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Abstract. In this work, we present a novel generic construction for a Distributed Key Generation
(DKG) scheme. Our generic construction relies on three modular cryptographic building blocks. The
first is an aggregatable Verifiable Secret Sharing (AgVSS) scheme, the second is a Non-Interactive Key
Exchange (NIKE) scheme, and the third is a secure hash function. We give formal definitions for the
AgVSS and NIKE schemes, as well as concrete constructions. The utility of this generic construction is
flexibility ; i.e., any aggregatable VSS and NIKE scheme can be employed, and the construction will
remain secure.

To prove the security of our generic construction, we introduce formalized game-based notions of
security for DKGs, building upon existing notions in the literature. However, these prior security notions
either were presented informally, omitted important requirements, or assumed certain algebraic structure
of the underlying scheme. Our security notions make no such assumption of underlying algebraic
structure, and explicitly consider details such as participant consistency, communication patterns, and
key validity. Further, our security notions imply simulatability with respect to a target key generation
scheme without rewinding. Hence, any construction that is proven secure using our security notions
additionally achieves UC security.

We then present STORM, a concrete instantiation of our generic construction that is secure in the
discrete logarithm setting in the random oracle model. STORM is more efficient than related DKG
schemes in the literature. Because of its simple design and composability, it is a practical choice for
real-world settings and standardization efforts.
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1 Introduction

Distributed Key Generation. Distributed Key Generation (DKG) schemes underlie many multi-party
cryptographic primitives in use today, such as threshold signature schemes [5,34,37] and distributed randomness
beacons [36]. A DKG allows a set of n participants to cooperate to generate a keypair, such that the public
key represents the entire set of participants, and each participant holds a share of the corresponding secret
key. Importantly, DKGs ensure that the public key is agreed upon by all (honest) parties at the end of the
protocol, but no single party knows the corresponding secret key. However, DKGs ensure that this secret key
can be recovered given a threshold t number of cooperating parties, where t ≤ n.

Despite widespread interest in DKGs, existing constructions fall short in either their complexity or
composability. Most glaringly is Pedersen-DKG [40]. While Pedersen-DKG is appealing because of its simplicity
and efficiency, its security to date has only been proven in the context of specific applications [5, 27, 30], as it
cannot be proven secure in a standalone fashion [28]. More specifically, it is possible that the use of Pedersen-
DKG may be secure in some settings, but not in others. As such, the risk exists that Pedersen-DKG might be
misused in contexts for which it cannot been proven secure. While many alternative DKG constructions have
been presented in the literature [1, 3, 9, 21, 28–30,34,37,39], these constructions either are not proven secure
with respect to a target key generation scheme, incur additional protocol complexity, or require pairings.

Conversely, growing interest in using threshold schemes in practice points towards the need for DKGs
that are friendly to standardization efforts and securely composable across a range of use cases. For example,
the FROST Schnorr threshold signature scheme [34], whose security was demonstrated at CRYPTO ’22 [5],
and for which an IETF draft exists [19], is written in a way to be agnostic to any particular key generation
scheme. Ideally, a candidate DKG to be standardized should be applicable not only to threshold signature
schemes like FROST that are compatible with single-party EdDSA verification [10, 11], but also to other
applications that require secret key material to be distributed among a set of trusted parties [22].

Proving the Security of DKGs. However, challenges arise when proving the security of a DKG in a
standalone manner; i.e., that the DKG is secure in any setting in place of its target (single-party) key
generation scheme. Although existing simulatability-based notions for DKGs exist [3, 6, 9, 28,30,37], these
notions prove to be either incomplete or insufficient. For example, these simulatability-based notions assume
characteristics of the underlying algebraic structure of the scheme, by expecting a unique correspondence
between secret and public keys. While such an assumption holds for schemes that reduce to discrete logarithm
assumptions, this assumption is not universally held. For example, in lattice-based cryptosystems, public
keys have a many-to-one relation with secret keys.

Further, many simulatability-based notions assume important details such as the consistency of honest
participants’ state or that adversarial players do not abort. However, such assumptions are not guaranteed in
a distributed, multi-party setting. Additionally, critical security issues can arise when adversaries are allowed
to abort at key times in the protocol. For example, allowing participants to abort the protocol during the last
round can be employed as a vector for a key-bias attack [28]. Under the hood, many definitions require the
protocol to be robust; i.e., that the protocol will always complete successfully in spite of misbehaving parties.
However, doing so increases the complexity for the protocol by requiring additional complaint and voting
rounds, which are difficult to implement correctly in practice.

1.1 Our Contributions

A Composable and Generic DKG. In this work, we present a novel generic DKG construction. Our
construction relies on three simple cryptographic building blocks: a secure hash function, an Aggregatable
Verifiable Secret Sharing (AgVSS) scheme, and a Non-Interactive Key Exchange (NIKE) scheme. The ability
to aggregate Feldman’s VSS [23] has been extensively employed in prior DKG constructions [28,30,34,37,40];
we simply formalize the notion of a VSS that is aggregatable, and present new security notions to reflect this
property. We additionally provide formal definitions and notions of security for a NIKE, as well as concrete
AgVSS and NIKE constructions.
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GJKR [28] PedPop [5, 34] STORM

Composable? Yes No Yes

Rounds 3 2 3

Bandwidth Efficiency 2nt+ 3n nt+ 3n nt+ 5n

Computational Efficiency 2nt+ 2n+ t nt+ 2n nt+ 2n

Security Model DLP KoE/AGM CDH

Assumed Threshold n ≥ 2t− 1 n ≥ t n ≥ 2t− 1

Table 1. Comparison between STORM and related synchronous constructions that are secure in the random oracle
model, do not require pairings, and have formal proofs of security. Composable denotes if the construction has a
standalone proof of security and can be used in any context that its target (single-party) key generation algorithm
is used. The number of estimated rounds do not consider sub-protocols to identify and exclude cheating parties.
Bandwidth efficiency denotes the number of group and field elements sent and received by each participant throughout
the protocol. Computational efficiency denotes the number of exponentiations required (i.e., scalar multiplications in
an elliptic curve group). n is the total number of participants in the protocol, t is the threshold number required to
recover the secret key, and the number of corrupted parties is assumed to be at most t− 1. k is security parameters
for the respective scheme [21]. DLP is the Discrete Logarithm Problem; KoE is the Knowledge of Exponent model;
AGM is the Algebraic Group Model; CDH is the Computational Diffie-Hellman Problem.

Why a Generic Construction? The goal for presenting a generic DKG as opposed to a monolithic construction
is to enable flexibility for implementations and future standardization efforts. For example, while we define
concrete AgVSS and NIKE constructions, future implementations may instead wish to employ a standardized
NIKE [4] instead. Further, as NIST is currently in the process of standardizing threshold primitives [11], it
may be worthwhile to leverage future VSS standards, which may possibly diverge from the concrete VSS
defined in this work. Or, implementations may wish to define a construction that employs publicly verifiable
randomness, or derives secret values deterministically, such as from a seed phrase. The utility of a generic
DKG is that so long as the chosen building blocks are secure, any instantiation of our generic DKG using
these building blocks will remain secure.

A Concrete Instantiation: STORM. We present a concrete instantiation of our generic construction
that we call STORM (Synchronous, disTributed, and Optimized geneRation of key Material). STORM
employs the concrete AgVSS and NIKE constructions defined in this paper. The security of STORM reduces
to the Computational Diffie-Hellman (CDH) problem in the random oracle model. STORM is securely
composable with existing threshold cryptosystems such as threshold Schnorr signatures [19,34] and similar
discrete-log based systems. We compare in Table 1 the practicality and security of STORM compared to
related constructions in the literature that require only standard (i.e., non-pairing based) groups.

New Notions of Security for DKGs. Our goal is to prove the security of our generic construction in such
a way that (i) demonstrates the DKG can be securely used in any setting where its target key generation
scheme is used, (ii) captures implicit notions such as handling adversarial aborts and honest participant
consistency, and (iii) assumes nothing about the algebraic structure of the scheme. Towards this end, we
introduce formal game-based security notions for DKGs that generalize and extend prior notions in the
literature. Our games make explicit important details such as communication patterns between honest and
adversarial players, where prior notions have omitted some details. For example, our games explicitly model
the adversary as rushing, in that it can always query for honest player’s contributions before producing its
own. We then prove the security of our generic DKG with respect to these notions.

For a DKG to be secure, we require that the DKG be strongly or weakly robust, zero-knowledge, and
indistinguishable. Strong versus weak robustness captures the distinction between a protocol that always

4



succeeds assuming some threshold of honest participants (strong robustness), and one which allows for non-
fatal aborts, so long as all participants end in a consistent state (weak robustness). This distinction allows
us to define a much simpler DKG construction. Similar to prior simulation-based notions, zero-knowledge
requires that the DKG is simulatable with respect to a public key. Indistinguishability requires that the
output of a DKG be indistinguishable from its target (single-party) key generation scheme.

By fulfilling the notion of indistinguishability, we can guarantee that the DKG is composable in any
setting where the single-party key generation scheme could be used. Prior simulation-based notions of
security for DKGs assumed that zero-knowledge implied indistinguishability, but such an assumption holds
only under cryptosystems where secret and public keys have a unique correspondence. This is because
simulatability-based experiments require the environment to simulate its participation with respect to a
public challenge, and hence assert conditions only on public key material.

These notions could perhaps be captured by an alternative model such as Universal Composability [12].
However, we opt for a game-based approach, so that we can explicitly and independently define each notion.
However, because our notions of security capture perfect simulatability with respect to a target key generation
algorithm without rewinding, we can guarantee that DKGs that achieve our notions of security in fact achieve
UC security [35].

What We Do Not Do. Our definitions and constructions assume a strictly synchronous setting; i.e., that
every participant in the protocol terminates a round before beginning the next. While asynchronous DKGs
exist [2, 21, 31, 33, 39], these constructions require the tradeoff of increased complexity. Instead, we target
the setting where key generation is performed infrequently or in a more controlled environment, such as
generating a long-lived keypair among a set of signing parties.

Additionally, while some prior DKGs build upon a publicly verifiable secret sharing scheme (PVSS) to
reduce network round complexity [9, 29], we explicitly do not, due to the tradeoff in increased protocol
complexity. For similar reasons, we do not consider the large-scale setting [15].

Open Questions. Our generic construction assumes a one-to-one correspondence between public and
private keys. While STORM is secure assuming the hardness of the Computational Diffie-Hellman (CDH)
problem, it is possible our generic construction can be instantiated by quantum-secure primitives that define
a homomorphism between the secret and public domains. For example, performing rounds in a sequential
manner may allow our generic construction to be instantiated by CSIDH-based primitives [17, 18]. However,
because of the difficulty of instantiating a NIKE using lattice-based primitives, it is an open question as to
how our generic construction can be extended to lattice-based primitives.

Summary of Our Contributions. In this work, we present the following contributions.

– We introduce the notion of an aggregated Verifiable Secret Sharing (AgVSS) scheme, building upon its
implicit use in prior literature. We give concrete AgVSS and Non-Interactive Key Exchange (NIKE)
constructions, and prove their security.

– We present formal game-based definitions for the security of a DKG, that makes explicit details such as
communication patterns between honest and corrupted players, expectations of participant consistency
and requirements of key validity. Further, our separation of the notion of robustness into a strong and
weak variant allows for a simpler and more efficient DKG construction.

– We give a generic DKG construction, and prove its security using our new notions. Our generic construction
requires a secure hash function, an AgVSS, and a NIKE.

– We introduce STORM, a concrete instantiation of our generic construction. The security of STORM
reduces to the Computational Diffie-Hellman (CDH) problem in the random oracle model.

1.2 Related Work

Synchronous Constructions. Pedersen-DKG [41] is a two-round protocol among n parties, such that each
party plays the role of the dealer in a Feldman Verifiable Secret Sharing (VSS) protocol [40]. Gennaro, Jarecki,
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Krawczyk, and Rabin [28] describe an attack against Pedersen-DKG, which we refer to as the Key-Influence
attack, that considers a rushing adversary, who is allowed to speak. In this attack, an adversary can influence
the distribution of key material output by the protocol by adaptively choosing their contribution. While
the authors later demonstrate unforgeability of a Schnorr threshold signature scheme with Pedersen-DKG
employed for key generation [27], this proof of security does not extend to other applications. Gurkan,
Jovanovic, Maller, Meiklejohn, Stern, and Tomescu [30] show that Pedersen-DKG can be used securely in
any setting where the cryptographic scheme is “rekeyable”. In other words, if the scheme produces some
cryptographic output o1 (such as a ciphertext or signature) that is valid with respect to a secret key sk1,
it is possible to obtain a second value o2 ← f1(o1, sk

′, α), such that o2 is valid with respect to a related
secret key sk2 ← f2(sk1, sk

′, α), where α is a side input and f1, f2 are efficient update functions. While some
constructions such as BLS signatures [8] do support rekeyability, others such as Schnorr signatures do not.

Gennaro et al. [28] present a three-round construction that is secure against the Key-Influence attack.
While their description of their construction implies that a round to broadcast failure messages is optional,
their construction is insecure without this round. For this reason, our construction includes a mandatory
“complaint or no complaint” round (see KeyGen3 in Figure 11). Our construction employs similar techniques
as Gennaro et al. [28], but offers improved performance.

Komlo and Goldberg [34] introduce a variant of Pedersen-DKG that we refer to as PedPop, where the
dealer additionally sends a Schnorr proof of possession to prevent rogue-key attacks. Bellare, Crites, Komlo,
Maller, Tessaro, and Zhu [5] present an alternative proof of security for PedPop, in the context of the FROST
threshold signature, but this proof does not extend to the use of PedPop in other settings.

Lindell [37] introduced a DKG that builds upon Schnorr proofs of knowledge and online-extractable
zero-knowledge proofs of knowledge. However, the protocol incurs computational costs due to the requirement
of online extractors [24]. Further, the security of the scheme is only generally discussed without reference to a
concrete notion of security.

Many efficient pairing-based DKGs are described in the literature [1, 29, 30]. Further, concrete DKGs
have been presented in the ECDSA and RSA settings [13,20,25,38]. This work focuses presenting a generic
construction that can be instantiated without pairings, and describes STORM, a concrete construction that
can be employed in the context of EdDSA. We leave extending our generic construction to the ECDSA or
RSA setting for future work.

Definitions of DKG Security. Gurkan et al. [30] present a definition of DKG security, in which the DKG is
secure if its use within some larger protocol does not weaken the security of the overall scheme from the
centralized (single-party) setting. We build upon this notion by defining the security of a DKG with respect
to a target key generation scheme. Bacho and Loss [3] introduce the security notions of consistency and
oracle-aided algebraic simultatability for a DKG. Their notion of consistency is encompassed by our notions
of strong and weak robustness. Because their notion of oracle-aided simultability assumes a discrete logarithm
oracle, it is not applicable to schemes without such algebraic structure. Boneh and Shoup [9] present a
generic definition for the security of a distributed key generation protocol using a simulation-based approach,
with respect to a target trusted secret sharing scheme. However, their definition implicitly assumes certain
algebraic structure of the underlying scheme; whereas our notions makes no such assumptions.

2 Preliminaries

Notation. Let λ ∈ Z represent the security parameter in unary representation. We denote the assignment of
an element y to the value x as y ← x, and sampling an element from some set S uniformly at random as
x←$ S. For a randomized algorithm A, we write x←$ A() to indicate the random variable x that is output
from the execution of A. Let G be a cyclic group of prime order q, and Zq be the field of integers modulo q.
Let g be a generator of G. Let F denote a field. We use [n] to represent the set {1, . . . , n}.

Polynomial Interpolation. A polynomial of degree t− 1 over a field F can be interpolated by t (or more)
points. Let η be the list of t distinct indices η ⊂ [n] corresponding to the x-coordinates xi ∈ F, i ∈ η. Then,
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Li(x) is the Lagrange polynomial defined by η, of the form

Li(x) =
∏

j∈η;j ̸=i

x− xj
xi − xj

where Li(x) =
∑t−1

k=0 Lk,ix
k has value 1 where x = xi and 0 otherwise. Given a set of t points (xi, f(xi)),

any point f(xℓ) on the degree t− 1 polynomial f can be determined by Lagrange interpolation:

f(xℓ) =
∑
j∈η

f(xj) · Lj(xℓ) .

The polynomial f can also be described as a Vandermonde matrix:
1 x0 x

2
0 . . . x

n−1
0

1 x1 x
2
1 . . . x

n−1
1

...
...

...
. . .

...

1 xn x
2
n . . . x

n−1
n




a0

a1
...

an

 =


f(x0)

f(x1)
...

f(xn)


Given the set of t points (xi, f(xi)), each coefficient of the polynomial f can be solved for via

a1

a2
...

at

 =


1 x1 x

2
1 . . . x

t−1
1

1 x2 x
2
2 . . . x

t−1
2

...
...

...
. . .

...

1 xt x
2
t . . . x

t−1
t



−1 
f(x1)

f(x2)
...

f(xt)

 =


L0,1 L0,2 . . . L0,t

L1,1 L1,2 . . . L1,t

...
...

. . .
...

Lt−1,1 Lt−1,2 . . . Lt−1,t




f(x1)

f(x2)
...

f(xt)


Where Lk,i is the k

th coefficient of the Lagrange polynomial Li(x).

2.1 Threshold Schemes

A (t, n) threshold scheme is a multi-party protocol for a set of n parties. The scheme splits a secret s into
n shares, which are distributed one to each of the n participants. To recover s, at least t participants are
required to cooperate by pooling their shares. A common example of a threshold scheme is Shamir secret
sharing [42],

Security Assumptions. The security of threshold schemes depend critically on the assumed number of
corrupted parties with respect to the threshold t, as follows:

– Honest Minority. The adversary is assumed to control up to t− 1 parties, and at minimum one honest
party is assumed.

– Honest Majority. Here, the adversary is still allowed to control up to t− 1 parties. However, at minimum,
at least t honest parties are assumed.

Remark 1 (Adaptive Security). A threshold scheme can be statically secure or adaptively secure. Static
security assumes the set of parties that an adversary corrupts is fixed, whereas adaptive security allows the
adversary to corrupt any t− 1 parties. In this work, we model the adversary as having the power to choose
n, t, the set of honest parties honest, and the set of corrupted parties corrupt. This modeling can easily be
translated to the adaptive setting, where the adversary is given a corruption oracle instead of receiving state
for the set of players corrupt at the beginning of the game. Consequently, our security definitions model
the “single inconsistent party” notion of adaptive security [14], where the environment can handle adaptive
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ExprecNK,A(λ)

1 : (sk1, pk1)←
$ NK.KeyGen(λ)

2 : (sk2, pk2)←
$ NK.KeyGen(λ)

3 : ψ ← NK.SharedKey(sk1, pk2)

4 : ψ′ ←$ A(pk1, pk2)
5 : return 1 if ψ′ = ψ

6 : return 0

Fig. 1. Unrecoverability experiment defining the advantage of an adversary A against a non-interactive key exchange
(NIKE) NK.

corruptions by the adversary, with the exception of a single “inconsistent” honest player. Hence, our security
notions and proofs imply adaptive security, but with exponential tightness loss. For small choices of n and
t, this tightness loss may be acceptable. Techniques to achieve tight proofs of adaptive security in stronger
security models have recently been demonstrated in concurrent work [1, 3]; we expect these techniques to
similarly apply to our constructions.

2.2 Non-Interactive Key Exchange (NIKE)

Our generic scheme additionally builds upon a Non-Interactive Key Exchange (NIKE) [7, 16,26] scheme. We
additionally define a verification algorithm that checks whether a tuple is in fact a valid keypair.

Definition 1. A Non-Interactive Key Exchange (NIKE) NK with verification is the tuple NK =
(KeyGen,Verify,SharedKey), where

– KeyGen(λ)→ (sk, pk): Generate a secret key sk and corresponding public key pk with respect to the security
parameter λ.

– Verify(sk, pk)→ {0, 1}: Verify that (sk, pk) is a valid output from NK.KeyGen.

– SharedKey(sk1, pk2)→ ψ: Output the shared key ψ generated by the combination of one party’s secret key
sk1 and the other party’s public key pk2.

– For correctness, we require that, for all (sk1, pk1) ←
$ NK.KeyGen(λ), (sk2, pk2) ←

$ NK.KeyGen(λ), the
following conditions hold:

NK.Verify(ski, pki) = 1, for i ∈ {1, 2} and

NK.SharedKey(sk1, pk2) = NK.SharedKey(sk2, pk1)

In addition to the requirement that a NIKE be session-key unrecoverable, we additionally require that a
NIKE be binding. We discuss both properties next.

Session-Key Recovery. A NIKE that is session-key unrecoverable ensures that given the public keys of two
parties pk1, pk2, it should be hard for an adversary to obtain the shared secret. While prior security notions
for non-interactive key exchange exist in the literature [16, 26], these notions allow an adversary to act as an
active participant, and assume a distinguishing game. Our constructions require only the more restricted
model where the adversary learns key material but does not contribute itself, and must compute the shared
secret directly. We present this restricted notion in Figure 1.

The advantage of an adversary A against NK in the unrecoverability experiment as defined in Figure 1 is

AdvrecNK,A(λ) = Pr[ExprecNK,A(λ) = 1] .

Definition 2. A NIKE is session-key unrecoverable if for all probabilistic polynomial time adversaries
A, the function AdvrecNK,A(λ) is negligible.
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ExpbindNK,A(λ)

1 : (sk∗1, pk
∗
1, sk

∗
2, pk

∗
2)←

$ A(λ)
2 : return 0 if NK.Verify(sk∗1, pk

∗
1) ̸= 1

3 : return 0 if NK.Verify(sk∗2, pk
∗
2) ̸= 1

4 : return 1 if NK.SharedKey(sk∗1, pk
∗
2) ̸= NK.SharedKey(sk∗2, pk

∗
1)

5 : return 0

Fig. 2. Binding experiment defining the advantage of an adversary A against a non-interactive key exchange (NIKE)
NK. Here, the adversary can perform all NK operations directly.

Binding. We introduce an additional security property that must hold when the adversary is allowed to
generate both sides of the key exchange. Informally, a NIKE is binding when NK.SharedKey(sk1, pk2) must
equal NK.SharedKey(sk2, pk1), even when the adversary is allowed to generate (sk1, pk1), (sk2, pk2) itself. The
only restriction to the adversary is that both keypairs must be valid. We formalize this requirement in
Figure 2.

The advantage of an adversary A against NK in the binding experiment as defined in Figure 2 is

AdvbindNK,A(λ) = Pr[ExpbindNK,A(λ) = 1] .

Definition 3. A NIKE is binding if for all probabilistic polynomial time adversaries A, the function
AdvbindNK,A(λ) is negligible.

A Concrete NIKE. We now describe a concrete NIKE which is a non-interactive Diffie–Hellman key
exchange, with additionally a verification check to ensure that pk = gsk.

– NK.KeyGen(λ) → (sk, pk): Sample secret key sk ←$ Zq; derive public key pk ∈ G as pk = gsk. Output
(sk, pk).

– NK.Verify(sk, pk)→ {0, 1}: Output 1 if pk = gsk; otherwise, output 0.

– NK.SharedKey(sk1, pk2)→ ψ: Derive the shared key ψ ∈ G as ψ ← pk
sk1
2 . Output ψ.

We demonstrate in Appendix A that the concrete scheme is unrecoverable assuming the Computational
Diffie-Hellman (CDH) problem is hard, and is unconditionally binding.

2.3 Network Model

Underlying any DKG is the requirement that participants send and receive messages over a network channel.
We now describe these channels and assumptions.

Synchronicity. In this work, we assume a DKG that operates purely in the synchronous model. In other
words, we assume all honest parties wait to proceed to a subsequent round until they have received the
expected inputs from all other participants from a prior round.

Broadcast channels. We assume an idealized broadcast channel. We represent messages sent and received
over this idealized channel as inbi, which is the set of broadcast messages that is received as input for
the ith protocol round. inbi consists of broadcast messages bmsg1, . . . , bmsgn, sent by participants 1, . . . , n.
Participant k is the sender of a broadcast message bmsgk, and all other participants are the receivers of this
message.

Broadcast channels have the following properties:
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1. Consistent. Each participant has the same view of the message sent over the channel.
2. Authenticated. Players know that the message was in fact sent by the claimed sender. In practice, this

requirement is often fulfilled by a PKI.
3. Reliable Delivery. Player i knows that the message it sent was in fact received by the intended participants.
4. Unordered. The channel does not guarantee ordering of messages.

Peer to peer channels. We assume an idealized peer-to-peer channel. We represent messages sent and received
over this channel as inpi and outpi, inpi is the vector of peer-to-peer messages that is received as input for
protocol round i, and outpi is the vector of peer-to-peer messages that is output at the end of network round
i. inpi and outpi consist of peer-to-peer messages which we denote as pmsgi,j , where here, participant i is the
sender and participant j is the receiver.

Peer-to-peer channels are authenticated, reliable, and unordered, per the definitions above. Additionally,
peer-to-peer channels are confidential ; i.e., only participants i and j are allowed to know the contents of
pmsgi,j .

Remark 2 (Rushing Adversaries). A rushing adversary is one that “speaks last;” i.e., it waits to receive
inputs from honest participants before publishing its own. Importantly, a rushing adversary may be able to
choose its input adaptively after observing inputs from all other participants. Our security definitions in
Section 4 consider such an adversary, by allowing the adversary to query for honest participants’ contributions
in a round before publishing its own.

3 A Formalization of Verifiable Secret Sharing

We now more formally introduce Verifiable Secret Sharing (VSS). We then extend the notion of a VSS to one
that is aggregatable.

3.1 Verifiable Secret Sharing (VSS)

Verifiable Secret Sharing (VSS) allows a dealer to share a secret s in such a way that participants can ensure
that combining their shares allows for recovery of a secret that corresponds to a public commitment to s,
without learning s in the process. Participants verify that their shares can correctly recover s using this
commitment. While prior definitions of VSS schemes [32] define algorithms to issue and verify shares, and
recover the secret, we additionally define an algorithm to derive shares in a public domain. This notion has
been employed implicitly in prior DKGs [34], and we formalize this construct here. Under the hood, our
definition of a VSS encompasses both a secret-sharing primitive and a polynomial commitment primitive. It
is possible breaking these notions into separate primitives may be useful for future work, as is the approach
taken by Abraham et al. [1].

Definition 4. A Verifiable Secret Sharing (VSS) scheme S is the tuple (Share,Recover,Verify,GetPub)
and parameterized by a one-way map SecretToPublic : Ŝ → P̂ that maps elements in the secret domain Ŝ to
the public domain P̂ , where

– Share(λ, s, n, t)→ ({(1,w1), . . . , (n,wn)},D): A probabilistic algorithm performed by a dealer that accepts
as input the security parameter λ, the secret s ∈ Ŝ from the secret domain Ŝ, the number of participants
n, and the threshold t, where n and t are positive integers, and n ≥ t. Outputs the list of shares
{(1,w1), . . . , (n,wn)} and commitment D.

– Verify(i,wi,D)→ {0, 1}: A deterministic algorithm performed by a recipient of a share that accepts an
identifier i, a share wi, and a commitment D. Outputs 1 if the share is valid with respect to D, otherwise
outputs 0.

– Recover(t,M)→ s/fail: A deterministic algorithm that accepts a recovery set M = {(j,wj)}j∈C , where C
is a set of participant identifiers such that |C| ≥ t. Employ M to obtain s, or output fail in the case of
failure.
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ExpsecS,A,SimShare(λ, s)

1 : b←$ {0, 1}
2 : (n, t, corrupt, stA)←$ A(λ)
3 : return 0 if t > n or corrupt ̸⊆ [n] or |corrupt| ≥ t
4 : if b = 0

5 : ({(j,wj)}j∈[n],D)← S.Share(λ, s, n, t)

6 : else // b = 1 case

7 : ∆←$ S.SecretToPublic(s)

8 : ({(j,wj)}j∈corrupt,D)←$ SimShare(∆,n, t, corrupt)

9 : for j ∈ corrupt do

10 : return 1 if S.Verify(j,wj ,D) ̸= 1

11 : // The simulation must produce |corrupt| valid shares

12 : return 1 if S.GetPub(0,D) ̸= ∆

13 : // The commitment must be valid with respect to ∆

14 : b′ ←$ A(stA, {(j,wj)}j∈corrupt,D)

15 : return 1 if b′ = b

16 : return 0

Fig. 3. Secrecy experiment defining the advantage of an adversary A against a Verifiable Secret Sharing scheme (VSS)
S that is zero-indexed.

– GetPub(i,D)→Wi: A deterministic algorithm that accepts an identifier i and a commitment D. Outputs
a share in the public domain Wi associated with identifier i.

For correctness, for all security parameters λ, for all s ∈ Ŝ, and n, t, C, such that n ≥ t, t ≥ 1, C ⊆ [n],
and |C| ≥ t, the following must hold:

S.Verify(i,wi,D) = 1 for all i ∈ [n], and

S.GetPub(i,D) = S.SecretToPublic(wi) for all i ∈ [n], and

S.Recover(t,M) = s, where

S.Share(λ, s, n, t)→ ({(i,wi)}i∈[n],D) and M = {(i,wi)}i∈C

Zero-Indexing. For the purposes of our definitions, we additionally require that a VSS be zero-indexed,
which we define next.

Definition 5. A zero-indexed VSS is one which satisfies the correctness condition augmented with the
following line:

S.Verify(0, s,D) = 1 and S.GetPub(0,D) = S.SecretToPublic(s) . (1)

A prototypical example of a zero-indexed VSS is Feldman’s secret sharing [23], which itself builds on
Shamir secret sharing [42].

We now employ the notion of a zero-indexed VSS to define the security notions of secrecy and uniqueness
for VSS schemes, building upon prior definitions in the literature [9, 32], but formalized in game-based
notation.

Secrecy. A VSS scheme is secret if an adversary that is allowed to corrupt up to t− 1 players has a negligible
probability of learning the secret s. This notion can be also expressed in terms of simulatability ; i.e., an
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ExpunqS,A(λ)

1 : (t∗,M∗
1,M

∗
2,D

∗)←$ A(λ)
2 : // A chooses two recovery sets and a commitment

3 : // with respect to the same threshold

4 : for (i,wi) ∈ M∗
1 do

5 : return 0 if S.Verify(i,wi,D
∗) ̸= 1

6 : for (i′,w′
i) ∈ M∗

2 do

7 : return 0 if S.Verify(i′,w′
i,D

∗) ̸= 1

8 : return 0 if S.Recover(t∗,M∗
1) = fail ∨ S.Recover(t∗,M∗

2) = fail

9 : return 1 if S.Recover(t∗,M∗
1) ̸= S.Recover(t∗,M∗

2)

10 : // A wins if it can generate two different recovery sets for the same

11 : // commitment, but which recover distinct secrets

12 : return 0

Fig. 4. Uniqueness experiment defining the advantage of an adversary A against a Verifiable Secret Sharing scheme
(VSS) S.

environment that can simulate secret sharing for an unknown challenge ensures that the adversary learns no
additional information than is known by the environment. We formalize this notion in Figure 3, with respect
to an algorithm SimShare that is defined in the context of the concrete construction. The experiment takes as
input any secret s from the secret space Ŝ. Importantly, we do not restrict secrets to be sampled uniformly at
random; even degenerate cases should hold.

The advantage of an adversary A against a VSS scheme S in the secrecy experiment as defined in Figure 3
is

AdvsecS,A,SimShare(λ) = max
s∈Ŝ

(
∣∣Pr[ExpsecS,A,SimShare(λ, s) = 1]− 1/2

∣∣) .
Definition 6. A VSS scheme S is secret if there exists an algorithm SimShare such that for all probabilistic
polynomial time adversaries A, AdvsecS,A,SimShare(λ) is a negligible function of λ.

Uniqueness. Informally, a VSS scheme S that is unique is one where the public commitment D uniquely
determines the output from S.Recover. We formalize this notion in Figure 4.

The advantage of an adversary A against S in the uniqueness experiment as defined in Figure 4 is

AdvunqS,A(λ) = Pr[ExpunqS,A(λ) = 1] .

Definition 7. A VSS scheme is unique if for all probabilistic polynomial time adversaries A, AdvunqS,A(λ) is
a negligible function of λ.

A Concrete VSS. We now recall Feldman’s Verifiable Secret Sharing [23]. Feldman’s VSS itself is an
augmentation to Shamir’s secret sharing [42]. Here, the map S.SecretToPublic is simply a 7→ ga, where g is
the generator of the group G, and a ∈ Zq.

- S.Share(λ, s, n, t)→ ({(1,w1), . . . , (n,wn)},D). Accepts as input the security parameter λ, a secret s ∈ Zq,
the number of participants n ∈ N, and the threshold t ∈ N such that 1 ≤ t ≤ n. Perform the following
steps:

1. Sample t− 1 coefficients at random: (a1, . . . , at−1)←$ Zt−1
q .

2. Using s as the constant term and a1, . . . , at−1 as the remaining coefficients, define the (t− 1)-degree

polynomial f(x) = s+
∑t−1

i=1 aix
i.
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3. Generate n shares wj ∈ Zq by deriving wj ← f(j), j ∈ [n].

4. Define A0 = gs and Ai = gai , for i ∈ [t− 1].

5. Define the VSS commitment D as the vector of commitments to the coefficients of f : D ←
(A0, . . . , At−1).

6. Output ({(i,wi)}i∈[n],D), where each i represents the identifier of the recipient of wi.

- S.Verify(i,wi,D)→ {0, 1}: Accepts as input a participant identifier i ∈ [n], the share wi that belongs to
participant i, and a VSS commitment D that is a tuple of group elements, such that |D| = t. Verifies that
(i,wi) is a valid point on f as follows:

1. Parse ⟨A0, . . . , At−1⟩ ← D.

2. Output 1 if Equation 2 holds; otherwise, output 0.

gwi
?
=

t−1∏
k=0

Aik

k (2)

- S.Recover(t,M)→ s/fail: Accepts as input the threshold t, a recovery set M = {(j,wj)}j∈C consisting of
secret shares for a coalition C ⊆ [n] where |C| ≥ t. If |C| < t, output fail. Using the inputs, perform the
following steps:

1. Derive Lagrange coefficients for each identifier {Lj(0)}j∈C .

2. Derive s =
∑

j∈C wj · Lj(0).

3. Output s.

– S.GetPub(i,D) → Wi: Accepts as input a participant identifier i and a VSS commitment. Outputs
Wi = gf(i) by computing

Wi ←
|D|−1∏
k=0

Aik

k .

Correctness and security. For Feldman’s VSS, correctness is straightforward to verify. For completeness, we
discuss its security in Appendix B.

3.2 Aggregatable Verifiable Secret Sharing (AgVSS)

We now augment the notion of a verifiable secret sharing scheme as presented in Definition 4 to define an
aggregatable verifiable secret sharing scheme (AgVSS) AV. The ability to aggregate Feldman VSS has been
demonstrated before [30], and is employed implicitly in nearly every DKG that has been defined in the
literature [27,29,37,40] but we formalize the notion of an AgVSS more generally.

An AgVSS builds upon a base VSS scheme, and is defined with respect to the same map SecretToPublic :
Ŝ → P̂ as the base VSS that maps elements in the secret space Ŝ to the public space P̂ . It is also defined
with respect to a random oracle H, and an auxiliary distribution AX that has guessing entropy linear to the
security parameter λ.

Definition 8. An Aggregatable Verifiable Secret Sharing (AgVSS) scheme AV[H] is the tuple
(Share,Recover,Verify,GetPub,AggPriv,AggPub,GetTweak), where
Share,Recover,Verify,GetPub are identical to the base VSS scheme as in Definition 4, and where

– GetTweak(O, aux) → v: A deterministic algorithm that accepts as input a public aggregation set O
consisting of ℓ VSS commitments {D1, . . . ,Dℓ}, and an auxiliary string aux drawn from AX. Output a
tweak v ∈ Ŝ.

– AggPriv(P, v)→ ŵi: A deterministic algorithm that accepts as input a private aggregation set P consisting
of ℓ shares {wji}j∈[ℓ], and a tweak v. Output the aggregated share ŵi.

– AggPub(O, v)→ C: A deterministic algorithm that accepts as input a public aggregation set O consisting
of ℓ VSS commitments {D1, . . . ,Dℓ}, and a tweak v. Output the aggregated commitment C.

Similarly to the VSS setting, we require that the AgVSS be zero-indexed.
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ExpcorrAV[H](λ, n, t, C, ℓ)

1 : return 0 if t ≥ n ∨ C ̸⊆ [n] ∨ |C| < t

2 : aux←$ AV.AX

3 : for j ∈ [ℓ] do

4 : sj ←$ Ŝ; ({(i,wji)}i∈[n],Dj)← AV[H].Share(λ, sj , n, t)

5 : v ← AV[H].GetTweak(O, aux)

6 : for i ∈ [n] do

7 : ŵi ← AV[H].AggPriv({wji}j∈[ℓ], {Dj}j∈[ℓ], v)

8 : C← AV[H].AggPub({Dj}j∈[ℓ], v)

9 : for i ∈ [n] do

10 : return 0 if AV[H].Verify(i, ŵi,C) ̸= 1

11 : ŝ← AV[H].Recover(t, {(k, ŵk)}k∈C ,C)

12 : return 0 if AV[H].Verify(0, ŝ,C) ̸= 1

13 : // This check assumes the AgVSS is zero-indexed

14 : return 1

Fig. 5. Notion of correctness for an AgVSS.

Aggregation Correctness. An AgVSS must fulfill the notion of correctness for a VSS scheme. In addition,
an AgVSS must fulfill the notion of correctness when the scheme is aggregatable; i.e., that for all n, t, ℓ, C,
where n, t, ℓ ∈ N, C ⊆ [n], and |C| ≥ t,

Pr
[
ExpcorrAV[H](λ, n, t, C, ℓ) = 1

]
= 1

where ExpcorrAV (λ, n, t, C, ℓ) is presented in Figure 5.

An AgVSS must satisfy aggregated secrecy and uniqueness, as discussed next.

Aggregated Secrecy. Unlike in the plain VSS setting, an AgVSS allows for aggregating shares and
commitments that could both be honestly as well as maliciously generated. Hence, we require that the AgVSS
fulfills the notion of aggregated secrecy, which we formalize in Figure 6.

Remark 3 (Aggregated secrecy for an AgVSS is a generalization of VSS secrecy). The secrecy game for a VSS
scheme as shown in Figure 3 only allows the adversary to receive a single set of shares and their corresponding
commitment from the environment. Hence, the aggregated secrecy game in Figure 6 is a strict generalization
of the VSS secrecy game, as the adversary in the secure aggregation game can not only query for many shares
and commitments, but submit its own. As a consequence, any AgVSS that fulfills aggregated secrecy is also
secret.

When executing the experiment shown in Figure 6, the environment simulates one secret sharing operation
with respect to a challenge ∆ when the random bit b = 1. The environment the allows the adversary to query
for corrupted parties’ shares by OGetShare, and submit its own shares for honest parties by ORecvShare. The
adversary is then provided with the auxiliary string aux. The adversary automatically wins if the aggregated
commitment AV does not fulfill the check AV[H].GetPub(0,C) ̸= ∆. Otherwise, A outputs a guess b′ to guess
if it is in the real or simulated environment.

The advantage of an adversary A against AV in the aggregated secrecy experiment as defined in Figure 6
with respect to algorithms SimShare,SimTweak is

AdvasecAV[H],A,SimShare,SimTweak(λ) = max
s∈Ŝ

∣∣Pr[ExpasecAV[H],A,SimShare,SimTweak(λ, s) = 1]− 1/2
∣∣ .
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ExpasecAV[H],A,SimShare(λ, s)

1 : b←$ {0, 1}
2 : ∆←$ AV.SecretToPublic(s)

3 : issuedchal← 0

4 : aux←$ AV.AX

5 : // Pick random auxiliary string

6 : ℓ′ ← 0

7 : Q1 ← ∅, Q2 ← ∅
8 : (n, t, corrupt, stA)←$ A(λ)
9 : if t > n ∨ corrupt ̸⊆ [n]

10 : or if |corrupt| ≥ t
11 : z ←$ {0, 1}; return z

12 : honest← [n] \ corrupt

13 : st′A ←$ AOGetShare,ORecvShare,OGetTweak

(stA)

14 : if issuedchal = 0

15 : z ←$ {0, 1}; return z

16 : if b = 1

17 : in← (({Dj}j∈[ℓ′] ∪ {D∗}), aux)
18 : C← AV[H].AggPub(in)

19 : if AV[H].GetPub(0,C) ̸= ∆

20 : return 1

21 : b′ ←$ AOGetTweak

(st′A, aux)

22 : // A performs

23 : // aggregation directly

24 : return 1 if b′ = b

25 : return 0

OGetShare() // Performs secret sharing

1 : if issuedchal = 0

2 : issuedchal← 1

3 : if b = 0

4 : ({(j,wj)}j∈[n],D)←$ AV[H].Share(λ, s, n, t)

5 : Q2 ← Q2 ∪ {({(j,wj)}j∈honest, ,D)}
6 : return ({(j,wj)}j∈corrupt,D)

7 : else // b = 1 case

8 : out←$ SimShare(λ, corrupt,∆)

9 : (α∗, {(j,wj)}j∈corrupt,D
∗)← out

10 : Q1 ← (α∗,D∗)

11 : return ({(j,wj)}j∈corrupt,D
∗)

12 : ℓ′ ← ℓ′ + 1

13 : sℓ′ ←$ Ŝ

14 : ({(j,wℓ′j)}j∈[n],Dℓ′)←$ AV[H].Share(λ, sℓ′ , n, t)

15 : Q2 ← Q2 ∪ {({(j,wℓ′j)}j∈honest, ,Dℓ′)}
16 : return ({(j,wℓ′j)}j∈corrupt,Dℓ′)

ORecvShare({(j,wℓ′j)}j∈honest,Dℓ′)

1 : // Receives shares from A
2 : ℓ′ ← ℓ′ + 1

3 : for j ∈ honest

4 : if AV[H].Verify(j,wℓ′j ,Dℓ′) ̸= 1

5 : return ⊥
6 : Q2 ← Q2 ∪ {({(j,wℓ′j)}j∈honest,Dℓ′)}

OGetTweak(Oi, auxi)

1 : if b = 1

2 : v ← SimTweak(Oi, auxi, Q1, Q2)

3 : else

4 : v ← AV.GetTweak(Oi, auxi)

5 : return v

Fig. 6. Aggregated secrecy experiment defining the advantage of an adversary A against a zero-indexed Aggregatable
Verifiable Secret Sharing scheme (AgVSS) AV.

Definition 9. An AgVSS scheme AV achieves aggregated secrecy if there exist algorithms SimShare,SimTweak
such that for all probabilistic polynomial time adversaries A, the function AdvasecAV[H],A,SimShare,SimTweak(λ) is a
negligible function of λ.

Uniqueness. The uniqueness property for an AgVSS is the same as that of the base VSS, as presented in
Figure 4. Notably, the adversary in this experiment can perform aggregation directly, and so the experiment
does not change.
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A Concrete AgVSS. We now present a concrete AgVSS scheme that builds upon Feldman’s VSS, and
assumes an honest majority of participants. The algorithms Share,Recover,Verify,GetPub are identical to
Feldman’s VSS, as presented in Section 3.1.

Let H : G∗ × Zq → Zq be a cryptographically secure hash function, whose inputs are a tuple consisting
of a vector of group elements in G, and an element in Zq. Finally, let the distribution AX be the uniform
distribution on Zq.

We now define the aggregation algorithms for this concrete AgVSS.

- AV.GetTweak(O, aux): Let O = {Dj}j∈[ℓ] be the public aggregation set of the corresponding ℓ Feldman
VSS commitments to P, such that |O| = t, and O is sorted in a canonical order. Generate v ← H(O, aux).
Output v.

- AV.AggPriv(Pi, v): Let P = {wji}j∈[ℓ] be a private aggregation set of ℓ Shamir secret shares, and v ∈ Zq

be an auxiliary string.

1. Derive the aggregate share via Equation 3.

ŵi ← v +
∑
j∈[ℓ]

wji (3)

2. Output ŵi

- AV.AggPub(O, v): Perform the following:

1. Derive the commitment to the aggregated constant coefficient by Equation 4:

Â0 = gv ·
∏
j∈[ℓ]

Dj [0] (4)

2. Derive the commitment to the k ∈ {1, . . . , t− 1} aggregated coefficients by Equation 5:

Âk =
∏
j∈[ℓ]

Dj [k] (5)

Let C = ⟨Â0, . . . , Ât−1⟩
3. Output C

We demonstrate the correctness and security properties of the concrete scheme in Appendix C.

4 Distributed Key Generation (DKG)

Informally, a Distributed Key Generation (DKG) scheme allows a set of n players to jointly generate a public
key pk and a secret key sk, such that all parties learn the public key pk but no single party learns sk. Instead,
each party idi has a share ski of the secret key, such that a threshold t number of shares are required to
recover sk, where t ≤ n. A DKG generates secret and public keys that are compatible with some target key
generation scheme which operates in the centralized (single-party) setting.

We now formalize the definition of a DKG. We begin by defining a target single-party key generation
scheme TK that the DKG implements in a distributed manner.

Definition 10. A target key generation scheme TK is the tuple TK = (KeyGen,Verify), where:

– KeyGen(λ)→ (sk, pk): A probabilistic algorithm that accepts as input a security parameter λ and outputs
a secret and public keypair (sk, pk), where sk is an element of a secret domain Ŝ and pk is an element of
the public domain P̂ .

– Verify(sk, pk)→ {0, 1}: A deterministic algorithm that accepts as input a secret and public keypair (sk, pk),
and outputs 0 if the keypair is invalid; otherwise, outputs 1.
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– For correctness, we require that for all (sk, pk)← TK.KeyGen(λ), we have

TK.Verify(sk, pk) = 1 .

Definition 11. A distributed key generation scheme, or DKG, is the tuple of the protocols D[H] =
(KeyGen,Recover) parameterized by the number of rounds numrounds. A DKG is defined with respect to a
target key generation scheme TK, and initialized with the hash function H, whose domain and codomain
depend on D, where:

– KeyGen(λ, n, t)→ ⟨(pk, qual, aux), (statusi, ski)i∈[n]⟩: An interactive protocol between n participants. Ac-
cepts as input the security parameter λ, and positive integers n ≥ t ≥ 1, where n is the number of
participants and t is the threshold.
The protocol outputs a public value (pk, qual, aux) where:
• pk is the public key representing the group; it will be ⊥ if the protocol terminated unsuccessfully.

• qual ⊆ [n] is the set of qualified players remaining at the end of the protocol; it will be ⊥ if the protocol
terminated unsuccessfully.

• aux is any auxiliary information that may be required for a particular application, such as participant
public keys,

• statusi indicates if participant i completed the protocol successfully, and can be either abort, fail, or
accept. Here, abort indicates the protocol terminated early, fail indicates a critical fail state has been
reached, and accept indicates that the protocol completed successfully.

• ski is participant i’s secret key share; it will be ⊥ if the protocol terminated unsuccessfully.

Internally to the KeyGen protocol, each participant performs the following:

• PerformRound0(λ, n, t, idi) → (statei, outp, bmsgi): The algorithm run by the participant to initiate
the protocol. Accepts the security parameter λ, the number of participants n, the threshold t, and
the participant identifier idi. Outputs the state statei for that participant, the vector outp of any
outgoing peer-to-peer messages to other parties, and a broadcast message bmsgi to all other parties.
See Section 2.3 for definitions of these network channels.

• PerformRoundk(statei, inp, inb)→ (statei, outp, bmsgi): The algorithm run for each intermediate round
k ∈ {1, . . . , numrounds − 1} in the protocol. Accepts as input the participant’s internal state statei,
the vector inp of any peer-to-peer messages sent by other participants in the previous round, and the
set inb of any broadcast messages sent by other participants in the previous round. Outputs the tuple
(statei, outp, bmsgi).

• Finalize(statei, inp, inb)→ ⟨(pk, qual, aux), (statusi, ski)i∈[n]⟩: Accepts participant state statei, peer-to-
peer messages outp, and broadcast messages inb. Outputs a public output (pk, qual, aux) and a private
output (statusi, ski).

– Recover(pk, t, {(i, ski)}i∈C)→ sk/fail: The algorithm run by the participant to finish its protocol execution.
Accepts as input the public key pk, the threshold t, and a set of secret key shares {(i, ski)}i∈C , where
|C| ≥ t. Derive sk from {ski}i∈C . If TK.Verify(sk, pk) ̸= 1, output fail. Otherwise, output sk.

– For correctness, we require that, when all participants follow the protocol:

if D[H].KeyGen(λ, n, t)→
(
(pk, qual), ⟨(statusi, ski)⟩i∈[n]

)
then D[H].Recover(pk, t, {(i, ski)}i∈C)→ sk for all C ⊆ [n], |C| ≥ t,

and TK.Verify(sk, pk)→ 1

A DKG must be correct, and fulfill the security notions of zero-knowledge and indistinguishability.
Additionally, a DKG may fulfill the notion of either strong or weak robustness. We explain these concepts
next.
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4.1 Robustness

We now review the notion of robustness, building upon the formalism presented by Gurkan et al. [30]. In
the literature, robustness today refers to the property that so long as the number of corrupted and honest
participants meet some pre-defined threshold, then the protocol will complete successfully. The definition by
Gurkan et al. deems a DKG to be robust if honest parties’ shares combine to output a secret key that is valid
with respect to a public key. However, the notion by Gurkan et al. does not consider player’s ending states,
and also assumes a one-to-one unique mapping between elements in the secret domain and elements in the
public domain.

We present several clarifications to the notion of robustness using a game-based definition in Figure 7.
First, our definition is generalizable beyond discrete-logarithm based constructions. Second, our definition
encodes two different forms of robustness. Strong robustness defines the existing notion of robustness in the
literature. We additionally introduce the notion of weak robustness, which allows the protocol to non-fatally
abort, so long as all honest participants maintain the same status. In particular, participants can exit either
with an abort status or a fail status, where fail indicates a critical failure. Prior notions in the literature
considered only strong robustness; however, introducing a weaker variant allows us to define a more efficient
construction that fulfills our other notions of secrecy and indistinguishability.

Remark 4 (Number of Honest Players). The robustness experiment in Figure 7 assumes an honest majority
of players. If an adversary were allowed to control the majority of participants, it could split the view of
honest participants, unless some additional structure is assumed, such as a public bulletin board.

Strong Robustness. We show the strong robustness attack experiment in Figure 7, where its differences
with weak robustness are outlined in a box. The advantage of an adversary A against D in the strong
robustness experiment is

Advstr-rbstD,A (λ) = Pr[Expstr-rbstD,A (λ) = 1] .

Definition 12. A DKG D is strongly robust if for all probabilistic polynomial time adversaries A, the
function Advstr-rbstD,A (λ) is negligible.

The strong robustness attack game allows A to participate in key generation and control up to t − 1
players, the set of which we denote by corrupt. We denote the set of honest players as honest. The robustness
attack game has oracles OPerformRoundr , r ∈ [numrounds− 1],OFinalize, and RO in common with other games, so
we show these oracles in Figure 8. The adversary participates in the protocol by exchanging peer-to-peer
and broadcast messages with honest players in each round r via the oracle OPerformRoundr . The experiment is
responsible for exchanging messages between parties and enforcing assumptions of the underlying network
channels. Additionally, the experiment ensures that rounds must be queried in order, and that no round is
repeated.
A wins the strong robustness game under three conditions. First, if it causes any honest player to end in

a non-accepting state. Second, if it causes any honest players’ view of pk, qual, or aux to be different from any
other player’s. Finally, A wins if it can cause the resulting keypair to be invalid with respect to the target key
generation algorithm (recall that D.Recover tests for validity of the keypair, and outputs fail if sk is invalid).

Weak Robustness. We similarly present the weak robustness attack experiment in Figure 7, where its
differences with strong robustness are outlined in a dashed box. Intuitively, weak robustness differs from
strong robustness in that it allows honest parties to end in an aborted state abort, so long as all honest
parties end in the same state. Otherwise, if all honest parties end in an accepting state, it is identical to the
notion of strong robustness.

The advantage of an adversary A against the DKG D in the weak robustness experiment is

Advwk-rbst
D,A (λ) = Pr[Expwk-rbst

D,A (λ) = 1] .
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Expstr-rbstD,A (λ) Expwk-rbst
D,A (λ)

1 : rc← 0 // Ensure rounds are queried in order

2 : inp11 ← ∅, . . . , inp1n ← ∅ // Simulate peer-to-peer channels

3 : (n, t, corrupt, stA)← A(λ); return 0 if n < t ∨ corrupt ̸⊂ [n] ∨ |corrupt| ≥ t
4 : honest← [n] \ corrupt
5 : return 0 if |honest| < t

6 : for i ∈ honest do

7 : (statei, outp0i, bmsgi)← PerformRound0[H](λ, n, t, i)

8 : inp1k[i]← outp0i[k], ∀ k ∈ [n]

9 : // Set party i peer-to-peer messages for all other parties

10 : AOPerformRoundr ,OFinalize,RO(stA, {inp1i}i∈corrupt, {bmsgi}i∈honest)

11 : return 0 if rc ̸= numrounds // Prevents trivial win by forcing coordination

12 : if honest ̸= {i : statusi = accept}i∈honest

13 : return 1

14 : for i, j ∈ honest do

15 : return 1 if statusi ̸= statusj

16 : // A wins if any honest party ends in a disjoint state

17 : if honest = {i : statusi = abort}i∈honest

18 : return 0

19 : // A loses if all honest parties end in a consistent aborted state

20 : for i, j ∈ honest do

21 : return 1 if pki ̸= pkj

22 : return 1 if quali ̸= qualj

23 : return 1 if auxi ̸= auxj

24 : pk = pki, i ∈ honest // All parties at this point have the same view of pk

25 : sk← D[H].Recover(pk, {(i, ski)}i∈honest)

26 : return 1 if sk = fail

27 : // A wins if honest parties’ shares do not recover a valid secret

28 : return 0

Fig. 7. Game defining the advantage of an adversary A to disrupt robustness for a DKG. We show the strong robustness
experiment in a box, and the weak robustness experiment in a dashed box. The oracles OPerformRoundr , r ∈ [numrounds−1],
OFinalize, and RO are defined in Figure 8.

Definition 13. A DKG D is weakly robust if for all probabilistic polynomial time adversaries A, the
function Advwk-rbst

D,A (λ) is negligible.

A wins the weak robustness game under three conditions. First, A wins if honest players do not all finish
with the same status. Otherwise, if all honest players have status accept, then A wins if the honest players’
view of pk or qual are not all the same or if the resulting keypair is invalid with respect to the target key
generation algorithm.
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OPerformRoundrr({{pmsgi,j}j∈honest, bmsgri}i∈corrupt)

1 : // Executes round r ∈ [numrounds− 1]

2 : return ⊥ if r ̸= rc+ 1

3 : // Ensure all prior rounds

4 : // have been queried,

5 : // and that this round has

6 : // not yet been queried.

7 : rc← r

8 : for i ∈ corrupt, j ∈ honest do

9 : inprj [i]← pmsgi[j]

10 : for j ∈ honest do

11 : in← (statej , inprj , {bmsgri}i∈[n])

12 : out← PerformRoundr[H](in)

13 : out← SimRoundr[H](in)

14 : (statej , outpr+1,j , bmsgr+1,j)← out

15 : for k ∈ [n] do

16 : inpr+1,k ← outpr+1,j [k]

17 : return ({inpr+1,i}i∈corrupt, {bmsgj}j∈honest)

OFinalize({{pmsgi,j}j∈honest, bmsgri}i∈corrupt)

1 : return ⊥ if rc ̸= numrounds− 1

2 : rc← rc+ 1

3 : for i ∈ corrupt, j ∈ honest do

4 : inprj [i]← pmsgi[j]

5 : for j ∈ honest do

6 : in← (statej , inprj , {bmsgri}i∈[n])

7 : out← Finalize[H](in)

8 : out← SimFinalize[H](in)

9 : (pkj , qualj , auxj), (statusj , skj)← out

RO(x) // Random oracle

1 : return H(x)

Fig. 8. Common oracles used within the games defining the security of a distributed key generation algorithm. Boxed
algorithms are used by the robustness and indistinguishability games; dashed boxed algorithms are used by the
zero-knowledge game.

4.2 Zero Knowledge

We next turn to defining zero-knowledge for a DKG. Zero knowledge requires that a probabilistic polynomial-
time adversary A allowed to control up to t− 1 participants does not gain any additional advantage in its
effort to learn sk than it would against the target key generation algorithm. This notion is formalized by the
requirement of simulatability : that the DKG can be simulated to an adversary with respect to some challenge
∆̂ ∈ P̂ , where ∆̂ is a valid public key for the target key generation algorithm. We formalize this notion in
Figure 9.

Our definition of zero-knowledge is distinct from the notion of secrecy introduced by Gennaro et al. [28]
in several ways. First, we define the notion with respect to a target key generation algorithm, whereas
the definition by Gennaro et al. is specifically within the discrete-logarithm setting. Second, Gennaro et
al. assume that indistinguishability of the resulting keypair is an implicit consequence of the ability to
simulate with respect to a public key. However, simulatability does not necessarily imply indistinguishability,
because the zero-knowledge game only guarantees the indistinguisahbility of public key material between the
real and simulated environments. If there is a one-to-one relation between public and secret keys, proving
zero-knowledge implies indistinguishability. However, for cryptosystems where a one-to-many relation exists
between public and private keys, such as in lattice-based cryptosystems, proving that a DKG is zero-knowledge
does not imply indistinguishability from its target key generation scheme. For this reason, we instead present
the notions of zero-knowledge and indistinguishability as separate notions.

We now define this notion of zero-knowledge more formally. The advantage of an adversary A against a
DKG D with respect to the simulation algorithms (SimRoundi, i ∈ {0, . . . , numrounds− 1},SimFinalize) in the
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ExpzkD,A,SimRoundi,SimFinalize(λ)

1 : b←$ {0, 1}
2 : z ←$ {0, 1} // Random coin for losing conditions

3 : rc← 0 // Ensure rounds are queried in order

4 : inp11 ← ∅, . . . , inp1n ← ∅ // Simulate peer-to-peer channels

5 : (n, t, corrupt, stA)← A(λ); honest← [n] \ corrupt
6 : if n < t ∨ corrupt ̸⊂ [n] ∨ |corrupt| ≥ t
7 : return z

8 : (·, ∆̂)←$ TK.KeyGen(λ)

9 : for i ∈ honest do

10 : if b = 0 then (statei, outpi, bmsgi)← PerformRound0[H](λ, n, t, i)

11 : else (statei, outpi, bmsgi)← SimRound0[H](λ, n, t, i, ∆̂)

12 : inp1k[i]← outp0i[k], ∀ k ∈ [n]

13 : // Set party i peer-to-peer messages for all other parties

14 : b′ ← AOPerformRoundr ,OFinalize,RO(stA, {inp1j}j∈corrupt, {bmsgi}i∈honest)

15 : if rc ̸= numrounds // Prevents trivial win by forcing coordination

16 : return z

17 : if {j : statusj = abort}j∈honest = honest

18 : return z

19 : // A cannot win if all honest parties non-fatally abort

20 : if b = 1

21 : return 1 if ∃ i ∈ honest : pki ̸= ∆̂

22 : // A wins when b = 1 if the game is not simulated with respect to ∆̂

23 : return 1 if b
?
= b′

24 : return 0

Fig. 9. Zero-knowledge experiment defining the advantage of an adversary A that controls up to t− 1 players in a
DKG. The oracles OPerformRoundr and RO are defined in Figure 8.

zero-knowledge experiment as defined in Figure 9 is

AdvzkD,A,SimRoundi,SimFinalize(λ) =
∣∣Pr[ExpzkD,A,SimRoundi,SimFinalize(λ) = 1]− 1/2

∣∣ .
Definition 14. A DKG D is zero-knowledge if there exist algorithms (SimRoundi, i ∈ {0, . . . , numrounds−
1},SimFinalize) such that for all probabilistic polynomial time adversaries A, AdvzkD,A,SimRoundi,SimFinalize(λ) is
negligible.

The zero-knowledge attack game in Figure 9 requires A to successfully guess if the environment that it is
in is real or simulated with respect to a challenge ∆̂, where ∆̂ is a public key generated by TK.KeyGen. The
game accepts as input the security parameter λ, and internally to the experiment, samples a bit b ∈ {0, 1}
at random. In the simulated setting (when b = 1), the environment simulates the honest participants with
respect to ∆̂ by employing the simulation algorithms (SimRoundi, i ∈ {0, . . . , numrounds − 1},SimFinalize).
The adversary wins by default if the environment cannot simulate the protocol in such a way that the resulting
group public key pk does not equal ∆̂. Otherwise, the adversary wins if it successfully guesses whether it is
playing against the real or simulated protocol.
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ExpindD,TK,A,E(λ)

1 : b←$ {0, 1}
2 : z ←$ {0, 1} // Random coin for losing conditions

3 : rc← 0 // Ensure rounds are queried in order

4 : inp11 ← ∅, . . . , inp1n ← ∅ // Simulate peer-to-peer channels

5 : (n, t, corrupt, stA)← A(λ)
6 : if n < t ∨ corrupt ̸⊂ [n] ∨ |corrupt| ≥ t then z ←$ {0, 1}; return z

7 : honest← [n] \ corrupt
8 : for i ∈ honest do

9 : (statei, outp0i, bmsgi)← PerformRound0[H](λ, n, t, i)

10 : inp1k[i]← outp0i[k], ∀ k ∈ [n]

11 : // Set party i peer-to-peer messages for all other parties

12 : AOPerformRoundr ,OFinalize,RO({inp1i}i∈corrupt, {bmsgi}i∈honest, stA)

13 : if rc ̸= numrounds // Prevents trivial win by forcing coordination

14 : return z

15 : if ∃i ∈ honest : statusi ̸= accept

16 : return z

17 : // Honest parties must complete successfully

18 : for i, j ∈ honest do

19 : return 1 if pki ̸= pkj

20 : return 1 if quali ̸= qualj

21 : sk0 ← D[H].Recover(pk0, t, {(i, ski)}i∈honest)

22 : // All parties at this point have the same view of pk and qual

23 : return 1 if sk0 = fail

24 : // The output DKG keypair given to the distinguisher must be valid

25 : (sk1, pk1)←
$ TK.KeyGen(λ)

26 : b′ ← E((pkb, skb), (pk1−b, sk1−b))

27 : return 1 if b′ = b

28 : return 0

Fig. 10. Game defining the advantage of an adversary A to compromise indistinguishability of a DKG. The distinguisher
E is challenged to distinguish between valid keypairs generated via the DKG and the target key generation algorithm.
The oracles OPerformRoundr and RO are defined in Figure 8.

4.3 Indistinguishability

The security of any key generation protocol requires that the secret key be hard to guess or learn from the
public transcript. In the single-party setting, the adversary does not have any influence over the sampling of
key material, and so guaranteeing this property is straightforward. However, because the adversary is an
active participant in a distributed key generation protocol, we must ensure that a subset of at most t− 1
colluding players cannot bias key material.

To establish this property, we require that a DKG must generate keys that are indistinguishable from
keys output by the target key generation algorithm. We formalize this requirement in the attack game in
Figure 10.
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The advantage of a distinguishing adversary E against a DKG D in the indistinguishability experiment in
Figure 10 with respect to the target key generation algorithm TK and participating adversary A is

AdvindD,TK,A,E(λ) =
∣∣Pr[ExpindD,TK,A,E(λ) = 1]− 1/2

∣∣ .
Definition 15. A DKG D is indistinguishable from its target key generation algorithm if for all probabilistic
polynomial time adversaries A and computationally unbounded distinguishers E, AdvindD,TK,A,E(λ) is negligible.

The attack game in Figure 10 allows for two distinct adversaries, A and E . A participates in the protocol
and controls up to t− 1 players. E is simply given two sets of keypairs after the protocol completes, and is
required to guess which keypair was generated by the distributed key generation protocol and which by the
target key generation protocol. Note that A and E are assumed to be black box and act arbitrarily, but are
not allowed to share state. Otherwise, the game could trivially be won simply by A informing E which public
key was output from the distributed key generation protocol. To similarly prevent this trivial win condition,
the keypair output from the distributed key generation execution must be valid, otherwise A could force the
protocol to output an invalid keypair, which E could trivially distinguish from the output of TK.KeyGen.

5 A Generic DKG Construction

We now introduce a weakly robust generic construction that assumes an honest majority, shown in Figure 11.
We present a concrete construction STORM of this generic construction that is secure in the discrete log
setting in Section 6.

Our generic construction employs the following building blocks:

– A secure hash function H, where H1 and H2 are domain-separated instances of H, such that:

• H1 : ({Dj}j∈[n], aux) 7→ v: Accepts as input a tuple, where the first element in the tuple is a set of n
AgVSS commitments ordered canonically ordered, and the second element is an auxiliary element aux
as output by H2 below. The output is the tweak employed by the AgVSS aggregation algorithm.

• H2 : {ψj}j∈[n] 7→ aux: Accepts as input a set of n elements, and outputs an auxiliary element aux.

– An aggregatable verifiable secret sharing scheme AV[H1] = (Share,Verify,Recover,GetPub,AggPriv,AggPub)
that is zero-indexed.

– A non-interactive key exchange (NIKE) NK = (KeyGen,Verify,SharedKey).

The secret and public domains of the AgVSS and NIKE must be the same as that of the target key
generation scheme, and the distribution over the secret domain for the NIKE must be the same as that of the
target key generation scheme. Further, we assume that the NIKE outputs secret and public keys with strictly
a one-to-one relation.

In addition to these building blocks, our construction requires that these primitives are algebraically
composable. Intuitively, the secret key output from NK.KeyGen should be a valid secret that can be shared
via AV.Share, and the AgVSS commitment should be verifiable with respect to the public NIKE key. Towards
this latter point, we require Assumption 1 to hold.

Assumption 1 For any (sk, pk) ←$ NK.KeyGen(λ), and any (n, t) ∈ N such that n ≥ t; and any C ⊆
[n], |C| ≥ t, Equation 6 holds:

NK.Verify(sk, pk) = 1, where

({(i,wi)}i∈[n]),D)←$ AV[H].Share(λ, sk, n, t) and

pk← AV[H1].GetPub(0,D) and

sk← AV[H1].Recover(t, {(i,wi)}i∈C)

(6)
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PerformRound0[H](λ, n, t, i)

1 : (αi, Ai)←$ NK.KeyGen(λ)

2 : in← (λ, αi, n, t)

3 : ({(j,wij)}j∈[n],Di)←$ AV[H1].Share(in)

4 : // The NIKE secret key αi is

5 : // secret shared via the AgVSS.

6 : (βi,Bi)←$ NK.KeyGen(λ)

7 : // Broadcast commitments

8 : bmsg0,i ← (Ai,Bi,Di)

9 : for j ∈ [n], j ̸= i do

10 : // Send shares via peer-to-peer channel

11 : pmsg0,ij ← (j,wij)

12 : statei ← (βi,wii,Di,Bi)

13 : outp← {pmsg0,ij}j∈[n],j ̸=i

14 : return (statei, outp, bmsg0,i)

PerformRound1[H](statei, inp1, inb1)

1 : parse {(i,wji)}j∈[n],j ̸=i ← inp1

2 : parse {(Aj ,Bj ,Dj)}j∈[n],j ̸=i ← inb1

3 : for j ∈ [n], j ̸= i do

4 : if AV[H1].Verify(i,wji,Dj) ̸= 1

5 : or if AV[H1].GetPub(0,Dj) ̸= Aj

6 : statei.status = abort

7 : bmsg1,i ← fail

8 : // If any verification check fails, abort

9 : return (statei,⊥, bmsg1,i)

10 : statei ← statei ∪ {(j,wji)}j∈[n]

11 : bmsg1,i ← accept

12 : return (statei,⊥, bmsg1,i)

PerformRound2[H](statei, ∅, inb2)

1 : if fail ∈ inb2

2 : statei.status = abort

3 : // If any participant fails, abort

4 : return (statei, ⊥, ⊥)
5 : bmsg2,i ← βi

6 : return (statei, ⊥, bmsg2,i)

Finalize[H](statei, ∅, inb3)

1 : if statei.status = abort

2 : return (⊥,⊥,⊥), (abort,⊥)
3 : parse {βj}j∈[n],j ̸=i ← inb3

4 : qual← ∅; corrupt← ∅
5 : for j ∈ [n], j ̸= i do

6 : if NK.Verify(βj ,Bj) = 1

7 : ψj ← NK.SharedKey(βj , Aj)

8 : // Qualified participants send

9 : // the correct opening βj

10 : qual← qual ∪ {j}
11 : else corrupt← corrupt ∪ {j}
12 : for j ∈ corrupt do

13 : // Perform secret recovery

14 : // sub-protocol for

15 : // misbehaving parties

16 : Mj = {(k,wjk)}k∈qual

17 : // All remaining players

18 : // combine their shares

19 : αj ← AV[H1].Recover(t,Mj)

20 : ψj ← NK.SharedKey(αj ,Bj)

21 : v ← AV[H1].GetTweak({Dj}j∈[n], {ψj}j∈[n])

22 : ski ← AV[H1].AggPriv(i, {wji}j∈[n], v)

23 : C← AV[H1].AggPub({Dj}j∈[n], v)

24 : pk← AV[H1].GetPub(0,C)

25 : // Derive public keys for all

26 : // remaining participants

27 : for i ∈ qual do

28 : pki = AV[H1].GetPub(i,C)

29 : aux← {pki}i∈qual

30 : return (pk, qual, aux), (accept, ski)

Fig. 11. A generic DKG key generation protocol as defined in Section 4, initialized with a NIKE NK as defined in
Section 2.2, an AgVSS AV as defined in Section 3.2, and a hash function H. Each PerformRoundr operation is defined
with respect to participant i. The peer-to-peer channel inputs for round r are inpr and outputs are outpr, and are
comprised of peer-to-peer messages pmsgj . The broadcast channel inputs are inbr and are comprised of broadcast
messages bmsgj , sent by participant j, j ∈ [n].
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Key Generation Protocol. As shown in Figure 11, the key generation protocol is completed in three
network rounds.

First, in PerformRound0, each participant i performs NK.KeyGen twice; first to generate a secret key αi

and its commitment Ai, and second to generate a random value βi and its commitment Bi. Then, each
participant i performs an AgVSS secret sharing of αi, outputting n secret shares {(j,wij)}j∈[n], and an
AgVSS commitment Di. Finally, each participant i broadcasts its NIKE and AgVSS commitments to all
other players via a broadcast message bmsg0,i. Additionally, each participant i sends one secret share to every
other player j ̸= i via a peer-to-peer message pmsg0,ij , keeping one share for itself.

In PerformRound1, each participant i receives shares {(i,wji)}j∈[n],j ̸=i from all other players via the peer-
to-peer channel input inp1 and commitments {(Aj ,Bj ,Dj)}j∈[n],j ̸=i from all other players via the broadcast
channel input inb1. Each participant then verifies the correctness of their received share with respect to its
corresponding commitment. Additionally, each participant i verifies that the secret committed to in Di is the
same secret committed to in Ai, by checking that AV.GetPub(0,Di) = Ai. If any check fails, the participant
will broadcast a fail message, and set their status to abort. Any participant that sets their status to abort
results in that participant terminating (immediately exiting) the protocol. Else, it will broadcast an accept
message.

In PerformRound2, participants receive as input status messages from all other participants via the
broadcast channel input inb2. If any participant received a fail message, that participant immediately exits
PerformRound2 after setting their status to abort1. Otherwise, each participant i broadcasts βi to all other
participants (which is the opening to the commitment Bi sent in PerformRound0).

Finally, in Finalize, each participant i receives as input the openings {βj}j∈[n],j ̸=i from all other participants
via the broadcast channel inb3. For the values they received from every other player j ̸= i, they first verify
the correctness of the opening βj with respect to Bj . Depending on the output of this check, each participant
i does the following:

– If the opening βj is valid, participant i then derives the blinding factor ψj by performing ψj ←
NK.SharedKey(βj , Aj).

– If the opening βj is invalid, the set of participants qual that followed the protocol honestly cooperate to
derive the correct ψj , excluding the cheating participant. They do so by pooling their respective shares
in order to recover αj . We discuss this secret recovery sub-protocol further below. After obtaining this
set qual of at least t shares, each remaining participant then performs NK.SharedKey(αj ,Bj), obtaining
ψj as the result. Due to the assumption that at least t honest participants exist, this step will always
complete successfully.

Next, each participant derives v ← AV[H1].GetTweak(O, {ψ1, . . . , ψn}), where O = {Dj}j∈[n] is the set of
all AgVSS commitments for each participant. Each participant i then performs AV.AggPriv and AV.AggPub,
using as input the set of all their received shares P = {wji}j∈[n], the set of AgVSS commitments O, and v.
Each participant i employs the output of AV.AggPriv and AV.AggPub to determine their final secret key share
ski and the aggregated commitment C. The group public key pk is then derived using C. Similarly, the set of
each participant’s individual public key pki is derived using C, and then output as the auxiliary data.

Participants finally complete Finalize by setting their status to accept, updating their internal state, and
exiting the protocol. The public output at the end of PerformRound3 is (pk, qual, aux). The private output to
each participant i is (status, ski).

Secret Recovery Sub-Protocol. When performing the Finalize step in Figure 11, in case any party
misbehaves and sends an incorrect opening βj , all remaining honest participants broadcast the shares sent by
the malicious party j in order to recover the secret sj . We rely on existing definitions of this sub-protocol
in prior related DKG constructions; see Gennaro et al. [28] for details of this sub-protocol, which is only
performed in the event of a misbehaving party.

1 Because the fail message is sent on a broadcast channel, if any participant receives a fail message, then all participants
receive that message
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Recovery Algorithm. While most practical DKG applications do not require the participants to actually
come together to recover the secret key, it is possible that some applications may wish to do so. We define
the recovery algorithm now.

– Recover(pk, t, {(i, ski)}i∈C) → sk/fail: Accepts the public key pk ∈ G and |C| ≥ t tuples {(i, ski)}i∈C

consisting of participant i’s identifier and their secret key. Using these inputs, perform the following steps:

1. Derive sk = AV.Recover(t, {(i, ski)}i∈C).

2. If TK.Verify(sk, pk) ̸= 1, output fail.
3. Output sk.

5.1 Security of the Generic Protocol

We next demonstrate that the generic protocol in Figure 11 is weakly robust, zero-knowledge, and indistin-
guishable.

Theorem 1. The generic construction is weakly robust in the honest majority setting against an adversary
A controlling up to t− 1 participants in the random oracle model, a zero-indexed and secure AgVSS, a binding
NIKE.

Concretely, for every adversary A that attacks the scheme, there exist adversaries (B1,B2) that run in
about the same time as A such that

Advwk-rbst
D,A (λ) ≤ AdvbindNK,B1

(λ) + AdvunqAV[H1],B2
(λ). (7)

We prove Theorem 1 in Appendix D.1.

Theorem 2. The generic construction is zero-knowledge in the honest majority setting in the random oracle
model, against a PPT adversary A controlling up to t− 1 participants, assuming the generic construction
itself is weakly robust, the AgVSS achieves aggregated secrecy, and the NIKE is unrecoverable.

Concretely, for every adversary A that attacks the construction, there exist adversaries (B1,B3,B4) that
run in about the same time as A, and algorithms SimRoundi, i ∈ {0, . . . , 2},SimFinalize, such that

AdvzkD,A,SimRoundi,SimFinalize(λ) ≤ AdvsecAV[H1],B1
(λ) + AdvrecNK,B3

(λ)

+ AdvasecAV[H1],B4,SimShare,SimTweak(λ).
(8)

where SimShare,SimTweak are as defined for aggregated secrecy of the AgVSS, as in Definition 9.

We prove Theorem 2 in Appendix D.2.

Theorem 3. The generic construction is indistinguishable in the honest majority setting in the random oracle
model, against a PPT adversary A controlling up to t− 1 participants, assuming the generic construction
itself is weakly robust, the AgVSS achieves aggregated secrecy, and the NIKE is unrecoverable.

Concretely, for every adversary A that attacks the construction, there exist adversaries (B1,B3,B4) that
run in about the same time as A, such that

AdvindD,TK,A,E(λ) ≤ AdvsecAV[H1],B1
(λ) + AdvrecNK,B3

(λ)

+ AdvasecAV[H1],B4,SimShare,SimTweak(λ).
(9)

where SimShare,SimTweak are as defined for aggregated secrecy of the AgVSS, as in Definition 9.

Because our generic construction requires a one-to-one mapping between secret and public keys, Theorem 3
follows from Theorem 2.
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6 STORM, a Concrete DKG Construction

Our generic DKG presented in Section 5 must be instantiated with concrete building blocks to be usable.
We now present one possible concrete construction, which we call STORM (Synchronous, disTributed, and
Optimized geneRation of key Material). We refer to Section 5 for the details of the DKG key generation and
recovery steps, but describe the building blocks and security assumptions for STORM here.

STORM is secure under the Computational Diffie-Hellman (CDH) problem in the random oracle model,
in the honest majority setting. STORM can be securely composed with any non-pairing based scheme that
relies on these assumptions, as the distributed form of the following target key generation scheme.

Target Key Generation. The target key generation scheme TK for STORM is defined as follows. The secret
domain Ŝ is the field Zq and the public domain P̂ is the group G generated by g.

– KeyGen(λ)→ (sk, pk): Sample sk←$ Zq. Generate pk← gsk. Output (sk, pk).

– Verify(sk, pk)→ {0, 1}: Output 1 if gsk = pk. Otherwise, output 0.

Building Blocks. STORM is instantiated with the following cryptographic building blocks:

1. the concrete NIKE scheme presented in Section 2.2,

2. the concrete AgVSS scheme presented in Section 3.2, and

3. a secure hash function H, where H1, and H2 domain-separated instances of H, defined as follows:

– H1 : (Gt)n × Zq → Zq: Accepts as input a vector, where the first element is a tuple of n AgVSS
commitments Dj ∈ Gt, j ∈ [n] which are each a tuple of group elements of size t, and the second
element is an auxiliary element aux ∈ Zq.

– H2 : (G)n → Zq: Accepts as input a vector of n blinding factors such that ψj ∈ G, j ∈ [n], and outputs
an auxiliary element aux ∈ Zq.

Correctness and Security. Because STORM is an instantiation of the generic construction presented in
Section 5, its correctness and security automatically follow from the proofs for the generic scheme.

7 Conclusion

In this work, we present a generic construction for a DKG that can be securely employed in any setting in
place of its target (single-party) key generation scheme. To prove its security, we require that the DKG be
strongly or weakly robust, zero-knowledge, and indistinguishable from its target key generation scheme. We
formalize these notions using a game-based approach, and use these notions to prove the security of our
generic construction. We then introduce STORM, a concrete instantiation of our generic construction that is
secure assuming the Computational Diffie-Hellman problem is hard, in the random oracle model.
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SimShare(∆,n, t, corrupt)

1 : A0 = ∆

2 : for j ∈ corrupt do

3 : wj ←$ Zq

4 : for k ∈ {1, . . . , t− 1} do

5 : Ak = A
L′

0,k

0 ·
∏

j∈corrupt

gL
′
j,k·wj

6 : D = ⟨A0, . . . , A(t−1)⟩
7 : return ({(j,wj)}j∈corrupt,D)

Fig. 12. Algorithm to simulate secret sharing in a Feldman VSS to an adversary controlling t− 1 participants denoted
by the set corrupt with respect to a challenge ∆. Here, L′

i,k denotes the kth coefficient of the Lagrange polynomial
Li(x)

′, which is computed with respect to the set {0} ∪ corrupt.

A Proofs for Concrete NIKE

In Section 2.2, we introduce a concrete NIKE scheme. We now demonstrate that it is unrecoverable and
binding.

Theorem 4. The concrete NIKE of Section 2.2 is unrecoverable against a probabilistic polynomial-time
adversary A, assuming the Computational Diffie–Hellman (CDH) assumption holds in G. More specifically,
for any PPT adversary A that attacks NK, there exists an adversary B with approximately the same running
time as A such that

AdvrecNK,A(λ) ≤ AdvcdhB (λ)

Because breaking session key recovery in our concrete scheme simply requires an adversary to guess a
valid Diffie–Hellman shared secret knowing only two public keys, we omit the proof for Theorem 4 as it is a
direct reduction to CDH.

Theorem 5. The concrete NIKE of Section 2.2 is binding against a computationally unbounded adversary
A.

Proof. We now show that any adversary A cannot win the binding experiment Expbind in Figure 2 for the
concrete NIKE of Section 2.2. A wins when it can produce some (sk∗1, pk

∗
1, sk

∗
2, pk

∗
2) such that:

1. NK.Verify(sk∗1, pk
∗
1) outputs 1, and

2. NK.Verify(sk∗2, pk
∗
2) outputs 1, but

3. NK.SharedKey(sk∗1, pk
∗
2) ̸= NK.SharedKey(sk∗2, pk

∗
1)

However, in the setting of the concrete scheme, this means that pk∗1 = gsk
∗
1 and pk∗2 = gsk

∗
2 , yet (pk∗2)

sk∗1 ≠
(pk∗1)

sk∗2 , which is impossible.

B Proofs for Feldman’s VSS

In Section 3.1, we define Feldman’s VSS. We now discuss its security.

B.1 Secrecy

Theorem 6. Feldman’s VSS is perfectly secret.

Proof. We prove Theorem 6 by showing that the adversary cannot distinguish Game 0 (which corresponds to
the VSS secrecy experiment from Figure 3 when b = 0 and the protocol is honestly executed) from Game 1
(Figure 3 when b = 1 and the protocol is simulated).
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Game 0. This is simply the secrecy experiment as shown in Figure 3, instantiated with Feldman’s VSS, and
with b = 0.

Game 1. This is the game shown in Figure 3, when b = 1. Recall that when b = 1, the environment simulates
secret sharing for ∆ ∈ G whose discrete logarithm is unknown, employing an algorithm SimShare.

We show SimShare for our concrete construction in Figure 12. To begin, the algorithm picks t− 1 shares
wj at random. This number of shares is sufficient for the simulation, as we assume |corrupt| = t− 1, without
loss of generality. SimShare then performs polynomial interpolation “in the exponent” using ∆ and the t− 1
shares, to derive Ak, k ∈ [t− 1]. The commitment to f is then set as D = ⟨A0, . . . , At−1⟩, where A0 = ∆.

Difference between Game 0 and Game 1. We now show that A has no additional advantage in distinguishing
the games.

The simulation is perfect because D in Game 1 simply defines a random polynomial f ′ “in the exponent”,
whose constant term f ′(0) (the secret) is the discrete logarithm of ∆. Hence, the output of SimShare is
indistinguishable to the adversary from a real output of S.Share.

Finishing the proof. Because A has identical advantage in Game 0 and Game 1 (i.e., the simulation is perfect),
the advantage that A wins the VSS secrecy game is then zero. This concludes the proof. ⊓⊔

B.2 Uniqueness

We now give a proof sketch for the uniqueness of Feldman’s VSS; we omit the full proof as it is a well-known
result in the literature [32].

Feldman’s VSS is information-theoretically unique because Shamir’s secret sharing is information-
theoretically unique. Put differently, a polynomial f is uniquely defined by t points. Hence, given some
threshold t∗ ≥ 1 chosen by the adversary playing against Expunq in Figure 4, the adversary cannot pick two
different recovery sets M∗

1,M
∗
2 and a single D∗ where each share in M∗

1 and M∗
2 is valid with respect to t∗ and

D∗, but S.Recover(t∗,M∗
1) ̸= S.Recover(t∗,M∗

2).

C Proofs for the Concrete AgVSS

In Section 3.2, we define a concrete AgVSS which builds upon Feldman’s VSS. We demonstrate the correctness,
aggregated secrecy, and uniqueness of that scheme now.

C.1 Correctness

The concrete AgVSS scheme of Section 3.2 fulfills the notion of correctness for the base VSS scheme, as the
algorithms Share,Recover,Verify,GetPub are identical to Feldman’s VSS, as is the map SecretToPublic. We
now demonstrate that the concrete AgVSS scheme fulfills the additional notion of correctness for an AgVSS
scheme.

Theorem 7. The concrete AgVSS scheme of Section 3.2 is correct in the sense of Figure 5.

Proof. We analyze each case where a return value of 0 could occur in Figure 5, and demonstrate that that
event will not occur.

Case 1. We first show that for each i ∈ [n], AV.Verify(i, ŵi,C) = 1. Recall that ŵi is simply

ŵi = v +
∑
j∈[ℓ]

wji
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by Equation 3. Because each wji was generated by the AV.Share algorithm, then wji = fj(i) for some
polynomials f1, . . . , fℓ each of degree t− 1. Let f ′ = v +

∑
i∈[ℓ] fi. Then (i, ŵi) is a valid point on f ′, because

ŵi = v +
∑
j∈[ℓ]

wji = v +
∑
j∈[ℓ]

fj(i) = f ′(i)

Because C is a commitment to the same f ′ as shown in Equations 4 and 5, then AV.Verify(i, ŵi,C) will output
1. Note also that AV.Recover will output ŝ = f ′(0) = v +

∑
j∈[ℓ] sj .

Case 2. We next prove that AV.Verify(0, ŝ,C) = 1. As above, after performing AV.AggPub, the resulting
aggregated commitment C can be represented as a commitment to the polynomial f ′. AV.Verify(0, ŝ,C) checks
that gŝ = Â0 (from Eq. 2 with i = 0). From Eq. 4, Â0 = gv ·

∏
j∈[ℓ] Dj [0] = gv ·

∏
j∈[ℓ] g

fj(0) = gv ·
∏

j∈[ℓ] g
sj .

Since ŝ = v +
∑

j∈[ℓ] sj as above, AV.Verify(0, ŝ,C) will output 1.

This concludes the proof. ⊓⊔

C.2 Aggregated Secrecy

We now show that the concrete scheme of Section 3.2 fulfills the notion of aggregated secrecy from Figure 6.
To do so, we first show how the environment simulates SimShare and H. Without loss of generality, we assume
|corrupt| = t− 1.

Lemma 1. When playing the secure aggregation game as in Figure 6 against the concrete scheme, the output
of OGetShare when b = 0 (i.e., when the environment honestly performs AV.Share) is indistinguishable to an
adversary from the output when b = 1 (i.e., when the environment performs SimShare as shown in Figure 13),
assuming the adversary controls no more than |corrupt| = t− 1 participants.

Proof. SimShare accepts a challenge ∆ ∈ G, and outputs a randomly sampled secret α, |corrupt| shares, and
an AgVSS commitment. To begin, it picks α ∈ Zq at random, and then generates a blinded commitment A0

to the (unknown) discrete logarithm of ∆ using α as the blinding factor, by Equation 10.

A0 = ∆ · gα (10)

SimShare then picks t − 1 shares for the corrupted parties at random, resulting in the list of shares

⟨wj⟩j∈corrupt ←$ Z(t−1)
q and then generates commitments to coefficients A1, . . . , A(t−1) with respect to these

shares and A0, by Equation 11.

Ak = A
L′

0,k

0 ·
∏

j∈corrupt

gL
′
j,k·wj (11)

Here, L′
i,k denotes the kth coefficient of the Lagrange polynomial L′

i(x), which is computed with respect to
the set {0} ∪ corrupt. The commitment D to the |corrupt| shares is then D = ⟨A0, . . . , A(t−1)⟩. The simulation
is perfect because D simply is committing to a random polynomial f “in the exponent”, whose constant term
is the discrete logarithm of A0, (where A0 is a blinded commitment to the discrete logarithm of ∆) and with
t− 1 random points that are the shares distributed to the adversary. Each additional coefficient ak, k ∈ [t− 1]
of f is committed to “in the exponent” via Ak, which can be determined via Equation 11. Hence, so long as
the adversary controls fewer than t− 1 players, AV.Verify(i,wi,D) for all i ∈ corrupt will output 1. ⊓⊔

Lemma 2. The adversary has negligible advantage in distinguishing the environment’s simulation of GetTweak
in the concrete scheme of Section 3.2 in the (programmable) random oracle model, assuming an honest majority.

Proof. Recall that GetTweak is instantiated by H in the concrete scheme. For any query (O′, aux′) where
auxi ̸= aux, the environment simply programs H to return a random value. However, when it receives a
query for (O, aux), it programs H to return v as in Equation 12. Recall that aux is provided to the adversary
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SimShare(λ, corrupt,∆)

1 : α←$ Zq; A0 = ∆ · gα

2 : for j ∈ corrupt do

3 : wj ←$ Zq

4 : for k ∈ {1, . . . , t− 1} do

5 : Ak = A
L′

0,k

0 ·
∏

j∈corrupt

gL
′
j,k·wj

6 : D = ⟨A0, . . . , A(t−1)⟩
7 : return (α, {(j,wj)}j∈corrupt,D)

H(Oi, auxi)

1 : // Q1, Q2, Q3 are defined

2 : // by the experiment

3 : if Q3[Oi, auxi] ̸= ⊥
4 : return Q3[Oi, auxi]

5 : D∗ ← Q1

6 : {Dj}j∈[ℓ′] ← Q2

7 : O = {Dj}j∈[ℓ′] ∪D∗

8 : if auxi ̸= aux or Oi ̸= O

9 : // Respond honestly if this is

10 : // not the challenge query

11 : Q3[Oi, auxi]←$ Zq

12 : return Q3[Oi, auxi]

13 : α← Q1

14 : for {(j,wkj)}j∈honest,k∈[ℓ′] ∈ Q2

15 : in← (t, {(j,wkj)}j∈honest)

16 : sk ← AV[H].Recover(in)

17 : v ← (−1) · (α+
∑
i∈[j]

sk)

18 : Q3[Oi, auxi]← v

19 : return v

Fig. 13. Algorithms to simulate secret sharing and tweak generation in an AgVSS to an adversary controlling t− 1
participants denoted by the set corrupt with respect to a challenge ∆ and at least t honest players denoted by the set
honest, where corrupt ∪ honest = [n] and corrupt ∩ honest = ∅. Here, L′

i,k denotes the kth coefficient of the Lagrange
polynomial L′

i(x), which is computed with respect to the set {0} ∪ corrupt.

only after it has finished querying OGetShare and ORecvShare, and so similarly O is fixed at the time that the
adversary can query with aux as input (i.e, the environment will never have to guess which query to program).

v ← −α−
∑
j∈[ℓ′]

sj (12)

There are three requirements that must be satisfied for the environment to program H correctly.

1. The programmed output v must be indistinguishable from a random value.
2. The environment must be able to derive {sj}j∈[ℓ′] without the involvement or detection of A.
3. The environment can correctly program H strictly before A can query on inputs (O, aux).

We first demonstrate that the output v from Equation 12 is indistinguishable from any other output from
H. Recall that α is chosen at random when SimShare is performed, and published only within the commitment
A0 as shown in Equation 10, serving as a blinding factor for ∆. Because ∆ is chosen at uniformly at random
from the public domain, and because α is chosen at random, the v value in Equation 12 is indistinguishable
from a random element to A. Moreover, even if the adversary submitted inputs to ORecvShare in the attempt
to cancel out the outputs from OGetShare, the adversary would be unable to do so, because the adversary sees
only the blinded commitment A0 as shown in Equation 10, and because ∆ is chosen uniformly at random.
Therefore, programming H at exactly one point with v is indistinguishable to any other point that is honestly
programmed with a random value chosen from Zq.
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Second, the environment can derive {sj}j∈[ℓ′] without the involvement or detection of A, because we
operate in the honest majority setting, and assume that the environment simulates at least t honest players.
The environment can therefore reconstruct the adversary’s sj values (from Q2), and it knows its own (from
both Q1 and Q2).

Finally, the adversary does not learn aux until after it has completed its queries to OGetShare and ORecvShare.
Before returning aux to A, the environment programs H with v on inputs (O, aux). Because AX = Zq and aux
is some uniform element from AX, then A had negligible probability in learning the output H with input
aux until the environment has programmed it. The environment is able to correctly program on these inputs
using v because it is guaranteed that A cannot further influence O. In other words, there is no danger that
the environment must make a decision on which input to program using v.

This completes the proof. ⊓⊔

Theorem 8. The concrete scheme of Section 3.2 fulfills aggregated secrecy against an adversary A as in
Figure 6, assuming an honest majority.

Proof. Recall that that in the aggregated secrecy game, A has three opportunities to distinguish the b = 0
game from the b = 1 game:

1. by how the environment responds to OGetShare,

2. by how the environment responds to OGetTweak, and

3. whether or not AV.GetPub(0,C) evaluates to the challenge ∆ when b = 1.

For (1), by Lemma 1, OGetShare is indistinguishable to the adversary when b = 0 (i.e., shares are honestly
generated) and when b = 1 (i.e., SimShare is performed), For (2), by Lemma 2, the environment can simulate
H in a way that is indistinguishable to the adversary in the b = 0 case (the output is chosen at random) and
the b = 1 case (the output is programmed). We complete the proof by showing that the adversary has zero
advantage for (3).

Recall that the concrete AgVSS is zero-indexed, per Definition 5. By Lemma 1, the environment can
embed ∆ in the first query of the adversary to OGetShare in a way that is indistinguishable to A. A must
query OGetShare at least once (i.e., if issuedchal = 0 at the end of the experiment, then the experiment returns
0). Hence, it is guaranteed that the public recovery set {Dj}j∈[ℓ] that is input to AV.AggPub will include a
contribution with respect to the discrete logarithm of ∆.

Equation 13 demonstrates that the commitment to the constant term of C = {Â0, . . . , Ât−1} evaluates to
∆; and so, because the concrete AgVSS is zero-indexed, then AV.GetPub(0,C) evaluates to ∆.

Â0 = gv ·
∏
j∈[ℓ]

Dj [0]

= gv ·∆ · gα · g
∑

i∈[ℓ′] si

= g−α−
∑

i∈[ℓ′] si ·∆ · gα · g
∑

i∈[ℓ′] si

= ∆

(13)

Hence, the adversary gains no advantage in its guess of b′, regardless of whether it is operating in the real
(b = 0) or simulated (b = 1) setting. This concludes the proof. ⊓⊔

C.3 Uniqueness

The uniqueness of the concrete AgVSS also follows from that of Feldman’s VSS, as we now show.

Theorem 9. The concrete AgVSS scheme is unique.
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Proof. We now show that the additional aggregation algorithm in our AgVSS construction gives the adversary
no additional power in the uniqueness game than in the plain Feldman’s VSS setting.

Recall the VSS uniqueness experiment in Figure 4. The adversary is required to output a valid tuple
(M∗

1,M
∗
2,D

∗), for which S.Recover(M∗
1) ̸= S.Recover(M∗

2). As above, we know that the adversary cannot win
the uniqueness game in the Feldman’s VSS setting, no matter what strategy it employs, including using the
AgVSS aggregation algorithm, since the aggregation algorithm uses no information hidden from the adversary.
Therefore the adversary cannot win the uniqueness game in the AgVSS setting either. ⊓⊔

D Proofs for Generic Construction

D.1 Robustness

Proof. We prove Theorem 1 by a sequence of games.

Game 0. This is the DKG weak robustness game as in Figure 7, applied to construction in Figure 11.
Let W0 be the event that A wins in Game 0. Then,

Advwk-rbst
A,D (λ) = Pr[W0]

Let C be the algorithm that simulates the robustness game to A. We now describe how C simulates the
game.

Setup. To begin, C initializes Q1 ← ∅ to simulate H1 and Q2 ← ∅ to simulate H2, in addition to initializing
each honest party as shown in Figure 7. C handles A’s random oracle queries by lazy sampling, as follow:

H1 : When the adversary queries H1 on inputs (Oi, auxi), the environment checks if it is in Q1, and if so,
returns the corresponding vi. Otherwise, the environment randomly samples vi from its respective domain,
sets Q1[(Oi, auxi)] = vi, and then returns vi.

H2 : When the adversary queries H2 on inputs {ψ1, . . . , ψn}, the environment checks if it is in Q2, and if so,
returns the corresponding auxi. Otherwise, the environment randomly samples auxi from its respective
domain, sets Q2[{ψ1, . . . , ψn}] = auxi, and then returns auxi.

C performs all signing oracle queries honestly.

Game 1. The only difference in Game 1 is if A outputs a tuple (Bj , pkj ,Dj , βj), j ∈ corrupt where (Bj , pkj ,Dj)
are output in PerformRound0 and βj is output in PerformRound2 such that Equation 14 holds, then C aborts.

AV[H1].GetPub(0,Dj) = pk, and

NK.Verify(βj ,Bj)→ 1, but

NK.SharedKey(βj , pkj) ̸= NK.SharedKey(αj ,Bj)

(14)

However, if the NIKE is binding and Assumption 1 holds, then Game 1 and Game 0 are indistinguishable
to A.

Reduction to NIKE Binding. Let B1 be an adversary playing against the NIKE binding game. B1 simulates
Game 1 to A in exactly the same way as Game 0. However, in Finalize, if A outputs some βj with respect to
the commitments (pkj ,Bj ,Dj) output in PerformRound0 such that Equation 14 holds, then B1 recovers αj ,
and outputs (αj , pkj , βj ,Bj) as its output to the NIKE binding game.
B1 recovers αj by performing αj ← AV[H1].Recover(t,Mj), where Mj = {(k,wjk)}k∈honest. B1 can recover

sj because the checks in PerformRound1 completed successfully (else the honest participants would have
aborted the protocol in PerformRound1 and PerformRound2), then each share in Mj is a valid share of the
secret αj committed to by Dj and pkj . Further, because B1 simulates at least t honest players, it has a
sufficient number of shares to perform this recovery step.
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Hence, when A distinguishes Game 1 from Game 0 (i.e., by causing Game 1 to abort), then B1 wins.

Difference between Game 0 and Game 1. Let W1 be the event that A wins in Game 1. Then,∣∣Pr[W1]− Pr[W0]
∣∣ ≤ AdvbindNK,B1

(λ) (15)

Game 2. The only difference in Game 2 is that in Finalize, if Equation 16 holds, then C aborts.

sk← AV.Recover(t, {(i, ski)}i∈honest), but

NK.Verify(sk, pk)→ 0
(16)

However, if the AgVSS is unique, then Game 1 and Game 2 are indistinguishable.

Reduction to AgVSS Uniqueness. Let B2 be an adversary playing against the AgVSS uniqueness game.
B2 follows the protocol honestly for all parties i ∈ honest. However, in PerformRound3, B2 recovers sk and

tests to see if Equation 16 holds. B2 can recover sk without the involvement of A because it simulates at least
t honest parties.

Recall that ski ← AV[H1].AggPriv(i, {wi,j}j∈[n], {Dj}j∈[n], aux), and C← AV[H1].AggPub({Dj}j∈[n], aux).
The only values that differ between each honest party when performing this aggregation step are the sets
{wi,j}j∈[n].

If Equation 16 holds, then this means that at least one honest party k ∈ honest received a share wj,k from
a corrupted party j ∈ corrupt such that AV[H1].Verify(k,wj,k,Dj) = 1 but where Equation 17 holds.

AV[H1].Recover(t, {(ℓ,wj,ℓ)}ℓ∈honest) ̸=
AV[H1].Recover(t, {(ℓ,wj,ℓ)}ℓ∈honest,ℓ̸=k)

(17)

Let M1 = {(ℓ,wj,ℓ)}ℓ∈honest and M2 = {(ℓ,wj,ℓ)}ℓ∈honest,ℓ̸=k. When this event has occurred, B2 submits
(t,M1,M2,Dj) as its output to the AgVSS uniqueness game. When A can distinguish Game 2 from Game 1,
then B2 wins the AgVSS uniqueness game.

Difference between Game 1 and Game 2. Let W2 be the event that A wins in Game 2. Then,∣∣Pr[W2]− Pr[W1]
∣∣ ≤ AdvunqAV[H1],B2

(λ) (18)

Finishing the Proof. Recall that in the weak robustness game, the adversary has four opportunities to win,
assuming all honest parties have not aborted the protocol. First, if any honest party has a disjoint view of pk,
second, if any honest party has a disjoint view of qual, and third, if any honest party has a disjoint view of
aux. Finally, the adversary wins if the sk that is recovered from the honest parties’ shares is invalid.

Because we assume a broadcast channel, if any honest party aborts in either PerformRound1 or PerformRound2,
then all honest parties will abort in PerformRound2. And so if any honest party proceeds to Finalize, then all
honest parties will proceed to Finalize, and all honest parties will set their status to accept. While honest
parties might abort (meaning that strong robustness cannot be fulfilled), honest parties will consistently
either end in an aborted or accepting status, meaning that the weak robustness game can be fulfilled. And so
the only opportunity for the adversary to win against the generic construction in the weak robustness game
is to disrupt consistency of pk, qual, aux, or to make D[H].Recover output fail.

Again, because we assume a broadcast channel, all parties will maintain the same view of {(βj ,Bj , pkj ,Dj)}.
And so all parties will determine the set qual in Finalize using the same information. Hence, the adversary
has no advantage in forcing a disjoint qual.

From Game 1, we know that all honest parties derive the same view of {ψj} such that NK.SharedKey(βj , pkj)→
ψj . Because the tweak value v is derived from H2 using the values {ψj}j∈[n], then all parties will obtain the
same v. Because pk is derived using v and the set {Dj}j∈[n], then the adversary has no advantage in forcing
a disjoint pk. Similarly, the adversary has no advantage in forcing a disjoint aux = {pki}i∈qual, which are also
derived from v and the set {Dj}j∈[n].

Finally, from Game 2, we know that D[H].Recover will output a sk that is valid with respect to pk.
The adversary in Game 2 then has no advantage in winning the DKG weak robustness game. Concretely,

combining the advantages in Equations 15 and 18 gives Equation 7. This completes the proof. ⊓⊔
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D.2 Zero-Knowledge

Proof. We now complete the proof of Theorem 2 via a sequence of games.

Game 0. This is the DKG zero-knowledge game when b = 0 as in Figure 9, applied to the construction in
Figure 11.

Let W0 be the event that A outputs 1 in Game 0. Then,

AdvzkD,A,SimRoundi,SimFinalize(λ) = Pr[W0]

Let C be the algorithm that simulates the DKG zero-knowledge game to A. We now describe in further
detail how C simulates the game.

Setup. To begin, C initializes Q1 ← ∅ to simulate H1 and Q2 ← ∅ to simulate H2, in addition to initializing
each honest party as shown in Figure 9. C handles A’s random oracle queries by lazy sampling, as follows:

H1 : When the adversary queries H1 on inputs (Oi, auxi), the environment checks if it is in Q1, and if so,
returns the corresponding vi. Otherwise, the environment randomly samples vi from its respective domain,
sets Q1[(Oi, auxi)] = vi, and then returns vi.

H2 : When the adversary queries H2 on inputs {ψ1, . . . , ψn}, the environment checks if it is in Q2, and if so,
returns the corresponding auxi. Otherwise, the environment randomly samples auxi from its respective
domain, sets Q2[{ψ1, . . . , ψn}] = auxi, and then returns auxi.

C performs all signing oracle queries honestly.

Game 1. The only difference between Game 0 and Game 1 is that in Game 1, C performs SimRound0, . . . ,SimRoundnumrounds−1,SimFinalize

for participant τ ←$ honest with respect to the challenge ∆̂. More specifically, when performing SimRound0, C
employs ({w∗

τ,j}j∈corrupt,D
∗
τ )← AV[H1].SimShare(λ, n, t, τ, ∆̂) for an honest participant τ sampled from the

set of honest participants at random, such that Equation 19 holds:

S.GetPub(0,D∗
τ ) = ∆̂ (19)

C performs SimRound1,SimRound2,SimFinalize as in the real protocol. However, one consequence of C
simulating secret sharing with respect to ∆̂ is that C cannot correctly derive each honest players’ ski, for all
i ∈ honest when performing SimFinalize. This however does not impact the ability of C to perfectly simulate
all honest players, because C is never required to perform operations with respect to ∆̂ directly.

If the AgVSS is secret, then Game 0 and Game 1 are indistinguishable to A.

Reduction to AgVSS (Non-Aggregated) Secrecy. We will construct a reduction B1 which is an adversary against
the AgVSS (non-aggregated) secrecy game as defined in Definition 6, such that B1 simulates either Game 0 or
Game 1 to A. When the AgVSS hidden bit b = 0, B1 ends up simulating Game 0; when the AgVSS hidden
bit b = 1, B1 ends up simulating Game 1.
B1 is constructed similar to Game 0, with the following exception. B1 simply performs PerformRound1

for each honest non-simulated party i ∈ honest, i ̸= τ . However, for the simulated honest party τ , instead of
following the protocol honestly, B1 instead employs the challenge received as input ({(j,wj)}j∈corrupt,D) from
the AgVSS secrecy experiment. In particular, it sets Dτ ← D, and ({(j,wτ,j)}j∈corrupt ← ({(j,wj)}j∈corrupt. It
then follows the remainder of the protocol honestly. While it will not be able to derive the honest player’s
secret keys in PerformRound3, this will not have an impact on its ability to correctly simulate.

The simulation of Game 0 by B1 is identical to when b = 0 in the AgVSS secrecy game. Hence, the only
distinction between Game 0 and Game 1 is when b = 1 in the AgVSS secrecy game.

When A outputs b′ as its guess, then B1 outputs b′. Hence, when A distinguishes Game 0 from Game 1,
B1 wins the AgVSS secrecy game.

Difference between Game 0 and Game 1. If the AgVSS is secret, then the difference between Game 0 and
Game 1 is negligible. Let W1 be the event that A wins in Game 1. Then∣∣Pr[W1]− Pr[W0]

∣∣ ≤ AdvsecAV,B1
(λ) (20)
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PerformRound2(statei, inp, inb)

1 : for j ∈ [n], j ̸= i do

2 : if AV[H].Verify(i,wji,Dj) ̸= 1

3 : or if AV[H].GetPub(0,Dj) ̸= pkj

4 : statei.status = abort

5 : return (statei,⊥, fail)
6 : statei ← statei ∪ {(i,wji)}j∈[n]

7 : Mk = {(j,wkj)}k∈corrupt,j∈honest

8 : αk ← AV.Recover[H](t,Mk,Dk)

9 : return ⊥ if αk = fail

10 : ψk ← NK.SharedKey[H](αk,Bk), ∀ i ∈ corrupt

11 : O = {Dj}j∈[n]

12 : aux← {ψj}j∈[n]

13 : return (statei, ⊥, accept)

Fig. 14. Game 2: Code movement, highlighting lines moved from PerformRound3 to PerformRound2

Game 2. The difference between Game 1 and Game 2 is code movement from Finalize to PerformRound1, as
shown in Figure 14. Rather than learning corrupted players’ blinding factors as input to PerformRound3, C
instead derives blinding factors for all corrupted parties in PerformRound2, (importantly, before it reveals the
honest players’ blinding factors to A) using the shares from all honest players. If C is unable to recover these
blinding factors, then it returns ⊥.

However, because C simulates at minimum t honest players (honest majority model), it can perform
AV.Recover without the involvement of corrupted parties.

Difference between Game 1 and Game 2. Let W2 be the event that A wins in Game 2. Then,∣∣Pr[W2]
∣∣ = ∣∣Pr[W1]

∣∣ (21)

Game 3. The only difference between Game 3 and Game 2 is that if the adversary queries the random oracle
H1 with respect to any of the honest parties’ blinding values {ψi}i∈honest before the adversary is provided
with the witness values {βi}i∈honest as input to PerformRound3, then the game aborts.

If the NIKE is session-key unrecoverable, the additional advantage to A is negligible.

Reduction to NIKE Unrecoverability. We will construct a reduction B3 which is an adversary against the
NIKE unrecoverability game, such that B3 simulates Game 3 to A.
B3 begins by receiving (pk1, pk2) in the NIKE unrecoverability game. It then simulates Game 3 to A in

exactly the same manner as in Game 2, with the following exception. B3 simply performs PerformRound0
honestly for each honest party i ∈ honest, i ̸= τ . However, for honest party τ , B4 instead simulates the
protocol via SimRound; it sets pkτ ← pk1 and Bτ ← pk2 B3 then simulates secret sharing via SimShare with
respect to pkτ . From Game 1, we know that doing so is indistinguishable to A. B3 then follows the remainder
of PerformRound1 as for all the other honest parties.

When simulating OPerformRoundr
2 , B3 acts honestly for all honest parties i ∈ honest, i ̸= τ . However, for

participant τ , B4 does the following. Because it does not know the corresponding βc to Bc, it instead must
guess. It looks at all of the queries made to H1 that A has made up to that point, and randomly selects one
of the inputs. Let this randomly selected input be {ψj}∗j∈[n], aux

∗).
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B3 then picks the simulated party’s element ψτ ← {ψj}∗j∈[n], and outputs ψ′ = ψτ as its guess for the

NIKE unrecoverability game. If A queries H1 with ψτ before B3 has completed OPerformRoundr
2 , then B3 wins

the NIKE game with probability 1
q .

Difference between Game 2 and Game 3. Let W3 be the event that A wins in Game 3. The additional ability
for A to win Game 3 is then bounded by its ability to win the NIKE unrecoverability game. Hence,∣∣Pr[W3]− Pr[W2]

∣∣ ≤ AdvunpredNK,B3
(λ) · 1

q
(22)

Game 4. The only difference between Game 3 and Game 4 is that in Game 4, C simulates secret sharing

for participant τ ←$ honest with respect to the challenge ∆̂. From Game 1, we know that C can do so in
such a way that is indistinguishable to A. However, in Game 4, it additionally does so in such a way that
Equation 23 holds after performing Finalize.

C[H1].GetPub(0,C) = ∆̂ (23)

More specifically, in OPerformRoundr
0 , C performs

({(j,wτj)}j∈corrupt,Dτ )←$ AV[H1].SimShare(λ, corrupt, ∆̂) .

It then follows the remainder of PerformRound0 as in Game 3.

Then, in OPerformRoundr
3 , it derives v′ as v′ ←$ AV[H1].SimTweak(O, stateτ ). It then programs H2(O, aux)

with v′. From Game 3, we know that C can derive aux in OPerformRoundr
3 , but A has only negligible probability

of doing so.
We will see that, if the AgVSS is securely aggregatable, then the additional advantage to the adversary in

Game 4 is negligible.

Reduction to AgVSS Aggregated Secrecy. We will construct a reduction B4 which is an adversary against the
AVSS aggregated secrecy game, such that B4 simulates either Game 3 or Game 4 to A. When the hidden bit
b in the AVSS aggregated secrecy game is b = 0, B4 ends up simulating Game 3; when b = 1, B4 ends up
simulating Game 4.

B4 is constructed similar to Game 3, except as follows. When A queries OPerformRoundr
1 , for each honest

player k ∈ honest, B4 queries the AVSS oracle OGetShare(), receiving ({wj}j∈honest,D
∗) in return. B4 then uses

these outputs to simulate participant τ for OPerformRoundr
1 . B4 follows the protocol honestly for all other players,

and submits all ({wkj}j∈honest,Dk), k ∈ [n] \ τ to the AVSS oracle ORecvShare.
Then, B4 receives aux′, and then queries the AgVSS aggregated secrecy oracle OGetTweak on inputs (O, aux′),

receiving v′ in return. B4 then programs its own H1(O, aux) = v′. From Game 3, A can query for its output
with negligible probability before B4 programs it. B4 then follows the remainder of Game 3 as before.

When A outputs b′, then B4 outputs b′. Hence, when A distinguishes Game 3 from Game 4, B4 wins the
AgVSS aggregated secrecy game.

Difference between Game 3 and Game 4. Let W4 be the event that A wins in Game 4. The difference between
W3 and W4 is bounded by the advantage of A in the AgVSS aggregated security game.∣∣Pr[W4]− Pr[W3]

∣∣ ≤ AdvasecAV,B4,SimShare(λ) (24)

Finishing the Proof. The resulting public key in Game 4 is identical to the challenge ∆̂, and hence is identical
to the DKG zero-knowledge game when b = 1. The adversary then has at most negligible advantage in
winning the DKG zero-knowledge game. Concretely, combining the advantage of the adversary in (20)-(24)
proves Equation 9. This concludes the proof. ⊓⊔
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