×np

p ×Zn
p →

Zm
q where

Fstrong(A,x) := Gout · (A · decomp(Ginp · x mod q) mod p) mod q.

Given access to gates implementing mod p and mod q this PRF candidate can be
implemented in a depth 3 arithmetic circuit. We give an example implementation
in Appendix D and in the .15

Note that decomp(Ginp · x mod q) ∈ Znp
p does not depend on the PRF key.

Thus, in an OPRF construction it could be precomputed and submitted by the
client knowing x. However, in this case, we must enforce that the client is doing
this honestly via a zero-knowledge proof π that y := decomp(Ginp · x mod q) is
well formed. Specifically, following [BIP+18], if H inp ∈ Z(nq−n)×nq

q is the parity
check matrix of Ginp and Ggadget := (p⌈logp(q)⌉−1, . . . , 1)⊗ Inp

we may check

H inp ·Ggadget · y ≡ 0 mod q.

15 If the reader’s PDF viewer does not support PDF attachments (e.g. Preview on
MacOS does not), then e.g. pdfdetach can be used to extract these files.
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# -*- coding: utf-8 -*-
from sage.all import set_random_seed, GF, vector, matrix, random_matrix, codes


class WeakPRF:
    """
    Based on Construction 3.1 of:

    - Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., & Wu, D. J. (2018).
      Exploring crypto dark matter: new simple PRF candidates and their
      applications. Cryptology ePrint Archive, Report 2018/1218.
      https://eprint.iacr.org/2018/1218
    """

    def __init__(self, m_p=256, n_p=256, m_bound=128, p=2, q=3, t=None, seed=None):
        # p.40, optimistic, λ=128
        self.m_p, self.n_p = m_p, n_p
        if seed is not None or t is not None:
            set_random_seed(hash((t, seed)))
        self.A = random_matrix(GF(p), m_p, n_p + 1)
        self.q = q

        if m_bound == 1:
            self.Gout = matrix(GF(q), 1, m_p, [1] * m_p)
        else:
            i = 2
            for i in range(2, m_p // 2):
                C = codes.BCHCode(GF(q), m_p, i)
                if C.dimension() <= m_bound:
                    self.Gout = C.generator_matrix()
                    break
            else:
                raise RuntimeError

    def __call__(self, x):
        y = self.A * vector(list(x) + [1])
        y = y.lift_centered()
        z = self.Gout * y
        return z


class PRF:
    """
    Based on Construction 7.9 of:

    - Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., & Wu, D. J. (2018).
      Exploring crypto dark matter: new simple PRF candidates and their
      applications. Cryptology ePrint Archive, Report 2018/1218.
      https://eprint.iacr.org/2018/1218
    """

    def __init__(self, m_p=256, n_p=256, n=128, m_bound=128, p=2, q=3, t=None, seed=None):
        if p != 2 or q != 3:
            raise NotImplementedError
        self.F = WeakPRF(m_p=m_p, n_p=n_p, m_bound=m_bound, p=p, q=q, t=t, seed=seed)
        self.n = n
        self.Ginp = identity_matrix(GF(q), n).stack(random_matrix(GF(q), (n_p-n)//2, n))

    def __call__(self, x):
        x = x.lift().change_ring(GF(self.F.q))
        y = self.Ginp * x
        z = []
        for y_ in y[:self.n].lift():
            z.append(y_)
        for y_ in y[self.n:].lift():
            z.append(y_ % 2)
            z.append(y_ // 2)
        z = vector(GF(2), self.F.n_p, z)
        return self.F(z)


https://manpages.ubuntu.com/manpages/trusty/man1/pdfdetach.1.html


Note that as stated this does not enforce x ∈ Zn
p but x ∈ Zn

q . Since it is
unclear if this has a security implication, we may avoid this issue relying on a
comment made in [BIP+18] that we may, wlog, replace Ginp with a matrix in
systematic (or row echelon) form. That is, writing Ginp = [I | A]

T ∈ Znp×n
q ,

y = (y0,y1) ∈ Znp
q , the protected encoded-input PRF is defined as

Fpei(A,y) :=

Gout · (A · y mod p) mod q if H inp ·Ggadget · y ≡ 0 mod q
and y0 ∈ {0, 1}n

⊥ otherwise.

Note that with this definition of Ginp the “most significant bits” of y0 will
always be zero, so there is no point in extracting those when running decomp.
Thus, we adapt decomp to simply return the first n output values in {0, 1} and to
perform the full decomposition on the remaining (nq−n) entries. We thus obtain
np := n+ ⌈logp(q)⌉ · (nq − n). A similar strategy is discussed in Remark 7.13 of
the full version of [BIP+18].

Security Analysis. The initial work [BIP+18] provided some initial cryptanal-
ysis and relations to known hard problems to substantiate the security claims
made therein. When A is chosen to be a circulant rather than a random matrix,
the scheme has been shown to have degraded security [CCKK21] contrary to
the expectation stated in [BIP+18]. The same work [CCKK21] also proposes a
fix. Further cryptanalysis was preformed in [DGH+21], supporting the initial
claims of concrete security. Our choices for λ = 128 (classically) are aggressive,
especially for a post-quantum construction. This is, on the one hand, to encour-
age cryptanalysis. On the other hand, known cryptanalytic algorithms against
the proposals in [BIP+18,DGH+21] require exponential memory in addition to
exponential time, a setting where Grover-like square-root speed-ups are less plau-
sible, cf. [AGPS20] (which, however, treats the Euclidean distance rather than
Hamming distance).

3 OPRF Candidate

We wish to design an (P)OPRF where the server homomorphically evaluates the
PRF using its secret key and uses some form of circuit private FHE to protect
its key. We use the same notation as in Section 2.6.

3.1 Extending the PEI PRF

Here, we first observe that the PRFs defined in Section 2.6 trivially fail to achieve
pseudorandomness as they map 0 ∈ Zn

p → 0 ∈ Zm
q which holds with negl(λ)

probability for a random function. We thus define

Fstrong(A
′,x) := Gout · (A · (decomp(Ginp · x mod q), 1) mod p) mod q.
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and

Fpei(A
′,y) :=

{
Gout · (A′ · (y, 1) mod p) mod q if H inp ·Ggadget · y ≡ 0 mod q
⊥ otherwise.

for A′ ∈ Zmp×(np+1)
p , i.e. extended by one column. Furthermore, we wish to

support an additional input t ∈ Zn
p to be submitted in the clear. For this, we

deploy the standard technique of using a key derivation function to derive a
fresh key per tag t [CHL22,JKR18]. In particular, let ROkey : Zmp×np

p × Zn
p →

Zmp×(np+1)
p be a random oracle, we then define our PRF candidate F

ROkey
A (t,x)

in Algorithm 1. Clearly, if Fpei(A
′,y) is a PRF then F

ROkey
A (·, ·) is a PRF with

input (t,x) as At in Algorithm 1 is simply a fresh Fpei() key for each distinct
value of t.

Algorithm 1 F
ROkey
A (t,x)

Input: A ∈ Zmp×np
p , x ∈ Zn

p , t ∈ Zn
p

Output: FA(t,x)
At ← ROkey(A, t)
y ← decomp(Ginp · x mod q)
z ← Gout · (At · (y, 1) mod p) mod q
return z

3.2 TFHE-based Instantiation
Our main TFHE-based instantiation is given in Figure 3. An important alter-
ation to the FHE key generation is that FHE.KeyGen(pp) will output a commit-
ment to secret key FHE.sk = s ∈ Ze

2 in addition to the standard public key
FHE.pk. In particular, FHE.KeyGen(pp)() begins by running (FHE.pk,FHE.sk)←$
FHE.KeyGen() and then adds the commitment bpk to FHE.pk. This commitment
takes the form bpk = App · r+ e+ ⌊Q/2⌋ · (s,0) ∈ ZN

Q where Q is the ciphertext
modulus, r, e ←$ (χ′)N where χ′ is a discrete Gaussian of standard deviation
β′ ≈ 4 and N = 2048 as in Section 2.4. One can view bpk as a partial sym-
metric LWE encryption of the secret key from the (T)LWE encryption scheme
within TFHE, so χ′ is simply an error distribution. Therefore, using the same
LWE assumption from Section 2.4, bpk is indistinguishable from random and it is
easy to check that its presence does not affect the IND-CPA property of TFHE.
Furthermore, since bpk is simply a randomised function of (FHE.pk,FHE.sk), it
can be constructed by an adversarial client. Thus, its advantage against the
Ax-hiding property (or semi-honest circuit privacy) of FHE in which the key
also contains bpk remains unchanged. To summarise, the public key material
output by FHE.KeyGen(pp) is FHE.pk(pp) := (bpk,FHE.pk).

Note that although the server does not need to create encryptions itself, we
still use the public key encryption version of TFHE rather than a symmetric key
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Fpoprf.Setup(1λ)

App ←$ ZN×N
Q

pp← App

return pp

Fpoprf.KeyGen(1λ)

pk← ⊥
sk←$ Zmp×np

p

return (pk, sk)

Fpoprf.Eval(sk = A, t = t, x = x)

z′ := F
ROkey
A (t,x)

z := ROfin(t,x, z
′)

return z

Fpoprf.Finalise(rep = ct)

if ct′ not a ctxt then return ⊥
z′ ← FHE.Dec(FHE.sk, ct)
z ← ROfin(t,x, z

′)

return z

Fpoprf.Request(pk, t = t, x = x; pp)

FHE.pk(pp),FHE.sk←$ FHE.KeyGen(pp)()

y ← decomp(Ginp · x mod p)

ct←$ FHE.Enc(FHE.sk,y)
π ←$ NIZKAoKC(FHE.pk(pp), ct;FHE.sk, x)
req ← (FHE.pk(pp), ct, π, t)
return req

Fpoprf.BlindEval(sk = A, t = t, req; pp)

(FHE.pk(pp), ct, π)← req

At ← ROkey(A, t)

ct′ ← Fpoprf.HEEval(FHE.pk(pp),At, t, ct)
if π does not verify then ct′ = ⊥
rep← ct′

return rep

Client Server

Fpoprf.Request(pk, t = t, x = x; pp)

req = (FHE.pk(pp), ct, π, t) Fpoprf.BlindEval(sk = A, t = t, req)

Fpoprf.Finalise(rep) rep = ct′

Output: ROfin(t,x, F
ROkey
A (t,x))

Fig. 3. Main construction.

version. The extra key material in the public key version does not affect efficiency
in any noticeable way as the bootstrapping key sizes are the main bottleneck.
This can be seen in Appendix B where details of NIZKAoKC are elaborated and
where we fully describe the generation of the bootstrapping keys.

Remark 4. The ciphertext component encrypting 1 from the input of Algo-
rithm 2 may be produced by the server (without knowledge of y).

Choosing Parameters & Size Estimates. We require that binary-secret
LWE is hard for (e,Q, σ) where e is the dimension of the LWE secret, Q the
modulus and σ the standard deviation of the noise. We also require M -LWE to
be hard for (ℓ, d,Q, σ̄) where d is the ring dimension, ℓ is the module dimension
and σ̄ is the standard deviation of the noise. To pick parameters, we simply fol-
low the tfhe-rs TFHE library [CGGI20] and its (PARAM_MESSAGE_2_CARRY_0)
parameter set, which permits us to set Q = 232 and then fixes e = 656, ℓ =
2, d = 512, σ = 217.1, σ̄ = 27.5. We note that this is likely not optimal as these
parameters are meant to support a wide range of computations. We estimate the
size of the bootstrapping key (which may be considered an amortisable offline
communication cost) in Appendix B as 16.8MB. We also estimate the size of the
zero-knowledge proofs accompanying this key as 41.42KB.
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Algorithm 2 Fpoprf.HEEval
Input: pk HE public key ▷ with ciphertext modulus Q, plaintext modulus P
Input: A ∈ Zmp×np

p , t ∈ Zn
p , ct ∈ Cnp encrypting y ∈ Znp

p

Output: ct′ ∈ Cm encrypting F
ROkey
A (t,x) or ⊥

1: At ← ROkey(A, t) in the clear.
2: ct′ ←$ FHE.Enc(pk, 1) ▷ can be e.g. 1 · ⌊Q/P ⌉
3: ct(1) ← FHE.Eval(pk,At · (ct, ct′))
4: ct(2)i ← FHE.Eval(pk, LUTx mod p(ct(1)i )) ∀i ∈ Zmp ▷ mod p, depth ≥ 1

5: ct(3) ← FHE.Eval(pk,Gout · ct(2))
6: ct′i ← FHE.Eval(pk, LUTx mod q(ct(3)i )) ∀i ∈ Zm ▷ mod q, depth ≥ 1
7: return ct′

Each request then requires to send LWE encryptions of np = 256 bits m
using protected encoded inputs, i.e. (A′, b := A′ · s + e + ⌊Q/P ⌋ ·m) where
A′ ∈ Znp×e

Q and b ∈ Znp

Q . Here, A′ can be computed from a small seed of 256
bits. For b we need to transmit np ·logQ bits. However, as noted in e.g. [LDK+22],
given the large size of the noise (σ = 217.1) we may drop the least significant,
say, 16 bits, reducing the cost of b to 16 · 256. In total we have a ciphertext size
of 0.5kB. The accompanying zero-knowledge proofs take up 26.7kB but can be
amortised to cost about 1.3kB per query when sending 64 queries in one shot
(Appendix B).

The message back from the server is m = 128 encryptions of the output
elements ∈ Zq. We can also drop the least significant bits of A′, since s is binary.
In particular, we may drop, say, the eight least significant bits and we arrive
at e · m · 24 for A′. We need m logQ bits for b. We can use the same trick of
dropping lower order bits for b again, so we obtain 128 · 16. In total we get
246.2kB. We note that it is more efficient to pack all return values into a single
RLWE sample using techniques from [CDKS21], since the cost of transmitting
A′ dominates here. This increases the public key size (since we would include
another key switching key) but reduce the size of response to about 3.2kB. For
more details on these values, see Appendix B.1. We give our code for estimating
parameters in Appendices E and F.
Remark 5. Looking ahead, we will see that our implementation in Section 6 does
not achieve these sizes. The reason for this is that (a) A′ is not compressed as
above and (b) the API we are using defaults to using M -LWE ciphertexts with
dimension ℓ · d = 1024 per bit.

4 Security Proofs
We first prove the pseudorandomness property against malicious clients in The-
orem 1 and then privacy (POPRIV1 only) against servers in Theorem 2.
Theorem 1. Let FHE denote the TFHE scheme. The construction Fpoprf from
Figure 3 satisfies the POPRF property from Definition 3, with random oracles
ROfin and ROkey, if:
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– The client zero-knowledge proof is sound
– FHE is Ax-hiding
– The mat-NTRUN,P ′,Q,B assumption holds where Q is the FHE modulus.
– P ′ is even and coprime to Q such that Q > BN(β′ +P ′ · (2β′ +1)/2) where

β′ is the standard deviation used in FHE.KeyGen(pp)

– F·(·, ·), defined in Section 3, is a PRF with output range super-polynomial
in the security parameter16.

Proof. The following simulator S will be used to prove the result:

S.Init: Sample A(S) ←$ Zmp×np
p and A(S)

pp ←$ ZN×N
Q . Set stS = A(S), pp0 := A(S)

pp
and pk0 = ⊥.

S.BlindEval(t, req, stS): Return F .BlindEvalROkey
pp0

(A(S), t, req). Note that this al-
gorithm does not need to make any calls to LimitEval.

S.EvalLimitEval(xin, stS): If query xin := (t,x, z) appears in stS as a previous
query, return the same answer. If z ̸= FA(S)(t,x) return a uniformly random
h and store (xin, h) in stS. If z = FA(S)(t,x), query LimitEval(xin) and
return its answer h′, storing (xin,h

′) in stS.

Define G0 to be the POPRFA,b=0
F,Sim,H game and G1 to be the POPRFA,b=1

F,Sim,H

game. Note that A has oracle access to Eval,BlindEval and Prim. These three
oracles behave (jointly) identically in G0 and G1 as long as S does not get
⊥ in a LimitEval query when answering S.Eval. Therefore, the distinguishing
advantage between G0 and G1 is at most the probability that after making q
BlindEval queries, A has managed to submit q + 1 distinct tuples of the form
(tj ,xj , FA(S)(tj ,xj)) to Prim in G0. Denote this event E. To complete the proof,
we bound Pr[E] using Lemma 2. ⊓⊔

Lemma 2. Assume that all of the conditions in Theorem 1 hold. Then Pr[E] is
negligible.

Proof (Of Lemma 2). Note that every adversarial input to the BlindEv oracle is
either well-formed, or answered with rep = ⊥ due to the soundness of the client
zero-knowledge proof. Therefore, we know that with overwhelming probability,
the ciphertext and (FHE.pk(pp),FHE.sk) that the malicious client uses is of the
correct form in the event that the response is not ⊥. We now describe hybrid
games Hi and events Ei for i ∈ {1, 2, 3}:

H1 : Here S is changed to S1, where S1 is identical to S apart from that pp0 is
replaced by pp′

0 = A′ where (A′, τ) ←$ NTRUTrapGen(N,Q,P ′, B) and τ
is added to the initial stS (but is unused throughout). Here, P > 4N is a
power of 2 such that Q > BN(β′ + P ′ · (2β′ + 1)/2) with β′ the standard
deviation of r and e used to produce the commitment part bpk of FHE.pk(pp)

(see Section 3.2). E1 is defined as the event that after q BlindEval queries, A
has managed to submit q+1 distinct pairs of the form (tj ,xj , FA(S)(tj ,xj))
to Prim.

16 e.g. 2λ works.

20



H2 : S1 is modified to S2, where S2 is identical to S1 apart from that S2.BlindEval
is modified in the following way. On input

req = (FHE.pk(pp) := (bpk,FHE.pk), ct, π, t),

S2 checks π. If the proof verifies then it sets s := NTRUDec(bpk, τ), y :=
FHE.Dec(s, ct), computes x from y using Ginp in systematic form, and com-
putes z = FA(S)(t,x) as in the original construction. It then samples a
matrix B ∈ Zmp×np

2 and further computes w = B · y mod p. Then, it is
easy to compute some G′

out ∈ Zm×mp
q such that z = G′

out · w mod q. Fi-
nally, define F ′ to be the function F but using G′

out instead of Gout. It
returns FHE.Eval(FHE.pk, F ′

B(S)(t, ·), ct) in response to req. E2 is defined as
the event that after q BlindEval queries, A has managed to submit q + 1
distinct pairs of the form (tj ,xj , FA(S)(tj ,xj)) to Prim.

H3 : S3 is S2 apart from S3.BlindEval and S3.Eval. In these two functions, S3

replaces all computations of FA(S)(·, ·) by a truly random function G. Addi-
tionally, S3 does not sample A(S) during S3.Init. E3 is defined as the event
that after q BlindEval queries, A has managed to submit q+1 distinct pairs
of the form (tj ,xj ,G(tj ,xj)) to Prim.
We first show that |Pr[E] − Pr[E1]| = negl(λ) by the mat-NTRUN,P ′,Q,B as-

sumption. In order to do so, we build a matrix NTRU distinguisher Bmat-NTRU
that implements S for the POPRF adversary A using its mat-NTRUN,P ′,Q,B

challenge as App. Clearly, if the challenge is a uniform matrix, Bmat-NTRU per-
fectly recreates S whereas if the challenge is non-uniform, it perfectly simulates
S1 from A’s perspective. Therefore, if |Pr[E] − Pr[Ei]| was not negligible, then
Bmat-NTRU would be able to distinguish and break the mat-NTRUN,P,Q assump-
tion by testing whether A manages to submit q + 1 distinct tuples of the form
(tj ,xj , FA(S)(tj ,xj)) to Prim given just q BlindEval queries.

Next, we show that |Pr[E1]−Pr[E2]| = negl(λ) by the Ax-hiding property of
TFHE. To do so, we consider a sequence of hybrid events E1,i where simulator
S1,i answers the first i calls to BlindEval as in S1 and the remainder as in S2.
Clearly, E1 = E1,0 and E1,qt = E2 if qt is a polynomial upper bound on the
number of BlindEval queries. Suppose there is an index i∗ ∈ [qt] such that
|Pr[E1,i∗ ]−Pr[E1,i∗+1]| is non-negligible. Note that if the (i∗ +1)-th request did
not have a correctly verifying proof, then Pr[E1,i∗ ]− Pr[E1,i∗+1] = 0. Therefore,
we assume that the proof in the (i∗+1)-th query verifies and all ciphertexts/keys
in the request are well-formed. This tell us that the NTRUDec correctly recovers
the FHE secret key which in turn implies that the y and x recovered are the
correct ones. Therefore, if |Pr[E1,i∗ ]−Pr[E1,i∗+1]| is non-negligible, there would
exist a FHE.pk,FHE.sk, ct = FHE.Enc(FHE.pk,x) (in particular, the key-pair and
ciphertext associated to A’s (i∗+1)-th BlindEval query) that allows an efficient
distinguisher B between

FHE.Eval(FHE.pk, FA(S)(t, ·), ct) (1)

and
FHE.Eval(FHE.pk, F ′

B(S)(t, ·), ct) (2)
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for the value of t from the (i∗+1)-th query. Note that by construction F ′
B(S)(t,x) =

FA(S)(t,x) yet F ′
B(S) contains no secret information.

Essentially, B implements S1,i∗ for A apart from the (i∗ + 1)-th BlindEval
query. Suppose B is given FHE.pk, t and ct in the (i∗ + 1)-th query. Suppose
also that it is given a challenge ciphertext ct′ that is either of the form (1)
or (2), and that it uses ct′ to respond to the (i∗ + 1)-th BlindEval query. If
ct′ is of the first form, then B implements S1,i∗ and if it is of the latter form,
B implements S1,i∗+1. Note that, the forms (1) and (2) can be rewritten as the
FHE.Eval(FHE.pk, LUT(Gout ·⋆), c̃t1) and FHE.Eval(FHE.pk, LUT(G′

out ·⋆), c̃t2) re-
spectively, where c̃ti are the intermediate ciphertexts that encrypt the vectors w̃i

of intermediate evaluations in the two cases. Therefore, distinguishing between
ct′ of form (1) and (2) is precisely breaking the Ax-hiding property. Assume
B decides its output by checking whether A manages to submit q + 1 distinct
pairs of the form (tj ,xj , FA(S)(tj ,xj)) to Prim given just q BlindEval queries. If
|Pr[E1,i∗ ] − Pr[E1,i∗+1]| is non-negligible, then B can distinguish the two cases
for ct′ and thus break Ax-hiding.

Next, we show |Pr[E2]−Pr[E3]| = negl(λ). Suppose that this was not the case.
Then we construct an algorithm B that distinguishes FA(S)(·, ·) from uniform
random. B interacts with a PRF challenger, and uses it to implement S2 by
querying the PRF challenger on input (t,x) instead of computing FA(S)(t,x). In
doing this, if the PRF challenger is returning uniform values, B simulates S3 for
A. Otherwise, B perfectly simulates S2 for A. Therefore, if Pr[E2]− Pr[E3]| was
not negligible, then B could distinguish F from a PRF by checking whether A
manages to submit q+1 distinct pairs of the form (tj ,xj , zj)) to Prim such that
zj agrees with the PRF oracle on input (tj ,xj) given just q BlindEval queries.
To complete the proof, we use the next lemma. ⊓⊔

Lemma 3. Pr[E3] = negl(λ) assuming the PRF output space is super-polynomial
in the security parameter.

Proof. Recall that when considering event E3, the adversary A has oracle access
to Eval,BlindEval and Prim. Further, these oracles are implemented by S3 using
a truly random function G instead of FA(S) . A has access to G outputs through
BlindEval queries. In particular, one G output is computed for every distinct
BlindEval query. The oracles Eval and Prim can be used by A to see whether a
query is not of the form (tj ,xj ,G(tj ,xj)) through consistency. This is the full
extent to which A has access to G. Therefore, from the perspective of A, G is a
random oracle with an additional oracle that tells if a guessed output is incorrect.
Given this setup, an adversary has a negligible probability of producing q + 1
outputs of G if it only knows q evaluations of G if the output space of G is super-
polynomial. Therefore, Pr[E3] = negl(λ). ⊓⊔

Theorem 2. Let FHE denote the TFHE scheme. The construction F from Fig-
ure 3 satisfies the POPRIV1 property if the following hold:

– FHE is IND-CPA.
– The client proof is zero-knowledge.
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– The LWEQ,N,N,χ′,χ′ assumption holds where χ′ = DZ,β′ is the error distribu-
tion used in FHE.KeyGen(pp).

Proof. Let G0 and G1 denote the POPRIV 1A,b
F,H game for b = 0 and b = 1

respectively. Furthermore, let Ḡ0 and Ḡ1 be the G0 and G1 modified so that all
Trans oracle queries have their zero-knowledge proofs in the requests replaced by
simulated zero-knowledge proofs. Clearly, G0 ≈c Ḡ0 and G1 ≈c Ḡ1 by the zero-
knowledge property of the client proofs. Next, we let G′

0 and G′
1 be the same as Ḡ0

and Ḡ1 apart from the way all public keys of the form FHE.pk(pp) := (bpk,FHE.pk)
are sampled. In particular, FHE.pk will remain the same, however, bpk will be
replaced by uniform random values upk. Note that bpk = App · r+ e+ ⌊Q/2⌉ · s
is an LWE encryption. As we argue next, Ḡ0 ≈c G′

0 and Ḡ1 ≈c G′
1 assuming the

LWEQ,N,N,χ′,χ′ assumption holds. Suppose we want to prove Ḡ0 ≈c G′
0. This

can be formally argued by building a distinguisher B between an M multi-secret
LWE challenge of the form (A,B) ∈ ZN×N

Q × ZN×M
Q where B ←$ ZN×M

Q or
B = A ·R+E) where R←$ (χ′)N×M ,E ←$ (χ′)N×M . Denoting bi as the i-th
column of B, bi is either uniform or bi = A ·ri+ei. Therefore, the distinguisher
B can simulate Ḡ0 or G′

0 for an adversary A by setting App = A and running
all algorithms as specified in Ḡ0 apart from FHE.KeyGen(pp). To run the i-th in-
stance of FHE.KeyGen(pp), B samples FHE.pk,FHE.sk ←$ FHE.KeyGen and then
sets FHE.pk(pp) := (bi + ⌊Q/2⌉FHE.sk). Clearly, if bi is not uniform, it perfectly
simulates Ḡ0 for A. Otherwise, it perfectly simulates G′

0 as shifting a uniform
value does not affect uniformity. Therefore, B would have the same advantage
in distinguishing its multi-secret LWE problem as A has in distinguishing Ḡ0

and G′
0. By a standard hybrid, the multi-secret LWE assumption holds (with a

polynomial number of secrets) if the plain single secret LWE assumption holds.
Therefore, Ḡ0 ≈c G′

0 and similarly, Ḡ1 ≈c G′
1.

Now we show that G′
0 ≈c G′

1 using the IND-CPA property of FHE. We will
use a sequence of hybrids G′

0,i where i ∈ [qR] for polynomial qR that bounds the
number of Run queries. In G0,i, all Run queries after the i-th one are answered as
in G′

0. All prior Run queries are answered according to the following description:

– Set req′ = (FHE.pk′(pp) := (b′pk,FHE.pk′), ct′, t, π′) where FHE.pk′ is a freshly
sampled public key with a uniform b′pk, ct′ = FHE.Enc(FHE.pk′, x1) and π′

is a simulated zero-knowledge proof.
– Compute rep′ ←$ F .BlindEval(sk, req′) and set y0 = F .Eval(sk, t, x0)
– Set τ ′0 = (req′, rep′, y0) and τ1 as in G′

0.
– Return (τ ′0, τ1)

We now show that for every i, G′
0,i ≈c G′

0,i+1. In order to show this, we build
an IND-CPA adversary B that distinguishes the IND-CPA game for FHE with
the same advantage that A has in distinguishing G′

0,i from G′
0,i+1. B acts as the

POPRIV1 challenger for A, sampling pp←$ F .Setup, (pk, sk)←$ F .KeyGen and
initialising the random oracles RO and ROkey honestly. This allows B to answer
the (i+1)-th Run query onwards as in G0. For the first (i− 1) queries, the Run
queries are answered by B as in G0,i i.e. as described above. However, for the i-th
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Run query A makes, denoted (t(i), x
(i)
0 , x

(i)
1 ), B asks its IND-CPA challenger for a

public key FHE.pk∗, queries the IND-CPA challenge oracle to encrypt either x(i)
0

or x(i)
1 receiving ct∗ in response. B then sets req∗ = (FHE.pk∗, ct∗, t(i), π∗) where

π∗ is a simulated proof. Finally, B responds to the i-th Run query by setting
τ ′0 = ((req∗,F .BlindEval(sk, req∗)),F .Eval(sk, t, x0)) and returning (τ ′0, τ1) to A
where τ1 is computed in the same way as G′

0. If B received an encryption of x(i)
0 , it

perfectly simulates the game G′
0,i for A. Otherwise it perfectly simulates G′

0,i+1.
Therefore, if A distinguishes G′

0,i from G′
0,i+1, then B also distinguishes the IND-

CPA game with the same advantage. This allows us to conclude that G′
0 ≈c G′

0,q.
We can run a symmetric argument, changing the way τ1 is computed in G′

1 (i.e.
by encrypting x0 instead of x1 in the request message) to show G′

0,q ≈c G′
1

by the IND-CPA property of FHE. Putting everything together and noting that
there are a polynomial number of hybrid experiments, we have that G0 ≈c G1

as required. ⊓⊔

5 Verifiability

In this section we aim to leverage the oblivious nature of the OPRF to extend
our POPRF construction to achieve verifiability. We base our technique on the
heuristic trick informally discussed in [ADDS21, Sec. 3.2] but with some modifi-
cations. In particular, we identify a blind-evaluation attack on this verifiability
strategy in our context, the mitigation for which requires enlarging certain pa-
rameters. We then use cryptanalysis to study the security of our protocol, i.e. our
construction does not reduce to a known (or even new but clean) hard problem.
We view our analysis as an exploration into achieving secure protocols from
bounded depth circuits which we hope has applications beyond this work.

We now describe our verifiability procedure, based on our OPRF presented in
Figure 3 using the cut-and-choose method from [ADDS21, Sec. 3.2]. Intuitively,
the client, C, sends the server, S, a set of known answer checkpoints amongst
genuine OPRF queries. The client checks if the “check points” match the known
answer values, if evaluations on the same points produce the same outputs and
if evaluations on different points produce different outputs. C may then assume
that S computed the (P)OPRF correctly provided the size of the checkpoint set
is large enough. In more detail, let γ = α+β be the number of points C submits
to S.

1. For some fixed t, S commits to κ points z⋆
k := FA(t,x⋆

k) for k ∈ Zκ and
publishes them (or sends them to C); S attaches a NIZK proof that these are
well-formed, i.e. satisfy the relation

Rt := {A, t, z⋆
k;x

⋆
k for k ∈ Zκ | z⋆

k = FA(t,x⋆
k)}

2. C wishes to evaluate α distinct points x
(α)
i for i ∈ Zα. It samples x

(β)
j ←$

{x⋆
k}k∈Zκ for j ∈ Zβ . C and shuffles the indices and submits these queries.
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3. C receives (claimed) z
(α)
i

?
= FA(t,x

(α)
i ) and z

(β)
j

?
= FA(t,x

(β)
j ). C rejects if

check points do not match, i.e z
(β)
j ̸= z⋆

k. Otherwise C accepts.

We formalise the security definition with a game in Figure 4. In the first phase,
the adversary provides n check points. Since the tag t remains constant through-
out we suppress it here. The experiment samples m − n additional points. It
executes the request algorithms and permutes the output according to ρ←$ Sm.
In the second phase, the adversary receives the m requests and it must also
output m responses. The adversary wins if all points have been correctly eval-
uated and there exists at least one additional point which does not correspond
to a point evaluated under FA. We say a (P)OPRF is verifiable if the following
advantage is negligible in the security parameter λ:

Advverif
F,S,A(λ) = Pr

[
VERIFA

F,m,n(λ) = 1
]

VERIFA,m,n
F,RO

1 : pp← F .Setup(λ)
2 : ({xi}n−1

i=0 , (sk, pk))← A; {xi}m−1
i=n ←$ Zn

p

3 : reqi ← F .Request(pk, t,xi), i ∈ Zm

4 : ρ←$ Sm

5 : {rep′i}m−1
i=0 ← A

Request,Finalise,RO(reqρ(0), ..., reqρ(m−1))

6 : zi ← F .Eval(sk, t,xi), i ∈ Zm

7 : if ∀i ∈ [0, n− 1] F .Finalise(rep′i) = zρ(i) ∧ ∃j ∈ [n,m− 1] s.t. F .Finalise(rep′i) ̸= zρ(i)

8 : return 1

9 : else return 0

Fig. 4. Verifiability Experiment for (P)OPRF

5.1 Verifiability from Levelled FHE

The heuristic we use to claim security is inspired by [CHLR18] which argues that
evaluating a deep circuit in an FHE scheme supporting only shallow circuits is
a hard problem. We pursue the same line of reasoning, albeit with significantly
tighter security margins. That is, our assumption is significantly stronger than
that in [CHLR18].

First, we will assume that the bootstrapping keys for the FHE scheme pro-
vided by C to S do not provide fully homomorphic encryption but restrict to a
limited number of levels. More precisely, while our main construction Figure 3
and its implementation in Section 6 make use of fully homomorphic encryption
(by relying on circular security), to target verifiability we pick parameters such
that only Lines 4 and 6 of Algorithm 2 cost a bootstrapping operation, i.e. all
linear operations are realised without bootstrapping. We note that this signif-
icantly increases the parameters required to evaluate our VOPRF candidate.
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Specifically, we observe that our POPRF in Algorithm 2 can then be evaluated
in depth two and S only receives two bootstrapping keys, presumably preventing
it from computing higher depth circuits.

Secondly, we assume that C provides non-unique encodings of its inputs. For
example if its input is x ∈ Zn

2 it may provide them as a vector in e.g. {−1, 0, 1}n
equivalent to x modulo 2. This forces a cheating server to perform normalisation
to prevent a cheating POPRF circuit from being computed in depth two.

Third, here we also assume that the native TFHE plaintext modulus P is
coprime with p = 2. This is because when p | P , the non-unique encoding
approach we utilise here is futile as a unique encoding can be recovered by
considering P/2 ·m where m is the non-unique encoding of a value ∈ {0, 1}.17

Parameters. We estimate parameters of our VOPRF in Table 3. While the
online cost (134.6kB) is perhaps acceptable in some settings, the public key size
(4077.8MB) is clearly beyond the realm of practicality. These parameters are
dictated by requiring P ≈ np so that A·(y, 1) can be computed over the Integers.
We thus base our parameters on PARAM_MESSAGE_8_CARRY_0 in tfhe-rs (but
replace P = 28 with a prime close to it).

Table 3. Post-quantum VOPRF candidates in the literature

work assumption r communication cost flavour model

[ADDS21] R(LWE) & SIS 2 > 128GB verifiable malicious, QROM
[Bas23] SIDH 2 8.7MB verifiable malicious, ts, ROM

Section 5 heuristic 2 0.5MB + 4077.8MB + 57.86KB verifiable malicious, ROM
+ 0.8kB + 37.6kB + 96.2kB

Section 5 heuristic 2 0.5MB + 4077.8MB + 57.86KB verifiable malicious, ROM
+ 0.8kB + 3.4kB + 96.2kB L = 64, per query

The column “r” gives the number of rounds. ROM is the random oracle model, QROM
the quantum random oracle model and “pp” stands for “preprocessing” and “ts” for
“trusted setup”. When reporting on our work, the summands are: check point size, pk
size, pk proof size, client message size, client message proof size, server message size.
Our client message proofs can be amortised to e.g. 217.1kB/64 = 3.4kB per query
when amortising over L = 64 queries.

5.2 Cryptanalysis

We explore cheating strategies of a malicious server.

Guessing. Assume the adversary guesses the positions of the check points in
order to make C accept an incorrect output. Recall that γ = α + β is the
number of points C submits to S, where there are β such check point positions
17 We would also expect that P should be somewhat far away from a power of two, but

we leave the detailed analysis for future work.
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of a possible κ choices. Thus, if we assume semantic security of the underlying
homomorphic encryption scheme then the probability of an adversarial server
guessing correctly is bounded by the probability it selects the positions of a
particular check point, for each of the β check points. We obtain a probability
(1/κ)

β · 1/
(
γ
β

)
of guessing correctly.

Interpolation. We consider an adversarial S that uses a circuit F ′
pei, of depth at

most 2, to win the verifiability experiment. At a high level, it solves a quadratic
system of equations and then uses the second level to do modular reduction.
More precisely, it chooses F ′

pei such that it agrees on the κ points with of the
POPRF circuit Fpei(A, t, ·), but that can differ elsewhere. Since the server knows
the checkpoints, this can be trivially done by the server. To prevent such an at-
tack, one would need to publish κ = n+ n

2 (n+ 1) +O(1) check points where n
is the input/output dimension. This, implies no quadratic polynomial interpo-
lation exists. If we let κ = 1283, then the communication cost of checkpoints is
approximately an additional 64MB, which can be reduced to 32MB by generat-
ing the input values from a seed. If the assumption is weakened such that we
only require κ = 1282 then this becomes only 0.5MB.

Check and cheat. Finally, we consider that the adversary is able to construct a
shallow cheating circuit, which is described in Algorithm 3, with [·] denoting a
homomorphic encryption of a value. Intuitively, it homomorphically checks the
clients inputs against known answers and then homomorphically selects which
output to return. This circuit has depth three. Here we use the non-unique
encoding of the input to force a malicious server to perform the initial mod p
operation, costing a level.

Algorithm 3 Cheating Circuit
Input: non-unique encoding [y] ∈ Znp

p ; checkpoints {y⋆
j}; H : Znp

p → Zm
q any function

[r], [found]← 0, 0
for all y⋆

j do
[d]← [y]− y⋆

j

[d
(0)
i ]← LUTx mod p(di) ∀i ∈ Znp ▷ mod p, depth 1

[h]←
∑

i∈Znp
d
(0)
i

if [h] = 0 then ▷ CMUX, depth 1
[r]← [r] + y∗

j ; [found]← [found] + 1
else

[r]← [r] + 0; [found]← [found] + 0
end if

end for
return CMUX[found]([r], H([y])) ▷ depth 1
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5.3 Compression Potential
The central reason for the large parameters reported above is that we must
force a cheating server to compute a circuit in depth three whereas a honest
server only requires depth two. We achieve this by making the client submit
non-unique encodings and thus need to pick parameters that A · (y, 1) can be
computed over Z, i.e. a plaintext space ≈ Znp . A first approach to circumvent
this issue is by making an even stronger assumption: our cheating circuits all
need to homomorphically sum over κ values related to our checkpoints. In our
analysis, we assume additions are “free”, i.e. hardly increase the noise, but as
we increase the number of check points this assumption breaks down. Indeed,
κ ≈ n2 already suggests a noise growth of n, plausibly too big for our OPRF
parameters. This, of course, assumes this noise growth cannot be managed more
efficiently by a cheating server and is thus a stronger assumption, as mentioned.

A second approach is to reduce the bootstrapping depth of an honest server.
Recall, that we rely on our final bootstrapping to argue Ax-hiding of the eval-
uation. If, instead, we could rely solely on the circuit privacy provided by boot-
strapping after computing A · (y, 1), we would obtain a depth one circuit for
the honest server. Thus, a cheating server in depth two would not break security
and we could drop the non-unique encoding and evaluation over Z blowing up
our parameters. We leave exploring these approaches for future work.

6 Proof-of-Concept Implementation
We demonstrate that we can build a simple and efficient implementation of the
basic oblivious pseudorandom function given in Figure 3. Our implementation
is written in Rust and provided open-source.18 It makes use of Zama’s tfhe-rs
FHE library [CGGI20] for writing FHE functionalities using TFHE. The imple-
mentation itself requires less than 700 lines of code for instantiating the core
functionality (not including tests and examples).19

Implementation choices. The matrix Gout ∈ Zm×mp
q is constructed (as in Sec-

tion 2.6) by sampling each entry uniformly in Z3. The matrix Ginp ∈ Znq×n
q is

sampled with an identity matrix in the top n×n component, and the remaining
(nq − n) rows as random vectors in Z3 (i.e. in systematic form, see Section 2.6).
The matrix A is sampled randomly in Zmp×np

2 . The dimensions of these matrices
are set using the values given in Table 2. The matrix At is constructed as the out-
put of a random oracle ROkey, where for each column A[i], the random oracle out-
puts column At[i] ∈ Zmp

2 by evaluating ROkey(t,A[i], "voprf_fhe_rom_key").
The random oracle ROkey is implemented using SHA-384, while the random
oracle ROfin, which is used for finalising the client input (as in [TCR+22]), is
implemented using SHA-256. Note that in our implementation, all matrices are
transposed and therefore all multiplication operations are therefore reversed.
18 https://anonymous.4open.science/r/oprf-fhe-C726
19 We do not implement the zero-knowledge arguments that are used as part of the main

protocol construction, but provide bandwidth estimates for these in Appendix B.

28

https://anonymous.4open.science/r/oprf-fhe-C726


Table 4. Computational runtimes for
running OPRF functionality.

(P)OPRF function Time

C : Fpoprf.KeyGen 220ms
C : Fpoprf.Request 36ms
S : Fpoprf.BlindEval (“slow”) 14.4s
S : Fpoprf.BlindEval (“full”) 123ms
C : Fpoprf.Finalise 0.1ms

Table 5. Sizes of cryptographic ma-
terial, RAM usage, and bootstrapping
depth per ciphertext.

Data point Size

C: Secret key 0.02MB
C: Public key 66.8MB
C: Request 2.02MB
S: Response 1.01MB

The client public key includes the size of both the bootstrapping and key switching
key used in the implementation of Concrete.

tfhe-rs implementation and parameters. The Rust implementation of Concrete
that we use corresponds to the tfhe-rs library (version “0.2.4”).20 with pa-
rameter set PARAM_MESSAGE_2_CARRY_0. Ideally, we would implement our PRF
candidate by first computing with a native TFHE plaintext modulus 2, followed
by a bootstrapped key switch to native TFHE plaintext modulus 3. However,
as it stands, the tfhe-rs API does not support this. We, thus, implement a
“slow” variant, where we perform all computations modulo 4 (implied by the
parameter set PARAM_MESSAGE_2_CARRY_0) where we carefully bootstrap and
reduce modulo 3 to avoid overflows. That is, Z3 is implemented using the set
{0, 1, 2} ∈ Z4.21 We then also give estimates (rather than benchmarks) for a
“full” variant, where we avoid these additional bootstrapping operations to work
around the API limitation.

Benchmarks. The results that we discuss below were acquired by using a server
with 96 Intel Xeon Gold 6252 CPU @ 2.10GHz cores and 768 GB of RAM. Server
evaluation is run with parallelisation enabled, meaning that each multiplication
of the client input encrypted vector with a matrix column is run in its own
separate thread, but we only use 64 threads/cores. Client evaluations use only a
single core. Each of the benchmarks was established after running it ten times
and taking the average runtime.

Runtimes. As shown in Table 4, key generation (KeyGen) is the heaviest client-
side: only taking 220ms. Even so, this operation can be regarded as a one-time
cost in many applications. For example, considering OPAQUE [JKX18], clients
and servers already register persistent identifiers for each other (such as the
client-specific OPRF key). Therefore, the client keypair can be registered as
part of this process. Similarly for Privacy Pass [DGS+18], the issuance phase
of the protocol does not discount clients from registering persistent information
that they use whenever they make VOPRF evaluations (which could include this
key information). As a result, in many applications, clients will generate a single
FHE keypair and use that over multiple interactions with the server.
20 https://docs.rs/tfhe/0.2.4/tfhe/index.html
21 We note that this implementation is incompatible with our VOPRF candidate.
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For the online client-side algorithms (Request and Finalise) that must be run
on every invocation of the OPRF, it is clear that the overheads are minimal,
and are suitable even for relatively constrained devices. For the online server-
side algorithm (BlindEval), the runtime is estimated as just 123ms, which may
be quick enough for certain applications that have a hard requirement to en-
sure post-quantum security. Previous classical constructions of (P)OPRFs, such
as [TCR+22] take only a few milliseconds to run the server evaluation algorithm,
and so the efficiency gap between our “full” FHE-based approach and previous
work is evident, but fairly minimal.

Bandwidth and storage costs. As shown in Table 5, the client public key domi-
nates the bandwidth and storage costs for any given run-through of the protocol,
at around 70MB. However, since the client key pair can be used across multiple
invocations of the protocol, the bandwidth cost does not occur during subse-
quent evaluations (the “online phase”). The online phase of the protocol incurs
a total communication cost of approximately 3MB, since ciphertexts are stored
in M -LWE format in the tfhe-rs library. However, as remarked in Section 3.2,
much smaller communication costs are possible by carefully selecting the format
(LWE instead of M -LWE), compressing and amortising.
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A Alternative heuristic approach for Ax-hiding

We conjecture that the following approach, relying on the form of programmable
bootstrapping when implementing an LUT, heuristically achieves Ax-hiding.
Programmable bootstrapping of an LWE ciphertext with look-up table LUTf

consists of three steps: blind rotation, sample extraction and key-switching. In
particular, blind rotation begins with an LWE ciphertext c = (a, b = a · s+ e+
µ · (Q/P )) encrypting µ ∈ ZP and a programmed evaluation polynomial v(X)
for function f . Note that we do not wish to hide f and thus v(X). Furthermore,
let (az, bz) be some encryption of zero under the same LWE secret key.

We first compute (a, b)← (a, b)+(v ·az+e′, v ·bz+e′′) for some short v, e′, e′′
to rerandomise (a, b), especially the a part (using the LWE assumption). Then
using the bootstrapping key, blind rotation (homomorphically) multiplies v(X)
by Xki where ki is either 0 or some value depending on a or b for i = 0, . . . , n−1.
Whether ki is 0 or not depends on the bootstrapping key. In more detail, these
blind rotations are realised using CMux gates acting on some accumulator α
which is update to ‘α ← G−1 ((Xai − 1) · α) · (E + µ · GT ) + α where G is a
known gadget matrix, G−1(·) is a matching (possibly randomised) decomposition
function and E is some small error. At the end of the blind rotation phase,
we have an encryption of X⌊(b−a·s)·2n/Q⌉ · v(X) = X⌊(e+µ·(Q/P ))·2n/Q⌉ · v(X).
Here ⌊(b− a · s) · 2n/Q⌉ indicates that (b − a · s) is mapped from values in
{0, . . . , Q−1} to values in {0, . . . , 2n−1} via rounding. We then perform sample
extraction to get an LWE encryption of f(⌊(P/Q) · (b− a · s)⌉).

Now, in our variant, we initialise the accumulator to v(x) (and not Xb ·v(x)).
We then run the CMUXes realising the blind rotation in some random order.
Finally, we rotate the result in the accumulator α by Xb. Here, the dependency
on (a, b) is almost removed, using the LWE assumption on v · az + e′. In the
final rotation step we do get a dependency based on the original computation,
but a key difference is that we do not need a CMUX to perform this rotation.
This is then followed by a sample extraction that essentially picks out a single
coefficient of the noisy RLWE ciphertext, partially obscuring the rotation. We
stress, however, that this argument is heuristic, as b is not independent of a if
the secret key is known.
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B Client Non-Interactive Zero Knowledge Proofs

A key part of security against malicious clients is the non-interactive zero knowl-
edge proof that a POPRF request is well-formed. This requires a proof system
that can (a) show that the public key material of the FHE scheme is well-formed
and (b) show that the accompanying ciphertext is an encryption of a valid in-
put. To make things modular, we discuss how to prove (a) and (b) separately.
The overall system can be trivially obtained by combining the two proofs in a
straight-forward manner.

For the VOPRF construction, there are two main complications as far as the
client-side zero-knowledge proofs are concerned. The first is that the public key
material sent by the client must only permit two bootstrapping operations. The
second is that PRF inputs must have non-unique encodings. To avoid repetition,
we describe the client proofs for (a) in the more complicated context of VOPRFs
and derive cost estimates for the OPRF construction as a simpler case.
We provide our scripts computing our size estimates in Appendices E and F.
The former is based off a script provided by the authors of [BS22].

B.1 Public Keys

There are two components to the public key material sent by the client: a nor-
mal TLWE public key/commitment and a TFHE bootstrapping key. A TFHE
bootstrapping key consists of three components: A standard GSW key [GSW13],
a standard bootstrapping key and a key-switching key. The latter two are used
in TFHE’s (programmable) bootstrapping procedure whereas the first is used
to create the bootstrapping key. One could remove the GSW key, but then the
zero-knowledge proofs become far more expensive because there are large ele-
ments that form part of the witness (namely the uniform elements used in the
creation of a private GSW encryption). Note that the bootstrapping key takes
the form of GSW ciphertexts over rings, i.e. over RQ = ZQ[X]/(Xd+1) whereas
the key-switching key is a collection of plain LWE ciphertexts, i.e. over Ze

Q.
To perform normal homomorphic operations, all that is required is the cipher-

texts. In particular, we do not really need to use a (T)LWE public key (denoted
cpk below) for this. However, the circuit privacy techniques of Kluczniak [Klu22]
does use the public key to re-randomise ciphertexts. Therefore, it is important
that we include cpk in the proofs.

In the VOPRF construction, we will only be providing TFHE allowing two
bootstrapping operations. After each bootstrapping, the TFHE encryption key
changes. Let s̄(τ) = (s̄

(τ)
0 , . . . , s̄

(τ)
e−1) ←$ Ze

2 denote the TFHE key after the τ -th
bootstrapping for τ = 0, 1, 2. Also, take the gadget matrix permitting approxi-
mate decompositions to be

G = (⌊Q/B⌉, . . . , ⌊Q/Bℓ⌉)⊗ I2

for decomposition parameters B and ℓ. The encryption key used to produce
the τ -th bootstrapping key for τ ∈ {1, 2} will be s̃(τ) =

∑d−1
i=0 s̃

(τ)
i · Xi ←$ R2.
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We will denote error distributions for LWE/MLWE assumptions by χ and χ̄
respectively.

Key Material. Overall, the key material sent from the client to the server is:

– Root TLWE Public Key/Root Secret Key Commitment:

bpk = App · rcom + ecom + ⌊Q/2⌉ ·
[

s̄(0)

0ecom−e

]
∈ Zecom

Q

cpk = Apk · s̄0 + epk ∈ Ze log Q
Q

where App ∈ Zecom×ecom
Q is from the public parameters, Apk ←$ Ze log Q×e

Q ,
ecom, rcom ←$ χecomcom and epk ←$ χe log Q.

– GSW Public Keys for bootstrapping: For τ ∈ {1, 2}

A
(τ)
GSW :=

[
a(τ)

s̃(τ)·a(τ)+e(τ)

]
∈ R2×2

Q

where (aτ )⊤ ←$R2
Q, e

(τ) ←$ χ̄2.
– Bootstrapping Keys: For i = 0, . . . , e− 1 and τ ∈ {1, 2}:

bsk[τ, i] := A
(τ)
GSW ·R

(τ)
i +E

(τ)
i + s̄

(τ−1)
i ·G

where R
(τ)
i ←$R2×2ℓ

2 ,E
(τ)
i ←$ χ̄2×2ℓ.

– Key-Switching Keys: For i = 0, . . . , d− 1, j = 0, . . . , ℓ̃− 1, τ ∈ {1, 2},

ksk[τ, i, j] :=
(
a
(τ)
i,j ,

e−1∑
k=0

(a
(τ)
i,j )k · s̄

(τ)
k + e

(τ)
i,j + s̃

(τ)
i · ⌊Q/B̃j⌉

)
,

where a
(τ)
i,j ←$ Ze

Q, e
(τ)
i,j ←$ χ and B̃, ℓ̃ are decomposition parameters.

In order to set some example parameters, we rely on the parameters from our
implementation and only consider the simpler non-verifiable (P)OPRF case. In
particular these parameters are (PARAM_MESSAGE_2_CARRY_0) defined in the
tfhe-rs library [CGGI20] with ecom = 211 and χcom a discrete Gaussian with
standard deviation σcom = 22 (see Section 2.4 for setting the latter). The TFHE
scheme uses discretisation over a torus where the resolution of the discretisation
allows us to pick modulus Q ≈ 232 and the other parameters are e = 656, d =
1, 024, ℓ = 2, ℓ̃ = 4. Note that our description of the bootstrapping key is written
in terms of R-LWE for simplicity. However, our implementation parameters use
a ring dimension of 512 with rank 2, explaining why d = 1, 024 in our analysis.

If a random seed is expanded to generate all of the random elements and con-
sidering the OPRF case, only the root public key, A1

GSW , bsk[1, i] and ksk[1, i, j]
need to be sent (when calculating ksk[1, i, j], we use s̄(1) = s̄(0)). Therefore, the
size of the key material is

(ecom + e logQ) · logQ+ 2 d logQ+ (2 · 2 ℓ) · e · d logQ+ d ℓ̃ · logQ.
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which is dominated by 2 e · 2ℓ · d logQ.
Finally, to pack multiple LWE response ciphertexts into a single RLWE ci-

phertext, we need to add some key-switching material to the public keys. These
key-switching keys are associated to a total of log(d) automorphisms and there-
fore consist in a total of log(d) · d · ℓ̃ noisy LWE products. Using the parameters
above, we end up adding 72kB to the public key material. Overall, we get around
16.8MB of public key material sent by the client for the OPRF, which we ob-
tain by also dropping some lower-order bits [LDK+22]. The VOPRF parameters
PARAM_MESSAGE_8_CARRY_0 use larger parameters Q ≈ 264, d = 32768, ℓ =
2, ℓ̃ = 5 to ensure that two bootstrappings on the server side suffices for PRF
evaluation. Unfortunately, this results in around 4091MB of public key material.

Proofs. Essentially, the well-formedness of the public key material is a large
“noisy” linear system where some of the equations are over RQ and others are
over ZQ. Additionally, some of the solution is binary i.e. s̄(τ), s̃(τ) and Rτ

i , while
the rest of the solution i.e. rcom, ecom, epk,E

(τ)
i and e

(τ)
i,j is small.

We give proof sizes both in the zero-knowledge proof system from [LNP22]
and for a zero-knowledge variant of [BS22]. We rely on the former for proving
ciphertexts, so we chose to also give the costs under this proof system for the
FHE public keys.

[LNP22]. In order to estimate the cost of the zero-knowledge proof, we rewrite
the statement being proved in a form compatible with [LNP22]. We will have
the unknowns s̄(0), s̄(1), s̄(2) ∈ Ze

2, ∥rcom∥ ≤ βcom, s̃(0), s̃(1) ∈ R2,

{r(τ)i,j ∈ R
2
2 : i ∈ {0, . . . , e− 1}, j ∈ {0, . . . , 2ℓ− 1}, τ ∈ {1, 2}}

where r
(τ)
i,j is the j-th column of R(τ)

i and also

{e(τ)i,j : i ∈ {0, . . . , d− 1}, j ∈ {0, . . . , ℓ̃− 1}, τ ∈ {1, 2}}.

We rewrite the statement as follows:

– (Binary s̄(0), s̄(1), s̄(2), s̃(1), s̃(2), {r(τ)i,j }) Take x to be the concatenation of
coefficients of s̄(0), s̄(1), s̄(2), s̃(1), s̃(2) and all of the ri,j . Then ⟨x,x − 1⟩ ≡
0 mod Q and ∥x∥ short enough so that the former holds over Z too. This
implies that these components are binary.

– (Root public key/Root Secret Key Commitment)

∥rcom∥ ≤ βcom,∥∥∥bpk −App · rcom − ⌊Q/2⌉s̄(0)
∥∥∥ ≤ βcom,∥∥∥cpk −Apk · s̄(0)

∥∥∥ ≤ βpk

where βcom and βpk are length-bounds on ecom ∈ Zecom
Q and epk ∈ Ze

Q respec-
tively.

37



– (GSW Public Keys) For τ ∈ {1, 2}∥∥∥∥(A(τ)
GSW )

⊤
·
[
s̃(τ)

−1

]∥∥∥∥ ≤ β

where β is a length bound on error vector e(τ) ∈ R2
Q.

– (Bootstrapping) For τ ∈ {1, 2}, i = 0, . . . , e− 1, j = 0, . . . , 2ℓ− 1,

∥A(τ)
GSW · r

(τ)
i,j + s̄

(τ−1)
i ·Gj − bsk[τ, i]j∥ ≤ β′

where the index j in Gj , bsk[τ, i]j denotes the j-th column and β′ is a bound
on the columns of E′

i.
– (Key-Switching) For τ ∈ {1, 2}, j = 0, . . . , ℓ̃− 1,

∥(A(τ)
j ) · s̄(τ) + s̃(τ) · ⌊Q/B̃j⌉ − ksk[τ, j]∥ ≤ β′′

where A
(τ)
j is the matrix whose i-th row is a(τ)

i,j , ksk[τ, j] ∈ Zd
Q has i-th entry

ksk[τ, i, j] and β′′ is a bound on the vector whose i-th component is e
(τ)
i,j .

Following [LNP22], the size of the non-interactive proof is around

(n+ ℓ̄+ 2 · ⌈256/d⌉+ λ+ 2) · d log(Q) + log(2κ+ 1) · d+ (m1 + ve)d · log(22.57 s1)

+m2 · d · log(22.57s2) + 256 · log(22.57s(e))

where

– n is the height of a M -SIS matrix
– d is a ring dimension
– ℓ̄ = 0 because the entire witness is small
– Q is a modulus
– λ is a repetition rate so that Q−λ is negligible
– κ is a bound on the challenge coefficients e.g. κ = 2

– m1 is the module dimension of
(
rcom, s̄(0), s̄(1), s̄(2), s̃(0), s̃(1), {r(τ)i,j }

)
– ve is the module dimension of x′ where x′ consists of binary representation

of norms associated to the exact bound statements. Specifically, x′ consists
of one ring element per exact bound amounting to ve = (3 + 2 + 4eℓ + 2ℓ̃
ring elements.

– M -SISRq,n,m1+ve+m2,βMSIS is hard for

βMSIS = 8 · 59 ·
√
2d(m1 + ve)s21 + 2dm2s22.

– s1 is a small multiple22 of
∥∥∥(rcom, s̄(0), s̄(1), s̄(2)s̃(1), s̃(2), {r(τ)i,j },x′

)∥∥∥, i.e.

s1 = γ1 · 59
√
β2

comd⌈ecom/d⌉+ d(m1 − 1 + ve)

22 The constant γ1, as well as the constants γ2 and γ(e) for s2 and s(e) appear as part
of the repetition rate of the proof.
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– s2 is a part of the M -SIS bound (e.g. s2 = γ2 · 59 ·
√
dm2)

– s(e) is a small multiple of√
(m1 − 1) · d+ 2β2

com + β2
pk + 2β2 + 2 e · ℓ · (β′)2 + 2 ℓ̃(β′′)

2
+ 2 log(βcom)

+ log(βpk) + 2 log(β) + 2 eℓ log(β′) + 2 ℓ̃ log(β′′)

i.e. γ(e)
√
337 times the above.

– The M -LWERq,m2−n−ℓ̄−λ−4,n+ℓ̄+λ+4,Z3,Z3
problem is hard.

To offer some concrete estimates, we use our OPRF implementation param-
eters so that d = 512, e = 656, Q ≈ 232, λ = 4. In actual fact, the structured
LWE assumption used by the parameters is a M -LWE assumption in rank 2.
As mentioned before, we effectively set d = 1, 024 in our analysis. We also
have a standard deviation of σ ≈ 217 for the plain LWE error distributions,
σ̄ ≈ 174 for the M -LWE (or R-LWE as we are viewing it) error distributions
and σcom = 2. This implies that we should take βcom = 2 · √ecom = 2 ·

√
2048,

βpk = 217 ·
√
e logQ = 244 ·

√
656 · 32, β = β′ = 174 ·

√
2d = 174 ·

√
2048,

β′′ = 217 ·
√
d = 217 ·

√
1024. We also have ℓ = 2, ℓ̄ = 4. Recall that for our

OPRF, the variables s̄1, s̄2, s̃
(1) and {r(τ)i,j : τ = 2} are not present in the OPRF

setting so we update the proof parameters accordingly.
For the M -SIS assumption, we aim for δ = 1.0045 as in [LNP22]. We may

then take γ1 = 40, γ2 = 10, n = 3, for the M -SIS problem noting that the
parameter m2 dimension has essentially no effect on hardness. Next, the lattice
estimator tells us that a module rank of 2 is all that is required to make the
M -LWE problem hard. Therefore, we require that m2 ≥ 2 + n+ ℓ̄+ λ+ 4 = 11.
With the constants γ1 = 40, γ2 = γ(e) = 10, we get an approximate proof
size of 25.2MB. Additionally, the expected repetition rate of the prover (that
is, the expected number of times the prover runs the proof before the rejection
sampling algorithms output a success) with these parameters is less than 3. Note
that there is a trade-off between the prover’s expected running time and the
proof size. That is, we can reduce the “γ” parameters to get better proof sizes.
However, the price to pay is a larger expected repetition rate. For example,
taking γ1 = 10, γ2 = γ(e) = 5 gives an expected repetition rate of less than 9
and a proof size of around 23.2MB.

Dilithium Compression. We can also use the compression techniques from the
Dilithium signature scheme [LDK+22]. By dropping D bits for certain ring el-
ements, we save (D − 2.25) · n · d · logQ bits in the proof size. However, even
with the overly optimistic D = 30, this only saves a few hundred kilobytes so
the optimisation does not change the overall proof size in any meaningful way.

Verifiable OPRF. In the verifiable case, our parameters are somewhat specu-
lative and we do not recommend implementing our scheme. However, to give
an illustration of performance, we may choose parameters so that the boot-
strapping depth of the server evaluation is exactly 2. For this, we may use the
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PARAM_MESSAGE_8_CARRY_0 from the tfhe-rs library, modifying the plaintext
space to P = 251. We also re-introduce the variables s̄1, s̄2, s̃(1) and {r(τ)i,j : τ = 2}
and the associated bounds. The VOPRF parameters are Q ≈ 264, d = 32768, e =
1017, σ ≈ 240, σ̄ = 4. Additionally, the decomposition parameters are ℓ = 2 and
ℓ̃ = 5. The reason for this increase in parameters is to allow all linear operations
in the homomorphic PRF evaluation to be performed without any bootstrap-
ping. Using (m2, n) = (8, 1) and the same repetition rate parameters, the overall
proof size becomes around 2763MB or 2572MB for repetition rates less than 3
and 9 respectively. Note that these proof sizes may be compressed by working
over a smaller ring size as is done in using the alternative proof system below.
For brevity, we choose not to explore this here.

LaBRADOR [BS22]. The recursive LaBRADOR proof system [BS22] can also
handle the type of statements we require zero-knowledge proofs for here. La-
BRADOR is a recursive proof system achieving a poly-logarithmic size and a
very small slackness parameter of approximately 2. This slackness factor should
be taken into account when choosing TFHE parameters because the size of the
errors in the bootstrapping key may lead to incorrect evaluation and the leaking
of secret information. That is, the extracted witness is at most twice as long
as a genuine witness. We note that LaBRADOR is not zero-knowledge but as
pointed out in [BS22] this can be addressed by adding a thin “zero-knowledge
shim”. In what follows, we will assume that this does not change the order of
the proof sizes.

In order to use LaBRADOR proofs, we will consider the error terms

ecom, epk, e
(τ),E

(τ)
i , e

(τ)
i,j

as part of the witness where the super-script τ either ranges over {1, 2} or is sim-
ply dropped depending on whether we are in the verifiable or non-verifiable case.
In particular, whether these terms are over ZQ or not, they will be considered
as RQ elements where at most d coefficients are placed in a single RQ element.
The error terms add up to

⌈(ecom + e · logQ)/d⌉+ Tv · (2 + 4 e · ℓ+ ℓ̃)

ring elements where Tv = 2 in the verifiable case and 1 in the non-verifiable case.
Adding in the terms coming from the s̄(·), s̃(·), rcom and r

(τ)
i,j , we end up with a

witness consisting of

⌈((2Tv − 1) · e+ 2 ecom + e · logQ)/d⌉+ Tv · (3 + 8 e · ℓ+ ℓ̃)

ring elements. In order to cost LaBRADOR proofs, we also require a Euclidean
norm bound on the witness. In the case of our statement, this equates to√

(2Tv − 1)e+ Tvd+ 4Tveℓd+ σ2
com · (2ecom)

+σ2 · (e logQ+ Tv ℓ̃d) + σ̄2Tv · (2d+ 4eℓd)
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if all Gaussians with the same standard deviation are grouped together. Plugging
in the aforementioned OPRF parameters, the witness consists of 21069 ring ele-
ments and the norm bound on the witness is around 211. Using the LaBRADOR
proof system then yields a proof size of 41.42kB. In order to justify this number,
we write our constraints/witness over Zq[X]/(Xd + 1) for power-of-two d > 64
as constraints/witness over Zq[X]/(X64 + 1). Next, we divide our 168464 wit-
ness ring elements (∈ Zq[X]/(X64 + 1)) into 24 module elements, each of rank
7019 (padding the witness to make this splitting exact). Finally, we exhaustively
search over five recursion levels to find recursion parameters (3, 3, 2, 1, 3). That
is the first recursion uses ν = 3, the second uses ν = 3, the third ν = 2 etc.

For the verifiable OPRF parameters, splitting the witness into 256 module
elements yields a LaBRADOR proof size is around 69.85kB at five recursion
levels. Note that all of these costs may be optimised further by tweaking the
proof parameters.

Remark 6. We note that in our final constructions the preparation of public keys
and accompanying zero-knowledge proofs can be a one-time cost, as they can be
re-used.

Ciphertext Packing. Finally, we will estimate the cost of the LaBRADOR proofs
in the case where we pack multiple LWE ciphertexts into a single RLWE cipher-
text to save bandwidth. Essentially, we add log(d) · d · ℓ̃ error terms to the
witness, each of which a discrete Gaussian with parameter σ ≈ 217. There are
no extra secret terms as the key-switching keys are associated to automorphisms
that essentially shuffle the secret coefficients. With these updated values, the
LaBRADOR proofs remains roughly the same size as reported above. Therefore,
the additional key material does not contribute significantly to the communica-
tion cost of our constructions.

B.2 Protected Encoded Input Proofs (OPRF)

Computation of the function Fpoprf.HEEval (see Algorithm 2) requires a cipher-
text encrypting y that H inp ·Ggadget · y ≡ 0 mod q. Therefore, if we want the
server to compute this function, the client must prove that its ciphertext is well-
formed, i.e. that it encrypts a vector y ∈ Znp

p satisfying the requirement. In the
following section we consider the case where y is a non-unique ternary repre-
sentation of a valid encoded binary input which is useful for verifiability. Recall
that our suggested parameters are p = 2, q = 3 and np = 256. An honest server
never has to multiply ciphertexts, so a full GSW ciphertext is not necessary
and we can assume a TLWE ciphertext of y ∈ Znp

p is sent. As before, we let Q
denote the ciphertext modulus of TFHE, e the TLWE dimension and ecom the
commitment dimension. The plaintext modulus will be denoted P . We utilise
a public key, or more specifically in our case, the commitment bpk to the root
TFHE secret key s ∈ Ze

2 (this is the key denoted s(0) in the previous section).
Then we prove that the ciphertext is a secret key encryption of y where the
key used is consistent with bpk. This is more efficient than proving knowledge of
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the comparatively large amount of encryption randomness required to produce
encryptions using the public key method. In what follows, we assume the ma-
trix A is sampled uniformly from Znp×e

Q . We want a zero knowledge proof for
s ∈ Ze

2, e ∈ Znp

Q , rcom, ecom ∈ Zecom
Q as well as some y ∈ Znp

p such that:

– bpk = App · rcom + ecom + ⌊Q/2⌉ · s mod Q

– C =

[
A⊤

s⊤A⊤ + e⊤

]
+

[
0e×np

⌊Q/P ⌉ (y)⊤
]

mod Q

– The entries of y are all in Zp

– H inp ·Ggadget · y ≡ 0 mod q
– s ∈ Ze

2

– ∥rcom∥, ∥ecom∥ ≤ βcom
– ∥e∥ ≤ βct

Note that H inp · Ggadget ∈ Z(nq−n)×np
q . If we assume that Q is big enough so

that H inp · Ggadget · y does not wrap-around modulo Q, then we may replace
the final equation by H inp ·Ggadget · y = qv over the Integers where ∥qv∥∞ ≤
∥H inp ·Ggadget∥1 ≪ Q. This implies that the same equation holds modulo Q i.e.
H inp ·Ggadget · y = qv mod Q where ∥v∥∞ ≤ ∥H inp·Ggadget∥1

q =: Bv ≪ Q.
Recall that (p, q) = (2, 3). Denoting c as the last row of C, we want a zero-

knowledge proof of s ∈ Ze
Q,y ∈ Znp

Q and rcom ∈ Zecom
Q such that

– y and s have binary entries (these statements are split into a quadratic
relation and a bound check)

– ∥rcom∥ ≤ βcom
– ∥bpk −App · rcom − ⌊Q/2⌉ · s∥ ≤ βcom
– ∥c−A · s− ⌊Q/P ⌉y∥ ≤ βct
– ∥v∥∞ :=

∥∥q−1 ·H inp ·Ggadget · y
∥∥
∞ ≤ Bv (approximately)

Note that only rpk, s and y are part of the witness in the above. In particular,
v is not part of the witness. When expressed as a proof of the form captured
by [LNP22], the cost of running a proof is around

(n+ ℓ̄+ 2 · ⌈256/d⌉+ λ+ 2) · d · log(Q) + log(2κ+ 1) · d+ (m1 + ve) · d · log(22.57s1)

+m2 · d · log(22.57s2) + 256 ·
(

log(22.57 s(e)) + log(22.57 s(d))
)

where

– n is the height of a M -SIS matrix
– ℓ̄ = 0 as the entire witness is short
– d = 128 is a ring dimension
– Q is a modulus
– λ is a repetition rate so that Q−λ is negligible
– κ is a bound on the challenge coefficients e.g. κ = 2
– m1 is the module dimension required to store (rcom, s,y) i.e.

m1 = ⌈ecom/128⌉+ ⌈e/128⌉+ ⌈np/128⌉
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– ve is the module dimension of x′ where x′ is the concatenation of binary
representation of the witness norms in the exact norm proofs i.e.

ve = 2⌈logβcom/128⌉+ ⌈βct/128⌉ = 3

– M -SISRQ,n,m1+ve+m2,β is hard for β = 8 · 59 ·
√

2d(m1 + ve)s21 + 2dm2s22.
– s1 is a small multiple23 of ∥(rpk, s,y,x′)∥ where x′ is a binary module ele-

ment of rank ve i.e.

s1 = γ1 · 59
√

β2
comecom + d(m1 − ⌈ecom/128⌉+ ve)

– s2 is a part of the M -SIS bound, e.g. s2 = γ2 · 59 ·
√
dm2

– s(e) = γ(e) ·
√
337 ·

√
e+ np + 2β2

com + β2
ct + 2 log(βcom) + log(βct).

– s(d) is a small multiple of Bv i.e. γ(d) ·
√
337 ·Bv

– The M -LWERQ,m2−n−ℓ̄−λ−4,n+ℓ̄+λ+4,Z3,Z3
problem is hard.

For the implementation parameter set, we take Q = 232, βcom = 2 ·
√
2048, βct ≈

217 · √np = 217 ·
√
256. We also take Bv = 128. To choose parameters so that

the M -SIS problem is hard, we may take n = 11 for the moment. Note that
the M -SIS problem does not depend heavily on the number of columns so there
is no resulting restriction on m2 aside from its appearance in the bound term.
However, when analysing the M -LWE problem using the lattice estimator, we
find that we must take m2 ≥ 11 + n + ℓ̄ + λ + 4 = 30 where λ = 4. Taking the
most efficient choice of m2 = 30, it can be verified that the M -SIS problem is
indeed hard when aiming for a Hermite root factor of δ = 1.0045 as in [LNP22]
with γ1 = 40, γ2 = γ(e) = γ(d) = 10. This gives an overall proof size of 23.8kB
and an expected repetition rate of less than 3. We stress that there is a trade-
off between the number of repetitions by the prover and proof-size, so these
estimates only give a rough idea of the communication cost. For example, taking
γ1 = 10, γ2 = γ(e) = γ(d) = 5 allows us to pick n = 10,m2 = 29 leading to an
expected repetition rate of less than 9 and a 22.1kB proof.

Dilithium Compression. We can compress the proof further by cutting D > 0
lower bits of certain full-sized module elements and log(γ) bits of smaller module
elements at the expense of introducing some small hint data. This idea was intro-
duced by the Dilithium signature scheme [LDK+22]. When applying Dilithium
compression, the M -SIS assumption changes to M -SISRQ,n,m1+ve+m2,β′ where
β′ = 4 · 59

√
β2
1 + β2

2 for β1 := 2s1
√
2(m1 + ve)d and β2 := 2s2

√
2m2d + 2D ·

59
√
nd+γ

√
nd. In order to pick new parameters, we stick to the same value of n,

choose γ to be the largest such that the M -SIS problem remains hard for D = 0
and (Q−1)/γ ∈ Z, then pick the largest D such that the M -SIS problem is hard
and 2D−1κd < γ [LNP22]. For this, we set Q = 232− 315 ≈ 232, γ = 947 · 281 · 5
and D = 12. The proof size decreases by (D − 2.25) · nd bits which equates
to 1.7kB. The compression parameters for repetition rate 9 can be chosen as
D = 11, γ = 957 ∗ 281 leading to a reduction of 1.4kB. Taking all of this into
account, we have a final proof size of around 22.1kB at an expected repetition
rate of less than 3 and 26.7kB at a rate of less than 9.
23 Again, the constants are related to the repetition rate of the proof.
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Amortisation Note that the above is concerned only with the case where the
client submits a single encrypted PRF input. However, in the interest of amor-
tising the cost of zero-knowledge proofs, we can consider the case where the
client wishes to send L ciphertexts at once. The main changes to the proof pa-
rameters are that m1 = ⌈ecom/128⌉+ ⌈e/128⌉+ L · ⌈np/128⌉, ve = 2 + L, s(e) =

γ(e) ·
√
337 ·

√
e+ L · np + 2β2

com + L · β2
ct + 2 log(βcom) + L · log(βct), s(d) = γ(d) ·√

337 ·
√
L ·B2

v . Other than that, the description of the proof is the same. As
an example we can take L = 64. Before Dilithium compression, the proof size is
around 93.1kB or 85.1kB for the repetition rate 3 and 9 parameters respectively.
Note that these estimates are computed using securely chosen (m2, n) = (31, 12)
and (30, 11) for the repetition rate 3 and 9 parameters respectively. Furthermore,
Dilithium compression parameters can be chosen as (D, γ) = (13, 947 · 281 · 6)
and (12, 947 ·281 ·2) to result in a decrease of 2.0kB and 1.7kB respectively. This
results in an amortised client online proof size of 1.42kB or 1.3kB per query.

LaBRADOR Proofs. We also tried to use the LaBRADOR proof system for the
statements in this section. However, when attempting this, it turns out that the
size of the statements for e.g. L = 64 render recursion ineffective and the proof
sizes are larger than those reported above.

B.3 Non-Unique Encoding Proofs (VOPRF)

We now discuss the costs of the protected encoded input proofs when the en-
coding is not unique. This is used in our VOPRF candidate. In other words,
we now discuss the case where a client ciphertext encrypts an input ȳ that is
equivalent modulo p to an y ∈ Znp

p such that H inp · Ggadget · y ≡ 0 mod q.
Reusing the notation from Section B.2, we want a zero knowledge proof for
s ∈ Ze

2, e ∈ Znp

Q , rcom, ecom ∈ Zecom
Q as well as some y ∈ Znp

p and ȳ ∈ Znp
q such

that:

– bpk = App · rcom + ecom + ⌊Q/2⌉s mod Q

– C =

[
A⊤

s⊤A⊤ + e⊤

]
+

[
0e×np

⌊Q/P ⌉
(
ȳ(2)

)⊤] mod Q

– H inp ·Ggadget · y ≡ 0 mod q
– The entries of y are all in Zp and the entries of ȳ are in Zq

– ȳ and y encode the same value modulo p
– s ∈ Ze

2

– ∥rcom∥, ∥ecom∥ ≤ βcom
– ∥e∥ ≤ βct

Once again, we consider (p, q) = (2, 3) concretely. Suppose we restrict y to
be a binary, i.e. Zp, vector. Suppose also that we restrict ȳ to be ternary i.e. a Zq

vector (assuming integers modulo q = 3 are represented in {−1, 0, 1}). Then one
way to provide a non-unique encoding is to require the existence of a short vector
w, such that y = ȳ + 2w over the Integers. Note that on the assumption that
y and ȳ are binary and ternary respectively, we can prove this by showing that
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y = ȳ + 2w mod Q and providing a very loose range proof on w. Furthermore,
in order to show that ȳ is ternary, we may write it as the difference of two binary
vectors e.g. ȳ = ȳℓ − ȳr and show that ȳℓ and ȳr are both binary. Taking all of
this into account and using the strategy of the previous section, we may prove
knowledge of rcom ∈ Zecom

Q , s ∈ Ze
Q,y, ȳℓ, ȳr,w ∈ Znp

Q such that:

– y, ȳℓ, ȳr and s have binary entries (which are treated as a quadratic relation
plus a bound check)

– ∥rcom∥ ≤ βcom
– ∥bpk −App · rcom − ⌊Q/2⌉s∥ ≤ βcom
– ∥c−A · s− ⌊Q/P ⌉ (ȳℓ − ȳr)∥ ≤ βct
– ∥v∥∞ :=

∥∥3−1 ·H inp ·Ggadget · y
∥∥
∞ ≤ Bv (approximately)

– y = (ȳℓ − ȳr) + 2w mod Q
– ∥w∥∞ ≤ 1 (approximately)

Once again, the cost of running a proof using [LNP22] is around

(n+ ℓ̄+ 2 · ⌈256/d⌉+ λ+ 2) · d · log(Q) + log(2κ+ 1) · d+ (m1 + ve) · d · log(22.57s1)

+m2 · d · log(22.57s2) + 256 ·
(

log(22.57 s(e)) + log(22.57 s(d))
)

where

– n is the height of a M -SIS matrix
– ℓ̄ = 0 as the entire witness is short
– d = 128 is a ring dimension
– Q is a modulus
– λ is a repetition rate so that Q−λ is negligible
– κ is a bound on the challenge coefficients e.g. κ = 2
– m1 is the module dimension required to store (rcom, s,y, ȳℓ, ȳr,w) i.e. m1 =
⌈ecom/d⌉+ ⌈e/d⌉+ 4 · ⌈np/d⌉

– ve is the module dimension of x′ where x′ contains the binary representa-
tion of the vectors in the exact norm proofs (i.e. ve = 2⌈log(βcom)/128⌉ +
⌈log(βct)/128⌉ = 3)

– M -SISRQ,n,m1+ve+m2,β is hard for β = 8 · 59 ·
√

2d(m1 + ve)s21 + 2dm2s22.
– s1 = γ1 · 59

√
β2

com + d(m1 − ⌈ecom/128⌉+ ve)
– s2 = γ2 · 59 ·

√
dm2

– s(d) = γ(d) ·
√
337 ·

√
B2

v + np

– s(e) = γ(e) ·
√
337·

√
e+ 3np + 2β2

com + β2
ct + 2 log(βcom) + log(βct)

– The M -LWERQ,m2−n−ℓ̄−λ−4,n+ℓ̄+λ+4,Z3,Z3
problem is hard.

Pending further cryptanalysis, we do not recommend implementing our VO-
PRF. However, we may still provide an account of performance by using the
PARAM_MESSAGE_8_CARRY_0 parameters assuming a plaintext space of P = 251.
The main parameters of interest are Q ≈ 264, e = 1017, σ ≈ 240. The commit-
ment parameters σcom and ecom are unchanged. For the M -LWE problem to be
hard, we now require a module rank of 20. Before Dilithium compression, the
proofs for repetition rate 3 and 9 use (m2, n) = (32, 6) and (31, 5) respectively re-
sulting in proof sizes of 40.8kB and 37.4kB. We will use Q = 264−179 along with
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Dilithium compression parameters (D, γ) = (12, 4051 ·41 ·4) and (11, 4051 ·41 ·2)
respectively, we obtain proof sizes of 40.8kB or 37.6kB.

For the amortised case where we send L = 64 ciphertexts at once. The pre-
compressed proofs have sizes of 238.2kB and 217.1kB using (m2, n) = (33, 7)
and (32, 6) respectively. It can be shown that we may use Dilithium compression
parameters (D, γ) = (17, 6199 · 101 · 41) and (14, 6199 · 101 · 4). Overall this leads
to an amortised proof size of 3.7kB or 3.4kB per query.

C Verifiability Construction

In this section, we present our verifiable construction in Figure 5. Note that for
simplicity, we have presented a VOPRF, i.e. it is not partial, by setting the tag
t = ⊥.

C.1 POPRIV2 from Verifiability

We show that our verifiability property implies POPRIV2 under some additional
assumptions.

Theorem 3. Our VPOPRF construction satisfies POPRIV2 if

– Fvpoprf satisfies POPRIV1
– Fvpoprf is verifiable
– NIZKAoK is sound.

Proof. Let G0 and G1 denote the POPRIV2A,b
F,H game for b = 0 and b = 1

respectively. We consider the possibility of two events, E0 and E1, that occur in
a query to the Finalise oracle:

1. ct0 is not the output of Fvpoprf.BlindEval(A, t, req0) but
Fvpoprf.Verify(z0, z

⋆
0, ρ0) = 1.

2. ct1 is not the output of Fvpoprf.BlindEval(A, t, req1) but
Fvpoprf.Verify(z1, z

⋆
1, ρ1) = 1.

We claim that the probability of these events occurring is bound by an adversary
against the verifiability property of F and soundness of NIZKAoK.

To see this, we consider the game G′
0 that is defined as G0 but with the change

that the Request oracle requires the adversary to submit its secret key A. We
further require an additional check when the oracle executes F .RequestRO, on
line 2 we verify that ẑ = F .Eval(A, t, x̂). The success probability of an adversary
between these games is bound by the soundness of NIZKAoK. This follows from
the fact that the extra check is ensuring that the relation of the argument of
knowledge holds using the witness. Any adversary that wins against G0 but not
against G′

0 has created a proof π̂ such that ẑ ̸= Fvpoprf.Eval(A, t, x̂). A similar
argument also bounds the difference in winning probability between G1 and an
analogous game G′

1. Since we assume that NIZKAoKRt is sound, we have that
G0 ≈c G′

0 and similarly, G1 ≈c G′
1.

46



We then next observe that if the event E0 or E1 has occurred in G′
0 or G′

1,
then we break the verifiability property of F . Once more we initially consider the
experiment G′

0. We construct an adversary Bverif against G′
0 when ct0 is not the

output of F .BlindEval(A, t, req0) but it is accepted by the Finalise oracle. To do
so, it invokes its own verifiability experiment and receives the public parameters
pp, which it uses as pp in G′

0. A can make queries of two types, Request and
Finalise, which Bverif handles by simply forwarding to its own oracles in the
verifiability experiment. Then, Bverif must guess which of the queries contains
the ‘winning’ response. It does so with probability 1/qR for polynomial qR which
bounds the number of Request queries. It receives the checkpoints xi, i ∈ Zn

and forwards these to its verifiability experiment. It receives back a permuted
set of reqi which it sends to A in response to its Request query. It waits for the
corresponding call to the Finalise oracle, at which point it forwards the set repi
to the experiment G′

0. It wins ifA was able to provide rep that passed verification
but was not the honest output of BlindEval. By assumption, this probability is
negligible, and therefore we have Pr

[
G′

0 ⇒ 1
]
≤ negl(λ). An analogous argument

holds for when the bit b = 1 and thus we have shown that probability of event
E0 or E1 in G0 or G1 is negligible.

Then, since we have shown Gi always correctly computes responses rep (with
all but negligible probability), we can apply the same argument as we have for
POPRIV1. Thus we conclude that the transcript observed by an adversary for
POPRIV2 is independent of the challenge bit b, and hence the advantage of the
adversary against POPRIV2 is negligible.

By considering the sequence of games, we have shown that G0 ≈c G1 and
thus we obtain the theorem statement. ⊓⊔

D PRF Sage Example

# -*- coding: utf-8 -*-
from sage.all import set_random_seed, GF, vector, matrix, random_matrix, codes

class WeakPRF:
"""
Based on Construction 3.1 of:

- Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., & Wu, D. J. (2018).
Exploring crypto dark matter: new simple PRF candidates and their
applications. Cryptology ePrint Archive, Report 2018/1218.
https://eprint.iacr.org/2018/1218

"""

def __init__(self, m_p=256, n_p=256, m_bound=128, p=2, q=3, t=None, seed=None):
# p.40, optimistic, λ=128
self.m_p, self.n_p = m_p, n_p
if seed is not None or t is not None:

set_random_seed(hash((t, seed)))
self.A = random_matrix(GF(p), m_p, n_p + 1)
self.q = q

if m_bound == 1:
self.Gout = matrix(GF(q), 1, m_p, [1] * m_p)

else:
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i = 2
for i in range(2, m_p // 2):

C = codes.BCHCode(GF(q), m_p, i)
if C.dimension() <= m_bound:

self.Gout = C.generator_matrix()
break

else:
raise RuntimeError

def __call__(self, x):
y = self.A * vector(list(x) + [1])
y = y.lift_centered()
z = self.Gout * y
return z

class PRF:
"""
Based on Construction 7.9 of:

- Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., & Wu, D. J. (2018).
Exploring crypto dark matter: new simple PRF candidates and their
applications. Cryptology ePrint Archive, Report 2018/1218.
https://eprint.iacr.org/2018/1218

"""

def __init__(self, m_p=256, n_p=256, n=128, m_bound=128, p=2, q=3, t=None, seed=None):
if p != 2 or q != 3:

raise NotImplementedError
self.F = WeakPRF(m_p=m_p, n_p=n_p, m_bound=m_bound, p=p, q=q, t=t, seed=seed)
self.n = n
self.Ginp = identity_matrix(GF(q), n).stack(random_matrix(GF(q), (n_p-n)//2, n))

def __call__(self, x):
x = x.lift().change_ring(GF(self.F.q))
y = self.Ginp * x
z = []
for y_ in y[:self.n].lift():

z.append(y_)
for y_ in y[self.n:].lift():

z.append(y_ % 2)
z.append(y_ // 2)

z = vector(GF(2), self.F.n_p, z)
return self.F(z)

E Size Estimates for LaBRADOR

The script is also .
# -*- coding: utf-8 -*-
"""
LaBRADOR Pari/GP Code in Sage.
"""

from sage.all import (
log,
ceil,
sqrt,
vector,
round,
floor,
exp,
ZZ,
RR,
pi,
exp,
cached_function,
cached_method,
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# -*- coding: utf-8 -*-
"""
LaBRADOR Pari/GP Code in Sage.
"""

from sage.all import (
    log,
    ceil,
    sqrt,
    vector,
    round,
    floor,
    exp,
    ZZ,
    RR,
    pi,
    exp,
    cached_function,
    cached_method,
    Infinity,
    get_verbose,
)


def gaussian_entropy(sigma):
    if sigma >= 4:
        a = floor(sigma / 2)
        sigma /= a
    else:
        a = 1

    d = 1 / (2 * sigma**2)
    n = sum(exp(-(i**2) * d) for i in range(-ceil(15 * sigma), 0))
    n = 2 * n + 1
    logn = log(n)
    e = 0
    for i in range(-ceil(15 * sigma), 0):
        f = exp(-(i**2) * d)
        e += f * (log(f) - logn)
    e = (-2 * e + logn) / (n * log(2))

    return float(e + log(a, 2))


def deltaf(b):
    """
    Compute root Hermite factor for block size ``b``.
    """
    small = (
        (2, 1.02190),
        (5, 1.01862),
        (10, 1.01616),
        (15, 1.01485),
        (20, 1.01420),
        (25, 1.01342),
        (28, 1.01331),
        (40, 1.01295),
    )

    if b <= 2:
        return 1.0219
    elif b < 40:
        for i in range(1, len(small)):
            if small[i][0] > b:
                return small[i - 1][1]
    elif b == 40:
        return small[-1][1]
    else:
        return float(b / (2 * pi * exp(1)) * (pi * b) ** (1.0 / b)) ** (
            1.0 / (2 * b - 2.0)
        )


def block_sizef(delta):
    b = 40
    while deltaf(2 * b) > delta:
        b *= 2
    while deltaf(b + 10) > delta:
        b += 10
    while delta(b) >= delta:
        b += 1

    return b


def adps16(block_size):
    return block_size * log(sqrt(3.0 / 2.0), 2.0)


default_costf = adps16


def sis_required_block_size(
    n,
    q,
    b,
    m=None,
    step_size=10,
    start=40,
):
    """
    Hardness of SIS in the ℓ_2 norm on A ∈ ZZ_q^{n × m}

    :param n: SIS rank
    :param q: Integer modulus
    :param b: Target ℓ_2 norm of the solution.
    :param m: SIS dimension (default: n ⋅ log q)
    :param step_size: Search in steps of this size first (default: 10)
    :param start: Start search at this block size.

    """
    if b > q:
        raise ValueError(f"Size bound {b} > modulus {q}.")

    if m is None:
        m = ceil(2 * n * log(q, 2))

    for block_size in range(start, m + step_size, step_size):
        delta = deltaf(block_size)
        d = min(sqrt(n * log(q) / log(delta)), m)
        if delta ** (d - 1) * q ** (n / d) < b:
            break

    for block_size in range(block_size - step_size, block_size + 1):
        delta = deltaf(block_size)
        d = min(sqrt(n * log(q) / log(delta)), m)
        if delta ** (d - 1) * q ** (n / d) < b:
            return block_size

    return Infinity


@cached_function
def sis_hard_enough(kappa, eta, b, q):
    """
    Return `i` such that for `n = i ⋅ η` and a sufficiently big `m` SIS_β on `ZZ_q^{n × m}`
    requires block size `κ`.
    """
    if b > q:
        raise ValueError(f"Size bound {b} > modulus {q}.")

    i = 1
    while True:
        n = i * eta
        delta = deltaf(kappa - 1)
        d = sqrt(n * log(q) / log(delta))
        if delta ** (d - 1) * q ** (n / d) > b:
            return i
        i += 1


class LaBRADOR:
    def __init__(
        self,
        d: int = 64,
        logq: int = 32,
        tau: int = 71,
        T: int = 15,
        slack: float = sqrt(128 / 30.0),
        max_beta: int = 0,
        secpar: int = 100,
        costf=default_costf,
    ):
        self.d = d
        self.logq = logq
        self.tau = tau
        self.T = T
        self.slack = slack
        self.max_beta = max_beta
        self.secpar = secpar
        self.costf = default_costf

        block_size = None
        for block_size in range(self.secpar, 2048, 32):
            if self.costf(block_size) >= self.secpar:
                break

        for block_size in range(block_size - 32, block_size + 1):
            if self.costf(block_size) >= self.secpar:
                self.block_size = block_size
                break

    def sis_rank(self, beta):
        self.max_beta = max(self.max_beta, beta)

        # we round to a nearby value to allow for caching which improves performance
        # beta = 1.2 ** ceil(log(beta, 1.2))

        try:
            return sis_hard_enough(self.block_size, self.d, ceil(beta), 2**self.logq)
        except ValueError:
            return Infinity

    def main(self, n, r, beta, nu, decompose):
        old_beta = vector(beta).norm(2).n()
        # TODO: this does not reflect secpar yet
        size = 256 * gaussian_entropy(old_beta / sqrt(2))  # JL projection
        size += ceil(128 / self.logq) * self.d * self.logq  # JL proof

        sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
        sigz = sqrt(
            sigs[0] ** 2 * (1 + (r[0] - 1) * self.tau)
            + sum([sigs[i] ** 2 * r[i] * self.tau for i in range(1, len(r))])
        )
        sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

        if decompose:
            t = 2
            b = round(sqrt(sqrt(12) * sigz))
        else:
            t = 1
            b = 1

        t1 = round(self.logq / log(sqrt(12) * sigz / b, 2))
        t1 = max(2, t1)
        t1 = min(14, t1)

        b1 = ceil(2 ** (self.logq / t1))
        t2 = round(log(sqrt(12) * sigh) / log(sqrt(12) * sigz / b))
        t2 = max(1, t2)
        b2 = ceil((sqrt(12) * sigh) ** (1 / t2))

        r = sum(r)
        beta = [0, 0]
        beta[0] = float(sigz / float(b) * sqrt(t * n * self.d))
        for i in range(16):
            kappa = i + 1
            beta[1] = float(
                sqrt(
                    b1**2 / 12.0 * t1 * r * kappa * self.d
                    + (b1**2 * t1 + b2**2 * t2) / 12.0 * (r**2 + r) / 2.0 * self.d
                )
            )
            new_beta = vector(beta).norm(2).n()
            if (
                self.sis_rank(
                    max(
                        6 * self.T * b * self.slack * new_beta,
                        2 * b * self.slack * new_beta
                        + 4 * self.T * self.slack * old_beta,
                    )
                )
                <= kappa
            ):
                break

        kappa1 = self.sis_rank(2 * self.slack * new_beta)
        size += 2 * kappa1 * self.d * self.logq
        # outer commitments
        m = t1 * r * kappa + (t1 + t2) * (r**2 + r) / 2
        mu = round(m / ceil(n / nu))
        mu = max(1, mu)
        n = ceil(n / nu)
        m = ceil(m / mu)
        n = max(n, m)
        r = [t * nu, mu]

        if get_verbose() >= 1:
            print("Main:")
            print("Commitments: kappa = %d; kappa1 = kappa2 = %.2f" % (kappa, kappa1))
            print("Decomposition bases: b = %d; b1 = %d; b2 = %d" % (b, b1, b2))
            print("Expansion factors: t = %d; t1 = %d; t2 = %d" % (t, t1, t2))
            print("Target relation: n = %d; r = %s; b = %s" % (n, r, b))
            print("Norm balance: %.2f%%" % ((b[1] - b[0]) / max(b[0], b[1]) * 100))

        return size, n, r, beta

    def tail(self, n, r, beta):
        old_beta = vector(beta).norm(2).n()
        size = 256 * gaussian_entropy(old_beta / sqrt(2))  # JL projection
        size += ceil(128 / self.logq) * self.d * self.logq  # JL proof
        size += 128  # challenges

        sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
        sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

        t1 = round(self.logq / log(sqrt(12) * sum(sigs) / len(sigs), 2))
        t1 = max(2, t1)
        t1 = min(14, t1)
        b1 = ceil(2 ** (self.logq / t1))
        t2 = round(log(sqrt(12) * sigh) / log(sqrt(12) * sum(sigs) / len(sigs)))
        t2 = max(1, t2)
        b2 = ceil((sqrt(12) * sigh) ** (1 / t2))

        for i in range(16):
            kappa = i + 1
            x = sum(r)
            n2 = x * kappa * t1 + (x**2 + x) / 2 * t2
            r2 = round(n2 / n)
            r2 = max(1, r2)

            sigz = sqrt(
                sigs[0] ** 2 * (1 + (r[0] - 1) * self.tau)
                + sum([sigs[i] ** 2 * r[i] for i in range(1, len(r))]) * self.tau
                + r2 * max(b1, b2) ** 2 / 12.0 * self.tau
            )

            beta = sigz * sqrt(max(n, ceil(n2 / r2)) * self.d)
            if self.sis_rank(6 * self.T * beta) <= kappa:
                break

        r = sum(r)
        n = max(n, ceil(n2 / r2))

        size += r2 * kappa * self.d * self.logq  # outer commitments
        size += 2 * r2 * self.d * gaussian_entropy(sigh)  # quadratic garbage polys
        size += (2 * (r - 1) + 2 * r2) * self.d * self.logq  # linear garbage polys
        size += n * self.d * float(gaussian_entropy(sigz))  # masked opening

        if get_verbose() >= 1:
            print("Tail:")
            print("Outer Commitments: kappa = %d" % kappa)
            print("Additional multiplicity: r2 = %d" % r2)
            print("Decomposition bases: b1 = %d b2 = %d" % (b1, b2))
            print("Expansion factors: t1 = %d t2 = %d" % (t1, t2))
            print("Final relation: n = %d β = %s" % (n, beta))
        return size

    def size(self, n, r, beta, nuvec):
        """
        Size in kilobytes
        """
        s = 0
        r, beta = [r], [RR(beta)]
        for i in range(len(nuvec)):
            size, n, r, beta = self.main(n, r, beta, nuvec[i], i < len(nuvec) - 1)
            s += size

        s += self.tail(n, r, beta)

        return round(s / 2**13, 2)

    @cached_method
    def __call__(self, n, r, beta, base, length, verbose=True):
        def i2v(i):
            return vector(ZZ(i).digits(base, padto=length)) + vector(
                ZZ, length, [1] * length
            )

        best = self.size(n, r, beta, i2v(0)), 0

        for i in range(base**length):
            current = self.size(n, r, beta, i2v(i)), i
            if current[0] < best[0]:
                best = current
                if verbose:
                    print(f"{best[0]:.2f}kB, {i2v(best[1])}")

        return best[0], i2v(best[1])




Infinity,
get_verbose,

)

def gaussian_entropy(sigma):
if sigma >= 4:

a = floor(sigma / 2)
sigma /= a

else:
a = 1

d = 1 / (2 * sigma**2)
n = sum(exp(-(i**2) * d) for i in range(-ceil(15 * sigma), 0))
n = 2 * n + 1
logn = log(n)
e = 0
for i in range(-ceil(15 * sigma), 0):

f = exp(-(i**2) * d)
e += f * (log(f) - logn)

e = (-2 * e + logn) / (n * log(2))

return float(e + log(a, 2))

def deltaf(b):
"""
Compute root Hermite factor for block size ``b``.
"""
small = (

(2, 1.02190),
(5, 1.01862),
(10, 1.01616),
(15, 1.01485),
(20, 1.01420),
(25, 1.01342),
(28, 1.01331),
(40, 1.01295),

)

if b <= 2:
return 1.0219

elif b < 40:
for i in range(1, len(small)):

if small[i][0] > b:
return small[i - 1][1]

elif b == 40:
return small[-1][1]

else:
return float(b / (2 * pi * exp(1)) * (pi * b) ** (1.0 / b)) ** (

1.0 / (2 * b - 2.0)
)

def block_sizef(delta):
b = 40
while deltaf(2 * b) > delta:

b *= 2
while deltaf(b + 10) > delta:

b += 10
while delta(b) >= delta:

b += 1

return b

def adps16(block_size):
return block_size * log(sqrt(3.0 / 2.0), 2.0)
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default_costf = adps16

def sis_required_block_size(
n,
q,
b,
m=None,
step_size=10,
start=40,

):
"""
Hardness of SIS in the ℓ_2 norm on A � ZZ_q^{n × m}

:param n: SIS rank
:param q: Integer modulus
:param b: Target ℓ_2 norm of the solution.
:param m: SIS dimension (default: n � log q)
:param step_size: Search in steps of this size first (default: 10)
:param start: Start search at this block size.

"""
if b > q:

raise ValueError(f"Size bound {b} > modulus {q}.")

if m is None:
m = ceil(2 * n * log(q, 2))

for block_size in range(start, m + step_size, step_size):
delta = deltaf(block_size)
d = min(sqrt(n * log(q) / log(delta)), m)
if delta ** (d - 1) * q ** (n / d) < b:

break

for block_size in range(block_size - step_size, block_size + 1):
delta = deltaf(block_size)
d = min(sqrt(n * log(q) / log(delta)), m)
if delta ** (d - 1) * q ** (n / d) < b:

return block_size

return Infinity

@cached_function
def sis_hard_enough(kappa, eta, b, q):

"""
Return `i` such that for `n = i �η ` and a sufficiently big `m` βSIS_ on `ZZ_q^{n × m}`
requires block size κ``.
"""
if b > q:

raise ValueError(f"Size bound {b} > modulus {q}.")

i = 1
while True:

n = i * eta
delta = deltaf(kappa - 1)
d = sqrt(n * log(q) / log(delta))
if delta ** (d - 1) * q ** (n / d) > b:

return i
i += 1

class LaBRADOR:
def __init__(

self,
d: int = 64,
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logq: int = 32,
tau: int = 71,
T: int = 15,
slack: float = sqrt(128 / 30.0),
max_beta: int = 0,
secpar: int = 100,
costf=default_costf,

):
self.d = d
self.logq = logq
self.tau = tau
self.T = T
self.slack = slack
self.max_beta = max_beta
self.secpar = secpar
self.costf = default_costf

block_size = None
for block_size in range(self.secpar, 2048, 32):

if self.costf(block_size) >= self.secpar:
break

for block_size in range(block_size - 32, block_size + 1):
if self.costf(block_size) >= self.secpar:

self.block_size = block_size
break

def sis_rank(self, beta):
self.max_beta = max(self.max_beta, beta)

# we round to a nearby value to allow for caching which improves performance
# beta = 1.2 ** ceil(log(beta, 1.2))

try:
return sis_hard_enough(self.block_size, self.d, ceil(beta), 2**self.logq)

except ValueError:
return Infinity

def main(self, n, r, beta, nu, decompose):
old_beta = vector(beta).norm(2).n()
# TODO: this does not reflect secpar yet
size = 256 * gaussian_entropy(old_beta / sqrt(2)) # JL projection
size += ceil(128 / self.logq) * self.d * self.logq # JL proof

sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
sigz = sqrt(

sigs[0] ** 2 * (1 + (r[0] - 1) * self.tau)
+ sum([sigs[i] ** 2 * r[i] * self.tau for i in range(1, len(r))])

)
sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

if decompose:
t = 2
b = round(sqrt(sqrt(12) * sigz))

else:
t = 1
b = 1

t1 = round(self.logq / log(sqrt(12) * sigz / b, 2))
t1 = max(2, t1)
t1 = min(14, t1)

b1 = ceil(2 ** (self.logq / t1))
t2 = round(log(sqrt(12) * sigh) / log(sqrt(12) * sigz / b))
t2 = max(1, t2)
b2 = ceil((sqrt(12) * sigh) ** (1 / t2))

r = sum(r)
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beta = [0, 0]
beta[0] = float(sigz / float(b) * sqrt(t * n * self.d))
for i in range(16):

kappa = i + 1
beta[1] = float(

sqrt(
b1**2 / 12.0 * t1 * r * kappa * self.d
+ (b1**2 * t1 + b2**2 * t2) / 12.0 * (r**2 + r) / 2.0 * self.d

)
)
new_beta = vector(beta).norm(2).n()
if (

self.sis_rank(
max(

6 * self.T * b * self.slack * new_beta,
2 * b * self.slack * new_beta
+ 4 * self.T * self.slack * old_beta,

)
)
<= kappa

):
break

kappa1 = self.sis_rank(2 * self.slack * new_beta)
size += 2 * kappa1 * self.d * self.logq
# outer commitments
m = t1 * r * kappa + (t1 + t2) * (r**2 + r) / 2
mu = round(m / ceil(n / nu))
mu = max(1, mu)
n = ceil(n / nu)
m = ceil(m / mu)
n = max(n, m)
r = [t * nu, mu]

if get_verbose() >= 1:
print("Main:")
print("Commitments: kappa = %d; kappa1 = kappa2 = %.2f" % (kappa, kappa1))
print("Decomposition bases: b = %d; b1 = %d; b2 = %d" % (b, b1, b2))
print("Expansion factors: t = %d; t1 = %d; t2 = %d" % (t, t1, t2))
print("Target relation: n = %d; r = %s; b = %s" % (n, r, b))
print("Norm balance: %.2f%%" % ((b[1] - b[0]) / max(b[0], b[1]) * 100))

return size, n, r, beta

def tail(self, n, r, beta):
old_beta = vector(beta).norm(2).n()
size = 256 * gaussian_entropy(old_beta / sqrt(2)) # JL projection
size += ceil(128 / self.logq) * self.d * self.logq # JL proof
size += 128 # challenges

sigs = [float(beta[i] / sqrt(r[i] * n * self.d)) for i in range(len(r))]
sigh = float(sqrt(2 * n * self.d) * max(sigs) ** 2)

t1 = round(self.logq / log(sqrt(12) * sum(sigs) / len(sigs), 2))
t1 = max(2, t1)
t1 = min(14, t1)
b1 = ceil(2 ** (self.logq / t1))
t2 = round(log(sqrt(12) * sigh) / log(sqrt(12) * sum(sigs) / len(sigs)))
t2 = max(1, t2)
b2 = ceil((sqrt(12) * sigh) ** (1 / t2))

for i in range(16):
kappa = i + 1
x = sum(r)
n2 = x * kappa * t1 + (x**2 + x) / 2 * t2
r2 = round(n2 / n)
r2 = max(1, r2)
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sigz = sqrt(
sigs[0] ** 2 * (1 + (r[0] - 1) * self.tau)
+ sum([sigs[i] ** 2 * r[i] for i in range(1, len(r))]) * self.tau
+ r2 * max(b1, b2) ** 2 / 12.0 * self.tau

)

beta = sigz * sqrt(max(n, ceil(n2 / r2)) * self.d)
if self.sis_rank(6 * self.T * beta) <= kappa:

break

r = sum(r)
n = max(n, ceil(n2 / r2))

size += r2 * kappa * self.d * self.logq # outer commitments
size += 2 * r2 * self.d * gaussian_entropy(sigh) # quadratic garbage polys
size += (2 * (r - 1) + 2 * r2) * self.d * self.logq # linear garbage polys
size += n * self.d * float(gaussian_entropy(sigz)) # masked opening

if get_verbose() >= 1:
print("Tail:")
print("Outer Commitments: kappa = %d" % kappa)
print("Additional multiplicity: r2 = %d" % r2)
print("Decomposition bases: b1 = %d b2 = %d" % (b1, b2))
print("Expansion factors: t1 = %d t2 = %d" % (t1, t2))
print("Final relation: n = %d β = %s" % (n, beta))

return size

def size(self, n, r, beta, nuvec):
"""
Size in kilobytes
"""
s = 0
r, beta = [r], [RR(beta)]
for i in range(len(nuvec)):

size, n, r, beta = self.main(n, r, beta, nuvec[i], i < len(nuvec) - 1)
s += size

s += self.tail(n, r, beta)

return round(s / 2**13, 2)

@cached_method
def __call__(self, n, r, beta, base, length, verbose=True):

def i2v(i):
return vector(ZZ(i).digits(base, padto=length)) + vector(

ZZ, length, [1] * length
)

best = self.size(n, r, beta, i2v(0)), 0

for i in range(base**length):
current = self.size(n, r, beta, i2v(i)), i
if current[0] < best[0]:

best = current
if verbose:

print(f"{best[0]:.2f}kB, {i2v(best[1])}")

return best[0], i2v(best[1])

F Parameter Estimates

The script is also .
"""
Estimating sizes.
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"""
Estimating sizes.

"""

from dataclasses import dataclass
from functools import partial
from sage.all import sqrt, ceil, log, cached_function
from labrador import LaBRADOR

# Parameters


class HashableDict(dict):
    def __hash__(self):
        return hash(frozenset(self.items()))


@dataclass
class Parameters:
    e_com: int
    sigma_com: float
    log_q: int
    n_p: int
    m: int
    tfhe: HashableDict

    def __hash__(self):
        return hash((self.e_com, self.sigma_com, self.log_q, self.n_p, self.m, self.tfhe))


# https://github.com/zama-ai/tfhe-rs/blob/0.2.4/tfhe/src/shortint/parameters/mod.rs#L200
PARAM_MESSAGE_2_CARRY_0 = HashableDict(
    {
        "lwe_dimension": 656,
        "glwe_dimension": 2,
        "polynomial_size": 512,
        "lwe_modular_std_dev": 0.000034119201269311964,
        "glwe_modular_std_dev": 0.00000004053919869756513,
        "pbs_base_log": 8,
        "pbs_level": 2,
        "ks_level": 4,
        "ks_base_log": 3,
        "pfks_level": 1,
        "pfks_base_log": 15,
        "pfks_modular_std_dev": 0.00000000037411618952047216,
        "cbs_level": 0,
        "cbs_base_log": 0,
        "message_modulus": 4,
        "carry_modulus": 1,
    }
)

OPRF = Parameters(
    e_com=2048, sigma_com=2, log_q=32, n_p=256, m=128, tfhe=PARAM_MESSAGE_2_CARRY_0
)

# https://github.com/zama-ai/tfhe-rs/blob/0.2.4/tfhe/src/shortint/parameters/mod.rs#L827
PARAM_MESSAGE_8_CARRY_0 = HashableDict(
    {
        "lwe_dimension": 1017,
        "glwe_dimension": 1,
        "polynomial_size": 32768,
        "lwe_modular_std_dev": 0.0000000460803851108693,
        "glwe_modular_std_dev": 0.0000000000000000002168404344971009,
        "pbs_base_log": 15,
        "pbs_level": 2,
        "ks_level": 5,
        "ks_base_log": 4,
        "pfks_level": 2,
        "pfks_base_log": 15,
        "pfks_modular_std_dev": 0.0000000000000000002168404344971009,
        "cbs_level": 0,
        "cbs_base_log": 0,
        "message_modulus": 251,  # changed
        "carry_modulus": 1,
    }
)

VOPRF = Parameters(
    e_com=4096, sigma_com=2, log_q=64, n_p=256, m=128, tfhe=PARAM_MESSAGE_8_CARRY_0
)


# Utilities


def _kb(v):
    """
    Convert bits to kilobytes.
    """
    return round(float(v / 8.0 / 1024.0), 1)


def _mb(v):
    """
    Convert bits to megabytes.
    """
    return round(float(v / 8.0 / 1024.0 / 1024.0), 1)


def consistency_check(params):
    """
    Enforce that we do not pick q too small
    """
    if -params.tfhe["lwe_modular_std_dev"] >= params.log_q:
        raise ValueError(f"log(q) = {params.log_q} is too small.")
    if -params.tfhe["glwe_modular_std_dev"] >= params.log_q:
        raise ValueError(f"log(q) = {params.log_q} is too small.")


def oprf_pk_sizemb(params, compress_pk=True, compress_ct1=True, voprf=False):
    """
    The size of the OPRF public key in MB.

    :param params:
    :param compress_pk: drop lower-order bits where possible
    :param compress_ct1: compress ct1 into one ring element
    :param voprf: estimate the VOPRF

    """
    e = params.tfhe["lwe_dimension"]
    d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
    ell = params.tfhe["pbs_level"]
    ell_ = params.tfhe["ks_level"]

    if voprf:
        tau = 2
    else:
        tau = 1

    if compress_pk:
        lwe_keep_bits = ceil(-log(params.tfhe["lwe_modular_std_dev"], 2) + 1)
        glwe_keep_bits = ceil(-log(params.tfhe["glwe_modular_std_dev"], 2) + 1)
    else:
        lwe_keep_bits = params.log_q
        glwe_keep_bits = params.log_q

    if not compress_ct1:
        zeta = tau
    else:
        zeta = tau + log(d, 2)

    return _mb(
        (params.e_com + e * params.log_q) * lwe_keep_bits
        + tau * 2 * d * glwe_keep_bits
        + tau * 2 * e * 2 * ell * d * glwe_keep_bits
        + zeta * d * ell_ * lwe_keep_bits
    )


voprf_pk_sizemb = partial(oprf_pk_sizemb, voprf=True)


def oprf_pk_proof_old_sizemb(params, gamma1=10, gamma2=5, gammae=5):
    """
    Well-formedness proof of the OPRF public key using [LNP22].

    :param params:
    :param gamma1:
    :param gamma2:
    :param gammae:

    """

    ell = params.tfhe["pbs_level"]
    tl = params.tfhe["ks_level"]
    eta = 1  # we absorbed the module dimension in the ring dimension
    d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
    e = params.tfhe["lwe_dimension"]
    Q = 2**params.log_q
    lamb = 2 * 128 // params.log_q
    kap = 2
    m1 = (params.e_com + e) // d + eta + 4 * e * ell
    delta = 1.0045
    ve = 4 + 2 * e * ell + tl
    bm1 = m1 + ve
    bcom = params.sigma_com * sqrt(params.e_com)
    s1 = gamma1 * 59 * sqrt(bcom**2 * d * ceil(params.e_com / d) + d * (bm1 - 1))

    bpk = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(e * params.log_q)
    b = params.tfhe["glwe_modular_std_dev"] * Q * sqrt(2 * d)
    bp = b
    bpp = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(eta * d)
    inside_se = (
        (m1 - 1) * d
        + 2 * bcom**2
        + bpk**2
        + b**2
        + e * ell * bp**2
        + tl * bpp**2
        + 2 * log(bcom, 2)
        + log(bpk, 2)
        + log(b, 2)
        + e * ell * log(bp, 2)
        + tl * log(bpp, 2)
    )
    se = gammae * sqrt(337) * sqrt(inside_se)

    for n in range(1, 10):
        m2 = 2 + n + lamb + 4
        s2 = gamma2 * 59 * sqrt(d * m2)

        # see if n large enough for the SIS problem
        beta = 8 * 59 * sqrt(2 * d * bm1 * s1**2 + 2 * d * m2 * s2**2)
        if beta > 2 ** (2 * sqrt(n * d * params.log_q * log(delta, 2))):
            continue

        lwe_estimator_dim = (m2 - n - lamb - 4) * d
        print(f"Check that ternary LWE in dimension {lwe_estimator_dim} is hard.")

        tot = (
            (n + 2 + lamb + 2) * d * params.log_q
            + log(2 * kap + 1, 2) * d
            + bm1 * d * log(s1 * 2**2.57, 2)
            + m2 * d * log(s2 * 2**2.57, 2)
            + 256 * log(se * 2**2.57, 2)
        )

        return _mb(tot)


def voprf_pk_proof_old_sizemb(params, gamma1=10, gamma2=5, gammae=5):
    """
    Well-formedness proof of the OPRF public key using [LNP22].

    :param params:
    :param gamma1:
    :param gamma2:
    :param gammae:

    """
    ell = params.tfhe["pbs_level"]
    eta = 1
    tl = params.tfhe["ks_level"]
    d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
    e = params.tfhe["lwe_dimension"]
    ecom = params.e_com
    Q = 2**params.log_q
    lamb = 128 // params.log_q
    kap = 2
    delta = 1.0045

    for n in range(1, 10):
        m1 = (ecom + 3 * e) // d + 2 * eta + 8 * e * ell
        m2 = 3 + n + tl + lamb + 4
        ve = 5 + 4 * e * ell + 2 * tl
        bm1 = m1 + ve
        bcom = params.sigma_com * sqrt(ecom)
        s1 = gamma1 * 59 * sqrt(bcom**2 * d * ceil(ecom / d) + d * (bm1 - 1))
        s2 = gamma2 * 59 * sqrt(d * m2)

        # see if n large enough for the sis problem
        beta = 8 * 59 * sqrt(2 * d * bm1 * s1**2 + 2 * d * m2 * s2**2)
        if beta > 2 ** (2 * sqrt(n * d * log(Q, 2) * log(delta, 2))):
            continue

        bpk = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(e * params.log_q)
        b = params.tfhe["glwe_modular_std_dev"] * Q * sqrt(2 * d)
        bp = b
        bpp = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(eta * d)
        inside_se = (
            (m1 - 1) * d
            + 2 * bcom**2
            + bpk**2
            + 2 * b**2
            + 2 * e * ell * bp**2
            + 2 * tl * bpp**2
            + 2 * log(bcom, 2)
            + log(bpk, 2)
            + 2 * log(b, 2)
            + 2 * e * ell * log(bp, 2)
            + 2 * tl * log(bpp, 2)
        )
        se = gammae * sqrt(337) * sqrt(inside_se)

        tot = (
            (n + 2 + lamb + 2) * d * params.log_q
            + log(2 * kap + 1, 2) * d
            + bm1 * d * log(s1 * 2**2.57, 2)
            + m2 * d * log(s2 * 2**2.57, 2)
            + 256 * log(se * 2**2.57, 2)
        )

        return _mb(tot)


@cached_function
def oprf_pk_proof_sizekb(params, compress_ct1=True):
    """
    Well-formedness proof of the OPRF public key using LaBRADOR.
    """
    e = params.tfhe["lwe_dimension"]
    eta = 1  # we will absorb the module rank in the ring dimension
    d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
    sig = params.tfhe["lwe_modular_std_dev"]
    sigring = params.tfhe["glwe_modular_std_dev"]
    ell = params.tfhe["pbs_level"]
    tl = params.tfhe["ks_level"]

    if not compress_ct1:
        zeta = eta
    else:
        zeta = eta + log(d, 2)

    witness_dim_original = (
        ceil((e + 2 * params.e_com + e * params.log_q) / d) + 3 + 8 * e * ell + zeta * tl
    )
    witness_dim = witness_dim_original * (d // 64)
    norm_bound = sqrt(
        e
        + eta * d
        + 4 * e * ell * d
        + params.sigma_com**2 * (2 * params.e_com)
        + sig**2 * (e * params.log_q + zeta * tl * d)
        + sigring**2 * (2 * d + 4 * e * ell * d)
    )

    print(f"LaBRADOR witness dimension: {witness_dim}")

    r = 24
    n = ceil(witness_dim / 24)

    L = LaBRADOR(d=64, logq=32)
    size, params = L(n, r, norm_bound, 3, 5, verbose=False)
    return size, params


@cached_function
def voprf_pk_proof_sizekb(params, compress_ct1=True):
    """
    Well-formedness proof of the VOPRF public key using LaBRADOR.
    """
    e = params.tfhe["lwe_dimension"]
    eta = 1
    d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
    sig = params.tfhe["lwe_modular_std_dev"]
    sigring = params.tfhe["glwe_modular_std_dev"]
    ell = params.tfhe["pbs_level"]
    tl = params.tfhe["ks_level"]

    if not compress_ct1:
        zeta = eta
    else:
        zeta = eta + log(d, 2)

    witness_dim_original = (
        ceil((3 * e + 2 * params.e_com + e * params.log_q) / d)
        + 4
        + 2 * eta
        + 16 * e * ell
        + 2 * zeta * tl
    )
    # need to expand this dimension to reach ring dimension 64
    witness_dim = witness_dim_original * ceil(d // 64)
    norm_bound = sqrt(
        3 * e
        + 2 * eta * d
        + 8 * e * ell * d
        + params.sigma_com**2 * (2 * params.e_com)
        + sig**2 * (e * params.log_q + 2 * tl * zeta * d)
        + sigring**2 * (4 * d + 8 * e * ell * d)
    )

    r = 256
    n = ceil(witness_dim / 256)
    L = LaBRADOR(d=64, logq=params.log_q)

    return L(n, r, norm_bound, 5, 5, verbose=False)


def oprf_ct0_sizekb(params):
    """
    OPRF request size in kilobytes.
    """

    keep_bits = ceil(-log(params.tfhe["lwe_modular_std_dev"], 2.0) + 1)

    return _kb(params.n_p * keep_bits + 256)


voprf_ct0_sizekb = oprf_ct0_sizekb


@cached_function
def oprf_ct0_proof_amortised_all_sizekb(
    params,
    gamma1=10,
    gamma2=5,
    compress=True,
    D=12,
    gamma=947 * 281 * 2,
    L=64,
    voprf=False,
):
    """
    Well-formedness proof of OPRF request using [LNP22].

    :param params:
    :param gamma1:
    :param gamma2:
    :param compress: Use Dilithium-style compression
    :param D:
    :param gamma:
    :param L: Amortise over this many proofs.
    :param voprf: Estimate VOPRF case.
    """
    d = 128
    lamb = ceil(128 / params.log_q)
    kappa = 2
    e = params.tfhe["lwe_dimension"]
    bcom = params.sigma_com * sqrt(params.e_com)
    Bv = 128
    Bct = 2**params.log_q * params.tfhe["lwe_modular_std_dev"] * sqrt(params.n_p)
    if voprf:
        m1 = ceil(params.e_com / d) + ceil(e / d) + 4 * L * ceil(params.n_p / d)
    else:
        m1 = ceil(params.e_com / d) + ceil(e / d) + L * ceil(params.n_p / d)
    ve = 2 + L
    bm1 = m1 + ve - ceil(params.e_com / d)
    if voprf:
        mlwe_dim = 20
    else:
        mlwe_dim = 11
    delta = 1.0045

    gammad = gamma2
    gammae = gamma2
    if voprf:
        sd = gammad * sqrt(337) * sqrt(L * Bv**2 + L * params.n_p)
    else:
        sd = gammad * sqrt(337) * sqrt(L * Bv**2)
    if voprf:
        voprf_expand = 3
    else:
        voprf_expand = 1
    se = (
        gammae
        * sqrt(337)
        * sqrt(
            e
            + voprf_expand * L * params.n_p
            + 2 * bcom**2
            + L * Bct**2
            + 2 * log(bcom, 2)
            + L * log(Bct, 2)
        )
    )
    s1 = gamma1 * 59 * sqrt(bcom**2 + d * bm1)

    print(
        f"Check that ternary MLWE in dimension {mlwe_dim} x {d} mod 2^{params.log_q} is hard."
    )

    for n in range(1, 32):
        m2 = mlwe_dim + n + lamb + 4
        s2 = gamma2 * 59 * sqrt(d * m2)

        beta = 8 * 59 * sqrt(2 * d * (m1 + ve) * s1**2 + 2 * d * m2 * s2**2)

        # Is n picked so that the sis problem is hard?
        if beta > 2 ** (2 * sqrt(n * d * params.log_q * log(delta, 2))):
            continue

        tot = (
            (n + 2 * ceil(256 / d) + lamb + 2) * d * params.log_q
            + log(2 * kappa + 1, 2) * d
            + (m1 + ve) * d * log(s1 * 2**2.57, 2)
            + m2 * d * log(s2 * 2**2.57, 2)
            + 256 * (log(se * 2.57, 2) + log(sd * 2.57, 2))
        )

        if compress:
            return round(
                _kb(tot)
                - dilithium_sistest(
                    D, gamma, params, m2, n, gamma1, gamma2, L, voprf=voprf
                ),
                1,
            )
        else:
            return _kb(tot)


oprf_ct0_proof_sizekb = partial(
    oprf_ct0_proof_amortised_all_sizekb,
    gamma1=10,
    gamma2=5,
    compress=False,
    D=11,
    gamma=957 * 281,
    L=1,
)

voprf_ct0_proof_amortised_all_sizekb = partial(
    oprf_ct0_proof_amortised_all_sizekb, voprf=True
)

voprf_ct0_proof_sizekb = partial(
    voprf_ct0_proof_amortised_all_sizekb,
    gamma1=10,
    gamma2=5,
    D=11,
    gamma=4051 * 41 * 2,
    L=1,
)


def dilithium_sistest(
    D, gamma, params, m2=32, n=13, gamma1=10, gamma2=5, L=1, voprf=False
):
    d = 128
    e = params.tfhe["lwe_dimension"]
    bcom = params.sigma_com * sqrt(params.e_com)

    expansion = 1 if not voprf else 4

    m1 = ceil(params.e_com / d) + ceil(e / d) + L * expansion * ceil(params.n_p / d)
    ve = 2 + L
    bm1 = m1 + ve - ceil(params.e_com / d)
    s1 = gamma1 * 59 * sqrt(bcom**2 + d * bm1)
    s2 = gamma2 * 59 * sqrt(d * m2)
    kappa = 2

    delta = 1.0045
    b1 = 2 * s1 * sqrt(2 * (m1 + ve) * d)
    b2 = 2 * s2 * sqrt(2 * m2 * d) + 2**D * 59 * sqrt(n * d) + gamma * sqrt(n * d)
    betap = 4 * 59 * sqrt(b1**2 + b2**2)

    # make sure the sis problem is still hard and the compression params make sense
    if betap >= 2 ** (2 * sqrt(n * d * params.log_q * log(delta, 2))):
        raise ValueError(f"betap {betap} too large.")
    if 2 ** (D - 1) * kappa * d >= gamma:
        raise ValueError(f"gamma {gamma} too small.")

    return _kb((D - 2.25) * n * d)


def oprf_ct0_proof_amortised_sizekb(params, L=64):
    """
    Well-formedness proof of OPRF request per request using [LNP22].
    """
    return round(oprf_ct0_proof_amortised_all_sizekb(params, L=L) / L, 1)


def voprf_ct0_proof_amortised_sizekb(params, L=64):
    """
    Well-formedness proof of VOPRF request per request using [LNP22].
    """
    return round(voprf_ct0_proof_amortised_all_sizekb(params, L=L) / L, 1)


def oprf_ct1_sizekb(params, compress_ct1=True):
    """
    Response size in kilobytes.
    """
    # TODO make number of bits we keep dependent on params
    if compress_ct1 is False:
        e = params.tfhe["lwe_dimension"]
        return _kb(params.m * e * 24 + params.m * 16)
    else:
        ell = params.tfhe["glwe_dimension"]
        d = params.tfhe["polynomial_size"]
        return _kb(d * ell * 24 + params.m * 16)


voprf_ct1_sizekb = oprf_ct1_sizekb


def oprf_online_sizekb(params, compress_ct1=True, amortise=True):
    r = oprf_ct0_sizekb(params)
    if amortise:
        r += oprf_ct0_proof_amortised_sizekb(params)
    else:
        r += oprf_ct0_proof_sizekb(params)
    r += oprf_ct1_sizekb(params, compress_ct1=compress_ct1)
    return round(r, 1)


def voprf_online_sizekb(params, amortise=True, compress_ct1=True):
    r = voprf_ct0_sizekb(params)
    if amortise:
        r += voprf_ct0_proof_amortised_sizekb(params)
    else:
        r += voprf_ct0_proof_sizekb(params)
    r += voprf_ct1_sizekb(params, compress_ct1=compress_ct1)
    return round(r, 1)


def oprf(params):
    consistency_check(params)

    print(
        f"""
  % OPRF SIZES
  /oprf/pk/sizemb/.initial={oprf_pk_sizemb(params)},
  /oprf/pk/proof-old/sizemb/.initial={oprf_pk_proof_old_sizemb(params)},
  /oprf/pk/proof/sizekb/.initial={oprf_pk_proof_sizekb(params)[0]},
  /oprf/pk/proof/params/.initial={{{oprf_pk_proof_sizekb(params)[1]}}},
  /oprf/ct0/sizekb/.initial={oprf_ct0_sizekb(params)},
  /oprf/ct0/proof/sizekb/.initial={oprf_ct0_proof_sizekb(params)},
  /oprf/ct0/proof/amortised-all/sizekb/.initial={oprf_ct0_proof_amortised_all_sizekb(params)},
  /oprf/ct0/proof/amortised/sizekb/.initial={oprf_ct0_proof_amortised_sizekb(params)},
  /oprf/ct1/sizekb/.initial={oprf_ct1_sizekb(params, compress_ct1=False)},
  /oprf/ct1-compressed/sizekb/.initial={oprf_ct1_sizekb(params)},
  /oprf/online/amortised/sizekb/.initial={oprf_online_sizekb(params)},
  /oprf/online/sizekb/.initial={oprf_online_sizekb(params, amortise=False)},
    """
    )


def voprf(params):
    consistency_check(params)

    print(
        f"""
  % VOPRF SIZES
  /voprf/pk/sizemb/.initial={voprf_pk_sizemb(params)},
  /voprf/pk/proof-old/sizemb/.initial={voprf_pk_proof_old_sizemb(params)},
  /voprf/pk/proof/sizekb/.initial={voprf_pk_proof_sizekb(params)[0]},
  /voprf/pk/proof/params/.initial={{{voprf_pk_proof_sizekb(params)[1]}}},
  /voprf/ct0/sizekb/.initial={voprf_ct0_sizekb(params)},
  /voprf/ct0/proof/sizekb/.initial={voprf_ct0_proof_sizekb(params)},
  /voprf/ct0/proof/amortised-all/sizekb/.initial={voprf_ct0_proof_amortised_all_sizekb(params)},
  /voprf/ct0/proof/amortised/sizekb/.initial={voprf_ct0_proof_amortised_sizekb(params)},
  /voprf/ct1/sizekb/.initial={voprf_ct1_sizekb(params, compress_ct1=False)},
  /voprf/ct1-compressed/sizekb/.initial={voprf_ct1_sizekb(params)},
  /voprf/online/amortised/sizekb/.initial={voprf_online_sizekb(params)},
  /voprf/online/sizekb/.initial={voprf_online_sizekb(params, amortise=False)},
    """
    )


def both():
    oprf(OPRF)
    voprf(VOPRF)




"""

from dataclasses import dataclass
from functools import partial
from sage.all import sqrt, ceil, log, cached_function
from labrador import LaBRADOR

# Parameters

class HashableDict(dict):
def __hash__(self):

return hash(frozenset(self.items()))

@dataclass
class Parameters:

e_com: int
sigma_com: float
log_q: int
n_p: int
m: int
tfhe: HashableDict

def __hash__(self):
return hash((self.e_com, self.sigma_com, self.log_q, self.n_p, self.m, self.tfhe))

# https://github.com/zama-ai/tfhe-rs/blob/0.2.4/tfhe/src/shortint/parameters/mod.rs#L200
PARAM_MESSAGE_2_CARRY_0 = HashableDict(

{
"lwe_dimension": 656,
"glwe_dimension": 2,
"polynomial_size": 512,
"lwe_modular_std_dev": 0.000034119201269311964,
"glwe_modular_std_dev": 0.00000004053919869756513,
"pbs_base_log": 8,
"pbs_level": 2,
"ks_level": 4,
"ks_base_log": 3,
"pfks_level": 1,
"pfks_base_log": 15,
"pfks_modular_std_dev": 0.00000000037411618952047216,
"cbs_level": 0,
"cbs_base_log": 0,
"message_modulus": 4,
"carry_modulus": 1,

}
)

OPRF = Parameters(
e_com=2048, sigma_com=2, log_q=32, n_p=256, m=128, tfhe=PARAM_MESSAGE_2_CARRY_0

)

# https://github.com/zama-ai/tfhe-rs/blob/0.2.4/tfhe/src/shortint/parameters/mod.rs#L827
PARAM_MESSAGE_8_CARRY_0 = HashableDict(

{
"lwe_dimension": 1017,
"glwe_dimension": 1,
"polynomial_size": 32768,
"lwe_modular_std_dev": 0.0000000460803851108693,
"glwe_modular_std_dev": 0.0000000000000000002168404344971009,
"pbs_base_log": 15,
"pbs_level": 2,
"ks_level": 5,
"ks_base_log": 4,
"pfks_level": 2,
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"pfks_base_log": 15,
"pfks_modular_std_dev": 0.0000000000000000002168404344971009,
"cbs_level": 0,
"cbs_base_log": 0,
"message_modulus": 251, # changed
"carry_modulus": 1,

}
)

VOPRF = Parameters(
e_com=4096, sigma_com=2, log_q=64, n_p=256, m=128, tfhe=PARAM_MESSAGE_8_CARRY_0

)

# Utilities

def _kb(v):
"""
Convert bits to kilobytes.
"""
return round(float(v / 8.0 / 1024.0), 1)

def _mb(v):
"""
Convert bits to megabytes.
"""
return round(float(v / 8.0 / 1024.0 / 1024.0), 1)

def consistency_check(params):
"""
Enforce that we do not pick q too small
"""
if -params.tfhe["lwe_modular_std_dev"] >= params.log_q:

raise ValueError(f"log(q) = {params.log_q} is too small.")
if -params.tfhe["glwe_modular_std_dev"] >= params.log_q:

raise ValueError(f"log(q) = {params.log_q} is too small.")

def oprf_pk_sizemb(params, compress_pk=True, compress_ct1=True, voprf=False):
"""
The size of the OPRF public key in MB.

:param params:
:param compress_pk: drop lower-order bits where possible
:param compress_ct1: compress ct1 into one ring element
:param voprf: estimate the VOPRF

"""
e = params.tfhe["lwe_dimension"]
d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
ell = params.tfhe["pbs_level"]
ell_ = params.tfhe["ks_level"]

if voprf:
tau = 2

else:
tau = 1

if compress_pk:
lwe_keep_bits = ceil(-log(params.tfhe["lwe_modular_std_dev"], 2) + 1)
glwe_keep_bits = ceil(-log(params.tfhe["glwe_modular_std_dev"], 2) + 1)

else:
lwe_keep_bits = params.log_q
glwe_keep_bits = params.log_q

55



if not compress_ct1:
zeta = tau

else:
zeta = tau + log(d, 2)

return _mb(
(params.e_com + e * params.log_q) * lwe_keep_bits
+ tau * 2 * d * glwe_keep_bits
+ tau * 2 * e * 2 * ell * d * glwe_keep_bits
+ zeta * d * ell_ * lwe_keep_bits

)

voprf_pk_sizemb = partial(oprf_pk_sizemb, voprf=True)

def oprf_pk_proof_old_sizemb(params, gamma1=10, gamma2=5, gammae=5):
"""
Well-formedness proof of the OPRF public key using [LNP22].

:param params:
:param gamma1:
:param gamma2:
:param gammae:

"""

ell = params.tfhe["pbs_level"]
tl = params.tfhe["ks_level"]
eta = 1 # we absorbed the module dimension in the ring dimension
d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
e = params.tfhe["lwe_dimension"]
Q = 2**params.log_q
lamb = 2 * 128 // params.log_q
kap = 2
m1 = (params.e_com + e) // d + eta + 4 * e * ell
delta = 1.0045
ve = 4 + 2 * e * ell + tl
bm1 = m1 + ve
bcom = params.sigma_com * sqrt(params.e_com)
s1 = gamma1 * 59 * sqrt(bcom**2 * d * ceil(params.e_com / d) + d * (bm1 - 1))

bpk = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(e * params.log_q)
b = params.tfhe["glwe_modular_std_dev"] * Q * sqrt(2 * d)
bp = b
bpp = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(eta * d)
inside_se = (

(m1 - 1) * d
+ 2 * bcom**2
+ bpk**2
+ b**2
+ e * ell * bp**2
+ tl * bpp**2
+ 2 * log(bcom, 2)
+ log(bpk, 2)
+ log(b, 2)
+ e * ell * log(bp, 2)
+ tl * log(bpp, 2)

)
se = gammae * sqrt(337) * sqrt(inside_se)

for n in range(1, 10):
m2 = 2 + n + lamb + 4
s2 = gamma2 * 59 * sqrt(d * m2)

# see if n large enough for the SIS problem
beta = 8 * 59 * sqrt(2 * d * bm1 * s1**2 + 2 * d * m2 * s2**2)
if beta > 2 ** (2 * sqrt(n * d * params.log_q * log(delta, 2))):
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continue

lwe_estimator_dim = (m2 - n - lamb - 4) * d
print(f"Check that ternary LWE in dimension {lwe_estimator_dim} is hard.")

tot = (
(n + 2 + lamb + 2) * d * params.log_q
+ log(2 * kap + 1, 2) * d
+ bm1 * d * log(s1 * 2**2.57, 2)
+ m2 * d * log(s2 * 2**2.57, 2)
+ 256 * log(se * 2**2.57, 2)

)

return _mb(tot)

def voprf_pk_proof_old_sizemb(params, gamma1=10, gamma2=5, gammae=5):
"""
Well-formedness proof of the OPRF public key using [LNP22].

:param params:
:param gamma1:
:param gamma2:
:param gammae:

"""
ell = params.tfhe["pbs_level"]
eta = 1
tl = params.tfhe["ks_level"]
d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
e = params.tfhe["lwe_dimension"]
ecom = params.e_com
Q = 2**params.log_q
lamb = 128 // params.log_q
kap = 2
delta = 1.0045

for n in range(1, 10):
m1 = (ecom + 3 * e) // d + 2 * eta + 8 * e * ell
m2 = 3 + n + tl + lamb + 4
ve = 5 + 4 * e * ell + 2 * tl
bm1 = m1 + ve
bcom = params.sigma_com * sqrt(ecom)
s1 = gamma1 * 59 * sqrt(bcom**2 * d * ceil(ecom / d) + d * (bm1 - 1))
s2 = gamma2 * 59 * sqrt(d * m2)

# see if n large enough for the sis problem
beta = 8 * 59 * sqrt(2 * d * bm1 * s1**2 + 2 * d * m2 * s2**2)
if beta > 2 ** (2 * sqrt(n * d * log(Q, 2) * log(delta, 2))):

continue

bpk = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(e * params.log_q)
b = params.tfhe["glwe_modular_std_dev"] * Q * sqrt(2 * d)
bp = b
bpp = params.tfhe["lwe_modular_std_dev"] * Q * sqrt(eta * d)
inside_se = (

(m1 - 1) * d
+ 2 * bcom**2
+ bpk**2
+ 2 * b**2
+ 2 * e * ell * bp**2
+ 2 * tl * bpp**2
+ 2 * log(bcom, 2)
+ log(bpk, 2)
+ 2 * log(b, 2)
+ 2 * e * ell * log(bp, 2)
+ 2 * tl * log(bpp, 2)

)
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se = gammae * sqrt(337) * sqrt(inside_se)

tot = (
(n + 2 + lamb + 2) * d * params.log_q
+ log(2 * kap + 1, 2) * d
+ bm1 * d * log(s1 * 2**2.57, 2)
+ m2 * d * log(s2 * 2**2.57, 2)
+ 256 * log(se * 2**2.57, 2)

)

return _mb(tot)

@cached_function
def oprf_pk_proof_sizekb(params, compress_ct1=True):

"""
Well-formedness proof of the OPRF public key using LaBRADOR.
"""
e = params.tfhe["lwe_dimension"]
eta = 1 # we will absorb the module rank in the ring dimension
d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
sig = params.tfhe["lwe_modular_std_dev"]
sigring = params.tfhe["glwe_modular_std_dev"]
ell = params.tfhe["pbs_level"]
tl = params.tfhe["ks_level"]

if not compress_ct1:
zeta = eta

else:
zeta = eta + log(d, 2)

witness_dim_original = (
ceil((e + 2 * params.e_com + e * params.log_q) / d) + 3 + 8 * e * ell + zeta * tl

)
witness_dim = witness_dim_original * (d // 64)
norm_bound = sqrt(

e
+ eta * d
+ 4 * e * ell * d
+ params.sigma_com**2 * (2 * params.e_com)
+ sig**2 * (e * params.log_q + zeta * tl * d)
+ sigring**2 * (2 * d + 4 * e * ell * d)

)

print(f"LaBRADOR witness dimension: {witness_dim}")

r = 24
n = ceil(witness_dim / 24)

L = LaBRADOR(d=64, logq=32)
size, params = L(n, r, norm_bound, 3, 5, verbose=False)
return size, params

@cached_function
def voprf_pk_proof_sizekb(params, compress_ct1=True):

"""
Well-formedness proof of the VOPRF public key using LaBRADOR.
"""
e = params.tfhe["lwe_dimension"]
eta = 1
d = params.tfhe["polynomial_size"] * params.tfhe["glwe_dimension"]
sig = params.tfhe["lwe_modular_std_dev"]
sigring = params.tfhe["glwe_modular_std_dev"]
ell = params.tfhe["pbs_level"]
tl = params.tfhe["ks_level"]

if not compress_ct1:
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zeta = eta
else:

zeta = eta + log(d, 2)

witness_dim_original = (
ceil((3 * e + 2 * params.e_com + e * params.log_q) / d)
+ 4
+ 2 * eta
+ 16 * e * ell
+ 2 * zeta * tl

)
# need to expand this dimension to reach ring dimension 64
witness_dim = witness_dim_original * ceil(d // 64)
norm_bound = sqrt(

3 * e
+ 2 * eta * d
+ 8 * e * ell * d
+ params.sigma_com**2 * (2 * params.e_com)
+ sig**2 * (e * params.log_q + 2 * tl * zeta * d)
+ sigring**2 * (4 * d + 8 * e * ell * d)

)

r = 256
n = ceil(witness_dim / 256)
L = LaBRADOR(d=64, logq=params.log_q)

return L(n, r, norm_bound, 5, 5, verbose=False)

def oprf_ct0_sizekb(params):
"""
OPRF request size in kilobytes.
"""

keep_bits = ceil(-log(params.tfhe["lwe_modular_std_dev"], 2.0) + 1)

return _kb(params.n_p * keep_bits + 256)

voprf_ct0_sizekb = oprf_ct0_sizekb

@cached_function
def oprf_ct0_proof_amortised_all_sizekb(

params,
gamma1=10,
gamma2=5,
compress=True,
D=12,
gamma=947 * 281 * 2,
L=64,
voprf=False,

):
"""
Well-formedness proof of OPRF request using [LNP22].

:param params:
:param gamma1:
:param gamma2:
:param compress: Use Dilithium-style compression
:param D:
:param gamma:
:param L: Amortise over this many proofs.
:param voprf: Estimate VOPRF case.
"""
d = 128
lamb = ceil(128 / params.log_q)
kappa = 2
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e = params.tfhe["lwe_dimension"]
bcom = params.sigma_com * sqrt(params.e_com)
Bv = 128
Bct = 2**params.log_q * params.tfhe["lwe_modular_std_dev"] * sqrt(params.n_p)
if voprf:

m1 = ceil(params.e_com / d) + ceil(e / d) + 4 * L * ceil(params.n_p / d)
else:

m1 = ceil(params.e_com / d) + ceil(e / d) + L * ceil(params.n_p / d)
ve = 2 + L
bm1 = m1 + ve - ceil(params.e_com / d)
if voprf:

mlwe_dim = 20
else:

mlwe_dim = 11
delta = 1.0045

gammad = gamma2
gammae = gamma2
if voprf:

sd = gammad * sqrt(337) * sqrt(L * Bv**2 + L * params.n_p)
else:

sd = gammad * sqrt(337) * sqrt(L * Bv**2)
if voprf:

voprf_expand = 3
else:

voprf_expand = 1
se = (

gammae
* sqrt(337)
* sqrt(

e
+ voprf_expand * L * params.n_p
+ 2 * bcom**2
+ L * Bct**2
+ 2 * log(bcom, 2)
+ L * log(Bct, 2)

)
)
s1 = gamma1 * 59 * sqrt(bcom**2 + d * bm1)

print(
f"Check that ternary MLWE in dimension {mlwe_dim} x {d} mod 2^{params.log_q} is hard."

)

for n in range(1, 32):
m2 = mlwe_dim + n + lamb + 4
s2 = gamma2 * 59 * sqrt(d * m2)

beta = 8 * 59 * sqrt(2 * d * (m1 + ve) * s1**2 + 2 * d * m2 * s2**2)

# Is n picked so that the sis problem is hard?
if beta > 2 ** (2 * sqrt(n * d * params.log_q * log(delta, 2))):

continue

tot = (
(n + 2 * ceil(256 / d) + lamb + 2) * d * params.log_q
+ log(2 * kappa + 1, 2) * d
+ (m1 + ve) * d * log(s1 * 2**2.57, 2)
+ m2 * d * log(s2 * 2**2.57, 2)
+ 256 * (log(se * 2.57, 2) + log(sd * 2.57, 2))

)

if compress:
return round(

_kb(tot)
- dilithium_sistest(

D, gamma, params, m2, n, gamma1, gamma2, L, voprf=voprf
),
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1,
)

else:
return _kb(tot)

oprf_ct0_proof_sizekb = partial(
oprf_ct0_proof_amortised_all_sizekb,
gamma1=10,
gamma2=5,
compress=False,
D=11,
gamma=957 * 281,
L=1,

)

voprf_ct0_proof_amortised_all_sizekb = partial(
oprf_ct0_proof_amortised_all_sizekb, voprf=True

)

voprf_ct0_proof_sizekb = partial(
voprf_ct0_proof_amortised_all_sizekb,
gamma1=10,
gamma2=5,
D=11,
gamma=4051 * 41 * 2,
L=1,

)

def dilithium_sistest(
D, gamma, params, m2=32, n=13, gamma1=10, gamma2=5, L=1, voprf=False

):
d = 128
e = params.tfhe["lwe_dimension"]
bcom = params.sigma_com * sqrt(params.e_com)

expansion = 1 if not voprf else 4

m1 = ceil(params.e_com / d) + ceil(e / d) + L * expansion * ceil(params.n_p / d)
ve = 2 + L
bm1 = m1 + ve - ceil(params.e_com / d)
s1 = gamma1 * 59 * sqrt(bcom**2 + d * bm1)
s2 = gamma2 * 59 * sqrt(d * m2)
kappa = 2

delta = 1.0045
b1 = 2 * s1 * sqrt(2 * (m1 + ve) * d)
b2 = 2 * s2 * sqrt(2 * m2 * d) + 2**D * 59 * sqrt(n * d) + gamma * sqrt(n * d)
betap = 4 * 59 * sqrt(b1**2 + b2**2)

# make sure the sis problem is still hard and the compression params make sense
if betap >= 2 ** (2 * sqrt(n * d * params.log_q * log(delta, 2))):

raise ValueError(f"betap {betap} too large.")
if 2 ** (D - 1) * kappa * d >= gamma:

raise ValueError(f"gamma {gamma} too small.")

return _kb((D - 2.25) * n * d)

def oprf_ct0_proof_amortised_sizekb(params, L=64):
"""
Well-formedness proof of OPRF request per request using [LNP22].
"""
return round(oprf_ct0_proof_amortised_all_sizekb(params, L=L) / L, 1)

def voprf_ct0_proof_amortised_sizekb(params, L=64):
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"""
Well-formedness proof of VOPRF request per request using [LNP22].
"""
return round(voprf_ct0_proof_amortised_all_sizekb(params, L=L) / L, 1)

def oprf_ct1_sizekb(params, compress_ct1=True):
"""
Response size in kilobytes.
"""
# TODO make number of bits we keep dependent on params
if compress_ct1 is False:

e = params.tfhe["lwe_dimension"]
return _kb(params.m * e * 24 + params.m * 16)

else:
ell = params.tfhe["glwe_dimension"]
d = params.tfhe["polynomial_size"]
return _kb(d * ell * 24 + params.m * 16)

voprf_ct1_sizekb = oprf_ct1_sizekb

def oprf_online_sizekb(params, compress_ct1=True, amortise=True):
r = oprf_ct0_sizekb(params)
if amortise:

r += oprf_ct0_proof_amortised_sizekb(params)
else:

r += oprf_ct0_proof_sizekb(params)
r += oprf_ct1_sizekb(params, compress_ct1=compress_ct1)
return round(r, 1)

def voprf_online_sizekb(params, amortise=True, compress_ct1=True):
r = voprf_ct0_sizekb(params)
if amortise:

r += voprf_ct0_proof_amortised_sizekb(params)
else:

r += voprf_ct0_proof_sizekb(params)
r += voprf_ct1_sizekb(params, compress_ct1=compress_ct1)
return round(r, 1)

def oprf(params):
consistency_check(params)

print(
f"""

% OPRF SIZES
/oprf/pk/sizemb/.initial={oprf_pk_sizemb(params)},
/oprf/pk/proof-old/sizemb/.initial={oprf_pk_proof_old_sizemb(params)},
/oprf/pk/proof/sizekb/.initial={oprf_pk_proof_sizekb(params)[0]},
/oprf/pk/proof/params/.initial={{{oprf_pk_proof_sizekb(params)[1]}}},
/oprf/ct0/sizekb/.initial={oprf_ct0_sizekb(params)},
/oprf/ct0/proof/sizekb/.initial={oprf_ct0_proof_sizekb(params)},
/oprf/ct0/proof/amortised-all/sizekb/.initial={oprf_ct0_proof_amortised_all_sizekb(params)},
/oprf/ct0/proof/amortised/sizekb/.initial={oprf_ct0_proof_amortised_sizekb(params)},
/oprf/ct1/sizekb/.initial={oprf_ct1_sizekb(params, compress_ct1=False)},
/oprf/ct1-compressed/sizekb/.initial={oprf_ct1_sizekb(params)},
/oprf/online/amortised/sizekb/.initial={oprf_online_sizekb(params)},
/oprf/online/sizekb/.initial={oprf_online_sizekb(params, amortise=False)},
"""
)

def voprf(params):
consistency_check(params)
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print(
f"""

% VOPRF SIZES
/voprf/pk/sizemb/.initial={voprf_pk_sizemb(params)},
/voprf/pk/proof-old/sizemb/.initial={voprf_pk_proof_old_sizemb(params)},
/voprf/pk/proof/sizekb/.initial={voprf_pk_proof_sizekb(params)[0]},
/voprf/pk/proof/params/.initial={{{voprf_pk_proof_sizekb(params)[1]}}},
/voprf/ct0/sizekb/.initial={voprf_ct0_sizekb(params)},
/voprf/ct0/proof/sizekb/.initial={voprf_ct0_proof_sizekb(params)},
/voprf/ct0/proof/amortised-all/sizekb/.initial={voprf_ct0_proof_amortised_all_sizekb(params)},
/voprf/ct0/proof/amortised/sizekb/.initial={voprf_ct0_proof_amortised_sizekb(params)},
/voprf/ct1/sizekb/.initial={voprf_ct1_sizekb(params, compress_ct1=False)},
/voprf/ct1-compressed/sizekb/.initial={voprf_ct1_sizekb(params)},
/voprf/online/amortised/sizekb/.initial={voprf_online_sizekb(params)},
/voprf/online/sizekb/.initial={voprf_online_sizekb(params, amortise=False)},
"""
)

def both():
oprf(OPRF)
voprf(VOPRF)
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Fvpoprf.Setup(1λ)

App ←$ ZN×N
Q

pp← App

return pp

Fvpoprf.KeyGen(1λ)

pk← ⊥
sk←$ Zmp×np

p

xi ← X for i ∈ Zβ

z ← Fvpoprf.Eval(sk, t = t, x = x)

π ← NIZKAoKRt(A; t, z,x)

return (pk, sk)

Fvpoprf.Eval(sk = A, t = ⊥, x = x)

z′ := FA(t,x)

z := ROfin(t,x, z
′)

return z

Fvpoprf.Request(pk, t = ⊥, x = x; pp)

Parse pp as App, x̂, ẑ, π̂

if π̂ does not verify,abort
FHE.pk(pp),FHE.sk←$ FHE.KeyGen(pp)()

ρ← Sm

x′ ← (x, x̂)

x′ ← x′
ρ(i) for i ∈ Zγ

y ← decomp(Ginp · x′ mod p)

ct←$ FHE.Enc(FHE.sk,y)
π ←$ NIZKAoKC(FHE.pk(pp), ct;FHE.sk, x)
req ← (FHE.pk(pp), ct, π, t)
return req, ρ

Fvpoprf.BlindEval(sk = A, t = ⊥, req; pp)

(FHE.pk(pp), ct, π)← req

ct′ ← Fvpoprf.HEEval(FHE.pk(pp),A, t, ct)
if π does not verify then ct′ = ⊥
rep← ct′

return rep

Fvpoprf.Finalise(FHE.sk, rep = ct, ρ)

if ct′ not a ctxt then return ⊥
z⋆ ← FHE.Dec(FHE.sk, ct)
if Fvpoprf.Verify(z, z⋆, ρ) = 0, then return ⊥
z′
i ← z⋆

ρ(i) for i ∈ Zα

z ← ROfin(t,x, z
′)

return z

Fvpoprf.Verify(z, z⋆, ρ)

if z(β)

j,ρ(k+α) ̸= z⋆
ρ(k+α) for any k ∈ Zβ , return 0

if z(α)

ρ(i0+rαℓ) ̸= z
(α)

ρ(i1+rαℓ) for i0 ̸= i1 ∈ Zrα , return 0

if z(α)

ρ(i0+rαℓ0)
= z

(α)

ρ(i1+rαℓ1)
for i0, i1 ∈ Zrα and ℓ0 ̸= ℓ1 ∈ Zα, return 0

return 1

Client Server

Fvpoprf.Request(pk, t = ⊥, x = x; pp)

req = (FHE.pk(pp), ct, π, t) Fvpoprf.BlindEval(sk = A, t = ⊥, req)

Fvpoprf.Finalise(rep, ρ) rep = ct′

Output: ROfin(t,x, F
ROkey
A (t,x))

Fig. 5. Our construction for VPOPRF, Fvpoprf.
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