
A New Sieving-Style
Information-Set Decoding Algorithm

Abstract. The problem of decoding random codes is a fundamental
problem for code-based cryptography, including recent code-based candi-
dates in the NIST post-quantum standardization process. In this paper,
we present a novel sieving-style information-set decoding (ISD) algo-
rithm, addressing the task of solving the syndrome decoding problem.
Our approach involves maintaining a list of weight-2p solution vectors
to a partial syndrome decoding problem and then creating new vectors
by identifying pairs of vectors that collide in p positions. By gradually
increasing the parity-check condition by one and repeating this process
iteratively, we find the final solution(s). We show that our novel algorithm
performs better than other ISDs in the memory-restricted scenario when
applied to McEliece. Notably, in the case of problems with very low rela-
tive weight, it seems to significantly outperform all previous algorithms.
In particular, for code-based candidates BIKE and HQC, the algorithm
has lower bit complexity than the previous best results.

Keywords: Code-based cryptography, NIST post-quantum standard-
ization, Information-Set Decoding, Classic-McEliece, BIKE, HQC.

1 Introduction

The recent advancements in the development of quantum computers have greatly
impacted cryptography. There is a threat to current standard cryptographic
algorithms based on factoring and discrete-log problems, leading to an interest
in cryptographic algorithms based on other hardness assumptions. Post-quantum
cryptography revolves around primitives that are not known to be broken by a
large quantum computer.

One leading and promising field in post-quantum cryptography is code-based
cryptography. Being introduced already in the 70s, it has a long history with
many proposed primitives that withstand classical as well as quantum attacks.
Code-based cryptography relies on the difficulty of the problem of decoding ran-
dom codes, which has been a very well-studied hardness assumption. The on-
going NIST standardization process for post-quantum cryptography [1] includes
in round 4 several code-based proposals (Classic McEliece [11], BIKE [3], and
HQC [30]).

One major challenge in these schemes is the selection of secure parameter
sets for the proposals, which match the required security levels as decided by
NIST. To determine and evaluate parameter sets, the exact cost of the best
attacks on the proposed schemes and their corresponding hardness assumption

is needed. Improving current ISD algorithms, as well as proposing new ones, are
therefore of interest, and their complexity parameters, such as time and space,
are important.

Code-based schemes usually rely on the hardness of decoding random codes,
or equivalently, the syndrome decoding problem, which, given a random matrix
H ∈ Fr×n

2 , a syndrome s ∈ Fr
2 and an integer ω asks to find an error vec-

tor e ∈ Fn
2 with weight ω such that s = He. The best algorithms to solve

this problem belong to a class of algorithms known as information-set decod-
ing (ISD). The first idea of an ISD algorithm was proposed by Prange in 1962
[32], and then a long line of papers have provided subsequent improvements,
see [32,26,27,34,12,22,33,28,9] to mention a few. Recently, an approach called
statistical decoding has been revisited by Carrier et al. [17], and shown to yield
improvements in specific code rate regimes.

Most works study the problem for ω = cn, where c is a constant, and in-
vestigate the asymptotic runtime exponent. However, for all code-based NIST
PQC submissions, as well as other explicit proposals, the asymptotic expressions
do not give the estimated complexity as numbers that can be translated to a
security level. Some of the asymptotic advantages of improved ISD algorithms
have been shown to more or less vanish for certain parameter sets. Therefore,
it is not clear which algorithms actually yield practical improvements. We are
left to study different expressions for the actual complexity of these algorithms.
Another important aspect is that memory requirements are very high in the
improved versions of ISD algorithms, and it is likely to be the limiting factor in
practice. Hence any algorithm that requires less memory but a similar computa-
tional complexity is very relevant. Estimators for concrete complexity of solving
the syndrome decoding problem for various algorithms have previously appeared
in [24,6] and most recently in [20]. This last work includes an estimator program
in Python that computes complexity numbers for many different algorithms and
is the source for comparisons in our work.

1.1 Related works

An important ISD algorithm is the Stern algorithm [34] that significantly im-
proved the previous work of Prange. Its slightly improved version using the
parity-check matrix as suggested in [22] is used in our work. Other improve-
ments making use of ‘representation techniques’, as in [28,9], are notable among
enumeration-dominated ISD. The nearest-neighbor search was introduced in [29]
and later used in various steps of the algorithms [15,16] .These improved ver-
sions of the Stern algorithm share a drawback: they generally require even larger
memory, a bottleneck in many situations. Lattice sieving, a method of finding
short vectors in a lattice [2,31,8], is an inspiration for our work. In our case, we
are working with the Hamming metric. Our sieving method is, therefore, differ-
ent from the known efficient lattice sieving methods due to the different metrics.
A similar idea was also initiated by Bernstein in a cryptanalysis forum.1

1 cryptanalytic-algorithms@list.cr.yp.to

2

mailto:cryptanalytic-algorithms@list.cr.yp.to

1.2 Contributions

We propose a new ISD-like algorithm for solving the syndrome decoding prob-
lem, which we call Sieving-Style ISD. From the simple observation that if two
weight-p vectors x,y collide (i.e., both have a one) in p/2 positions (assuming
p is even), then their sum is also a weight-p vector. Moreover, if we impose a
‘syndrome condition’, being Hx,Hy ∈ {0, s} for some syndrome s, then again
H(x+ y) ∈ {0, s}. Therefore, instead of using birthday-style arguments like in
the Stern algorithm and its many subsequent improvements, we can construct
new weight-p error vectors by combining in pairs stored weight p vectors, where
the two vectors collide in p/2 positions. This procedure, together with an iter-
ative increase in the number of considered syndrome positions, gives weight-p
vectors fulfilling the syndrome equation.

Given a set L of small weight p vectors, we derive efficient algorithms for
computing the new set of all weight-p vectors of the form x+y, where x,y ∈ L.
This is used as a part of the proposed ISD algorithm. We then analyze the con-
crete complexity of the proposed algorithm and make comparisons with existing
best previous work when considering memory as well as computational complex-
ity. We argue that our proposed algorithm has better time-memory trade-offs,
especially when we restrict the memory. Hence, our algorithm can contribute
significantly to understanding the concrete security of code-based cryptographic
constructions and improve complexity numbers when the memory is limited.

When comparing the complexity to other ISD algorithms, there seems to be
an improvement for instances with very low relative weight (in particular, for
code-based candidates such as BIKE and HQC). In that case, the new algorithm
outperforms all previous algorithms. In summary, we hope that our research
enriches as a novel contribution to post-quantum cryptanalysis.

1.3 Organization

We start by giving preliminaries on coding theory and information-set decod-
ing in Section 2. In Section 3, we explain the new ideas and describe all parts
of the new algorithm. Section 4 presents the complete complexity analysis for
the new algorithm. Section 5 then illustrates the performance by making com-
parisons with some of the best-known ISD algorithms for parameter choices
selected from proposed schemes such as Classic McEliece, BIKE, and HQC. Sec-
tion 6 gives some details and results from an actual algorithm implementation
for small parameters, supporting the theoretical estimations. Section 7 concludes
the paper.

2 Preliminaries

Throughout the paper, we use the following notations. We denote by

– bold letters, e.g., v and H, row vectors and matrices. In particular, In denotes
the identity matrix of size n× n.

3

– ωH(x) the Hamming weight of a vector x.
– x+ y the bit-by-bit XOR between binary vectors x and y.
– F2 the binary finite field and Fm×n

2 the vector space over F2 of dimension
m× n.

– log the logarithm base 2.
– [i] := {1, . . . , i} for an integer i ∈ N.
– O(.) the usual Landau notation for the asymptotic behavior of algorithms,

and Õ(.) means we suppress arbitrary polynomial factor.

We should also point out that all complexity expressions consider the actual
complexity in the number of bit operations and not the corresponding asymptotic
form of complexity expressions.

2.1 Linear codes and related hard problems

Let Fn
2 be the vector space of all n-tuples over the finite field F2. A linear

code, denoted by C, is a vector subspace of Fn
2 . An element of the code c =

(c1, . . . , cn) ∈ C where ci ∈ F2, i = 1, · · · , n is called a codeword. If C is of
dimension k, then we say it to be a [n, k]-linear code over F2. The minimum
distance d of the code is defined as the minimum Hamming weight of nonzero
codewords of C.

A code C is often represented by a generator matrix which is a k × n binary
matrix G, where the rows constitute a basis of C. Any set of k independent
columns of G forms an information set of C. It is also a common practice to
denote the remaining coordinate, called redundancy of C, by r = n− k. Another
representation of a code is with a parity check matrix. In particular, there exists
an r × n matrix H such that HcT = 0,∀c ∈ C. In general, there are many
generator and parity check matrices for a code C. When G =

(
Ik A

)
or H =(

AT In−k

)
, we say that they are in systematic form.

Let y ∈ Fn
2 be an arbitrary vector, we call s = HyT ∈ Fr

2 the syndrome of y
through H. To ease the notation, we omit the transposition and write y instead
of yT , and it should be clear from the context unless otherwise mentioned. We
observe that if y is not a codeword of C, i.e., y = c+ e, for some c ∈ C and an
“error vector” e, then the syndrome of y is nonzero and s = Hy = He.

Definition 1 Let C be a [n, k]-linear code with a parity check matrix H ∈
F(n−k)×n
2 . Given a noisy codeword y ∈ Fn

2 , its syndrome s = Hy, and an integer
ω > 0, the syndrome decoding problem is to find an error vector e ∈ Fn

2 such
that ωH(e) = ω, y + e ∈ C, or equivalently He = s. We say that e solves the
(H, s, ω) instance of the syndrome decoding problem.

The syndrome decoding problem (SDP) is closely related to the coset weights
problem, also known as the decisional syndrome decoding problem (DSDP),
which has been shown to belong to the NP-complete complexity class by Berlekamp
et al. [10].

4

Definition 2 Let H be a random r × n matrix, s be a vector in Fr
2, and ω be

a positive integer. The coset weights problem is to determine if there exists a
vector e ∈ Fn

2 such that ωH(e) ≤ ω and He = s.

Although the search version is “harder” than the decisional variant, Arora et
al., in [4], showed that they are polynomial-time equivalent, i.e., there exists a
polynomial search-to-decision reduction. Therefore, it is common in the literature
to say the SDP is NP-hard, despite the fact that the definition of NP applies to
decisional problems.

The SDP has been a well-established problem in cryptography and coding
theory for more than half a century. Throughout history, the NP-complete class
of problems has been building blocks of cryptography. Similarly, the SDP has
proven to be useful in constructing many cryptographic primitives. One can find
numerous code-based constructions such as public-key cryptography [1,11,3,30],
stream ciphers [23], hash functions [5,14], signatures [18], zero-knowledge proto-
cols [35,36], etc., just to name a few. In particular, the current NIST standard-
ization project for post-quantum public-key cryptosystems includes code-based
constructions such as McEliece, BIKE, and HQC. With such importance, it is
not surprising that extensive efforts have been made in cryptanalysis to gain
trust in code-based primitives.

2.2 Information-Set Decoding Algorithms

The most prominent and well-studied approach to solving the Syndrome Decod-
ing Problem is the class of so-called Information-Set Decoding (ISD) algorithms.
In a naive attempt, one can search exhaustively through the space of error vectors
with weight ω, which is

(
n
ω

)
and the complexity is Õ

((
n
ω

))
. There has been a long

line of studies going back to Prange in 1962, who realized we could significantly
improve this approach using simple linear algebra. Since then, ISD algorithms
have remained an active field of research [32,26,27,34,19,12,22,33,28,9,29,15,16].
In the followings, we describe the general ISD framework and explain some of
the technical details of relevant ISD algorithm variants. The essential idea of ISD
algorithms is to reduce the search space’s dimension with Gaussian elimination.
In short, one applies a random permutation P as

He = HPP−1e = H̄ē = s. (1)

A Gaussian elimination process with some invertible matrix Q ∈ F(n−k)×(n−k)
2

results in
QH̄ē =

(
Ĥ In−k

)
ē = Qs = s̄. (2)

Therefore, we can reconstruct a solution of (H, s, ω) by solving a new instance
(QH̄, s̄, ω). The random permutation P imposes a particular weight distribution
to ē = (ē′, ē′′) ∈ Fk

2 × Fn−k
2 , ωH(e′) = p < ω. Therefore, equation (2) becomes

Ĥē′ + ē′′ = s̄. (3)

5

In the original Prange’s ISD algorithm, one looks for P that sends all the
erroneous bits to the second part, i.e., corresponding to a case of p = 0 and
ē′′ = s̄ (equivalently guessing the information-set of H). Therefore, the running
time of this algorithm is determined by finding a correct permutation, which
happens with probability

Prsuccess =

(
n−k
ω

)(
n
ω

) . (4)

Let R = k/n be the code rate. Asymptotically, the running time of Prange’s ISD
converges to

T =
1

Prsuccess
≈

(
1

1−R

)ω

. (5)

Intuitively, Prange’s ISD is suitable for the low-weight error regime as it is
more likely that a random permutation will yield the desired weight distribu-
tion. Hence, the original ISD is still one of many main cryptanalysis tools to
estimate the security of many code-based cryptosystems, most notably NIST
post-quantum candidates such as McEliece, BIKE, or HQC public-key cryp-
tosystems.

In contrast, many modern variants of ISD allow some error weight p > 0
outside the information set. Therefore, one looks for a weight-p vector ē′ such
that

ωH(Ĥē′ + s̄) = ω − p. (6)

Lee and Brickell [26] solved the above equation by simply enumerating (Ĥē′ + s̄)
until a low weight ē′′ is found via (6). Leon in [27] improved this approach by
imposing a ℓ-window of zeroes in ē′′; hence, the contribution from the first ℓ bits
of s̄ comes only from e′. In particular, we can write again as ē =

(
ē′,0ℓ, ē′′

)
∈

Fk
2 ×Fℓ

2 ×Fn−k−ℓ
2 . Although such a constraint reduces the probability of a good

permutation, it offers a check via the equation

Ĥ[ℓ]ē
′ = s̄[ℓ]. (7)

It has been shown that such versions of ISD can not gain more than a polynomial
factor compared to Prange’s ISD.

The first asymptotic improvement came from the Stern ISD algorithm [34] by
employing a Meet-in-the-Middle strategy to construct the candidates for equa-
tion (7). The strategy is to further split up ē′ = e1 + e2, where ωH(e1) =
ωH(e2) = p/2. Moreover, this approach also mandates that e1 (and e2) con-
tributes p/2 ones only among the left (right, respectively) k/2 coordinates. This
is done by storing all

(
k/2
p/2

)
possible values of (Ĥ[ℓ]e1 + s̄[ℓ]) in a look-up table

and enumerating all possible values for Ĥ[ℓ]e2. We also notice that the Stern
ISD algorithm was also the first variant to introduce a non-polynomial memory
requirement, namely, a look-up table of size

(
k/2
p/2

)
.

Later, Finiasz et al. [22], and Dumer [19] argued that one can increase the
success probability of each permutation by removing the window of ℓ-zeroes
condition and allowing some error bits to that region. More specifically, instead

6

of a full Gaussian elimination, one can apply a partial Gaussian elimination to
(1) (with an additional parameter ℓ) and obtain the following form(

H′ 0
H′′ In−k−ℓ

)
ē =

(
H′ 0
H′′ In−k−ℓ

)(
ē′ ē′′

)
= s̄ =

(
s̄′ s̄′′

)
, (8)

where H′ ∈ Fℓ×(k+ℓ)
2 ,H′′ ∈ F(n−k−ℓ)×(k+ℓ)

2 , (ē′, ē′′) ∈ Fk+ℓ
2 × Fn−k−ℓ

2 . Then we
proceed to find (almost) all solution for the ‘small’ syndrome decoding instance
(H′, s̄′, p) in the form ē′ = e1 + e2, where ωH(e1) = ωH(e2) = p/2 (in a similar
manner as the Stern algorithm), i.e.,

H′e1 +H′e2 = s̄′ (9)

and then check for
ωH(H′′(e1 + e2), s̄

′′) = ω − p. (10)

The equations (9) and (10) are sometimes called the exact matching and
approximate matching, respectively, in literature. The state-of-the-art ISD algo-
rithms such as MMT/BJMM [28,9] further speed up the process of constructing
ē′ via a representation technique. This practice allows more flexibility on how
p error bits are presented in the vector ē′. We refer the readers to the original
works for more details of the representation technique. Subsequently, Nearest
neighbor search [29] was introduced to amortize the cost of the approximate
matching problem, e.g., as in [16].

In comparison with Prange original ISD, whose running time depends on the
number of permutations one has to perform (with a polynomial factor for every
iteration), enumeration-dominated ISD variants raise the success probability in
(4) to

Prsuccess =

(
n−k−ℓ
ω−p

)(
k+ℓ
p

)(
n
ω

) . (11)

Therefore, modern ISD variants are beneficial in the weight regime where a ran-
dom permutation is not likely to send all the error weight to ē′′. For concrete se-
curity of code-based cryptosystems, enumeration-based ISD remains an essential
cryptanalysis tool. However, asymptotically speaking, reducing the complexity
of finding a good permutation and spending on enumerating on weight-p vector ē
does not pay off.2 Moreover, it comes at the cost of introducing significant mem-
ory overheads (and cost of accessing memory) owing to enumeration. Estimates
based solely on the algorithmic steps can therefore lead to security underesti-
mation of code-based cryptosystems. Hence, there has been skepticism among
cryptographers as to how much modern ISD algorithms can improve code-based
cryptanalysis, especially for cryptosystems of interest.

To this end, there have been comprehensive surveys of ISD algorithms such as
Baldi et al. [6], Esser-Bellini [20], where concrete bit security estimates for code-
based schemes are provided. Importantly, in their works, the memory access cost
2 When n grows very large, optimal p is p = 0.

7

was taken into consideration to understand better the security of McEliece, HQC,
and BIKE. Recently, Esser et al. [21] provided an efficient implementation of the
MMT/BJMM algorithm (by deploying multiple techniques and speed-ups such
as the Parity bit trick, Method of the four Russians for Inversions, and Decoding-
one-out-of-Many (DOOM) [33]) with optimized parameters for McEliece and a
quasi-cyclic setting. More notably, they also did cryptanalysis with medium-sized
instances (60 bits). They showed that the data from their record computations
could be used to extrapolate the bit-security of McEliece/HQC parameters in
the NIST standardization process.

3 A new heuristic ISD algorithm

In this section, we describe in brevity the main steps of our new ISD algorithm.

3.1 Our ISD framework

We follow the same ISD framework presented in the previous section that derives
Equation (8). As in (9), we are now assuming that the first part of the (permuted)
error vector, ē′, is of weight p. So we are looking for all weight-p vectors ē′ ∈ Fk+ℓ

2

that satisfy
H′ē′ = s̄′. (12)

Once such a vector is found, we can directly compute the corresponding ē′′ giving
the desired syndrome and finally check whether the overall weight is ω. When no
vector of weight ω is found, we apply a new random permutation, a new partial
Gaussian elimination, and the procedure is repeated until success.

Continuing, we assume that the parity check matrix is already in the form
of (8), and from now on, we assume that p is even. Hence, the weight 2p is used
instead. Moreover, to ease the notation, we refer to matrix and vectors in (12) as
H, e and s instead. To summarize, we are searching weight 2p vectors e ∈ Fk+ℓ

2

fulfilling
He = s, (13)

where ℓ is a parameter giving the number of parity check equations used for the
first part ē′.

3.2 New ideas

The new idea behind our approach is to build an algorithm that keeps a list
of weight-2p vectors for which a part of the parity check equations are fulfilled.
From this list, we create a new list of weight-2p vectors for which an even larger
number of the parity check equations are met. Iterating this procedure several
times, we end up with a final list of weight-2p vectors for which all considered
parity checks are fulfilled.

We need to introduce some further notation for vectors. For any vector v ∈ Fn
2

of length n, it is written as v = (v1, v2, . . . , vn). The notation v[i], 1 ≤ i ≤ n, is

8

defined as the projection of v onto the coordinates indexed by [i]. So v[1] is (v1);
v[2] is (v1, v2), and so on. A similar notation is adopted for matrices, where we
let H[i] denote the matrix restricted to the i first rows of H.

We suggest the following algorithm for computing new weight 2p vectors
from old weight 2p vectors based on a modified form of the sieving idea from
computing short vectors in lattices:

Assume that e, f are two weight-2p vectors. If they collide in p positions,
meaning that ei = fi = 1 for i = {i1, i2, . . . , ip}, then their sum is a new weight-
2p vector. In addition, we have one more restriction, namely that the new vector
should fulfill a parity check equation. Recall that s[i] is the syndrome s restricted
to its first i positions. The parity check condition used in the first run is

H[1]e ∈ {0, s[1]},

i.e., only weight-2p vectors fulfilling this condition are kept. In the next run, the
parity check will be considered up to the second coordinate, i.e., H[2]e ∈ {0, s[2]}
and so on.

The underlying observation is that if two vectors e1, e2 satisfy H[i]ej ∈
{0, s[i]} for j = 1, 2, then their sum will also have H[i](e1 + e2) ∈ {0, s[i]}.
Therefore, H[i+1](e1 + e2) ∈ {0, s[i+1]} is then fulfilled (when the newly added
parity check is applied) with probability roughly one half.

Let us now explain and discuss the algorithmic description that is to be found
in Algorithm 1 and Algorithm 2. This describe the inner parts of the full ISD
algorithm.

Algorithm 1 Sieve_Syndrome_Dec

Input: Parity check matrix H with k + ℓ columns and ℓ rows, a length ℓ
syndrome vector s, the fixed weight 2p of the error vectors and an algorithm
parameters M .
Output: A set of weight 2p vectors e such that He = s.

Initiate a set L0 with M vectors of weight 2p;1
for i = 1 to ℓ do2

Create the new set Li ← {e ∈ Li−1 : H[i]e ∈ {0, s[i]}};3
Mi ← Merge_Set(Li−1, i);4
Li ← Li ∪Mi;5

return Lℓ \ {e : He = 0};6

The algorithm is centered around keeping a set L of M vectors of weight 2p.
In each iteration i, we aim to generate a new set of weight-2p vectors with the
same cardinality, where now one additional parity check equation from He = s
is fulfilled. On the one hand, this new set keeps the existing vectors in the set
Li−1 (from the previous iteration), for which one more parity check is still valid
(that keeps roughly half of them). On the other hand, we create new weight-2p

9

vectors by considering sums of any two vectors in Li−1, which hold the collision
condition and fulfill the aforementioned parity check. This central part of the
approach, called the Merge_Set subroutine, is extracted as Algorithm 2 and shall
be discussed in detail later.

Algorithm 2 Merge_Set

Input: A parity check matrix H ∈ Fℓ×(k+ℓ)
2 , a syndrome s ∈ Fℓ

2, an integer i,
and a set L = {e ∈ Fk+ℓ

2 : H[i−1]e ∈ {0, s[i−1]}} of size M .
Output: A set M of vectors of weight 2p such that for e ∈ M we have
H[i]e ∈ {0, s[i]}.

Initiate a set M← ∅;1
for e, e′ ∈ L do2

If wH(e+ e′) = 2p then M←M∪ (e+ e′)3

returnM = {e ∈M : H[i]e ∈ {0, s[i]}};4

The Merge_Set subroutine is called ℓ times, corresponding to the number
of parity-check equations that need to be satisfied. Note that the parity check
condition in the previous iteration will also be valid in the next. Therefore, we
eventually have a ‘candidate’ list of weight-2p error vectors that match the ℓ
bits of syndrome s. Such candidates are subsequently tested for the approximate
matching condition as in (10). Putting everything together, we have a high-level
description of our Sieving-style ISD algorithm as in Algorithm 3.

Algorithm 3 Full_ISD

Input: Matrix H with k rows and n columns, received length n vector y,
minimum weight ω and algorithm parameter ℓ.
Output: A weight-ω vector e such that Hy = He.

Compute the syndrome s = Hy;1
repeat2

Pick a random column permutation P;3
Perform Gaussian elimination on PH resulting in4

Ĥ =

(
H′ 0
H′′ In−k−ℓ

)(
ē′ ē′′) = s̄ =

(
s̄′ s̄′′

)
;

Let H′ = Ĥ[ℓ] and s̄′ = s̄[ℓ];5
L ← Sieve_Syndrome_Dec(H′, s̄′, 2p);6
for e ∈ L do7

if ωH(H′′e+ s) = ωH(e′′) = ω − 2p then return P−1(e, e′′)8

until solution is found9

10

3.3 The Merge_Set algorithm

As introduced above, the Merge_Set algorithm operates on a set of weight-2p
vectors and should return any weight-2p sum of two such vectors. There is an
additional parity check requirement, but since this is valid for half of the vectors,
it does not pose a problem. We simply check for each sum vector of weight 2p.

In short, the problem is to find an efficient way of generating pairs of vectors
that sum to a new weight-2p vector. A naive implementation of Algorithm 2
would require checking all pairs of vectors, hence requiring quadratic (in list
size) complexity.

Let a (low weight) vector e be represented by the indices of its ones, i.e.,
(i1, i2, . . . , i2p) in rising order, written e ∼ (i1, i2, . . . , i2p). We want to find two
vectors that share p indices. In a first attempt to find an efficient solution, we
could generate

(
2p
p

)
‘labels’ for each vector. A label would be a selection of p out

of the 2p indices for the vector. With M vectors in total, we would have
(
2p
p

)
·M

such labels. They would then be stored in a sorted way so that collisions among
them are detected. Labels of the form (i1, i2, . . . , ip) can be mapped to integers
and, with a hash table, one can then get close to complexity

(
2p
p

)
· M and the

same memory.

Algorithm 4 Merge_Set_Implementation0

Input: A parity check matrix H ∈ Fℓ×(k+ℓ)
2 , a syndrome s ∈ Fℓ

2, an integer i,
and a set L = {e ∈ Fk+ℓ

2 : H[i−1]e ∈ {0, s[i−1]}} of size M . Parameters p′, p′′.
Output: A set M of vectors of weight 2p such that for e ∈ M we have
H[i]e ∈ {0, s[i]}.

Declare and initiate parameter (set of vectors) M← ∅;1
Find_Collision(L, p, p′,1);2
returnM = {e ∈M : H[i]e ∈ {0, s[i]}};3

However, we propose an even more efficient implementation, where we, in
particular, reduce the amount of memory. This approach is described in Al-
gorithm 4 together with Algorithm 5. For the latter, we use recursive calls to
ease the description of the procedure. We first describe the basic ideas of the
procedure, and later we revisit the exact steps of Algorithm 4 and Algorithm 5.

We split p (and vectors, correspondingly) into two parts as p = p′ + p′′.
Each vector given by (i1, i2, . . . , i2p) parses into (i1, i2, . . . , ip′) as a first part
and (ip′+1, . . . , i2p) as a second part. We consider the set L of length-(k+ ℓ) and
weight-2p vectors to be arranged in a number of ‘buckets’, where each bucket
initially contains the vectors, of which the first part is (i1, i2, . . . , ip′).

It means that the number of buckets is
(
k+ℓ−p′′

p′

)
. Note that each vector is only

in one bucket. Furthermore, p′ should be chosen in such a way that it is likely
that there will occur some collision inside each bucket. Now we consider the first

11

bucket, indexed by (1, 2, . . . , p′). The vectors in this bucket already collide in p′

positions, and we seek pairs of vectors that collide in an additional p′′ positions
out of the 2p− p′ remaining ones. This is done in the following way. We assume
we have access to an array A of size

(
k+ℓ−p′

p′′

)
, indexed by p′′ positions. For each

vector in the bucket, we create the
(
2p−p′

p′′

)
different possible combinations of the

remaining p′′ positions and write a one in the corresponding position in A. Also,
if there was already a one in that position, we have found a collision, and it is
recorded. Finally, after all collisions in a bucket are found, the vectors are placed
in their ‘next bucket’, which is the bucket indexed by the next value for the p′

positions.
We now elaborate this idea by describing the procedure in a recursive way as

in Algorithm 5. To give a brief explanation, it starts with a call to Find_Collision(),
looking for collisions in p positions. It has a bucket (list) of vectors as input.
These vectors are now placed in new buckets, depending on the vector’s first
index value. In bucket B1, all vectors have a one in position 1, so within B1,
we only need to look for collisions in p − 1 additional positions. Therefore, the
call to Find_Collision(B1, p− 1, p′− 1, i+1). Once this call has returned possible
collisions, the vectors in B1 may still collide in other ways, excluding position 1.
This is why we then move the vectors to the next bucket corresponding to the
second lowest index in the vector. Since the position 1 was removed from further
combinations, the vector now has only 2p − 1 indices. Let us assign an index x
where the vectors are considered to ‘start’.

If the remaining depth is not zero (checked in Line 1), we are simply going
to put the vectors in different buckets Bx+1, . . . ,Bk+ℓ depending on their next
index that is greater than x. For instance, if the next index in order is y, the
vector is put in bucket By (Line 2). Then we go through all these buckets in order
and find all collisions in bucket Bi by the call Find_Collision(Bi, p−1, p′−1, i+1)
(Line 4). Note that since all vectors in bucket Bi already collide in position i, we
decrease the depth and required collision while increasing the index by one.

Once all collisions in Bi have been found, these vectors may provide further
collisions in indices i. Thus, we must move the vectors in Bi to the next bucket
corresponding to the next index that is greater than i. This is done according
to Line 5.

When the remaining depth is 0, there are not enough vectors in the input
bucket to further motivate a split in smaller buckets. Instead, we now directly find
the collisions. For this purpose, we use an array A, indexed by p′′-tuples. For each
vector, we create all possible p′′-tuples of its remaining indices (ij , ij+1, . . . , i2p)
and we write up A by one in each such position (Line 11). We also keep the
address to the vector v in an array D where we assume that in each entry, we
can store a few elements (Line 14). While updating the array, one may hit an
index where A is already non-zero (meaning collisions). One directly writes them
to the global output parameter M.

Example 1. We can visualize the checking step and Merge_Set (Lines 3 and 4
in Algorithm 1) by Figure 1. For simplicity, let p = 3, p′ = 1, and p′′ = 2. In the

12

Algorithm 5 Find_Collision()

Input: A set L of vectors of length k + ℓ; collision weight p; depth sizes p′;
first index x.
Output: All vectors of the form x + y, where x,y ∈ L and they collide in p
positions, written to global parameter M.

if p′ > 0 then1
Put the vectors in L in new buckets Bx+1, . . . ,Bk+ℓ depending on2
its first index greater than x
for i = x+ 1 . . . k + ℓ do3

Find_Collision(Bi, p− 1, p′ − 1, i+ 1)4
Move the vectors in Bi to new buckets in Bi+1, . . . ,Bk+ℓ5
depending on its first index greater than i

else6
Initiate two arrays A← 0, D← 07
for each vector v ∼ (ij , ij+1, . . . , i2p), j > x, in Bi do8

create a set Y of all its p′′-tuples.9
for each p′′-tuple y = (y1, y2, . . . , yp′′) ∈ Y do10

A[y]← A[y] + 111
if A[y] ≥ 2 then12

store v +D[y] as collisions in M13

D[y]← D[y] ∪ {v}14

i-th iteration, we have a list Li of vectors. First, we put vectors in Li in buckets
corresponding to their first coordinate. Assume we have xj ,xk,xℓ ∈ Li where
xj ∼ (j1, . . . , j2p) (and so forth), and they have the same first coordinate, i.e.,
they are put in Bj1 . Then we only need to proceed with their shortened versions,
written as x∗

j ∼ (j2, . . . , j2p), etc., since we have excluded the first coordinate.
We then detect collisions in this ‘bucket’ by producing p′′ labels for each vector
and marking them on A correspondingly. For example, if both x∗

j ,x
∗
k include

(j2, j3), then we potentially have xj + xk as a ‘good’ combination to be added
in Li+1.

After processing Bi1 , we move (dashed red line) vectors in this bucket to their
next buckets. For instance, xi to Bi2 , xj to Bj2 and so forth. We now exclude
the first two coordinates of xj (hence, we use x∗∗

j ∼ (j3, . . . , j2p)). Note that in
the list Li+1, we also have half the vectors from Li that survive the syndrome
condition.

4 Analysis of the new ISD algorithm

This section provides estimations on the time complexity, denoted C, and the
space complexity. The space is essentially the number of stored vectors M (so it

13

xj

xk

xℓ

Li

Bj1 x∗
j ,x

∗
k,x

∗
ℓ

Bn−2

Bj2 x∗∗
j

...

...

B : list of p′-bucket

n
ex

t
b
u
ck

et

...

...

...

(2, 3)

(j2, j3) · ·

(j4, j6) · ·

(n − 1, n)

x
j
+
x
k

x
j
+
x
ℓ

A: Array indexed by p′′-labels

M/2

Li+1 V
ectors

from
L

i

Fig. 1: Checking vector in Li and Merge_Set.

is not given in bits). Some smaller additional memory is required for other parts
of the algorithm.

4.1 Memory requirements and parameters selection

We first determine the list size M required for the new algorithm to work. Let
us recall that the inner iteration of our ISD algorithm, i.e., the Sieve Syndrome
Decoding (Algorithm 1), consists of two steps: the Merge_Set subroutine, and
verifying the next parity check for vectors in the list that we are processing.
Assume that we initiate Algorithm 1 with a list L0 where |L0| = M and we aim
to keep the list size constant after every (or the majority of) iteration of the
parity check condition. At the i-th iteration, one has for each e ∈ Li that

ωH(e) = 2p, and H[i]e ∈ {0, s[i]}.

We observe that, on average, half of them shall satisfy the next parity-check
condition, i.e., H[i+1]e ∈ {0, s[i+1]}. Therefore, we choose M that yields another
M/2 ‘good’ combinations. We denote the probability of two random weight-2p
vectors of length k + ℓ colliding in precisely p positions (of the ones) by q, then

q =

(
2p
p

)(
k+ℓ−2p

p

)(
k+ℓ
2p

) .

14

Given a list of M vectors, we can form M(M−1)
2 ≈ M2

2 combinations. How-
ever, as will be explained later, a significant part of our vectors are actually not
dependent. Two phenomena arise: 1) We have more combinations than the uni-
formly random case, and 2)Combinations can be already existing vectors (called
duplicates). For this purpose, we introduce δ as the fraction of all combinations
that give rise to new vectors. Continuing, on average, new weight-2p vectors
survive the parity check with probability 1

2 . In conclusion, we require

δ ·M2 · q
2 · 2

≈ M

2

or
M ≈ 2

δ · q
. (14)

Let us define
N = {e ∈ Fk+ℓ

2 |ωH(e) = 2p and He = s},

which is the number of solutions for the exact matching equation (9) (not to be
confused with the original syndrome decoding problem). One can expect that
the cardinality of N is around (

k+ℓ
2p

)
2ℓ

.

The final list of Sieve_Syndrome_Dec contains around M/2 solutions of the
exact matching equation (the other half yields null syndrome). If ℓ is not too
large, there will be many possible solutions, and they all need to be stored in
the final list. Therefore, to guarantee that our ISD algorithm is able to retrieve
all (or most) solutions of the exact matching problem, we need that

M ≥
(
k+ℓ
2p

)
2ℓ−1

. (15)

In conclusion, the list size is first set by (14). Then, to find the optimal
parameters for our algorithm, we search for p ∈ [0, ω], and ℓ in a ‘reasonable’
range3, so that (15) holds, and we select the parameters that yield the lowest
complexity.

4.2 Heuristic arguments for duplicated vectors

In this subsection, we investigate the fact that due to dependency in the our list
of vectors, there will be some combinations that do not contribute to the new
list. In other words, we try to heuristically determine δ in Equation (14), as well
as the number of combinations we have to compute in each iteration.

Let us look at three consecutive iterations in Sieve_Syndrome_Dec as in
Figure 2. Vectors in Li can be split into two sets: Li,1 as the set of vectors from

3 Similar to Baldi et al. in [6]. We extend the range of ℓ until the optimal value of ℓ is
no longer on the edge of the range.

15

· · ·

keep combine combine

Li,1 Li,2

Li+1,1 Li+1,2

i

i+ 1

i+ 2

Hxi ∈ {0, s[i+1]}

xi xij + xik

Fig. 2: An example of duplicates

the i-th iteration that also fulfill the syndrome condition up to iteration i + 1,
and Li,2 as the rest. Next, the vectors in iteration i + 1 are made of three sets
Li+1,j , j = 1, 2, 3. Vectors from Li+1,1 = {x1,x2, . . .} which is a set of size M

2
(directly kept from Li,1); Li+1,2 as sums of two vectors both from Li,1 which is
a set of size M

4 ; finally, Li+1,3 as sums of two vectors both from Li,2 which is
also a set of size roughly M

4 . Note that there can be no sum of one vector from
Li,1 and one from Li,2, as then the syndrome condition is not fulfilled.

We now look at all the different combinations that give already existing vec-
tors. First, any combination of two vectors from Li+1,1 already exists in Li+1,2.
They will account for (M2)2 · q

2 = M2·q
8 combinations that do not contribute.

Then there are also duplicates when combining Li+1,1 and Li+1,2. When a vec-
tor xi1 + xi2 ∈ Li+1,2 is added to either xi1 ∈ Li+1,1 or xi2 ∈ Li+1,2, there will
be a duplicate. Since |Li+1,2| = M

4 , and for each xi1+xi2 , we can have two dupli-
cates which are xi1 and xi2 . Therefore, the number of generated duplicates is of
order M

2 . Then we may also have additional duplicates from other combinations.
Again, besides the ‘useless’ combinations from Li+1,1 and Li+1,2, we also have

other additions that can give new vectors. In particular, the type xi1 + xi2 + xj

where xi1 + xi2 ∈ Li+1,1 and xj ∈ Li+1,2,xj ̸= xi1 ,xi2 . Additions of this kind
yield approximately M

4 · (M2 − 2) · q ≈ M2·q
8 new vectors. To summarize, it is

necessary that the total number of combinations is around M , excluding the
duplicates. In other words, one has

M2·q·

 1

8︸︷︷︸
(1,1)

+
1

8︸︷︷︸
(1,3)

+
1

32︸︷︷︸
(2,2)

+
1

16︸︷︷︸
(2,3)

+
1

32︸︷︷︸
(3,3)

+

(
M

2
+

M2 · q
8

)
︸ ︷︷ ︸

(1,2)

−
(
M

2
+

M2 · q
8

)
︸ ︷︷ ︸

duplicates

≈ M,

16

where (j, k) represents the combinations between Li+1,j and Li+1,k. Simplifying,
one obtains

M ≈ 8

3 · q
=

4

3
· 2
q
. (16)

This corresponds to selecting δ = 3
4 in Equation (14). However, this is not

sufficiently small due to the other (rarer) duplicates. To be conservative, we
choose δ = 2

3 , and it is more than sufficient according to simulations.
The number of duplicates is then at least (excluding other rarer cases)

M

2
+

M2 · q
8

=
7 ·M
8

We are motivated by this heuristic estimate and expect (conservatively) to have
to create around 2 ·M combinations for each iteration. Note that this estimate
is not necessarily true once the number of possible weight-2p vectors decreases
in later iterations (in a sense, this estimate allows us to be on the safe side in
(many) early iterations by maintaining the list size).

Example 2. We supported our heuristic arguments of δ with simulations. We test
various sets of parameters, and simulations confirm the heuristic arguments. We
stop Merge_Set once we observe that the list size is maintained, and we look at
the number of total combinations we have done. For example, two (out of many
tested) parameter sets are (k, ℓ, p) = (500, 30, 2) and (k, ℓ, p) = (1000, 30, 2). We
record the total amount of collisions and duplicates for each iteration.

– For (k, ℓ, p) = (1000, 30, 2), we have M ≈ 215.35. For the majority of iter-
ations, we obtain M unique vectors (hence, M/2 survive after the check).
The ratio between duplicates and M varies around 7/8 and peaks at 0.93
(i.e. we create at most 0.93 ·M duplicates).

– For (k, ℓ, p) = (500, 30, 2), we have M ≈ 213.43. We observe similar behavior,
and the ratio between duplicates and M peaks at 1.

4.3 The probability of finding a desired vector

We next provide some heuristic arguments concerning the probability of find-
ing one or several desired vectors, i.e., if the code contains a weight-2p code-
word, what is the probability that it is included in the list given as output from
Sieve_Syndrome_Dec?

Recall the assumption that, throughout the Sieve_Syndrome_Dec, we have
M unique vectors moved from one iteration to the next. However, when i is
large enough, this will no longer be true. We now introduce M ′

i as the expected
number of weight-2p vectors that fulfill up to i parity checks conditions. Then

M ′
0 =

(
k + ℓ

2p

)
and

M ′
i =

(
k+ℓ
2p

)
2i

.

17

Note that we also have the same amount of weight 2p vectors that fulfill the null
syndrome 0[i].

Now the heuristic argument is that the set of generated vectors in iteration
i is a random selection among all M ′

i vectors. So for each created vector in the
iteration, we view it as a random pick. Let Mi = |Li| denote the list size in
iteration i, where Mi ≤ M . Then the Mi vectors come from the primary check
and Merge_Set (Lines 3 and 4 in Algorithm 1). We denote the cardinality of
these two sets by M

(1)
i and M

(2)
i , respectively. Then,

Mi = min
(
M,M

(1)
i +M

(2)
i

)
.

The primary check contributes, on average, M (1)
i = Mi−1/2 distinct vectors

from the previous iteration.
We now estimate M

(2)
i as the expected number of unique new vectors

from Merge_Set. Intuitively, when M ′
i ≫ M , it is unlikely that we will generate

the same vector twice or more, and we have a high chance to reach Mi = M new
vectors for the next iteration. However, when M ′

i gets closer to M as i grows,
we are forced to have more duplicates, and Merge_Set we will not generate M/2
new vectors.

As previously discussed, after excluding the obvious obsolete combinations,
Merge_Set creates 3M2

i−1·q
8 more combinations in iteration i. With the choice of

δ = 2/3 to ensure that we expect to generate more new vectors than needed. We
have an expected number of 9·M2

i−1

16·M new vectors.
A vector is unique if it is not among the M

(1)
i vectors in the first part and

not the same as any previously kept one. Hence, the first vector has a probability

1− M
(1)
i

2·M ′
i

of being unique, and the second vector has a probability larger than 1−
M

(1)
i +1

2·M ′
i

, and so on. In total, the expected number of unique vectors is estimated
at around

9 ·M2
i−1

16 ·M
− M

(1)
i + (M

(1)
i + 1) + . . .

2 ·M ′
i

≈
9 ·M2

i−1

16 ·M

1−
M

(1)
i +

9·M2
i−1

32·M
2 ·M ′

i

 .

We expect M
(2)
i to be the minimum of M/2 and the above expression.

Now assume e is a desired weight-2p vector that fulfills ℓ parity checks. Then
we know that if e has appeared in an iteration i, it continues to be present in all
subsequent iterations j ≥ i. Recall that we initialize Sieve_Syndrome_Dec with
a list of size M . The probability that e is not randomly selected is(

1− 1

M ′
0

)M

.

For i = 1, · · · , ℓ, as the primary check does not produce new vectors, then e
is not present after each iteration if it is not produced from Merge_Set. This

18

routine produces Mi
(2) more vectors; hence the probability is(

1− 1

2 ·M ′
2

)M
(2)
i

where the factor 2 can be explained by: the newly created vectors can be those
whose syndromes are either s[i] or 0[i]. Therefore, the probability that e is not
found after Sieve_Syndrome_Dec is(

1− 1

M ′
0

)M

·
ℓ∏

i=1

(
1− 1

2 ·M ′
i

)M
(2)
i

.

In other words, our algorithm finds e with probability

1−
(
1− 1

M ′
0

)M

·
ℓ∏

i=1

(
1− 1

2 ·M ′
i

)M
(2)
i

.

We stress that the quantities above are, for a large part, heuristic estimates
for the expected number of vectors in Sieve_Syndrome_Dec; hence, the math-
ematics is not rigorous. In fact, from simulation, we can see that we slightly
overestimate M

(2)
i and underestimate the probability calculation. However, we

can use the expressions to roughly estimate the desired probability for cases
where we cannot simulate. If we do that, we observe that the probability typ-
ically lies in the range 50 − 100%. In section 6, we give some examples from
implementations that show that the above heuristic approach is somewhat rea-
sonable.

4.4 Complexity Estimation

We study the complexity in the RAM model, i.e., the cost of reading and writing
to one memory address is O (1) operations, with the memory access cost set to
1. This method is the most traditional way of estimating the complexity, used
in many previous papers and also in the complexity estimator given in [20].

Outer iterations Let us recall that the probability that a permutation yields
the correct weight distribution, that is, 2p in the first k + ℓ bits and ω − 2p in
the remaining n− k − ℓ bits, is

Prsuccess =

(
k+ℓ
2p

)(
n−k−ℓ
w−2p

)(
k+r
w

) .

Therefore, we have to perform, on average, 1
Prsuccess

iterations. We subsequently
examine the cost for each iteration, denoted by Citer.

This probability can be adjusted in two ways. On the one hand, the probabil-
ity of actually finding a valid vector was argued for in Subsection 4.3. If ℓ is large

19

enough, it was indicated that this probability is mostly larger than 0.5. On the
other hand, the parity trick in the Gaussian elimination part, explained in [21],
can force the weight of all codewords to be even and then Prsuccess increases by a
factor around 2. We adopt the approximation that these two factors cancel each
other out.

Gaussian Elimination The following is often referred to as the FS-ISD frame-
work [22]. Firstly, we perform a partial Gaussian elimination on the parity check
matrix,

Ĥ =

(
H′ 0
H′′ In−k−ℓ

)
,

where H′ is a matrix of dimension ℓ× (k+ℓ), 0 is an all-zero matrix, and In−k−ℓ

is the identity matrix with dimension (r − ℓ)× (r − ℓ), where r = n− k.
Similarly to recent ISD analysis works [20,21], we employ the Method of Four

Russian for Gaussian Elimination, which was proposed in [13,12]. There also
exists a theoretical analysis [7], along with open source version of this method,
which was later adopted by Esser et. al. [20] for performing the partial Gaussian
Elimination that is necessary for our framework. For concrete complexities and
fair comparison in our estimate, we excerpt the python script for this step directly
from [20].4

Sieve_Syndrome_Dec This routine consists of performing Merge_Set ℓ times,
corresponding to ℓ parity checks. Let us recap the Merge_Set subroutine of our
ISD algorithm. Assume that a list of size M is sufficient, as stated in Section 4.1.
In Algorithm 4, we go through the list to check if vectors fulfill the parity check
conditions. For every sample of weight 2p, the checking corresponds to summing
2p bits in the parity check matrix and the syndrome bit. Therefore, the cost for
this step is about

Ccheck = 2p ·M.

The next step is Algorithm 5, which combines samples so that we create
another M/2 vectors for the next iteration. By parsing p = p′ + p′′, we put our
vectors in an ordered table of size

(
k+ℓ−p′′

p′

)
and distribute our vectors according

to their first p′ coordinates (in the representation form). This way, when we move
our vectors, we only need to read the value of the ‘next’ p′ coordinate and move
correspondingly; thus, the cost of moving is constant for each vector. Assume
we are at the first ‘bucket’, i.e., examining all the vectors with 1 in their first
p′ coordinates. We produce all p′′ labels for each vector, and we make use of an
array A to keep track of how many times the labels have been produced (recall
that we index A using the p′′ labels). We then run through the list of labels
that occurred more than once to find the vectors that need to be combined. This
routine then ends by moving its content to the next ‘bucket’. Note that, for every
sample, we do not have to produce labels that include previous coordinates (as
4 https://github.com/Crypto-TII/syndrome_decoding_estimator.

20

https://github.com/Crypto-TII/syndrome_decoding_estimator#category.name

those labels are already processed in past buckets). The cost of this step can be
broken down into the following parts:

– For each vector, we create precisely
(
2p
p

)
markings on the array A. This is

the total number of times Lines 11-14 executes for each vector. It consists of
two assignments and one comparison. On rare occasions, we additionally get
collisions to handle. We also include the cost of creating a p′′ label (Line 9-
10). Assume that the cost of reading and marking each label in A is clabel
operations. Then we need

Clabel =

(
2p

p

)
· clabel ·M,

operations for this part.
– The cost of moving vectors (Line 5). Since the remaining number of coordi-

nates of a vector has to be at least p′′, we only have to move a vector
(
2p−p′′

p′

)
times. Therefore, moving vectors cost

Cmove =

(
2p− p′′

p′

)
·M.

– The cost of combining vectors. In the worst case, we have 2 · M collisions,
but only M/2 new unique vectors are kept (as explained in Section 4.2). For
each collision, the cost of producing the new vector is the cost of creating
the new 2p positions. Colliding positions are known, so it reduces to copying
the other positions in an ordered form. We also need to compute the other
parts of the vector representation and check for duplicates. This last part
corresponds to bit-wise adding two values of bit size slightly larger than
logM and then checking in a hash table if it is a duplicate. It may cost
2 logM operations.5 Therefore, this step is estimated to cost

Ccombine = (2p+ 2 logM) · 2 ·M.

The Merge_Set routine is then repeated ℓ times. Thus, if we introduce
CSyndrome_Dec as the bit complexity of performing all these steps then

CSyndrome_Dec =

(
2p+

(
2p

p

)
· clabel +

(
2p− p′′

p′

)
+ 4(p+ logM)

)
· ℓ ·M

Testing candidates Finally, we have to go through the last list and check
for weight-(ω − 2p) solutions, i.e., via the identity ωH(H′′e− s) = ω − 2p. This
corresponds to adding 2p length-(n−k−ℓ) columns in H′′; moreover, the number

of solutions for the exact matching equation (9) is (k+ℓ
2p)
2ℓ

. Hence

Csolution_check = 2p · (n− k − ℓ) ·
(
k+ℓ
2p

)
2ℓ

.

5 Here, we assume that the vector representation includes a "key" of bit-length larger
than logM . We check if the key is already present, which, in such a case, means that
we created a duplicate. When we add two vectors, we also add their keys. The keys
can be constructed as a syndrome vector for a random code.

21

Theorem 1 The bit complexity C of the Sieving-Style ISD algorithm is

C =
1

Prsuccess
·
(
CGauss + CSyndrome_Dec + Csolution_check

)
, (17)

where CGauss is the cost of the Gaussian elimination step.

The complexity given here is only an "as good as possible" estimation of the
actual complexity. Some observations that decrease the complexity slightly are:
For the case of one or a small number of valid solutions, the list size will decrease,
and hence the complexity drops in later iterations; In the first few iterations, we
can generate weight-2p vectors that can be included in a faster way by exhaustive
search.

We can note that if p is not very small, then the dominating part of the
complexity expression is (

(
2p
p

)
· clabel · ℓ ·M)/Prsuccess.

5 Numerical results

In this section, we provide the concrete complexity of our described sieving-style
ISD algorithm when considering some proposed code-based schemes and also its
comparison with other ISD algorithms.

Our analysis focuses first on the Classic McEliece parameter sets, with an
extension to HQC and BIKE presented in Subsection 5.2. For reference in com-
parisons, we use the Syndrome decoding estimator by Esser et al. [20] as it covers
most recent developments in this field.

5.1 Numerical results for Classical McEliece

In this section, as well as in Section 5.2, we examine the security estimates with
two values of clabel (reading and marking a label into A), namely clabel = 2 and
clabel = 5. The first case, corresponding to a value of 2, represents the optimal
scenario and is intended to allow for comparisons with previous works, as the
constant in the big O (·) notation corresponding to using a hash table or similar,
is typically set to 1. The second case, corresponding to a value of 5, reflects more
of the actual computational cost, when calculated step-by-step.

Table B.1 provides the security parameter sets of the Classic McEliece cryp-
tosystem. Five parameter sets are published, including one for Category 1, one
for Category 3, and three sets for Category 5.

In Table B.3, we present the bit security estimates of our new sieving-style
ISD algorithm on these Classic McEliece parameter sets. The reference values
are from the estimator in [20].

Figure 3 shows that our algorithm is favorable when the memory is restricted
to 260 bits compared to other ISD algorithms (details in Table B.3). Although it
is not competitive when there is no memory constraint, our algorithm enriches
the cryptanalytic arsenal with its different behavior in terms of time-memory
trade-off.

22

(a) Category 1 (n = 3488) (b) Category 3 (n = 4608)

(c) Category 5

Fig. 3: Time-memory trade-offs of different ISD (including ours, clabel = 2) algo-
rithms.

5.2 Applications to BIKE and HQC

We apply the new algorithm to attacking BIKE and HQC, two round-4 KEM
candidates in the NIST PQC project. NIST expects to standardize at most one
of these two code-based KEM candidates at the end of the fourth round.

The parameter sets of BIKE and HQC are listed in Table B.2. These two
schemes both select low-weight vectors that are sparser than the Classic McEliece
scheme. The row weights of BIKE and HQC are of the order of O (

√
n). In the

concrete setting, HQC has an even sparser low-weight vector than BIKE. It
is a commonly held belief that there have been limited advancements in the
enhancement of modern ISD algorithms for sparse parameters as proposed in
BIKE and HQC, as evidenced in [20]. It has been shown that the recent ISD
methods of BJMM/MMT, Both-May and May-Ozerov have not made a
significant improvement to Stern regarding these sparse parameters.

23

The bit security estimates on the new sieving-like ISD algorithm are shown
in Table 1 and Table 2.6 The complexity numbers regarding the reference algo-
rithms, i.e., Prange, Stern, Both-May, May-Ozerov, and BJMM are from
the recent work [20]. As being described in [20], the quasi-cyclic structure gives
us k cyclic shifts of the searched secret key. The bit complexity numbers of a
key-recovery attack on BIKE can be reduced by log(k) bits since BIKE is ho-
mogeneous. For key-recovery attacks on HQC and message-recovery attacks on
BIKE, the bit complexity numbers of previous ISD algorithms can be reduced
by log(k)/2 due to the technique of ‘decoding one out of many’ (DOOM) [25,33].
The new sieving-ISD algorithm is highly favorable for addressing this DOOM
problem, potentially diminishing the bit complexity number by approximately
log(k)− 1.

The DOOM problems from the key-recovery attack on HQC and the message-
recovery attack on BIKE. We aim to search for a specific 2k-dimensional vector,
namely e = (e0, e1), which adheres to the condition He = s. The parity-check
matrix of the code employed in HQC and BIKE is given by H = (H0,H1), where
the matrices H0 and H1 are quasi-cyclic. In this context, si represents the i-th
left cyclic shift of the syndrome s. For each instance of si, an e that satisfies
He = si can be found. The crux of the problem lies in outputting a single vector
e amongst the k potential solutions. The problem is easier than the syndrome
decoding problem due to the k potential solutions.

Incorporating DOOM into the sieving-ISD algorithm. We make minor modifica-
tions to the new sieving-like Information Set Decoding (ISD) algorithm for its
application in the DOOM context. The DOOM problem appears to aggregate
k sub-problems, i.e., creating k types of vectors and progressing to the subse-
quent iteration. Yet, the new sieving-like ISD presents a unique characteristic
that enables the merging of vectors that have an all-zero syndrome 0 across all k
categories. By leveraging this feature, we subsequently demonstrate that simply
doubling the list size is sufficient to maintain a stable list size.

To be specific, in the i-th iteration, we include an index for each vector to
distinguish which parity-check equation is satisfied. In the i-th iteration, one has
for each e ∈ Li that

ωH(e) = 2p, and H[i]e ∈ {0, sj,[i]} for 0 ≤ j ≤ k − 1.

Here sj,[i] represents the j-th left cyclic shift of the syndrome s restricted to its
first i-th positions. We assign an index j to e to classify the vector e ∈ Li to
k+1 categories, where j = t for 0 ≤ t ≤ k− 1 represents H[i]e = st,[i] and j = k
represents H[i]e = 0.

Under the continued assumption that the list size is M per iteration—with
M/2 samples carried forward from the preceding iteration—it becomes crucial to
generate M/2 fresh samples via collision detection. In each iteration, we assume
that M/2 samples have the index k and M/(2k) samples have the index t for
6 The optimal parameters can be found in the anonymous implementation repository.

24

0 ≤ t ≤ k− 1. Let δ as defined in Section 4.1 be the fraction of all combinations
that give rise to new vectors.

We create new samples, specifically M/(4k) of them, carrying indices t where
0 ≤ t ≤ k − 1. This results in the equation

M

2
· M
2k

· δq
2

=
M

4k
,

yielding the minimum value for M as 2
δq , aligning with the estimate in Equa-

tion (14). For the category with index k, we produce new samples, M/4 in
number, which can be created by merging two vectors with identical indices.
Hence, selecting M = 4

δq , we obtain

δq · M2

4·2
2

=
M

4
,

where the left side is the new vectors created from merging two vectors with the
index k. In this analysis, combinations paired with an index differing from k are
ignored due to their less frequent occurrence.

When it comes to complexity, the Gaussian elimination step incurs a marginal
increase in cost, as we now work on a (3k) × k matrix rather than an (2k) × k
matrix. The list size amplification by a factor of 2 means that the cost of inner
steps roughly doubles. The cost of checking solutions increases to k·2p·(n−k−ℓ)·
(k+ℓ

2p)
2ℓ

, necessitating an increase in ℓ to balance the cost. Such a moderate increase
in ℓ does not significantly impact the overall complexity. The total complexity
experiences a significant reduction as the success probability can be amplified
by a factor of k.

The bit complexity gap roughly approximates log(k) − 1. For instance, let
clabel = 2. For the key-recovery attack on HQC parameters aiming at NIST-5,
our ISD cost is 2275.5 ignoring the DOOM gain and 2261.2 accounting for the
DOOM gain. The ratio amounts to 214.3, while the value of k stands at 215.8.
For the key-recovery attack on HQC parameters aimed at NIST-1, our ISD cost
is 2146.2 excluding the DOOM gain and 2133.6 considering the DOOM gain. The
ratio equals 212.6, with the value of k being 214.1.

Consequently, we accomplish a DOOM gain of O (k) for k solutions as op-
posed to the previous O

(√
k
)

from earlier ISD algorithms, as detailed in [33],
which is a noteworthy outcome.

Impact on the security estimates. The newly developed sieving-like ISD algo-
rithm has shown appealing results for the BIKE and HQC parameter sets in
Table 1 and Table 2. Compared with the state-of-the-art algorithms (see the
estimator in [20]), a gain of up to 12 bits in Category 1 and 15 bits in Category
5 has been observed. It is noteworthy that the complexity of the attacks, in all
cases, falls below the NIST requirements, namely 143 bits for Category 1, 207
bits for Category 3, and 272 bits for Category 5. The security degradation may
reach a maximum of 10 bits even in Category 1 parameters.

25

Table 1: Bit security estimates of the key-recovery attacks on BIKE. Here T
is the log of the bit complexity and M̂ is the log of the memory in bits. The
parenthesis notation (6, 48) specifies that 2p = 6 and ℓ = 48. We have p′ = 1.

Category 1 Category 3 Category 5

T M̂ T M̂ T M̂

Prange 169 28 234 30 304 32
Stern 147 40 211 43 279 45
Both-May 148 38 211 60 278 63
May-Ozerov 147 55 210 57 278 61
BJMM 147 54 211 59 279 63
Our ISD, clabel = 2 140.7 46 203.6 50 270.6 53

(6,48) (6,52) (6, 55)
Our ISD, clabel = 5 141.1 46 203.9 50 271.0 53

(6,48) (6,52) (6, 55)

We emphasize the novelty of this improvement and demonstrate the superior-
ity of our newly proposed ISD algorithm for sparse parameter sets. An intuitive
explanation for this advantage is that our new ISD algorithm is capable of sig-
nificantly enhancing the Stern algorithm for sparse parameter sets, while other
modern ISD algorithms are not.

The value of clabel has a minimal effect on the time complexity in contrast
to the Classic McEliece scenario. This is primarily due to the fact that the
parameter p is set to 3 when solving these highly sparse instances, and thus
the cost associated with clabel is not the primary contributing factor to the
complexity.

Example 3. We present a decomposition of the algorithm complexity into dis-
tinct components that pertain to the check, label, move, combine, and final solu-
tion check operations and employ as an example the bit estimates from Table 1
for key-recovery attack on the Category 1 BIKE parameter set.

When clabel is set to be 2, the attack parameters are p = 3, ℓ = 48 and
p′ = 1, and as presented in Table 1, the list size requirement is 231 and the time
complexity amounts to 2140.7. In this setting, the cost CGauss of the Gaussian
elimination step is 239.54, the cost CSyndrome_Dec of the Sieve_Syndrome_Dec
step is 244.27, and the cost Csolution_check of the final candidate test step is 240.24.
Moreover, the formulae Ccheck · ℓ, Clabel · ℓ, Cmove · ℓ, and Ccombine · ℓ entail costs
of 239.31, 242.04, 238.72, and 243.81, respectively.

When clabel is set to be 5, the attack time complexity rises to 2141.1 due to
the corresponding increase in the cost CSyndrome_Dec of the Sieve_Syndrome_Dec
step to 244.67. Notably, the cost of Clabel · ℓ increases from 242.04 to 243.37, but
this cost does not assume a dominant position, and hence the overall impact on
the reported complexity is insignificant.

In addition, we have computed the probability of finding the desired vector
by numerical means for this particular example, using the method presented in

26

Table 2: Bit security estimates of the DOOM attacks on BIKE and HQC. Here
T is the log of the bit complexity and M̂ is the log of the memory in bits. The
parenthesis notation (6, 61) specifies that 2p = 6 and ℓ = 61. We have p′ = 1.

Category 1 Category 3 Category 5

T M̂ T M̂ T M̂

BIKE (message)
Prange 167 28 235 30 301 32
Stern 146 40 211 43 277 45
Both-May 147 38 212 41 276 63
May-Ozerov 146 55 211 57 276 61
BJMM 147 38 211 59 277 63
Our ISD, clabel = 2 134.7 46 198.3 50 262.4 53

(6,61) (6,66) (6, 70)
Our ISD, clabel = 5 135.1 46 198.7 50 262.7 53

(6,60) (6,66) (6, 69)

HQC (key)
Prange 166 29 237 31 300 33
Stern 145 41 213 44 276 46
Both-May 146 39 214 42 276 39
May-Ozerov 145 39 214 42 276 44
BJMM 146 39 214 42 276 44
Our ISD, clabel = 2 133.6 48 200.1 52 261.2 55

(6,64) (6,69) (6, 72)
Our ISD, clabel = 5 133.9 48 200.4 52 261.5 55

(6,63) (6,68) (6, 72)

Section 4.3; our calculation results in an estimated value of 53.5%. The figure
confirms that for the reported attack parameters, the success probability are
usually larger than 50%. We have verified this observation on other parame-
ter sets as well, thereby affirming the soundness of our complexity analysis in
conjunction with the parity bit trick.

6 Simple implementations for Sieve_Syndrome_Dec with
smaller parameters

In this section, we discuss our simple implementation with smaller parameters
to support arguments and assumptions that we have made throughout the pa-
pers.7 It is valuable to show in simulation that Sive_Syndrome_Dec is capable
of producing solutions for the exact matching equation as theory predicts, and
the parameters such as list size can be sustained. In the implementation, we
generate a random target error vector e and observe whether this vector can be
7 Anonymous repository.

27

https://anonymous.4open.science/r/Anonymous-ISD-Sieving-A012#category.name

found by Sieve_Syndrome_Dec after ℓ iteration of Merge_Set. Moreover, we set
p′ = 1 in our simulations.

Example 4. One of many implemented parameter sets is k = 300, 2p = 6, i.e.,
p = 3. We set p′ = 1, p′′ = 2 for the Merge_Set algorithm. For the parameter

ℓ, we choose ℓ ≈ 28 (recall Equation (15), we also need M
2 ≥ (k+ℓ

2p)
2ℓ

) which
corresponds to the exponentially many solution.

The probability that the XOR of two weight-6 vectors results in another
weight-6 vector is

q =

(
2p
p

)(
k+ℓ−2p

p

)(
k+ℓ
2p

) ≈ 2−13.86.

M ≈ 2

δq
≈ δ−1 · 214.86.

As explained in Section 4.3, we increase M with a factor δ−1 ≈ 3/2 so that
we can keep the list size relatively constant for the majority of iterations (until
Merge_Set can not produce M/2 new vectors). Hence, we select M = 215.44.

We run the implementation 102 times and find e in 60 runs, i.e., a 60%
success rate.

Table 3: Comparison between the heuristic arguments and the actual implemen-
tation for k = 300, ℓ = 28, p = 3.

Iteration 1 . . . 14 15 16 . . . 24 25 26 27 28

log(Mi) (pred.) 15.46 . . . 15.46 15.46 15.46 . . . 15.46 15.44 14.80 13.96 13.09
log(Mi) (impl.) 15.46 . . . 15.46 15.46 15.46 . . . 15.44 15.22 14.71 13.91 12.96

Success Prob. (pred.) 0 . . . 22 · 10−5 45 · 10−5 9 · 10−4 . . . 0.204 0.363 0.441 0.477 0.507

We note that any sufficiently large enough ℓ can be chosen. As an example,
in the case where ℓ = 50 (i.e., on average, only one solution), our algorithm still
finds the target e with promising probability (> 50%). It can also be inferred
from Table 3 that one can choose ℓ in order to raise the success probability to a
desired range as claimed in Section 4.3.

Example 5. It is also of interest to see how our implementation fares with larger
instance of k (e.g., close to the medium-sized instance of McEliece). In particular,
we proceed with k = 1000 and 2p = 4. We choose a smaller values of p to have
a manageable memory requirement for a commercial computer. The following
numerical values are derived in the same manner as in Example 1.

For ℓ = 27, it gives M ≈ 215.42. A target vector e is found in 56 out of 102
tests, i.e., a 56% success probability.

28

Table 4: Comparison between the heuristic arguments and the actual implemen-
tation for k = 1000, ℓ = 27, p = 2.

Iteration 1 . . . 19 20 21 22 23 24 25 26 27

log(Mi) (pred.) 15.42 . . . 15.42 15.35 14.64 13.82 12.94 12.01 11.05 10.08 9.09
log(Mi) (impl.) 15.42 . . . 15.33 14.97 14.32 13.46 12.50 11.51 10.49 9.50 8.41

Success Prob. (pred.) 0 . . . 0.221 0.380 0.442 0.482 0.511 0.529 0.539 0.545 0.548

Discussions. We have observed that the actual implementation results are com-
parable to or even surpass the estimation results obtained using the method
described in Section 4.3. Moreover, in Table 5, we present the evolution of the
estimated list size and estimated success probability over the course of various
iterations, utilizing an attack instance on Classic McEliece as reported in Ta-
ble B.3. In both our theoretical calculations and empirical investigations, we have
identified a critical juncture, referred to as a ‘breaking point’, which corresponds
to the iteration at which the list size of Mi begins to decrease. While the initial
decline is gradual, it gains momentum as subsequent iterations progress.

One favorable aspect in this iterative process is that upon reaching the ‘break-
ing point’, the success probability becomes non-negligible and quickly rises above
50%. Subsequent iterations will result in a further reduction of the list size, lead-
ing to a slower increase in the success probability in finding the targeted vector.

We have observed that the attack instances reported in the previous section
all select the parameter ℓ several iterations after the occurrence of the ‘breaking
point’, thereby guaranteeing a success probability exceeding 50%. Additionally,
our experiments demonstrate that, for a choice of ℓ close to the ‘breaking point’,
the actual list size is consistent with the theoretical estimation and the observed
success probability meets (or even surpasses) the estimated value.

Table 5: The estimated success probability for attacking a Classic McEliece in-
stance with k = 3360, ℓ = 96, p = 8.

Iteration 1 . . . 89 90 91 92 93 94 95 96

log(Mi) (pred.) 53.03 . . . 53.03 52.93 52.60 51.99 51.18 50.28 49.34 48.37
Success Prob. (pred.) 0 . . . 0.138 0.242 0.358 0.441 0.485 0.509 0.523 0.529

7 Concluding remarks

We have presented a novel sieving-style information-set-decoding algorithm for
solving the syndrome decoding problem and made a heuristic analysis. The al-
gorithm makes advancements of state-of-the-art algorithms when complexity is
considered in the RAM model and is characterized by its time-memory trade-off

29

profile. For instance, in McEliece cryptographic scheme, an attack using the al-
gorithm achieves lower complexity when the memory is limited (for example, 260
bits). Interestingly, it was also shown that the low-weight regime (in construc-
tions such as BIKE and HQC) benefits our algorithm compared to the state-of-
the-art. This finding is of great interest as the advantage of enumeration-based
ISD variants is believed to diminish with sparse parameters. Newly improved
complexity results were given for the proposed parameter sets of BIKE and
HQC.

Besides the described algorithm, many other versions of the algorithms can
be considered. For instance, we can amend the problem of duplicates by only
combining vectors in the first few iterations and including the checking routine
later. The motivation is that the correct error vector will not likely be created in
early iterations, and combining vectors does not result in noticeable dependencies
between vectors. Moreover, in specific settings, such as BIKE and HQC, where
the optimal value of p is small and the memory requirement is not high, more
efficient implementation could be achieved.

Lastly, we note that accelerating the new ISD algorithm using sophisticated
instruction sets such as AVX-256 in practical software design seems non-trivial.
Further exploration of this intriguing topic and actual, full-scaled implementa-
tions of concrete parameters of code-based schemes are left for future endeavors.

References

1. NIST Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization, accessed: 2022-11-30

2. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing. pp. 601–610 (2001)

3. Aragon, N., Barreto, P.S., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Gueron, S., Guneysu, T., Melchor, C.A., et al.: Bike: bit flipping key
encapsulation (2017)

4. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press (2009), http://www.cambridge.org/catalogue/catalogue.asp?
isbn=9780521424264

5. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based crypto-
graphic hash functions. In: Dawson, E., Vaudenay, S. (eds.) Progress in Cryptology
- Mycrypt 2005, First International Conference on Cryptology in Malaysia, Kuala
Lumpur, Malaysia, September 28-30, 2005, Proceedings. Lecture Notes in Com-
puter Science, vol. 3715, pp. 64–83. Springer (2005), https://doi.org/10.1007/
11554868_6

6. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime
analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019),
https://doi.org/10.3390/a12100209

7. Bard, G.: Algorithms for solving linear and polynomial systems of equations over
finite fields with application to cryptanalysis. Ph.D. thesis, Faculty of the Graduate
School of the University of Maryland, College Park (2007)

30

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/11554868_6
https://doi.org/10.1007/11554868_6
https://doi.org/10.3390/a12100209

8. Becker, A., Gama, N., Joux, A.: Solving shortest and closest vector problems:
The decomposition approach. IACR Cryptol. ePrint Arch. p. 685 (2013), http:
//eprint.iacr.org/2013/685

9. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012. Lecture Notes
in Computer Science, vol. 7237, pp. 520–536. Springer, Heidelberg, Germany, Cam-
bridge, UK (Apr 15–19, 2012)

10. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems (corresp.). IEEE Trans. Information Theory 24(3),
384–386 (1978), https://doi.org/10.1109/TIT.1978.1055873

11. Bernstein, D.J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederhagen,
R., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., et al.: Classic mceliece:
conservative code-based cryptography. NIST submissions (2017)

12. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) Post-quantum cryptography, second
international workshop, PQCRYPTO 2008. pp. 31–46. Springer, Heidelberg, Ger-
many, Cincinnati, Ohio, United States (Oct 17–19 2008)

13. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: Ball-collision
decoding. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. Lecture
Notes in Computer Science, vol. 6841, pp. 743–760. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 14–18, 2011)

14. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based
hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 11: 4th International
Conference on Cryptology in Africa. Lecture Notes in Computer Science, vol. 6737,
pp. 134–152. Springer, Heidelberg, Germany, Dakar, Senegal (Jul 5–7, 2011)

15. Both, L., May, A.: Optimizing bjmm with nearest neighbors: full decoding in
22/21n and mceliece security. In: WCC workshop on coding and cryptography.
p. 214 (2017)

16. Both, L., May, A.: Decoding linear codes with high error rate and its impact for
LPN security. In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptography
- 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April
9-11, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10786, pp. 25–46.
Springer (2018), https://doi.org/10.1007/978-3-319-79063-3_2

17. Carrier, K., Debris-Alazard, T., Meyer-Hilfiger, C., Tillich, J.: Statistical decoding
2.0: Reducing decoding to LPN. In: Agrawal, S., Lin, D. (eds.) Advances in Cryp-
tology - ASIACRYPT 2022 - 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, December
5-9, 2022, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 13794,
pp. 477–507. Springer (2022), https://doi.org/10.1007/978-3-031-22972-5_17

18. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT 2001.
Lecture Notes in Computer Science, vol. 2248, pp. 157–174. Springer, Heidelberg,
Germany, Gold Coast, Australia (Dec 9–13, 2001)

19. Dumer, I.: On minimum distance decoding of linear codes. In: Proc. 5th Joint
Soviet-Swedish International Workshop Information Theory. pp. 50–52 (1991)

20. Esser, A., Bellini, E.: Syndrome decoding estimator. In: Hanaoka, G., Shikata,
J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022 - 25th IACR In-
ternational Conference on Practice and Theory of Public-Key Cryptography, Vir-
tual Event, March 8-11, 2022, Proceedings, Part I. Lecture Notes in Computer

31

http://eprint.iacr.org/2013/685
http://eprint.iacr.org/2013/685
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-031-22972-5_17

Science, vol. 13177, pp. 112–141. Springer (2022), https://doi.org/10.1007/
978-3-030-97121-2_5

21. Esser, A., May, A., Zweydinger, F.: Mceliece needs a break - solving mceliece-
1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski,
S. (eds.) Advances in Cryptology - EUROCRYPT 2022 - 41st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part III. Lec-
ture Notes in Computer Science, vol. 13277, pp. 433–457. Springer (2022), https:
//doi.org/10.1007/978-3-031-07082-2_16

22. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosys-
tems. In: Matsui, M. (ed.) Advances in Cryptology – ASIACRYPT 2009. Lecture
Notes in Computer Science, vol. 5912, pp. 88–105. Springer, Heidelberg, Germany,
Tokyo, Japan (Dec 6–10, 2009)

23. Fischer, J., Stern, J.: An efficient pseudo-random generator provably as secure
as syndrome decoding. In: Maurer, U.M. (ed.) Advances in Cryptology - EURO-
CRYPT ’96, International Conference on the Theory and Application of Cryp-
tographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding. Lecture
Notes in Computer Science, vol. 1070, pp. 245–255. Springer (1996), https:
//doi.org/10.1007/3-540-68339-9_22

24. Hamdaoui, Y., Sendrier, N.: A non asymptotic analysis of information set decoding.
Cryptology ePrint Archive (2013)

25. Johansson, T., Jönsson, F.: On the complexity of some cryptographic problems
based on the general decoding problem. IEEE Trans. Inf. Theory 48(10), 2669–
2678 (2002), https://doi.org/10.1109/TIT.2002.802608

26. Lee, P.J., Brickell, E.F.: An observation on the security of mceliece’s public-
key cryptosystem. In: Günther, C.G. (ed.) Advances in Cryptology - EURO-
CRYPT ’88, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Davos, Switzerland, May 25-27, 1988, Proceedings. Lecture Notes in Com-
puter Science, vol. 330, pp. 275–280. Springer (1988), https://doi.org/10.1007/
3-540-45961-8_25

27. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Inf. Theory 34(5), 1354–1359 (1988), https:
//doi.org/10.1109/18.21270

28. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n). In:
Lee, D.H., Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011. Lecture
Notes in Computer Science, vol. 7073, pp. 107–124. Springer, Heidelberg, Germany,
Seoul, South Korea (Dec 4–8, 2011)

29. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
203–228. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015)

30. Melchor, C.A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Persichetti, E., Zémor, G., Bourges, I.: Hamming quasi-cyclic (hqc).
NIST PQC Round 2(4), 13 (2018)

31. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology 2(2), 181–207 (2008)

32. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Infor-
mation Theory 8(5), 5–9 (1962), https://doi.org/10.1109/TIT.1962.1057777

33. Sendrier, N.: Decoding one out of many. In: Yang, B.Y. (ed.) Post-Quantum Cryp-
tography - 4th International Workshop, PQCrypto 2011. pp. 51–67. Springer, Hei-
delberg, Germany, Tapei, Taiwan (Nov 29 – Dec 2 2011)

32

https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/3-540-68339-9_22
https://doi.org/10.1007/3-540-68339-9_22
https://doi.org/10.1109/TIT.2002.802608
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1109/18.21270
https://doi.org/10.1109/18.21270
https://doi.org/10.1109/TIT.1962.1057777

34. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D.,
Wolfmann, J. (eds.) Coding Theory and Applications, 3rd International Collo-
quium, Toulon, France, November 2-4, 1988, Proceedings. Lecture Notes in Com-
puter Science, vol. 388, pp. 106–113. Springer (1988), https://doi.org/10.1007/
BFb0019850

35. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) Advances in Cryptology – CRYPTO’93. Lecture Notes in Computer
Science, vol. 773, pp. 13–21. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 22–26, 1994)

36. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1996), https://doi.org/10.1007/
s002000050053

Auxiliary Supporting Material
A The estimation code

We present a small python script to reproduce the complexity numbers reported
in this paper.

1 # import libraries
2 import mpmath as math
3 import numpy as np
4 from math import inf , floor , ceil
5 from functools import lru_cache , cache
6 import sys
7
8 DOOM = 1 # 0 for the normal attack; 1 for the doom attack.
9

10
11
12
13 # parameters
14 c_label = int(sys.argv [1])
15 M_UPPER_BOUND = float(sys.argv [2])
16 M_overhead = 1.5
17 print("C_label:",c_label)
18 print("M_upper_bound:",M_UPPER_BOUND)
19 print("DOOM:", DOOM)
20 print(" ")
21 print("==")
22
23 @lru_cache(maxsize = 12800000)
24 def comb(N,k):
25 val= math.factorial(N)/(math.factorial(k)*math.factorial(N-k))
26 return val
27
28 def log2(N):
29 return math.log(N,2)
30
31
32 @lru_cache(maxsize = 12800000)
33 def _gaussian_elimination_complexity(n, k, r):
34 """
35 Complexity estimate of Gaussian elimination routine
36

33

https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/s002000050053
https://doi.org/10.1007/s002000050053

37 INPUT:
38
39 - ‘‘n‘‘ -- Row additons are perfomed on ‘‘n‘‘ coordinates
40 - ‘‘k‘‘ -- Matrix consists of ‘‘n-k‘‘ rows
41 - ‘‘r‘‘ -- Blocksize of method of the four russian for inversion , default

is zero
42
43 [Bar07]_ Bard , G.V.: Algorithms for solving linear and polynomial systems

of equations over finite fields
44 with applications to cryptanalysis. Ph.D. thesis (2007)
45
46 [BLP08] Bernstein , D.J., Lange , T., Peters , C.: Attacking and defending

the mceliece cryptosystem.
47 In: International Workshop on Post -Quantum Cryptography. pp. 31 46 .

Springer (2008)
48
49 EXAMPLES ::
50
51 >>> from .estimator import _gaussian_elimination_complexity
52 >>> _gaussian_elimination_complexity(n=100,k=20,r=1) # doctest: +SKIP
53
54 """
55
56 if r != 0:
57 return (r ** 2 + 2 ** r + (n - k - r)) * int(((n + r - 1) / r))
58
59 return (n - k) ** 2
60
61 @lru_cache(maxsize = 12800000)
62 def _optimize_m4ri(n, k, mem=inf):
63 """
64 Find optimal blocksize for Gaussian elimination via M4RI
65
66 INPUT:
67
68 - ‘‘n‘‘ -- Row additons are perfomed on ‘‘n‘‘ coordinates
69 - ‘‘k‘‘ -- Matrix consists of ‘‘n-k‘‘ rows
70
71 """
72
73 (r, v) = (0, inf)
74 for i in range(n - k):
75 tmp = log2(_gaussian_elimination_complexity(n, k, i))
76 if v > tmp and r < mem:
77 r = i
78 v = tmp
79 return r
80
81
82 def gauss(n,k,w,p,l):
83 r = _optimize_m4ri(n,k, 30)
84 return _gaussian_elimination_complexity(n, k, r)*n
85
86 delta = 0
87 @lru_cache(maxsize = 12800000)
88 def pr_dual_left(k, w, p, l):
89 return (comb(floor((float)(k+l)/2)+delta ,p)*comb(k-floor((float)(k+l)/2)-

delta , w//2 - p)) / comb(k,w//2)
90
91
92 @lru_cache(maxsize = 12800000)
93 def pr_dual_right(k, w, p, l):
94 return (comb(ceil((float)(k+l)/2)-delta ,p)*comb(k-ceil((float)(k+l)/2)+

delta , w//2 - p)) / comb(k,w//2)
95
96 def pr_success(n,k,w,p,l,dual =0):
97 pr = comb(n,w)/(comb(k+l,p)*comb(n-k-l, w - p))
98 return log2(pr)

34

99
100
101
102 def C_final_check_doom(n,k,p,l,M, n_0 , c_label = c_label):
103 sol = n_0*comb(k+l,p)/(2**l) # number of solutions
104 return p*(n-k-l)*sol
105
106
107 @cache
108 def C_final_check(n,k,p,l,M, c_label = c_label):
109 sol = comb(k+l,p)/(2**l) # number of solutions
110 return p*(n-k-l)*sol
111
112 def C_check(n,k,p,l,M, c_label = c_label):
113 return p*l*M
114
115 def C_label(n,k,p,l,M, c_label = c_label):
116 return c_label*comb(p, int(p/2)) *M *l
117
118 def C_move(n,k,p,l,M, p_prime , c_label = c_label):
119 p_pprime = int(p/2) - p_prime
120 return comb(p-p_pprime , p_prime) *M *l
121
122 def C_combine(n,k,p,l,M, c_label = c_label):
123 return (2*p + 4* log2(M))*M *l
124
125 def C_inner_prime(n,k,p,l,M, p_prime , c_label = c_label):
126 p_pprime = int(p/2) - p_prime
127 inner = l*M*(p + c_label*comb(p, int(p/2)) + comb(p - p_pprime , p_prime) +

2*p + 4* log2(M))
128 # p is from the check; c_label is label; C_mov is comb(p-p_pprime , p_prime)

; 2*p + 4* log2(M) is from combine.
129 final_check = C_final_check(n,k,p,l,M, c_label)
130 return final_check + inner
131
132 def C_sd(n,k,p,l,M, p_prime , c_label = c_label):
133 p_pprime = int(p/2) - p_prime
134 inner = l*M*(p + c_label*comb(p, int(p/2)) + comb(p - p_pprime , p_prime) +

2*p + 4* log2(M))
135 # p is from the check; c_label is label; C_mov is comb(p-p_pprime , p_prime)

; 2*p + 4* log2(M) is from combine.
136 return inner
137
138
139 def ISD_prime(n,k,w,p,p_prime , l,M,dual):
140 # print(k)
141 return pr_success(n,k,w,p,l, dual) + log2(float(gauss(n,k,w,p,l) +

C_inner_prime(n,k,p,l,M,p_prime)))
142
143 def ISD_doom(n,k,w,p,p_prime , l,M,dual , n_0):
144 ’’’
145 @summary: ISD_doom is the complexity for the ISD for the doom attack. (

decoding out of the many syndromes)
146 @param n_0: n_0 is the number of solutions in the doom attack.
147 ’’’
148 def C_final_check_doom(n,k,p,l,M, n_0 , c_label = c_label):
149 sol = n_0*comb(k+l,p)/(2**l) # number of solutions
150 return p*(n-k-l)*sol
151 def C_inner_doom(n,k,p,l,M, p_prime , n_0 , c_label = c_label):
152 p_pprime = int(p/2) - p_prime
153 inner = l*M*(p + c_label*comb(p, int(p/2)) + comb(p - p_pprime , p_prime)

+ 2*p + 4* log2(M))
154 # p is from the check; c_label is label; C_mov is comb(p-p_pprime ,

p_prime); 2*p + 4* log2(M) is from combine.
155 final_check = C_final_check_doom(n,k,p,l,M,n_0 , c_label)
156 return final_check + inner
157 # print(k)

35

158 return pr_success(n,k,w,p,l, dual)- log2(n_0) + log2(float(gauss(n+n_0 ,k,w,
p,l) + C_inner_doom(n,k,p,l,M,p_prime ,n_0)))

159
160 class BIKE_security:
161 """
162 _summary_
163 Estimate the security of the BIKE proposal against the key -recovery attacks

.
164 """
165 def __init__(self , level):
166 if level == 1:
167 self.k = 12323
168 self.n = self.k * 2
169 self.w = 142
170 self.t = 134
171 self.lev = 1
172 if level == 3:
173 self.k = 24659
174 self.n = self.k * 2
175 self.w = 206
176 self.t = 199
177 self.lev = 3
178 if level == 5:
179 self.k = 40973
180 self.n = self.k * 2
181 self.w = 274
182 self.t = 264
183 self.lev = 5
184
185 def BIKE_attack_key(self):
186 ’’’
187 Attack complexity of BIKE
188 ’’’
189 params = [0,0]
190 init = 1000.0
191 mem = 0
192 params.append(init)
193 params.append(mem)
194 params.append (0)
195 for p in range (2, 10+1 ,2):
196 for p_prime in range (0, int(p/2)):
197 p_pprime = int(p/2) - p_prime
198 for l in range (0 ,101):
199 q = comb(p,int(p/2))*comb(self.k+l-p,int(p/2))/comb(self.k+l,p)
200 M = 2/q
201 M *= M_overhead
202 sol = (comb(self.k+l,p))/(np.longdouble)(2**l)
203 temp = ISD_prime(self.n,self.k,self.w,p,p_prime , l,M, dual =0) -

log2(self.k) # cyclic shift of bike key.
204 if sol >= 1 and temp <= init and M/2>= sol and comb(self.k+l,

p_pprime) <= M and log2(M) <120:
205 init = temp
206 params [0] = p
207 params [1]= l
208 params [2] = temp
209 params [3] = log2(M)
210 params [4] = p_prime
211
212 print(params)
213 print("Gauss cost:", log2(gauss(self.n,self.k,self.w,params [0], params [1])

))
214 print("Merge set cost:", log2(C_sd(self.n,self.k,params [0], params [1] ,2**

params [3], params [4])))
215 print("check cost:", log2(C_check(self.n,self.k,params [0], params [1] ,2**

params [3])))
216 print("C_label cost:", log2(C_label(self.n,self.k,params [0], params [1] ,2**

params [3])))

36

217 print("C_move cost:", log2(C_move(self.n,self.k,params [0], params [1] ,2**
params [3], params [4])))

218 print("C_combine cost:", log2(C_combine(self.n,self.k,params [0], params
[1] ,2** params [3], params [4])))

219 print("final check cost:", log2(C_final_check(self.n,self.k,params [0],
params [1] ,2** params [3], params [4])))

220
221 def BIKE_attack_message(self):
222 ’’’
223 Attack complexity of BIKE
224 ’’’
225 params = [0,0]
226 init = 1000.0
227 mem = 0
228 params.append(init)
229 params.append(mem)
230 params.append (0)
231 for p in range (2, 10+1 ,2):
232 for p_prime in range (0, int(p/2)):
233 p_pprime = int(p/2) - p_prime
234 for l in range (0 ,101):
235 q = comb(p,int(p/2))*comb(self.k+l-p,int(p/2))/comb(self.k+l,p)
236 M = 2/q
237 M *= M_overhead
238 if DOOM == 1:
239 M *= 2 # from the doom attack
240 sol = self.k * (comb(self.k+l,p))/(np.longdouble)(2**l)
241 temp = ISD_doom(self.n,self.k,self.t,p,p_prime , l,M,0, self.k) #

out of many.
242 if DOOM == 0:
243 sol = (comb(self.k+l,p))/(np.longdouble)(2**l)
244 temp = ISD_prime(self.n,self.k,self.t,p,p_prime , l,M,0)
245 if sol >= 1 and temp <= init and M/2>= sol and comb(self.k+l,

p_pprime) <= M and log2(M) <M_UPPER_BOUND:
246 init = temp
247 params [0] = p
248 params [1]= l
249 params [2] = temp
250 params [3] = log2(M)
251 params [4] = p_prime
252
253 print(params)
254 print("Gauss cost:", log2(gauss(self.n,self.k,self.t,params [0], params [1])

))
255 print("Merge set cost:", log2(C_sd(self.n,self.k,params [0], params [1] ,2**

params [3], params [4])))
256 print("check cost:", log2(C_check(self.n,self.k,params [0], params [1] ,2**

params [3])))
257 print("C_label cost:", log2(C_label(self.n,self.k,params [0], params [1] ,2**

params [3])))
258 print("C_move cost:", log2(C_move(self.n,self.k,params [0], params [1] ,2**

params [3], params [4])))
259 print("C_combine cost:", log2(C_combine(self.n,self.k,params [0], params

[1] ,2** params [3])))
260 print("final check cost:", log2(C_final_check_doom(self.n,self.k,params

[0], params [1] ,2** params [3], self.k)))
261 print("probability:", pr_success(self.n,self.k,self.t,params [0], params

[1], dual =0)-log2(self.k))
262
263
264 class HQC_security:
265 """
266 _summary_
267 Estimate the security of the HQC proposal against the key -recovery attacks.
268 """
269 def __init__(self , level):
270 if level == 1:
271 self.k = 17669

37

272 self.n = self.k * 2
273 self.w = 132
274 self.lev = 1
275 if level == 3:
276 self.k = 35851
277 self.n = self.k * 2
278 self.w = 200
279 self.lev = 3
280 if level == 5:
281 self.k = 57637
282 self.n = self.k * 2
283 self.w = 262
284 self.lev = 5
285
286 def HQC_attack_key(self):
287 ’’’
288 Attack complexity of HQC key.
289 ’’’
290 params = [0,0]
291 init = 1000.0
292 mem = 0
293 params.append(init)
294 params.append(mem)
295 params.append (0)
296 for p in range (2, 12+1 ,2):
297 for p_prime in range (0, int(p/2)):
298 p_pprime = int(p/2) - p_prime
299 for l in range (0 ,101):
300 q = comb(p,int(p/2))*comb(self.k+l-p,int(p/2))/comb(self.k+l,p)
301 M = 2/q
302 M *= M_overhead
303 if DOOM == 1:
304 M *= 2 # from the doom attack
305 sol = self.k * (comb(self.k+l,p))/(np.longdouble)(2**l)
306 temp = ISD_doom(self.n,self.k,self.w,p,p_prime , l,M,0, self.k) #

out of many.
307 if DOOM == 0:
308 sol = (comb(self.k+l,p))/(np.longdouble)(2**l)
309 temp = ISD_prime(self.n,self.k,self.w,p,p_prime , l,M,0)
310 if sol >= 1 and temp <= init and M/2>= sol and comb(self.k+l,

p_pprime) <= M and log2(M) <M_UPPER_BOUND:
311 init = temp
312 params [0] = p
313 params [1]= l
314 params [2] = temp
315 params [3] = log2(M)
316 params [4] = p_prime
317
318 print(params)
319 print("Gauss cost:", log2(gauss(self.n,self.k,self.w,params [0], params [1])

))
320 print("Merge set cost:", log2(C_sd(self.n,self.k,params [0], params [1] ,2**

params [3], params [4])))
321 print("check cost:", log2(C_check(self.n,self.k,params [0], params [1] ,2**

params [3])))
322 print("C_label cost:", log2(C_label(self.n,self.k,params [0], params [1] ,2**

params [3])))
323 print("C_move cost:", log2(C_move(self.n,self.k,params [0], params [1] ,2**

params [3], params [4])))
324 print("C_combine cost:", log2(C_combine(self.n,self.k,params [0], params

[1] ,2** params [3])))
325 print("final check cost:", log2(C_final_check_doom(self.n,self.k,params

[0], params [1] ,2** params [3], self.k)))
326 print("probability:", pr_success(self.n,self.k,self.w,params [0], params

[1], dual =0)-log2(self.k))
327
328
329 class CM_security:

38

330 """
331 _summary_
332 Estimate the security of the CM proposal against the key -recovery attacks.
333 """
334 def __init__(self , level):
335 if level == 1:
336 self.k = 2720
337 self.n = 3488
338 self.w = 64
339 self.lev = 1
340 if level == 3:
341 self.k = 3360
342 self.n = 4608
343 self.w = 96
344 self.lev = 3
345 if level == 5:
346 self.k = 5024
347 self.n = 6688
348 self.w = 128
349 self.lev = 5
350 if level == 7:
351 self.k = 5413
352 self.n = 6960
353 self.w = 119
354 self.lev = 5
355 if level == 9:
356 self.k = 6528
357 self.n = 8192
358 self.w = 128
359 self.lev = 5
360
361 def CM_attack_key(self):
362 ’’’
363 Attack complexity of CM key.
364 ’’’
365 params = [0,0]
366 init = 1000.0
367 mem = 0
368 params.append(init)
369 params.append(mem)
370 params.append (0)
371 for p in range (2, 28+1 ,2):
372 for p_prime in range (0, int(p/2)):
373 p_pprime = int(p/2) - p_prime
374 for l in range (0 ,151):
375 q = comb(p,int(p/2))*comb(self.k+l-p,int(p/2))/comb(self.k+l,p)
376 M = 2/q
377 M *= M_overhead
378 sol = (comb(self.k+l,p))/(np.longdouble)(2**l)
379 temp = ISD_prime(self.n,self.k,self.w,p,p_prime , l,M, dual =0)
380 if sol >= 1 and temp <= init and M/2**(5) >= sol and comb(self.k+l,

p_pprime) <= M and log2(M) <M_UPPER_BOUND:
381 # The constraint of M/2**(5) >= sol is added to ensure the

probability is higher than (50%)
382 init = temp
383 params [0] = p
384 params [1]= l
385 params [2] = temp
386 params [3] = log2(M)
387 params [4] = p_prime
388
389 print(params)
390 print("Gauss cost:", log2(gauss(self.n,self.k,self.w,params [0], params [1])

))
391 print("Merge set cost:", log2(C_sd(self.n,self.k,params [0], params [1] ,2**

params [3], params [4])))
392 print("check cost:", log2(C_check(self.n,self.k,params [0], params [1] ,2**

params [3])))

39

393 print("C_label cost:", log2(C_label(self.n,self.k,params [0], params [1] ,2**
params [3])))

394 print("C_move cost:", log2(C_move(self.n,self.k,params [0], params [1] ,2**
params [3], params [4])))

395 print("C_combine cost:", log2(C_combine(self.n,self.k,params [0], params
[1] ,2** params [3], params [4])))

396 print("final check cost:", log2(C_final_check(self.n,self.k,params [0],
params [1] ,2** params [3], params [4])))

397
398 def outputAttackBikeHqc ():
399 for level in range (1,6,2):
400 print("level:", level)
401 print(" ")
402 print("BIKE key recovery:")
403 bikePara = BIKE_security(level)
404 print("n,k,w is:", bikePara.n, bikePara.k, bikePara.w)
405 bikePara.BIKE_attack_key ()
406 print(" ")
407 print("BIKE message recovery attacks:")
408 print("n,k,w is:", bikePara.n, bikePara.k, bikePara.t)
409 bikePara.BIKE_attack_message ()
410 print(" ")
411 print("--")
412 print(" ")
413 print("HQC key recovery attacks:")
414 hqcPara = HQC_security(level)
415 print("n,k,w is:", hqcPara.n, hqcPara.k, hqcPara.w)
416 hqcPara.HQC_attack_key ()
417 print(" ")
418 print("===")
419
420 def outputAttackCM ():
421 for level in range (1,10,2):
422 print("level:", level)
423 print("------------------")
424 print(" ")
425 print("CM key recovery attacks:")
426 CM_Para = CM_security(level)
427 print("n,k,w is:",CM_Para.n, CM_Para.k, CM_Para.w)
428 CM_Para.CM_attack_key ()
429 print(" ")
430 print("===")
431
432
433
434
435 if __name__ ==’__main__ ’:
436 math.mp.dps = 20
437 outputAttackBikeHqc ()
438 outputAttackCM ()
439
440
441
442
443
444
445

B Supporting Tables.

40

Table B.1: Security parameters of the Classical McEliece scheme.
Category n k ω

1 3488 2720 64
3 4608 3360 96
5 6688 5024 128
5 6960 5413 119
5 8192 6528 128

Table B.2: BIKE and HQC security parameters.
Category n k w

1 24646 12323 134
BIKE (message) 3 49318 24659 199

5 81946 40973 264

1 24646 12323 142
BIKE (key) 3 49318 24659 206

5 81946 40973 274

1 35338 17669 132
HQC 3 71702 35851 200

5 115274 57637 262

Table B.3: Bit security estimates of the Classic McEliece scheme. Here T is the
log of the bit complexity, and M̂ is the log of memory in bits. The parenthesis
notation (14, 83, 3) specifies that 2p = 14 and ℓ = 83,p′ = 3.

Category 1 Category 3 Category 5 Category 5 Category 5
(n = 3488) (n = 4608) (n = 6688) (n = 6960) (n = 8192)

T M̂ T M̂ T M̂ T M̂ T M̂
Prange 173 22 217 23 296 24 297 24 334 24
Stern 151 50 193 60 268 80 268 90 303 109
Both-May 143 88 182 101 250 136 249 137 281 141
May-Ozerov 141 89 180 113 246 165 246 160 276 194
BJMM 142 97 183 121 248 160 248 163 278 189
M̂ ≤ 60 145 60 187 60 262 58 263 60 298 59
Our ISD, M̂ ≤ 60
clabel = 2 143.4 58 184.8 55 259.2 59 259.8 60 296.6 55
clabel = 5 144.6 58 186.0 55 260.4 59 261.0 60 297.6 55

(14,83,3) (12,75,2) (12,78,2) (12,79,2) (10,68,2)
Our ISD, any M̂
clabel = 2 143.4 58 184.4 65 256.7 91 256.8 92 290.6 95
clabel = 5 144.6 58 185.7 65 258.0 91 258.1 92 291.9 95

(14,83,3) (16,96,3) (24,144,5) (24,146,5) (24,149,5)

41

	A New Sieving-Style Information-Set Decoding Algorithm
	

