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Abstract
The advent of quantum computers has sparked significant
interest in post-quantum cryptographic schemes, as a
replacement for currently used cryptographic primitives. In
this context, lattice-based cryptography has emerged as the
leading paradigm to build post-quantum cryptography.
However, all existing viable replacements of the classical
Diffie-Hellman key exchange require additional rounds of
interactions, thus failing to achieve all the benefits of this
protocol. Although earlier work has shown that lattice-based
Non-Interactive Key Exchange (NIKE) is theoretically
possible, it has been considered too inefficient for real-life
applications.

In this work, we challenge this folklore belief and provide
the first evidence against it. We construct a practical
lattice-based NIKE whose security is based on the standard
module learning with errors (M-LWE) problem in the
quantum random oracle model. Our scheme is obtained in
two steps: (i) A passively-secure construction that achieves a
strong notion of correctness, coupled with (ii) a generic
compiler that turns any such scheme into an actively-secure
one. To substantiate our efficiency claim, we provide an
optimised implementation of our construction in Rust and
Jasmin. Our implementation demonstrates the scheme’s
applicability to real-world scenarios, yielding public keys of
approximately 220 KBs. Moreover, the computation of
shared keys takes fewer than 12 million cycles on an Intel
Skylake CPU, offering a post-quantum security level
exceeding 120 bits.

1 Introduction

A key exchange is a fundamental cryptographic primitive
that allows two users to agree on a common secret key over
an insecure channel, such as the Internet. When the protocol
involves a single, asynchronous message from each party, it
is known as a Non-Interactive Key Exchange (NIKE). The
seminal work of Diffie and Hellman [36] introduced the

well-known NIKE scheme that marked the birth of
public-key cryptography; each party sends a single group
element gx (or gy, respectively) and the shared key can be
derived by computing (gy)x = (gx)y. From a theoretical
stand-point NIKE implies the existence of public key
encryption (PKE), key encapsulation mechanism (KEM),
and even authenticated key-exchange (AKE) when
combining the results of [24] with [45]. Moreover, in
practice, the Diffie-Hellman key exchange lies at the heart of
widely-used protocols such as Transport Layer
Security (TLS) [81], the Signal protocol [69, 70], or the
Noise protocol framework [76].

The looming threat of quantum computers, combined with
the discovery of efficient quantum algorithms for factoring
integers and computing discrete logarithms [86], has
necessitated the exploration of alternative solutions based on
new mathematical structures, departing from protocols based
on the Diffie-Hellman key exchange. In particular,
lattice-based cryptography [80] has emerged as the leading
paradigm for constructing post-quantum cryptographic
schemes. Notably, three out of four algorithms selected for
standardisation by NIST are lattice-based [64, 79, 83].

While efficient lattice-based key exchange protocols
exist [5, 22, 83], they are all qualitatively different from the
standard Diffie-Hellman-style key exchange, in the sense that
they require additional rounds of interaction. For many
applications, where interaction is already built-in, these
protocols are perfectly fine substitutes for the Diffie-Hellman
(that is not post-quantum secure). However, in many
scenarios of interest, the non-interactive nature of NIKE
protocols is crucial (we discuss concrete examples in further
detail in Section 1.1). Unfortunately, despite almost two
decades of research on the subject, an efficient lattice-based
NIKE remains elusive. Perhaps more worryingly, a recent
work [51] has shown theoretical barriers on the efficiency of
lattice-based NIKE, calling into question whether it is even
possible to build a practical scheme at all. Thus, the current
state of affairs, leaves open the following question:
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Is lattice-based non-interactive
key exchange feasible in practice?

In our work we seek to answer this question in the
affirmative, and show that lattice-based NIKE can be made
efficient enough to be used in practice, whilst maintaining
post-quantum security.

1.1 NIKE vs. KEMs and Applications
While the Diffie-Hellman (DH) key exchange happens to be
non-interactive, most post-quantum approaches to key
exchange are interactive key-encapsulation
mechanisms (KEMs). In a NIKE, any user A can derive a
shared key kAB using their secret key skA and the public key
pkB of user B. At the same time, and without interaction with
A, user B can compute the same shared key kAB by
combining their secret key skB with the public key pkA of
user A. On the other hand, in a KEM, this key-derivation
becomes a two-stage, inherently asymmetric and interactive
process. First, A invokes an encapsulation routine that
accepts pkB as input and produces as output the shared key
kAB and a ciphertext ct, which they send to B. User B then
invokes the decapsulation routine that takes as input ct and
secret key skB to produce the same shared secret kAB.

In some protocols that employ DH, the non-interactive
nature is not actually utilised, making the migration to
post-quantum KEMs straightforward. Probably the most
prominent example is TLS, which uses the DH key exchange
with ephemeral keys on both sides for forward secrecy and
has been updated to offer post-quantum security by using
KEMs in multiple papers [15, 23, 74] and real-world
deployments [58–60, 91].

However, other protocols do make use of the
non-interactive nature of DH and their migration to
post-quantum primitives is thus much more involved. A
common pattern in these protocols is the use of static DH
keys for authentication. One example is OPTLS by
Krawczyk and Wee [57], a proposal that eliminates the need
for handshake signatures in TLS. The idea was picked up in
the post-quantum setting in the KEMTLS proposal by
Schwabe, Stebila, and Wiggers [84]. Like OPTLS, also
KEMTLS eliminates the need for handshake signatures, but
unlike OPTLS uses static KEM keys for authentication. This
adaptation comes at the cost of additional communication
round-trips until full server authentication is achieved, which
can be problematic in scenarios where protocols like HTTPS
allow the server to transmit early payload data before
completing the handshake. Similar issues with delayed
authentication when moving from DH to KEMs were
identified in the migration of WireGuard to the post-quantum
setting in [53] and in the the recently proposed post-quantum
version of the Noise protocol framework [9].

While these examples manage to migrate from DH to
KEMs, they come at the additional cost of further

communication round trips without requiring signature-based
authentication or more complex cryptographic primitives.
However, if communicating parties cannot be assumed to be
online at the same time, this approach is doomed to fail. A
prominent example of precisely this asynchronous
communication setting is the Signal secure-messaging
protocol and specifically the X3DH protocol [70] that is
invoked when a user A starts their communication with a
(possibly offline) user B. The X3DH protocol uses a
combination of ephemeral, static, and semi-static DH keys to
achieve forward secrecy, mutual authentication, and offline
deniability without the need for direct interaction between A
and B. Several attempts have been made to migrate X3DH to
the post-quantum setting [26, 27, 38, 52, 87], but they all
either assume the existence of a reasonably efficient
post-quantum NIKE, or fail to achieve the same security and
privacy as the pre-quantum version from a single simple
asymmetric primitive.

1.2 Our Contributions
In this work, we demonstrate the practical feasibility of
lattice-based non-interactive key exchange. We propose a
new scheme, that we call “SWOOSH”, based on the hardness
of the M-LWE problem. We show a proof of its security,
both in the passive and active setting, and provide parameter
sets for the former with over 120-bits of security against
quantum adversaries (using the best known attacks that
incorporate recent advances in lattice cryptanalysis). Our
contributions can be summarised as follows.

1. We propose a new construction of NIKE based on the
hardness of the M-LWE problem. Our construction is
based on the standard template [37, 63], but with a new
tweak that allows us to prove a strong notion of
correctness (which, in turn, is necessary to achieve
active security) in the quantum random oracle
model (QROM). Somewhat interestingly, our use of the
random oracle appears to be different from the
Fiat-Shamir [44] and the Fujisaki-Okamoto [46, 47]
transformations, and may thus be of independent
interest.

2. We propose a compiler that allows for the generic
transformation of a passively secure NIKE into an
actively secure scheme using non-interactive
zero-knowledge (NIZK) proofs. While this approach is
folklore, we provide, to the best of our knowledge, the
first explicit treatment of this technique in the literature.
Furthermore, the exact notion of passive security
needed for the proof to go through, turns out to be
surprisingly subtle to identify.

3. We provide a highly optimised implementation 1 of
1See https://github.com/MQuaresma/pswoosh.
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Passive-SWOOSH, written in Rust and Jasmin [6, 7].
With carefully selected parameters, our scheme achieves
more that 120 bits of security against quantum
adversaries. Notably, our benchmarks reveal smaller
public keys compared to the smallest parameter set of
Classic McEliece [1], an interactive KEM selected for
round 4 of the NIST-PQC competition. Furthermore, we
demonstrate that Passive-SWOOSH outperforms
CSIDH [32], the only currently known (and realistic)
post-quantum NIKE by orders of magnitude in terms of
speed. Together with existing NIZK proof
libraries [65, 66], our work establishes the first
competitive construction of a lattice-based NIKE for
practical use.

1.3 Related work

Post-quantum NIKE. While interactive KEMs appear to
be much more efficient in a post-quantum world than NIKEs,
there have been notable efforts towards constructing
post-quantum NIKE schemes as well. Boneh and
Zhandry [20] showed a construction using
indistinguishability obfuscation (iO) to construct a multiparty
NIKE from pseudorandom generators. However, the
practicality of this approach is hindered by the performance
limitations of iO, rendering it mainly of theoretical interest.
Much more practical was supersingular-isogeny
Diffie-Hellman (SIDH) [34, 55]. However, in 2016, this
construction was shown to be susceptible to active
attacks [48]. This could be solved by employing the
Fujisaki-Okamoto transform [46] in the NIST PQC candidate
SIKE [54], but this came at the expense of turning the NIKE
into an interactive KEM. Another approach to restoring the
active security of SIKE was presented in [10]. This approach
preserved the non-interactive nature of SIDH, but required
many parallel protocol executions and thus massively
increased computation time and message sizes. In 2022, all
of these approaches based on SIDH were made obsolete by
the numerous attacks against SIDH [31, 67, 82].

In 2018, Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH, a different approach for constructing an
isogeny-based NIKE [32]. CSIDH is not affected by the
attacks on SIDH, and is arguably the most plausible
candidate for practical post-quantum NIKE thus far, although
the post-quantum security of concrete parameters is subject
of debate [16, 21, 75]. Multiple works have considered the
efficient and secure implementation of CSIDH, currently the
fastest approach is a variant called CTIDH [11]. We provide
a performance comparison of our proposal to CTIDH
in Section 6.2. Notably, the work of [17] introduced a
compiler for achieving passive to active security. However,
the compiler assumes a base scheme with perfect correctness
and thus it does not apply to lattice-based NIKE.

Lattice-based NIKE. The idea of lattice-based NIKE
using the approach employed in Passive-SWOOSH is not new;
in [63] Lyubashevsky calls it “folklore (since at least 2010)”.
An attempt at selecting parameters was made in [35].
However, the proposed scheme did not formally consider
passive security, nor active security. Moreover, the selected
parameters resulted in a correctness error that would not even
allow the transformation into an actively secure scheme
through the use of NIZK proofs, a crucial aspect we achieve
in SWOOSH.

In fact, prior to our work, lattice-based NIKE was widely
considered impractical and this was even substantiated by
theoretical evidence. The work of [51] discovered
information theoretic barriers in constructing lattice-based
NIKE with non-interactive reconciliations. In particular, they
showed that any natural candidate of lattice-based NIKE with
polynomial modulus-to-noise ratio would necessarily incur
an inverse-polynomial correctness error. However, we stress
that our work does not contradict the theorem of [51]. As the
authors of [51] observe, non-interactive reconciliation is
possible, if we consider (M-)LWE instances with
super-polynomial modulus-to-noise ratio. This is indeed the
regime of parameters that we adopt in our work.

2 Technical Outline

We give a self-contained overview of our approach for
constructing a fast lattice-based NIKE. The following is
somewhat informal and glosses over many important details,
as it is only intended for an intuitive understanding of our
approach. The reader is referred to the respective technical
sections for precise statements.

The Basic Blueprint. Before delving into the specifics of
our approach, it is useful to recall the folklore construction
of lattice-based key exchange between Alice and Bob. Let
AAA be a random public N×N matrix over some ring R q and
χ a noise distribution. The protocol proceeds as follows;
Alice samples s⃗ss1 and e⃗ee1 from χN , and computes her public
key as s⃗ss⊤1 AAA+ e⃗ee⊤1 . Bob samples an independent s⃗ss2 and e⃗ee2
from χN , and computes his public key as AAA⃗sss2 + e⃗ee2. After
asynchronously obtaining each other’s public keys, Alice and
Bob can compute an approximate shared key as

s⃗ss⊤1 (AAA⃗sss2 + e⃗ee2)≈
(⃗

sss⊤1 AAA+ e⃗ee⊤1
)⃗

sss2.

A simple calculation shows that the shared keys computed by
both parties are identical with the exception of the error
terms s⃗ss⊤1 e⃗ee2 and e⃗ee⊤1 s⃗ss2 for Alice and Bob, respectively. To
correct these errors, known schemes in the literature run
interactive reconciliation protocols, which can be realised
quite efficiently. However, if we insist on a NIKE protocol,
no further interaction is allowed, and Alice and Bob must
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correct the errors locally. That is, we need to devise a
non-interactive reconciliation function Rec such that

Rec
(⃗

sss⊤1 (AAA⃗sss2 + e⃗ee2)
)
= Rec

((⃗
sss⊤1 AAA+ e⃗ee⊤1

)⃗
sss2

)
.

Note that, thus far, we have assumed that both Alice and Bob
compute their keys according to the specification of the
protocol, i.e., we implicitly only considered passive attacks.
However, for the security of the final scheme, it will be
necessary to handle parties that may behave arbitrarily. In
what follows, we show how we tackle these two challenges
separately, in a way that preserves the efficiency and security
of the scheme.

Challenge I: Non-Interactive Reconciliation. A natural
approach for correcting the errors introduced by the noise
terms, is to derive the key by rounding the coefficients of the
resulting ring element. In fact this is the approach that we
adopt in this work, however there are still new ideas required
to simultaneously achieve all of the following objectives: (i)
security from the hardness of the standard module learning
with errors (M-LWE) problem, (ii) reducing the correctness
error to negligible, and (iii) maintaining the concrete
efficiency of the construction. Here, we stress that a
negligible correctness error is not just a matter of
convenience, but that a non-negligible correctness error
translates to an attack against the scheme: Loosely speaking,
this is because the attacker can observe whenever the key
agreement fails, therefore learning some information about
the secret key of the honest party. Let us now focus on
making the rounding approach work for non-interactive
reconciliation. A simple calculation shows that the error
terms cause a correctness error, only when the term s⃗ss⊤1 AAA⃗sss2
falls into a danger interval

S∗ =
[q

4
±β

2dN
]
∪
[

3q
4
±β

2dN
]
,

where β is a bound on the norm of the noise distribution and
d is the degree of R q. It is tempting to conclude that, if q is
sufficiently large, then this event only happens with negligible
probability. However, this analysis is imprecise as it does
not take into account adaptive attacks, where the adversary
chooses their secret key intentionally to make this event more
likely. To prevent this, and obtain a provably secure scheme,
we add a random shift rrr to the term s⃗ss⊤1 AAA⃗sss2 to ensure that their
sum s⃗ss⊤1 AAA⃗sss2 + rrr is indeed uniformly distributed in Rq. Note
that such rrr does not need to be kept private, although it is
important that it is sampled independently of the keys. Our
idea is to sample rrr as the output of a hash function (modelled
as a random oracle) on input the two public keys. This allows
us to achieve two goals simultaneously:

• Both parties can recompute the shift rrr without the need
of further interaction.

• We can show that s⃗ss⊤1 AAA⃗sss2 + rrr is indeed uniformly
sampled, even if the adversary has quantum access to
the random oracle.

In summary, we are able to build a non-interactive
reconciliation mechanism so that the scheme is provably
secure (in the passive settings) against the standard M-LWE
assumption, in the QROM. In fact, we are also able to show a
strong notion of correctness, namely that the adversary
cannot cause a reconciliation error, even if it is allowed to
choose both secret keys. This strong notion of correctness
will be useful when lifting the scheme to the active setting.

Challenge II: From Passive to Active Security. The
above discussion concerns keys that are guaranteed to be
well-formed (passive security). However, in real-world
scenarios we have to deal with attackers that can behave
arbitrarily. In the stronger notion of active security [29, 45]
the adversary is given access to various oracles that allow
him to register honest keys, register corrupt keys (ones to
which he does not know the corresponding public key), or
reveal the shared key between an honest key and a corrupted
one. Ultimately the adversary wins if he can distinguish
between a random key and a shared key, that was derived
from two honestly generated key pairs.

In order to prove the active security of our scheme we
present a compiler that generically lifts our scheme to the
active setting using non-interactive zero-knowledge (NIZK)
proofs. Here it is crucial that our scheme satisfies the
aforementioned strong notion of correctness, since the only
thing that the NIZK guarantees is that the keys are in the
support of the honest distributions, but otherwise they may
be chosen arbitrarily. For technical reasons, we require a
NIZK that satisfies the strong property of simulation-sound
online-extractability. We refer the reader to Section 5 for
more details.

Putting Everything Together. Overall, we obtain a
passively secure construction in the QROM assuming the
hardness of the Module-LWE (M-LWE) problem (for the
active settings, we additionally require a NIZK proof).
Compared to Ring-LWE (R-LWE), M-LWE gives us greater
flexibility over the choice of parameters, when implementing
our scheme. However, this introduces an additional
complication: Unlike the case for R-LWE, where single
polynomials are considered and their multiplication is
commutative, in the case of M-LWE we work with matrices
where the matrix multiplication is not generally commutative.
For the general case of two parties without predefined roles
in a protocol, there is no way to know ahead of time whether
to left multiply or right multiply. This means that each public
key is effectively duplicated by adding a left multiplied key
and right multiplied key. However, we argue that in many
cases, when parties have predefined roles in a protocol, such
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as a server or client, this issue can be resolved (the server
could “go right” and the client “left” or vice versa). We defer
a more detailed discussion of this to Section 5.3.

Our parameters are selected as to provide more than 120
bits of post-quantum security, taking into account recent
advances in lattice cryptanalysis. We work over the ring
R q := Zq[X ]/(Xd +1) with d = 256. Along with our public
matrix AAA ∈ R N×N

q , where N = 32, this gives us a lattice
dimension of 8192. In order to reduce the correctness error
to reasonable levels, q had to be sufficiently large. We choose
q = 2214−255, a prime that is simultanously NTT-friendly
and close to a power-of-two making for more efficient field
arithmetic. Furthermore, we use ternary noise sampled from
a centred binomial distribution, for the sake of efficiency.

Finally, we provide an open-source implementation of
Passive-SWOOSH in Rust and Jasmin, which employs
numerous optimisations rendering competitive benchmarks.
Due to the modular fashion of our implementation we note
that it can easily be tailored to use different parameters or be
incorporated with suitable NIZKs. We defer a more detailed
discussion to Section 6.

3 Preliminaries

In this section we introduce our notation and review some
quantum preliminaries along with the relevant lattice-based
hardness assumptions.

3.1 Notation
We define some standard notation used throughout the paper.

Sets, Vectors, Polynomials and Norms. For integers a,b,
where a < b, [a,b] denotes the set {a,a+1, . . . ,b}. For any
positive β ∈ Z, we define the set
[β] := {−β, . . . ,−1,0,1 . . . ,β}, and let x $← S denote the
uniform sampling of x from the set S . Let Zq denote the ring
of integers modulo a prime q. We define
R := Z[X ]/(Xd + 1) to be the ring of integer polynomials
modulo Xd + 1, for d a power of 2, and
R q := Zq[X ]/(Xd + 1) the ring of integer polynomials
modulo Xd +1 where each coefficient is reduced modulo q.
Bold upper case letters AAA and bold lower case letters with
arrows a⃗aa denote matrices and column vectors over R q,

respectively; for row vectors we use the transpose b⃗bb
⊤

. For a
polynomial fff ∈ R q, let f⃗ ∈ Zd

q denote the coefficient vector
of fff , and fi ∈ Zq the ith coefficient. However, we denote the
constant coefficient by f̃ := f0 ∈ Zq. For an element fi ∈ Zq,
we write | fi| to mean | fi mod q|. Let the ℓ∞ norm for
fff = ∑

d−1
i=0 fiX i ∈ R q and f⃗ff = ( fff 1, . . . , fff k) ∈ R k

q be defined
as

∥ fff∥
∞

:= max
0≤i≤d−1

| fi| and
∥∥∥⃗ fff
∥∥∥

∞

:= max
1≤i≤k

∥ fff i∥∞
.

Probabilities, Algorithms and Games. The support of a
discrete random variable X is defined as sup(X) := {x ∈ R :
Pr[X = x]> 0}. Algorithms are denoted by upper case letters
in sans-serif font, such as A and B. Unless otherwise stated all
algorithms are probabilistic and (x1, . . .)

$← A(y1, . . .) is used
to denote that A returns (x1, . . .) when run on input (y1, . . .).
When A has oracle access to B during its execution, this is
denoted by AB. For a probabilistic algorithm A, the notation
x ∈ A(y) denotes that x is a possible output of A on input
y. We use code-based security games [13], where Pr[G⇒ 1]
denotes the probability that the final output of game G is
1. The notation JBK, where B is a Boolean statement, refers
to a bit that is 1 if the statement is true and 0 otherwise.
The following lemma demonstrates the high probability of
a randomly selected matrix being invertible. Due to space
constraints, the proof is deferred to Appendix A.

Lemma 1 (Invertibility of Random Matrices). For R q =
Zq[X ]/(Xd + 1) with d = 256 and q = 2214− 255, if AAA is a
random matrix sampled from R N×N

q , then the probability of
AAA being invertible, denoted by Pr[AAA ∈ GLN(R q)], satisfies

Pr[AAA ∈ GLN(R q) | AAA $← R N×N
q ]≥

(
1− 128

q2

)N

.

3.2 Quantum Preliminaries

We review some quantum preliminaries as stated in [41].
Additional preliminaries are deferred to Appendix A.

Quantum Random Oracle Model. In the random oracle
model [12], all parties have access to a uniformly sampled
random function H. Since quantum adversaries can evaluate
hash functions in superposition, we model quantum
adversaries to have quantum access to random oracles [19].
Specifically, we assume that all algorithms have access to the
unitary implementing the mapping: |x⟩ |y⟩ 7→ |x⟩ |y⊕H(x)⟩
where H is a uniformly sampled random function.

Query Depth and Query Parallelism. As in the work
of [8] we consider the query depth D of an adversary making
a total of QH random oracle queries. This is important in
practice because for highly parallel adversaries we have
D ≪ QH. By setting D := QH we obtain the bounds for
sequential adversaries. We will use the following technical
lemma from [8].

Lemma 2 (Search in unstructured functions [8, Lem. 2]). Let
H be a random function drawn from a distribution such that
Pr[H(x) = 1]≤ λ for all x. Let A be an adversary with query
depth D, making at most QH many queries to H. Then

Pr
[
H(x) = 1 : b $← AH

]
≤ 4 · (D+2) · (QH+1) ·λ.
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3.3 Hardness Assumption
The security of our scheme relies on Module-Learning With
Errors (M-LWE), a well-known computational lattice
problem [61, 80].

Definition 1 (M-LWEq,n,m,χ). The decisional
Module-Learning With Errors problem (in its Hermite
normal form) with parameters n,m > 0 and an error
distribution χ over R q is defined via the game M-LWEb

q,n,m,χ

depicted in Figure 1. Here, M-LWEb
q,n,m,χ is parameterised

by a bit b. We define A’s advantage in M-LWEb
q,n,m,χ as

AdvM-LWE
q,n,m,χ (A) :=

∣∣∣∣∣ Pr[M-LWE0,A
q,n,m,χ⇒ 1]

−Pr[M-LWE1,A
q,n,m,χ⇒ 1]

∣∣∣∣∣ ,
and say that M-LWEq,n,m,χ is ε-hard for all adversaries A

satisfying AdvM-LWE
q,n,m,χ (A)≤ ε.

Game M-LWEb
q,n,m,χ

01 b′ $← ARoR(b)

02 return Jb = b′K

Oracle RoR(b) // Once

03 AAA $← R n×m
q

04 if b = 0 :
05 s⃗ss $← χm

06 e⃗ee $← χn

07 return (AAA,AAA⃗sss+ e⃗ee)
08 elseif b = 1 :
09 u⃗uu $← R n

q
10 return (AAA,⃗uuu)

Figure 1: Game defining M-LWEb
q,n,m,χ with adversary A.

Theoretic treatments of LWE-based schemes typically
consider the modulus to be polynomial in n and χ to be the
discrete Gaussian on DZ,α·q over Z with mean 0 and standard
deviation σ = α ·q/

√
2π for some α < 1. For these choices

the work of [25, 80] showed that if αq > 2
√

n then
worst-case GapSVP-Õ(n/α) reduces to average-case LWE.
As such, many early implementations sampled from a
discrete Gaussian distribution, which turns out to be either
fairly inefficient [23] or vulnerable to timing
attacks [28, 43, 77]. Furthermore, the performance of the best
known attacks against LWE-based encryption schemes does
not depend on the exact distribution of noise, but rather on
the standard deviation (and potentially the entropy). This
motivates the use of noise distributions that we can easily,
efficiently, and securely sample from. One example is the
centred binomial distribution used by
CRYSTALS-Kyber [83] and in [5].

4 Definitions

In this section we present a formal definition of a
non-interactive key exchange along with its security notions.

A precise definition of non-interactive zero-knowledge
proofs can be found in Appendix B.1.

4.1 Non-Interactive Key Exchange
Following the work of [29, 45], we formally define a
non-interactive key exchange (NIKE). Through the use of
IDs, the security model proposed in [29] abstracts away all
considerations concerning certification and public key
infrastructure.

Definition 2 (Non-Interactive Key Exchange). A
non-interactive key exchange NIKE is defined as a tuple
NIKE := (Stp,Gen,SdK) of the following PPT algorithms.
Furthermore, we define an identity space I DS and a shared
key space SK S .

par $← Stp(1λ): Given the security parameter 1λ (encoded
in unary), the probabilistic setup algorithm returns a set
of system parameters par.

(sk, pk) $← Gen(ID): Given an identity ID ∈ I DS , the
probabilistic key generation algorithm Gen returns a
secret/public key pair (sk, pk).

k← SdK(ID1, pk1,ID2,sk2): Given an identity ID1 ∈ I DS
and its corresponding public key pk1 along with another
identity ID2 ∈ I DS and its corresponding secret key sk2,
the deterministic shared key establishment algorithm
SdK returns a shared key k ∈ SK S , or a failure symbol
⊥. We assume that SdK always returns ⊥ if ID1 = ID2.

Correctness. Informally, honest correctness states that
shared keys derived by two honest parties should be the same
with overwhelming probability. Although our subsequent
definition of correctness implies honest correctness, we state
both definitions here for completeness.

Definition 3 (Honest Correctness). A non-interactive key
exchange NIKE := (Stp,Gen,SdK) has honest correctness
error δ (or is said to be δ-correct), if for all par ∈ Stp(1λ)
and ID1,ID2 ∈ I DS it holds that,

Pr
[
SdK(ID1, pk1,ID2,sk2) ̸= SdK(ID2, pk2,ID1,sk1)

∣∣∣∣
(sk1, pk1)

$← Gen(ID1)
(sk2, pk2)

$← Gen(ID2)

]
≤ δ,

where the probability is taken over the random choices of Stp
and Gen.

In this work we define a stronger notion, semi-malicious
correctness that captures the property that two maliciously
chosen key pairs (that are in the support of the key generation
algorithm) will not cause the key exchange to fail. Since this
property clearly implies honest correctness, throughout the
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rest of this work we only focus on semi-malicious correctness.
We formalise semi-malicious correctness for NIKE relative
to a random oracle H via the game SM-CORNIKE depicted
in Figure 2 and define the advantage of an adversary A in
SM-CORNIKE as

AdvSM-COR
NIKE,par(A) := Pr[SM-CORA

NIKE⇒ 1].

Definition 4 (Semi-malicious Correctness). Let
NIKE := (Stp,Gen,SdK) be a non-interactive key exchange.
In the quantum random oracle model, we say that NIKE is
δ(QH)-SM-COR if for all ID1,ID2 ∈ I DS and for all
(possibly unbounded) adversaries A of depth at most D,
making at most QH queries (possibly in superposition) to the
random oracle H, we have AdvSM-COR

NIKE,par(A)≤ δ(QH,D). 2

Game SM-CORNIKE

01 par← Stp(1λ)

02
supp(Gen(ID1)) ∋ (sk1, pk1)
supp(Gen(ID2)) ∋ (sk2, pk2)

}
$← A|H⟩(par)

03 return JSdK(ID1, pk1,ID2,sk2) ̸= SdK(ID2, pk2,ID1,sk1)K

Figure 2: Correctness game SM-CORNIKE for a non-
interactive key exchange NIKE defined relative to a random
oracle H with adversary A.

Passive Security. i Following the conventions of [45], we
formalise the notion of key indistinguishability with passive
security, or honest key registration (HKR), for a
non-interactive key exchange NIKE, with respect to system
parameters par ∈ Stp(1λ) via the game HKR-CKS-lNIKE,par
depicted in Figure 6. In HKR-CKS-lNIKE,par, the adversary
A may make two queries to the RegHonUsr oracle, where A
provides and identity and the public and secret keys are
derived honestly. A may then make one query to the
TestQue oracle, where A has to distinguish the shared key
from a random key. We define the advantage of adversary A
in HKR-CKS-lNIKE,par as
AdvHKR-CKS-l

NIKE,par (A) :=
∣∣Pr
[
HKR-CKS-lANIKE,par⇒ 1

]
− 1

2

∣∣.
Definition 5 (Passive Security). Let
NIKE := (Stp,Gen,SdK) be a non-interactive key exchange.
We say that NIKE is (ε,QH)-HKR-CKS-l relative to
par ∈ Stp(1λ) if for all PPT adversaries A, making at most
QH queries (possibly in superposition) to the random oracle
H, two queries to the RegHonUsr oracle and one query to the
TestQue oracle, we have AdvHKR-CKS-l

NIKE,par (A)≤ ε(QH).

Active Security. We formalise the notion of key
indistinguishability with active security for a non-interactive

2Note that in the standard model our correctness definition can be
considered a special case where the number of random oracle queries is
zero and hence δ(QH,D) is a constant.

key exchange NIKE, with respect to system parameters
par ∈ Stp(1λ) via the game CKSNIKE,par depicted in
Figure 7. Observe that this CKS notion was first defined
in [29] and is polynomially equivalent to CKS-l (where the
adversary is only allowed to make two RegHonUsr queries
and one TestQue query) and m-CKS-heavy in the work
of [45]. Unsurprisingly our definition of active security
implies the former notion of passive security. The game
starts by selecting a bit b uniformly at random after which
the adversary A is given access to four oracles. A’s queries
may be made adaptively and are arbitrary in number. The
RegHonUsr and RegCorUsr oracles let A register honest and
corrupted user public keys, respectively. A may make
multiple queries to RegCorUsr, in which case only the most
recent (corrupt,ID,⊥, pk) entry is kept. The RevCorQue
oracle provides A with a shared key between a pair of
registered identities, subject only to the restriction that at
least one of the two identities was registered as honest.
Depending on the bit b, the TestQue oracle returns either a
random key or a shared key between two identities registered
as honest. Finally, the adversary outputs a guess bit b′ and
wins the game if and only if b = b′. We define the advantage
of adversary A in CKSNIKE,par as
AdvCKS

NIKE,par(A) :=
∣∣Pr
[
CKSA

NIKE,par⇒ 1
]
− 1

2

∣∣.
Definition 6 (Active Security [29]). Let
NIKE := (Stp,Gen,SdK) be a non-interactive key exchange.
We say that NIKE is (ε,QH,QRHU,QRCU,QRCQ,QTQ)- sec
relative to par ∈ Stp(1λ) if for all PPT adversaries A
making at most; QH queries (possibly in superposition) to the
random oracle H, QRHU queries to RegHonUsr, QRCU queries
to RegCorUsr, QRCQ queries to RevCorQue, and QTQ queries
to TestQue, we have AdvCKS

NIKE,par(A)≤ ε.

Single- and Multi-User Security. The following Theorem
from [45] shows that CKS-l and CKS are polynomially
equivalent and will become useful for our proofs
in Section 5.2. The other direction of the Theorem is trivial.

Theorem 3 (CKS-light ⇒ CKS [45, Thm. 1]). For any
adversary A against NIKE in the CKS model, there exists an
adversary B that breaks NIKE in the CKS-light model such
that

AdvCKS
NIKE,par(A)≤

Q2
RHU ·QTQ

2
·AdvCKS-l

NIKE,par(B),

Furthermore, the following observation will also be useful
for our proofs in Section 5.2. Note that a variant of the
CKSNIKE,par game in which the adversary A is only given
access to the RegHonUsr and TestQue oracles (as well as the
random oracle H) can be thought of as a multi-user version
of the HKR-CKS-lNIKE,par game. Naturally we call this
game HKR-CKSNIKE,par, as in the work of [45], and define
the advantage of adversary A analogous to the previous
definitions. As noted in [45], Theorem 3 carries over to the
HKR setting.
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5 Construction

We present our NIKE construction in two steps by introducing
a scheme that only satisfies passive security followed by a
generic transformation that turns it into a scheme with active
security.

5.1 Passive Setting
In this section we present our construction of a non-interactive
key exchange with semi malicious correctness that satisfies
key indistinguishability for honestly registered public keys
(passive security) in the random oracle model. The scheme is
depicted in Figure 3. By Lemma 1 a random matrix over R q
will be invertible with overwhelming probability.

Correctness. In order to achieve better bounds in our proof
of security, we show that our scheme satisfies both honest
correctness as well as the stronger notion of semi-malicious
correctness of Definition 3 and Definition 4, respectively.
Although Theorem 5 implies Lemma 4, we will use the latter
and state its proof in Appendix C for sake of completeness.

Lemma 4 (Honest Correctness). For all (possibly
unbounded) adversaries A the non-interactive key exchange
NIKE := (Stp,Gen,SdK) construction depicted in Figure 3
has honest correctness error

δ≤ 4β2d2N
q

as per Definition 3.

We show that the scheme satisfies semi-malicious
correctness in the quantum random oracle model.

Theorem 5 (SM-COR of NIKE). For all (possibly
unbounded) adversaries A of depth D making at most QH

queries (possibly in superposition) to the random oracle H,
the non-interactive key exchange NIKE := (Stp,Gen,SdK)
construction depicted in Figure 3 has semi-malicious
correctness error

δ(QH,D)≤ 16 · (D+2) · (QH+1) · β
2d2N

q

as per Definition 4, where β is a bound on the maximum
absolute value of the support of χ.

Proof. We are going to prove that the adversary cannot cause
an error in the key derivation, i.e., a mismatch between the
derived keys, even if he is allowed to choose both secret
keys from the support of the key generation algorithm. This
trivially implies semi-malicious correctness. Let (sk1, pk1)
and (sk2, pk2) be the pairs returned by the adversary. Without
loss of generality we can consider sk1 = skL and pk2 = pkR,

i.e. only “one side” of the key. A key mismatch occurs
whenever

Rec
(

pk⊤L skR + rrr
)
̸= Rec

(
sk⊤L pkR + rrr

)
Rec

((⃗
sss⊤L AAA+ e⃗ee⊤L

)⃗
sssR + rrr

)
̸= Rec

(⃗
sss⊤L (AAA⃗sssR + e⃗eeR)+ rrr

)
Rec
(⃗

sss⊤L AAA⃗sssR + rrr︸ ︷︷ ︸
kkk⋆∈R q

+⃗eee⊤L s⃗ssR
)
̸= Rec

(⃗
sss⊤L AAA⃗sssR + rrr︸ ︷︷ ︸

kkk⋆∈R q

+⃗sss⊤L e⃗eeR
)
,

where rrr is the output of the random oracle on both public keys
and e⃗eeL and e⃗eeR are sampled from the noise distribution χN . By
definition of the Rec function, this means that the term e⃗ee⊤L s⃗ssR

(or, equivalently, the term s⃗ss⊤L e⃗eeR) is causing a rounding error
on one of the coefficients of kkk⋆. We now bound the size of
the largest coefficient of e⃗ee⊤L s⃗ssR as

∥∥∥⃗eee⊤L s⃗ssR

∥∥∥
∞

=

∥∥∥∥∥ N

∑
i=1

eeeL,isssR,i

∥∥∥∥∥
∞

≤
N

∑
i=1
∥eeeL,isssR,i∥∞

≤ β
2dN,

where the first inequality follows from the triangle inequality.
The norm of s⃗ss⊤L e⃗eeR can be bounded similarly. It follows that,
in order for a key derivation error to occur, then at least one
coefficient of kkk⋆ must be in the following interval

S⋆ =
[q

4
±β

2dN
]
∪
[

3q
4
±β

2dN
]
.

Next we define a function F that, on input two public keys
and two identities samples a uniform rrr, it returns 1 if a key
mismatch occurs, i.e.,

Rec
(

pk⊤L skR + rrr
)
̸= Rec

(
sk⊤L pkR + rrr

)
and 0 otherwise. The function checks this by (inefficiently)
recovering the secret keys and comparing the results of the
Rec functions (see equation above). Due to the high
probability of invertibility for AAA, as stated in Lemma 1, the
secret key is uniquely determined by the public key. Hence,
this (inefficient) function is well defined on all inputs.
Furthermore, note that the element

kkk⋆ = sk⊤L AAAskR + rrr

is uniformly distributed in Rq, since rrr $← Rq. It follows that
for any given input x:

Pr[F(x) = 1]≤ 4β2d2N
q

.

Finally, observe that by definition a key mismatch happens
if and only if the function F output 1 and consequently the
adversary is able to find such accepting input. By Lemma 2,
this happens with probability at most 16 · (D+2) · (QH+1) ·
β2d2N/q for an adversary of depth D, making at most QH

quantum queries to the random oracle. ■
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Stp(1λ)

01 R q := Zq[X ]/(Xd +1)
02 AAA $← GLN(R q)
03 par := (q,d,R q,N,AAA)
04 return par

Gen(ID)

05 s⃗ssL ,⃗sssR← Cbd(·) // Samples s⃗ss ∈ R N
q from χN

06 e⃗eeL ,⃗eeeR← Cbd(·) // Samples e⃗ee ∈ R N
q from χN

07 skL := s⃗ss⊤L ∈ R 1×N
q

08 skR := s⃗ssR ∈ R N
q

09 pkL := s⃗ss⊤L AAA+ e⃗ee⊤L ∈ R 1×N
q

10 pkR := AAA⃗sssR + e⃗eeR ∈ R N
q

11 return
(
skID := (skL,skR), pkID := (pkL, pkR)

)

SdK(ID1, pk1,ID2,sk2)

12 if ID1 ≤ ID2 :
13 rrr := H(ID1, pk1,ID2, pk2) ∈ R q

14 parse pk1→ (pkL,⊥) =: u⃗uu⊤L ∈ R 1×N
q

15 parse sk2→ (⊥,skR) =: s⃗ssR ∈ R N
q

16 kkk′ := u⃗uu⊤L s⃗ssR + rrr ∈ R q
17 else :
18 rrr := H(ID2, pk2,ID1, pk1) ∈ R q
19 parse pk1→ (⊥, pkR) =: u⃗uuR ∈ R N

q

20 parse sk2→ (skL,⊥) =: s⃗ss⊤R ∈ R 1×N
q

21 kkk′ := s⃗ss⊤R u⃗uuR + rrr ∈ R q
22 k := Rec(kkk′′′) ∈ {0,1}d

23 return k

Rec(kkk)

24 for i ∈ {0, . . . ,d−1} :
25 ki := Rnd(ki) ∈ {0,1}
26 return k ∈ {0,1}d

Rnd(ki)

27 if q
4 ≤ ki ≤ 3q

4 :
28 return 1
29 else :
30 return 0

Cbd(·)

31 for i ∈ {1, . . . ,N} :
32 for j ∈ {0, . . . ,d−1} :
33 a,b $←{0,1}
34 f j := a−b
35 fff i := ∑

d−1
j=0 f jX j

36 return f⃗ff := ( fff 1, . . . , fff N)

Figure 3: Construction of passively secure non-interactive key exchange NIKE := (Stp,Gen,SdK) with functions Rec : R q→
{0,1}d , Rnd : Zq → {0,1} and Cbd : /0→ R N

q , and random oracle H : I DS ×
(
R 1×N

q ×R N
q
)
× I DS ×

(
R 1×N

q ×R N
q
)
→ R q.

Here GLN(R q) denotes the set of invertible N×N matrices over R q.

On the Need for Random Oracles. An astute reader may
wonder whether the usage of the random oracle is needed
at all to prove the above notion of correctness, since there
does not appear to be an immediate attack even if we omit the
random oracle completely from the scheme. It is plausible to
conjecture that semi-malicious correctness holds even without
the random oracle. Informally, semi-malicious correctness
boils down to showing that, for a given public key pk ∈ R N

q ,
it is hard to find an sss ∈ R N

q such that for no coefficient of the
product sss⊤pk lies in the interval S⋆. Thus, the bound in these
settings would require one to estimate the hardness of this
version of the (inhomogenous) 1-dimensional short integer
solution (SIS) problem. By relying on the random oracle
heuristic, we are able to bypass this problem and obtain a
construction in the QROM that is: (i) unconditionally correct
in any ring and (ii) whose security is based on the well-
established M-LWE problem. We leave the precise study of
the hardness of this 1-dimensional variant of the SIS problem
as ground for future work.

Passive Security. Assuming the hardness of
M-LWE, Definition 1, we show that the scheme satisfies
passive security, Definition 5, in the QROM.

Theorem 6 (Passive Security). For any PPT adversary A
against NIKE := (Stp,Gen,SdK), depicted in Figure 5,
making an arbitrary number of queries (possibly in
superposition) to H, there exists PPT adversaries B1,B2
such that

AdvHKR-CKS-l
NIKE,par (A)≤ AdvM-LWE

q,N,N,χ (B1)+AdvM-LWE
q,N,N+1,χ(B2)+

4βd
q .

Proof of Theorem 6. Let A be an adversary against NIKE in
the HKR-CKS-l game. Consider the sequence of games
in Figure 4.

Game G0 This is the original HKR-CKS-lNIKE,par game so
by definition Pr

[
GA

0 ⇒ 1
]
= Pr

[
HKR-CKS-lANIKE,par⇒ 1

]
.

Game G1 Without loss of generality we consider the half
of pk1 that is actually used in the key derivation, say pk1L . In
this game pk1L is replaced with a uniform key on Line 03. It
follows immediately from Definition 1 that∣∣Pr

[
GA

0 ⇒ 1
]
−Pr

[
GA

1 ⇒ 1
]∣∣≤ AdvM-LWE

q,N,N,χ (B1).

Game G2 In this hybrid we modify the way we compute the
shared key. Consider kkk′ as computed in the SdK algorithm, we
define the shared key as Rec(kkk′+ eee) where eee $← χ is a freshly
sampled ring element from the noise distribution. Note that
the adversary can only detect a change in this hybrid if

Rec(kkk′+ eee) ̸= Rec(kkk′).

Since kkk′ is uniformly distributed in Rq, the probability that
any coefficient is rounded to a different term is at most 4βd/q,
which is also an upper bound on the distinguishing advantage
of the adversary. Thus we get∣∣Pr

[
GA

1 ⇒ 1
]
−Pr

[
GA

2 ⇒ 1
]∣∣≤ 4βd

q
.
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Games G0, G1, G2, G3

01 b $←{0,1}
02 (sk1, pk1)

$← Gen(ID1)
03 pk1 = (pk1L , pk1R)

$← R 1×N
q × pk1R //G1

04 (sk2, pk2)
$← Gen(ID2)

05 pk2 = (pk2L , pk2R)
$← pk2L ×R N

q //G3
06 if ID1 ≤ ID2 :
07 rrr := H(ID1, pk1,ID2, pk2) ∈ R q

08 parse pk1→ (pkL,⊥) =: u⃗uu⊤L ∈ R 1×N
q

09 parse sk2→ (⊥,skR) =: s⃗ssR ∈ R N
q

10 kkk′ := u⃗uu⊤L s⃗ssR + rrr ∈ R q
11 else :
12 rrr := H(ID2, pk2,ID1, pk1) ∈ R q
13 parse pk1→ (⊥, pkR) =: u⃗uuR ∈ R N

q

14 parse sk2→ (skL,⊥) =: s⃗ss⊤R ∈ R 1×N
q

15 kkk′ := s⃗ss⊤R u⃗uuR + rrr ∈ R q
16 k0 := Rec(kkk′′′) ∈ {0,1}d //G0
17 eee $← χ //G2
18 k0 := Rec(kkk′′′+ eee) ∈ {0,1}d //G2
19 uuu $← R q //G3
20 k0 := Rec(uuu) ∈ {0,1}d //G3
21 k1

$← SK S
22 b′← A|H⟩(pk1, pk2,kb)
23 return Jb = b′K

Figure 4: Games G0, G1, G2, G3 for the proof of HKR-CKS-l
of NIKE in Figure 3.

Game G3 In this game the half of pk2 that is used in the key
derivation, pk2R , is replaced with a uniform key on Line 05.
Furthermore kkk′+ eee is replaced with a uniform ring element uuu
on Line 20. By an invocation of the module-LWE assumption
we have that∣∣Pr

[
GA

2 ⇒ 1
]
−Pr

[
GA

3 ⇒ 1
]∣∣≤ AdvM-LWE

q,N,N+1,χ(B2).

Observe that k0 and k1 are identically distributed and the
adversary can only guess b′. Hence, Pr

[
GA

3 ⇒ 1
]
= 1

2 .
Collecting all probabilities yields the bound stated
in Theorem 6.

■

5.2 Active Setting
Here we show how a non-interactive key exchange with
passive security can be generically transformed to one with
active security. The transformation, depicted in Figure 5,
requires a simulation-sound NIZK with a straight line
extractor. Due to space constraints, the proof is deferred
to Appendix C.1.

Theorem 7 (HKR-CKS-l and SM-COR of NIKE′
QROM⇒
ZKPoK

CKS of NIKE). Let H : {0,1}∗ → R q be a random oracle
and NIKE′ := (Stp′,Gen′,SdK′) a passively secure

non-interactive key exchange with semi-malicious
correctness defined relative to par′ ∈ Stp′(1λ). Further, let
ZKPoK := (ZK.Prv,ZK.Ver) be a simulation-sound online
extractable zero-knowledge proof of knowledge for the NP
relation R = (pkID,skID). Then, for any CKS adversary A
against NIKE := (Stp,Gen,SdK), depicted in Figure 5, there
exist PPT adversaries B1,B2,B3,C such that

AdvCKS
NIKE,par(A)≤

Q2
RHU ·QTQ

2
· ε

and

ε := QRCU ·AdvSSND
ZKPoK(B1)+2 ·AdvSM-COR

NIKE′,par′(B2)

+2 ·AdvZK
ZKPoK(B3)+AdvHKR-CKS-l

NIKE′,par′ (C),

where QRHU, QRCU, QRCQ, and QTQ denote the number of
queries made by A to RegHonUsr, RegCorUsr, RevCorQue,
and TestQue, respectively.

5.3 Practical considerations
Halving the Key Size. Observe that the “left” and “right”
components pkL and pkR of the public key of the NIKE as
specified in Figure 3 are necessary because we work in the
non-commutative M-LWE setting. An easy way to halve the
size of the public key would be to set N = 1, i.e., to work in
the R-LWE setting; this also eliminates the need for the case
distinction in SdK. We argue that for essentially all relevant
applications of a NIKE, we can halve the public-key size even
without moving to the R-LWE setting. All that is required is
that protocol participants (and their associated NIKE keys)
have different roles, typically called initiator and responder or
client and server, and that these roles are clear from protocol
context. This is certainly the case for the application examples
sketched in Section 1.1: The OPTLS handshake, like the TLS
handshake, clearly distinguishes the roles of client and server,
so does the handshake in (post-quantum) WireGuard. Also
in X3DH the critical static-semistatic key exchange has clear
roles that can be used to distinguish between the “left” and
“right” participant instead of transmitting both components of
the key and using comparison of IDs. Note that this setting
of a NIKE using keys with different roles is very similar
to the ℓA and ℓB keys of SIDH [55, Sec. 3.2], when it was
still considered as a replacement for DH, i.e., before it was
shown to not be actively secure in [48] and completely broken
in [30].

Based on these considerations, we stick to the M-LWE
setting for the construction of SWOOSH; in our performance
evaluation in Section 6 we report the size of only one public-
key component.

Security of the NIZK. We highlight that our proof of
active security, Theorem 7, requires the strong property of
simulation-sound online-extractability. Although
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Stp(1λ)

01 par $← Stp′(1λ)
02 return par

Gen(ID)

03 (sk′ID, pk′ID)
$← Gen′(ID)

04 π
$← ZK.Prv(pk′ID,sk′ID)

05 skID := sk′ID
06 pkID := (pk′ID,π)
07 return (skID, pkID)

SdK(ID1, pk1,ID2,sk2)

08 parse pk1→ (pk′1,π)
09 if ZK.Ver(pk′1,π) = 0 : return ⊥
10 k′ := SdK′(ID1, pk′1,ID2,sk2)
11 return k′

Figure 5: Compiler for transforming a passively secure non-interactive key exchange NIKE′ := (Stp′,Gen′,SdK′) with semi-
malicious correctness into an actively secure non-interactive key exchange NIKE := (Stp,Gen,SdK).

constructions satisfying such a strong notion exist [89], they
tend to be less efficient than alternatives satisfying weaker
notions of security. For instance, a proof of knowledge of an
M-LWE secret satisfying simulation soundness, but without
online-extractability, using state of the art techniques [65]
and appropriate parameters is around 89 KB in size. Since
the [65] framework is relatively new, there are currently no
implementations available to determine the exact running
time of the prover and verifier. However, previous versions of
lattice-based zero-knowledge proofs [66], which serve as the
basis for [65], have shown implementations with prover and
verifier running times on the order of milliseconds when
proving similar relations.

It appears likely that the need for the stronger notion is an
artefact of the proof, and we conjecture that our construction
remains secure even if we use NIZKs that are simulation-
sound and extractable, although not online-extractable (such
as the protocol in [65]). We remark that using NIZKs with
slightly weaker security, in favour of a more efficient scheme,
is a well-established heuristic and was already used in many
works prior to ours, including [33,39,40,49,62,68,88]. While
we cannot exclude that contrived examples of NIZKs could
make our compiler fail, we believe that all natural candidates
of NIZKs would lead to secure schemes.

Tangentially, we also mention that for some applications,
the performance of the NIZK does not affect the efficiency
of the shared-key computation, since it can be verified once
and for all for a given public key: In any scenario where the
public keys are distributed by some PKI, the NIZK proof can
be simply verified by the PKI upon the registration of the key,
and then immediately discarded. The users would then trust
the PKI to have verified the NIZK on their behalf. Note that
this does not introduce any extra trust assumption, since the
PKI is anyway trusted to provide the correct public key. In
these scenarios, the efficiency of the NIZK only marginally
impacts the overall system performance, and thus justifies
ignoring the costs of the NIZK for shared-key computation.

5.4 Parameter selection
Selecting parameters for the scheme influences several
aspects, most notably the correctness error and the hardness
of M-LWE. In order to evaluate the security of our scheme

we use the Lattice-Estimator tool [2, 4, 78], to estimate the
memory and CPU operations required to perform various
lattice attacks, including dual attacks, uSVP, the
Coded-BKW attack, and solving using Gröbner bases with
the Arora-GB attack. The estimator has been used to
estimate the concrete security for all LWE and NTRU based
candidates of the NIST competition [3], and is regularly
updated to include the latest developments in lattice
cryptanalysis 3. However, we also take into account practical
considerations for the implementation when selecting our
parameters, such as the use of ternary secrets and noise
sampled from a centred binomial distribution. For our
scheme with parameters n = 8192,q = 2214− 255 and X a
ternary distribution, we estimate the hardness of the M-LWE
problem underlying SWOOSH at 120 bits 4.

The other way to attack SWOOSH is, for an active attacker,
to try to produce failures. We consider a quantum attacker
with a bounded query depth of D = 264 (i.e., what NIST
considers to be “the approximate number of gates that current
classical computing architectures can perform serially in a
decade” [73, Sec. 4.A]) and a bound on the number of queries
of 2120 (i.e., matching the hardness of the underlying lattice
problem). Applying Theorem 5 yields a success probability
(correctness error), after this amount of computation,

16 ·
(

264 +2
)
·
(
2120 +1

)
· 2562 ·32

2214 <
1
24 = δ(QH),

i.e., considerably smaller than 1/2. Note that this analysis
is conservative as it ignores the circuit depth for the Grover
oracle that an attacker would need to implement.

6 Implementation & Performance Evaluation

In order to demonstrate the practicality of SWOOSH in terms
of performance, we implement the core part of the scheme,
Passive-SWOOSH, present benchmarks of this
implementation, and compare to other KEMs and (pre- and
post-quantum) NIKEs. We caution the reader that all

3An up-to-date list of implemented works can be found https://
lattice-estimator.readthedocs.io/en/latest/references.html.

4These numbers can be reproduced with the
estimator — the version used in this work is at commit
96875622c6b0e6f98a91ddeecaaa17b66dbc5a87.

11

https://lattice-estimator.readthedocs.io/en/latest/references.html
https://lattice-estimator.readthedocs.io/en/latest/references.html


Parameter Description Value
β upper bound on ∥⃗sss∥

∞
= ∥⃗eee∥

∞
1

q prime modulus 2214−255
d dim of R q := Zq[X ]/(Xd +1) 256
l # factors Xd +1 splits into mod q 128
N height of the AAA matrix 32
n lattice dimension 8192

χ secret / noise distribution
p(−1) = 25%
p(0) = 50%
p(1) = 25%

Table 1: Parameter selection for non-interactive key exchange
NIKE.

implementation details and numbers we present in this
section are for Passive-SWOOSH only. To obtain a full
picture of the performance of SWOOSH, the implementation
will need to be augmented with a future implementation of
the NIZKP from [65]. As outlined in Section 5.3, the
performance impact of adding the NIZKP in terms of both
size and computational effort depends on the concrete
application scenario and may be negligible if key-generation
performance is not critical and if NIZKP verification can be
outsourced to the PKI.

6.1 Implementation

As a NIKE, SWOOSH is composed of two major functions, the
key generation procedure and the shared key computation, the
performance of which dictates the practicality of SWOOSH.

In the case of the key generation, the matrix AAA is fixed and
assumed to be in the NTT domain, so performance is dictated
by the sampling of the secret and error vectors, as well as the
computation of the public key which involves two NTT
transformations, and a matrix multiplication followed by a
polynomial addition. As for the shared key computation, its
performance is mainly dictated by the random offset
computation, which requires the use of cSHAKE [56] and
the polynomial base multiplication required to calculate kkk′′′

(see Figure 3). Similar to other schemes, the shared key
derivation also performs rounding of the shared key, however
its execution time is negligible. At a high level, the
architecture of our implementation is divided into two
distinct parts: low-level field arithmetic over Fq that is
implemented using the Jasmin language [6, 7], and
polynomial arithmetic in R q as well as the scheme itself,
both of which are implemented in Rust.

The structure largely mimics the abstract specification
in Figure 3. The main difference is that, like other
lattice-based schemes [5, 83], we encode and transmit public
keys in NTT domain. This massively reduces the number of
cycles required for shared key computation. In addition, as
discussed in Section 5.3, we assume that the role of each
party is well defined and thus only compute one half of the

key. Finally, we implement the noise sampling in a slightly
different way than one might expect; we will discuss this
later in this section.

Zooming in on the low-level field arithmetic, the
operations on integers modulo 2214 − 255 require
multiple-precision integers since native 64-bit registers are
not large enough to store a single field element. This
arithmetic is implemented through libjbn 5, a Jasmin library
that exposes Big Integer field arithmetic.

Polynomial Arithmetic. On top of this layer, operations in
polynomial rings are implemented using Rust, in addition to
other functions such as reconciliation, matrix and noise
generation. Similar to other lattice-based schemes, one of the
more critical (and easier) operations to optimise (from a
performance perspective) is polynomial multiplication. The
naive algorithm for multiplying two polynomials in R q,
sometimes called Schoolbook multiplication, involves
multiplying all pairs of coefficients, calculating their sum and
reducing modulo Xd + 1. However, the complexity of this
approach is quadratic in the number of coefficients and thus
quite costly.

The Number Theoretic Transform (NTT) provides a more
efficient approach for polynomial multiplication with quasi-
logarithmic time complexity O(d log(d)) instead of O

(
d2
)
.

For a detailed discussion on the NTT refer to [85].
As is the case for other implementations [5, 83], we use an

in-place NTT which requires bit-reversal operations in the
forward and inverse transforms but uses less memory.
Another optimisation is to make the NTT a part of our
scheme, which means the matrix AAA is sampled in the NTT
domain, and the secret and public keys are stored in the NTT
domain. This results in the NTT only being used three times,
once for the shared key derivation and twice in the key
generation to transform the secret and error vectors, which
are sampled in the normal domain, to the NTT domain before
computing the public key. A common trick to speed-up the
NTT transformation when using Montgomery reduction [71],
as is the case for libjbn, is to use pre-computed constants in
Montgomery form ζ ·R (mod q).

Noise Sampling and Matrix Generation. Both the matrix
generation and noise sampling procedures use a seed, either
set as a system parameter for AAA or as a secret input to a PRG
in the case of s⃗ss and e⃗ee, to produce a stream bytes from which
the distributions are sampled. In the case of matrix
generation this is achieved via rejection sampling on the
stream of bytes produced by an extendable output
function (XOF). The noise sampling procedure, used for
generating the secret key and the error vector, samples these
vectors from a centred binomial distribution using the output
of a PRF with a random seed. As with other schemes where

5See https://github.com/formosa-crypto/libjbn.
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Scheme (variant) Assumption Non-interactive Post-quantum Sizes (in bytes)
Ciphertext Public Key

CRYSTALS-Kyber (Kyber-512 [83]) M-LWE ✗ ✓ 768 800
Classic McEliece (mceliece348864 [1]) Binary Goppa Codes ✗ ✓ 96 261120
ECDH (X25519 [14]) DLOG ✓ ✗ — 32
CTIDH (CTIDH-1024 [11]) Supersingular Isogenies ✓ ✓ — 128
Passive-SWOOSH (this work) M-LWE ✓ ✓ — 221184

Table 2: Public-key sizes for select NIKEs and public-key and ciphertext sizes of select post-quantum KEMs.

multiplication is optimised using the NTT, the choice of
(symmetric) primitive that underlies these functions tends to
be a deciding factor for the performance. We chose
cSHAKE [56] based on Keccak [42] as the underlying
primitive for the XOF and AES256-CTR for the PRF used in
noise sampling.

Similar to the NewHope scheme [5], for efficiency reasons
the secret and error vectors are sampled from a centred
binomial distribution rather than a discrete Gaussian
distribution. Using ternary noise means that each coefficient
can be generated from only 2 bits and thus, the generation of
a polynomial in R q only requires (32 · 256 · 2)/8 = 2048
(pseudo-random) bytes. Intuitively, our CBD definition
in Figure 3 when a and b are sourced from a PRG, maps 00b
and 11b to 0 mod q with 50% probability, 10b to 1 mod q
and 01b to −1 mod q with 25% probability each. Our
implementation differs from the specification by applying
signed reduction modulo 3 to each two bit block and
converting it to a congruent value in Fq, as opposed to using
big-integer field arithmetic to map bits a and b to an element
in Fq. Although this approach produces a different mapping
(11b to −1 mod q, 00b and 10b to 0 mod q and 01b to 1
mod q), the distribution of the outputs is identical. Due to the
size of our field elements, this approach results in a
considerable speed up in the noise sampling. The random
offset used in our scheme is generated by performing
rejection sampling on the output of cSHAKE-256 [56].

6.2 Performance Evaluation

In this section we evaluate the performance of our scheme and
compare it to others. We also provide a comparison of key
sizes and the properties of each scheme such as post-quantum
security, and whether they are non-interactive.

The benchmark results for Passive-SWOOSH were obtained
on an Intel Core i7-6500U (Skylake) running on a single core
with Hyper-threading and TurboBoost disabled. The Rust
compiler version used for the benchmarks was 1.62.16 and
the Jasmin compiler version was 2022.09.0. We report the
median cycle counts of 10000 runs. In Table 3 we list the
results and compare to the cycle counts of CTIDH-1024 as

6The following build configuration options/values were used:
opt-level=3 and target-cpu="native".

reported in [11, Sec. 8] and of lib25519 [72], on Intel Skylake
CPUs.

As expected, the pre-quantum X25519 [14] scheme is
orders of magnitude faster than Passive-SWOOSH for key
generation. However, in many applications of NIKEs, keys
are re-used many times and what is more critical is the
performance of shared key computation. Here the gap to
pre-quantum X25519 is considerably smaller and
Passive-SWOOSH outperforms the only real post-quantum
competitor CTIDH by a factor of 48. However, as shown

Operation X25519 CTIDH-1024 Passive-SWOOSH

NTT — — 217 430
NTT−1 — — 262 992
Noise generation — — 89 776
Key generation 28 187 469 520 000 146 920 890
Shared key 87 942 511 190 000 10 612 666

Table 3: Cycle counts on Intel Skylake.

in Table 2, CTIDH, Kyber, and X25519 have a public key
size several orders of magnitude smaller than
Passive-SWOOSH. In this aspect, only Classic McEliece has
a public key size comparable to that of Passive-SWOOSH,
even when taking into account the expected size of the proof
of knowledge (see Section 5.3).

7 Conclusions

In this work, we constructed a NIKE based on the M-LWE
problem, with a proof in the QROM. Our scheme is based on
the standard blueprint, but with an additional twist to
guarantee provable security for arbitrary rings. Our
optimised implementation shows that our scheme offers
reasonable computational performance and key sizes that
should be acceptable for most applications. We view our
work as the first evidence contradicting the folklore belief
that lattice-based NIKE is too inefficient to be used in
practice. As future work, we plan to explore applications of
our scheme to more complex protocols and to formally verify
the correctness of (parts of) our implementation.
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A Proofs for Section 3 (Preliminaries)

Lemma 1 (Invertibility of Random Matrices). For R q =
Zq[X ]/(Xd + 1) with d = 256 and q = 2214− 255, if AAA is a
random matrix sampled from R N×N

q , then the probability of
AAA being invertible, denoted by Pr[AAA ∈ GLN(R q)], satisfies

Pr[AAA ∈ GLN(R q) | AAA $← R N×N
q ]≥

(
1− 128

q2

)N

.

Proof. Let R q :=Zq[X ]/(Xd +1) and let η( f (X)) denote the
set of irreducible proper divisors of the polynomial f (X) =

Xd +1 ∈ Zq. Then

Pr[AAA ∈ GLN(R q) | AAA $← R N×N
q ]

=
ord(GLN(R q))

qN2·deg( f )

≥
N−1

∏
k=0

(
1−q(k−N)·deg( f )

∑
α∈η( f )

q(N−k)·(deg( f )−deg(α))

)

=
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∏
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1−q(k−N)·d128q(N−k)·(d−2)

)
=
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∏
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)
=
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∏
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q2N−128q2k

q2N
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=

(
1

q2N2

(
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)))

≥ 1
q2N2
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=

(
1− 128

q2

)N

,

where the first inequality follows from Lemma 8. ■

Lemma 8 (Linear Independence of Vectors [90, Lem. 1]).
Let R q := Zq[X ]/(Xd +1) and let η( f (X)) denote the set of
irreducible proper divisors of the polynomial f (X) = Xd +
1 ∈ Zq. For linearly independent vectors u⃗uu1, . . . ,⃗uuuk where
u⃗uui ∈ R N

q and 0 ≤ k ≤ N−1, the number of vectors v⃗vv ∈ R N
q

such that {⃗uuu1, . . . ,⃗uuuk ,⃗vvv} is linearly independent is at most

∑
α∈η( f )

qk deg( f )q(N−k)deg(α).

Proof sketch. We estimate the maximum number of vectors
v⃗vv ∈ R N

q for which there exists a nonzero tuple of coefficients
α1, . . . ,αk,α ∈ R k+1

q such that α1⃗uuu1 + · · · + αk⃗uuuk = α⃗vvv.
Consider the set Vα := {⃗vvv ∈ R N

q : α⃗vvv ∈ L (⃗uuu1, . . . ,⃗uuuk)} for
α ∈ R q, where L (⃗uuu1, . . . ,⃗uuuk) denotes the linear hull of
vectors u⃗uu1, . . . ,⃗uuuk. Note that Vα = Vαβ for any invertible
β ∈ R q. Therefore the set of all different values of α may be
split into equivalence relation
α′ ∼ α′′ ⇐⇒ (∃ an invertible β : α′ = βα′′). Finally, one
can show that

|Vα| ≤
∣∣Zq[X ]/( f/α)

∣∣k · (qdegα)N

= qk deg( f/α)qN deg(α)

= qk deg f q(N−k)degα.

■
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Qubits, n-qubit States and Measurement. A qubit
|x⟩ := α0 |0⟩+α1 |1⟩ is a unit vector in some Hilbert space
H . When α0 ̸= 1 and α1 ̸= 1, we say that |x⟩ is in
superposition. An n-bit quantum register |x⟩ := ∑

2n−1
i=0 αi |i⟩

is a unit vector in H ⊗n ∼= C2n
, that is ∑

2n−1
i=0 |αi|2 = 1 for

αi ∈ C. We call the set {|0⟩ , |1⟩ , . . . , |2n−1⟩} the
computational basis and say that |x⟩ is entangled when |x⟩
cannot be written as the tensor product of single qubits.
Unless otherwise stated, measurements are done in the
computational basis. After measuring a quantum register
|x⟩ = ∑

2n−1
i=0 αi |i⟩ in the computational basis, the state

collapses and |x⟩=±|i⟩ with probability |αi|2.

Quantum Algorithms. A quantum algorithm A is a
sequence of unitary operations Ui, where unitary operations
are defined to map unit vectors to unit vectors, whilst
preserving the normalisation constraint of quantum registers.
A quantum oracle algorithm AO is defined analogously, and
can additionally query the oracle O before (or after)
executing a unitary Ui. As quantum computations need to be
reversible, we model an oracle O : X → Y by a unitary UO

that maps |x⟩ |y⟩ 7→ |x⟩ |y⊕O(x)⟩. For an oracle O, we write
|O⟩ to denote that an algorithm has quantum-access to UO.

B Proofs for Section 4 (Definitions)

Game HKR-CKS-lNIKE,par

01 b $←{0,1}
02 b′← A|H⟩,RegHonUsr(·),TestQue(·,·)

03 return Jb = b′K

Figure 6: Game defining HKR-CKS-lNIKE,par for a non-
interactive key exchange NIKE relative to a random oracle
H with adversary A. RegHonUsr and TestQue are defined
in Figure 7.

B.1 Non-Interactive Zero-Knowledge Proofs

Zero-Knowledge proofs [50] allow a verifier to convince a
prover of the validity of a statement without revealing
anything beyond that. In the random oracle model [12]
zero-knowledge proofs can be made non-interactive [18] by
applying the Fiat-Shamir transformation [44].

Definition 7 (Zero-Knowledge Proof of Knowledge). A zero-
knowledge proof of knowledge ZKPoK for an NP language
L 7 is defined as a tuple ZKPoK := (ZK.Prv,ZK.Ver) of the
following oracle algorithms.

7The language L is defined as the set of all yes-instances of the relation
R, i.e. L = {x : ∃ w s.t. R(x,w) = 1}.

π
$← ZK.PrvH(x,w): Given a statement x and a witness w,

the probabilistic prover algorithm ZK.Prv returns a proof
π.

1/0← ZK.VerH(x,π): Given a statement x and a proof π,
the deterministic verifier algorithm returns either 1 for
accept or 0 for reject.

Similar to the work of [89] we assume a distribution RODist
on functions, modelling the distribution of our random oracle.
That is, given a random oracle H : {0,1}∗→{0,1}n, RODist
would be the uniform distribution on {0,1}∗→{0,1}n.

ZKPoK Security Notions. Besides completeness, which
captures that valid proofs are accepted by the verifier, a
zero-knowledge proof of knowledge should fulfil two
additional properties; soundness ensures a cheating prover
cannot convince the verifier of a false proof, and
zero-knowledge conveys that the verifier learns nothing from
its interaction with the prover beyond the fact that he knows
a valid witness to the proof. We make this more precise with
the following definitions and note that we require the strong
notion of simulation soundness with a straight-line
extractor [89], sometimes referred to as “online
extractability” in the literature.

Definition 8 (Completeness). Completeness for a
zero-knowledge proof of knowledge ZKPoK of an NP
language L is defined via the game CMPLTZKPoK depicted
in Figure 8. For an adversary A, we define A’s advantage in
CMPLTZKPoK as

AdvCMPLT
ZKPoK (A) := Pr[CMPLTA

ZKPoK⇒ 1],

and say that ZKPoK is (ε,QH)-CMPLT if for all quantum-
polynomial-time adversaries A, making at most QH queries
(possibly in superposition) to the random oracle H, we have
AdvCMPLT

ZKPoK (A)≤ ε(QH).

For the following notions we additionally require a
simulator ZK.Sim := (ZK.Sim1,ZK.Sim2) that is split into
two classical algorithms ZK.Sim1 and ZK.Sim2, where:

H $← ZK.Sim1: The probabilistic simulator algorithm
ZK.Sim1 returns a circuit H which represents the initial
simulated random oracle.

π
$← ZK.Sim2(x): Given a statement x the stateful simulator

algorithm ZK.Sim2 returns a proof π. Additionally,
ZK.Sim2 is given access to the description of H and
may replace it with a different description (i.e. it can
program the random oracle).

Definition 9 (Zero-Knowledge [50]). Zero-knowledge for a
zero-knowledge proof of knowledge ZKPoK of an NP
language L is defined via the game ZKb

ZKPoK, depicted in
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Game CKSNIKE,par / CKS-lNIKE,par

01 b $←{0,1}
02 D :=⊥
03 K :=⊥
04 b′← A|H⟩, RegHonUsr(·), RegCorUsr(·,·), RevCorQue(·,·), TestQue(·,·)

05 return Jb = b′K

Oracle RegHonUsr(ID ∈ I DS) // Only twice in CKS-l

06 if (corrupt,ID,⊥, ·) ∈D :
07 return ⊥
08 (sk, pk) $← Gen(ID)
09 D ∪{(honest,ID,sk, pk)}
10 return pk

Oracle RegCorUsr(ID ∈ I DS , pk) // QRCU queries

11 if (corrupt,ID,⊥, ·) ∈D :
12 (corrupt,ID,⊥, ·) := (corrupt,ID,⊥, pk)
13 else :
14 D ∪{(corrupt,ID,⊥, pk)}

Oracle RevCorQue(ID1,ID2) // QRCQ queries

15 if (honest,ID1, ·, ·) ∈D ∧ (corrupt,ID2, ·, ·) ∈D :
16 return SdK(ID2, pk2,ID1,sk1)
17 elseif (corrupt,ID1, ·, ·) ∈D ∧ (honest,ID2, ·, ·) ∈D :
18 return SdK(ID1, pk1,ID2,sk2)
19 return ⊥

Oracle TestQue(ID1,ID2) // Only once in CKS-l

20 if ID1 = ID2 :
21 return ⊥
22 if (honest,ID1, ·, ·) ∈D ∧ (honest,ID2, ·, ·) ∈D :
23 if b = 0 :
24 k := SdK(ID1, pk1,ID2,sk2)
25 if b = 1 :
26 if (ID1,ID2,k) ∈K ∨ (ID2,ID1,k) ∈K :
27 return k
28 k $← SK S
29 K ∪{(ID1,ID2,k)}
30 return k
31 return ⊥

Figure 7: Game defining CKSNIKE,par (and CKS-lNIKE,par) for a non-interactive key exchange NIKE with adversary A.

Game CMPLTZKPoK

01 H $← RODist
02 (x,w) $← A|H⟩

03 π
$← ZK.PrvH(x,w)

04 return JZK.VerH(x,π) = 0∧R(x,w) = 1K

Figure 8: Game defining CMPLTZKPoK for a zero-knowledge
proof of knowledge ZKPoK with adversary A.

Figure 9, where ZKb
ZKPoK is parametrised by a bit b. For an

adversary A, we define A’s advantage in ZKb
ZKPoK as

AdvZK
ZKPoK(A) :=

∣∣∣Pr[ZK0,A
ZKPoK⇒ 1]−Pr[ZK1,A

ZKPoK⇒ 1]
∣∣∣,

and say that ZKPoK is (φ,QH)-ZK, if there exists a PPT
simulator ZK.Sim := (ZK.Sim1,ZK.Sim2), such that for all
quantum-polynomial-time adversaries A, making at most QH

queries (possibly in superposition) to the random oracle H,
we have AdvZK

ZKPoK(A)≤ φ(QH).

Definition 10 (Simulation-Sound Online-Extractability [89]).
Simulation-sound online-extractability 8 for a zero-knowledge
proof of knowledge ZKPoK of an NP language L is defined
via the game SSNDZKPoK, depicted in Figure 10. For an
adversary A, we define A’s advantage in SSNDZKPoK as

AdvSSND
ZKPoK(A) := Pr[SSNDA

ZKPoK⇒ 1],

and say that ZKPoK is (ψ,QH)-SSND relative to a simulator
ZK.Sim := (ZK.Sim1,ZK.Sim2), if there exists a PPT

8Online-extractability is sometimes referred to as straight line
extractability in the literature.

Game ZK0
ZKPoK

01 H $← RODist
02 b′ $← A|H⟩,ZK.Prv(·,·)

03 return Jb′ = 0K

Game ZK1
ZKPoK

04 H $← ZK.Sim1
05 b′ $← A|H⟩,ZK.Sim

′
2(·,·)

06 return Jb′ = 1K

Procedure ZK.Sim′2(x,w)

07 if R(x,w) = 0 :
08 return ⊥
09 else :
10 return ZK.Sim2(x)

Figure 9: Games defining ZKb
ZKPoK for a zero-knowledge

proof of knowledge ZKPoK with adversary A and
simulator ZK.Sim := (ZK.Sim1,ZK.Sim2). The purpose
of ZK.Sim′2(·, ·) is merely to serve as an interface for the
adversary who expects a prover taking two arguments x and
w.

extractor ZK.Ext such that for all quantum-polynomial-time
adversaries A, making at most QH queries to the random
oracle H, we have AdvSSND

ZKPoK(A)≤ ψ(QH).

C Proofs for Section 5 (Construction)

Lemma 4 (Honest Correctness). For all (possibly
unbounded) adversaries A the non-interactive key exchange
NIKE := (Stp,Gen,SdK) construction depicted in Figure 3
has honest correctness error

δ≤ 4β2d2N
q
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Game SSNDZKPoK

01 H $← ZK.Sim1
02 (x,π) $← A|H⟩,ZK.Sim2(·)

03 w $← ZK.Ext(H,x,π)
04 return JZK.VerH(x,π) = 1∧R(x,w) = 0∧ (x,π) ̸∈ π̃ππK

Figure 10: Games defining SSNDZKPoK for a zero-knowledge
proof of knowledge ZKPoK with adversary A, simulator
ZK.Sim := (ZK.Sim1,ZK.Sim2) and extractor ZK.Ext. Here,
π̃ππ denotes the set of all proofs returned by ZK.Sim2(·)
(together with the corresponding statements).

as per Definition 3.

Proof. The proof strategy is similar to the proof of Theorem 5,
except that we can bound the probability of any coefficient of
kkk⋆ being in the interval

S⋆ =
[q

4
±β

2dN
]
∪
[

3q
4
±β

2dN
]

by 4β2d2N
q , with a union bound over all coefficients. ■

Combining Theorem 6 with the passive version
of Theorem 3 immediately implies the following Corollary.

Corollary 1. For any PPT adversary A against
NIKE := (Stp,Gen,SdK), depicted in Figure 3, making an
arbitrary number of queries (possibly in superposition) to H,
QRHU (classical) queries to the RegHonUsr oracle and one
(classical) query to the TestQue oracle, there exist PPT
adversaries B1, B2 such that

AdvHKR-CKS
NIKE,par (A)≤ Q2

RHU ·QTQ

2
·
(
AdvM-LWE

q,N,N,χ (B1)

+ AdvM-LWE
q,N,N+1,χ(B2)+

4βd
q

)
.

C.1 Proof of Theorem 7

Note that it suffices to prove CKS-l and then
apply Corollary 1 to obtain the result for CKS. Let A be an
adversary against NIKE in the CKS-l game. Consider the
sequence of games in Figure 11, where QTQ = 1 and
QRHU = 2 denote the number of queries to TestQue and
RegHonUsr, respectively.

Game G0 This is the original CKS-lNIKE,par game, so by
definition

Pr
[
GA

0 ⇒ 1
]
= Pr

[
CKS-lANIKE,par⇒ 1

]
.

Game G1 In this game we modify the RegCorUsr oracle
so that the secret key s̃k′ID is extracted from the proof π of
a public key pk on Line 16, and stored with the identity ID.
This requires the strong notion of simulation-sound online-
extractability, from Definition 10. If the extraction fails, then
by default s̃k′ID =⊥. I.e. the secret key is not stored, as in the
original game. Therefore,∣∣Pr

[
GA

0 ⇒ 1
]
−Pr

[
GA

1 ⇒ 1
]∣∣≤ QRCU ·AdvSSND

ZKPoK(B1).

Game G2 In this game we introduce a new condition for
aborting: If at any point in the simulation the adversary asks
a query the RevCorQue oracles on two public keys that cause
a key mismatch, then abort the simulation. Note that this
condition is efficiently testable, as the game knows all the
secret keys. It is important to note that the strong notion of
SM-COR quantifies over all IDs, meaning we can bound the
probability of this event happening with a reduction to the
semi-malicious correctness property, Definition 4, of NIKE′

by ∣∣Pr
[
GA

1 ⇒ 1
]
−Pr

[
GA

2 ⇒ 1
]∣∣≤ AdvSM-COR

NIKE′,par′(B2).

Game G3 In this game we modify the RevCorQue oracle on
Line 27 and Line 32 to use the secret key that was extracted
when the corresponding public key was registered as a corrupt
key. Since this is just a conceptual change and the derived
key is always the same for both secret keys, we get∣∣Pr

[
GA

2 ⇒ 1
]
−Pr

[
GA

3 ⇒ 1
]∣∣= 0.

Game G4 In this game we undo the modification from G2
and get∣∣Pr

[
GA

3 ⇒ 1
]
−Pr

[
GA

4 ⇒ 1
]∣∣≤ AdvSM-COR

NIKE′,par′(B2).

Game G5 In this game we modify the RegHonUsr oracle
and replace the zero-knowledge proof of knowledge on
Line 10 with a simulated proof. Recall that we are
considering CKS-l, meaning only 2 calls are made to
RegHonUsr. By the zero-knowledge property, Definition 9,
we get∣∣Pr

[
GA

4 ⇒ 1
]
−Pr

[
GA

5 ⇒ 1
]∣∣≤ 2 ·AdvZK

ZKPoK(B3).

At this point we no longer need the secret keys to simulate
and can show a reduction. Next we make the following Claim.

Claim. There exists a PPT adversary C such that

Pr
[
GA

5 ⇒ 1
]
= AdvHKR-CKS-l

NIKE (C).

23



Games G0, G1, G2, G3, G4, G5
Proof. 01 b $←{0,1}
02 D :=⊥
03 K :=⊥
04 b′← A|H⟩, RegHonUsr(·), RegCorUsr(·,·), RevCorQue(·,·), TestQue(·,·)

05 return Jb = b′K

Oracle RegHonUsr(ID ∈ I DS) // Twice

06 if (corrupt,ID,⊥, ·) ∈D :
07 return ⊥
08 (sk′ID, pk′ID)

$← Gen(ID)
09 π

$← ZK.Prv(pk′ID,sk′ID)
10 π

$← ZK.Sim2(pk′ID) //G5
11 skID := sk′ID
12 pkID := (pk′ID,π)
13 D ∪{(honest,ID,skID, pkID)}
14 return pkID

Oracle RegCorUsr(ID ∈ I DS , pk) // QRCU queries

15 parse pk→ (pk′ID,π)
16 s̃k′ID

$← ZK.Ext(H, pk′ID,π) //G1
17 if (corrupt,ID, ·, ·) ∈D :
18 (corrupt,ID,⊥, ·) := (corrupt,ID,⊥, pk)
19 (corrupt,ID, ·, ·) := (corrupt,ID, s̃k′ID, pk) //G1
20 else :
21 D ∪{(corrupt,ID,⊥, pk)}
22 D ∪

{(
corrupt,ID, s̃k′ID, pk

)}
//G1

Oracle RevCorQue(ID1,ID2) // QRCQ queries

23 if (honest,ID1, ·, ·) ∈D ∧ (corrupt,ID2, ·, ·) ∈D :
24 if SdK(ID2, pk2,ID1,sk1) ̸= SdK(ID1, pk1,ID2,sk2) ://G2-G3
25 abort //G2-G3
26 return SdK(ID2, pk2,ID1,sk1)

27 return SdK(ID1, pk1,ID2, s̃k′2) //G3
28 elseif (corrupt,ID1, ·, ·) ∈D ∧ (honest,ID2, ·, ·) ∈D :
29 if SdK(ID1, pk1,ID2,sk2) ̸= SdK(ID2, pk2,ID1,sk1) ://G2-G3
30 abort //G2-G3
31 return SdK(ID1, pk1,ID2,sk2)

32 return SdK(ID2, pk2,ID1, s̃k′1) //G3
33 return ⊥

Oracle TestQue(ID1,ID2) // Once

34 if ID1 = ID2 :
35 return ⊥
36 if (honest,ID1, ·, ·) ∈D ∧ (honest,ID2, ·, ·) ∈D :
37 if b = 0 :
38 k := SdK(ID1, pk1,ID2,sk2)
39 if b = 1 :
40 if (ID1,ID2,k) ∈K ∨ (ID2,ID1,k) ∈K :
41 return k
42 k $← SK S
43 K ∪{(ID1,ID2,k)}
44 return k
45 return ⊥

Figure 11: Games G1-G5, for the proof of CKS-l of NIKE in Figure 5.

Adversary C|H⟩,RegHonUsr(·),TestQue(·,·)

01 b′← A|H⟩, SimRegHonUsr, SimRegCorUsr, SimRevCorQue, SimTestQue

02 return b′

Oracle SimRegCorUsr(ID ∈ I DS , pk) // Same as G5

Oracle SimRegHonUsr(ID ∈ I DS)

03 pk′← RegHonUsr(ID)
04 π

$← ZK.Sim2(pk′)
05 pk := (pk′,π)
06 return pk

Oracle SimRevCorQue(ID1,ID2) // Same as G5

Oracle SimTestQue(ID1,ID2)

07 return TestQue(ID1,ID2)

Figure 12: Adversary C for bounding G5.

Proof of Claim. The adversary C, depicted in Figure 12,
against HKR-CKS-l is constructed as follows. Any queries
that A in G5 makes to SimRegHonUsr and SimTestQue, C
forwards to the RegHonUsr and TestQue oracles in the

HKR-CKS-l game, except that C adds a simulated proof to
the public key returned by the RegHonUsr oracle. On the
other hand, the queries of A to the RegCorUsr and
RevCorQue oracles are simulated by C as in G5, since no
secret key is required to compute their output. The same
guess bit b′ returned by A is also returned by C. It is easy to
see that the reduction perfectly simulates the view of the
adversary and therefore any advantage of A directly carries
over to the C. □

Collecting all the probabilities and applying Theorem 3
yields the bounds from the Theorem statement, concluding
the proof. ■
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