
PROTEUS: A Tool to generate pipelined Number Theoretic
Transform Architectures for FHE and ZKP applications
FLORIAN HIRNER, Graz University of Technology, Austria
AHMET CAN MERT, Graz University of Technology, Austria
SUJOY SINHA ROY, Graz University of Technology, Austria

Emerging cryptographic algorithms such as fully homomorphic encryption (FHE) and zero-knowledge proof
(ZKP) perform arithmetic involving very large polynomials. One fundamental and time-consuming polynomial
operation is the Number theoretic transform (NTT) which is a generalization of the fast Fourier transform.
Hardware platforms such as FPGAs could be used to accelerate the NTTs in FHE and ZKP protocols. One
major problem is that the FHE and ZKP protocols require different parameter sets, e.g., polynomial degree
and coefficient size, depending on their applications. Therefore, a basic research question is: How to design
scalable hardware architectures for accelerating NTTs in the FHE and ZKP protocols?

In this paper, we present ‘PROTEUS’, an open-source and parametric tool that generates synthesizable
bandwidth-efficient NTT architectures for user-specified parameter sets. The architectures can be tuned to
utilize different memory bandwidths and parameters which is a very important design requirement in both
FHE and ZKP protocols. The generated NTT architectures show a significant performance speedup compared
to similar NTT architectures on FPGA. Further comparisons with state-of-the-art show a reduction of up to
23% and 35% in terms of DSP and BRAM utilization.
CCS Concepts: • Computer systems organization→ Reconfigurable computing; • Hardware→ Hardware
accelerators.
Additional Key Words and Phrases: Parametric, Pipelined, NTT, FHE, ZKP

Authors’ addresses: Florian Hirner, Graz University of Technology, Graz, Austria, florian.hirner@iaik.tugraz.at; Ahmet
Can Mert, Graz University of Technology, Graz, Austria, ahmet.mert@iaik.tugraz.at; Sujoy Sinha Roy, Graz University of
Technology, Graz, Austria, sujoy.sinharoy@iaik.tugraz.at.

2 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

1 INTRODUCTION
Advanced cryptographic protocols such as fully homomorphic encryption (FHE) and zero-knowledge
proof (ZKP) have tremendous potentials in realizing new privacy-preserving applications that
cannot otherwise be developed using classical cryptographic techniques. FHE [7] enables computa-
tions on the encrypted data without performing any decryption. Privacy-preserving outsourcing of
computation to untrusted entities, such as a cloud, is a popular example use case of FHE. ZKP [9]
systems enable a prover to prove to a verifier that a given statement is true without revealing any
additional information.
Both FHE and ZKP constructions use polynomial evaluations such as the Number Theoretic

Transform (NTT). The computational cost of NTT grows asymptotically as O(𝑛 log𝑛) with the
polynomial size 𝑛. Typically the polynomial size could be as large as 216 in FHE, and 216 to 224
in ZKP. Processing such large polynomials take time and computational resources. Although
there are efforts for algorithmic optimizations and improved software implementations to make
FHE/ZKP more practical, they still require better performance improvements for compute-intensive
operations like NTT. FPGA-based hardware acceleration has emerged as a strong candidate to
improve the performance of NTT. To improve the speed of NTT in FHE and ZKP applications,
several hardware accelerators have been proposed in the literature [5, 8, 12, 14–16, 18, 19, 29–31, 33].
However, most of these works are optimized for a specific set of parameters or target performance
fixed during the design of the hardware architectures [19, 26]. Hence, they do not support more
than one FHE or ZKP application and are not scalable.
Flexibility to support different parameter sets is an important requirement in both FHE and

ZKP applications as their parameter sets change with the underlying computational constraints.
Furthermore, FHE and ZKP constructions are still developing and there is little or less standardiza-
tion in terms of parameters. Designing flexible hardware for NTT is a non-trivial task due to the
complex memory access and control patterns of NTT. Some hardware accelerators [5, 16] provide
run-time flexibility by supporting a limited set of specific parameters but increase the hardware
cost enormously. Thus, design-time flexible NTT accelerators with a variety of parameter support
have crucial importance for FHE and ZKP applications.
In this paper, we present ‘PROTEUS’ a tool that generates bandwidth-efficient and pipelined

NTT architectures for developer specified parameter sets namely the polynomial size and modulus
size. PROTEUS generated hardware architectures are design-time flexible and give optimal resource
utilizations on FPGA platforms. The main impact of PROTEUS is that it saves precious design time
and effort of a developer by generating optimal and synthesizable NTT architecture description in
Verilog and SystemVerilog. The key contributions of this works are listed as follows:

• We analyze different types of NTTs and develop a framework, PROTEUS, that can generate
bandwidth-efficient single-path delay feedback (SDF) and multi-path delay commutator
(MDC) architectures for Radix-2 NTT.
• The proposed framework supports design-time flexibility in generating NTT hardware for

different polynomial and coefficient sizes. This increases the adaptability for different FHE
and ZKP use cases.
• We design PROTEUS in such a way that it can either be used as a standalone NTT unit
for bandwidth-critical systems or as a basic building block inside a system targeting very
large polynomial size. When a low-latency is desired for the NTT of a large polynomial,
a divide-and-conquer approach can be used to decompose the computation into smaller
NTTs, which could be instantiated as PROTEUS-generated SDF or MDC architectures.
• We design and implement efficient and parametric low-level arithmetic units of NTT such
as integer multiplier, modular reduction unit and compact butterfly units. Specifically, we

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 3

adopted word-level Montgomery reduction for NTT-friendly primes approach [15] and
proposed an algorithm to map it into FPGA using DSP units efficiently.
• We make our source code available at https://github.com/florianhirner/proteus. It should be

noted that there are only few open-source NTT hardware in the literature. We believe our
open-source parametric design will help researchers in this field.

To the best of our knowledge, PROTEUS is the first fully-parameterized and open-source
SDF/MDC-based NTT architecture in the literature. The organization of the paper is as follows.
In Sec. 2, we present preliminary information necessary for understanding of the paper. Sec. 3
introduces SDF-based and MDC-based NTT architectures. Sec. 4 presents an analysis of different
NTT configurations. Sec. 5 presents the architecture of the proposed hardware generator. In Sec. 6
we present area and performance evaluation results and Sec. 7 concludes the paper.

2 PRELIMINARIES
In this section, NTT relevant notations and mathematical background are explained briefly.

2.1 Notations
The ring of integers modulo 𝑞 is represented as Z𝑞 . Let 𝑅𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ be the polynomial ring
that consists of polynomials reduced by the irreducible polynomial 𝑥𝑛 + 1 with coefficients in Z𝑞 .
In this paper, 𝑞 is a prime and 𝑛 is a power-of-2. The prime 𝑞 is either congruent to 1 modulo 𝑛
or 2𝑛. We use lowercase letters and lowercase bold font letters to represent integers (e.g., 𝑎 ∈ Z𝑞)
and polynomials (e.g., 𝒂 ∈ 𝑅𝑞) respectively. The 𝑖th coefficient of a polynomial 𝒂 ∈ 𝑅𝑞 is denoted
as 𝒂𝑖 or 𝒂 [𝑖]. Therefore, the polynomial 𝒂 is represented as 𝒂 =

∑𝑛−1
𝑖=0 𝑥𝑖𝒂𝑖 or 𝒂 =

∑𝑛−1
𝑖=0 𝑥𝑖𝒂 [𝑖]. The

NTT of a polynomial 𝒂 ∈ 𝑅𝑞 is denoted as �̂�. Let ·, × and ⊙ represent the integer, polynomial and
coefficient-wise multiplications, respectively.

2.2 Number Theoretic Transformation (NTT) for FHE and ZKP
The NTT is used as a fundamental building block in FHE and ZKP protocols. NTT is a generalization
of the classical Fast Fourier Transform (FFT) over Z𝑞 where 𝑞 is a prime satisfying 𝑞 ≡ 1 (mod 𝑛).
An𝑛-pt NTT takes an input polynomial 𝒂 ∈ 𝑅𝑞 and outputs the evaluation �̂� where �̂�𝑖 =

∑𝑛−1
𝑗=0 𝒂𝑖 ·𝜔𝑖 𝑗

(mod 𝑞) for 0 ≤ 𝑖 < 𝑛. The NTT uses the constant 𝜔 which is an 𝑛th primitive root of the unity i.e.,
𝜔𝑛 ≡ 1 (mod 𝑞) and 𝜔𝑖 ≠ 1 (mod 𝑞) ∀𝑖 < 𝑛. The inverse NTT (INTT) transforms an NTT-output
into a polynomial representation as 𝒂𝑖 = 1

𝑛

∑𝑛−1
𝑗=0 �̂�𝑖 · 𝜔𝑖 𝑗 (mod 𝑞) for 0 ≤ 𝑖 < 𝑛.

There are two approaches [24] to compute an NTT namely, decimation-in-time (DIT) and
decimation-in-frequency (DIF). The DIT approach of NTT uses the Cooley-Tukey (CT) butterfly
configuration and the DIF approach uses the Gentleman-Sande (GS) butterfly. For a given input
coefficient pair (𝑎, 𝑏) and the twiddle factor 𝜔 , the Cooley-Tukey and Gentleman-Sande butterflies
output the coefficient pairs {𝑎 + 𝑏 · 𝜔 , 𝑎 − 𝑏 · 𝜔} and {𝑎 + 𝑏, (𝑎 − 𝑏) · 𝜔} respectively.
In the NTT domain polynomial multiplication is a simple coefficient-wise operation [27]. An

NTT-based polynomial multiplication first zero pads each polynomial into 2𝑛-coefficients, then
computes 2𝑛-pt NTTs of the two polynomials, then multiplies them coefficient-wise, and finally
computes one 2𝑛-pt INTT to obtain the result of the polynomial multiplication. If the polynomial
multiplication is performed in a polynomial ring, a modular reduction by the irreducible polynomial
is performed.
When working in 𝑅𝑞 = Z𝑞 [𝑥]/𝑥𝑛 + 1 with 𝑛 a power-of-2, a special optimization known as

the negative wrapped convolution (NWC) could be used to reduce the computation overhead
almost by a factor of two as only 𝑛-point NTT/INTT are required instead of 2𝑛-point NTT/INTT.
NWC requires existence of a 2𝑛th root of the unity, say 𝜓 ∈ Z𝑞 which is possible only when

https://github.com/florianhirner/proteus

4 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Algorithm 1 DIF NTT with GS Butterfly [11]
Input: 𝒂 ∈ 𝑅𝑞 (in normal order)
Input: 𝜔 (𝑛/2 powers of 𝜔 in normal order)
Output: �̂� ← NTT(𝒂) ∈ 𝑅𝑞 (in BR order)

1: 𝑚 ← 1
2: for (𝑦 = 𝑛;𝑦 > 1;𝑦 = 𝑦/2) do
3: 𝑠 = 𝑦/2
4: for (𝑘 = 0;𝑘 < 𝑚;𝑘 = 𝑘 + 1) do
5: 𝑗1 ← 𝑘 · 𝑦, 𝑗2 ← 𝑗1 + 𝑠 − 1, 𝑗3 ← 0
6: for (𝑗 = 𝑗1; 𝑗 ≤ 𝑗2; 𝑗 = 𝑗 + 1) do
7: 𝑤 ← 𝜔 [𝑗3], 𝑢 ← 𝒂 [𝑗], 𝑣 ← 𝒂 [𝑗 + 𝑠]
8: 𝒂 [𝑗] ← (𝑢 + 𝑣) (mod 𝑞)
9: 𝒂 [𝑗 + 𝑠] ← (𝑢 − 𝑣) ·𝑤 (mod 𝑞)
10: 𝑗3 ← 𝑗3 +𝑚
11: end for
12: 𝑚 ← 2 ·𝑚, 𝑦 ← 𝑠

13: end for
14: end for
15: return 𝒂

Algorithm 2 DIT MNTT with CT Butterfly [11]
Input: 𝒂 ∈ 𝑅𝑞 (in normal order)
Input:𝜓𝑟𝑒𝑣 (𝑛 powers of𝜓 in BR order)
Output: �̂� ← MNTT(𝒂) ∈ 𝑅𝑞 (in BR order)

1: 𝑡 ← 𝑛

2: for (𝑚 = 1;𝑚 < 𝑛;𝑚 = 2 ·𝑚) do
3: 𝑡 ← 𝑡/2
4: for (𝑖 = 0; 𝑖 < 𝑚; 𝑖 = 𝑖 + 1) do
5: 𝑗1 ← 2 · 𝑖 · 𝑡 , 𝑗2 ← 𝑗1 + 𝑡 − 1
6: 𝑤 ← 𝜓𝑟𝑒𝑣 [𝑚 + 𝑖]
7: for (𝑗 = 𝑗1; 𝑗 ≤ 𝑗2; 𝑗 = 𝑗 + 1) do
8: 𝑢 ← 𝒂 [𝑗]
9: 𝑣 ← 𝒂 [𝑗 + 𝑡] ·𝑤 (mod 𝑞)
10: 𝒂 [𝑗] ← (𝑢 + 𝑣) (mod 𝑞)
11: 𝒂 [𝑗 + 𝑡] ← (𝑢 − 𝑣) (mod 𝑞)
12: end for
13: end for
14: end for
15: return 𝒂

𝑞 ≡ 1 (mod 2𝑛). For computing 𝒄 = 𝒂 × 𝒃 in 𝑅𝑞 using NWC, the input polynomials 𝒂 and 𝒃
are first scaled by the powers of 𝜓 to obtain 𝒂′ = (𝒂0, 𝒂1, . . . , 𝒂𝑛−1) ⊙ (𝜓 0,𝜓 1, . . . ,𝜓𝑛−1) and 𝒃′ =
(𝒃0, 𝒃1, . . . , 𝒃𝑛−1) ⊙ (𝜓 0,𝜓 1, . . . ,𝜓𝑛−1) respectively (which we refer to as the pre-processing). Then,
the standard 𝑛-pt NTT-based polynomial multiplication is used to obtain 𝒄 ′ = INTT

(
NTT(𝒂′) ⊙

NTT(𝒃′)
)
. Finally, the coefficients of 𝒄 ′ are multiplied by the powers of𝜓 −1 to obtain the original

result 𝒄 = (𝒄 ′0, . . . , 𝒄 ′𝑛−2, 𝒄 ′𝑛−1)⊙(𝜓 0,𝜓 −1, . . . ,𝜓 −(𝑛−1)). The final scaling step is called post-processing
in our paper.
It is possible to combine the pre and post-processing with NTT and INTT operations, respec-

tively [20, 23]. This requires using the DIT approach for NTT with 𝜓 and the DIF approach for
INTT with𝜓 −1. We refer to these new NTT and INTT as merged NTT (MNTT) and merged INTT
(MINTT), respectively, for the rest of the paper. Algorithms for Radix-2 Iterative DIF-based NTT
and Radix-2 Iterative DIT-based MNTT are given in Algorithm 1 and Algorithm 2, respectively. It
should be noted that FHE constructions use MNTT/MINTT while ZKP schemes use NTT/INTT.
PROTEUS provides support for both NTT/INTT and MNTT/MINTT.

Order of input and output coefficients: In-place NTT and MNTT operations change the order
of the coefficient after the transformations. A DIF NTT takes a polynomial in the normal order (i.e.,
𝒂0, 𝒂1, . . . , 𝒂𝑛−1) and generates a polynomial in the bit-reversed order (i.e., 𝒂𝑏𝑟 (0) , 𝒂𝑏𝑟 (1) , . . . , 𝒂𝑏𝑟 (𝑛−1))
where 𝑏𝑟 (·) represents bit-reverse of log2 (𝑛)-bit integer. It is possible to derive various configura-
tions [3] for DIF and DIT approaches such as normal to bit-reversed order (𝑁) 𝑅) and bit-reversed
to normal order (𝑅) 𝑁). We summarize all possible DIT and DIF configurations for NTT/INTT
and MNTT/MINTT in Fig. 1 and Fig. 2, respectively. We use superscript and subscript to represent
DIT/DIF type and input polynomial order change for an NTT/MNTT operation, respectively. We
also use 𝜔 and 𝜔−1 to represent NTT or INTT, respectively. For example, NTT𝐷𝐼𝑇

𝑁)𝑅, 𝜔 represents a
DIT NTT that takes input polynomial in the normal order and generates the output polynomial in

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 5

Fig. 1. Configurations for NTT/INTT
Fig. 2. Configurations for MNTT/MINTT

bit reversed order. In Fig. 1 and Fig. 2, the boxes with𝜓 ,𝜓 −1 and 𝑛−1 represent the pre-processing,
post-processing and scalar multiplication by 𝑛−1 operations, respectively. It is possible to use only
N-to-N or R-to-R orders without mixing R with N. The disadvantage is that such an approach
requires extra memory.

3 SDF AND MDC ARCHITECTURES FOR NTT
In hardware, there are various ways of designing architectures for DIT and DIF NTTs. Choosing an
appropriate architecture depends on the platform and application constraints. The 𝑛-point iterative
NTTs in Algorithm 1 and 2 have log2 (𝑛) stages where each stage performs 𝑛

2 butterfly operations
(steps 7-9 of Algorithm 1 and steps 8-11 of Algorithm 2). An iterative NTT implementation may use
one or several butterfly units for computing the butterfly operations in all stages. Therefore, the
iterative NTT is able to scale the latency. At the same time, an iterative NTT requires high bandwidth
on-chip memory (proportional to the number of butterfly cores) and has high implementation
complexity when the polynomials are of large degrees [14, 15].

A fully or partially unrolled NTT architecture unrolls the NTT stages (step 2 of Algorithm 1) by
instantiating many butterfly cores for each stage. Such an unrolled architecture can be pipelined to
achieve high throughput. However, the area requirement of an unrolled NTT will be very large
when the polynomial degree is large [6]. Single-path Delay Feedback (SDF) and Multi-path Delay
Commutator (MDC) architectures, also referred to as pipelined architectures, use only one butterfly
unit for each NTT stage. Hence, they instantiate only log2 (𝑛) butterfly cores for computing 𝑛-pt
NTTs as there are log2 (𝑛) stages. Each butterfly core is exclusive to a specific NTT-stage and it
performs 𝑛/2 butterfly operations of the corresponding stage. The pipelined architectures provide
comparable throughput and performance with low bandwidth requirements [33]. In this work, we
target SDF and MDC Radix-2 NTT implementations.

3.1 Single-path Delay Feedback (SDF) Architecture
The Radix-2 SDF architecture takes one input coefficient per cycle and generates one output
coefficient per cycle after filling the internal pipeline stages. It uses one butterfly unit for each
stage, therefore log2 (𝑛) in total. Each butterfly unit is coupled with one memory for temporarily
storing several coefficients.
A butterfly computation requires two coefficients where the coefficient indices are separated

by an offset dependent on the stage. For example, a 256-pt DIF NTT of a polynomial 𝒂 takes
coefficients whose indices are separated by an offset of 128 (e.g., (𝒂𝑖 , 𝒂𝑖+128) for 𝑖 = 0, . . . , 127) in
the first stage. In the second stage, the butterfly unit takes coefficients separated by an offset of 64
(e.g., (𝒂𝑖 , 𝒂𝑖+64) for 𝑖 = 0, . . . , 63 and 𝑖 = 128, . . . , 191). This pattern continues until the last stage that
requires coefficients separated by an offset of just 1. Fig. 3 shows a high-level view of an SDF-NTT
architecture.

In order to provide inputs to the butterfly units with proper offset, the SDF architecture couples
each butterfly unit with a memory. The memory works as a temporary storage. Let us consider

6 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Fig. 3. High-level view of the Radix-2 SDF architecture. BFU and MEM stand for the butterfly and memory
respectively.

Fig. 4. High-level view of the Radix-2 MDC architecture. BUF, MEM and SW stand for the butterfly, memory,
and switch respectively.

a 256-pt DIF NTT as a example. The first stage is coupled with a memory of depth 128 as the
coefficients in the butterfly are separated by an offset of 128. The SDF architecture takes and stores
the first 128 input coefficients in the memory in the first 128 cycles. Then, it takes the following 128
inputs from the external source one-by-one, while reading the first 128 coefficients from its own
memory memory one-by-one, and sends the coefficient pairs to the butterfly unit during the next
128 cycles one-by-one. In this way, the butterfly unit receives coefficient pairs in the correct order.

The first output of each butterfly operation in the first stage (e.g., 𝒂0 to 𝒂127) is sent to the next
stage while the second output (e.g., 𝒂128 to 𝒂255) is stored inside the memory to be sent to the next
stage later. The next stage processes the polynomial in two parts, meaning that it separates the
coefficients of each part by an offset of 64 (e.g., (𝒂𝑖 , 𝒂𝑖+64) for 𝑖 = 0, . . . , 63 and 𝑖 = 128, . . . , 191). It
first processes the first part, then reads the second part from the memory of the first stage (e.g.,
𝒂128 to 𝒂255) and processes it. Each stage employs this technique to perform an NTT operation, yet,
with another offset.

A bottleneck of the aforementioned method is that the data is reversed during the computation.
Meaning that the input data is in the normal order while the output data is in the bit-reversed
order. Hence, a bit reversal at the end of the final pipeline stage is needed to change the output
coefficients to to the normal order. However, the bit-reversal can be eliminated selecting the next
INTT appropriately as described in Sec. 2.

3.2 Multi-path Delay Commutator (MDC) Architecture
An MDC architecture takes two coefficients per cycle as input and generates two outputs every
cycle after filling the pipeline. It uses one butterfly unit, two memory units for reordering the data,
and a switch commuter for each NTT stage, as shown in Fig. 4. Note that an MDC architecture
performs the same butterfly operations as the SDF. However, MDC requires two smaller memory
blocks per stage instead of one unlike SDF. The two memory blocks are used to prepare its output
(i.e., reorder) for the next NTT stage.

Similar to the SDF architecture, a butterfly operation during NTT/INTT takes two coefficients
where the two coefficient-indices are separated by an offset dependent on the stages. Fig. 4 shows a
high-level view of an MDC NTT architecture. Each stage is coupled with two memories,𝑀0 and
𝑀1, of depth 𝑑 , as shown in Fig. 4. The depth 𝑑 of the memory units depends on the size of the input

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 7

polynomial 𝑛 and the stage. It can be calculated as 𝑑 = 𝑛/(4 · (𝑠 + 1)) where 𝑠 = 0, 1, . . . , log2 (𝑛) − 1
is the stage number. In the case of 256-pt DIF NTT, each memory in the first stage has a depth of 64.
Inside each stage, the butterfly outputs are reordered for the next stage using two memories (MEM
blocks in Fig. 4) and one switch. The switch can change the order of two coefficients depending on
the required offset pattern in the next stage.

3.3 NTT for very large-degree polynomials using SDF/MDC architectures
Implementing NTT of a large-degree polynomial in hardware is not an easy task. It is even more
challenging when high performance is targeted. As explained in Sec. 3, iterative and unrolled NTT
architectures can achieve high performance by employing several butterfly units running in parallel.
However, their implementation complexity will be very high for a large degree polynomial. SDF
and MDC architectures for Radix-2 NTT achieve comparable performance with low bandwidth
and area requirements. However, their performance is limited by the configuration (e.g., they use
one butterfly unit for each NTT stage).
The hierarchical NTT approach divides a large-degree NTT operation into multiple smaller-

degree NTTs [14, 33]. Specifically, it first reshapes a polynomial as a matrix. Then it performs NTT
on columns of the matrix, transposes the matrix, and finally again performs NTT on columns of the
matrix. The separation into smaller NTT operations makes it easier to implement and parallelize
due to the smaller NTT size. An SDF and MDC-based architecture can be used to implement these
smaller NTT operations which require low bandwidth. Furthermore, it is possible to instantiate
multiple SDF/MDC architectures to perform multiple smaller-sized NTTs at the same time [33].

4 SELECTION OF PROPER NTT CONFIGURATION
Selection of the proper NTT configuration has a significant impact on the implementation com-
plexity and performance. The configuration selection depends on the target application and the
digital platform. As already explained in Sec. 2, DIT and DIF are two approaches to implement NTT
and MNTT efficiently in hardware and software platforms, and there are various configurations
for the order of input and output coefficients. In Table 1, we list 8 different DIT and DIF options
(denoted as OP𝑖) with different coefficient orders. The table will help us to select the best NTT/INTT
configuration for a targeted application or platform.
The first option (OP1) uses DIT NTT with 𝑁) 𝑅 ordering and DIF INTT with 𝑁) 𝑅 ordering.

This approach does not require any extra bit-reversal operation since the output order of the NTT
is the same as the input order of the INTT. However, it requires two different types of butterfly
configurations namely, Cooley-Tukey for DIT and Gentleman-Sandy for DIF. This approach can also
be used for MNTT and MINTT operations by simply changing 𝜔 and 𝜔−1 to𝜓 and𝜓 −1 respectively
as shown in Fig. 2. The exact alternative option is OP2 that uses DIF NTT and DIT INTT to avoid
bit-reversal. When the target application requires only NTT/INTT and not MNTT/MINTT, then
OP1 and OP2 are not optimal as they require two types of butterfly configurations. It is possible to
eliminate using two types of butterfly configuration by employing DIT-only or DIF-only NTT/INTT
with a different ordering as seen in OP3 and OP4 methods.

Having two different ordering (e.g., 𝑁) 𝑅 and 𝑅) 𝑁) configurations for NTT and INTT
operations complicates implementation and increases resource usage. In Fig. 5, we visualize con-
figurations of six NTT/MNTT approaches (NTT𝐷𝐼𝑇

𝑁)𝑅 , NTT
𝐷𝐼𝐹
𝑁)𝑅 , NTT

𝐷𝐼𝑇
𝑅)𝑁 , NTT

𝐷𝐼𝑇
𝑅)𝑁 , MNTT𝐷𝐼𝑇

𝑁)𝑅 ,
MINTT𝐷𝐼𝐹

𝑅)𝑁) for 𝑛 = 16. The white boxes show offset between coefficients while the yellow boxes
show root of unity powers used in a stage. NTT𝐷𝐼𝑇

𝑁)𝑅 and NTT𝐷𝐼𝑇
𝑅)𝑁 use the same butterfly type;

however, they use different orderings (as shown in Fig. 5). Due to ordering difference, NTT𝐷𝐼𝑇
𝑁)𝑅

and NTT𝐷𝐼𝑇
𝑅)𝑁 have different coefficient offsets in each stage. In SDF and MDC architectures, this

8 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Option Forward NTT Bit Reverse? Reordering? Inverse NTT Bit Reverse?

OP1 NTT𝐷𝐼𝑇
𝑁)𝑅 ,𝑤 NTT𝐷𝐼𝐹

𝑅)𝑁 ,𝑤
−1

OP2 NTT𝐷𝐼𝐹
𝑁)𝑅 ,𝑤 NTT𝐷𝐼𝑇

𝑅)𝑁 ,𝑤
−1

OP3 NTT𝐷𝐼𝑇
𝑁)𝑅 ,𝑤 NTT𝐷𝐼𝑇

𝑅)𝑁 ,𝑤
−1

OP4 NTT𝐷𝐼𝐹
𝑁)𝑅 ,𝑤 NTT𝐷𝐼𝐹

𝑅)𝑁 ,𝑤
−1

OP5 NTT𝐷𝐼𝑇
𝑁)𝑅 ,𝑤 ✓ NTT𝐷𝐼𝑇

𝑁)𝑅 ,𝑤
−1 ✓

OP6 NTT𝐷𝐼𝐹
𝑁)𝑅 ,𝑤 ✓ NTT𝐷𝐼𝐹

𝑁)𝑅 ,𝑤
−1 ✓

OP7 NTT𝐷𝐼𝑇
𝑁)𝑅 ,𝑤 ✓ ✓ → NTT𝐷𝐼𝑇

𝑁)𝑅 ,𝑤 ✓

OP8 NTT𝐷𝐼𝐹
𝑁)𝑅 ,𝑤 ✓ ✓ → NTT𝐷𝐼𝐹

𝑅)𝑁 ,𝑤 ✓

BR: Bit-reverse, RO: Reorder.
Table 1. Various options to perform NTT/INTT

Fig. 5. Offset between coefficients and twiddle factor powers used in each stage of six different NTT/MNTT
configurations for 𝑛 = 16

will create a huge burden on implementation as the memory depth of each stage depends on
the offset between input coefficients. This can be solved either by (𝑖) using memory units large
enough for both configurations in each stage or by (𝑖𝑖) making the data flow order configurable
using multiplexers. Both approaches will increase the implementation complexity significantly.
The NTT configurations OP5 and OP6 methods in Table 1 use the bit-reverse operation to eliminate
having two different ordering for NTT and INTT operations. Bit-reverse is expensive in hardware,
especially for iterative NTT architectures that generate multiple coefficients in each cycle. On
the other hand, SDF and MDC architectures generate 1 and 2 coefficients per cycle, respectively.
Thus, the bit-reverse operation can easily be implemented almost free of cost by writing the output
coefficients into the memory in the correct order.

In [4], the authors show that it is possible to use the same twiddle factors for both forward and
inverse NTTs. This special optimization requires reordering the input coefficients as shown in
Eqn. 1. The OP7 and OP8 options in Table 1 show the NTT/INTT configurations that use the same
twiddle factors for computing both NTT and INTT by employing bit-reverse and reorder (RO)
operations. Similar to OP5 and OP6, SDF and MDC architectures enable the implementation of BR

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 9

and RO operations without any extra implementation cost. In this work, our design can generate
hardware for all 8 options listed in Table 1.

(𝒂0, 𝒂1, 𝒂2, . . . , 𝒂𝑛−2, 𝒂𝑛−1) → (𝒂0, 𝒂𝑛−1, 𝒂𝑛−2, . . . , 𝒂2, 𝒂1) (1)

4.1 Reducing Memory Requirement for Twiddle Factors
An NTT operation requires 𝑛/2 different powers of twiddle factor 𝜔 , as mentioned in Sec. 2.2.
Similarly, INTT requires 𝑛/2 different powers of 𝜔−1. Each NTT/INTT stage uses a part of twiddle
factor powers during computations. For example, the first stage of NTT𝐷𝐼𝐹

𝑁)𝑅 uses all 𝑛/2 powers of
𝜔 , the second stage uses only half of the powers (𝑛/4 powers), and so on. Therefore, an NTT/INTT
implementation should store at least 𝑛 = 𝑛/2 + 𝑛/2 twiddle factor powers. Even some works store
more twiddle factors (e.g., they store the same twiddle factor several times in different memory
locations) to simplify the twiddle factor access pattern during computations [13]. Works like [13, 31]
store forward and inverse twiddle factors into two sets of ROMs and switch between them depending
on the operation. However, this approach takes quite a toll on memory utilization since the number
of twiddle factors doubles with each degree of the polynomial-size 𝑛.
We exploited the mathematical properties of the twiddle factor that 𝜔𝑛 ≡ 1 (mod 𝑞) and

𝜔𝑛/2 ≡ −1 (mod 𝑞) to halve the total number of twiddles factors that need to be stored, as shown
in Eqn. 2. Implying that the twiddle factor powers of NTT (𝜔𝑖) will be used to calculate the twiddle
factor powers of INTT (𝜔−𝑖).

𝜔−𝑖 = 𝜔𝑛 · 𝜔−𝑖 = 𝜔𝑛/2 · 𝜔𝑛/2 · 𝜔−𝑖 = −𝜔𝑛/2−𝑖 (2)

A specific𝜔−𝑖 can be written as𝜔𝑛 ·𝜔−𝑖 . If we split the term𝜔𝑛 into𝜔𝑛/2 ·𝜔𝑛/2, then we can write
the formula 𝜔𝑛 · 𝜔−𝑖 as 𝜔𝑛/2 · 𝜔𝑛/2−𝑖 . The property of 𝜔𝑛/2 allows us to write is as −1 which leads
to 𝜔𝑛/2 · 𝜔𝑛/2−𝑖 becoming −𝜔𝑛/2−𝑖 . Meaning that 𝜔−𝑖 can be computed by using −𝜔𝑛/2−𝑖 and this
is quite cheap in hardware since it just requires an additional subtraction circuit to get the modular
inverse of a twiddle factor power during INTT from a twiddle factor power. In our work, we used
this optimization and reduced the required twiddle factor storage by 50% in exchange for 𝑙𝑜𝑔2 (𝑛)
additional subtraction units. Note that this is also possible for MNTT/MINTT implementations
since𝜓 −𝑖 = −𝜓𝑛−𝑖 .

4.2 Eliminating the multiplication with 𝑛−1 at the end of INTT
INTT and MINTT require the coefficients of the resultant polynomial to be scaled by 𝑛−1 in Z𝑞 .
Although this scaling operation is straightforward to implement and has a linear time cost, it still
requires 𝑛 extra modular multiplications. This extra latency for the scaling operation can skipped
by merging the scaling with the post-processing operation in NWC, as shown in Fig. 2.

In [32], the authors proposed a technique to replace the multiplication by 𝑛−1 at the end of INTT
with the multiplication by 2−1 at the end of each INTT butterfly operation. This is implementation
friendly because for an odd prime 𝑞, 𝑎/2 in Z𝑞 can easily be computed as (𝑎 ≫ 1) + 𝑎[0] · (𝑞+12).
Thus, the extra 𝑛 multiplication operation can be eliminated using two extra adders in the butterfly
unit. In our work, we used this technique to reduce the latency of INTT and MINTT operations.

4.3 Related Works
There are a plethora of works in the literature targeting efficient NTT hardware architectures.
Most of these works target iterative NTT implementations with fixed parameters or very limited
run-time configurability. However, there are only a few works targeting SDF or MDC pipelined
architectures with and without design-time configurability [19, 26, 29–31, 33]. In Table 2, we list

10 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Work NTT Architecture Largest Reported Parameters Parametric? Open-source?
[12] Iterative up to 𝑛 = 212, log2 (𝑞) = 60 ✓ ✓

[5] Iterative up to 𝑛 = 211, log2 (𝑞) = 31 ✓ ✓

[18] Iterative up to 𝑛 = 212, log2 (𝑞) = 60 ✓

[8] Iterative up to 𝑛 = 213, log2 (𝑞) = 52 ✓

[31] SDF up to 𝑛 = 212, log2 (𝑞) = 60 ✓

[33] SDF up to 𝑛 = 210, log2 (𝑞) = 768
[26] MDC 𝑛 = 210
[19] MDC 𝑛 = 28, 𝑞 = 3329
[29] MDC up to 𝑛 = 214, log2 (𝑞) = 52 ✓

[30] MDC 𝑛 = 212, log2 (𝑞) = 28 ✓

Our∗ SDF/MDC up to 𝑛 = 216, log2 (𝑞) = 256 ✓ ✓
∗ For larger polynomial degrees, a hierarchical NTT (Sec. 3.3) could use several SDF/MDC blocks.

Table 2. Related works in the literature

all related NTT architectures in the literature targeting either a pipelined approach or supporting
design-time configurability. We also report their NTT architecture method, the largest reported
parameter, and the availability of their source code. It is worth mentioning that only [12] and [5]
make their source code available.
In [12, 13], the authors present design-time configurable iterative NTT architectures. Their

architecture takes the polynomial degree, coefficient modulus size and the number of processing
elements as inputs, and generates a synthesizable iterative NTT architecture for these parameters.
Their architectures use only DIF NTT approach with N-to-R ordering. Thus, their architectures
require costly bit-reversal operation between NTT and INTT. Similarly, since they only employ
DIF NTT architecture, their implementation cannot be used for MNTT/MINTT operations. Mu et
al. presented a parametric NTT architecture for iterative design approach [18], which eliminates
bit-reversal operation by employing both DIT and DIF approaches. They use CT and GS butterfly
configurations for NTT and INTT operations, respectively. Also, they present formal proof for
conflict-free memory access. The works in [5, 8] present iterative NTT architectures with both
run-time and design-time configurability. In [31], the authors present SDF NTT architectures for
multiple parameters. However, their implementation does not support MNTT/MINTT and their
code is not open-source. PipeZK [33] proposes an SDF architecture as a part of a large hierarchical
NTT architecture. Their work target the ASIC platform and is optimized for fixed parameters.
Works in [19, 26] propose high throughput oriented Radix-2 MDC NTT architectures. Their design
mainly targets post-quantum cryptographic schemes with small parameter sets and they use
fixed parameters. In [29, 30], a parametric architecture for Radix-2 MDC NTT is presented. Their
architecture can support different levels of parallelism and uses streaming permutation network
for implementing the complex access pattern of NTT operation.

5 THE PROPOSED FRAMEWORK
In this section, we explain the proposed tool/framework in a top-down fashion, starting with the
design of the parameter-flexible hardware generator tool. Then, we explain SDF and MDC Radix-2
NTT architectures. Finally, we explain low-level arithmetic units, parametric integer multiplier,
parametric word-level Montgomery reduction unit and parametric butterfly circuits.

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 11

Fig. 6. The proposed framework PROTEUS

5.1 PROTEUS
PROTEUS is a parametric all-in-one solution to generate SDF and MDC Radix-2 NTT/MNTT
architectures for FPGA. We provide the possibility to choose from a wide variety of configurations,
as described in Sec. 4, to fit possible requirements. A high-level view of PROTEUS is shown in
Fig. 6. The PROTEUS has three main components, (𝑖) parametric hardware modules written in
Verilog/SystemVerilog, (𝑖𝑖) a Python script, and (𝑖𝑖𝑖) a TCL script. First, the tool takes parameters,
polynomial degree, coefficient modulus size (or coefficient modulus), the desired architecture type
(SDF or MDC), and the desired operation type (NTT/INTT or MNTT/MINTT) as inputs. Then,
it calls a Python script that generates the required constants for NTT/MNTT operation such as
ROM files containing powers of 𝑛/2𝑛-th root of unity. It also generates a corresponding parameter
file that contains parameter definitions such as polynomial degree, number of butterfly stages,
and coefficient modulus size. These parameters dictate the configuration of the hardware design
of every unit within the architecture. Finally, a TCL script is called to trigger the creation of a
corresponding design in the Xilinx Vivado tool. Further, we also provide the possibility to exchange
our units with self-made ones by placing them inside the source folder.

The performance and implementation complexity of an NTT depends on the polynomial size 𝑛.
As explained in Sec. 3, the Radix-2 DIF or DIT NTT algorithms perform the NTT of a polynomial in
𝑠 stages where 𝑠 = 𝑙𝑜𝑔2 (𝑛). In SDF and MDC architectures, 𝑠 determines the number of instantiated
butterfly units and affects the cost and structure of the overall design. We propose a design-time
flexible architectural design that can configure itself through 𝑛.

For simplicity, consider the NTT of a polynomial with 𝑛 = 210 = 1024 coefficients. There will be
𝑠 = 10 stages in the NTT and let us denote the stages as 𝑠0, 𝑠1, ...𝑠9 to represent the data flow of the
Radix-2 NTT. Coefficients of the polynomial will move through the stages in a cascaded manner
starting with stage 𝑠0. To develop the automatic architecture generator PROTEUS, it is crucial to
understand how a change in the parameter 𝑛 affects the data flow. For example, a change of the
parameter 𝑛 from 210 to 211 leads to an increase in the number of NTT stages from 10 to 11. Hence,
PROTEUS will need to add a new stage in the pipelined NTT architecture when 𝑛 increases from
210 to 211. Besides adding the new stage, there will be a change in the data flow, meaning that the
output of 𝑠9 now gets forwarded to the new stage 𝑠10 and the output of 𝑠10 becomes the new final
result.
Besides the number of total stages, the parameter 𝑛 also changes the total resource utilization.

Each stage of the SDF Radix-2 NTT consists of only one butterfly unit (BFU) and one FIFO. Whereas,
in the MDC Radix-2 NTT, each stage consists of one BFU, two FIFOs, and one commuter switch. In
both types of architectures, each stage processes the whole polynomial of size 𝑛 in 𝑛𝑠 chunks where

12 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

𝑛𝑠 = 𝑛/2𝑠 . Therefore, the FIFO depth 𝑓𝑠 in each stage depends on the size of each input chunk 𝑛𝑠 .
In SDF architecture, FIFO depth in stage 𝑠 will be 𝑛𝑠/2. In MDC architecture, the depth of FIFOs is
𝑛𝑠/4. The size of coefficient modulus, log2 (𝑞), determines the size of arithmetic units, data width of
FIFO units, and configurations of integer multiplier and reduction units.

5.2 High-level Architecture
5.2.1 Radix-2 NTT in the SDF configuration. Radix-2 NTT in the SDF configuration has one input
and output port. This limited I/O bandwidth leads to a data collision if combined with a fully
pipelined architecture. The data collision happens when the computation process of a BFU takes
more than one cycle (which is the case in a pipelined BFU). The timing diagram in Fig. 7 explains
how a data collision occurs when the BFU has a latency of 2 cycles and the input polynomial is of
size 8 coefficients. At the initial stage of the computation, the first half of the input polynomial
(four coefficients 0, 1, 2, 3 in STAGE_IN) is sent into the FIFO (FIFO_IN). Then, the FIFO delays the
first half of the input polynomial by 4 cycles to align it with the second half of the polynomial (four
coefficients 4, 5, 6, 7 in STAGE_IN). When the second half of the polynomial arrives, it is sent directly
to the BFU unit. The BFU unit now receives the first half of the polynomial (0, 1, 2, 3 in BFU_IN_0)
as the first input and the second half of the polynomial (4, 5, 6, 7 in BFU_IN_1) as the second input.
After a computation latency of 2 cycles, the first output of the BFU unit (a, b, c, d in BFU_OUT_0)
proceeds directly to the stage output. The second output of the BFU (e, f, g, h in BFU_OUT_1) is
sent back into the FIFO to be delayed until the output port of the stage is available again. Yet this
causes a data collision in FIFO_IN because the new input of the stage (two new coefficients 0, 1 in
STAGE_IN) and the second output of the BFU unit (two coefficients g, h in BFU_OUT_1) need to be
stored in FIFO. The data collision on the input of the FIFO is shown in red ((g, 0), (h, 1) in FIFO_IN)
in Fig. 7.
A method to solve the data collision issue is to adjust the data flow of each stage. An in-depth

analysis reveals a dependency between the data flow and the size 𝑛𝑠 of the input polynomial in
combination with the latency 𝑙 of the BFU unit. Our solution is to denote two different dataflows
depending on the input size and the BFU latency. The latency 𝑙 of the BFU can be either smaller-
equal or greater than 𝑛𝑠/2. In case where the latency is smaller-equal than to the polynomial input
size (𝑙 ≤ 𝑛𝑠

2), the dataflow inside the stage needs to be implemented as displayed on the left side
of Fig. 9 and in the timing diagram in Fig 8. Again, we will use an example where the BFU has
a latency of 2 cycles and the input polynomial is of size 8 coefficients. At the initial stage of the
computation, the first half of the input polynomial (four coefficients 0, 1, 2, 3 in STAGE_IN) is sent to
the first input of the BFU (BFU_IN_0). Note that the BFU unit does not perform any computations
since the second input (BFU_IN_0) is empty. The BFU just delays the first half of the polynomial

Fig. 7. A scenario within a Radix-2 SDF stage where data collision happens in FIFO_IN

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 13

Fig. 8. A scenario within a Radix-2 SDF stage where data collision is avoided

...

Fig. 9. Overview of our changed Radix-2 SDF configuration and its stages

by 2 cycles and passes it to the FIFO (shown with red arrows in Fig. 8). This time the FIFO delays
the first half of the input polynomial by 2 cycles to align it with the second half of the polynomial
(four coefficients 4, 5, 6, 7 in STAGE_IN). Now that both halves of the polynomial are aligned, the
BFU unit performs the butterfly operation. After a computation latency of 2 cycles, the first output
of the BFU unit (a, b, c, d in BFU_OUT_0) proceeds directly to the stage output. The second output
of the BFU (e, f, g, h in BFU_OUT_1) is sent as input to the FIFO. Yet, this time the second output (e,
f, g, h) is sent to an additional buffer (red-colored registers in Fig.9) after passing through the FIFO.
Finally, the additional buffer passes FIFO outputs to the stage output (shown with blue arrows in
Fig. 8). This procedure guarantees a total delay of 4 cycles to buffer (e, f, g, h) until the output port
of the stage is available again. This also guarantees that there is no data collision since the first half
of the new polynomial inputs (0, 1, 2, 3) is not passed directly to the FIFO. Instead, it first passes
through the BFU unit which delays it by 2 cycles. This modification in the dataflow solves the data
collision at the input of the FIFO.
In the case where the latency is greater than the polynomial input size (𝑙 ≫ 𝑛𝑠

2), the dataflow
inside the stage changes as displayed on the right side of Fig. 9. However, in this case, the dataflow
is much simpler compared to the other case where 𝑙 is smaller-equal 𝑛𝑠

2 . The first half of the input
polynomial (four coefficients 0, 1, 2, 3 in STAGE_IN) is sent into the FIFO (FIFO_IN). Then, the FIFO
delays the first half of the input polynomial by 4 cycles to align it with the second half of the
polynomial (four coefficients 4, 5, 6, 7 in STAGE_IN). After a computation latency of 2 cycles, the
first output of the BFU unit (a, b, c, d in BFU_OUT_0) proceeds directly to the stage output while the
second output of the BFU (e, f, g, h in BFU_OUT_1) is sent to a small buffer. This buffer delays (e, f,
g, h) until the output port of the stage is available again.

14 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

PROTEUS generates parametric hardware for Radix-2 SDF NTT architectures through a given
polynomial size 𝑛. The generated hardware consumes a total number of𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝐷𝐹 bits for storage
shown in Eqn. 3. The overall latency 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑆𝐷𝐹 of one NTT with SDF architecture is shown in
Eqn. 4.

𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝐷𝐹 = log2 (𝑞) ·
𝑙𝑜𝑔2 (𝑛)−1∑︁

𝑠=0
𝑓𝑠 (3)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑆𝐷𝐹 ∼ 2 · 𝑛 + log2 (𝑛) · 𝑙 (4)

5.2.2 Radix-2 NTT in the MDC configuration. Radix-2 NTT in the MDC configuration requires two
inputs per cycle, which doubles the required bandwidth compared to the Radix-2 SDF. In contrast
to a stage of the SDF architecture, a stage 𝑠 in the MDC architecture consists of one butterfly unit,
a switch unit, and two 𝑛𝑠/4 deep FIFOs.

In Radix-2 MDC, the inputs and outputs can be fed directly into as well as out of the stage. The
stage input is passed to the butterfly unit first. After computation, the output is either sent to a
FIFO or directly into a switch unit. The switch unit swaps two input data depending on a selection
signal. This signal is either high or low for 𝑛𝑠/2 cycles where 𝑛𝑠 is the length of the stage chunk
input (see Sec. 5.1). In combination with FIFOs before and after the switch, it is possible to mimic
the required transformation pattern. The logic of Radix-2 MDC is much simpler when compared to
Radix-2 SDF since it does not reuse its FIFOs for input and output storing.
PROTEUS generates parametric hardware for Radix2 MDC NTT architectures through a given

polynomial size 𝑛. In the generated MDC architecture, the total number of bits consumed by the
hardware (𝑀𝑒𝑚𝑜𝑟𝑦𝑀𝐷𝐶) is shown in Eqn. 5 while the overall latency (𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑀𝐷𝐶) of one NTT
with MDC architecture is shown in Eqn. 6.

𝑀𝑒𝑚𝑜𝑟𝑦𝑀𝐷𝐶 = log2 (𝑞) ·
𝑙𝑜𝑔2 (𝑛)−1∑︁

𝑠=0
𝑓𝑠 (5)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑀𝐷𝐶 ∼ 𝑛 + log2 (𝑛) · 𝑙 (6)

5.3 Low-level Arithmetic Units
As shown in Sec. 5, each NTT stage serves as a controller that coordinates multiple sub-modules.
In contrast to the architectural design that mostly depends on the polynomial size 𝑛, the hardware
of low-level arithmetic units depends on the coefficient modulus size, log2 (𝑞). The parametric
coefficient modulus size makes it challenging to design all the required arithmetic units such as a
DSP-based integer multiplier, a Montgomery modular reduction unit, and a unified butterfly unit.

5.3.1 Parametric Integer Multiplier. The structure of the integer multiplier is crucial for the entire
design since NTT requires multiplication for each butterfly operation per NTT/INTT stage. The
multiplication unit should be able to cope with any given data size due to the parameterization in
our design. Xilinx Vivado has an integrated IP generator that can generate integer multiplier circuits.
However, it has support only up to 64-bit inputs and is not easy to combine with a parametric
design like ours (e.g., it requires manual instantiating). Also, another issue of Xilinx-generated
multiplier units is the high utilization of DSP units and high latency for large sizes.
Our parametric integer multiplier design uses a divide-and-conquer approach and it splits a

multiplication operation, 𝑐 = 𝑎 · 𝑏, into smaller multiplications to reduce the DSP count and latency.
First, it splits both operands 𝑎 and 𝑏 into chunks via standard tiling [22]. These chunks can have
different sizes up to𝑤0 or𝑤1 bits depending on the DSP architecture of the deployed FPGA platform.

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 15

Algorithm 3Word-level Montgomery Reduction Algorithm for NTT-friendly Primes [15]

Input: 𝑑 = 𝑎 · 𝑏, 𝑞 = 𝑞𝐻 · 2𝑤 + 1,𝑤 (word size), 𝐿 = ⌈ log2 𝑞
𝑤
⌉ (number of iterations)

Output: 𝑐 = 𝑎 · 𝑏 · 𝑅−1 (mod 𝑞) where 𝑅 = 2𝑤 ·𝐿

1: 𝑇 ← 𝑑

2: for (𝑖 = 0; 𝑖 < 𝐿; 𝑖 = 𝑖 + 1) do
3: 𝑇𝐻 ← 𝑇 ≫ 𝑤

4: 𝑇𝐿 ← 𝑇 (mod 2𝑤)
5: 𝑇 2← −𝑇𝐿 (mod 2𝑤)
6: 𝑐𝑖𝑛 ← 𝑇 2[𝑤 − 1] ∨𝑇𝐿 [𝑤 − 1]
7: 𝑇 ← (𝑞𝐻 ·𝑇 2) +𝑇𝐻 + 𝑐𝑖𝑛
8: end for
9: if 𝑇 ≥ 𝑞 then
10: 𝑐 = 𝑇 − 𝑞
11: else
12: 𝑐 = 𝑇

13: end if
14: return 𝑐

In the case of Xilinx’s newer Ultrascale+ architecture, DSP units can support up to 27-bit×18-bit
signed integer multiplication. Hence,𝑤0 and𝑤1 can be up to 26 and 17 bits while older platforms
can support up to 24 and 17 bits. Then, small chunks of 𝑎 and 𝑏 are multiplied by each other.
PROTEUS uses this approach and implements all small chunk multiplications in parallel by

instantiating one DSP unit per multiplication. The total number of employed DSP units (𝐷𝑆𝑃𝑀𝑈𝐿)
can be calculated by using Eqn. 7. It should be noted that we let the synthesis tool implement
multiplication using DSP or LUTs. This enables the tool to use LUT for small-sized multiplications
to save DSP resources. This sometimes leads to a lower number of DSPs than Eqn. 7. Finally, DSP
outputs are accumulated using a parametric carry-save-adder (CSA) tree. The multiplier unit is
fully pipelined and its overall latency is the sum of the latency of one DSP unit and CSA tree.
The proposed parametric integer multiplication unit takes the bit-size of modulus (log2 (𝑞)) and
maximum chunk sizes (𝑤0 and𝑤1) as inputs and generates the corresponding multiplication circuit.

𝐷𝑆𝑃𝑀𝑈𝐿 ≤ 𝑖 · 𝑗 where 𝑖 = ⌈𝑙𝑜𝑔2 (𝑞)
𝑤0

⌉ and 𝑗 = ⌈𝑙𝑜𝑔2 (𝑞)
𝑤1

⌉ (7)

5.3.2 Parametric Word-level Montgomery Reduction Unit. Each integer multiplication unit requires
an additional modulo reduction to keep the result within the modulo ring of 𝑞. There are several
techniques to perform a modulo reduction. Barrett [2] and Montgomery [17] are two well-known
techniques to perform modular reduction for a generic modulus 𝑞. Add-shift-based approaches [4,
10, 21] can also be utilized when a sparse prime such as a Solinas or Mersenne is used as the
modulus. There are also lazy reduction methods [25] and techniques targeting modulus of certain
form [15, 28]. In this work, we adopted a word-level Montgomery reduction algorithm tailored
for NTT-friendly primes, proposed in [15], and mapped it into FPGA efficiently in a parametric
design setting. The algorithm divides a modular reduction operation into smaller chunks and it
uses the form of NTT-friendly primes, 𝑞 = 𝑞𝐻 · 2𝑤 + 1 where𝑤 ≤ log2 (𝑛), to simplify the reduction
operation. The word-level Montgomery reduction algorithm for NTT-friendly primes is shown in
Algorithm 3.

16 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Algorithm 4 Algorithm for Mapping Word-level Montgomery Reduction into FPGA
1: 𝑠 ← 24 or 26 (based on the DSP architecture of target FPGA platform)
2: if (log2 (𝑇𝐻) ≤ 47) then
3: if (log2 (𝑞𝐻) ≤ 𝑠) then
4: Implement 𝑇 ← (𝑞𝐻 ·𝑇 2) +𝑇𝐻 + 𝑐𝑖𝑛 (line 7 of Algorithm 3) using one DSP unit.
5: else
6: Instantiate 𝑣 = ⌈ log2 (𝑞𝐻)

𝑠
⌉ DSP units.

7: The first DSP unit implements (𝑞𝐻 [𝑠 − 1 : 0] ·𝑇 2) +𝑇𝐻 + 𝑐𝑖𝑛.
8: The remaining DSP units implement (𝑞𝐻 [𝑠 · 𝑖 + 𝑠 − 1 : 𝑠 · 𝑖] ·𝑇 2), 𝑖 ∈ [1, 𝑣 − 1].
9: If 3 or more DSPs are instantiated, DSP outputs are reduced to 2 using one CSA tree, then

the final result is computed using one adder. Otherwise, the final result is computed using
one adder.

10: end if
11: else
12: if (log2 (𝑞𝐻) ≤ 𝑠) then
13: Implement 𝑟 ← (𝑞𝐻 ·𝑇 2) + 𝑐𝑖𝑛 using one DSP unit.
14: Implement 𝑇 ← 𝑟 +𝑇𝐻 using one adder.
15: else
16: Instantiate 𝑣 = ⌈ log2 (𝑞𝐻)

𝑠
⌉ DSP units.

17: The first DSP unit implements (𝑞𝐻 [𝑠 − 1 : 0] ·𝑇 2) + 𝑐𝑖𝑛.
18: The remaining DSP units implement (𝑞𝐻 [𝑠 · 𝑖 + 𝑠 − 1 : 𝑠 · 𝑖] ·𝑇 2), 𝑖 ∈ [1, 𝑣 − 1].
19: DSP outputs and𝑇𝐻 are reduced to 2 using one CSA tree, then the final result is computed

using one adder.
20: end if
21: end if
22: return 𝑐

The algorithm takes 𝑑 = 𝑎 ·𝑏 and prime modulus 𝑞 = 𝑞𝐻 ·2𝑤 +1 as inputs, and performs reduction
operation in 𝐿 = ⌈log2 (𝑞)/𝑤⌉ steps where 𝑤-bit (word size) reduction is performed in each step
(lines 2-8 in Algorithm 3). Finally, a reduction operation is performed at the end (lines 9-13 in
Algorithm 3). The word-level Montgomery algorithm is scalable and it enables efficient utilization of
DSP units in FPGA. As shown in line 7 of Algorithm 3, the algorithm performs𝑇 ← (𝑞𝐻 ·𝑇 2)+𝑇𝐻+𝑐𝑖𝑛
in each reduction step which involves one (log2 (𝑞) −𝑤)-bit ×𝑤-bit multiplication, and additions
with (2 · log2 (𝑞) − 𝑖 · 𝑤)-bit and 1-bit integers. Based on the parameter selection (e.g., log2 (𝑞)
and 𝑤), this operation can be implemented using a single Xilinx DSP unit which can perform
𝐴 · 𝐵 +𝐶 + 𝑐𝑎𝑟𝑟𝑦 for 25/27-bit 𝐴, 18-bit 𝐵, 48-bit 𝐶 and 1-bit 𝑐𝑎𝑟𝑟𝑦. In Algorithm 4, we present an
algorithm to map this operation into FPGA using DSP units efficiently. When log2 (𝑇𝐻) is less than
48, then the addition of 𝑇𝐻 and 𝑐𝑖𝑛 can be implemented using DSP without using any extra fabric
LUTs. If log2 (𝑞𝐻) is larger than the DSP input operand size, then it is divided into smaller parts
using the divide-and-conquer approach, as explained in Sec. 5.3.1, and log2 (𝑞𝐻) ·𝑇 2 multiplication
is implemented using multiple DSPs. Finally, DSP results are accumulated using one CSA tree.
When log2 (𝑇𝐻) is equal to or greater than 48, then the addition of 𝑇𝐻 is also implemented using
adders. The proposed mapping algorithm uses 𝐿 · ⌈log2 (𝑞𝐻)/𝑠⌉ DSPs where 𝑠 is either 24 or 26
depending on the FPGA platform.
The proposed parametric modular reduction unit takes the bit-size of modulus (log2 (𝑞)), word

size (𝑤) and the number of reduction steps (𝐿) as input and generates the corresponding reduction
circuit. Fig. 10 and Fig. 11 show the implementation of modular reduction circuit for parameters

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 17

Fig. 10. Word-level Montgomery reduction circuit for log2 𝑞 = 32 and𝑤 = 12.

Fig. 11. Word-level Montgomery reduction circuit for log2 𝑞 = 64 and𝑤 = 16.

log2 (𝑞) = 32, 𝑤 = 12 and log2 (𝑞) = 64, 𝑤 = 16, respectively, where 2𝑠 and ∨ represent two’s
complement and logical OR operations.
It should be noted that the Algorithm 3 introduces an extra term at the output, 𝑅−1 where 𝑅

is 2𝑤 ·𝐿 . To eliminate this extra constant, either output of the reduction operation or one of the
input operands should be multiplied with 𝑅. Since one operand is always constant (either 𝜔𝑖 or𝜓 𝑖)
during NTT/MNTT operation, we multiply all precomputed constants by 𝑅 before loading them to
the hardware. Since this operation is performed offline and once for each parameter, it does not
add any extra latency.

5.3.3 Parametric CT, GS and Unified Butterfly Units. There are two approaches, DIT and DIF, to
constructing efficient NTT algorithms that require so-called CT and GS butterfly configurations, as
described in Sec. 2.2. Depending on the configuration of PROTEUS, we either require a CT, GS, or
both butterflies combined. This reliance leads to the necessity of three different units.

Note that a butterfly unit consists of modular operations like addition, subtraction, and multipli-
cation. Yet, the only difference between a CT and a GS butterfly is the placement of the modulo
multiplication. The CT butterfly performs the required modular multiplication before the modulo
subtraction while in GS it is performed afterward. In terms of parametrization, a butterfly unit is
affected by the size of the modulus 𝑞, while 𝑛 has no impact.

Each butterfly construct takes 𝑎, 𝑏,𝑤 as inputs and gives 𝑢, 𝑣 as output. In case of CT, it outputs
𝑢 = 𝑎 + (𝑏 ·𝑤) (mod 𝑞) and 𝑣 = 𝑎 − (𝑏 ·𝑤) (mod 𝑞) while GS butterfly outputs 𝑢 = 𝑎 +𝑏 (mod 𝑞)
and 𝑣 = (𝑎 − 𝑏) ·𝑤 (mod 𝑞). Yet, a unified butterfly can give either an output in CT or GS, which
depends on the configuration. The naive way to support both is to instantiate both GS and CT and
select the desired outputs. This, however, would double the number of hardware resources, which
is neither efficient nor desirable. Another approach [1] is adding a pair of addition and subtraction
units to support both butterfly configurations. These additional units are either used or bypassed
to act as a CT or GS butterfly unit. This approach saves one costly modular multiplication unit, yet,
this is not ideal since it employs extra addition and subtraction units.
We present a different design for a unified butterfly that fits well into a pipelined architecture

like PROTEUS which requires both butterfly operations during NTT computation. The unified
butterfly takes 𝑎, 𝑏,𝑤 as inputs and gives 𝑢, 𝑣 as output as in CT and GS. The dataflow inside our
unified butterfly redirects via MUXes to either produce CT or GS butterfly outputs as shown in
Fig. 12.

18 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Fig. 12. Overview of CT, GS, and Unified butterfly units used in PROTEUS

6 EVALUATIONS
In this section, we present the area and performance results of hardware architectures that are
generated for several parameters and configurations using PROTEUS. Then, we compare our
results with related works in the literature. We coded the architectural units of PROTEUS using
Verilog/SystemVerilog. As described in Sec. 5.1, the proposed framework takes polynomial size (𝑛),
coefficient modulus (𝑞), NTT/MNTT configuration (OP1 to OP8), and architecture type (SDF or
MDC) as inputs, and generates the corresponding hardware. We obtained area and performance
results using Xilinx Vivado 2019.1 for Xilinx Virtex-7 XCVX485T/Alveo U250 FPGA with default
synthesis and place & route settings. As a proof of concept, we also generated, implemented, and
verified all possible NTT configurations for the polynomial sizes 24 to 210 and modulus sizes 32-bit
and 64-bit on an actual Xilinx PYNQ FPGA board.

6.1 Evaluation of NTT configuration and parameter selection
In this section, we present the area and performance results of PROTEUS-generated NTT architec-
tures for various configurations. PROTEUS provides several options for different configurations
and lets the user choose the right NTT hardware. In Table 3, we present area utilization, latency (in
terms of clock cycles), and an average latency of 100 operations for SDF and MDC NTT architec-
tures with different configurations (OP1 to OP8), parameters, and modular reduction circuits. MDC
architecture shows almost 2× better performance compared to SDF architecture at the expense of
slightly larger LUT and DFF utilization. Further, it requires 2× bandwidth compared to SDF.

PROTEUS generates a parametric word-level Montgomery reduction unit for a given parameter
set. It also lets the user replace it with a custom modular reduction unit. We evaluated all configu-
rations for two different modular reduction units, (𝑖) a custom add-shift-based reduction unit for a
constant modulus and (𝑖𝑖) word-level Montgomery reduction unit presented in Sec. 5.3.2. As shown
in Table 3, Montgomery reduction uses 1.6× more DSP units with similar LUT and DFF utilization
compared to add-shift-based reduction for a large NTT parameter. However, the add-shift-based
reduction unit supports only one modulus while the Montgomery reduction unit supports a wide
range of moduli for a given parameter set.

As explained in Sec. 4, NTT configuration has a significant impact on implementation complexity.
Table 3 shows that OP1 and OP2 configurations have the highest LUT and DFF utilization compared
to other configurations because they use a unified butterfly configuration. The configurations
OP3 and OP4 do not use unified butterfly units; however, they still have high implementation

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 19

Design (𝑛, log2 (𝑞)) = (212, 64) (𝑛, log2 (𝑞)) = (210, 28)
LUT/FF/DSP/BRAM Lat./Avg.∗ LUT/FF/DSP/BRAM Lat./Avg.∗

SDF-OP1/2𝑎 23.6k/11.8k/144/16 8298/4138 8.7k/3.9k/20/2 2118/1035
SDF-OP3/4𝑎 21.1k/11.8k/144/16 8298/4138 7.8k/4.0k/20/2 2118/1035
SDF-OP5/6𝑎 17.6k/11.3k/132/16 8293/4138 6.4k/3.7k/18/2 2113/1035
SDF-OP7/8𝑎 16.6k/10.6k/132/16 8293/4138 6.0k/3.5k/18/2 2113/1035
SDF-OP1𝑎,𝑐 22.5k/12.7k/144/24 8310/4138 8.7k/4.5k/20/3 2118/1035
MDC-OP1/2𝑎 25.7k/15.7k/144/16 4214/2070 9.7k/5.4k/20/2 1114/518
MDC-OP3/4𝑎 21.8k/12.5k/144/16 4190/2069 8.0k/4.2k/20/2 1114/518
MDC-OP5/6𝑎 19.7k/11.8k/132/16 4185/2069 7.2k/3.9k/18/2 1090/518
MDC-OP7/8𝑎 20.2k/11.8k/132/16 4185/2069 7.4k/3.9k/18/2 1090/518
MDC-OP1𝑎,𝑐 24.9k/15.7k/144/24 4214/2070 9.5k/5.5k/20/3 1114/518
SDF-OP1/2𝑏 26.0k/18.5k/240/16 8370/4138 7.5k/3.2k/40/2 2128/1035
SDF-OP3/4𝑏 23.6k/18.5k/240/16 8359/4138 7.3k/3.3k/40/2 2128/1035
SDF-OP5/6𝑏 19.9k/17.5k/220/16 8359/4138 5.7k/3.0k/36/2 2123/1035
SDF-OP7/8𝑏 18.9k/16.8k/220/16 8382/4138 5.2k/2.8k/36/2 2123/1035
SDF-OP1𝑏,𝑐 25.0k/19.5k/220/24 8391/4138 7.4k/3.6k/40/3 2128/1035
MDC-OP1/2𝑏 28.1k/22.3k/240/16 4262/2070 10.1k/4.6k/40/2 1124/518
MDC-OP3/4𝑏 24.3k/19.2k/240/16 4251/2070 7.3k/3.4k/40/2 1124/518
MDC-OP5/6𝑏 21.9k/18.0k/220/16 4251/2070 6.7k/3.2k/36/2 1100/518
MDC-OP7/8𝑏 22.5k/18.0k/220/16 4286/2070 6.9k/3.2k/36/2 1100/518
MDC-OP1𝑏,𝑐 27.5k/22.5k/240/24 4214/2070 9.8k/4.7k/40/3 1124/518
∗: Latency/Average latency for 100 operation. 𝑎 : Using add-shift based reduction for constant prime modulus.
𝑏 : Using word-level Montgomery based reduction for variable prime modulus. 𝑐 : Uses NWC technique

Table 3. Implementation and performance results for SDF and MDC NTT architectures for different parame-
ters and design options (all results are collected for 150 MHz target clock frequency)

complexity due to different NTT and INTT orderings, as explained in Sec. 4. Hence, OP3 and OP4
configurations outperform only OP1 and OP2 configurations. The configurations OP5, OP6, OP7,
OP8 eliminate different orderings of NTT and INTT, and show better area performance compared
to OP1, OP2, OP3, OP4 configurations. Compared to OP1/OP2, OP7/OP8 configurations use up
to 31% less LUT. The configurations with the NWC technique also show high resource usage as
they use a unified butterfly unit and have different orderings for NTT and INTT. As shown in
Table 3, they use 50%more BRAMs compared to NTT/INTT configurations since they need to store
pre-processing and post-processing constants (see Sec. 2.2).
We present the results of SDF and MDC architectures for a selection of various polynomial

degrees ranging from 210 to 216 and moduli of size 28-bit and 64-bit in Table 4. We also visualize
the change in the area utilization for different parameters and configurations in Fig. 13 and Fig. 14.
Table 4, Fig. 13 and Fig. 14 show that PROTEUS can generate different NTT architectures that
cover a wide range of parameters, area utilization and performance, easily by just changing a few
parameters.

6.2 Comparison with the literature
In this section, we present the comparisons between PROTEUS-generated NTT architectures and
related works in the literature [8, 12, 14, 16, 29–31, 33]. In Table 5, we present resource utilization,

20 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Design (𝑛, log2 (𝑞)) LUT/FF/DSP/BRAM Freq. Lat./Avg.∗

SDF-OP7/8

(210, 28)

5.2k/2.8k/36/2 150 2123/1035
SDF-OP1𝑎 7.4k/3.6k/40/3 150 2128/1035
MDC-OP7/8 6.9k/3.2k/36/2 150 1100/518
MDC-OP1𝑎 9.8k/4.7k/40/3 150 1124/518
SDF-OP7/8

(212, 28)

6.3k/3.4k/44/8 150 8382/4138
SDF-OP1𝑎 8.9k/4.4k/48/12 150 8391/4138
MDC-OP7/8 8.4k/4.0k/44/8 150 4286/2070
MDC-OP1𝑎 11.9k/5.7k/48/12 150 4214/2070
SDF-OP7/8

(214, 28)

7.8k/4.0k/52/29 150 32871/16549
SDF-OP1𝑎 10.5k/5.2k/56/44 150 32890/16549
MDC-OP7/8 10.0k/4.8k/52/30 150 16487/8275
MDC-OP1𝑎 12.9k/6.2k/56/44 150 16520/8275
SDF-OP7/8

(216, 28)

10.4k/4.8k/60/113 150 131201/66193
SDF-OP1𝑎 13.6k/6.2k/64/170 150 131092/66193
MDC-OP7/8 12.2k/5.6k/60/114 150 65605/33097
MDC-OP1𝑎 16.8k/7.9k/64/170 150 65674/33097
SDF-OP7/8

(210, 64)

15.7k/14.0k/180/4 150 2133/1035
SDF-OP1𝑎 21.0k/16.4k/200/6 150 2138/1035
MDC-OP7/8 18.6k/14.9k/180/4 150 1110/518
MDC-OP1𝑎 23.3k/18.8k/200/6 140 1134/518
SDF-OP7/8

(212, 64)

18.9k/16.8k/220/16 150 8293/4138
SDF-OP1𝑎 25.0k/19.6k/240/24 150 8310/4138
MDC-OP7/8 22.6k/18.0k/220/16 150 4185/2069
MDC-OP1𝑎 27.6k/22.5k/240/24 150 4214/2070
SDF-OP7/8

(214, 64)

22.6k/19.7k/260/64 150 32895/16549
SDF-OP1𝑎 29.4k/22.8k/280/96 150 32914/16549
MDC-OP7/8 26.7k/21.2k/260/63 150 16473/8275
MDC-OP1𝑎 32.8k/26.1k/280/95 135 16520/8275
SDF-OP7/8

(216, 64)

27.5k/23.1k/300/256 145 131225/66193
SDF-OP1𝑎 35.2k/26.5k/320/384 135 131218/66193
MDC-OP7/8 31.3k/24.4k/300/255 150 65637/33097
MDC-OP1𝑎 37.5k/29.9k/320/383 135 65706/33097
∗: Latency/Average latency for 100 operation. 𝑎 : Uses NWC technique.

Table 4. Implementation and performance results for SDF and MDC NTT architectures for log2 (𝑞) = {28, 64}
and 𝑛 = {210, 212, 214, 216} using Montgomery reduction.

performance, architecture and level of parallelism (e.g., number of butterfly units running in parallel)
results of PROTEUS-generated and related works.

Parametric iterative NTT architectures can set the level of parallelism by changing the number
of butterfly units. Compared to the low-cost iterative NTT architectures with one butterfly unit,
our SDF and MDC NTT architectures show much better performance. For parameters 𝑛 = 212 and
log2 (𝑞) = 64, our SDF and MDC NTT architectures with OP7 configuration show 6× and 11.8×
speedup (in terms of cycles), respectively, compared to the low-cost NTT architectures in [8, 12].
Compared to a balanced iterative NTT architecture with 8 butterfly cores [12], our SDF and MDC
architectures show similar performance while using 11× less BRAM. High-performance iterative

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 21

(a) SDF architectures (b) MDC architectures

Fig. 13. Comparison of resource utilization of SDF and MDC NTT architectures for different NTT/MNTT
approaches using 𝑛 = 212 and log2 (𝑞) = 64 with Montgomery reduction. The green, red and blue boxes
represent the number of LUTs, 100×the number of DSPs and 300×the number of BRAMs [31] respectively.

(a) LUT/DFF utilization (b) DSP/BRAM utilization

Fig. 14. Resource utilization of SDF and MDC NTT architectures for log2 (𝑞) = 64 and 𝑛 = 210 to 𝑛 = 216 with
Montgomery reduction.

NTT architectures [8, 12, 14, 16] show better performance than our SDF and MDC architectures.
However, they use much more resources and require high bandwidth. For example, the work
in [14] shows 8.6× better performance compared to our MDC architecture for parameter 𝑛 = 210
at the expense of 5.6× more LUT, 26× more DSP and 162× more BRAM. Although iterative NTT
architectures in [5, 18] are parametric, they target very small parameter sets. Hence, they are not
included in the comparison table.
There are only a few works in the literature for MDC NTT architectures [19, 26, 29, 30]. The

works in [29, 30] can change their levels of parallelism and increase their performance at the
expense of more resources and increased bandwidth. Compared to the MDC architecture with
4 parallel butterfly units [30], our MDC NTT architecture still shows 1.7× better performance
while using fewer resources. In [19, 26], MDC NTT architectures for small parameters without any
flexibility are presented. Thus, they are not compared with our work.

PipeNTT [31] is the current state-of-the-art work for parametric SDF Radix-2 NTT architecture.
In Table 5, we compare our SDF and MDC NTT architectures with PipeNTT for parameters

22 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

Work Platf. 𝑛, log2 (𝑞) LUT/FF/DSP/BRAM Freq. Lat./Avg.∗ NTT LoP†(MHz) (in cycle) (in `𝑠) Arch.

[30] Virtex 7 210, 28 95k/104k/640/80 215 - 0.9/- MDC 32
187k/205k/1280/128 212 - 0.75/- MDC 64

[29] Virtex 7 210, 28 206k/159k/640/80 210 - 1.1/- MDC 32
[14] Virtex 7 210, 32 77k/-/952/325.5 200 - 0.4/- Iter. 32
[16] Virtex 7 210, 32 39.6k/-/224/96 150 - 1.66/- Iter. 32

SDF-OP7 Virtex 7 210, 28 5.2k/2.8k/36/2 150 2113/1035 14.09/6.90 SDF 1
MDC-OP7 Virtex 7 210, 28 6.9k/3.2k/36/2 150 1090/518 7.27/3.46 MDC 1

[8] UV 212, 28 2.7k/2.4k/6/8 435 12302/- 28.2/- Iter. 2
11.8k/8.9k/24/16 379 3086/- 8.15/- Iter. 8

[16] Virtex 7 212, 32 39.6k/-/224/96 150 - 5.84/- Iter. 32
[29] XCU200 212, 30 54.1k/56.2k/288/84 250 - 24.7/- MDC 4

SDF-OP7 Virtex 7 212, 28 6.3k/3.4k/44/8 150 8273/4138 55.31/27.91 SDF 1
MDC-OP7 Virtex 7 212, 28 8.4k/4.0k/44/8 150 4165/2069 27.91/13.8 MDC 1

[8] UV 212, 60 2.6k/2.5k/26/21 144 24590/- 171.6/- Iter. 1
90.0k/77.0k/832/160 130 782/- 6.0/- Iter. 32

[12] Virtex 7 212, 60
2.7k/-/31/180 125 24708/- 197.6/- Iter. 1
23.2k/-/248/176 125 3276/- 26.2/- Iter. 8
99.3k/-/992/176 125 972/- 7.77/- Iter. 32

[31] Virtex 7 212, 60 17.0k/11.0k/286/24.5 150 8284/- 55.31/- SDF 1
SDF-OP7 Virtex 7 212, 64 18.9k/16.8k/220/16 150 8293/4138 55.31/27.91 SDF 1
MDC-OP7 Virtex 7 212, 64 22.6k/18.0k/220/16 150 4185/2069 27.91/13.8 MDC 1
∗: Latency/Average latency for 100 operation. †: Level of parallelism.

Table 5. Comparison table

𝑛 = 212 and log2 (𝑞) = 64. Compared to our SDF architecture, PipeNTT shows similar performance
while using 1.3× more DSP and 1.5× more BRAM. Our MDC architecture outperforms PipeNTT
while using less DSP and BRAM. PipeNTT suffers a high number of BRAM units because their
implementation does not use twiddle factor optimization presented in 4.1. Thus, they have to
employ extra BRAMs to store twiddle factors for INTT. For DSP utilization, our architecture shows
better performance compared to PipeNTT due to our optimized word-level Montgomery modular
reduction unit. When we use their area metric for comparison (LUT + 100×DSP + 300×BRAM in
Table 1 of [31]), we show up to 35% better performance for various configurations. Their design
provides limited configurability as they only support configuration OP1 for SDF while we support
SDF and MDC architectures for several configurations.
In [33], authors propose an NTT architecture targeting very large-degree polynomials (e.g.,

𝑛 = 220) for ZKP applications. Their implementation uses a hierarchical approach and divides a
large NTT into multiple smaller NTTs (e.g., 𝑛 = 210) where they use SDF Radix-2 NTT architecture
for implementing small NTTs. They also target very large coefficientmodulus sizes ranging from 256-
bit to 768-bit. They target the ASIC platform and do not provide any area and performance results
for SDF NTT architecture. For proof-of-concept, we use PROTEUS to generate NTT architectures
for a 256-bit coefficient modulus and several polynomial sizes, 𝑛 = {210, 212, 214, 216}. We present
performance and implementation results in Table 6. Note that we used a specially designed add-
shift-based reduction circuit for 256-bit modular reduction operation.

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 23

Work Platf. 𝑛, log2 (𝑞) LUT/FF/DSP/BRAM/URAM Freq. Lat./Avg.∗

SDF-OP1𝑎 AU250

210, 256 219k/48k/1650/20/4 125 4k/2k
212, 256 261k/58k/1980/65/12 125 16k/8k
214, 256 305k/67k/2310/307/16 125 32k/16k
216, 256 356k/77k/2640/1417/16 125 131k/66k

∗: Latency/Average latency for 100 operation. 𝑎 : Uses NWC technique.
Table 6. Implementation results for log2 (𝑞) = 256 on Xilinx Alveo U250 FPGA

7 CONCLUSIONS
In this paper, we design a tool, called PROTEUS, to generate bandwidth-efficient SDF and MDC
Radix-2 NTT architectures. Each architecture supports several configurations and parameters
(polynomial degree and coefficient modulus sizes) that can be configured at design time. We also
introduce algorithmic optimizations to reduce memory requirements for storing twiddle factors
and eliminate the multiplication with scalar 𝑛−1 at the end of INTT. Further, we introduce several
architectural optimizations for low-level parametric arithmetic units like the unified butterfly and
word-level Montgomery reduction units. We performed experiments for a wide range of polynomial
degrees and coefficient modulus sizes. A comparison with state-of-the-art works like PipeNTT [31]
shows the advantages of our design approach. Both PipeNTT and PROTEUS implements SDF-based
Radix2 NTT architecture, yet, PROTEUS uses up to 23% and 35% less resources in terms of DSPs
and BRAMs, respectively, with a similar LUT utilization. Moreover, PROTEUS reduces the latency
of NTT by 50% compared to PipeNTT when using its MDC-based architecture. These advantages
combined with design-time flexibility make PROTEUS suitable as a basic building block for FHE
and ZKP systems.
In the future, additional analysis and extension of PROTEUS for various Radix-2𝑛 could make

our design even more versatile. The usage of different Radix sizes would need an in-depth analysis
of the corresponding data flow, yet, it would decrease the latency of NTT. Also, the elimination of
twiddle factor memories and adapting on-the-fly twiddle factor generation could be explored for
memory-constrained configurations.

ACKNOWLEDGMENTS
This work was supported in part by the State Government of Styria, Austria – Department Zukun-
ftsfonds Steiermark.

REFERENCES
[1] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. 2019. Sapphire: A Configurable Crypto-Processor for

Post-Quantum Lattice-based Protocols. IACR Transactions on Cryptographic Hardware and Embedded Systems 2019, 4
(8 2019), 17–61. https://doi.org/10.13154/tches.v2019.i4.17-61

[2] Paul Barrett. 1986. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard
Digital Signal Processor. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings
(Lecture Notes in Computer Science, Vol. 263). Springer, 311–323. https://doi.org/10.1007/3-540-47721-7_24

[3] Eleanor Chu and Alan George. 1999. Inside the FFT black box: serial and parallel fast Fourier transform algorithms. CRC
press.

[4] Wei Dai and Berk Sunar. 2016. cuHE: A homomorphic encryption accelerator library. In Cryptography and Information
Security in the Balkans: Second International Conference, BalkanCryptSec 2015, Koper, Slovenia, September 3-4, 2015,
Revised Selected Papers 2. Springer, 169–186.

[5] Kemal Derya, Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2022. CoHA-NTT: A Configurable Hardware
Accelerator for NTT-based Polynomial Multiplication. Microprocessors and Microsystems 89 (2022), 104451.

https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.1007/3-540-47721-7_24

24 Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

[6] Robin Geelen, Michiel Van Beirendonck, Hilder VL Pereira, Brian Huffman, Tynan McAuley, Ben Selfridge, Daniel
Wagner, Georgios Dimou, Ingrid Verbauwhede, Frederik Vercauteren, et al. 2022. Basalisc: Flexible asynchronous
hardware accelerator for fully homomorphic encryption. arXiv preprint arXiv:2205.14017 (2022).

[7] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[8] Xiao Hu, Jing Tian, Minghao Li, and Zhongfeng Wang. 2022. AC-PM: An Area-Efficient and Configurable Polynomial

Multiplier for Lattice Based Cryptography. IEEE Transactions on Circuits and Systems I: Regular Papers (2022), 1–14.
https://doi.org/10.1109/TCSI.2022.3218192

[9] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2009. Zero-Knowledge Proofs from Secure Multiparty
Computation. SIAM J. Comput. 39, 3 (2009), 1121–1152. https://doi.org/10.1137/080725398

[10] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede. 2015. Efficient
Ring-LWE encryption on 8-bit AVR processors. In Cryptographic Hardware and Embedded Systems–CHES 2015: 17th
International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings 17. Springer, 663–682.

[11] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based
Cryptography. Cryptology ePrint Archive, Paper 2016/504. https://eprint.iacr.org/2016/504 https://eprint.iacr.org/
2016/504.

[12] Ahmet Can Mert, Emre Karabulut, Erdinc Ozturk, Erkay Savas, and Aydin Aysu. 2020. An Extensive Study of Flexible
Design Methods for the Number Theoretic Transform. IEEE Trans. Comput. (2020), 1–1. https://doi.org/10.1109/TC.
2020.3017930

[13] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, Michela Becchi, and Aydin Aysu. 2020. A Flexible
and Scalable NTT Hardware : Applications from Homomorphically Encrypted Deep Learning to Post-Quantum
Cryptography. In 2020 Design, Europe Conference (DATE).

[14] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2019. Design and implementation of encryption/decryption
architectures for BFV homomorphic encryption scheme. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 28, 2 (2019), 353–362.

[15] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2019. Design and Implementation of a Fast and Scalable NTT-Based
Polynomial Multiplier Architecture. In 2019 22nd Euromicro Conference on Digital System Design (DSD). 253–260.
https://doi.org/10.1109/DSD.2019.00045

[16] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2020. FPGA implementation of a run-time configurable NTT-based
polynomial multiplication hardware. Microprocessors and Microsystems 78 (2020), 103219.

[17] Peter L. Montgomery. 1985. Modular multiplication without trial division. Math. Comp. 44 (1985), 519–521.
[18] Jianan Mu, Yi Ren, Wen Wang, Yizhong Hu, Shuai Chen, Chip-Hong Chang, Junfeng Fan, Jing Ye, Yuan Cao, Huawei

Li, and Xiaowei Li. 2022. Scalable and Conflict-free NTT Hardware Accelerator Design: Methodology, Proof and
Implementation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022), 1–1. https:
//doi.org/10.1109/TCAD.2022.3205552

[19] Ziying Ni, Ayesha Khalid, Dur-e-Shahwar Kundi, Máire O’Neill, andWeiqiang Liu. 2022. Efficient Pipelining Exploration
for A High-performance CRYSTALS-Kyber Accelerator. IACR Cryptol. ePrint Arch. (2022), 1093.

[20] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-Performance Ideal Lattice-Based Cryptography
on 8-Bit ATxmega Microcontrollers. In Progress in Cryptology – LATINCRYPT 2015, Kristin Lauter and Francisco
Rodríguez-Henríquez (Eds.). Springer International Publishing, Cham, 346–365.

[21] Claudia Patricia Renteria-Mejia and Jaime Velasco-Medina. 2017. High-throughput ring-LWE cryptoprocessors. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25, 8 (2017), 2332–2345.

[22] Debapriya Basu Roy, Debdeep Mukhopadhyay, Masami Izumi, and Junko Takahashi. 2014. Tile Before Multiplication:
An Efficient Strategy to Optimize DSP Multiplier for Accelerating Prime Field ECC for NIST Curves (DAC ’14).
Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/2593069.2593234

[23] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede. 2014. Compact
Ring-LWE Cryptoprocessor. In Cryptographic Hardware and Embedded Systems – CHES 2014, Lejla Batina and Matthew
Robshaw (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 371–391.

[24] Michael Scott. 2017. A Note on the Implementation of the Number Theoretic Transform. In Cryptography and Coding -
16th IMA International Conference, IMACC 2017. Springer. https://doi.org/10.1007/978-3-319-71045-7_13

[25] Silvan Streit and Fabrizio De Santis. 2017. Post-quantum key exchange on ARMv8-A: A new hope for NEON made
simple. IEEE Trans. Comput. 67, 11 (2017), 1651–1662.

[26] Weihang Tan, Antian Wang, Yingjie Lao, Xinmiao Zhang, and Keshab K. Parhi. 2021. Pipelined High-Throughput
NTT Architecture for Lattice-Based Cryptography. In 2021 Asian Hardware Oriented Security and Trust Symposium.
1–4. https://doi.org/10.1109/AsianHOST53231.2021.9699608

[27] Franz Winkler. 1996. Polynomial algorithms in computer algebra. Springer Science & Business Media.
[28] Ferhat Yaman, Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2021. A hardware accelerator for polynomial

multiplication operation of CRYSTALS-KYBER PQC scheme. In 2021 Design, Automation & Test in Europe Conference &

https://doi.org/10.1109/TCSI.2022.3218192
https://doi.org/10.1137/080725398
https://eprint.iacr.org/2016/504
https://eprint.iacr.org/2016/504
https://eprint.iacr.org/2016/504
https://doi.org/10.1109/TC.2020.3017930
https://doi.org/10.1109/TC.2020.3017930
https://doi.org/10.1109/DSD.2019.00045
https://doi.org/10.1109/TCAD.2022.3205552
https://doi.org/10.1109/TCAD.2022.3205552
https://doi.org/10.1145/2593069.2593234
https://doi.org/10.1007/978-3-319-71045-7_13
https://doi.org/10.1109/AsianHOST53231.2021.9699608

PROTEUS: A Tool to generate pipelined Number Theoretic Transform Architectures for FHE and ZKP applications 25

Exhibition (DATE). IEEE, 1020–1025.
[29] Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K. Prasanna. 2022. NTTGen: A Framework for

Generating Low Latency NTT Implementations on FPGA. In Proceedings of the 19th ACM International Conference on
Computing Frontiers (Turin, Italy) (CF ’22). 30–39.

[30] Tian Ye, Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K. Prasanna. 2021. FPGA Acceleration
of Number Theoretic Transform. In High Performance Computing. Springer International Publishing, 98–117.

[31] Zewen Ye, Ray C.C. Cheung, and Kejie Huang. 2022. PipeNTT: A Pipelined Number Theoretic Transform Architecture.
IEEE Transactions on Circuits and Systems II: Express Briefs (2022), 1–1. https://doi.org/10.1109/TCSII.2022.3184703

[32] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo Liu. 2020. Highly Efficient Architecture
of NewHope-NIST on FPGA using Low-Complexity NTT/INTT. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020, 2 (3 2020), 49–72.

[33] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan Long, Cong Wang, Dong Zhou, Mingyu
Gao, and Guangyu Sun. 2021. PipeZK: Accelerating Zero-Knowledge Proof with a Pipelined Architecture. In 48th
IEEE/ACM International Symposium on Computer Architecture (ISCA).

https://doi.org/10.1109/TCSII.2022.3184703

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Number Theoretic Transformation (NTT) for FHE and ZKP

	3 SDF and MDC Architectures for NTT
	3.1 Single-path Delay Feedback (SDF) Architecture
	3.2 Multi-path Delay Commutator (MDC) Architecture
	3.3 NTT for very large-degree polynomials using SDF/MDC architectures

	4 Selection of Proper NTT Configuration
	4.1 Reducing Memory Requirement for Twiddle Factors
	4.2 Eliminating the multiplication with n-1 at the end of INTT
	4.3 Related Works

	5 The Proposed Framework
	5.1 PROTEUS
	5.2 High-level Architecture
	5.3 Low-level Arithmetic Units

	6 Evaluations
	6.1 Evaluation of NTT configuration and parameter selection
	6.2 Comparison with the literature

	7 Conclusions
	References

