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Abstract

LLL-style lattice reduction algorithms iteratively employ size reduction and
reordering on ordered basis vectors to find progressively shorter, more orthogonal
vectors. These algorithms work with a designated measure of basis quality and
perform reordering by inserting a vector in an earlier position depending on the
basis quality before and after reordering. DeepLLL was introduced alongside the
BKZ reduction algorithm, however the latter has emerged as the state-of-the-art
and has therefore received greater attention. We first show that LLL-style algo-
rithms iteratively improve a basis quality measure; specifically that DeepLLL
improves a sublattice measure based on the generalised Lovász condition. We
then introduce a new generic framework for lattice reduction algorithms, working
with some quality measure X. We instantiate our framework with two quality
measures - basis potential (Pot) and squared sum (SS) - both of which have
corresponding DeepLLL algorithms. We prove polynomial runtimes for our X-
GGLLL algorithms and guarantee their output quality. We run two types of
experiments (implementations provided publicly) to compare performances of
LLL, X-DeepLLL, X-GGLLL; with multi-precision arithmetic using overesti-
mated floating point precision for standalone comparison with no preprocessing,
and with standard datatypes using LLL-preprocessed inputs. In preprocessed
comparison, we also compare with BKZ. In standalone comparison, our GGLLL
algorithms produce better quality bases whilst being much faster than the cor-
responding DeepLLL versions. The runtime of SS-GGLLL is only second to
LLL in our standalone comparison. SS-GGLLL is significantly faster than the
FPLLL implementation of BKZ-12 at all dimensions and outputs better quality
bases dimensions 100 onward.

Keywords: Lattice reduction, LLL, DeepLLL, greedy global framework, potential,
squared sum.
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1 Introduction

A Euclidean lattice (or just a lattice) L is a discrete additive subgroup of Rm. It can be
represented by a basis matrix B = (b1, . . . ,bn) ∈ Rm×n made of linearly independent
column vectors bi ∈ Rm such that L = {Bx : x ∈ Zn}. There are infinitely many
bases for any lattice with n ≥ 2 and there are ways to transform a basis into another
for the same lattice. The quality of a given lattice basis is determined by the length
of the vectors and how close to orthogonal they are to each other. Bases with shorter
and more orthogonal vectors are considered to be of better quality. Given a lattice
specified by a basis, finding a good quality basis and short vectors therein is of major
importance. The process of transforming a given basis into one of better quality is
generally called lattice reduction.

In 1982, Lenstra, Lenstra, and Lovász [1] presented the first lattice reduction algo-
rithm that came to be called LLL after its inventors. LLL uses the Gram-Schmidt
orthogonalisation (GSO) B∗ = (b∗

1, . . . ,b
∗
n) of the basis B. The GSO process assumes

an inherent ordering of the vectors and LLL works with the same order. Starting from
index k = 2 of the ordered basis, LLL traverses up and down the order in a loop by
incrementing or decrementing the index k by 1 in each iteration. There are two kinds
of operations – size reductions and swaps – that are executed within the loop until the
entire basis is of sufficiently good quality. The quality of the basis is determined by the
optimisation criterion called the Lovász condition (LC) on all pairs of consecutive vec-

tors bk−1,bk ∈ B. This condition is given by
∥∥b∗

k + µk,k−1b
∗
k−1

∥∥2 ≥ δ
∥∥b∗

k−1

∥∥2, where
the µi,j ’s are the GSO coefficients and 1/4 < δ ≤ 1 is a parameter which determines
the quality of each reduction. The quality improves as δ increases. After LLL termi-
nates, vector bi in the output basis is an exponential approximation of the ith shortest
linearly independent vector in the lattice. In [1], LLL was shown to run in polynomial
time using an argument surrounding a quantity known as the potential of the basis
– a measure of basis quality that we will describe soon. LLL has many applications
including in cryptology [2], algorithmic number theory [3], factoring polynomials [4],
Diophantine approximation [5] etc.

Schnorr and Euchner introduced a variant of the LLL algorithm called LLL with
deep insertions, or DeepLLL [6]. The key algorithmic novelty was in the reordering
of the vectors. They introduced the notion of deep insertions whereby instead of just
swapping vector bk with the immediate previous vector bk−1, it could be inserted
before any one of the previous vectors b1, . . . ,bk−1. This essentially meant that the
index k could be decremented to any value between {2, . . . , k−1}. They also extended
the LC-constraint from consecutive pairs (bk−1,bk) to all pairs (bi,bk) for i < k in
the ordering1. This introduced more constraints on the output basis and as a result,
the quality of the output basis is provably better [7] than in LLL. In other words,
the ith vector of the output basis is a better approximation of the ith shortest lin-
early independent vector of the lattice, as compared to the LLL output [7, Theorem
1]. However, DeepLLL requires additional size reduction steps and bookkeeping that
makes it significantly more time-consuming than LLL.

1A pair (bi,bk) in a basis can simply be identified by the pair of indices (i, k).
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In the same paper [6], the authors introduced an algorithm which performs the
block Korkin-Zolotarev (BKZ) reduction. Since this paper, BKZ has become state-of-
the-art in lattice reduction and has thus been more researched than DeepLLL-style
algorithms. BKZ takes as input a parameter β denoting the block size. It iteratively
reduces consecutive projected blocks of size β by calling a shortest vector problem
(SVP) oracle on these blocks and inserting the resultant vector into the basis. As
β increases, the algorithm outputs bases of better quality, however the runtime also
increases. Improvements were made to BKZ in [8] by incorporating a pruning technique
on the enumeration SVP subroutine which decreases the runtime without any decrease
in basis quality on output. Furthermore, the authors introduced preprocessing of the
local bases and reducing the enumeration radius; both to reduce the runtime of the
enumeration subroutine.

Since Schnorr and Euchner introduced DeepLLL, there have been two new deep-
insertion based algorithms - Pot-LLL [9] and SS-LLL [7]. These algorithms replace
the extended Lovász condition of DeepLLL with a check on the improvement of a

basis quality. They use the quality measures potential Pot(B) =
∏n

i=1 ∥b∗
i ∥2(n−i+1)

and squared sum SS(B) =
∑n

i=1 ∥b∗
i ∥2 respectively, computed directly from the

Gram-Schmidt orthogonalised basis B∗. To stress that they are essentially variants of
DeepLLL, we call them Pot-DeepLLL and SS-DeepLLL respectively. They are both
polynomial-time algorithms that provide efficiency versus basis quality trade-offs in
between LLL and DeepLLL. They typically find shorter vectors than LLL but not as
short as DeepLLL. They are slower than LLL, but faster than DeepLLL.

In every iteration of DeepLLL and its variants Pot-DeepLLL and SS-DeepLLL,
the algorithms only work with the sublattice Lk generated by a subset (b1, . . . ,bk)
of B. We note that each of these algorithms attempts to iteratively improve some
basis quality measure. The use of Pot(·) and SS(·) as measures of quality has been
quite clear in the proofs of basis quality and runtime complexity of these algorithms.
However, DeepLLL has not been interpreted as or represented in a form where it is
improving an explicit quality measure in every iteration, to the best of our knowledge.
We do this exercise of interpreting the (generalised) Lovász condition as a reordering
constraint used to improve the length ∥b∗

i ∥ of the ith GSO vector of the basis, which is
a localised measure of the quality of the basis. In contrast, Pot(·) and SS(·) are global
measures on the entire basis. We thus have a generalised understanding of all three
algorithms based on deep insertions looking to improve quality measures of a basis.

The above generalisation leads us to our new generic framework of algorithms.
We ask the following question – if the general principle of LLL-style algorithms is to
iteratively improve the basis quality, is there a greedy approach to improve it as much
as possible at any point?

Previous LLL-style algorithms [1, 6, 9, 7] maintain an index k of the vector to be
inserted at a previous position i ∈ {1, . . . , k− 1} in the basis ordering, to improve the
basis quality. In LLL [1], i = k− 1 is a fixed previous position for a certain k, while in
algorithms using deep insertions [6, 9, 7], the choices for the deep insertion position
i are restricted within the sublattice Lk in an iteration. A (deep) insertion of bk at
a position i can be substituted by a (deep) insertion of bk′ at position i′ for k′ < k
or k′ > k, and i′ ∈ {1, . . . , k′ − 1}, such that the basis quality improvement is better.
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In fact, there is a pair (i′, k′) for which the improvement in quality is the maximum
possible at that point. This observation is the basis of our greedy choice.

In this work, we move away from the technique of maintaining an index k and
working with a sublattice Lk. We propose a new generic framework for lattice reduction
through an algorithm X-GGLLL. Our algorithm works with a general quality measure
X(B) of the basis. To iteratively improve the quality of the basis, we make a dynamic
greedy choice of a pair of indices (i, k), 1 ≤ i < k ≤ n globally over the entire basis
such that the deep insertion of bk at position i minimises the basis quality measure
X(·). Such deep insertions are carried out as long as the measure of the reordered
basis decreases by at least a fraction (1− δ) of its previous value. When the algorithm
terminates, the output basis is guaranteed to have a measure that can not be reduced
appreciably (by a fraction (1− δ)) any further through deep insertions. For a measure
X, we call such a basis δ-X-DeepLLL reduced. By choosing the maximum change in
X(·) possible at each iteration, our greedy algorithm reaches such a state in a small (if
not the smallest) number of iterations. When the measure has a positive lower bound,
the algorithm is guaranteed to terminate.

The choice of the measure X(·) is a key determining factor in the framework of
algorithms we propose. We instantiate our generalised algorithm X-GGLLL with the
measures Pot(·) and SS(·) in place of X(·) to get the Pot-GGLLL and SS-GGLLL
algorithms respectively. We prove that X-GGLLL outputs a δ-X-DeepLLL reduced
basis and provide theoretical bounds on the runtime of X-GGLLL. We prove the
concrete polynomial runtime complexities for both Pot-GGLLL and SS-GGLLL and
show that they are the same as their X-DeepLLL counterparts.

We conduct extensive experiments using floating-point implementations. We assess
the performance of our algorithms in two ways – (1) by running them on bases that
have been preprocessed with 0.99-LLL (i.e. LLL with δ = 0.99), and (2) as standalone
algorithms running on bases that have not been preprocessed in any way. For the
standalone comparison, we use implementations with multi-precision data types that
can hold the large integer elements from the input bases, and the subsequent floating
point computations with them. We use overestimated floating-point precisions for
each dimension, to ensure correctness. As the dimension increases, the overestimated
precision is increased and consequently the algorithms get slower. It may be possible to
improve the runtimes of the X-DeepLLL and X-GGLLL algorithms using techniques
from L2 [10]; however, these have not been explored in this work. The preprocessed
comparison is using implementations with standard data types. The output quality of
the algorithms does not vary between our experimental setups. So the two setups are
essentially to compare the runtime performances of the algorithms in the two cases.

We report our results in three parts. First, we perform a comparison of the out-
put quality of LLL [1], Pot-DeepLLL [9], SS-DeepLLL [7], BKZ [6] with blocksizes
8, 10, 12 and 20, and our greedy global algorithms Pot-GGLLL and SS-GGLLL in
dimensions 40 − 210. We then provide the corresponding runtime comparisons. We
first compare the standalone runtimes of the LLL-style algorithms (LLL, X-DeepLLL
and X-GGLLL) in dimensions 40 to 150. Finally we compare the preprocessed run-
times of the X-DeepLLL and X-GGLLL algorithms and BKZ with blocksize 8, 10, 12
and 20 in dimensions 40 to 210.
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The following are the key findings from our experiments.

• X-DeepLLL versus X-GGLLL: standalone and preprocessed comparison.

– The output quality of X-DeepLLL and X-GGLLL algorithms does not vary
between the standalone and the preprocessed experiments. So we report them
once.

– The output quality of X-GGLLL is better than the corresponding X-DeepLLL
algorithm, as can be seen from Tables 2 and 3 and Figures 1, 2, and 3. For example,
at dimension 210, SS-GGLLL outputs shortest vectors that are on average 11.6%
shorter than those by SS-DeepLLL.

– In standalone comparison with overestimated precision, the X-GGLLL algorithms
are much faster than the corresponding X-DeepLLL algorithms. Furthermore, as
the dimension grows, the X-GGLLL algorithms become even better in comparison.
At dimension 150, SS-GGLLL is around 2.3 times faster than SS-DeepLLL and
Pot-GGLLL is about 1.4 times faster than Pot-DeepLLL. We provide intuitive
experimental justification by showing that X-GGLLL requires significantly fewer
deep insertions and overall fewer size reductions than X-DeepLLL.

– In preprocessed comparisons with standard data types, the X-GGLLL algorithms
are slower than the corresponding X-DeepLLL algorithms. We again provide intu-
itive experimental justification by showing that even though X-GGLLL requires
significantly fewer deep insertions than X-DeepLLL, it is unable to compensate
for the increased number of size reductions.

• X-GGLLL versus BKZ: preprocessed comparison only.

– SS-GGLLL has better output quality than BKZ-8 throughout, BKZ-10 around
and beyond dimension 60, and BKZ-12 around and after dimension 100. Our
standard data type implementation of SS-GGLLL is around 6 times faster than
the corresponding FPLLL BKZ-12 implementation. In other words, SS-GGLLL
is better than BKZ-12 both in runtime as well as output quality.

– In terms of runtime, whilst it was reported in [9] that Pot-DeepLLL has a runtime
comparable to BKZ-5, there was no claim in [7] regarding the runtime perfor-
mance of SS-DeepLLL compared with BKZ. Our experiments show the surprising
result that the X-DeepLLL as well as the X-GGLLL algorithms are faster than
BKZ with β ≥ 8 across all tested dimensions on the preprocessed bases. We con-
jecture that the incorporation of the GSO update techniques from [11] is perhaps
the main reason behind this excellent runtime performance of X-DeepLLL and
subsequently X-GGLLL.

Our implementations, the input bases we have used in our experiments and the
outputs of said experiments are available at [12]. Other than our own algorithms, this
repository has the only publicly available implementation of Pot-DeepLLL and SS-
DeepLLL with the incorporation of the GSO update techniques from [11], to the best
of our knowledge.

The outline of the paper is as follows. Section 2 details the relevant notation
and gives an overview of lattices. Section 3 provides a description of LLL and gener-
alises DeepLLL for any measure. Section 4 proposes the greedy global framework as a
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novel way of reducing lattice bases. Sections 5 and 6 provide theoretical analysis and
experimental results, respectively.

Related Works.

Yamaguchi and Yasuda in [11] described an efficient algorithm for updating the GSO
information in DeepLLL. Since the update of the GSO information is dominant in
such an algorithm, this work is of great importance to our framework. In [13], it was
proved that in LLL the value of the squared sum SS(B) decreases with every swap.
The complexity of LLL [1] and Pot-DeepLLL [9, Proposition 1] for an input basis B
is bounded by the size of Pot(B). The complexity of SS-DeepLLL is bounded by the
size of SS(B) [7]. Fukase and Kashiwabara [14] showed that a basis with a smaller
squared-sum allows more short lattice vectors to be sampled using Schnorr’s random
sampling. This method was used in [13] to sample short vectors.

The original LLL algorithm [1] was known to run in polynomial time for the reduc-
tion parameter δ < 1. For δ = 1, it is known to be polynomial time, but only for fixed
dimensions [15]. Although DeepLLL [6] is not known to run in polynomial time, its
variants Pot-DeepLLL [9] and SS-DeepLLL [7] are both polynomial time algorithms.

The potential was analysed in [16], where the author examined LLL reduction
based on maximally reducing the basis potential for a given lattice. Whilst LLL con-
tinues until the potential can not be further reduced by a factor of δ, this does not
mean that LLL reduces the potential maximally. Instead, the author introduces a new
notion of basis reduction whose aim is to find the basis B such that the potential of
B is smaller than the potential of all other bases B′ for the same lattice. In [17], the
authors pointed out that Pot(·) does not capture the typical unbalancedness demon-
strated by the GSO norms. They introduced a new potential function based on the
sublattice Lk generalising the one depending on the entire basis and demonstrating
their usefulness.

An important direction in improving the efficiency of LLL has been considering
the implementation details of the algorithms, floating-point arithmetic considerations
and their consequent optimisations. In [6], a practical LLL algorithm using floating-
point arithmetic was described, which has been extended by Nguyen and Stehlé [10]
in their very efficient L2 algorithm. L2 is a significant improvement in LLL reduction,
where careful management of the precision required for the floating-point computation
of the Gram-Schmidt orthogonalisation (GSO) information results in a more efficient
algorithm with no reduction in output quality. This is an important research direction
in lattice basis reduction. Another variant of LLL was introduced in [18], where the
costly GSO computations are approximated by Householder transformations which
are performed using floating-point arithmetic. In [19], a perturbation analysis has been
performed on the QR factor R of LLL-reduced bases under columnwise perturbation.
The results obtained may be applied to the floating-point implementations of LLL-type
algorithms. LLL has also been adapted to obtain a small speed-up in the Information-
Set Decoding algorithm for binary codes in [20]. Lenstra introduced the idea of a flag
in lattice reduction in [21], where a flag is defined to carry a little less information than
is provided by a lattice basis. The flag is then reduced within the LLL algorithm by
performing successive steps which replace flags with neighbouring ones for reduction.
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In [22], the authors used parallelisation and recursion to improve the efficiency
of LLL by decreasing the precision required for reduction as the basis is reduced.
An improved variant of LLL using recursion is described in [23], where a notion of
reduction based on the drop of the profile of a lattice is introduced. The authors
also introduce a novel method for precision management in their algorithm and show
experimentally that their algorithm outperforms the state-of-the-art FPLLL [24],
implementation as well as the algorithm of [22]. Koy and Schnorr [25] introduced the
Segment LLL algorithm - a variant of LLL which yields a slightly weaker reduced
basis but is more efficient by a factor n. This is achieved by partitioning a basis of
dimension n = km into m segments comprising k consecutive vectors and LLL reduc-
ing these segments. This was improved both in terms of efficiency and basis quality
in [26]. The authors chose overlapping blocks in a similar way as BKZ [6] so that the
global quality of the basis was improved with each “tour”. Another important direc-
tion is the application of LLL to lattices with an underlying structure or form, for
example, ideal lattices [27], module lattices [28] and parametric lattices [29]. It is well
understood that LLL generally provides much better output quality than the analysis
of the LLL-reduced bases suggests. To this end, in [30] and [31], experimental analy-
sis have been performed on the average-case behaviour of LLL, and comparisons are
drawn with the worst-case theoretical results. We note that the key ideas associated
with the directions in this paragraph are more or less orthogonal to the techniques we
introduce in this paper.

2 Preliminaries

Notation.

The sets of integers, rational and real numbers are denoted by Z, Q, and R respectively.
Let [n] = {1, . . . , n}. For x ∈ R, |x| denotes its absolute value. The integer closest to
x ∈ R is denoted by ⌊x⌉. All vectors are column vectors. The Euclidean norm of a
vector x ∈ Rm is denoted by ∥x∥. The inner product of vectors x,y ∈ Rm is denoted
by ⟨x,y⟩. All logarithms are base 2 unless denoted otherwise.

Lattice, Bases, Sublattice and Linear Span.

A lattice L = {Bx : x ∈ Zn} specified by an ordered set of linearly independent
vectors called a basis B = (b1, . . . ,bn) ∈ Rm×n, is denoted as L(B). We call m the
dimension and n the rank of the lattice L, where m ≥ n. The linear span of B is
given by span(B) = {Bx : x ∈ Rn}. A subset of vectors in B gives rise to a sublattice
of L(B). For example, given a basis B = (b1, . . . ,bn) for a lattice L, the vectors
(b1, . . . ,bi) , 1 ≤ i ≤ n form a basis of a sublattice of L that we denote as Li.

For a lattice of dimension n ≥ 2, there are infinitely many bases. If B1 is a basis
for a lattice L, we may transform this into another basis B2 for the same lattice by
B2 = B1U, where U ∈ GLn(Z) is a unimodular matrix. An invariant across the
infinitely many bases of a lattice is its volume. For a basis B of the lattice, its volume
is given by Vol(L) =

√
det(BTB) and geometrically it represents the volume of the

fundamental parallelepiped of the lattice. We generally only consider lattices with
vectors in Qm and by scaling we need only consider lattices in Zm.
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Gram-Schmidt Orthogonalisation.

For an ordered set of linearly independent vectors B = (b1, . . . ,bn) ,bi ∈ Rm, its
Gram-Schmidt orthogonalisation (GSO) gives the corresponding set B∗ = (b∗

1, . . . ,b
∗
n)

of orthogonal vectors defined recursively as follows.

• b∗
1 = b1, and

• for i > 1, b∗
i = bi −

∑i−1
j=1 µi,jb

∗
j ,

where a GSO coefficient µi,j is defined for 1 ≤ j ≤ i ≤ n as

µi,j =

〈
bi,b

∗
j

〉∥∥b∗
j

∥∥2 .

It is easy to see that µi,i = 1 for all 1 ≤ i ≤ n.

Orthogonal Projections.

Given a vector v ∈ L(B), its projections πi(v) are defined for 1 ≤ i ≤ n as

• π1(v) = v, and
• for 2 ≤ i ≤ n, πi(v) is the projection of v orthogonal to span((b1, . . . ,bi−1)) of the

sublattice Li−1.

The projection πi(bk) is written in terms of the GSO vectors (b∗
i , . . . ,b

∗
k) and the

GSO coefficients µk,i, . . . , µk,k−1 as follows

πi(bk) = b∗
k +

k−1∑
l=i

µk,lb
∗
l .

In the simplest case, πi(bi) = b∗
i .

Lovász condition.

For the parameter 1/4 < δ ≤ 1, the Lovász condition between consecutive vectors
bk−1,bk ∈ B is defined as

δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2 .

This can be written as
(
δ − µ2

k,k−1

)
·
∥∥b∗

k−1

∥∥2 ≤ ∥b∗
k∥

2
in terms of the GSO vectors

and coefficients. For all 1 ≤ i < k ≤ n, the Lovász condition can be generalised (for
deep insertions) as

δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 .

Size reduction.

Given a basis B for a lattice L, size reduction of bi with bj replaces bi with the
vector bi−⌊µi,j⌉bj while bj remains unchanged. If |µi,j | < 1/2, the vector bi remains
unchanged. Algorithm 1 describes the size reduction of a vector bk with all its previous
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Algorithm 1: The size reduction algorithm for a vector bk

Input: A basis B = (b1, . . . ,bn), its GSO coefficients µi,j , and an index k.
Output: A basis B′ = (b1

′, . . . ,b′
n) where b′

k is size reduced, and the
updated coefficients µ′

i,j .

1 for j = k − 1, . . . , 1 /* The ‘reverse order’ as in Remark 2 */ do
2 if |µk,j | > 1

2 then
3 bk ← bk − ⌊µk,j⌉bj

4 µk,j ← µk,j − ⌊µk,j⌉
5 for i = 1, . . . , j − 1 do
6 µk,i ← µk,i − ⌊µk,j⌉µj,i /* As in Remark 1 part (3) */

7 return B′ with size reduced b′
k and updated coefficients µ′

i,j .

vectors bk−1, . . . ,b1 in the basis. The changes in the GSO coefficients µi,j due to size
reduction have been described in Remark 1. Size reducing an entire basis B pertains
to reducing each bk for 2 ≤ k ≤ n with all previous vectors bi for 1 ≤ i < k in the
ordering. The details are in Remark 2.
Definition 1 (Size reduced basis). A basis B = (b1, . . . ,bn) is said to be size reduced
if for all 1 ≤ j < i ≤ n, |µi,j | ≤ 1/2.

We also define the notion of size-reduction where the vector bi is unchanged if
|µi,j | < η for some η ≥ 1/2. This is important for implementations of size reduction
where floating point approximations to real numbers are used.
Definition 2 (η-Size reduced basis). For some η > 1/2, a basis B = (b1, . . . ,bn) is
said to be η-size reduced if for all 1 ≤ j < i ≤ n, |µi,j | ≤ η.
Remark 1 (Changes in GSO Coefficients Upon Size Reduction). Based on the
descriptions in [3, Chapter 2] and [32], we know that, upon a size reduction of bi with
bj (1 ≤ i < j), the values of µi,j must be updated as follows for consistency.

1. We set µi,j ← µi,j−⌊µi,j⌉; as a result, upon reducing bi with bj, we get |µi,j | ≤ 1/2.
2. For j < l < i, the values of µi,l remain unchanged. This is based on [3] and [32,

Exercise 17.4.8 (3)]. The proof is as follows2. Let bi be already size reduced with
respect to the vectors bi−1,bi−2, . . . ,bj+1. Now, we size reduce bi with bj to get
b′
i = bi − ⌊µi,j⌉bj. Let µ

′
i,l be the value of µi,l after the size reduction of bi with

respect to bj. Then we have

µ
′

i,l =
⟨b′

i,b
∗
l ⟩

∥b∗
l ∥

2 =
⟨bi − ⌊µi,j⌉bj ,b

∗
l ⟩

∥b∗
l ∥

2 =
⟨bi,b

∗
l ⟩

∥b∗
l ∥
− ⌊µi,j⌉

⟨bj ,b
∗
l ⟩

∥b∗
l ∥

.

Note that since l > j, we have bj ⊥ b∗
l as b∗

l is (by definition) orthogonal to
b1, . . . ,bl−1. Therefore, we have ⟨bj ,b

∗
l ⟩ = 0, and hence

µ′
i,l =

⟨bi,b
∗
l ⟩

∥b∗
l ∥

2 − ⌊µi,j⌉
⟨bj ,b

∗
l ⟩

∥b∗
l ∥

2 =
⟨bi,b

∗
l ⟩

∥b∗
l ∥

2 = µi,l.

2Although quite straightforward, the proof is not detailed in the literature to the best of our knowledge.
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3. For all 1 ≤ l ≤ j − 1, we set µi,l ← µi,l − ⌊µi,j⌉µj,l.

In summary, if we size reduce bi with bj, then the values µi,l for j < l ≤ i− 1 do not
change. However, the values µi,l for 1 ≤ l ≤ j may change.
Remark 2 (Reducing in Reverse). Note that in Algorithm 1, while size reducing the
vector bk with b1, . . . ,bk−1, we must reduce ‘in reverse’. In other words, we first
reduce bk with bk−1, then bk−2, and so on, down to b1. This is for two reasons. First,
as per point (2) of Remark 1, upon size reduction of bk with bi, the vector bk is still
size reduced with respect to all bl for i < l < k. Second, the size reduction of bk with
bi for 1 ≤ i < k affects the size reducedness of bk with respect to bl for l < i as per
point (3) in Remark 1. So by size reducing bk with bi, only the vectors before bi are
candidates for further size reduction of bk and not the ones between bi and bk.

Lattice Reduction.

Given a basis for a lattice, the goal of lattice reduction is to transform it into a
better quality basis consisting of shorter, more orthogonal vectors. Lattice reduction
algorithms like LLL and its variants conduct size reduction as well as reordering of
the input basis to improve their quality.

Basis Quality Measures.

Several measures can be used to describe the quality of a basis. The most widely used
is the Hermite factor (HF)

γ =
∥b1∥

Vol(L)1/n

of a lattice. The vector b1 is assumed to be the shortest vector in the output basis. It
has been shown that the smaller the Hermite factor of a basis, the better the basis qual-

ity [33]. Furthermore, the root Hermite factor (RHF) given by γ1/n =
(

∥b1∥
Vol(L)1/n

)1/n
can be shown experimentally [33] to converge to a constant for certain basis reduction
algorithms and large n.

The potential (Pot) of a basis B is defined in terms of its GSO vectors B∗ as

Pot(B) =

n∏
i=1

Vol(Li)
2 =

n∏
i=1

∥b∗
i ∥2(n−i+1)

.

It was introduced in [1] to prove that LLL runs in polynomial time. The potential
takes into account not only the vectors in a lattice basis but also their ordering. Earlier
basis vectors have significantly more contribution to the value of Pot(B) than the
later ones. We use the natural logarithm of the potential for easy handling of the large
exponents in its computation, especially with large values of n.

loge(Pot(B)) = loge

(
n∏

i=1

Vol(Li)
2

)
= 2

n∑
i=1

(n− i + 1) loge(∥b∗
i ∥).
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Another measure of basis quality is the squared sum (SS) of its GSO vectors B∗,
introduced in [7] as

SS(B) =

n∑
i=1

∥b∗
i ∥2 .

Similarly to Pot(·), the squared sum varies with changes in the lengths of the GSO
vectors. However, unlike Pot(·), all GSO vectors contribute equally to its value.

Ordering of Basis Vectors.

Let Sn be the group of permutations of the elements in [n]. For σ ∈ Sn and a basis B,
we define σ(B) =

(
bσ(1), . . . ,bσ(n)

)
to be a permutation of the basis vectors. Here,

σ(j) is the index of the vector in B that takes position j in the permuted basis σ(B).
In particular, we are interested in the permutations σi,k ∈ Sn for 1 ≤ i < k ≤ n
defined as follows.

σi,k(j) =


j if j < i or k < j

k if j = i

j − 1 if i + 1 ≤ j ≤ k.

Such a permutation of B = (b1, . . . ,bn) essentially gives us the permuted basis

σi,k(B) = (b1, . . . ,bi−1,bk,bi, . . . ,bk−1,bk+1, . . . ,bn)

where bk is inserted between bi−1 and bi, and all vectors bi, . . . ,bk−1 are shifted up
by one position. The other vectors retain their positions in the ordering.

Change in Basis Quality through Permutations.

Let X(B) be a measure of basis quality (like the HF, RHF, Pot, SS, etc.) of B. On
permuting the basis B to σi,k(B), the difference in the measure is denoted as

∆Xi,k = X(B)−X(σi,k(B)).

In particular, we get ∆Poti,k = Pot(B) − Pot(σi,k(B)) and ∆SSi,k = SS(B) −
SS(σi,k(B))3. We note that argmax1≤i<k≤n(∆Xi,k) returns the pair of indices (i, k)
for which the value of ∆Xi,k is maximised.

3 The LLL Algorithm, Its Variants and
Generalisations

Given a basis B = (b1, . . . ,bn), we have its GSO B∗ = (b∗
1, . . . ,b

∗
n) and the

coefficients µi,j therein.
Definition 3 (δ-LLL reduced basis). Given 1/4 < δ ≤ 1, a basis B = (b1, . . . ,bn) is
said to be δ-LLL reduced if the following two conditions are satisfied.

3Note that even though the expression for computing the measure SS(B) itself gives equal weight to
all GSO vectors (unlike Pot(B)) independent of where they occur in the ordering of B∗, the GSO vectors
themselves (and hence their lengths) change upon reordering. As a result, the value of the measure SS(B)
generally changes after reordering the basis.
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1. B is size reduced as in Definition 1.
2. For all 2 ≤ k ≤ n, the Lovász condition holds between the consecutive vectors

bk−1,bk ∈ B. In other words,

δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2 .

Algorithm 2: The LLL Algorithm [1]

Input: A basis B = (b1, . . . ,bn), a threshold 1/4 < δ ≤ 1
Output: A basis B′ = (b1

′, . . . ,b′
n) which is δ-LLL reduced

1 Find the GSO basis B∗ and initialise the values of µi,j

2 k ← 2
3 while k ≤ n do
4 Size reduce bk /* As in Algorithm 1 */

5 if ∥b∗
k∥

2
<
(
δ − µ2

k,k−1

)∥∥b∗
k−1

∥∥2 /* Equivalent to the failure of the

condition in (1) */ then
6 B← σk−1,k(B) /* Swap vectors bk−1,bk ∈ B */
7 Update b∗

k−1,b
∗
k /* As in [32, Lemma 17.4.3] */

8 Update µi,j ’s /* As in [3, Algorithm 2.6.3] */
9 k ← max(k − 1, 2)

10 else
11 k ← k + 1

12 return B′, a δ-LLL reduced basis

Definition 4 (δ-DeepLLL reduced basis). Given 1/4 < δ ≤ 1, a basis B =
(b1, . . . ,bn) is said to be δ-DeepLLL reduced if the following two conditions are
satisfied.

1. B is size reduced as in Definition 1.
2. For all 1 ≤ i < k ≤ n,

δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 .
Remark 3. If the Lovász condition holds for all pairs (i, k), then it must certainly
hold for all consecutive pairs (k − 1, k). A δ-DeepLLL reduced basis is hence δ-LLL
reduced.

The LLL and DeepLLL Algorithms.

The LLL algorithm [1] is described in Algorithm 2. The output basis B′ is δ-LLL
reduced as in Definition 3. A swap between vectors bk−1 and bk in the algorithm is
denoted by B← σk−1,k(B). This is generalised in DeepLLL [6] and its variants [9, 7]
to a deep insertion step B ← σi,k(B) where 1 ≤ i < k ≤ n. All our descriptions are
in terms of deep insertions. The corresponding results for swaps can be derived by
substituting i = k − 1, where applicable.
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Remark 4 (Measure for Lovász Condition). The Lovász condition is given by δ ·
∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2. This can be written as

(1− δ) · ∥πk−1(bk−1)∥2 ≥ ∥πk−1(bk−1)∥2 − ∥πk−1(bk)∥2 .

Here, ∥πk−1(bk−1)∥2−∥πk−1(bk)∥2 denotes the change in ∥πk−1(bk−1)∥2 =
∥∥b∗

k−1

∥∥2
(the square of the length of the (k − 1)th GSO vector) that will occur if a swap step
B ← σk−1,k(B) was to happen. In Algorithm 2, if the condition is not satisfied, then

the change in
∥∥b∗

k−1

∥∥2 is large enough to go ahead with the swap and bring vector bk

to the earlier position k − 1 in the basis ordering. In general, for 1 ≤ i < k ≤ n, the
Lovász condition for a deep insertion B← σi,k(B) is given by δ ·∥πi(bi)∥2 ≤ ∥πi(bk)∥2
which can also be written similarly as

(1− δ) · ∥πi(bi)∥2 ≥ ∥πi(bi)∥2 − ∥πi(bk)∥2 .

Based on the above, we observe that the (generalised) Lovász condition essentially uses
a localised measure of the quality of the basis. For an index 1 ≤ i < n, the measure of
quality of the basis B is given by LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥2. The change ∆LCi in
the quality of the basis due to a deep insertion B← σi,k(B) is given by

∆LCi = LCi(B)− LCi(σi,k(B)) = ∥πi(bi)∥2 − ∥πi(bk)∥2 .

Then, the generalised Lovász condition can be written as

(1− δ) · LCi(B) ≥ ∆LCi (1)

which fails if ∆LCi > (1−δ) ·LCi(B) and calls for deep insertion. This interpretation
of the Lovász condition as a change in the measure of basis quality is not present in
the literature to the best of our knowledge.

Thus the condition of the if statement in step 8 of Algorithm 3 is a further gen-
eralisation of the generalised Lovász condition for any measure of quality X(B) of the
basis B. In Algorithm 3, if the condition is not satisfied, bringing a later vector bk to
an earlier position i in the basis ordering will result in appreciable improvement in the
basis quality X(B).

Variants of DeepLLL: transition from a local measure to a global measure
of quality

As noted above, the Lovász condition in LLL [1] and its generalisation in DeepLLL [6]
are both used to check the decrease in ∥πi(bi)∥ = ∥b∗

i ∥ by inserting a later vector
bk at an earlier position i < k. The length of a GSO vector is a localised measure
of quality that does not capture the quality of the whole basis. This changed in Pot-
DeepLLL [9] where instead of a localised measure of quality, the potential Pot(·)
was used in DeepLLL so that the effect of permuting vectors on the entire basis is
considered. In SS-DeepLLL [7], Pot(·) was replaced by another global measure SS(·).
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The basic operation of deep insertion for reordering the basis vectors is the same in
all three algorithms.
Definition 5 (δ-X-DeepLLL reduced basis). Given 0 < δ ≤ 1, a basis B =
(b1, . . . ,bn) is said to be δ-X-DeepLLL reduced for a basis quality measure X(·) if the
following two conditions are satisfied.

1. B is size reduced as in Definition 1.
2. For all 1 ≤ i < k ≤ n,

δ ·X(B) ≤ X(σi,k(B)).

We omit the δ in naming our algorithms. Unless an algorithm is run for two different
values of δ, this parameter is an implicit input to the algorithm. The choice of δ is
however crucial in determining the quality of the basis. Larger the value of δ, the
better the output quality in general. Hence we include it in the notation used in the
definition of reducedness of a basis.

Using basis quality measures Pot(·) and SS(·) in place of the generic X(·), Defini-
tion 5 is instantiated to that of a Pot-DeepLLL [9] reduced basis and a SS-DeepLLL [7]
reduced basis. We know from [9, Lemma 2] that a Pot-DeepLLL reduced basis is LLL
reduced. Also from [9, Lemma 3], for 1/4n−1 < δ ≤ 1, a δ-DeepLLL reduced basis is
δn−1-Pot-DeepLLL reduced. From [7, Proposition 1] we know that any 1-SS-DeepLLL
reduced basis is also δ-LLL reduced for any 1/4 < δ < 1. However, there are no known
relationships between δ-SS-DeepLLL reduced bases and δ-DeepLLL reduced bases
to the best of our knowledge. We remark that both Pot-DeepLLL and SS-DeepLLL
have polynomial-time complexity by construction, but their output quality cannot be
covered by [7, Theorem 1] since their output bases are not DeepLLL-reduced.
Remark 5. In general, for two different basis quality measures X1 and X2, a δ-X1-
DeepLLL reduced basis may or may not be δ-X2-DeepLLL reduced. In particular, a
δ-Pot-DeepLLL reduced basis is also δ-LLL reduced whilst a δ-SS-LLL reduced basis is
not necessarily so for δ < 1. Therefore, there exist bases which are δ-SS-LLL reduced
but not necessarily δ-LLL reduced or δ-Pot-DeepLLL reduced.

A Generalisation of DeepLLL, Pot-DeepLLL and SS-DeepLLL.

We provide a generalised description of DeepLLL and its variants Pot-DeepLLL and
SS-DeepLLL in the X-DeepLLL algorithm 3. The X in the name X-DeepLLL cor-
responds to the general measure X(B) of the quality of B. The generalisation is
instantiated for different local and global quality measures of a basis B that are
all based on the GSO vectors B∗. The localised measure LCi(B) = ∥b∗

i ∥2 (used in
DeepLLL [6]) is only for a single GSO basis vector, while the measures Pot(·) [9] and
SS(·) [7] are on the entire GSO basis B∗. In Remark 4 we have argued that the (gener-
alised) Lovász condition can be interpreted as a condition on the change in the quality
of the basis assessed based on the localised measure LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥2.
Hence, the X-DeepLLL algorithm 3 is a generalisation of the DeepLLL algorithm of [6].
Pot-DeepLLL and SS-DeepLLL are both variants of DeepLLL. It should be easy to
see that the X-DeepLLL algorithm 3 for the measure X(·) = Pot(·) is Pot-DeepLLL
and for the measure X(·) = SS(·), it is SS-DeepLLL.
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Algorithm 3: The X-DeepLLL Algorithm

Input: A basis B = (b1, . . . ,bn), a threshold 0 < δ ≤ 1
Output: B′ = (b1

′, . . . ,b′
n) which is δ-X-DeepLLL reduced

1 Find the GSO basis B∗ and initialise the values of µi,j

2 Size reduce b2, . . . ,bn /* As in Algorithm 1 */
3 Initialise other bookkeeping data structures, if required for X(B)
4 k ← 2
5 while k ≤ n do
6 Size reduce bk /* As in Algorithm 1 */
7 Find i such that i = argmax1≤j<k(∆Xj,k) and set ∆X = ∆Xi,k

8 if ∆X > (1− δ) ·X(B) then
9 B← σi,k(B) /* Deep insert bk before bi */

10 Update B∗ and µl,j /* As in [11, Theorem 1 and Proposition 1] */
11 k ← max(i, 2)

12 else
13 k ← k + 1

14 return B′, a δ-X-DeepLLL reduced basis

In the generalised X-DeepLLL algorithm 3, we note that the threshold value δ
represents a fraction of the measure X(B). If a reordering of the basis B can improve
its quality by more than (1− δ) ·X(B), the algorithm has scope for such a reordering.
In fact, when there is no way to decrease the measure (thus improving the quality)
to less than the fraction δ ·X(B) of the measure, that is when the basis is considered
to be δ-X-DeepLLL reduced as in Definition 4. As may be expected, the threshold δ
depends on the measure X in the context. The notation δ is commonly used [1, 6, 9] to
denote the fraction in the context of algorithms based on the localised measure LC(·)
(when using the Lovász condition) and the measure Pot(·) for the whole basis. The
notation η has been used in [7] to denote the threshold in the context of the measure
SS(·). In our generalisations of the algorithms and their analysis, we continue using
the more common notation δ with the awareness that for two different measures X1(·)
and X2(·), two different thresholds δ1 and δ2 may have to be considered, respectively.
The relationship between threshold values δ1, δ2 of the algorithms may be derived from
the relationship between their measures X1, X2 as in [9, 7].

It should be clear that the value of the threshold δ in the X-DeepLLL algorithm 3
should be upper bounded by δ ≤ 1 (and consequently (1 − δ) ≥ 0) due to the algo-
rithm’s key principle of trying to reduce the measure X(B) in every iteration as
explained above. In particular, for δ = 1, a deep insertion is allowed for any decrease
∆X > 0 in the measure. Assuming the measure X(B) > 0 for any basis B, since the
decrease in the measure ∆X can not be more than or equal to the measure X(B)
itself, hence we necessarily have δ > 0. For the algorithms using the measure LC(·)
(based on the Lovász condition), the threshold must further satisfy δ > 0.25 [1]. In
general, the threshold δ and a tighter lower bound thereof may be determined by the
termination condition for the loop.
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The LLL-style algorithms mentioned above (LLL, DeepLLL, SS-DeepLLL, Pot-
DeepLLL) work in a manner where a single iteration of the loop works only with a
sublattice Lk generated by (b1, . . . ,bk) of B. The rest of the vectors (bk+1, . . . ,bn)
remain “untouched” in that iteration. Hence, after a deep insertion step, B← σi,k(B)
the sublattice under consideration in the next iteration would just be (b1, . . . ,bi).
The newly inserted vector bi will have already been size reduced with respect to the
vectors b1, . . . ,bi−1 in the previous iteration of the loop when considering the index
k. The vectors bi+1, . . . ,bk have all been “shifted” up by one position. They will now
require further size reduction since they will not have been reduced with respect to the
newly inserted vector bi. However, this does not need to be done immediately; these
vectors will be size reduced again when they enter the sublattice under consideration
in a subsequent iteration of the loop. So these algorithms only size reduce one vector
in an iteration and not the whole basis.

Deep Insertions.

A deep insertion step B ← σi,k(B) only changes the vectors bi, . . . ,bk in the basis.
The vectors b1, . . . ,bi−1,bk+1, . . . ,bn remain unchanged. The corresponding changes
in the GSO basis B∗ and the lengths of the vectors therein are given by [11, Theorem
1]. The corresponding changes in the GSO coefficients are given by [11, Proposition 1].
Remark 6. From [11, Theorem 1], we note that due to a deep insertion step
B ← σi,k(B) the only GSO vectors that change are b∗

i , . . . ,b
∗
k. Hence, the only GSO

coefficients that change are µl,j for j < l, i ≤ j ≤ k, and i + 1 ≤ l ≤ n.

Algorithm 4: The X-GGLLL Algorithm

Input: A basis B = (b1, . . . ,bn), a threshold 0 < δ ≤ 1
Output: B′ = (b1

′, . . . ,b′
n) which is a δ-X-GGLLL reduced basis

1 Find the GSO basis B∗ and initialise the values of µi,j

2 Size reduce b2, . . . ,bn in this order /* As in Algorithm 1 for each bk */
3 Find (i′, k′) such that (i′, k′) = argmax1≤i<k≤n(∆Xi,k) and set ∆X = ∆Xi′,k′

4 while ∆X > (1− δ) ·X(B) do
5 B← σi′,k′(B) /* Deep insert bk′ before bi′ */
6 Update B∗ and µl,j /* As in [11, Theorem 1 and Proposition 1] */
7 Size reduce bi′+1, . . . ,bn /* As in Algorithm 1 and proof of Lemma 1*/
8 Find (i′, k′) such that (i′, k′) = argmax1≤i<k≤n(∆Xi,k) and ∆X = ∆Xi′,k′

9 end
10 return B′, a δ-X-DeepLLL reduced basis.

4 The X-GGLLL Algorithm

The generalisation of DeepLLL, Pot-DeepLLL and SS-DeepLLL in the form of the
X-DeepLLL algorithm 3 sets the stage for our new framework of algorithms.
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The Greedy Global Framework.

The greedy global framework described as the X-GGLLL algorithm 4 provides a gen-
eral description of algorithms realised by specifying a basis quality measure X. The
algorithm starts by finding the GSO in step 1 and then size reducing the input basis
B in step 2. In step 3, it finds a pair of indices (i′, k′) that may be suitable for a deep
insertion B ← σi,k(B). It then runs a loop performing a deep insertion and associ-
ated bookkeeping in steps 5-6, the consequent size reductions using Algorithm 1 in
step 7 and finding an appropriate pair (i′, k′) for the next iteration in step 8. By the
end of each iteration of the loop, the algorithm produces a size reduced basis, and
the associated bookkeeping information like the values of µi,j , etc. are all updated
to be consistent with the new basis. The loop runs as long as there is a pair of
indices (i′, k′) such that if bk′ is deep inserted before bi′ , the change in the measure
∆X = X(B)−X(σi′,k′(B)) is at least a fraction (1− δ) of the current measure X(B).
Note that every time the loop runs, a deep insertion is certainly conducted. For δ close
to 1, (1− δ) is a small value. So the algorithm essentially terminates when there is no
possible deep insertion step in the entire basis B that can reduce the measure X(B)
by a fraction (1− δ) that may be considered as a substantial change to the quality of
the basis. Thus X-GGLLL returns a δ-X-DeepLLL reduced basis as in Definition 5.
We prove this in Lemma 2.

In a single iteration, LLL, DeepLLL, Pot-DeepLLL and SS-DeepLLL either increase
the index 2 ≤ k ≤ n by 1, or decrease the index by some value i < k−1. In the process,
they only work with the sublattice Lk generated by a subset (b1, . . . ,bk) of B. The
key novelty of our framework and the algorithms therefrom lies in not restricting the
choice of the vector bk that is investigated for a possible insertion at an earlier position
to only a sublattice (unlike all previous LLL-style algorithms). Instead, our algorithm
works with the whole basis B = (b1, . . . ,bn) and hence the entire lattice in every
iteration throughout the algorithm. As a result, a deep insertion step B← σi,k(B) in
our algorithm has to be immediately followed by reductions of bi+1, . . . ,bn to ensure
that the entire basis is size reduced and ready for the next iteration. Even though
this is O(n) more operations than that of X-DeepLLL, it creates avenues for smarter
choices of the indices for size reduction. In asymptotic terms, this loss is compensated
by the O(n) gain for not having to increment the index k for each deep insertion O(n)
times in the worst case.

Apart from working with the whole basis in every iteration, we introduce a greedy
technique to select the indices (i, k). In particular, the algorithm finds a pair (i′, k′)
such that the consequent change in the measure ∆X(B) is maximised. Step 3 of
Algorithm 4 does this for the first time before entering the loop and step 8 does it
subsequently for each iteration of the loop. The algorithm starts with a certain value
of X(B) that can be at most IX and attempts to reach a minimum value ZX . By
choosing the maximum decrease in each step, it gets closer to ZX by reaching a δ-
X-DeepLLL state very quickly (if not the quickest4) by taking the largest possible
leaps at each point. The asymptotic analysis assumes the least possible change in the
measure in every iteration and hence does not capture the effect of the greedy choice.

4It is well known that an immediate greedy choice is not necessarily always the best in terms of the
overall result of an algorithm.
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However, the gains due to the greedy choice gets reflected in the experimental results
provided in Section 6 where our algorithms perform exceedingly well in terms of their
runtimes, the total number of deep insertions, and total number of size reductions
with respect to previous LLL-style algorithms.

The greedy choice is not necessarily the best long-term choice though. There could
be other pairs (i, k) in an iteration that do not decrease the measure as much as the
greedy choice (i′, k′) (but more than δ fraction) in that iteration, but creates the scope
for a larger decrease in the measure in subsequent iterations. We do not consider such
strategies in this work and leave them for future consideration. Our focus is on the
greedy choice only.

Every new measure gives us a unique new lattice reduction algorithm. For the
potential, we get Pot-GGLLL and for the squared sum, we get SS-GGLLL. Like X-
DeepLLL, the values of δ to be used to get output bases of sufficiently good quality will
depend on the measure X in the context. We assume that any other measure X will
be calculable from the basis vectors and the GSO information. If necessary, the steps
in Algorithm 4 can be modified to take into account possible additional bookkeeping
steps that a measure may require if it is not calculable from the stored information.
We note that the change in the measure X may require additional computation; for
instance, the change in potential requires the calculation of projections5. However,
these computations can be done on the fly, and are covered by step 8 of Algorithm 4.

Note that Pot(B) and SS(B) are global measures of quality of the basis. Given
that the local measure LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥2 is on a single GSO vector,
and not on the entire basis, more careful consideration must be taken to establish a
greedy approach on independent LCi(B) measures for different indices i. So we only
instantiate Algorithm 4 using global measures in this work.
Remark 7 (Preprocessing Reduction). The description of Pot-DeepLLL in [9, Algo-
rithm 1] includes a preprocessing of the basis B by LLL. In the case of the SS-DeepLLL
algorithm in [7, Algorithm 2], the description itself does not include the preprocessing
step. However, they have included the preprocessing step with 0.99-LLL (that is LLL
with δ = 0.99) while reporting the performance results [7, Section 4.3.3]. We note
here from [7] that the quality of the output basis from a reduction algorithm is often
key to their subsequent use in other algorithms for finding short vectors in the lattice.
Furthermore, any lattice reduction algorithm can be used for preprocessing the basis
before being fed into a second algorithm for further reduction. Given that the efficiency
of our algorithms (especially SS-GGLLL), are in practice almost as good as LLL in
many cases, while providing much better output quality, we believe the preprocessing
can be done using any algorithm that would be suitable in the context depending on an
efficiency versus output quality trade-off for the given input parameters, basis types,
etc. Hence, we have excluded the preprocessing step from our theoretical descriptions
and asymptotic analysis of the LLL-style algorithms and have focused on their inde-
pendent performances. In our experiments, however, we have examined the standalone
algorithms as well as the algorithms after tha basis has been 0.99-LLL preprocessed.

5In Pot-DeepLLL, when computing the position i for deep inserting a vector bk, it is necessary to compute
the projections πi(bk) to check if the insertion is viable. However, this is not essential in the computation of
the measure SS since the change in SS due to insertion can be computed directly using the GSO information
that was updated in a previous step without computing a projection [7, Equation 5].
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The BKZ algorithm [6] runs LLL as a preprocess before applying the blockwise
reduction. We use the FPLLL [24] library implementation of BKZ that inherits this
feature in our experiments.

5 Theoretical Results

Lemma 1. Let X(B) be lower bounded by ZX > 0. Algorithm 4, outputs a size reduced
basis as in Definition 1.

Proof. In every iteration of Algorithm 4, the measure decreases by ∆X(B) = X(B)−
X(σi,k(B)). Since it can keep decreasing only until ZX > 0, the algorithm terminates
and outputs a basis.

To prove that the output basis is size reduced, it is sufficient to show that the
basis vectors are all size reduced by the end of each iteration of the while loop in
Algorithm 4. We prove this by induction on the number of loop iterations. We note that
step 2 of Algorithm 4 size reduces the whole basis before the first iteration. In general,
we assume that the basis is size reduced at the start of iteration r. By Remark 6, a
deep insertion step B← σi,k(B) only changes the GSO vectors b∗

i , . . . ,b
∗
k. From [11,

Theorem 1, Proposition 1] and point (2) of Remark 1, we know the following.

• The vectors b1, . . . ,bi−1 do not need further size reduction. In fact, the vectors
b1, . . . ,bi−1 have not changed. Since their orders have not changed either, their
GSO vectors also remain the same.

• The vector bk upon being inserted in position i does not need further size reduction.
In the deep insertion step B ← σi,k(B), the vector bk is inserted in position i.
This vector has already been size reduced with respect to b1, . . . ,bi−1 in a previous
iteration < r (or before the loop starts). However, its GSO changes from πk(bk) to
πi(bk) due to the reordering.

• Vectors bi+1, . . . ,bk need to be size reduced by all earlier vectors, but bk+1, . . . ,bn

need only to be reduced by bk, . . .b1. By Remark 6, the only GSO coefficients that
change upon a deep insertion B ← σi,k(B) are µl,j for j < l, i ≤ j ≤ k, and
i + 1 ≤ l ≤ n.

– In particular, for vectors bl, i + 1 ≤ l ≤ k, the following things change.

∗ The GSO of vector bl changes from being a projection of bl orthogonal to
span((b1, . . . ,bl−1)) to being orthogonal to
span((b1, . . . ,bi−1,bk,bi+1, . . . ,bl−1)).

∗ Also, bl may not be size reduced with respect to this newly inserted vector
bk.

Hence, we start with bi+1 and size reduce it with the newly inserted vector bk.
Upon this size reduction, for 1 ≤ l < k, the values of µi+1,l will be updated by
part (3) of Remark 1. Hence, we must size reduce bi+1 with all vectors bi, . . . ,b1

as explained in Remark 2. We similarly reduce all vectors bi+2, . . . ,bk.
– Reordering the vectors (b1, . . . ,bk) does not change span((b1, . . . ,bk)). The vec-

tors bk+1, . . . ,bn have not been changed due to the deep insertion step. Hence,
their projections orthogonal to span((b1, . . . ,bk)) remain the same. Thus their
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GSO remains the same. Furthermore, the vectors bk+1, . . . ,bn may not be size
reduced with respect to bi+1, . . . ,bk. Therefore, vectors bk+1, . . . ,bn must be
size reduced only with the vectors bk, . . . ,b1 as in Remark 2.

We therefore must reduce bi′+1, . . .bn, due to the change in GSO of the vector in
position i′. This is done in step 7 of Algorithm 4.

Lemma 2. Algorithm 4 returns a δ-X-DeepLLL reduced basis as in Definition 5.

Proof. Algorithm 4 outputs a basis B′. The condition in the while statement in step
4 of the algorithm ensures that upon the termination of the algorithm, no possible
reordering σi,k(B′) for all 1 ≤ i < k ≤ n results in a ∆X = X(B′) − X(σi,k(B′))
which is greater than (1− δ) ·X(B′). In other words,

∆X = X(B′)−X(σi,k(B′)) ≤ (1− δ) ·X(B′)

for all 1 ≤ i < k ≤ n. Equivalently, δ ·X(B′) ≤ X(σi,k(B′)) for all 1 ≤ i < k ≤ n. Also
by Lemma 1, the basis B′ on output is size reduced. Hence, the output of X-GGLLL
is a δ-X-DeepLLL reduced basis as per Definition 5.

In Algorithm 4, the basis quality measure X(B) being a function of the basis B,
may be computed using the values of the associated parameters like ∥bi∥2, ∥b∗

i ∥2 and
µi,k, for all 1 ≤ i ≤ k ≤ n. Let C be an upper bound on the square of the norm of the
vectors in B. The following result is on the computational complexity of the general
X-GGLLL algorithm.
Lemma 3. Let ∥bi∥2 ≤ C for all 1 ≤ i ≤ n in a basis B. In Algorithm 4[Step 8],
let the number of bit operations required for finding the pair of indices (i′, k′) for the
maximum ∆Xi,k be O(fX(C,m, n)) using exact Q arithmetic but without fast integer
arithmetic. Let IX and ZX respectively denote upper and lower bounds on X(B) and
let 0 < δ < 16. Then the total number of bit operations performed by the X-GGLLL
algorithm 4 is given by

O
((

n4 log2 C + mn4 log2 C + fX(C,m, n)
)

log1/δ

(
IX
ZX

))
(2)

using exact Q arithmetic but without fast integer arithmetic.

Proof. We assume all arithmetic operations in Algorithm 4 are using exact Q arith-
metic but without fast integer arithmetic. We first note that the size reduction step
within the while loop ensures that the length of the vectors in the basis B do not
increase throughout the algorithm [1]. All arithmetic operations are on integers of size
O(n logC) bits by the same argument as in [1][Proposition 1.26].

6We note that Algorithm 4 can work with δ = 1 because it can (theoretically) allow very small changes
in the measure X. However, an arbitrarily small change in the measure cannot be captured by a fixed value
of δ in the expression for the number of iterations. Hence, δ < 1 in the analysis.
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At each iteration of the while loop, we reduce the measure X by a factor of at
least δ. So after i iterations, the measure X(i) = 1

δiX satisfies

ZX ≤
1

δi
X ≤ IX .

For a given δ, the iteration number i is maximised for ZX = 1
δiX. Thus, the number

of deep insertions (iterations of the while loop) is bounded above by

log1/δ

(
IX
ZX

)
.

Within each iteration of the while loop, we do the following operations.

• Deep insertions: A deep insertion and its associated bookkeeping are done in steps
5-6 of the algorithm. This results in updates of the basis parameters like the GSO
vectors and the GSO coefficients. We know from the analysis of [11, Algorithm 4]
that the total bit-complexity of the GSO updates is O

(
n4 log2 C

)
.

• Size reductions: Step 7 of the algorithm size reduces the basis and performs the
associated bookkeeping updates. A vector in the basis contains m integers each of
size O(n logC). So the size reduction of a vector bk with bi, 1 ≤ i < k requires
O
(
mn2 log2 C

)
bit operations. So the size reduction of bk with all such bi as in

Algorithm 1 requires O
(
mn3 log2 C

)
bit operations. Hence size reducing all basis

vectors will require O
(
mn4 log2 C

)
bit operations.

• Index search: In step 8, we search for the pair of indices (i′, k′) for which the measure
∆Xi′,k′ is the minimum among all possible pairs. We assume this step requires
O(fX(C,m, n)) bit operations in every iteration.

So Algorithm 4 needs a total of O
(
n4 log2 C + mn4 log2 C + fX(C,m, n)

)
bit opera-

tions in each iteration of the while loop. Considering all iterations, the total number
of bit operations performed by the algorithm is given by

O


 n4 log2 C︸ ︷︷ ︸

deep insertion

+mn4 log2 C︸ ︷︷ ︸
size reduction

+ fX(C,m, n)︸ ︷︷ ︸
index search

 log1/δ

(
IX
ZX

)
︸ ︷︷ ︸

#iterations

 .

The proof of Lemma 3 shows that the asymptotic complexity of Algorithm 4 does
not capture the value by which the measure X decreases in each iteration. Any deep
insertion strategy which decreases X by a fraction at least (1 − δ) will result in an
algorithm with asymptotic complexity at most as in 2 of Lemma 3. In practice, the
greedy choice of an insertion that results in the maximum possible decrease in the
measure makes the algorithm very efficient.
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We use Lemma 3 corresponding to the general framework to find the computational
complexities of the concrete algorithms Pot-GGLLL and SS-GGLLL.

5.1 Computational Complexity of Pot-GGLLL

With Vol(Li)
2 =

∏i
j=1

∥∥b∗
j

∥∥2, the potential is given by

Pot(B) =

n∏
i=1

Vol(Li)
2 =

n−1∏
i=1

Vol(Li)
2 ·Vol(L)2.

From [9, Proof of Proposition 1] we know that an upper bound on the value of Pot(B)
is

IPot =

n−1∏
i=1

Vol(Li)
2Vol(L)2 ≤

n−1∏
i=1

CiVol(L)2 ≤
n−1∏
i=1

C
n(n−1)

2 Vol(L)2

and a lower bound is ZPot ≥ Vol(L)2. In 2, we substitute the expressions for the
number of iterations and the complexity of index search to find the overall complexity
of Pot-GGLLL. From Lemma 3, the maximum number of iterations in Pot-GGLLL is

log1/δ

(
IPot
ZPot

)
= log1/δ

(
Cn(n−1)/2

)
= O(n2 log1/δ C).

For a pair (i, k) of indices, computing the value of ∆Poti,k as described in [9, Equation
3.1] requires O(n2) arithmetic operations or equivalently O(n4 log2 C) bit operations.
A straight-forward extension of this to find argmax1≤i<k≤n(∆Poti,k) would require the

computation of ∆Poti,k for each pair (i, k) with a total of O(n6 log2 C) bit operations.
This computation can be improved by O(n) time. For a fixed index k, the values of
∆Poti,k can be computed incrementally for all i ∈ {k − 1, . . . , 1} where ∆Poti−1,k

is computed using the value of ∆Poti,k. This optimisation applies to Pot-DeepLLL
as well as Pot-GGLLL. Hence Pot-GGLLL computes argmax1≤i<k≤n(∆Poti,k) using

O(n5 log2 C) bit operations in each iteration. In total, Pot-GGLLL requires

O
((

n4 log2 C + mn4 log2 C + n5 log2 C
)
n2 log1/δ C

)
= O

(
(m + n)

n6 log3 C

log 1/δ

)
bit operations. From [9][Proof of Proposition 1] we know that Pot-DeepLLL requires

O
(

(m + n)n4 log1/δ C
)

arithmetic operations or equivalently

O
(

(m + n)n6 log3 C
log 1/δ

)
bit operations, which is the same as Pot-GGLLL. The number of

bit operations for each part of the Pot-DeepLLL algorithm has been listed in Table 1.
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5.2 Computational Complexity of SS-GGLLL

An upper bound on the value of SS(B) is given by

ISS =

n∑
i=1

∥b∗
i ∥2 ≤ n · C

and a lower bound is ZSS ≥ n which occurs when C = 1. From Lemma 3, the maximum
number of iterations in SS-GGLLL is

log1/δ

(
ISS
ZSS

)
= log1/δ (C) .

as was noted in [7, Proposition 2]. From [7, Equation 5], we know that ∆SSi,k can be
computed in O(n3 log2 C) bit operations. Using similar techniques as in Pot-GGLLL,
the computation of argmax1≤i<k≤n(∆SSi,k) requires O(n4 log2 C) bit operations.
Hence SS-GGLLL requires a total of

O
((

n4 log2 C + mn4 log2 C + n4 log2 C
)

log1/δ (C)
)

= O
(
mn4 log3 C

log 1/δ

)
bit operations. In comparison, the number of bit operations of SS-DeepLLL is

O
(
mn4 log3 C

log 1/δ

)
which is again the same as SS-GGLLL. The number of bit operations for each part of
the SS-DeepLLL algorithm has been listed in Table 1.

Algorithm Name Deep Insertion Size Reduction Index Search Number of Iterations

Pot-DeepLLL mn3 log2 C mn3 log2 C n4 log2 C n3 log1/δ C

Pot-GGLLL n4 log2 C mn4 log2 C n5 log2 C n2 log1/δ C

SS-DeepLLL mn3 log2 C mn3 log2 C n3 log2 C n log1/δ C

SS-GGLLL n4 log2 C mn4 log2 C n4 log2 C log1/δ C

Table 1: Complexity comparison of X-DeepLLL and X-GGLLL.

Remark 8 (Comparison between X-DeepLLL and X-GGLLL). A comparison
between the number of bit operations required in different parts of the X-DeepLLL
and X-GGLLL algorithms is shown in Table 1. It provides a better understanding of
where a greedy global algorithm makes gains and losses when compared with the corre-
sponding DeepLLL algorithm. For deep insertion, X-DeepLLL requires O(mn3 log2 C)
bit operations. This involves a reordering of the basis followed by an update of the
relevant GSO information. In comparison, X-GGLLL requires O(n4 log2 C) bit oper-
ations using [11, Algorithm 4]. For size reductions, X-DeepLLL requires O(n) fewer
bit operations than X-GGLLL because the greedy global algorithms need the basis to be
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completely size reduced before performing the index search. In contrast, X-DeepLLL
needs the basis to be size reduced only up to index k being considered in an iteration.
X-DeepLLL also requires O(n) fewer bit operations for index search than X-GGLLL.
In X-DeepLLL, the index k is fixed, and so only a search for the best index i for
insertion is required. However, for X-GGLLL, the search covers all pairs (i, k) for
1 ≤ i < k ≤ n, and so O(n) more operations are required. The increase in complexity
due to index search is compensated in the number of iterations of the while loop that
requires O(n) fewer operations in X-GGLLL than in X-DeepLLL. This is because
X-DeepLLL maintains the index k which must reach k = n + 1 for the algorithm to
terminate. If N is the number of deep insertions in X-DeepLLL, the number of times
k is incremented in step 13 of Algorithm 3 is upper bounded by N(n−1)+n as argued
in [1]. In other words, there are at most O(n) more iterations of the while loop than
the number of deep insertions. Since there is no such incremental change in the indices
in X-GGLLL, hence it requires O(n) fewer iterations.
Remark 9. The output basis of X-GGLLL is δ-X-DeepLLL reduced just like in
X-DeepLLL. In practice, the output basis of X-GGLLL is usually better than X-
DeepLLL. However, X-GGLLL is not necessarily guaranteed to reduce the basis quality
measure X more than X-DeepLLL.

6 Experimental Results

We conduct a concrete comparative analysis of several relevant algorithms: LLL [1],
Pot-DeepLLL [9], SS-DeepLLL [7], BKZ [6, 8] with blocksizes β = 8, 10, 12 and 20,
and our two new proposals Pot-GGLLL and SS-GGLLL.

We first compare the standalone performances of the LLL-style algorithms – LLL,
X-DeepLLL and X-GGLLL – with input bases that have not been preprocessed, up
to dimension 150. The elements of such bases are very large integers. To ensure that
the algorithms run correctly on such bases, implementations use multi-precision data
types that can represent numbers using a larger number of bits than is supported
by a single instruction of the underlying general-purpose processor. With increasing
number of words in the precision, the time to execute an arithmetic operation on
multi-precision data types increases.

In the absence of the exact floating-point precision essential for correct and most
efficient execution of the multi-precision implementations of the X-DeepLLL and
the X-GGLLL algorithms, we run our multi-precision implementations with overesti-
mated precision to avoid anomalies due to floating-point arithmetic. We note from [9,
Section 3], [7, Section 4] and Lemma 2 that the X-DeepLLL and the X-GGLLL
algorithms terminate if and only if the basis is X-DeepLLL reduced. We utilise this
fact to overestimate the precision through trial-and-error. A precision is chosen for a
dimension when all algorithms successfully terminate for every input basis, producing
X-DeepLLL reduced bases. As the dimension increases, these algorithms get slower
due to the increase in the required precision. (We have later discussed some possible
directions for improving the runtime efficiency of the X-DeepLLL and the X-GGLLL
algorithms, including their multi-precision implementations.) We run all algorithms
with the same precision at a given dimension. Since the BKZ algorithm starts with
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a δ-LLL reduction as preprocessing before running blockwise reduction [6], it is not
part of our standalone comparison.

We next compare the algorithms implemented with standard data types, running
on preprocessed bases. We reduce the input bases with 0.99-LLL so that the basis
entries fit into standard data types and the algorithms run much more quickly than
their respective multi-precision implementations. We thus compare the performances
of X-DeepLLL, X-GGLLL and BKZ with β = 8, 10, 12 and 20, on the preprocessed
bases, up to dimension 210.

The reporting of our results is as follows. For every dimension, we run the algo-
rithms on a certain number of bases and report the averages of the parameters –
runtime, root Hermite factor (RHF), length of the shortest vector in the output basis,
number of size reductions, and number of basis reorderings. Our first observation
is that even though the output bases are almost always different between prepro-
cessed (with 0.99-LLL) and standalone executions of an algorithm, they are of very
similar quality. So we do not report them separately. In Section 6.1, we compare
the output quality of all aforementioned LLL-style and BKZ algorithms in terms of
the RHF and the length of the first vector in the reduced basis. However, the run-
time behaviour of the algorithms is significantly different between standalone and
preprocessed executions. Hence we report them separately in Sections 6.2 and 6.3
respectively.

For LLL, Pot-DeepLLL and Pot-GGLLL we use the threshold value δ = 0.99.
For SS-DeepLLL and SS-GGLLL we use the threshold δ = (1 − 10−6) following the
rationale provided in the discussion in [7, Section 4.3.1], where they notice that in
dimensions 100-150, the quality of SS-DeepLLL does not change significantly by taking
δ closer to 1. For this reason, we have decided to use δ = (1 − 10−6) throughout our
experiments.

Our Implementations

To the best of our knowledge, there is no publicly available implementation of SS-
DeepLLL [7, Algorithm 2]. Hence, for the sake of uniformity and fairness, we have
used our own implementations of all LLL-style algorithms in C++ using floating-point
arithmetic. We used the gcc 11.3.0 compiler and ran each algorithm on a single
Intel® Xeon® Platinum 8358 CPU at 2.60 GHz on a shared memory machine.

We implement two versions of the algorithms Pot-DeepLLL, SS-DeepLLL, Pot-
GGLLL and SS-GGLLL - one using standard data types int for integers and long

double for rational numbers, and the other using the NTL library [34] datatypes ZZ

for integers and RR for rational numbers. The NTL datatype version is used for the
standalone comparisons, while the standard datatype version is used for the prepro-
cessed comparisons. We implement LLL with the NTL datatypes for fairness in the
standalone comparison.

Our implementations, the input lattice bases we use in our experiments and the
outputs of our experiments are available at [12].
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Input Bases

We generate 300 random bases each for dimensions n = 40 to n = 210, in steps of 10.
The bases are random in the sense of Goldstein and Mayer [35] and are akin to those
provided by the SVP Challenge [36]. These bases have the form

B =

[
q 0
x I

]
=


q 0 0 . . . 0
x1 1 0 . . . 0
x2 0 1 . . . 0
...

. . .

xn−1 0 . . . 0 1


where q is a 10n-bit prime, x = (x1, . . . , xn−1)T is a column vector of integers modulo
q chosen uniformly at random and I is the (n− 1)× (n− 1) identity matrix.

In the standalone comparison of Section 6.2, we test all 300 bases in dimensions 40
to 90. In dimensions 100 to 150, due to the slow runtime caused by the overestimated
floating-point precision, we only test the first 50 bases. In the preprocessed comparison
provided in Sections 6.1 and 6.3, these bases are 0.99-LLL reduced using the FPLLL
implementation [24] before being passed as input to the algorithms being compared.

Comparison with BKZ

We compare the LLL-style algorithms with BKZ only in the preprocessed phase.
We use the bkz_reduction function of FPLLL [24] with the float type set as long

double and the flag BKZ_NO_LLL since the bases are already preprocessed. All algo-
rithms use η = 0.51 in their size reductions as is the default in the FPLLL library
implementations.

Even though the runtimes of our algorithms on preprocessed bases are quite fast,
we perform tests only up to dimension 210. This is because from dimension 220 onward,
the FPLLL implementation of BKZ using the long double datatype enters an infinite
loop in Babai’s algorithm (i.e. the size reduction step) for some of the bases given as
input. Our implementations of X-DeepLLL and X-GGLLL algorithms do not suffer
from any such error, that we notice up to and including dimension 250. Hence, as far
as we know, they run correctly at higher dimensions, as long as the values fit within
the precision allowed by the implementation.

Experimental Data

Our comparisons of the aforementioned algorithms are based on the average values
of three efficiency parameters, namely, (1) running time (Table 4 and Figure 4 for
preprocessed execution; Table 6 and Figure 7 for standalone execution), (2) number of
reorderings/deep insertions (Table 5 and Figure 5 for preprocessed execution; Table 7
for standalone execution), and (3) number of size reductions of the basis vectors as in
step 3 of Algorithm 1 (Table 5 and Figure 6 for preprocessed execution; Table 8 for
standalone execution). We measure the output quality using averages of (1) the root
Hermite factor (RHF) (Table 2 and Figure 1), as well as (2) the length of the first
vector in the reduced bases (Table 3 and Figure 3).

26



Improving Runtime

There could be several directions for improving the runtime efficiency of (multi-
precision) implementations of X-DeepLLL and X-GGLLL, that may be explored in
the future. Firstly, there could be smarter ways of computing the GSO information
and associated bookkeeping as in [11] that has significantly improved the runtime of
the X-DeepLLL algorithms, which we have already utilised. Secondly, the precision
required for correct and efficient execution could be bounded as in L2 [10] to improve
the runtime of the multi-precision implementations. Moreover, one may choose the
cheapest reduction strategy as in [37], which makes use of heuristics as well as methods
that provably ensure that the basis is reduced not just correctly, but also efficiently.
This strategy is implemented in FPLLL [24]. A similar method may be applied to the
greedy global algorithms, where the overestimation of precision is used initially due to
the large entries in the input basis, but the working precision is reduced as the basis
quality improves.

6.1 Output Quality

We first compare the output quality of X-DeepLLL, X-GGLLL and BKZ with β =
8, 10, 12, 20. The average RHF achieved by each of these algorithms for dimensions
40 − 210 are shown in Table 2 and Figure 1. Furthermore, the average length of the
first vector in the reduced bases that give the average RHFs are shown in Table 3 and
Figure 3.

Algorithm
Dim Pot-Deep Pot-GG SS-Deep SS-GG BKZ-8 BKZ-10 BKZ-12 BKZ-20
40 1.01372 1.01341 1.01366 1.01333 1.01352 1.01323 1.01300 1.01243
50 1.01427 1.01390 1.01413 1.01355 1.01388 1.01344 1.01316 1.01250
60 1.01425 1.01404 1.01410 1.01373 1.01411 1.01375 1.01334 1.01241
70 1.01443 1.01418 1.01418 1.01378 1.01427 1.01382 1.01351 1.01248
80 1.01457 1.01432 1.01410 1.01378 1.01438 1.01402 1.01359 1.01250
90 1.01466 1.01453 1.01407 1.01378 1.01453 1.01404 1.01368 1.01252
100 1.01479 1.01460 1.01412 1.01379 1.01462 1.01413 1.01380 1.01260
110 1.01484 1.01471 1.01410 1.01372 1.01470 1.01416 1.01383 1.01259
120 1.01496 1.01481 1.01414 1.01375 1.01472 1.01428 1.01381 1.01267
130 1.01496 1.01484 1.01416 1.01380 1.01481 1.01425 1.01389 1.01268
140 1.01504 1.01493 1.01413 1.01377 1.01488 1.01430 1.01395 1.01267
150 1.01507 1.01501 1.01414 1.01375 1.01491 1.01434 1.01398 1.01269
160 1.01512 1.01501 1.01414 1.01375 1.01495 1.01439 1.01400 1.01269
170 1.01521 1.01508 1.01416 1.01373 1.01494 1.01442 1.01400 1.01274
180 1.01524 1.01509 1.01414 1.01375 1.01500 1.01448 1.01403 1.01273
190 1.01522 1.01511 1.01425 1.01377 1.01504 1.01447 1.01407 1.01276
200 1.01526 1.01516 1.01430 1.01383 1.01505 1.01451 1.01408 1.01276
210 1.01530 1.01519 1.01449 1.01389 1.01507 1.01451 1.01411 1.01280

Table 2: Average Root Hermite Factor (RHF) using the preprocessed input bases.

In all tested dimensions, the average RHF achieved by X-GGLLL is smaller than
the average RHF achieved by X-DeepLLL. Therefore, X-GGLLL returns a better qual-
ity basis on average than the corresponding X-DeepLLL algorithm, whilst achieving
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Fig. 1: The average RHF achieved by lattice basis reduction algorithms in dimensions
40 to 210 using the preprocessed input bases.

the same theoretical notion of reduction (Lemma 2) and the same asymptotic com-
plexity (Sections 5.1, 5.2). At dimension 210, SS-GGLLL outperforms SS-DeepLLL
achieving average RHFs 1.01431 (corresponding to an average b1 length of 18564) and
1.01516 (average b1 length 20999) respectively. In other words, SS-GGLLL outputs
shortest vectors that are 11.6% shorter than SS-DeepLLL on the average. Similarly,
Pot-GGLLL and Pot-DeepLLL achieve average RHFs (average b1 norms) 1.01519
(24297) and 1.01530 (24862) respectively.

When comparing with the state-of-the-art BKZ, SS-GGLLL has a smaller RHF
than BKZ-8 across all tested dimensions. Furthermore, although SS-GGLLL starts
below BKZ-10 and 12 in terms of its output quality at dimension 40, it eventually
outperforms at higher dimensions. In Figure 2, the ratios of the average RHFs of SS-
GGLLL and BKZ-8, 10, 12 and 20, are provided for all dimensions tested. A value
above y = 1 implies that the RHF of SS-GGLLL is smaller, whereas a value below it
implies that the RHF of BKZ is smaller. One can see from Figures 1, 2 that SS-GGLLL
starts outperforming BKZ-10 at around dimension 60 and BKZ-12 around dimension
100. Furthermore, Figure 2 shows that the RHF of SS-GGLLL keeps getting better
than BKZ-8, 10 and 12 as the dimension increases up to around dimension 180. From
Figure 1, we also notice that the RHFs for BKZ-8, 10 and 12 are generally increas-
ing with the dimension, while that of SS-GGLLL is reasonably consistent up until
dimension 180. This explains the reason behind SS-GGLLL eventually outperforming
BKZ-10 and 12 in Figure 2.
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Fig. 2: The gap between the RHF of SS-GGLLL and BKZ with blocksize β = 8, 10,
12 and 20, expressed as
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Whilst Pot-GGLLL is an improvement on Pot-DeepLLL in terms of quality, it does
not compete as well with BKZ. Whilst Pot-GGLLL has an RHF less than BKZ-8 at
dimension 40, their RHFs are comparable up to approximately dimension 100, BKZ-8
has a smaller RHF than Pot-GGLLL in dimension 120 and above.

We note that the RHFs achieved by lattice reduction algorithms LLL, DeepLLL
and BKZ converge to a constant as the dimension increases [33]. Furthermore, the RHF
achieved by these algorithms solely depends on the algorithm itself, regardless of the
lattice being reduced, unless the input basis possesses a specific structure. Our greedy
global algorithms also exhibit similar behaviour, and hence we can be reasonably
convinced that SS-GGLLL will continue to produce bases of better quality than BKZ-
12, even at higher dimensions. It is worth noting that the seemingly erratic pattern
portrayed in Figure 1 is due to the small scale on the y-axis – much smaller than [33,
Figure 5] – which exaggerates even the slightest distinctions in RHF. Moreover, the
bases were tested only in increments of 10 in the dimension.

6.2 Standalone Runtime

We now compare the standalone runtimes of the LLL-style algorithms, without 0.99-
LLL preprocessing.

Whilst the asymptotic runtime complexities (comparisons in Table 1) of our greedy
global algorithms Pot-GGLLL and SS-GGLLL are the same as the corresponding X-
DeepLLL algorithms, we observe in Table 6 that our algorithms run in much less
time on average in every dimension, using overestimated precisions. Furthermore, as
the dimension grows, the greedy global algorithms become even better in comparison.
At dimension 150, SS-GGLLL is around 2.3 times faster than SS-DeepLLL and Pot-
GGLLL is about 1.4 times faster than Pot-DeepLLL. In fact, SS-GGLLL is only second
to LLL in standalone runtime, as is quite clear in Figure 7, being around 3.41 times
slower at dimension 150.

A more granular investigation of the standalone runtime is conducted using
the numbers of reorderings (deep insertions) B ← σi,k(B) and size reductions
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Algorithm
Dim Pot-Deep Pot-GG SS-Deep SS-GG BKZ-8 BKZ-10 BKZ-12 BKZ-20
40 1755.2 1734.2 1751.4 1728.6 1740.6 1720.5 1705.1 1666.8
50 2070.2 2033.0 2056.3 1998.0 2030.3 1986.4 1959.0 1895.5
60 2385.1 2355.4 2363.6 2311.8 2363.7 2314.0 2257.9 2137.1
70 2783.0 2736.5 2734.7 2661.5 2751.6 2667.7 2610.1 2430.8
80 3250.9 3188.1 3131.8 3053.7 3201.7 3109.6 3007.5 2758.0
90 3790.1 3746.5 3595.2 3502.3 3740.9 3583.5 3469.7 3129.7
100 4439.5 4355.0 4154.2 4023.4 4363.5 4159.5 4023.4 3574.4
110 5168.4 5100.7 4771.7 4576.4 5089.3 4802.3 4629.6 4048.9
120 6081.1 5971.7 5516.6 5265.0 5903.2 5603.3 5302.8 4630.1
130 7058.0 6939.7 6358.7 6076.8 6915.3 6432.8 6147.6 5261.1
140 8276.4 8153.9 7299.2 6939.5 8087.2 7466.2 7114.3 5962.4
150 9650.2 9560.1 8408.9 7932.5 9415.7 8663.6 8208.7 6781.1
160 11300.2 11104.3 9671.0 9094.8 11000.7 10059.4 9457.3 7694.8
170 13330.0 13036.3 11167.5 10400.5 12739.8 11680.6 10878.8 8794.8
180 15576.5 15185.6 12813.4 11958.1 14918.2 13608.4 12559.8 9968.0
190 18076.2 17683.8 15055.7 13773.0 17458.3 15678.3 14552.4 11381.2
200 21194.1 20751.2 17538.2 15970.7 20298.2 18271.4 16756.4 12907.8
210 24861.7 24296.8 20999.1 18564.3 23707.4 21091.0 19390.3 14793.8

Table 3: Average length of the first vector in reduced bases using the preprocessed
input bases.

bk − ⌊µk,j⌉bj performed by each algorithm. At dimension 150, the number of deep
insertions of Pot-GGLLL is only 0.87% of Pot-DeepLLL, and the number of deep
insertions of SS-GGLLL is only 1.87% of SS-DeepLLL, as reported in Table 7. Lesser
deep insertions imply lesser iterations in X-DeepLLL and X-GGLLL. However, the
number of iterations may not be the true representative of the runtime.
Remark 10. The comparisons of the number of reorderings in LLL-style algorithms
provide strong intuitive justification for our greedy global approach in terms of improv-
ing efficiency. One would expect that fewer reorderings of the basis (and hence fewer
GSO updates and size reductions) would result in a more efficient algorithm. How-
ever, we must note that upon a reordering in the X-GGLLL algorithm, there is more
that needs to be done compared to X-DeepLLL to ensure that the basis is fully size
reduced for the next iteration. Hence, recording the number of size reductions of bk

with bj (Algorithm 1[Step 3]) provides a more granular measure of efficiency for fairer
comparison between the LLL-style algorithms.

In the standalone comparison shown in Table 8, we see that at dimension 150 the
average number of size reductions (Algorithm 1[Step 3]) of Pot-GGLLL is 61.68% of
Pot-DeepLLL, and that of SS-GGLLL is 68.13% of SS-DeepLLL. These percentages
are higher than the percentages of deep insertions mentioned above, because of the
reasons explained in Remarks 8 and 10. However, the decrease in the number of deep
insertions and iterations is so prominent, that the additional operations after every
deep insertion is well compensated. In summary, X-GGLLL requires significantly fewer
deep insertions and overall fewer size reductions in standalone comparison than X-
DeepLLL. Hence the overall runtime of the X-GGLLL algorithms is much better than
the X-DeepLLL algorithms.
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Fig. 3: The average length of the first basis vector after being reduced in dimensions
180 to 210 using the preprocessed input bases.

We reiterate that the overestimated floating-point precision is key to the runtimes
of the X-DeepLLL and X-GGLLL algorithms. It may be possible to improve the
runtimes of these algorithms using techniques from [10, 37, 11]. However, such improve-
ments should not change the number of deep insertions or size reductions reported
here.
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Algorithm
Dim Pot-Deep Pot-GG SS-Deep SS-GG BKZ-8 BKZ-10 BKZ-12 BKZ-20
40 0.00146 0.00287 0.00134 0.00165 0.0276 0.0301 0.0336 0.0582
50 0.00753 0.00377 0.00316 0.00386 0.0743 0.0835 0.0931 0.166
60 0.00953 0.0185 0.00783 0.00915 0.165 0.184 0.214 0.426
70 0.0220 0.0409 0.0172 0.0209 0.347 0.381 0.427 0.927
80 0.0439 0.0861 0.0352 0.0438 0.684 0.733 0.828 1.96
90 0.0800 0.155 0.0632 0.0824 1.23 1.33 1.48 3.62
100 0.141 0.286 0.111 0.155 2.01 2.21 2.48 6.80
110 0.232 0.463 0.184 0.276 3.02 3.42 3.90 11.6
120 0.364 0.742 0.287 0.468 4.48 5.33 5.83 17.7
130 0.545 1.18 0.435 0.775 6.72 7.36 8.32 26.5
140 0.814 1.75 0.651 1.23 9.82 10.6 11.5 39.2
150 1.17 2.55 0.94 1.94 13.4 15.3 16.9 54.6
160 1.65 3.68 1.34 3.01 20.7 24.3 27.1 88.2
170 2.26 5.23 1.85 4.44 27.3 30.0 34.3 125
180 3.04 7.10 2.46 6.37 34.8 38.5 42.6 172
190 4.00 9.79 3.18 8.99 46.1 49.7 55.6 226
200 5.36 13.2 4.16 12.6 58.8 64.1 72.3 285
210 6.73 16.8 4.84 16.5 74.7 85.2 97.8 364

Table 4: Average runtime in seconds (rounded to most significant 3 digits) on the
preprocessed bases.

6.3 Runtime with LLL Preprocessing

Here we compare the runtime of the algorithms on SVP Challenge bases which have
been 0.99-LLL reduced using the FPLLL [24] implementation.

Our preprocessed runtime results are in contrast with the standalone runtime
comparison from Section 6.2. We see from Table 4 (Figure 4) that our algorithms
have a slower runtime than the corresponding DeepLLL algorithm on the 0.99-LLL
reduced bases used as input. Furthermore, as the dimension grows, the gap between
X-DeepLLL and X-GGLLL slowly increases. At dimension 40, Pot-GGLLL is 2.0×
slower than Pot-DeepLLL and SS-GGLLL is 1.2× slower than SS-DeepLLL. At dimen-
sion 210, the greedy global algorithms are 2.5× and 3.4× slower respectively. However,
the greedy global algorithms are still very efficient in practice; reducing the input bases
at dimension 210 in less than 17 seconds on average.

As before, we consider the subroutines within each iteration to conduct a granular
analysis of the runtime differences between X-DeepLLL and X-GGLLL. We consider
the numbers of basis reorderings (deep insertions) B ← σi,k(B) and size reductions
bk−⌊µk,j⌉bj (Algorithm 1[Step 3]) performed by each of the algorithms. The average
number of reorderings in the LLL-style algorithms is provided in Table 5 (Figure 5). As
in the standalone comparison, across all tested dimensions, the greedy global algorithms
perform fewer deep insertions than their DeepLLL counterparts. At dimension 40, Pot-
DeepLLL and SS-DeepLLL perform 3.0× more deep insertions than Pot-GGLLL and
SS-GGLLL respectively. At dimension 210, Pot-DeepLLL performs 17.6× more deep
insertions than Pot-GGLLL and SS-DeepLLL performs 5.5× more deep insertions
than SS-GGLLL. It is also interesting to note here that Pot-GGLLL performed fewer
reorderings than SS-GGLLL on average across all tested dimensions.
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Fig. 4: The average runtime of lattice basis reduction algorithms in dimensions 40 to
210 using the preprocessed input bases.

As pointed out in Remark 10, the average number of size reductions (Algo-
rithm 1[Step 3]) is a more granular indicator for the runtime. Table 5 also provides
the average number of size reductions. Across all tested dimensions the greedy global
variants always perform more size reductions than their DeepLLL counterparts. At
dimension 40, Pot-GGLLL and SS-GGLLL perform 1.9× more size reductions than
Pot-DeepLLL and SS-DeepLLL respectively. At dimension 210, Pot-GGLLL performs
2.4× more size reductions than Pot-DeepLLL and SS-GGLLL performs 3.9× more size
reductions than SS-DeepLLL. Furthermore, a graphical representation of the average
number of size reductions in Figure 6 shows the diverging curves of X-GGLLL and the
respective X-DeepLLL counterparts showing that the difference in the number keeps
growing as the dimension increases. Unlike the standalone performance of the algo-
rithms, the reduction in the number of reorderings in the preprocessed performance
of the greedy global framework has not been able to compensate for the increase in
its number of size reductions. This, along with the index search step, appears to be
the reason why X-GGLLL is slower than X-DeepLLL in practice using standard data
type implementations for preprocessed bases.

When comparing with BKZ, we see that both SS-GGLLL and Pot-GGLLL are
unilaterally faster than the very efficient FPLLL [24] implementation of BKZ using the
long double datatype for GSO information for all 4 blocksizes and all dimensions in
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Algorithm
Reorderings Size Reductions

Dim Pot-Deep Pot-GG SS-Deep SS-GG Pot-Deep Pot-GG SS-Deep SS-GG
40 211 71 247 83 2620 4927 3224 5987
50 502 122 584 143 8470 15524 10357 18917
60 983 180 1170 216 21509 37996 27524 47166
70 1716 253 2045 315 46684 81529 60196 104540
80 2740 358 3359 450 90205 161833 122865 213469
90 4058 457 4966 604 158490 284433 220329 392239
100 5881 604 7151 826 264844 490594 377831 705232
110 8042 733 9739 1110 413640 770525 610176 1200356
120 10748 907 12811 1464 624169 1190832 938518 1960126
130 13820 1138 16178 1918 893756 1792218 1384967 3104523
140 17938 1338 20411 2440 1282404 2584909 2026213 4742813
150 22354 1594 24644 3162 1754879 3619918 2845232 7133488
160 27284 1840 29193 3986 2331875 4931985 3882114 10412952
170 33425 2195 34349 4925 3086531 6751534 5235544 14816911
180 40278 2516 39459 5988 4005652 8927973 6840290 20568885
190 47565 2935 44186 7163 5058505 11673474 8599039 27791502
200 56683 3363 49229 8413 6438373 15158279 10614901 36908973
210 66134 3766 53005 9715 7998874 19132055 12410508 47824142

Table 5: Average number of reorderings and size reductions bk−⌊µk,j⌉bj for the
preprocessed bases.
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Fig. 5: The average number of basis reorderings required to reduce bases in dimensions
40-210.

our tests. As a result, since X-DeepLLL is faster than X-GGLLL on the preprocessed
bases, we also have that Pot-DeepLLL and SS-DeepLLL are also unilaterally faster
than BKZ. At dimension 150, BKZ-8, 10, 12 and 20 took around 6.9, 7.9, 8.7 and
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bases in dimensions 40-210 using the preprocessed input bases.

28.1 times longer than SS-GGLLL respectively. At dimension 210, BKZ-8, 10, 12 and
20 took around 4.5, 5.2, 5.9 and 22.1 times longer than SS-GGLLL respectively . It
is clear from the diverging curves in Figure 4 that BKZ becomes slower compared to
SS-GGLLL as the dimension increases.

7 Conclusion

In this work, we first interpreted the (generalised) Lovász condition [6] as a reordering
constraint used to improve the length ∥b∗

i ∥ of the ith GSO vector of the basis, which
is a localised measure of the quality of the basis. We thus arrived at a generalised rep-
resentation of DeepLLL [6], Pot-DeepLLL [9] and SS-DeepLLL [7] algorithms where
they iteratively improve a local or global measure of basis quality. This generalisa-
tion leads us to the new greedy global framework in the form of a generic algorithm
X-GGLLL for lattice basis reduction. The algorithm works by iteratively reducing a
general measure of quality X of the basis. The key novelty in the framework is to work
with the whole lattice in every iteration in place of a sublattice as in all previous LLL-
style algorithms. The basis vectors are reordered using a greedy approach towards
improving their quality X which results in very efficient algorithms. Our framework
is instantiated by substituting the general measure X with the concrete quality mea-
sures potential (Pot) and squared sum (SS). A local measure like LCi(B) provides
independent values for different indices i. So more careful consideration must be taken
to construct a greedy global algorithm using such a measure, that we leave as future
work. We have proved results on the efficiency of the generic algorithm X-GGLLL
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and on the two new concrete algorithms Pot-GGLLL and SS-GGLLL. Furthermore,
we have shown that the bases produced by our algorithms are of provable quality.

Using multi-precision arithmetic implementations for standalone comparison
between the algorithms (without preprocessing the bases), our greedy global variants
have a faster runtime than their DeepLLL counterparts, whilst also outperforming
them in terms of basis quality. In fact, SS-GGLLL is only second to LLL in standalone
runtime, while of course providing much shorter vectors. However, using standard data
type implementation for 0.99-LLL preprocessed input bases, the X-GGLLL algorithms
are slower than the corresponding X-DeepLLL algorithms, whilst still outperforming
them in quality. We provide justifications for the runtime comparisons based on more
granular runtime parameters like the number of reorderings pertaining to iterations
and the number of size reductions. Our implementations are public and it may be pos-
sible to improve the runtimes of our X-GGLLL algorithms using techniques similar
to those [10, 37, 11] that have already been used on previous LLL-style algorithms.

Note that while working on the preprocessed bases, the X-DeepLLL and X-GGLLL
algorithms are significantly quicker than the FPLLL implementation of BKZ, even
for small blocksizes. Furthermore, SS-GGLLL outputs better quality bases than BKZ-
12 in dimension 100 and greater. In other words, SS-GGLLL is an improvement on
BKZ-12 in both runtime efficiency and basis quality. This demonstrates the practical
strength of the greedy global approach.

Our design principle has been to achieve the best possible efficiency in reaching
an assured quality by reducing the measure X as much as possible in each iteration.
The result is quick improvements in the basis quality. Our framework could be altered
to not make the most greedy choice resulting in a slower algorithm which performs
more iterations to help close the gap in quality with BKZ (say with blocksize 20)
at smaller dimensions. There could be other strategies that may as well decrease the
overall runtime without compromising on the quality or even improving it, as X-
GGLLL did over X-DeepLLL. One may also consider employing more than one basis
quality measure and their combinations to be improved. We leave such explorations for
future work with the belief that our framework has opened up avenues for designing
interesting new lattice reduction algorithms.
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A Standalone Comparison Data

Algorithm
Dim LLL Pot-Deep Pot-GG SS-Deep SS-GG
40 2.02 14.2 6.37 8.54 2.19
50 5.74 48.1 20.7 25.3 6.06
60 12.6 136 59.1 63.2 15.1
70 22.7 295 134 124 31.1
80 41.9 645 301 244 63.2
90 85.0 1323 649 490 120
100 148 3022 1555 954 275
110 248 5644 3043 1777 497
120 348 8918 5130 2479 816
130 580 15929 9865 4103 1695
140 831 25617 16886 6268 2554
150 1134 37328 26738 8752 3867

Table 6: Average runtime in seconds (rounded
to most significant 3 digits for smaller values)
for the standalone algorithms.

40 60 80 100 120 140
0

10,000

20,000

30,000

40,000

Dimension

A
ve

ra
ge

R
u

n
ti

m
e

Pot-DeepLLL
Pot-GGLLL
SS-DeepLLL
SS-GGLLL
LLL

Fig. 7: The average runtime of the standalone algorithms in dimensions 40 to 150.
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Algorithm
Dim LLL Pot-Deep Pot-GG SS-Deep SS-GG
40 27265 11891 301 12512 362
50 47667 22251 429 23996 517
60 73652 36332 571 39682 705
70 105302 54153 737 59628 927
80 142102 75783 914 83783 1206
90 184177 101189 1128 112048 1525
100 231595 130547 1364 144138 1938
110 282967 163159 1578 179535 2400
120 339909 199762 1887 217762 2930
130 400127 239663 2186 258387 3626
140 465034 283244 2548 301361 4429
150 535176 329958 2902 346082 5442

Table 7: Average number of basis reorderings
(rounded to nearest whole number) for the stan-
dalone algorithms.

Algorithm
Dim LLL Pot-Deep Pot-GG SS-Deep SS-GG
40 80917 127230 67410 143755 70706
50 185909 320840 155502 371094 164548
60 359996 669874 312213 790779 337483
70 623946 1228812 570384 1480132 630993
80 992473 2052506 963137 2522662 1106309
90 1485987 3199109 1541376 4010701 1827259
100 2123061 4732812 2353368 6044032 2903142
110 2901939 6677443 3417334 8694534 4428745
120 3859389 9122406 4894355 12063243 6553179
130 4982003 12083865 6759215 16242772 9523874
140 6281915 15604490 9173358 21403549 13473035
150 7815673 19710300 12158151 27623812 18822813

Table 8: Average number of size reductions bk −
⌊µk,j⌉bj (rounded to nearest whole number) for the
standalone algorithms.
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