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Abstract. In this short note, we describe a few implementation techniques that al-
low performing key pair generation for the Falcon and Hawk lattice-based signature
schemes, and for the BAT key encapsulation scheme, in a fully constant-time way and
without any use of floating-point operations. Our new code is faster than previously
published implementations, especially when running on small embedded systems, and
uses less RAM.

1 Introduction

We consider here three lattice-based cryptographic schemes:

— The Falcon signature scheme[6] is a lattice-based signature scheme that has been selected
for standardization as part of NIST’s Post-Quantum Cryptography project. It is based
on an NTRU lattice: for a given degree n = 20, the private key is a pair of polynomials /°
and g, with small integer coefficients and taken modulo X” + 1, completed with another
pair of such polynomials F and G, again with small integer coefficients, such that the
NTRU equation is fulfilled:

fG-gF=4q
with ¢ being a small, fixed integer (in the case of Falcon, ¢ = 12289). Key pair genera-
tion consists in sampling f and ¢ with an apppropriate distribution on coeflicients, then
solving the NTRU equation to find matching F and G; this last part is expensive, and
where most of the cost of key pair generation is spent. Nominally supported degrees are
n =512 and » = 1024 (for ¢ = 9 and ¢ = 10, respectively), but smaller versions (meant
mostly for test purposes) are possible.

— The Hawk signature scheme[3] is based on a different (presumed) hard problem, but uses
lattices similar to those used by Falcon. In Hawk, /" and ¢ use a different sampling distri-
bution and generally have a smaller norm, and the target integer for the NTRU equation
isq = 1. Degreeis n = 256, 512 or 1024 (the degree 256 variant s the “challenge” version,
expected to offer a security level of roughly 264).

— The BAT key encapsulation mechanism[4] also uses a complete NTRU lattice. In BAT,
the f and g polynomials have an even smaller average norm than in Hawk; the target
integer for the NTRU equation is ¢ = 128, 257 or 769, depending on the degree, which
is n = 256, 512 or 1024. BAT key pairs also include an extra polynomial w, which is
used in decapsulation; as will be explained later on, extra constraints apply on w, which
indirectly make the key pair generation more expensive.



For all three algorithms, the key pair generation can be performed with tolerable efficiency
using the techniques described in [8], which we summarize here. The process can be viewed
recursively:

— Iff and g are polynomials modulo X +1, then they are integers, and finding correspond-
ing F and G is done with a variant of the extended Euclidean algorithm.

— If f and g are polynomials modulo X” + 1, with » = 2¢ > 2, then the problem can be
reduced to degree /2 by noticing that for each polynomial £, a dual polynomial £ can
be defined by negating the odd-degree coefficients, and then all odd-degree coefficients
of /f* are zero. We thus apply the following steps:

1. Compute f” andg polynomials modulo X2 41, such that /(X?) = f° and
g X% =g
2. Invoke the NTRU process solving recursively on (f”, ¢’), yielding F” and G’ (mod-
ulo X2 +1) such that f'G" = ¢'F' = ¢.
3. Compute an unreduced solution (F;, G) = (F'(X?)g°, G'(X*)F*).
4. Reduce (F G) relatively to (f; g) with Babai’s round-oft algorithm[2] so that the
largest coefficient of (F; G) is roughly the same size as the largest coefficient of (f; ¢).

The salient implementation issues with this procedure are the following:

— While each recursive iteration halves the degree of the involved polynomials, it also about
doubles the sizes of the coefficients. At the deepest levels of the recursion, integer sizes
range in the thousands of bits.

— All the values are secret, and thus require appropriate handling to avoid side-channel
leakage. In particular, constant-time discipline mandates that all integer-holding arrays
use a predictable size which does not vary with the actual size of the involved integers.

— The reduction of (F; G) against (f; ¢) involves rounding divisions. In the original pre-
sentation of Falcon, this was performed with approximations of the polynomials with
floating-point values, and the division was computed in the FFT domain. Use of floating-
point is problematic, because hardware implementations of the operations are not nec-
essarily constant-time (in particular for divisions), and small embedded systems typically
lack any floating-point hardware with the required precision. In [7], a constant-time em-
ulation of floating-point operations with only integer computations is used, but at a
rather large cost, making the key pair generation quite expensive.

In this note, we describe a new implementation of the BAT, Falcon and Hawk key pair
generation, which is fully constant-time, and avoids all use of floating-point operations. It is
also faster, and uses somewhat less RAM, than previously published implementations. The
source code (in C) is made available (with a very permissive license) on:

https://github.com/pornin/ntrugen

This code is meant to be reusable into various schemes, by simply importing the files. It should
support adaptation to other parameter sets, if required by newer lattice-based schemes work-
ing over NTRU lattices.


https://github.com/pornin/ntrugen

2 Improved Implementation Techniques

We describe here the improvements on the techniques used in previous implementations, in
particular those for Falcon[7] and BAT[4]. They can be summarized as follows:

— Polynomial coefficients are interleaved with word granularity.

— Computations modulo small 31-bit primes p; use Montgomery representation with R =
232 (instead of R = 231).

— Babai’s reduction uses fixed-point approximations of values over 64 bits (with 32 frac-
tional bits).

— Tighter bounds on integer ranges reduce the cost of iterations during reduction.

— A non-negligible rejection rate is accepted, with quick detection of reduction failures.

— Intermediate (f; ¢) values are now saved for most recursion layers instead of being recom-
puted.

— Operations at recursion depths 0 and 1 use a better ordering which reduces memory us-
age.

— Generation of (f; ¢) uses smaller tables and fewer PRNG bits per coeflicient, to reduce
the PRNG cost.

— An AVX2-optimized version has been written, with AVX2 intrinsics used in about all
operations.

Polynomial Memory Layout. Each polynomial within the algorithm consists of 7 co-
efficients (with 7 a power of two), and these coefficients are integers within a given range;
each integer uses j 32-bit words!. Previous implementations would store the coefficients se-
quentially, i.e. first the j words for the coefficient of degree 0, then the j words for the coef-
ficient of degree 1, and so on. The new implementation interleaves the coefficient values in
RAM: the representation first lists the first word of each coeflicient in consecutive memory
slots (72 words), then the second word of each coefficient (72 words), and so on. The total size
is unchanged (77 words), but the new layout improves spatial locality. In particular, cross-
coeflicient operations (such as the NTT) now use values which are consecutive in RAM and
can be efficiently loaded up conjointly when working with SIMD instruction sets (e.g. AVX2
opcodes on x86 CPUs).

Montgomery Reduction. Most computations on polynomials use RNS representation
of coefficients: each coefficient ¢ is represented by the words ¢; = ¢ mod p;, for a fixed list
of prime moduli p;. The p; values are all distinct, slightly lower than 231 and chosen such
that p; — 1 is a multiple of 2048 so that the NTT may be applied on polynomials modulo
p:. Montgomery multiplication is used: for integers x and y modulo p;, their Montgomery
productis (xy) /R mod p;, for R a given power of 2 greater than p;. Previous implementations
used R = 231 but the new code uses R = 232 this helps in particular 32-bit implementations
(and, indirectly, AVX2 code) because a shift of a 64-bit value by 32 bits has only compile-
time costs on a 32-bit architecture (it is just a matter of using the “high” register), contrary to
a 31-bit shift, which has non-negligible runtime costs.

IEach 32-bit word contains a 31-bit limb; the top bit is left at zero. Use of 31-bit limbs makes it
easier to achieve a portable implementation, and has performance benefits, especially on architectures
with no intrinsic carry flags such as RISC-V.



Fixed-Point Approximations. When applying Babai’s reduction, the following pro-
cess is applied:

— Scaled approximations of (f; ¢) are obtained as 64-bit values with a fixed-point conven-
tion (half of the bits are fractional, which means that the 64-bit integer v represents the
rational number x = v/2%2). The scaling factor is 2’ for some integer s, i.c. we really
extract rounded values of (f/2°, g/2°). Value s is secret and measured in constant-time
by looking at the top few words of the coefficients. It is also adjusted so that the largest
coefficients of the extracted approximation have absolute value close to, but less than
2'5 /m; this value was chosen so that computations on coefficients do not overflow the
representable fixed-point range, but we still keep as many precision bits as we can.

— The FFT representations of the approximate f and g are computed, then the FFT repre-
sentations of /™ /(ff™ + g¢*) and ¢* / (ff™ + g¢*) are obtained, with /™ being the Hermi-
tian adjoint of £. In order to avoid losing too much precision, division operations must
be performed exactly like this: a coefficient of /™ (in FFT representation) is divided by
a coefficient of /™ + g¢* (also in FFT representation). The division is performed with a
constant-time bit-by-bit process.

— We then repeatedly reduce F' and G by running several iterations of the following loop:

1. Scaled approximations of (£ G) are extracted into the fixed-point format, again with
a constant-time process: we use a scaling factor s + ¢, i.e. we get rounded versions of
(F/2*, G/2*"). The value ¢ is public.

2. The approximate F and G are converted to FFT, then the coefficients computed
above are used to obtain (Ff™ + Gg#) /(ff* + g¢*) in FFT representation; only mul-
tiplications and additions are needed at this point. The resulting polynomial is con-
verted back to normal representation (inverse FFT) then its coefficients are rounded
to integers, yielding the polynomial 4.

3. Fand G are updated by subtracting 24f and 2k¢ from them, respectively.

The successive iterations use decreasing values of #; the initial value is set to an experimentally
determined optimum: if # is too large, then the first few rounds are “blank” (they overestimate
the sizes of F and G, and result in £ = 0), which decreases performance, but if # is not large
enough then the approximations of  and G overflow and the reduction yields a wrong result.

As in the previous implementations, the subtraction of (2°4f, 2°kg) from (X G) uses ei-
ther plain integers, or an RNS+NTT representation; the latter requires converting F and G
between RNS and plain representations repeatedly (we need the plain representations to ex-
tract the approximations), but still improves performance when the current degree is large
enough.

Tighter Bounds on Ranges. Since a full constant-time discipline must be maintained,
all internal arrays for holding polynomial coefficients have a fixed length that depends on the
algorithm, degree and recursion depth, but not on the actual polynomial values. Extensive
experiments have been performed to obtain the average maximum size of coeflicients of £, g,
F and G (before and after reduction) at all steps of the algorithm, with standard deviations;
then, array sizes have been set so as to accept values up to five standard deviations away from
the average. The number of top words to inspect in the reduction, when extracting scaled
approximations of /, ¢, F and G, has been set with a similar process, in contrast to the previous



implementation of Falcon, which systematically used the top 10 words. The number of top
words to inspect varies with the algorithm, degree and depth, but is at most 7 in all cases, and
usually smaller.

Rejection Rate and Quick Failure Detection. All the process is based on heuristics
on coeflicient sizes and precision of computations. This process may fail for some pairs (f, ¢)
which should have theoretically been valid. This does not induce any security weakness, as
long as any failure entails resampling of a new (f; ¢) pair; the reduction in security cannot
exceed that which is entailed by the reduction in the effective key space, which is of 1 bit if
half of potential keys are rejected. We can thus tolerate a non-negligible rejection rate, if that
promotes average performance. For instance, increasing the assumption on the reduction ef-
ficiency (i.e. by how many bits the # scaling factor is reduced at each iteration) makes the
reduction faster, but increases the rejection rate, so there is a trade-off with an optimal value
for performance.

The new implementation decreases the cost of rejections by performing a fast check on
the current solution: at every layer of the recursion, when the (£ G) values have been obtained
for that depth, the solution is checked modulo a small prime p;. The cost of the check is low,
and it almost always detects failed reductions, allowing an early abort of the process in that
case.

In our selected parameters for BAT, Falcon and Hawk, the failure rate for solving the
NTRU equation is always lower than 36% for #» = 1024, and lower than 15% for » = 512.

Saving Intermediate (f,g). In the recursive process, each layer at depth d receives f and
¢ polynomials with degree less than 20=4 and, in the descending phase, computes the f and
¢ for the next layer. When the recursive call returns, the / and g polynomials for the current
layer must then be used again. The previous implementations of BAT, Falcon and Hawk sys-
tematically discarded f and g in order to save space, and recomputed them when needed by
starting from the top-level / and g (of degree less than » = 2%). However, careful analysis
of memory allocations showed that such discarding was not needed beyond a certain depth
(which depends on the algorithm and the overall degree); the new implementation can save
the input intermediate (f; ¢) during the recursive call, and use the saved values instead of re-
computing them.

Improved Memory Usage. Thehighest RAM usage s in the top two layers of the com-
putation; the original Falcon implementation required 28z bytes for these steps (hence 28672
bytes for » = 1024). The new implementation lowers that value to 24z by more carefully
managing the memory buffers. Notably, for a given integer polynomial f in NTT represen-
tation (in the usual “bit-reversal” order), the NTT representation of its Hermitian adjoint /™
is easily obtained by using the coefficients in reverse order; thus, when computing /™ + g¢*,
there is no need to maintain separate memory buffers for f and f™.

Additional savings were obtained at the API level: the original Falcon implementation
returned /, ¢ and F (and optionally G) in caller-provided arrays, so the actual RAM require-
ment was 317; in the new implementation, F and G are returned inside the temporary area
(at a predictable emplacement), so the total RAM requirement is 26z. For BAT, the extra w



polynomial is also returned in the temporary area; for Hawk, the public key polynomials (g0,
go1 and g11) are returned as well inside that area.

Lower PRNG Usage. The candidate (f; ¢) values should be sampled with a given distri-
bution, but do not need a great precision; indeed, each (f; ¢) pair lives “in isolation” and any
known bias in the sampling of a given private key has no incidence on any other key pair.
This contrasts with the sampling of the noise used in each signature (for Falcon and Hawk),
where all signatures relate to the same signing key, and even small biases in that sampling can
cumulatively reveal too much about the private key. For key pair generation, we can use a
much cruder approximation. In this new implementation, we use cumulative distribution
tables with 16-bit scaling, i.e. the values in the table are probabilities multiplied by 216 _q,
and only 16 random bits are used for each coefficient?. This lowers the cost induced by the
random source, and allows use of, for instance, SHAKE256, even on small microcontrollers
for which SHAKE is quite expensive.

An additional optimization is to use four SHAKE256 instances in parallel, with outputs
interleaved with a 64-bit granularity. This setting maps well to x86 implementations with
AVX2 intrinsics, that can truly run the four SHAKE instances in parallel. On smaller systems,
the SHAKE instances can be done sequentially, reusing the same context space, and simply
filling the elements of f and ¢ in a non-sequential order so as to reproduce the same output
for the same input seed; thus, this interleaving convention induces only negligible overhead
in all cases.

3 Performance

x86. The new implementation performance on x86 is summarized in table 1.

These measurements have all been performed on the same test system, with the same com-
piler. A single CPU core is used. The machine runs a fairly mundane Linux operating system,
is otherwise idle, and TurboBoost has been disabled.

The following remarks can be made:

— Performance varies between the three algorithms, for a given degree, roughly in relation
with the standard deviation of the distribution for the /" and g polynomials. As the pro-
cess goes deeper in the recursion, polynomial coefficients grow, but source (f, ¢) with a
lower norm imply smaller integers. For instance, for » = 1024, the average size of the
resultant of £ with X” +1 (i.e. the value of /" at the deepest level of the recursion) is 6276
bits for Falcon, but only 5750 bits for Hawk and 4084 bits for BAT.

— Though the (f, ¢) polynomials of BAT are the smallest among the three schemes, its per-
formance is roughly similar to that of Falcon, because of the extra private polynomial w:
that polynomial can be computed only after the NTRU equation has been solved, but
there are extra requirements on w (in the notations of [4], the resulting (G, yF;) vector
must have a norm lower than a specific bound) and in practice, between 40% and 60% of
computed w polynomials fail to meet these requirements, leading to frequent restarts.

20n Hawk, we currently use a different mechanism with a binomial distribution; this leverages the
fact that Hawk enforces a minimum norm for (f, g) instead of a maximum. This part is experimental
and may change in the near future.



Algorithm Speed (x86 w/ AVX2) (Mcyc) RAM usage (bytes)
oid New Gain oid New Gain

BAT-128-256 11.70 3.48 X 3.36 8144 6656 X 1.22
BAT-257-512 28.00 11.24 X 2.49 17408 13312 X 1.31
BAT-769-1024 105.99 4491 X 2.36 34816 26624 x1.31
Falcon-256 10.49 3.67 X 2.85 7936 6656 X119
Falcon-512 22.19 11.58 X192 15872 13312 X119
Falcon-1024 65.02 50.26 xX1.29 31744 26224 X 1.19
Hawk-256 4.14 1.89 xX2.19 12288 6656 X 1.87
Hawk-512 11.71 7.68 X152 24576 13312 X 1.87
Hawk-1024 49.66 44.22 X112 49152 26224 X 1.87

Table 1: Performance of the new implementation of key pair generation on x86 (Intel
i5-8259U “Coftee Lake”, 2.3 GHz, 64-bit mode). Compiler is Clang-14.0.0; optimization
flags: -02 -mavx2. Speed values are expressed in millions of clock cycles; RAM sizes are in
bytes. “Old” code is from the previously published implementations for the respective algo-
rithms[3,4,7].

— BAT, as published in [4], was already using a fixed-point approximation, thus avoiding all
use of floating-point. However, instead of using a direct division to compute /™ /(ff™* +
£¢"), it was computing an inversion on ff™* + g¢* followed by a multiplication with /.
This was inducing a surprisingly large loss of precision, to the effect that the reduction
was failing at a much higher rate (for » = 1024, about 70% of potential (f;¢) pairs
could not be reduced successfully, compared to less than 36% in the new implementa-
tion). Most of the speed advantage of the new implementation for BAT comes from this
speciﬁc improvement.

— The RAM gains for BAT come from the API-level optimizations: the new implementa-
tion returns F, G and w within the caller-provided temporary array, while the previous
implementation required separate output buffers; in particular, the w polynomial con-
sists of 32-bit integers and thus uses 47 bytes by itself.

— Hawk key pair generation, as published in [3], was explicitly optimized for speed, not for
low RAM usage. Indeed, our speed gains are somewhat lower (compared to the gains on
Falcon) but we improve a lot on RAM usage.

— Costs shown here include the computation of the public key for Hawk, but not for BAT
and Falcon (though they include the cost of verifying that the public key would be com-
putable, e.g. that f is invertible modulo X” + 1 and modulo g = 12289 for Falcon). Key
encoding costs are also not included. Moreover, in the case of Hawk, where the encoded
public key size is not fixed, a given implementation may try to enforce a maximum en-
coded size by restarting the key pair generation if the result does not fit; such a strategy
would mechanically involve some extra overhead (depending on how stringent the size
goal is) which is not measured here.

ARM Cortex M4. Our implementation is portable C (the use of AVX2 intrinsics is op-
tional), and can be compiled and used as is on a large range of platforms, including microcon-



trollers such as the ARM Cortex M4. We measured our new code on an STM32F4 “discov-
ery” board (§STM32F407VG-DISC1); this is the same board as the one which was used for
the Falcon implementation discussed in [7]. Table 2 shows the measured performance.

Algorithm Speed (ARM Cortex M4) (Mcyc)
old New Gain

BAT-128-256 - 23.16 -
BAT-257-512 - 69.19 -
BAT-769-1024 - 233.66 -
Falcon-256 - 24.60 -
Falcon-512 171.29 73.84 X 2.32
Falcon-1024 513.95 287.94 X178
Hawk-256 - 18.66

Hawk-512 - 47.92

Hawk-1024 - 226.35 -

Table 2: Performance of the new implementation of key pair generation on ARM Cortex
M4. Compiler is GCC-10.3.1; optimization flags: 02 -mcpu=cortex-m4. Speed values
are expressed in millions of clock cycles. “Old” code is from [7].

The following notes apply:

— Plain Cis used for all the code, except for SHAKE: the inner Keccak-f permutation uses
an assembly implementation.

— BAT and Falcon use here a random source based on ChaCha83. On that particular plat-
form, ChaCha8 is about ten times faster than SHAKE256. This reduces the overall key
pair generation cost by about 6%. For Hawk, we stick to SHAKE256 so as to support
a compact private key storage format, in which only the seed used to generate (f; ¢)
is stored, instead of # and ¢ themselves. ChaCha8 can be considered as adequately se-
cure[1].

— Averages were obtained over 1000 key pairs (for each algorithm and each degree).

— Like in the previously published speed benchmarks for Falcon on ARM Cortex M4(7],
we use the microcontroller at a 168 MHz clock rate. Instruction and data caches are en-
abled, since the Flash chip cannot fully serve instructions at that rate to the CPU. Cache
misses can induce a few extra wait cycles. Experiments show that for the key pair gen-
eration process described here, the cycle counts are increased by only about 0.7% com-
pared with the more common cache-less 24 MHz configuration use in some benchmark
frameworks such as pqm4[5] (for some specific pieces of code, the difference can be more
dramatic, e.g. a 10% overhead is observed for SHAKE).

3The implementation API can use an arbitrary random source, provided as a callback function
pointer with an opaque context; we provide both SHAKE and ChaCha8, but anything else could be
used.



— We use the optimization flags “~02”, like in [7]; the resulting code footprint for the li-
brary is about 64 kBytes*. Since microcontrollers are often constrained in firmware size,
it is common to compile with size optimization instead (“~0s” with GCC). In our case,
that would result in a binary about 15% smaller, but also 30% slower.

— The main improvement source on the ARM Cortex M4 is the use of fixed-point, which
supports vastly faster operations than the constant-time floating-point emulation that
was used in [7]. For instance, additions and multiplications of 64-bit fixed-point values
can be done in 2 and 4 clock cycles, respectively, on an ARM Cortex M4, while the cor-
responding floating-point operations used 99 and 64 cycles, respectively, in the old code
(not counting the function call overhead and register-saving). A few other improvements
apply, such as the use of R = 232 instead of 23! in the Montgomery representation of
modular integers.

— RAM usage is the same on the ARM Cortex-M4 as on other platforms; thus, we get
the same gains relatively to the previous implementations as on x86. On small micro-
controllers, RAM tends to be a very scarce resource, which increases the importance of
optimizing that particular aspect of the implementation.

4 Conclusion

Our new implementation, ntrugen, is meant to be reused in future cryptographic schemes
that leverage NTRU lattices. The main takeaways are the following:

— We removed all use of floating-point operations in the key pair generation.

— We reduced RAM usage, which is important for embedded systems.

— We also obtained substantial speed improvements over previously published implemen-
tations of the key pair generation of BAT, Falcon and Hawk, on both small (ARM Cortex
M4) and large (x86 with AVX2) systems.
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