
PEO-Store: Practical and Economical Oblivious
Store with Peer-to-Peer Delegation

Wenlong Tian1, Jian Guo2, Zhiyong Xu3, Ruixuan Li4 and Weijun Xiao5

1School of Computer Science and Technology, University of South China, China,
2School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

3Math and Computer Science Department, Suffolk University, USA
4School of Computer Science and Technology, Huazhong University of Science and Technology,

China
5Electrical and Computer Engineering, Virginia Commonwealth University, USA

Abstract. The growing popularity of cloud storage has brought attention to critical
need for preventing information leakage from cloud access patterns. To this end,
recent efforts have extended Oblivious RAM (ORAM) to the cloud environment in
the form of Oblivious Store. However, its impracticality due to the use of probability
encryption with fake accesses to obfuscate the access pattern, as well as the security
requirements of conventional obliviousness designs, which hinder cloud interests in
improving storage utilization by removing redundant data among cross-users, limit
its effectiveness. Thus, we propose a practical Oblivious Store, PEO-Store, which
integrates the obliviousness property into the cloud while removing redundancy
without compromising security. Unlike conventional schemes, PEO-Store randomly
selects a delegate for each client to communicate with the cloud, breaking the mapping
link between a valid access pattern sequence and a specific client. Each client
encrypts their data and shares it with selected delegates, who act as intermediaries
with the cloud provider. This design leverages non-interactive zero-knowledge-based
redundancy detection, discrete logarithm problem-based key sharing, and secure
time-based delivery proof to protect access pattern privacy and accurately identify
and remove redundancy in the cloud. The theoretical proof demonstrates that the
probability of identifying the valid access pattern with a specific user is negligible in
our design. Experimental results show that PEO-Store outperforms state-of-the-art
methods, achieving an average throughput of up to 3 times faster and saving 74% of
storage space.
Keywords: Oblivious Store · Delegation · Zero-Knowledge Proof · Secure Deduplica-
tion

Introduction
As cloud storage continues to prosper, privacy protection becomes an increasingly pressing
concern for users and organizations who seek to outsource sensitive data for the sake of
flexibility and reliability. However, malicious attackers can exploit remote access patterns
to steal sensitive information, as demonstrated in [IKK12]. For instance, the frequency of
a patient’s medication database searches may inadvertently reveal the patient’s disease.
Existing solutions to address this security issue aim to obfuscate the valid user’s access
pattern by incorporating fake access sequences, such as Oblivious RAM (ORAM) and
Private Information Retrieval (PIR). In theory, these approaches render the processed
access pattern computationally indistinguishable from a random sequence of bit strings,
thereby preventing malicious attackers from stealing privacy based on access patterns.

2 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

However, existing solutions such as Private Information Retrieval (PIR) fail to provide
protection for writing requests, allowing users to retrieve data from a server without
revealing which item was retrieved [CHK22, GSW21]. Oblivious RAM (ORAM), initially
proposed by Golden Rich [Gol87], offers protection against privacy leakage from both
read and write operations. However, approaches such as Path ORAM [SvDS+13] incur
heavy computational overheads and additional unrelated block transmissions. Although
researchers have attempted to simplify the algorithm [SvDS+13], compress real and fake
data to decrease network bandwidth [CCR19], or introduce Intel SGX [SGF18, RRM20]
to improve ORAM performance, its practical usage remains challenging, especially at the
storage level where it is referred to as Oblivious Store.

There is a rich line to construct oblivious stores in research communities [BNP+15, CS19,
CBC+18, RFK+15, TLXX22, WST12, SS13], which aim to protect data privacy against
persistent adversaries. Some of these approaches focus on reducing latency [SvDS+13,
MPC+18a, RFK+15], while others aim to scale up to handle large data volumes through
parallelism or amortization [LPM+13, AKL+22, DFD+21]. To achieve a balance between
security and high performance, some researchers have combined Private Information
Retrieval (PIR) to protect read access patterns and write-only Oblivious RAM (ORAM) to
safeguard write access patterns [JR15, SS13]. These techniques offer powerful oblivious data
access guarantees with minimal bandwidth overhead [GKL+20a]. Additionally, introducing
a proxy server has been proposed as a means of enhancing the robustness and performance
of the oblivious store [JMTS16, GKL+20b, VBKA22]. In summary, these techniques
provide a robust and secure means of accessing data without sacrificing performance.

Despite the benefits offered by existing oblivious stores, their adoption in cloud scenarios
is still hindered by the associated costs. One reason for this is the unacceptable performance
caused by fake accessing. Furthermore, special security requirements necessary for deploying
these stores in the cloud are often overlooked, as they require a significant transformation
cost. Another issue is that these oblivious designs seriously compromise cloud deduplication
function [PKK+22, YXT+22, MJWT13], which is essential for removing duplicate data
among cross-users. The benefits of deduplication, such as increasing cloud storage utility
and saving network bandwidth, have already been widely accepted and deployed in many
cloud storage products [PP14]. Although some secure deduplication schemes [YLL22,
TMPD19] have been proposed to remove redundancies without leaking data content to
other malicious attackers and cloud storage providers, they still disclose user privacy from
access patterns, even when the data is encrypted. Naively applying existing ORAM-related
work to cloud storage poses additional challenges, as storage providers are unable to detect
duplicate data. This is because the ORAM-like protection results in duplicate data being
stored in different locations with varying ciphertext, making it only distinguishable by the
client.

The inherent contradiction between maintaining privacy by resisting data access pattern
leakage and efficiently removing redundant data from cloud storage presents a significant
challenge. This dilemma is exacerbated when we mix fake requests with probabilistic
encryption, leading to confusion as traditional ORAM-like protection and rendering it
impossible to recognize valid duplicate data across multiple users. In contrast, it is
essential for the cloud to accurately identify redundant data to improve storage utilization.
Consequently, we must re-consider how we can practically incorporate the oblivious
property into existing cloud storage architecture without compromising security. The
resulting design should not impede the benefits of the cloud storage provider by removing
redundancy with a negligible transformation cost. Notably, we are the first to consider
a secure approach to simultaneously address privacy leakage from access patterns and
securely remove redundant data among cross-users in cloud storage.

In summary, a sufficient condition to obtain user privacy from access patterns, based on
our observation, is to figure out the mapping link between a valid access pattern and the

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 3

right person or organization. Tradition ORAM-like protection is to mapping a invalid access
pattern to the right person or organization by make the access pattern computationally
indistinguishable with a random sequence of bit strings. Obviously, breaking these mapping
can also protect the privacy from access pattern leakage. Motivated by this, we propose
a practical and economically oblivious store, PEO-Store. It can easily break these links
and remove the redundancy in an oblivious way. Specifically, all clients are grouped as
a p2p network. Each node has two roles: client and delegate. Each client selects several
delegates and assigns each delegate’s uploading or downloading tasks. The cloud only
interacts with the delegates. From the cloud aspect, the data ownership belongs to the
delegate who uploaded it. Each data are encrypted by the client before sending it to the
delegate and shared among each actual data owner, which is common in cloud sharing
scenario. By leveraging the zero-knowledge and discrete logarithm problem techniques, our
method can practically and economically relieve the contradiction between obliviousness
and accurately identify and remove the redundancy in the cloud with a trivial modification
of existing clouds. Our contributions are summarized as follows:

• Firstly, the use of cloud storage has raised concerns about protecting the privacy
of users’ data while ensuring efficient storage utilization. We observed conventional
approaches to achieving obliviousness have been successful in preventing privacy
breaches through access pattern analysis but have hindered the removal of redundant
data across multiple users. This contradiction highlights the need to reconsider how
obliviousness can be achieved without compromising the secure removal of duplicate
data. To address this issue, we propose three key challenges that must be tackled
to achieve an effective balance between protecting privacy and optimizing storage
utilization in the cloud scenario.

• Secondly, we introduce a novel practical and cost-effective oblivious store, referred to
as PEO-Store, which addresses the inherent conflict between maintaining privacy and
eliminating redundant data in cloud storage systems. Unlike conventional approaches
to achieving obliviousness, our method leverages a delegation mechanism to block the
mapping link between the access sequence and specific users. Specifically, the cloud
interacts only with authorized delegates and not with clients directly. Each data are
encrypted by the client before sending it to the delegate. To maintain data ownership
and security, the data ownership belongs to the delegate who uploaded it. Moreover,
we propose a secure randomized delegate selection scheme, a non-interactive zero-
knowledge based redundancy detection scheme, a discrete logarithm problem-based
key sharing scheme, and a secure time-based delivery proof mechanism to ensure
privacy preservation and data redundancy elimination in PEO-Store. By practically
resolving the contradiction between resisting privacy leakage from access patterns
and removing duplicate data in the cloud scenario, our method contributes to the
improvement of cloud storage performance and security.

• Thirdly, we formalize the security definition of PEO-Store and provide a proof of
its robustness against unauthorized access to users’ data. Specifically, we show that
the probability of an attacker identifying the valid access pattern associated with
a particular user is negligible. Additionally, we demonstrate that our construction
can securely and accurately eliminate data redundancy without compromising data
contents or encryption keys. To evaluate the effectiveness of PEO-Store, we con-
duct extensive simulations on real-world workloads. The results demonstrate that
PEO-Store outperforms existing state-of-the-art solutions for oblivious data storage,
achieving nearly 3× throughput on average and saving up to 74% of storage space.
Our findings indicate that PEO-Store is a practical and efficient solution for cloud
storage that successfully balances the protection of privacy and the optimization of
storage utilization.

4 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

The rest of the paper is organized as follows. The background of our work is summarized
in Section 1. In Section 2, we re-visit the protection in access patterns and outline the
challenges to defend the privacy leakage in access patterns while securely removing the
redundancy with a trivial modification in cloud storage services. Then, we propose a
practical and economically oblivious store in Section 3. Finally, the theoretical proof and
extended experiments are presented in Section 4 and Section 5, respectively.

1 Background
We provide a brief overview of the foundational concepts of Oblivious RAM, Oblivious
Store, and secure deduplication as our preliminary discussion. Then, the limitations of
naively combining the obliviousness property with secure data redundancy removal in
cloud storage are elaborated.

1.1 Oblivious RAM & Oblivious Store
To prevent sensitive information leakage from access patterns, Oblivious RAM (ORAM)
transforms each access into an oblivious access that is computationally indistinguishable
from a random request sequence. Path ORAM, one of the most widely used ORAM
implementations, employs a complete binary tree structure to store data blocks. Each
node in the tree is a bucket that can accommodate Z blocks, where at most Z blocks are
actual data blocks, while the others are dummy blocks. Each block is encrypted using
probabilistic encryption. The client maintains a mapping table that associates each data
block with a leaf ID. During an oblivious access, all blocks from the target leaf ID up
to the tree root are fetched into a client-side stash, a small memory buffer. Only the
actual data blocks are decrypted and held in the stash. The client then randomly assigns
a new leaf ID for the target block, refreshes the mapping table, and re-encrypts the block.
Several blocks in the stash are randomly selected and written back to their original path
after re-encryption.

When considering the integration of Oblivious RAM (ORAM) into cloud storage,
which is referred to as an oblivious store, there exist three main architectural approaches:
hardware enclave-based ORAM, ORAM with a Trust Proxy, and load balancers with
subORAM. Hardware enclaves, such as Intel SGX, have been utilized to deploy and
maintain the public state of an oblivious process on a public cloud, while also supporting
multiple clients without a central point of attack [SGF18, ZDB+17a, EZ17]. However, the
problem of concealing access patterns for oblivious storage remains unsolved as enclave side
channels can be exploited by attackers to extract enclave secrets through data-dependent
memory accesses [BMD+17, VBWK+17]. Alternatively, the Trust Proxy-based ORAM
architecture allows for batching and parallel calculation to improve throughput. However,
it is not suitable for deployment in an untrusted cloud environment, and it is susceptible to
a central point of attack in the system. The third approach involves building an oblivious
load balancer to guarantee batching of requests without any information leakage, along
with designing a high-throughput subORAM [DFD+21] for processing the batches in a
single linear scan. This architecture provides an effective solution for the problem of
concealing access patterns for oblivious storage while maintaining a high throughput.

1.2 Secure Deduplication
Secure Deduplication is a method of securely removing duplicate data in a cloud environ-
ment that has gained significant attention from both cryptography and system communities
[SKH17]. In this approach, each uploading operation splits the data into small blocks
using a chunking algorithm and performs encryption on the client-side. To maintain the

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 5

identical content after encryption, each symmetric encryption key is derived from the
content of each chunk, referred to as message-locked encryption. Only unique blocks are
stored in the cloud storage, as duplicate blocks are encrypted by the same key. Numerous
research studies have been conducted to enhance the performance of secure deduplication
[BKR13b, LAP15, BKR13a, TLXX18]. These studies have explored various methods such
as importing a trusted third party, simplifying key management, improving the secure
deduplication ratio, and utilizing the Intel SGX hard enclave. However, the issue of
resisting privacy leakage from access patterns in secure deduplication remains largely
unexplored. Malicious users can collude with cloud storage and obtain users’ valid access
patterns, thereby jeopardizing their privacy. Therefore, it is imperative to investigate and
address this challenge to enhance the security and privacy of secure deduplication.

1.3 Limitations of Strawman Approaches
we further describe the subtle limitations of naively removing redundancy using existing
oblivious store architectures. As previously discussed, the primary purpose of the oblivious
store is to obfuscate users’ valid access sequences by adding fake blocks, probability
encryption, and shuffling the data. This approach prevents malicious attackers from
identifying whether a block has been previously requested or identifying duplicate data.
However, there are two naive ways to detect duplicate data in oblivious storage. The first
method involves leveraging trusted execution environments (TEEs) such as Intel SGX,
while the second method is based on the proxy-based oblivious store. Both methods suffer
from significant limitations.

Several privacy-preserving ORAM frameworks, such as Ohrimenko et al.’s [OSF+16],
Mishra et al.’s [MPC+18b], and Zheng et al.’s [ZDB+17b], have been proposed that
use trusted hardware enclaves like Intel SGX to provide secure computation. These
frameworks employ compaction and shuffling as core primitives, but are still vulnerable
to side-channel attacks on TEEs, as demonstrated by works like Xu et al.’s [XCP15],
Liu et al.’s [LYG+15], and Van Bulck et al.’s [VBMW+18]. In particular, these attacks
allow adversaries to distinguish real blocks from dummy ones in the ORAM array and
infer the final permutation results of a shuffle in the ORAM workflow. To address these
security issues, Sasy et al. [SJG22] propose a fully oblivious algorithm for compaction
and shuffling in TEEs that is independent of secret keys. However, this approach incurs
significant performance overhead, with a complexity of O(n log2 n) in the shuffling process
and worsened performance at the data storage level.

When considering secure deduplication in an oblivious store with TEEs, three major
obstacles arise. First, the use of encryption in a fully oblivious setting makes the control
flow oblivious, meaning that the server cannot recognize duplicate data that is dependent
on secret data. Second, secure deduplication requires detection of redundant blocks with
different sizes, while the ORAM design requires each block to have the same size in a
bucket, leading to poor storage utilization. Finally, hardware enclave designs cannot scale
securely across machines, and frequent access to redundancy in this kind of oblivious store
will dramatically increase shuffling and concurrency among users.

The other approach to implementing an oblivious store is to utilize a trusted proxy
server, as proposed by Bindschaedler et al. [BNP+15], Sahin et al. [SZA+16], and
Vuppalapati et al. [VBKA22]. In this approach, a single or distributed proxy server acts
as an intermediary between clients and the cloud, communicating with the cloud on behalf
of clients in an oblivious way while clients request data through a secure channel such as
TLS. The trusted proxy maintains the mapping of users’ blocks and logical addresses in
the oblivious store and can easily remove redundancy based on plaintext blocks before the
oblivious process. This approach significantly increases concurrency and throughput for
multi-user data management scenarios. However, the use of additional trusted independent
servers is a strong assumption that is difficult to meet in commercial contexts, which can

6 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

The Client i’s
Access Patterns, yi

ORAM
Process

The Access Patterns in
Malicious Attacker View,A(yi)

ORAM Tree
monitor

E’(ckj)

E(ckj)

 yi and A(yi) are computational indistinguishable
 Chunk ckj in distinct tree nodes have different ciphertexts
 Failed to remove the redundancy (E(ckj)≠E’(ckj))

Server Side

Figure 1: Oblivious Store with Path ORAM failed to remove the redundancy

become a scalability bottleneck.
Furthermore, arranging for trusted third parties remains an unsolved problem [ZLK11].

As long as there are motives of greed, politics, and revenge, those who perform (or supervise)
work done by such an entity will provide potential loopholes through which necessary
trust may leak. In many environments, the strength of trust is as weak as its weakest link.
When the infrastructure of a trusted CA is breached, the whole chain of trust is broken.
The 2011 incident at CA DigiNotar [Wik22b] exemplifies the weaknesses of the system and
its effects. As Bruce Schneier has pointed out, after the 2013 mass surveillance disclosures,
no third party should be trusted [Sch13]. Thus, the use of a trusted third party in an
oblivious store system is not without risk, and alternative approaches must be explored to
ensure the security and privacy of user data.

2 Challenges & Threat Model
Drawing from the previous analysis, existing oblivious stores have been designed to protect
against access pattern leakage by adding fake requests and obscuring the exposed access
patterns in a manner that is computationally indistinguishable from randomized request
sequences. However, as a semi-honest entity, the cloud is unable to differentiate between
the current request block and the previous one due to the definition of the existing
obliviousness property. This not only undermines the performance and storage efficiency
of the cloud, but also compromises its interests. While hardware enclave or trusted proxy
architectures provide some relief to the problem, the goal of obliviousness comes at the
cost of removing redundancy and being impractical for usage. Therefore, we propose a
re-visit privacy protection in access patterns and identify three challenges in defending
against privacy leakage in access patterns while still securely removing redundancy with a
trivial modification in cloud storage services.

Challenge #1: Compared with traditional oblivious stores, is there any
other more efficient, practical way to resist privacy leakage from access pat-
terns in the cloud scenario?

Our observations have led us to identify two necessary preconditions for achieving
privacy from access patterns in cloud environments. The first precondition is to determine
the specific user who initiated the access sequence, while the second is to ascertain the exact
access sequence for that user. Conventional methods for achieving privacy from access
patterns involve confusing the access patterns to prevent malicious attackers from deducing
the precise access pattern sequences of the user. This is accomplished by generating
randomized strings that are computationally indistinguishable from the user’s request
sequences. To achieve this, fake requests must be periodically embedded into the valid

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 7

request sequences, and the data must be re-encrypted to confuse attackers. However, these
conventional methods come at the cost of degraded performance and diminished quality of
cloud storage services.

We propose a novel approach that focuses on breaking the mapping from valid access
sequences with specific users to resist privacy leakage from access patterns. This approach
differs from previous work, which solely relied on confusing the access patterns. By
assuming that the first precondition is violated, we prevent a malicious attacker from
achieving privacy from access patterns due to the lack of valid access pattern sequences
of that user. This approach provides an effective means of safeguarding sensitive data
in cloud-based systems, without compromising on the performance or quality of cloud
storage services. Further research is necessary to evaluate the efficacy of this approach
and to identify other potential solutions for mitigating privacy risks associated with access
pattern disclosure.

Challenge #2: How to securely remove the redundancy while keeping the
oblivious property?

The removal of redundancy from data in cloud storage while maintaining the oblivi-
ousness property presents a significant challenge. Securely removing redundancy requires
detecting duplicate data without disclosing its content, while obliviousness requires that
no one, except the client, can differentiate between the same data accessed at different
times. While combining the trusted proxy architecture can alleviate this paradox, it is not
advisable to rely on third-party trust, as Bruce Schneier has pointed out. Additionally, it
is challenging to justify the business case for an independent party to run an additional
server solely for improving privacy in cloud storage services.

To address this challenge, we propose a novel approach in this paper that groups all
clients into a peer-to-peer network. Each node in the network has a delegation role, and
clients can randomly delegate their access tasks to other nodes. This approach enables us
to leverage zero-knowledge proof and secure multi-party computation techniques, which
are detailed in Section 3, to overcome the challenges associated with redundancy removal
and obliviousness preservation. By adopting this approach, we can improve the privacy
and security of cloud storage services without relying on third-party trust or compromising
on performance. Further research is necessary to evaluate the effectiveness of this approach
and to identify other potential solutions for addressing privacy risks associated with
redundancy and obliviousness in cloud-based systems.

Challenge #3: How to be compatible with the existing cloud storage archi-
tectures when alleviating the paradox of securely removing redundancy and
keeping obliviousness property.

Cloud businesses are focused on maximizing profits by providing high-quality products
with optimal performance. They typically prefer simple and scalable methods with the
same level of security complexity. However, existing designs in the oblivious paradigm have
not adequately considered compatibility factors and are difficult to integrate into existing
cloud storage applications. Furthermore, these designs require cloud storage providers to
modify their current data management practices with probabilistic encryption to achieve
obliviousness, further complicating the integration process.

To address this issue, our design is more compatible to the existing cloud storage
services with a trivial modifications by alleviating the paradox of securely removing
redundancy while preserving the obliviousness property, which is a critical challenge in
designing an oblivious store for cloud scenarios. By addressing this challenge, we can
simplify the integration process for cloud storage providers and enable them to adopt
oblivious store designs without significant modifications to their existing data management
practices. Our proposed approach can also enhance the overall performance and scalability
of cloud storage systems, thereby providing a win-win solution for cloud businesses and
their customers. Further research is necessary to evaluate the efficacy of this approach and

8 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

to identify other potential solutions for improving compatibility in the design of oblivious
stores for cloud-based systems.

Threat Model Although traditional oblivious stores provide data confidentiality
and conceal the data access pattern, they significantly affect the profits of cloud storage
providers by removing duplicate data and are impractical due to performance degradation.
As our previous analysis indicates, the precondition for privacy leakage from access patterns
is mapping the request sequences to a specific client. Without mapping, malicious attackers
can not determine personal privacy. For instance, the frequency of a specific medicine at a
certain time in the hospital database does not reveal the disease until mapped to a specific
individual. Therefore, our goal is to practically break this mapping and securely remove
duplicate data with minimal modification to existing cloud storage services, while also
preserving performance and profitability.

In our threat model, we assume that the cloud server is honest-but-curious, and all
clients are grouped as a peer-to-peer network. We also assume that the number of malicious
nodes does not exceed half of the total network nodes, which is reasonable, similar to the
Bitcoin system. Malicious attackers and cloud servers may collude to compromise the
privacy of targeted individuals. In this model, each node has two roles: delegate and client.
Delegates directly upload or download data to and from the cloud server, while clients
communicate with other delegates for data requests. Our proposed approach provides an
efficient and practical solution for addressing the privacy challenges in cloud storage while
ensuring compatibility with existing cloud storage services.

For example, the client selects a number of delegates and randomly assigns each delegate
with either a data uploading or downloading task. The cloud server only interacts with
these delegates. From the cloud perspective, data ownership belongs to the delegate who
uploaded it. To maintain confidentiality, each piece of data is encrypted by the user before
it is sent to the delegate and shared among the actual data owners, which is a common
practice in cloud-sharing scenarios. Only the node with the decryption key can access
the data. Our proposed construction does not consider data transaction fees, as this can
be easily implemented through online anonymous electrical platforms for each successful
transaction, such as Zcash [BFV19].

3 PEO-Store Design
In this paper, we provide an overview of PEO-Store. Next, we introduce two schemes
designed to securely prevent repeated uploading of duplicate data in an oblivious manner:
a secure randomized delegate selection scheme and a non-interactive zero-knowledge based
redundancy detection scheme. Finally, we elaborate on a key-sharing approach based on
the discrete logarithm problem and a secure time-based delivery proof.

3.1 Design Overview
PEO-Store employs a common architecture to effectively prevent privacy leaks and securely
eliminate redundancy with minimal modification to existing cloud storage services, as
illustrated in Figure 2. Each peer node serves in two capacities, as a client and delegate,
and all peer nodes form a peer-to-peer (p2p) network. In the delegate role, the peer node
communicates directly with the public cloud service. The identifier for each peer node
is a consistent hash of its IP address and public key. Additionally, the cloud follows the
traditional cloud architecture with minor adjustments. All communication in PEO-Store
is transmitted via an SSL-encrypted link, ensuring that no one can monitor the entire p2p
network’s communication. The delegate role prevents malicious attackers from determining
the mapping from access patterns to the valid client, without the need to add any fake

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 9

requests. We then outline the PEO-Store workflow, which is based on two major operations:
write and read.

PEO-Store’s writing process involves several steps. Firstly, the client splits the data into
several chunks, with each chunk denoted as ckj . Before writing ckj , the client randomly
selects k delegates based on the secure randomized delegate selection scheme, which is
explained in subsection 3.2. Then, ckj is accompanied by two metadata, metadj and
metasj . metadj is used for non-interactive zero-knowledge based redundancy detection by
the delegates, while metasj is used for key sharing in the case of a duplicate chunk. The
details of these processes can be found in subsections 3.3 and 3.4. The detecting result is
sent back to the client, and if the results from k delegates are the same, the ciphertext
of ckj and metadj are temporarily stored in the p2p network and the cloud, respectively.
The delegate and the cloud then calculate delivery proofs and send them back to the client
through the delegates. After validating the proofs, metadj , metasj , and the ciphertext of
ckj are permanently stored.

Randomly select
delegates, for
writing ckj

Non-Interactive Zero-knowledge
based Redundancy Detecting

…

If duplicate, achieve the metadata
for securely key sharing

If unqiue, store the
data and calculate
delivery proofs

Validation for proofs
or achieve the key through
key sharing scheme

Randomly select
delegate, for
reading ckj+1

Access the
ciphertext of
ckj+1

Cloud

peer node (client role & delegate role) encrypted link in SSLp2p network

Figure 2: The Overview of PEO-Store

If ckj is a duplicate, the delegate fetches the metasj of ckj from the cloud and sends
it to the client, who can then obtain the encryption key from metasj using the discrete
logarithm problem-based key-sharing scheme. Only the client who knows the content
of ckj can get the encryption key. If ckj is unique, the client assigns a specific time to
the delegate, and each delegate and the cloud must forge the delivery proofs before the
predefined time, as explained in subsection 3.5. In the case of a malicious node pretending
to return invalid detecting information, the client initiates an additional delegate selection
processing round and adds the malicious node to its blacklist. The client can also pretend
to be a delegate in each round. When reading a chunk ckj+1, the client randomly selects
one delegate to fetch ckj+1. If the delegate returns an invalid ciphertext of ckj+1, the
client randomly asks other delegates to fetch it again and puts the previous delegate on its
blacklist.

For the reading process, the client randomly selects k delegates based on the secure
randomized delegate selection scheme and the delegate fetches the ciphertext of ckj+1 and
sends it back to the client, who can then decrypt it using the corresponding encryption
key. It is important to note that PEO-Store uses the chord [SMK+01] as its peer-to-peer
distributed hash table due to its robust scalability and rapid lookup function. For example,

10 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

to execute lookup queries for m entries in distributed hash table result in O(m logN) in
N-node p2p network. Each node can join and leave the p2p network without disruption
resulting in O(log2 N) messages to re-establish the distributed hash table. Additionally,
discrete logarithm problem is used to construct the metadata stored in the p2p network
and the cloud, making it highly secure.

3.2 Secure Randomized Delegate Selection Scheme
The selection of delegates is a critical responsibility that involves randomly choosing
delegate nodes for each access, including the possibility of the client being selected as
a delegate node. This process is essential to ensure a robust and secure system that
can effectively detect duplicates and protect against potential security threats. Based on
our thread model, each node communicates with the cloud in a delegate role to break
the mapping link between a valid access pattern and the client. This communication
enhances the security of the system by obscuring the access pattern of the client. Before
uploading data, the client splits it into smaller chunks, reducing the impact of potential
attacks that target specific chunks. Each chunk is randomly assigned to k delegates for
the duplicate-detecting process, contributing to the overall reliability of the system. By
selecting delegates randomly, the risk of bias is minimized, maintaining fairness in the
delegation process. The detailed pseudocode of the secure randomized delegate selection
scheme is shown as Algorithm 1.

To efficiently select delegate nodes, PEO-Store leverages the chord protocol [SMK+01],
one of the most widely used distributed hash table (DHT) protocols. Each peer node in the
system is assigned a consistent hash value [Wik22a], which is an m-bit identifier derived
from the node’s IP address and public key. This consistent hashing approach ensures that
the nodes are uniformly distributed throughout the network, allowing nodes to join or
leave the system without disrupting its operation. In PEO-Store, metadata required for
duplicate detection is stored using key-value pairs in a DHT. The keys are assigned to
nodes in the network, and the Chord protocol’s lookup function, denoted as lookups for
simplicity, is used to discover the location of the metadata.

Algorithm 1 Secure Randomized Delegate Selection Scheme
Require: n: chunk number to be operated; k: delegate number; blacklist: a list of

delegates that are regarded as untrustworthy
Ensure: IP addresses queue, L

1: for i=0 to n do
2: count ← 0
3: while true do
4: generate a random number→ rand_num
5: hash← consistent_hash(rand_num)
6: delegate’s IP ← lookups(hash)
7: if rand_num%2==0 & delegate’s IP /∈ blacklist then
8: L.push(delegate’s IP)
9: count++

10: if count==k then
11: break
12: end if
13: end if
14: end while
15: end for
16: return L

For each delegate selection request, the client generates a random number, randnum,

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 11

and calculates its consistent hash value. The client then uses the lookups function to
identify the closest delegate IP address in the P2P network. If randnum is even and
the delegated IP is not included in the blacklist, the client adds the delegate’s IP to
the IP address list, L. For each chunk, PEO-Store selects k delegates for redundancy
detection by repeating this process. The selection scheme aims to confuse the chunk access
sequence by using different delegates for redundancy detection, making it difficult for
malicious delegates to identify other selected delegate identifiers. Ultimately, the chunks
are processed in the order specified by the IP address list, L. The use of random selection,
combined with the consistent hash values assigned to each node, allows the system to
operate in a secure and reliable manner, even in the face of malicious attacks.

3.3 Non-Interactive Zero-Knowledge based Redundancy Detecting Scheme
Motivated by the challenges mentioned in our thread model, we propose a novel scheme
for redundancy detection in PEO-Store based on non-interactive zero-knowledge (NIZK)
proofs. Specifically, when a client initiates a request to check for duplicate chunks, randomly
selected peer nodes act as verifiers, while the provers are the nodes that store relevant
metadata in the distributed hash table. By using this scheme, PEO-Store can establish
the knowledge of whether a given chunk, ckj , is a duplicate or not without revealing any
information beyond the validity of the zero-knowledge proof itself. This approach not only
enhances privacy and security in the P2P network but also enables efficient and scalable
redundancy detection.

Figure 3: The Metadata Structure for Non-Interactive Zero-Knowledge based Redundancy
Detecting Scheme

Formerly speaking, let Fp be a finite field where p is a large prime number. For
each chunk cki, the client generates a random number ri and constructs a three-tuple
< short(hi), tagi,metadi > as shown in Figure 3. Here, hi denotes the SHA-1 hash value
of cki’s content, and φ represents Euler’s totient function [IRR90]. short(hi) is the short
hash of hi, containing only the first half of the value. The metadi is constructed using
discrete logarithm problem and consists of five parts. Finally, the tagi is the hash value of
< hi,metadi >. The non-interactive zero-knowledge based redundancy detecting scheme
(zkRD) includes the following steps:

• pp ← zkRD.G(1λ): given the security parameter, generate the public parameter pp,
including the prime number p.

• < short(hi), tagi, metadi >←zkRD.Commit(cki, ri, p) : Client generates random
number ri, computes < short(hi) , tagi , metadi > for the chunk cki, and sends the
< short(hi), tagi, metadi > to randomly selected delegate nodes.

• S←zkRD.P(short(hi), tagi, metadi,ri, p): Delegate node looks up the related sets
S in p2p network where S = {< short(hj), tagj ,metadj > | short(hj) equals to
short(hi)}

• {0, 1} ← zkRD.V(short(hi), tagi, metadi, S)and verifies the proof < π1, π2 > based
on Formula 1. If the verification result is not equal to 1 or the S is empty, it

12 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

proves that the cki is a unique chunk, and vice versa. For each unique chunk, the
< short(hi), tagi,metadi > will be temporary stored in the distributed hash table. It
will permanently stored in the p2p network after the validation of secure time-based
delegate delivery proof. For duplicate chunk, the delegate fetches the metadata
metasj for securely key sharing from the cloud and send it to the clients.

We say that zkRD is a non-interactive zero-knowledge based redundancy detecting if
the following holds:

• Completeness For any hi, pp ← zkRD.G(1λ), <short(hi), tagi, metadi>← zkRD.
Commit(hi, ri, pp), S←zkRD.P(short(hi), tagi, metadi,ri, pp), and where exists a
< short(hj), tagj , metadj > in S that hi equals to hj ,it holds that

Pr[zkRD.V(short(hi), tagi,metadi,S) =< 1, 1 >] = 1

• Soundness For any PPT adversary A, pp← zkRD.G(1λ), <short(h∗i), tag∗i ,metad∗i>
← zkRD.Commit(h∗i , r∗i , pp) but the h∗i is not equals to hi, the following probability
is negligible in λ:

Pr[zkRD.V(short(h∗i), tag∗i ,metad∗i ,S) = 1] ≤ negl(λ)

• Zero-Knowledge: pp ← zkRD.G(1λ), for any expected polynomial-time algorithm
B, which can produce, upon input of the assertions to be proven - but without
interacting with the real prover: let and comzk = zkRD.Commit(hi, ri, pp) and
com′zk = Sim(x, ri, pp)

|Pr[B(comzk, pp) = 1]− Pr[B(com′zk, pp) = 1]| ≤ negl(λ)

π1 = (((((ffi1+φ(p)
j2 %p× f−fj1+φ(p)

i3 %p)%p

× ffi5+φ(p)
j4 %p)%p× ffi1+φ(p)

j3 %p)%p

× f−fj1+φ(p)
i2 %p)%p× f−fj5+φ(p)

i4 %p)%p

π2 = (((((ffj1+φ(p)
i2 %p× f−fi1+φ(p)

j3 %p)%p

× ffj5+φ(p)
i4 %p)%p× ffj1+φ(p)

i3 %p)%p

× f−fi1+φ(p)
j2 %p)%p× f−fi5+φ(p)

j4 %p)%p

(1)

Proof Sketch The completeness of our scheme can be easily proved according the
Fermat’s theorem [IRR90] based on Formula 1. The proof is accepted when both π1 and
π2 are 1, and vice versa. The soundness holds because of the collision resistance of the
hash function. To prove the hiding property, we can construct a simulator Sim(x, ri, pp),
where x represents a simulation trapdoor for all non-uniform polynomial-time adversaries.
It is obviously indistinguishable from the real commit algorithm because the adversaries
do not know the uniformly random number ri. We omit the formal proofs here.

3.4 Discrete Logarithm Problem based Key-Sharing
When a chunk is detected as a duplicate, there is no need to repeatedly store the duplicate
chunk after the non-interactive zero-knowledge based redundancy detecting scheme. Instead,
data owners should securely share the encryption key for duplicate chunks offline. Thus,
we further propose a discrete logarithm problem based key sharing. Specifically, when the
chunk to be uploaded is duplicated with the cki in redundancy detection, the delegate will

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 13

request the metadata metasi according to the tagi from the cloud and send it back to the
client. Only the client, knowing the plaintext of cki, can get the correct random number
information from metasi. Finally, the encryption key shared among data owners is the
hash value of hi and random number.

Figure 4: The Metadata Structure for Discrete Logarithm Problem based Key-Sharing

Figure 4 illustrates the metadata metas of the duplicate chunk cki stored in the cloud.
In this scenario, the client Alice wants to upload a chunk ckm that is a duplicate of a
chunk cki previously uploaded to the cloud by Bob. Bob generated a random number rj
and used it to compute the encryption key for cki as hash(hi, rj%p), where hi is the hash
value of cki. After the redundancy detection, Alice knows that ckm is a duplicate and can
calculate the encryption key of cki using the metadata metasi and tag tagi of cki based
on Formula 2. This key is securely shared among data owners offline and can be used for
encrypting and decrypting the duplicate chunks. Any malicious attacker or delegates can
hardly figure out the random number or other chunk content information from the metasi
and tagi of cki due to the discrete logarithm problem when p is a selected prime number.

rj%p = (((rj · hhiri
i)%p) · (hri(φ(p)−1)

i %p)hm%φ(p)+φ(p))%p (2)

3.5 Secure Time-based Delivery Proof
This subsection proposes a robust method for verifying the secure time-based delivery of
unique chunks. The idea of the proposed method is to verify that a delegate and a cloud
have delivered a chunk within a predetermined time period. The delivery proof becomes
invalid after the specified period. Specifically, the client selects one of the k designated
delegates at random to deliver the unique data chunk to the cloud after redundancy
detection. The cloud must store the chunk during the client’s designated period. Both
the delegate and the cloud must create and provide time-based delivery proofs, which are
then sent back to the client via the delegate. Once the client successfully validates the
proofs, the delegate notifies the system to store the data permanently. If the verification is
unsuccessful, the client initiates a new round of the chunk-writing session.

calculate
choose

choose

Accept the Verification
does not expire

Figure 5: The Protocol for Secure Time-based Delivery Proof

To illustrate the secure time-based delivery proof, Figure 5 provides an example in
which Alice, a client, uploads the unique chunk cki and Bob is the designated delegate to

14 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

write the chunk. To support the time-based proof for the unique chunk cki writing process,
Alice sends a tuple < tagi, Di, b

′, c, Ecki
> to Bob. Here, Ecki

represents the ciphertext of
cki, and Di is the hash value of the ciphertext. b′ represents the Xor value of a random
number b and the time-based token tokeni, which is generated by the time-based one-time
password (TOTP) function [ES18]. The TOTP function uses a temporary key ski and
a period setting ∆, where ∆ represents a time unit. Additionally, c is another random
number generated by Alice. The cloud then receives the tuple < tagi, Di, b

′, c, Ecki
> from

Bob and constructs a proof < x1, x2, y1, y2 >, as shown in Figure 5. Alice verifies the
proof through Bob. Once the verification is successful, the writing process is complete.

4 Security Analysis
In this section, we formalize the security definition of PEO-Store and prove that the
probability of figuring out the valid access pattern with a specific user is negligible. To
simplify the proven process, We redefine the security definition of oblivious stores based
on the previous three challenges. Intuitively, the security definition requires that the
malicious attacker learns nothing about a specific user’s access patterns and supports
securely removing the redundancy among users. In other words, no information should be
leaked about: 1) which data is being accessed by the user; 2) when it was last accessed by
the user; 3) whether the user accessed the same data; 4) what is the valid access pattern
for a user.

Let ~yi := ((opM , aM , dataM)i, · · · , (op1, a1, data1)i) denotes a data request sequence
of length M by user i, where each opj denotes a read(aj) or a write(aj , data) operation.
Specifically, aj is the identifier of the request block, and dataj denotes the bock content.
In this notation, the tuples in the data request sequence chronologically correspond to the
data operations. Let A(~y) denote the sequence of access to the remote storage given the
sequence of data requests ~yi of user i. In other words, the malicious nodes, colluding with
the cloud, can observe the access patterns from delegates, like A(~yi). Our construction
is secure if (1) the probability that A(~y) is equals to the user x’s valid request sequence ~yx
for any malicious is Prob(A(~y) = ~yi|i = x), which is negligible, (2) the secure deduplication
process leaks no information about the file content and keys, and (3) construction is correct
in that it returns on input ~y data that is consistent with ~y with probability ≥ 1−negl(||~y||).

Then, we assume the peer node number in PEO-Store is W. Due to the delegate design,
each client randomly divides their data request sequence into several splices. The malicious
attacker can only observe part of them as a delegate role or master the whole data requests
initiated by the delegates. Thus, the probability of figuring out the correct client to initiate
the data request is 1

W . Obviously, we can get the Prob(A(~y) = ~yi|i = x) by using the
Bayes rule as Formula 3. Based on the definition of a negligible function [Wik22c], we can
prove that Prob(A(~y) = ~yi|i = x) is negligible.

Prob(A(~y) = ~yi|i = x) =
M∏
i=1

Prob(target(ai)) = (W)−M (3)

Proof Outline: To simplify the proof, we consider the function µ(M) = (W)−M . Then,
we can choose M0 = cW ∈ N . For any M ≥M0, we have (W)−M=(W logW M)−

M
logW M =

W
− M

logW M . Since M ≥ M0, we know M
logW M ≥ M0

logW M0
≥ M0√

M0
=
√
M0 = c. Thus,

µ(M) =(W)−M=W−
M

logW M ≤ M−c. So, we have prove that for any c ∈ N , there exists
M0 = cW ∈ N such that for any M ≥M0, Prob(A(~y) = ~yi|i = x) ≤M−c, which conforms
to the negligible function definition.

Therefore, the delegate setting in PEO-Store can easily block the mapping link from
valid access patterns to a specific user compared with conventional ORAM. Moreover,

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 15

it can also support removing the redundancy while keeping the obliviousness property.
The cryptography in PEO-Store is based on discrete logarithm problems, such as the
non-interactive zero-knowledge based redundancy detecting scheme, key-sharing, and
time-based delivery proof. Except for the client, no one can achieve private information
before cracking the discrete logarithm problem when the prime number is extra large. In
addition, each chunk’s tag or encryption key is related to the random property in SHA-128,
and the malicious can hardly crack it in probabilistic polynomial time through the existing
cryptoanalysis.

As for consistency, we utilize the distributed hash table (DHT) to maintain the metadata
among peer nodes, such as Chord [SMK+01]. Thus, the consistency in PEO-Store depends
on the latency in the DHT protocol. When the peer nodes’ latency is unacceptable, the
peer node may encounter lookup failures and state inconsistency. In other words, An
adversary may be able to make some set of nodes fail but have no control over the choice of
the whole peer nodes. For example, the adversary may be able to affect only the nodes in a
particular geographical region. Fortunately, there are several research works to achieve the
low latency lookup in DHT protocol [SMK+01, JMTS16]. When the nodes join and leave,
the DHT protocol can automatically keep consistency and replicate the metadata. We
expect further improvement to explore the minimized latency of PEO-Store in the future.

5 Evaluation
Experimental Setup In this section, we implement the PEO-Store in JAVA, using Netty
as the RPC library and Chord protocol as the distributed hash table. Each peer node
and the cloud are equipped with an Intel(R) Core(TM) i7-4790 @3.60GHz 8-core CPU,
16GB RAM, a 500GB 5400 rpm hard disk, and connected to a 1Gbps network. We
simulate a network size with 29 peer nodes. The cloud storage server is deployed to an
Amazon EC2 instance. We compare the PEO-Store with two baselines. The first baseline
is encrypted-only cloud storage with encryption by the Pseudo-Random function. That is,
it encrypts the data without the deduplication and client requests but does not guarantee
oblivious property. The second is the latest oblivious data access work, the Shortstack
[VBKA22]. It serves as a reference for performance comparison.

DataSet and Workloads There are two kinds of datasets. The first one is the home
dataset contains snapshots of students’ home directories from a shared network file system
(Fslhome). It was collected in the File system and Storage Lab (FSL) at Stony Brook
University by the File Systems and Storage Lab, and Dell-EMC [TMB+12], which includes
real users’ daily home directories. The snapshots were collected between the end of the
year 2011 and the beginning of the year 2014. The other is the standard YCSB benchmark
[CST+10] to generate our dataset and workloads. We use workloads A(50% reads, 50%
writes) and C (100% reads) for experiments.

5.1 Throughput Analysis
We now study the PEO-Store’s throughput by varying workloads with different redun-
dancy percentages. The workloads of Fslhome and TCSB-A exhibit 80% and 75% write
redundancy percentages, respectively. Figure 6 shows the throughput results for each
baseline. The throughput of the Shortstack baseline is 40 KOps in Fslhome, and it also
achieves a similar throughput in YCSB-A and YCSB-C. Furthermore, the PEO-Store
achieves almost 3× throughput compared with the Shortstack in Fslhome and YCSB-A
while the encryption-only baseline is 2× ~3× faster than PEO-Store.

The benefits of PEO-Store stems from avoiding fake requests and avoiding duplicate
data request compared with existing oblivious design. Specifically, once the chunk is
detected as a redundancy, there is no need to transfer the ciphertext to the cloud. Instead,

16 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

0

100

200

300

Fslhome YCSB-A YCSB-C

Th
ro

ug
hp

ut
 (K

op
s)

Encryption Only
Shortstack
PEO-Store

Figure 6: Throughput under Various Workloads

the delegate transfer the metadata of key sharing to the client. Moreover, PEO-Store
does not require fake requests to distinguish the access patterns. The delegation way
can effectively the mapping from valid access patterns to specific users. But, all of the
YCSB-C workloads are read requests. The throughput of PEO-Store is also similar to the
Shortstack without the benefits from deduplication.

3.6%

57.3%

25.1%

7.2%

6.8%
Delegate Selection
Redundancy Detection
Delivery Proof
Key Sharing
Encryption

Figure 7: Proportion Time for Core Processes in PEO-Store

We further statistic the proportion of each scheme for average time cost in PEO-Store,
as shown in Figure 7, such as the secure randomized delegate selection (Delegate Selection),
non-interactive zero-knowledge based redundancy detecting (Redundancy Detection),
secure time-based delivery proof (Delivery Proof), and the encryption for each chunk
(Encryption). Figure 7 shows that the redundancy detection and delivery proof are the
time-consuming schemes in PEO-Store. For example, there are at least one or two hops
to look up or transfer the metadata of redundancy detection and delivery proof among
peer nodes. And the latency for each hop is affected by the network quality, detailed in
the following experiments. Key sharing is almost 8× faster than redundancy detection
compared to encryption and delegate selection. For each duplicate chunk, it can avoid
unnecessary delivery proofs.

We also evaluate PEO-Store for workloads with a different skew in YCSB-A, as shown
in Figure 8. The PEO-Store’s throughput scales linearly regardless of the skew but is

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 17

0

10

20

30

40

50

60

70

80

90

100

YCSB-A(25%) YCSB-A(50%) YCSB-A(75%)

Th
ro

ug
hp

ut
 (K

op
s)

Workload(Redundancy Percentage)

skew 0.2
skew 0.4
skew 0.8
skew 0.99

Figure 8: PEO-Store Throughput is unaffected by access skew with redundancy percentage
in workloads

related to the workload’s redundancy proportion. The reason is that the consistent hash
can ensure that each peer node is responsible for an equal portion of the distributed hash
table content. In other words, the load of the PEO-Store is evenly distributed, even though
the heavily skewed workload.

5.2 Latency Overhead

To qualify the PEO-Store’s latency overheads, we simulate the scenario that peer nodes
continuously join and leave, which is reasonable and common in reality. Figure 8 shows the
latency corresponds to one node joining and leaving every T seconds on average in Fslhome,
where T is from 20 seconds to 80 seconds. PEO-Store increases latency by an additional
20ms compared to Shortstack. This growth is due to the lookup in the distributed hash
table. However, the distributed hash table balances the load since each peer node receives
roughly the same metadata and requires relatively little metadata movement when nodes
join and leave the system. And we only show Fslhome workload results, as YCSB-A and
YCSB-C results are similar. Nevertheless, these overheads are masked by the significantly
larger WAN access latency.

5.3 Storage Overhead

Finally, we statistic the overall storage costs in the real workload, Fslhome, as shown in
Table 1. Table 1 shows the normalized overall storage costs. We denote the ideal storage
cost of Fslhome as one after completely removing the redundancy. Then, Encryption-only
and Shortstack are 5.1× and 5.4× compared with the idea storage cost. Since the Pseudo-
Random encryption and fake request mechanism in conventional oblivious schemes, it is
hardly recognized and removes the duplicate data, which is critical for the cloud storage to
improve the storage utilization and save the network bandwidth. PEO-Store can effectively
remove the duplicate and requires only 37% more storage overhead than Ideal storage.
The metadata causes these extra storage costs in PEO-Store.

18 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

25

50

75

100

125

20(s) 40(s) 60(s) 80(s)

La
te

nc
y

(m
s)

Encryption Only

Shortstack

PEO-Store

Figure 9: Latency with One Node Join or Leave for Every T seconds

Table 1: Normalized Storage Cost for Fslhome Workload

Normalized Storage Cost
Ideal Storage 1

Encryption Only 5.1×
Shortstack 5.4×
PEO-Store 1.37×

6 Related Work
In this section, we mainly summarize relevant existing work, focusing on (1) the ORAM
algorithm’s optimization, (2) the ORAM with hardware enclave, and (3) the trusted
proxy-based oblivious store.

ORAM Algorithm’s Optimization: Oblivious RAM, first proposed by Golden Rich
[Gol87], to resist the privacy leakage from both read and write operations. Path ORAM
[SvDS+13] further organizes the data in tree-like structures. Each tree node is a bucket,
including several blocks. The same block in different nodes has variance ciphertexts, and
each request should constantly shuffle and re-encrypt the data. A simple request suffers
additional unrelated block transmissions and heavy computations. Ring ORAM [RFK+15],
Bucket ORAM [FNR+15] were proposed to reduce the bandwidth overhead on the memory
bus by using different bucket organization and more complicated access flow control. Ren
et al. [YHR+15] has improved the performance of ORAM by introducing the static super
block structure and the dynamical adaptive algorithm. It saves the bandwidth in ORAM
based on spatial locality property.

Unfortunately, the ORAM is still far from practical usage, and the situation will worsen
in storage level. To alleviate this problem, Elaine Shi et al. [AKL+22] further propose
the oblivious parallel RAM (OPRAM), which is a natural extension of ORAM to the
(more realistic) parallel setting where several processors make concurrent accesses to a
shared memory. Snoopy [DFD+21] comprises the load balancers and subORAM to securely
achieve horizontal scaling by storing data partitions.

ORAM with Hardware Enclave: The hardware enclaves, such as Intel SGX, can
effectively maintain the oblivious access and public states in the cloud scenario. ZeroTrace
[SGF18] proposes several oblivious memory primitives from Intel SGX, which includes an
efficient and flexible block-level memory controller. Oblix [MPC+18a], Opaque [ZDB+17a],

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 19

and ObliDB [EZ17] improve the oblivious query in the cloud by introducing new oblivious
physical operators in hardware enclaves. Pro-ORAM [TJS19] improves the throughput
using multi-threading Melbourne Shuffle with SGX enclaves. However, hardware enclaves
do not entirely solve the problem of hiding access patterns for oblivious storage: the
enclave side channels allow attackers to exploit data-dependent memory accesses to extract
enclave secrets [BMD+17, VBWK+17].

Trusted Proxy-based Oblivious Store: CURIOUS [BNP+15] and TaoStore [SZA+16]
employ a centralized proxy model with parallelism to break down the performance limi-
tation by adapting ORAM with the cloud storage. The trusted proxy server maintains
the oblivious state on behalf of the clients. Loco-Store further attempts to combine the
locality with oblivious property and proposes a locality-based eviction algorithm to reduce
the access time. Moreover, Pancake [GKL+20a] leverages a trusted proxy to transform
a set of plaintext accesses to a uniformly distributed set of encrypted accesses that can
be forwarded directly to an encrypted, non-oblivious storage server. While this approach
achieves high throughput, the proxy remains a bottleneck as it must maintain a dynamic
state about the request distribution. Thus, Shortstack [VBKA22] could batch and parallel
the calculation to improve the throughput. While both of these techniques provide a
powerful oblivious data access guarantee, additional trusted independent servers are a
strong assumption that is very difficult to meet in commercial contexts. How to arrange
for trusted third parties is still an unsolved open problem [ZLK11].

Moreover, obfuscating the access pattern in probability encryption and the fake access
setting will seriously damage the benefits of removing redundancy in the cloud scenario,
which has been adopted and deployed in many cloud storage products. However, existing
secure deduplication schemes still disclose users’ privacy from access patterns, even in an
encrypted state. The PEO-Store is the first step to securely remove the redundancy while
keeping the obliviousness property to achieve high throughput and storage utilization in a
cloud storage scenario.

7 Conclusion
In conclusion, this paper has provided an overview of the challenges associated with applying
Oblivious RAM (ORAM) to cloud environments, particularly in achieving practical usage
of Oblivious Stores. We have identified two key issues: the unacceptable performance
caused by obfuscating access patterns in probability encryption and the conflict between
the requirement for obliviousness and the need to identify and remove redundant data.
To address these challenges, we have proposed a practical Oblivious Store, PEO-Store,
that leverages various techniques such as randomized delegate selection, non-interactive
zero-knowledge-based redundancy detection, and discrete logarithm problem-based key
sharing. Our theoretical analysis and experimental results demonstrate that PEO-Store
outperforms existing state-of-the-art solutions, achieving up to 3× greater throughput
and saving up to 74% storage space on average. We believe that PEO-Store provides a
promising solution for achieving practical usage of Oblivious Stores in cloud scenarios while
maintaining security and efficiency. Future work can explore the scalability and robustness
of PEO-Store, as well as its application to other cloud storage scenarios. Overall, this
paper highlights the importance of addressing the challenges associated with applying
ORAM to cloud environments and provides a practical solution to this ongoing issue.

Acknowledgments
We would like to express our sincere gratitude to the anonymous reviewers for their valuable
comments and suggestions on our poster paper. Their constructive feedback and insights

20 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

have helped us to improve the quality and clarity of our work.

References
[AKL+22] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine

Shi. Optimal oblivious parallel RAM. In Joseph (Seffi) Naor and Niv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA,
USA, January 9 - 12, 2022, pages 2459–2521. SIAM, 2022.

[BFV19] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Privacy aspects and
subliminal channels in zcash. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1813–1830,
2019.

[BKR13a] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Dupless: Server-
aided encryption for deduplicated storage. Cryptology ePrint Archive, 2013.

[BKR13b] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked
encryption and secure deduplication. In Annual international conference
on the theory and applications of cryptographic techniques, pages 296–312.
Springer, 2013.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:{SGX}
cache attacks are practical. In 11th USENIX Workshop on Offensive Tech-
nologies (WOOT 17), 2017.

[BNP+15] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang,
and Yan Huang. Practicing oblivious access on cloud storage: the gap, the
fallacy, and the new way forward. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-16,
2015, pages 837–849. ACM, 2015.

[CBC+18] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit
Agarwal, and Lorenzo Alvisi. Obladi: Oblivious serializable transactions
in the cloud. In Andrea C. Arpaci-Dusseau and Geoff Voelker, editors,
13th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages 727–743. USENIX
Association, 2018.

[CCR19] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: efficient con-
stant bandwidth oblivious RAM from (leveled) TFHE. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 345–360.
ACM, 2019.

[CHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-
server private information retrieval with sublinear amortized time. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology -
EUROCRYPT 2022 - 41st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Trondheim, Norway, May
30 - June 3, 2022, Proceedings, Part II, volume 13276 of Lecture Notes in
Computer Science, pages 3–33. Springer, 2022.

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 21

[CS19] Anrin Chakraborti and Radu Sion. Concuroram: High-throughput stateless
parallel multi-client ORAM. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 2019.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. In Joseph M.
Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum, editors, Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010, pages 143–154. ACM, 2010.

[DFD+21] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and
Raluca Ada Popa. Snoopy: Surpassing the scalability bottleneck of oblivious
storage. In Robbert van Renesse and Nickolai Zeldovich, editors, SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, pages 655–671. ACM, 2021.

[ES18] Emir Erdem and Mehmet Tahir Sandıkkaya. Otpaas—one time password
as a service. IEEE Transactions on Information Forensics and Security,
14(3):743–756, 2018.

[EZ17] Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious query processing
using hardware enclaves. arXiv preprint arXiv:1710.00458, 2017.

[FNR+15] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil
Stefanov. Bucket oram: single online roundtrip, constant bandwidth oblivious
ram. Cryptology ePrint Archive, 2015.

[GKL+20a] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown,
Lucy Li, Rachit Agarwal, and Thomas Ristenpart. Pancake: Frequency
smoothing for encrypted data stores. In Srdjan Capkun and Franziska
Roesner, editors, 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, pages 2451–2468. USENIX Association, 2020.

[GKL+20b] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown,
Lucy Li, Rachit Agarwal, and Thomas Ristenpart. Pancake: Frequency
smoothing for encrypted data stores. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2451–2468, 2020.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by
oblivious rams. In Alfred V. Aho, editor, Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 182–194. ACM, 1987.

[GSW21] Daniel Günther, Thomas Schneider, and Felix Wiegand. Revisiting hybrid
private information retrieval. In Yongdae Kim, Jong Kim, Giovanni Vigna,
and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, pages 2408–2410. ACM, 2021.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access
pattern disclosure on searchable encryption: Ramification, attack and miti-
gation. In 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. The Internet
Society, 2012.

22 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

[IRR90] Kenneth Ireland, Michael Ira Rosen, and Michael Rosen. A classical intro-
duction to modern number theory, volume 84. Springer Science & Business
Media, 1990.

[JMTS16] Yaoqi Jia, Tarik Moataz, Shruti Tople, and Prateek Saxena. Oblivp2p: An
oblivious peer-to-peer content sharing system. In Thorsten Holz and Stefan
Savage, editors, 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016, pages 945–962. USENIX Association,
2016.

[JR15] Jonathan L. Dautrich Jr. and Chinya V. Ravishankar. Combining ORAM
with PIR to minimize bandwidth costs. In Jaehong Park and Anna Cinzia
Squicciarini, editors, Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy, CODASPY 2015, San Antonio, TX, USA,
March 2-4, 2015, pages 289–296. ACM, 2015.

[LAP15] Jian Liu, Nadarajah Asokan, and Benny Pinkas. Secure deduplication of
encrypted data without additional independent servers. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 874–885, 2015.

[LPM+13] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and
Joshua Schiffman. Shroud: ensuring private access to large-scale data in the
data center. In Keith A. Smith and Yuanyuan Zhou, editors, Proceedings of
the 11th USENIX conference on File and Storage Technologies, FAST 2013,
San Jose, CA, USA, February 12-15, 2013, pages 199–214. USENIX, 2013.

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on
security and privacy, pages 605–622. IEEE, 2015.

[MJWT13] Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian. Leveraging data deduplica-
tion to improve the performance of primary storage systems in the cloud. In
Guy M. Lohman, editor, ACM Symposium on Cloud Computing, SOCC ’13,
Santa Clara, CA, USA, October 1-3, 2013, pages 24:1–24:2. ACM, 2013.

[MPC+18a] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. Oblix: An efficient oblivious search index. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 279–296. IEEE Computer Society,
2018.

[MPC+18b] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. Oblix: An efficient oblivious search index. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 279–296. IEEE, 2018.

[OSF+16] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious {Multi-Party}
machine learning on trusted processors. In 25th USENIX Security Symposium
(USENIX Security 16), pages 619–636, 2016.

[PKK+22] Jisung Park, Jeonggyun Kim, Yeseong Kim, Sungjin Lee, and Onur Mutlu.
Deepsketch: A new machine learning-based reference search technique for
post-deduplication delta compression. In Dean Hildebrand and Donald E.
Porter, editors, 20th USENIX Conference on File and Storage Technologies,
FAST 2022, Santa Clara, CA, USA, February 22-24, 2022, pages 247–264.
USENIX Association, 2022.

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 23

[PP14] João Paulo and José Pereira. A survey and classification of storage dedupli-
cation systems. ACM Comput. Surv., 47(1):11:1–11:30, 2014.

[RFK+15] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten van Dijk, and Srinivas Devadas. Constants count: Practical
improvements to oblivious RAM. In Jaeyeon Jung and Thorsten Holz, editors,
24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015, pages 415–430. USENIX Association, 2015.

[RRM20] Maan Haj Rachid, Ryan D. Riley, and Qutaibah M. Malluhi. Enclave-based
oblivious RAM using intel’s SGX. Comput. Secur., 91:101711, 2020.

[Sch13] Bruce Schneier. The us government has betrayed the internet. we need to
take it back. The Guardian, 2013.

[SGF18] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace :
Oblivious memory primitives from intel SGX. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.

[SJG22] Sajin Sasy, Aaron Johnson, and Ian Goldberg. Fast fully oblivious compaction
and shuffling. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 2565–2579, 2022.

[SKH17] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. A survey of secure data
deduplication schemes for cloud storage systems. ACM computing surveys
(CSUR), 49(4):1–38, 2017.

[SMK+01] Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Rene L. Cruz and George Varghese, editors, Proceedings
of the ACM SIGCOMM 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, August 27-31,
2001, San Diego, CA, USA, pages 149–160. ACM, 2001.

[SS13] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious
distributed cloud data store. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, February
24-27, 2013. The Internet Society, 2013.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 299–310. ACM, 2013.

[SZA+16] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano
Tessaro. Taostore: Overcoming asynchronicity in oblivious data storage. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA,
May 22-26, 2016, pages 198–217. IEEE Computer Society, 2016.

[TJS19] Shruti Tople, Yaoqi Jia, and Prateek Saxena. PRO-ORAM: practical read-
only oblivious RAM. In 22nd International Symposium on Research in
Attacks, Intrusions and Defenses, RAID 2019, Chaoyang District, Beijing,
China, September 23-25, 2019, pages 197–211. USENIX Association, 2019.

24 PEO-Store: Practical and Economical Oblivious Store with Peer-to-Peer Delegation

[TLXX18] Wenlong Tian, Ruixuan Li, Weijun Xiao, and Zhiyong Xu. Pts-dep: A
high-performance two-party secure deduplication for cloud storage. In
2018 IEEE 20th International Conference on High Performance Comput-
ing and Communications; IEEE 16th International Conference on Smart
City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pages 700–707. IEEE, 2018.

[TLXX22] Wenlong Tian, Ruixuan Li, Zhiyong Xu, and Weijun Xiao. Loco-store:
Locality-based oblivious data storage. IEEE Trans. Dependable Secur.
Comput., 19(2):1395–1406, 2022.

[TMB+12] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuenning,
and Erez Zadok. Generating realistic datasets for deduplication analysis. In
Gernot Heiser and Wilson C. Hsieh, editors, 2012 USENIX Annual Technical
Conference, Boston, MA, USA, June 13-15, 2012.

[TMPD19] Santhosh Kumar T, Debadatta Mishra, Biswabandan Panda, and Nayan
Deshmukh. Cowlight: Hardware assisted copy-on-write fault handling for
secure deduplication. In Proceedings of the 8th International Workshop on
Hardware and Architectural Support for Security and Privacy, HASP@ISCA
2019, June 23, 2019, pages 3:1–3:8. ACM, 2019.

[VBKA22] Midhul Vuppalapati, Kushal Babel, Anurag Khandelwal, and Rachit Agarwal.
SHORTSTACK: distributed, fault-tolerant, oblivious data access. In Mar-
cos K. Aguilera and Hakim Weatherspoon, editors, 16th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2022, Carlsbad,
CA, USA, July 11-13, 2022, pages 719–734. USENIX Association, 2022.

[VBMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel {SGX} king-
dom with transient {Out-of-Order} execution. In 27th USENIX Security
Symposium (USENIX Security 18), pages 991–1008, 2018.

[VBWK+17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. Telling your secrets without page faults: Stealthy page
{Table-Based} attacks on enclaved execution. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1041–1056, 2017.

[Wik22a] Wikipedia contributors. Consistent hashing — Wikipedia, the free encyclo-
pedia, 2022. [Online; accessed 23-December-2022].

[Wik22b] Wikipedia contributors. Diginotar — Wikipedia, the free encyclopedia, 2022.
[Online; accessed 1-December-2022].

[Wik22c] Wikipedia contributors. Negligible function — Wikipedia, the free encyclo-
pedia, 2022. [Online; accessed 7-January-2023].

[WST12] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: a parallel oblivious
file system. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
the ACM Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 977–988. ACM, 2012.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In
2015 IEEE Symposium on Security and Privacy, pages 640–656. IEEE, 2015.

Wenlong Tian, Jian Guo, Zhiyong Xu, Ruixuan Li and Weijun Xiao 25

[YHR+15] Xiangyao Yu, Syed Kamran Haider, Ling Ren, Christopher Fletcher, Albert
Kwon, Marten Van Dijk, and Srinivas Devadas. Proram: dynamic prefetcher
for oblivious ram. In 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), pages 616–628. IEEE, 2015.

[YLL22] Zuoru Yang, Jingwei Li, and Patrick P. C. Lee. Secure and lightweight
deduplicated storage via shielded deduplication-before-encryption. In Jiri
Schindler and Noa Zilberman, editors, 2022 USENIX Annual Technical
Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022,
pages 37–52. USENIX Association, 2022.

[YXT+22] Xuming Ye, Xiaoye Xue, Wenlong Tian, Ruixuan Li, Weijun Xiao, Zhiyong
Xu, and Yaping Wan. Chunk content is not enough: Chunk-context aware
resemblance detection for deduplication delta compression. In Ali Bilgin,
Michael W. Marcellin, Joan Serra-Sagristà, and James A. Storer, editors,
Data Compression Conference, DCC 2022, Snowbird, UT, USA, March
22-25, 2022, page 492. IEEE, 2022.

[ZDB+17a] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious and encrypted
distributed analytics platform. In Aditya Akella and Jon Howell, editors,
14th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages 283–298.
USENIX Association, 2017.

[ZDB+17b] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. Opaque: An oblivious and encrypted distributed
analytics platform. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 283–298, 2017.

[ZLK11] Dimitrios Zissis, Dimitrios Lekkas, and Panayiotis Koutsabasis. Crypto-
graphic dysfunctionality-a survey on user perceptions of digital certificates.
In Global Security, Safety and Sustainability & e-Democracy, pages 80–87.
Springer, 2011.

	Background
	Oblivious RAM & Oblivious Store
	Secure Deduplication
	Limitations of Strawman Approaches

	Challenges & Threat Model
	PEO-Store Design
	Design Overview
	Secure Randomized Delegate Selection Scheme
	Non-Interactive Zero-Knowledge based Redundancy Detecting Scheme
	Discrete Logarithm Problem based Key-Sharing
	Secure Time-based Delivery Proof

	Security Analysis
	Evaluation
	Throughput Analysis
	Latency Overhead
	 Storage Overhead

	Related Work
	Conclusion

