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Abstract. Homomorphic encryption for approximate arithmetic allows
one to encrypt discretized real/complex numbers and evaluate arithmetic
circuits over them. The first scheme, called CKKS, was introduced by
Cheon et al. (Asiacrypt 2017) and gained tremendous attention. The
hype for CKKS-type encryption stems from its potential to be used in
inference or multiparty computation tasks that do not require the exact
output, for example, inference and training of machine learning models.

A desirable property for homomorphic encryption is circuit privacy, which
requires that a ciphertext leaks no information on the computation per-
formed to obtain it. Despite numerous improvements, directed toward
improving efficiency, the question of circuit privacy for approximate ho-
momorphic encryption remains open.

In this paper, we give the first formal study of circuit privacy for homo-
morphic encryption over approximate arithmetic. We introduce formal
models that allow us to reason about circuit privacy. Then, we show that
approximate homomorphic encryption can be made circuit private using
tools from differential privacy with appropriately chosen parameters. In
particular, we show that by applying an exponential (in the security pa-
rameter) Gaussian noise on the evaluated ciphertext, we remove useful
information on the circuit from the ciphertext. Crucially, we show that
the noise parameter is tight, and taking a lower one leads to an efficient
adversary against such a system.

We expand our definitions and analysis to the case of multikey and
threshold homomorphic encryption for approximate arithmetic. Such
schemes allow users to evaluate a function on their combined inputs and
learn the output without leaking anything on the inputs. A special case
of multikey and threshold encryption schemes defines a so-called partial
decryption algorithm where each user publishes a “masked” version of
its secret key, allowing all users to decrypt a ciphertext. Similarly, in
this case, we show that applying a proper differentially private mecha-
nism gives us IND-CPA-style security where the adversary additionally
gets as input the partial decryptions. This is the first security analysis of
approximate homomorphic encryption schemes that consider the knowl-
edge of partial decryptions. We show lower bounds on the differential
privacy noise that needs to be applied to retain security. Analogously,
in the case of circuit privacy, the noise must be exponential in the secu-
rity parameter. We conclude by showing the impact of the noise on the
precision of CKKS-type schemes.
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1 Introduction

Fully Homomorphic Encryption (FHE) allows for computations to be performed
on encrypted data. A client encrypts a message m and sends the ciphertext to a
server, which, given a function F , returns a ciphertext that decrypts to F (m).
The concept of FHE was first introduced by Rivest and Dertouzos [RAD78] and
later realized by Gentry [Gen09b].

FHE has numerous applications in cryptography. Among others, it is used to
build private information retrieval [ABFK16, ALP+21, ACLS18, GH19, CHK22,
MW22, HHC+22], secure function delegation [QWW18] and obfuscation schemes
[BDGM20, GP21]. Note, however, that the security of fully homomorphic encryp-
tion protects only the encrypted message and, in particular, does not offer any
protection for the server’s computation. In other words, the ciphertexts that a
server returns may completely leak the function F .

Circuit privacy, sometimes called function privacy, is a critical property in
FHE, where the ciphertext produced by the server, computing a function F on
encrypted data, should not reveal any information about F , except for the fact
that the ciphertext decrypts to F (m). Circuit private FHE enables semi-honest
two-party computation with optimal communication, requiring only one round
of communication, and its communication complexity is independent of the size
of the computation. Furthermore, the ciphertexts produced by the evaluation
process can be reused, making FHE suitable for applications such as private
set intersection [HFH99, Mea86, CLR17], neural network inference [DGBL+16,
CdWM+17, LJLA17, JKLS18, JVC18, BGGJ18, ABSdV19, CDKS19, RSC+19,
BGPG20, KS22], analysis of genomic data [KSK+18, KSK+20, BGPG20], and
many more.

Multikey and Threshold Homomorphic Encryption. Extensions of homomor-
phic encryption like multikey [LTV12, CM15, BP16, MW16, CZW17, CCS19,
CDKS19, AJJM20] or threshold homomorphic [BGG+18] encryption allow com-
puting on ciphertexts that come from different parties, but require a subset of
secret keys of the different parties to decrypt the outcome of the computation. In
particular, many variants of these schemes introduce a so-called partial decryp-
tion algorithm, in which each party publishes a secret key capable to “remove
an encryption layer” from the evaluated ciphertext. Multikey or threshold ho-
momorphic encryption schemes seem to be related to circuit private encryption
schemes, as both give us the means to build two-round multiparty computa-
tion if the homomorphic encryption satisfies the right security notion. Namely,
whether IND-CPA holds against an adversary that is given partial decryptions
of non-corrupted parties. In fact, there is a folklore construction of a circuit pri-
vate scheme from a multikey homomorphic encryption scheme for at least two
keys.

Homomorphic Encryption for Approximate Arithmetic. While we have seen sig-
nificant advancements in the practical efficiency of fully homomorphic encryption
(FHE) schemes and their circuit private versions, realizing practical instances
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of neural network inference, data analysis problems, or collaborative learning is
still relatively slow. In their seminal paper [CKKS17] Cheon et al. noticed that
many of these problems do not require the computation on the encrypted data
to be exact. In particular, in many applications, it is sufficient for the homomor-
phic computation to return an approximation of F (m). As a result, they design
a homomorphic encryption scheme with a plaintext space of approximations of
real or complex numbers.

Due to its native support of real or complex numbers, CKKS-style schemes
are believed to be the most competitive solutions for private machine learning
inference problems, data analytics, and even training of machine learning models.
The focus of researchers is to make CKKS more efficient and increase its plaintext
precision. For example, [CDKS19] introduces an efficient multikey version of
[CKKS17]. However, it is not clear whether the application is secure and with
respect to which security notion. In particular, [CDKS19] states the standard
IND-CPA definition, but in applications of multikey homomorphic encryption,
we need to make sure that IND-CPA holds even when given partial decryptions.

On the other hand, we may argue that, running an MPC protocol computing
the decryption function by inputting the secret keys of all users, can solve the
problem. After all, the solution solves the decryption problem in the case of
“exact” homomorphic encryption, since the MPC protocol reveals nothing aside
from the result of the homomorphic computation. But, unfortunately, in the
approximate setting, the decryption gives only an approximation of the exact
result, where the approximation error may carry information on the plaintexts
of other parties. This means that we need to be careful when trying to apply
techniques from the “exact” setting in the approximate setting.

1.1 Our Contributions

In this work, we are the first to formally address the issue of circuit privacy and ci-
phertext sanitization for homomorphic encryption over approximate arithmetic.
Our contributions are as follows.

Formal Definitions. We introduce formal definitions that allow us to reason
about circuit privacy for approximate homomorphic encryption. In particular,
we expand on some formalism introduced by Li et al. [LMSS22] with regard
to the approximate correctness of the computation on ciphertexts. Then, we
introduce a indistinguishability-based definition. We note that this is the first
indistinguishability-based definition for circuit/function privacy; previously, all
definitions were simulation-based, and this also applies in the case of “exact”
homomorphic encryption. In particular, the simulation-based definitions imply
our, but our is more convenient when dealing with approximate homomorphic
computation and showing lower bounds.

Circuit Privacy and Lower Bounds. We give an analysis based on Kullback-
Leibler divergence, showing that applying a differentially private mechanism
with appropriate parameters gives us circuit privacy. In particular, we can use
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the Gaussian mechanism to “flood” the approximation errors in a ciphertext.
Noise flooding is a known technique, and in particular, [LMSS22] analyzed it in
the context of IND-CPAD-security [LM21]. Our analysis is inspired by [LMSS22],
but we stress that our setting is different in many ways and comes with its
own technical challenges which we discuss in the main body of the paper when
having the right context. Importantly, we show that the applied noise must be
exponential in the security parameter. In particular, we show that, if we apply
only a polynomial noise, then there exists an efficient adversary that breaks
circuit privacy with non-negligible probability.

Multikey and Threshold Approximate Homomorphic Encryption. We give the
first formal study of multikey and threshold homomorphic encryption for ap-
proximate arithmetic. There are constructions of such schemes based on CKKS
[CDKS19, KKL+22]. However, none of them addresses the relevant security prop-
erties. We introduce definitions for indistinguishability security, where an adver-
sary obtains partial decryptions. First, we show that our definitions are meaning-
ful, and multikey and threshold homomorphic encryption satisfying our security
notion imply homomorphic encryption satisfying our notion of circuit privacy.
Then, we give a similar Kullback-Leibler-divergence-based proof that applying
the Gaussian differential-privacy mechanism in partial decryptions with expo-
nential Gaussian noise is sufficient to satisfy our security notion. On the down-
side, we show that the applied noise parameters are tight, and using smaller
parameters leads to the break of the relevant security property. We note that
we can easily adapt our lower bounds to the “exact” setting. Our result in this
manner is especially relevant due to the following.

– There are several recent proposals [DWF22, CSS+22, BS23] to use a noise,
bounded by a polynomial in the security parameter, to implement partial
decryption. The idea is to make an analysis based on Rényi divergence.
Indeed, in some situations, analysis using the Rényi divergence may result
in better parameters [BLR+18]. Our lower bounds show that there seem to
be issues with the security analysis in [DWF22, CSS+22]. As [BS23] give the
security proof with respect to a new model, we suspect that their security
definition may not be suitable for many applications of threshold encryption.

– There is a folklore belief that circuit privacy can be accomplished via multi-
key (F)HE. The idea is that the server encrypts the circuit with its key, and
a client encrypts the query with its key. Then the server computes a uni-
versal circuit over both ciphertexts and returns a partial decryption of the
evaluated ciphertext back to the client. If the multikey/threshold encryption
with partial decryptions gives us a secure MPC protocol, then this approach
seems to be correct. Our analysis and lower bounds for the approximate
arithmetic setting show that we can indeed use the folklore solution. How-
ever, encrypting the circuit does not seem helpful in reducing the flooding
noise significantly in comparison to just sanitizing single-key homomorphic
encryption.

– Our results lead to tight estimates of the precision when applying the differ-
ential privacy mechanism to CKKS and its multikey/threshold versions.
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1.2 Related Work on Circuit Privacy and Multikey Homomorphic
Encryption

Circuit privacy, or sometimes called function or server privacy, was studied
before the first secure fully homomorphic encryption schemes were proposed
[IP07, Gen09a]. There are two ways to build a circuit private homomorphic
encryption scheme. The first is to use a multiparty computation protocol to
compute the decryption function on the ciphertext [IP07, GHV10, CO17]. An-
other way is to sanitize a ciphertext from any information on the circuit. In
other words, we apply a random process to the ciphertext in order to make
its distribution independent of the circuit. Current approaches to sanitize a ci-
phertext include noise flooding [Gen09a], repeated bootstrapping [DS16], and
re-randomizing computation [BDPMW16, Klu22]. Note that all of these mech-
anisms apply to “exact” homomorphic encryption. In particular, there is no
formal treatment on circuit privacy for approximate homomorphic encryption
[CKKS17].

Multikey fully homomorphic encryption was first introduced in [LTV12], and
the related concept of threshold homomorphic encryption was introduced in
[BGG+18]. For the case of approximate arithmetic, [CDKS19] gave an efficient
construction for the multikey setting based on [CKKS17]. They propose to use
noise flooding for partially decrypting ciphertexts. However, there is no security
proof or even formal definition of what it means for such encryption scheme
to be secure aside of IND-CPA security that does not consider adversaries with
knowledge of partial decryptions. Mukherjee and Wichs [MW16] define a simula-
tor for partial decryptions in the setting of “exact” GSW [GSW13] encryption to
capture the security properties needed to build multiparty computation proto-
cols. Note that such a definition often requires that the homomorphic encryption
scheme evaluates the exact circuit, as opposed to approximate. Unfortunately, it
is not clear whether we can use such definitions for approximate homomorphic
encryption.

2 Preliminaries

We recall some notions and known results.

2.1 Notation

We denote an n dimensional column vector as [f(., i)]ni=1, where f(., i) defines
the i-th coordinate. For brevity, we will also denote as [n] the vector [i]ni=1.For
a random variable x ∈ Z we denote as Var(x) the variance of x, as stddev(x)
its standard deviation and as E(x) its expectation. By Ham(⃗a) we denote the
hamming weight of the vector a⃗, i.e., the number of of non-zero coordinates of
a⃗.

We say that an algorithm is PPT if it is a probabilistic polynomial-time
algorithm. We denote any polynomial as poly(.). We denote as negl(λ) a neg-
ligible function in λ ∈ N. That is, for any positive polynomial poly(.) there
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exists c ∈ N such that for all λ ≥ c we have negl(λ) ≤ 1
poly(λ) . Given two dis-

tributions X, Y over a finite domain D, their statistical distance is defined as
∆(X,Y ) = 1

2

∑
v∈D |X(v)−Y (v)|. We say that two distributions are statistically

close if their statistical distance is negligible.
Usually, we assume that a probabilistic algorithm Alg(x) chooses its ran-

dom coins internally. However, sometimes we write Alg(x; r) to denote that the

random coins r
$← U are used as a seed for Alg, and Alg(x; r) is deterministic.

2.2 Homomorphic Encryption

We review the definition of Homomorphic Encryption in the public key setting
with a particular focus on classical and (static) approximate correctness.

Definition 1 (Homomorphic Encryption). We define a homomorphic en-
cryption scheme HE for a class of circuits L as a tuple of four algorithms HE =
(KeyGen, Enc, Eval, Dec) with the following syntax.

KeyGen(λ)→ (pk, sk): Given a security parameter λ, returns a public key pk and
a secret key sk.

Enc(pk,m)→ ct: Given a public key pk and a message m, returns a ciphertext
ct.

Eval(pk, C, ct1, . . . , ctk)→ c: Given a public key pk, a circuit C ∈ L and cipher-
texts ct1, . . . , ctk, returns a ciphertext ct.

Dec(sk, ct)→ m: Given a secret key sk and a ciphertext ct, returns a message
m.

We denote as M the message space, C the ciphertext space and L the class of
circuits.

In this paper, we consider different notions of correctness. In particular, we
consider the classical correctness definition and approximate correctness that
was recently introduced in [LMSS22] to reason about approximate homomorphic
encryption schemes.

Definition 2 (Correctness). We say that an homomorphic encryption scheme
HE = (KeyGen, Enc, Eval, Dec) is correct if for all C ∈ L, all m1, . . . ,mk ∈M
and for all (pk, sk)← KeyGen(λ), we have that

Pr[Dec(sk, Eval(pk, C, ct1, . . . , ctk)) ̸= C(m1, . . . ,mk)] ≤ negl(λ),

where mi = Dec(sk, cti) for i ∈ [k].

Below we recall the definition of approximate correctness from [LMSS22].
First, however, we need to formally define the notion of a ciphertext error.

Definition 3 (Ciphertext Error). Let HE = (KeyGen, Enc, Eval, Dec) be an
homomorphic encryption scheme with message space M. Furthermore, let M
be a normed space with norm || · || :M 7→ R≥0. For all public/secret key pairs
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(pk, sk)← KeyGen(λ), any ciphertext ct ∈ C and message m ∈M the ciphertext
error is defined as

Error(sk, ct,m) = ||Dec(sk, ct)−m||.

We can now introduce the approximate correctness notion for approximate
HE schemes.

Definition 4 (Approximate Correctness [LMSS22]). Let HE = (KeyGen,
Enc, Eval, Dec) be a homomorphic encryption scheme with message spaceM⊆
M̃ that is a normed space with norm || · || : M̃ 7→ R≥0. Let L be the class of
circuits, Lk ⊆ L be the subset of circuits with k input wires, and let Estimate :⊔

n∈N Lk × Rk
≥0 7→ R≥0 be an efficiently computable function. We call HE an

approximate homomorphic encryption scheme if for all k ∈ N, for all C ∈
Lk, for all (pk, sk) ← KeyGen(λ), if ct1, . . . , ctk and m1, . . . ,mk are such that
Error(sk, cti,mi) ≤ ti, then

Error(sk, Eval(pk, C, ct1, . . . , ctk), C(m1, . . . ,mk)) ≤ Estimate(C, t1, . . . , tk).

To compute Estimate, we only need the circuit C and upper bounds ti on
the ciphertext errors. This means that the function is publicly and efficiently
computable without needing a secret key.

To keep track of the errors when computing on encrypted data, we associate
a tag with every ciphertexts. In particular, we define a tagged ciphertext ct =
(. . . , t) where t ∈ R≥0 is an extension of an ordinary ciphertext that also stores
t, a provable upper bound estimate of the ciphertext error. The noise bound is
set to tfresh by Enc when a ciphertext ct is created. After that, the value of ct.t is
updated using Estimate every time that a circuit is homomorphically evaluated
on ct.

We also recall the definition of IND-CPA security for HE schemes.

Definition 5 (IND-CPA-security). Let HE = (KeyGen, Enc, Eval, Dec) be a
homomorphic encryption scheme. We define the IND-CPA game as the following
indistinguishability game, where b ∈ {0, 1} and A is an adversary.

ExpIND-CPA
b [A](λ) :

(pk, sk)← KeyGen(λ)

b′ ← AEb(pk,·,·)(pk)

return b′

where the adversary has access to an encryption oracle Eb(·, ·) that takes as
input m0,m1 ∈ M and returns Enc(pk,mb). The scheme HE is said to be λ-bit

IND-CPA-secure if, for any adversary A, we have that λ ≤ log2
T (A)

advA
, where advA

is defined as in Definition 8.
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2.3 The CKKS Approximate HE Scheme

We recall the definition of the CKKS approximate HE scheme following the no-
tation used in [LMSS22]. A more detailed description of CKKS can be found in
[CKKS17].

Given N , a positive integer, let ΦN (X) =
∏

j∈Z∗
N
(X − ωj) be the N -th cy-

clotomic polynomial, where ω ∈ C is one of the principal N -th root of unity
and Z∗

N is the group of invertible integers modulo N and has order φ(N).
We denote by RQ the ring ZQ[X]/(ΦN (X)), where ZQ is the ring of inte-
gers modulo Q. We will omit Q when it is clear form the context. The CKKS
scheme is able to encrypt complex ciphertext by using the canonical embedding
τ : Q[X]/(ΦN (X)) → Cφ(N); this embedding is defined by sending the polyno-
mial a(X) in the tuple of its evaluations in the principal N -th complex roots of
unity, so in the tuple (a(ωj))j∈Z∗

N
. Moreover, the n = φ(N) complex values in

each image come in conjugate pairs (a(ωj), a(ωN−j)), so it is possible to obtain
a projection π to Cn/2 by considering only one of the two elements for every
complex pair. Using this function, vectors z ∈ Cn/2 are considered as messages
in CKKS. Complex messages are transformed to polynomials in R using the
inverses of π and φ on a scaled vector δ · z, for some scaling factor δ ∈ R such
that ∥δ · z∥ ≪ Q and then by rounding the result to a polynomial in R. More in
detail, the functions that link vectors in Cn/2 to plaintext polynomials in R are

CKKS.Encode(z ∈ Cn/2, δ) = ⌊δ · φ−1(π−1(z))⌉;
CKKS.Decode(a(X) ∈ R, δ) = π(φ(δ−1 · a(X))).

These two functions do not require the knowledge of any secret key nor public
key. In the main implementations of CKKS they are, respectively, included in
encryption and decryption but for theoretical analysis we will consider them
separately. This allow us to study express more clearly the error that arise from
the message encoding and to differentiate it from the other errors in this scheme.

Another useful tool to track the ciphertext error in CKKS is the norm induced
on R by the canonical embedding π ◦ φ. This norm is defined as ∥a∥can =
∥π ◦ φ(a)∥∞.

We now give a broad description of the main algorithms in the CKKS scheme
that we still have not introduced. The parameters of the scheme are: the plaintext
polynomial ring R with ring dimension N typically chosen as a power of two, a
ciphertext modulo Q and a discrete Gaussian error χ with standard deviation
σ.

CKKS.KeyGen(λ): Given the security parameter λ choose p ∈ N and Q ∈ N,
the ring R and the noise distribution χ. Sample s ∈ RpQ by sampling each

coefficient uniformly from {−1, 0, 1} and set sk = s. Sample pk.a
$← RQ,

e
$← χ and compute pk.b = −as+ e. Then sample pk.a′

$← RQ, e
′ $← χ and

compute pk.b′ = −a′s+ e+ s2.
CKKS.Enc(pk,m ∈ RQ): Choose r ∈ R such that every coefficient (chosen inde-

pendently) has probability 1/4 to be 1 and -1, and probability 1/2 to be 0.
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Sample e0, e1 ← χ. Set ct.a = rpk.a + e1, ct.b = rpk.b + e2 +m and return
ct.

CKKS.Eval(pk, C, ct1, . . . , ctk) : The algorithm evaluates the arithmetic circuit
C by means of addition and multiplication:

CKKS.Add(pk, ct0, ct1 ∈ RQ): Set ct.a = ct0.a + ct1.a , ct.b = ct0.b + ct1.b
and return ct.

CKKS.Mul(pk, ct0, ct1 ∈ RQ): Set ct.b = ct0.b ·ct1.b+⌊(ct0.a ·ct1.a ·pk.b′)/p⌉,
and ct.a = ct0.a · ct1.b+ ct1.a · ct0.b+ ⌊(ct0.a · ct1.a ·pk.a′)/p⌉. Return ct.

CKKS.Dec(sk, ct): Return ct.b+ ct.a · sk.

We now give a brief explanation on how this estimate is handled by the
algorithms of the CKKS scheme. CKKS.Enc assigns to the returned ciphertext
an upper bound of the ciphertext error for fresh encryptions. CKKS.Add and
CKKS.Mul follow the noise growth rules of Lemma 2 to assign to the returned
ciphertext a noise estimate. More in general, when homomorphic evaluating a
circuit C in CKKS by computing Eval(pk, C, ct1, . . . , ctk), it is always possible
to publicly compute the resulting noise estimate by combining the two noise
growth rules for sum and product using as an input only the description of C
and the noise estimates on the input ciphertexts.

2.4 Probability, Bit Security and Differential Privacy

A probability ensemble (Pθ)θ is a family of probability distributions parameter-
ized by a variable θ. The KL Divergence is a useful tool to handle probability
distributions. In particular, it gives us a way to understand how close (or far)
are two distributions from each other.

Definition 6 (KL divergence). Let P and Q be two probability distributions
with common support X. The Kullback-Leibler Divergence between P and Q is

D(P||Q) :=
∑

x∈X Pr[P = x] ln
(

Pr[P=x]
Pr[Q=x]

)
.

Lemma 1 (Sub-Additivity of KL divergence for Joint Distributions,
Theorem 2.2 of [PW14]). If (X0,X1) and (Y0,Y1) are pairs of (possibly de-
pendent) random variables, then

D((X0,X1)||(Y0,Y1)) ≤ max
x

D((X1|x)||(Y1||x)) +D(X0,Y1)

Computing the advantages of adversaries from Subsection 4.3 and from Sub-
section 5.4 will require the following inequality about the total variation distance
between two Gaussian distributions.

Theorem 1 (Theorem 1.3 of [DMR18]). Let σ0, σ1 > 0. Then

∆(N (µ0, σ
2
0),N (µ1, σ

2
1)) ≥

1

200
min{1, 40|µ0 − µ1|

σ0
}.

We briefly recall the notion of bit security from [MW18].
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Definition 7 (Indistinguishability Game). Let {D0
θ} and {D1

θ} be two dis-
tributions ensembles. The indistinguishability game is defined as follows: the
challenger C chooses b← U({0, 1}). At any time after that, the adversary A may
send (adaptively chosen) query strings θi to C and obtain samples ci ← Db

θi
. The

goal of the adversary is to output b′ = b.

Definition 8 (Bit Security). For any adversary A playing an indistinguisha-
bility game G, we define its

output probability as αA = Pr[A ̸=⊥] and its
conditional success probability as βA = Pr[b′ = b|A ̸=⊥].

where the probabilities are taken over the randomness of the entire indistinguisha-
bility game (including the internal randomness of A). We also define A’s

conditional distinguishing advantage as δA = 2βA − 1 and
the advantage of A as advA = αa(δa)2.

The bit security of the indistinguishability game is minA log2
T (A)

advA
, where T (A)

is the running time of A.

In [LMSS22], Li et al. introduce many handy tools to use differential privacy
in the approximate FHE setting. For the rest of this subsection we will recall all
the ones we need for the proof of Theorem 5.

Theorem 2. Let GP be an indistinguishability game with black-box access to a
probability ensemble Pθ. If GPθ is k-bit secure, and maxθD(Pθ||Qθ) ≤ 2−k+1,
then GQθ is (k − 8)-bit secure.

Theorem 3. Let G be the indistinguishability game instantiated with distribu-
tion ensembles {Xθ}θ and {Yθ}θ, where θ ∈ Θ. Let q ∈ N. Then, for any (po-
tentially computationally unbounded) adversary A making at most q queries to
its oracle, we have that

advA ≤ q

2
max
θ∈Θ

D(Xθ||Yθ).

Definition 9 (Norm KL Differential Privacy). For t ∈ R≥0 letMt : B → C
be a family of randomized algorithms, where B is a normed space with norm
|| · || : B → R≥0. Let ρ ∈ R be a privacy bound. We say that the family Mt is
ρ-KL differentially private (ρ-KLDP) if, for all x, x′ ∈ B with ||x− x′|| ≤ t,

D(Mt(x)||Mt(x
′)) ≤ ρ.

Definition 10. Let ρ > 0 and n ∈ N. Define the (discrete) Gaussian Mechanism
Mt : Zn → Zn be the mechanism that, on input x ∈ Zn, outputs a sample from

NZn(x, t2

2ρIn).

Theorem 4. For any ρ > 0, n ∈ N, the Gaussian mechanism is ρ-KLDP.
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3 Defining Circuit Privacy for Approximate HE

In this section, we recall the (classic) simulation-based definition of circuit pri-
vacy introduced by Gentry [Gen09a]. Then we give our relaxed indistinguisha-
bility definition.

We start by stating Gentry’s [Gen09a] simulation-based definition below.

Definition 11 (Circuit Privacy). A homomorphic encryption scheme HE for
a class of circuits L is said to be circuit private if there exists a PPT simulator
Sim such that

∆(Sim(pk,mout), Eval(pk, ct1, . . . , ctk, C)) ≤ negl(λ),

where C ∈ L, [mi ← Dec(sk, cti)]
k
i=1, mout ← C(m1, . . . ,mk) and (pk, sk) ←

KeyGen(λ).

Definition 11 gives us a very strong privacy guarantee. In particular, the sim-
ulator should produce a ciphertext that is statistically indistinguishable from the
homomorphic computation while obtaining only the outcome of an evaluation.
This means that the evaluation process reveals no information on the circuit aside
from the output of the circuit evaluation. On the other hand, as we discussed in
Section 2, homomorphic encryption for approximate arithmetic introduces errors
to the outcome of the evaluation. Consequently, the output of the computation
may depend somehow on the evaluated circuit. For instance, already the magni-
tude of the error reveals the size of the circuit or its topology. Finally, note that
the simulation definition implicitly induces a requirement that the homomorphic
computation is exact. In other words, the evaluation procedure is correct with
respect to Definition 2. Unfortunately, due to this correctness requirement, we
cannot use such a definition to reason about circuit privacy for approximate
homomorphic encryption. This state of affairs motivates us to state a relaxed
definition of circuit privacy which is sufficient for many applications and gives us
a framework to analyze circuit privacy in the case of approximate homomorphic
encryption.

We give our definition below.

Definition 12 (Indistinguishability Circuit Privacy). Let HE = (KeyGen,
Enc, Eval, Dec) be a homomorphic encryption scheme for circuits in L. We de-
fine the experiment ExpIND-CP

b [A], where b ∈ {0, 1} is a bit and A is an adversary.
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The experiment is defined as follow:

ExpIND-CP
b [A](1λ) :

r, r1, . . . , rn
$← U ,

(sk, pk)← KeyGen(λ; r),

m1, . . . ,mn, C0, C1, st← A(λ, r, r1, . . . , rn),
[cti ← Enc(pk,mi; ri)]

n
i=1,

ct← Eval(pk, Cb, ct1, . . . , ctn),

b′ ← A(st, ct),
return b′

where C0, C1 ∈ L and C0(m1, . . . ,mn) = C1(m1, . . . ,mn). The scheme HE
is said to be λ-bit IND-CP-secure if, for any adversary A, we have that λ ≤
log2

T (A)

advA
, where advA is defined as in Definition 8.

4 Circuit Privacy in CKKS

In Subsection 4.1 we present a modification of the CKKS approximate homomor-
phic encryption scheme that satisfies indistinguishability circuit privacy as given
by Definition 12. In particular, we show that re-randomized CKKS ciphertexts
are circuit private when we apply an appropriate differential privacy mechanism
that floods the ciphertexts noise with a superpolynomial Gaussian sample. In
Subsection 4.2 we show how to choose parameters for the differential privacy
mechanism for the class of circuits that consists of multivariate polynomials of
bounded degree. Finally, in Subsection 4.3, we show that the parameters are
tight. Namely, the Gaussian noise must be superpolynomial in the security pa-
rameter, and a significantly lower noise parameter leads to an efficient adversary
against IND-CP-security.

4.1 IND-CP-secure CKKS

To get circuit privacy we modify the CKKS.Eval algorithm, which we describe
at Algorithm 1. The main idea is to post-process the ciphertext after evaluation.
Namely, we re-randomize the ciphertext with a freshly sampled encryption of
zero, and we apply a proper differential privacy mechanism.

Note that to run the discrete Gaussian mechanism we need to redefine the
Estimate algorithm such that it outputs an upper bound which depends on
a class of circuits instead of just the noise upper bound for a given circuit.
Concretely we estimate the noise tag as maxC∈L{Estimate(C, tfresh, . . . , tfresh)}
for a class of circuits L; we refer to this noise estimate as Tmax.

Theorem 5. Let CKKS = (KeyGen, Enc, Eval, Dec) be the CKKS approximate
encryption scheme, with the normed plaintext space R and estimate function
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Algorithm 1: The modified CKKS evaluation EvalL
Data: A public key pk, circuit C ∈ L, a vector of ciphertexts ct1, . . . , ctk.

begin
ct← Eval(pk, C, ct1, . . . , ctk) ;
ct.t← maxD∈L{Estimate(D, ct1.t, . . . , ctk.t)} ;
ct← ct+ Enc(pk, 0) ;
ct.b←Mct.t(ct.b) ;
return ct ;

Estimate. Let Mt be a ρ-KLDP mechanism on R where ρ ≤ 2−λ−7. Then CKKS
with the modified EvalL given by Algorithm 1 is λ-bit secure in the IND-CP game
for the circuit space L.

Proof (of Theorem 5). We give a brief overview of the structure of the proof.
First, we construct a new λ-bit secure indistinguishability game. After that, we
consider the output to any adversary’s query in this game and in the IND-CP
game, and we study the KL-divergence between them. In order to bound the
KL-divergence, we compute the difference of some entries in the outputs, upper-
bound their norm, and then use sub-additivity (Lemma 1) and differential pri-
vacy (Definition 9). Finally, once we have obtained a bound on the KL-divergence,
we can link the bit security of the two games and conclude the proof.

We start by describing the two indistinguishability games.

1. G0: the CKKS scheme with the evaluation algorithm given by Algorithm 1
in the IND-CP game with circuit space L.

2. G1: the original CKKS scheme in a variant of the IND-CP game where the
challenger returns a fresh noiseless encryption (that we denote as Encn) of
the result mres = C0(m1, . . . ,mk) = C1(m1, . . . ,mk). Furthermore, ct.b is
post-processed with a differential privacy mechanism that uses the same
noise tag obtained in the game G0. More formally, we consider the following
experiment:

ExpG1

b [A](λ) : (sk, pk)← KeyGen(λ)

m1, . . . ,mk, C0, C1 ← A(sk, pk)
mres ← C0(m1, . . . ,mn)

ct← Encn(pk,mres)

ct.t← max
D∈L
{Estimate(D, tfresh, . . . , tfresh)}+ tfresh

ct← (ct.a,Mct.t(ct.b))

b′ ← A(λ, sk, pk, ct)
return b′

We want to compare these two games and, in particular, analyze the cipher-
text the adversary receives from the challenger in each game. In G0, the cipher-
text is obtained by actually homomorphically evaluating the chosen circuit and



14 Kamil Kluczniak and Giacomo Santato

then by post-processing it with the re-randomization and with a differential pri-
vacy mechanism on the second component. In G1, the ciphertext is simulated
by encrypting the plaintext result of the evaluation, without performing any
homomorphic evaluation.

While assuming that ct0.a = ct1.a = a, we compute the norm of the difference
between ct0.b and ct1.b, which are the first components of the ciphertexts before
applying the differential privacy mechanism.

∥ct0.b− ct1.b∥ = ∥(ct0.b+ a · sk)− (ct1.b+ a · sk)∥
= ∥(m+ e0)− (m)∥ = ∥e0∥,

where e0 is the real error of the ciphertext ct0. By definition of approximate
correctness of CKKS we know that the error e0 is smaller than the ciphertext
noise tag ct0.t. Therefore,

∥ct0.b− ct1.b∥ = ∥e0∥ ≤ ct.t

Since we were able to bound ∥ct0.b−ct1.b∥ with ct.t we can now use Definition 9
to bound their KL divergence after post-processing

D ((Mt(ct0.b)|ct0.a = a) || (Mt(ct1.b)|ct1.a = a)) ≤ ρ.

We now use Lemma 1 to obtain the following inequality.

D(Mct.t(ct0.b), ct0.a||Mct.t(ct1.b), ct1.a)

≤ max
a

D(Mct.t(ct0.b)|ct0.a = a||Mct.t(ct1.b)|ct1.a = a) +D(ct0.a||ct1.a).

It is easy to show that ct0.a is uniform random in R because we re-randomized
it by adding Enc(pk, 0) to ct. Also ct1.a is uniform random in R because it is ob-
tained as a fresh encryption. This implies that the KL divergenceD(ct0.a||ct1.a) =
0. We have already shown that ρ is an upper bound for the remaining term, for
every a. This means that the upper bound can be rewritten as follows.

D(Mct.t(ct0.b), ct0.a||Mct.t(ct1.b), ct1.a) ≤ ρ.

Then, since the KL-divergence between these two indistinguishability games
is smaller than a fixed value ρ and provided that ρ/2 ≤ 2−λ−8, we can use
Theorem 3 to relate the bit security of G0 with the bit security of G1 and we
obtain that G0 is λ-bit IND-CP secure.

Analysis of the post-processing noise. We give an analysis of the precision lost
when modifying the CKKS scheme as in Theorem 5. We instantiate the differ-
ential privacy mechanism from Definition 10 with ρ = 2−λ−7. In this case, a
Gaussian noise of standard deviation 8

√
2λTmax is added to each coordinate. We

obtain that the bits of precision lost are λ/2 + 3 + log2(Tmax).
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4.2 Managing and obtaining Tmax

In this section, we will show how to set the noise bound Tmax for the differ-
ential privacy mechanism. Remind that the usual noise estimation algorithm
estimates the noise based on the circuit, which is enough for IND-CPAD-security
when post-processing decryption as in [LMSS22]. To obtain circuit privacy, we
estimate the noise as the maximum noise over all circuits in a given class of
circuits. In particular, we run Tmax := maxD∈L{Estimate(D, tfresh, . . . , tfresh)}.
Note that the estimation algorithm depends on the class of circuits; hence the
evaluation process may still leak some information on the computation, like the
multiplicative depth of the circuit.

Below we show how to estimate the noise tag for the class of multivariate
polynomials of degree bounded by some d ∈ N.

Theorem 6. Let k, d ∈ N. Let C(x1, . . . , xk) be a multivariate polynomial of
degree smaller or equal to d. Let B ∈ N such that ∥mi∥can ≤ B for i ∈ [k], then

Estimate(sk,CKKS.Eval(pk, C, [cti]i∈[k]), C([mi]i∈[k])) = d

(
k + d

d

)
O(Bdtfresh)

where cti ← Enc(pk,mi) for i ∈ [k].

To prove Theorem 6 we need to recall the basic expressions of noise growth
during addition and multiplication in CKKS.Eval and also an heuristic on emult.

Lemma 2 (Lemma 3 of [CKKS17]). Let cti = CKKS.Enc(pk,mi) for i ∈
{0, 1} and their ciphertext error be, respectively, Error(sk, cti,mi) = ei. The
ciphertext error of the sum of both ciphertexts is equal to e0+e1 and the ciphertext
error of the product of both ciphertexts is equal to m0e1 +m1e0 + e0e1 + emult,
where the term emult depends on the parameters of the scheme and on the two
ciphertexts ct0, ct1.

Heuristic 1 (Appendix A.5 of [GHS12]) Let w be the hamming weight of
the secret key sk and n be the plaintext ring dimension. Then emult behaves like
a random variable with mean zero and variance O(wn).

Proof (of Theorem 6). In this proof we denote Estimate(f(x), tfresh) as Est(f(x)).
Also we omit the subscript can when using the canonical norm since it is the
only norm used in this proof.

First, we want to prove that Est(xd) = O(dBd−1tfresh) by induction. This
is trivially true for d = 1. We now study the statement for d > 1. Est(xd) =
Estimate(xd−1 ·x) = ∥md−1e+med−1+ed−1e+emult∥ where ed−1 is the resulting
error from the evaluation of the polynomial xd−1. We can bound this quantity
from above by using the triangular inequality Est(xi) ≤ Bd−1∥e∥+ B∥ed−1∥+
∥ed−1e + emult∥. Using the inductive hypothesis ∥ed−1∥ = O((d − 1)Bd−2tfresh),
we can rewrite this quantity as Est(xi) = O(Bd−1tfresh + (d − 1)Bd−1tfresh) +
∥ed−1e+emult∥. Since ∥ed−1e+emult∥ ≪ Bd−1 we can just conclude that Est(xi) =
O(dBd−1tfresh).
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We can now extend our study to monomials xi11 . . . x
ik
k . We prove by induction

on k that Est(xi11 . . . x
ik
k ) = O(dBd−1tfresh), where d = i1+· · ·+ik. This is trivially

true for k = 1. We now study the statement for k > 1. Est(xi11 . . . x
k−1
k−1 · x

ik
k ) =

∥(mi1
1 . . .m

k−1
k−1)ek−1 +mik

k ek + ek−1ek + emult∥, where ek−1 and ek are, respec-

tively, the resulting error from the evaluations of the monomials xi11 . . . x
i−1
k−1 and

xikk . We can bound this quantity from above by using the triangular inequal-

ity Est(xi11 . . . x
ik
k ) ≤ Bi1+···+ik−1∥ek∥+Bik∥ek−1∥+∥ek−1ek + emult∥. Using the

inductive hypothesis on ek−1 and ek−1 = O(ikB
iktfresh) we can rewrite this quan-

tity as Est(xi11 . . . x
ik
k ) = O(Bik(i1 + · · ·+ ik−1) +Bi1+···+ik−1tfresh) + ∥ek−1ek +

emult∥. Since ∥ek−1ek + emult∥ ≪ Bd we can just conclude that Est(xi11 . . . x
ik
k ) =

O(dBd−1tfresh) where d = x1+ · · ·+ ik. Finally, we analyze a generic multivariate
polynomial with k variables and degree smaller or equal to d.

Est(
∑

0≤i1+···+ik≤d
0<i1,...,ik≤d

ai1,...,ikx
i1
1 · . . . · x

ik
k ) ≤ B

(
k + d

d

)
Est(xi11 · . . . · x

ik
k )

= B

(
k + d

d

)
O(dBd−1tfresh)

4.3 Tightness of the Differential Privacy Parameters

As shown by Theorem 5, the proposed modified version of CKKS achieves λ-
bit IND-CP-security by applying a differentially private mechanism on the out-
come of the evaluation algorithm. In practice, we instantiate the differential
privacy mechanism by the Gaussian mechanism with Gaussian noise of variance

σmax ← T 2
max

2ρ . Remind that ρ ≤ 2−λ−7 is the privacy bound for ρ-KL differen-

tial privacy (Definition 9), and Tmax is the noise upper bound for the class of
circuits. We show that trying to use an appreciably smaller variance σs ≪ σmax

leads to the existence of an adversary that wins the IND-CP game with a non-
negligible probability. In other words, we show that the noise parameters are
tight when using the Gaussian mechanism, and the added Gaussian noise must
be superpolynomial in the security parameter.

Theorem 7. Let σs > 0. Let Evalσs

Ld
be the modified CKKS evaluation given

by Algorithm 1 but where the post-processing noise is sampled from the discrete
Gaussian NZn(0, σ2

s T
2
maxIn). Then there exists an adversary A against CKKSσs

Ld

in the IND-CP-game such that advA = Ω( 1
σ2
s B

2t2fresh
), where B is an upper bound

on the messages norm modulus and tfresh is the noise tag associated to freshly
encrypted messages.

To prove Theorem 7 we need the following inequality that we can derive, for
this case, from Theorem 1.

Lemma 3 (Theorem 1.3 of [DMR18]). Let σ > 0. Then

∆(N (µ0, σ
2),N (µ1, σ

2)) ≥ 1

50

|µ0 − µ1|
σ

.
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Algorithm 2: Adversary A(λ).
Data: A security parameter λ. The adversary has oracle access to Evalσs

Ld
.

begin

r, r1
$← U ;

(sk, pk)← KeyGen(λ; r);

m,C0, C1 ← B, xd, xd +Bxd−1 −Bd;
ct← Enc(pk, B; r1) ;

ctres ← O
Eval

σs
Ld

(pk,·,·,ct)
(C0, C1);

e0 ← Dec(sk, Eval(C0, ct))−Bd ;

e1 ← Dec(sk, Eval(C1, ct))−Bd ;

eres ← Dec(sk, ctres)−Bd ;
Choose i ∈ {0, n− 1} such that |e0,i − e1,i| is maximal ;
If |eres,i − e0,i| ≤ |eres,i − e1,i| then return 0. Otherwise output 1 ;

Again, to prove Theorem 7 we need the following lemma that can be easily
derived from the proof of Theorem 6.

Lemma 4. Let d ∈ N. Let B be the plaintext modulus and ct ← Enc(pk, B),
then

Eval(xd, ct)−Bd = dBd−1ct.e+ f

where ∥f∥can = O(Bd−1).

Proof (of Theorem 7). We give a brief description of the high-level idea of this
proof. First, the adversary computes the ciphertext errors after the homomorphic
evaluation of each circuit but before the post-processing phase of the challenger.
Then, we rewrite each ciphertext error after the post-processing as a sample of
a Gaussian distribution, where mean and variance only depend from the chosen
circuit and variables known by the challenger. Finally, we compute the statisti-
cal distance between the two Gaussian distributions linked to the two possible
circuits and use this distance to obtain a lower bound on the adversary’s advan-
tage.

The adversary knows e := ct.e, receives the resulting error eres after de-
crypting the oracle output and can compute the errors e0 and e1 obtained after
the standard CKKS evaluation of C0 and C1 on ctres. The oracle computes ctres
as CKKS.Eval(Cb, ct) + esm, where esm is sampled from NZn(0, σ2

s T
2
maxIn). This

means that the adversary sees eres that is a sample of NZn(eb, σ
2
s T

2
maxIn). Then,

the adversary analyzes the polynomial e0 − e1 and chooses i as the compo-
nent where the difference of the i-th coefficients of the polynomials e0 and e1 is
maximal in absolute value. After this, the adversary focuses on the i-th coeffi-
cient of eres. This is a sample of NZ(eb,i, σ

2
s T

2
max). Obtaining that |eres,i − e0,i| <

|eres,i − e1,i| is more likely when b = 0 while if |eres,i − e0,i| ≥ |eres,i − e1,i| it is
at least more likely that b = 1 rather then b = 0. To analyze the adversary’s
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advantage in distinguishing these distributions, we first study the total variation
distance between them. Computing this quantity for discrete Gaussians is not
an easy task, therefore we will approximate it by considering their counterparts
on the real numbers. By Lemma 3 and Lemma 4 we have that

∆(N (e0,i, σ
2
s T

2
max),N (e1,i, σ

2
s T

2
max)) ≥

1

50

|e0,i − e1,i|
σsTmax

= Θ

(
Bd−1|ei|
σsTmax

)
.

Theorem 6 gives us that Tmax = d(d − 1)O(Bdtfresh) and |ei| ≥ 1 with high
probability. We can now rewrite the right hand term of the past equation as
Ω( 1

σsBtfresh
). The adversary’s advantage in the IND-CP game for this scheme is the

square of the total variation distance we just estimated, therefore Ω( 1
σ2
s B

2t2fresh
).

Theorem 8. If the CKKS scheme with the modified evaluation Evalσs

Ld
is λ-bit

IND-CP-secure, then σs = Ω(2λ/2/(B2t2fresh)). This implies that one must add at

least λ/2− log2 Ω̃(B2t2fresh) bits of additional Gaussian noise.

Proof. By using the definition of bit-security, we know that λ ≤ log2O(T (A)

advA
) ≤

log2O(σ2
sB

2t2fresh); this immediately implies that σs ≥ 2λ/2/(B2t2fresh) and λ/2−
log2Ω(B2t2fresh) ≤ log2 σs.

5 Threshold FHE and MPC

In Subsections 5.1 and 5.2, we give definitions for threshold and multikey homo-
morphic encryption over approximate arithmetic. In Subsection 5.3 we present
a modification of the MK-CKKS multikey homomorphic encryption scheme that
satisfies the indistinguishability security definition as given by Definition 18.
In particular, we show that re-randomized MK-CKKS ciphertexts and decryp-
tion shares does not reveal information about messages and secret keys of non-
corrupted parties when we apply an appropriate differential privacy mechanism
that floods them with a superpolynomial Gaussian sample. Finally, in Subsection
5.4, we show that the parameters are tight. Namely, the Gaussian noise must
be superpolynomial in the security parameter, and a significantly lower noise
parameter leads to an efficient adversary against IND-MKHE-security.

5.1 Threshold Homomorphic Encryption

We base our definition for threshold approximate homomorphic encryption on
the definition introduced by [BGG+18]. We have the same syntax and we have
the same indistinguishability definition as [BGG+18], but we redefine the cor-
rectness definition for the case of approximate arithmetic. Regarding the indistin-
guishability, we discuss in Remark 1 a slight strengthening of the definition that
lets us construct a meaningful circuit private homomorphic encryption scheme.

Recall that a monotone access structure A on [n] is a collection A ⊆ P([n]),
where P([n]) contains all subsets of [n], such that whenever we have sets B, C
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satisfying B ∈ A and B ⊆ C ⊆ [n] then C ∈ A. The sets in A are called the
valid sets and the sets in P([n]) \ A are called invalid sets. A class of monotone
access structures is a collection S = (A1, . . . ,At) ⊆ P(P([n])) of monotone access
structures on [n]. A set S ⊆ [n] is a maximal invalid share set if S ̸∈ A and for
every i ∈ [n] \ S we have that S ∪ {i} ∈ A.

Definition 13 (Threshold Homomorphic Encryption). Let d ∈ N and let
Ld be a class of circuits of multiplicative depth smaller or equal to d. A threshold
homomorphic encryption scheme THE on Ld is a tuple of five algorithms THE
= (KeyGen, Enc, Eval, PDec, Combine) with the following syntax.

KeyGen(λ, d,A)→ (pk, sk1, . . . , skn): Given a security parameter λ, the maximal
multiplicative depth of evaluatable circuits d, the number of parties n, and
access structure A, returns a public key pk and n secret keys sk1, . . . , skn.

Enc(pk,m)→ ct: Given a public key pk and a message m, returns a ciphertext
ct.

Eval(pk, C, ct1, . . . , ctk)→ c: Given a public key pk, a circuit C ∈ Ld and ci-
phertexts ct1, . . . , ctk, returns a ciphertext ct.

PDec(ski, ct)→ µ: Given a secret key ski and a ciphertext ct, returns a partial
decryption µ.

Combine({µi}i∈S , ct)→ m: Given a set of partial decryptions {µi}i∈S where S ∈
A, returns a message m.

Definition 14 (Ind-secure THE). Let d ∈ N and let Ld be a class of cir-
cuits of multiplicative depth smaller or equal to d. Let THE = (KeyGen, Enc,
Eval, PDec, Combine) be a threshold fully homomorphic encryption scheme for
a class of access structures S and circuits in Ld. We define the experiment
ExpIND-THE

b [A], where b ∈ {0, 1} is a bit and A is an adversary. The experiment
is defined as follows:

ExpIND-THE
b [A](1λ) :

A← A(λ, d,S),
(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S ̸∈ A and S is a maximal invalid set,

(m
(0)
1 , . . . ,m

(0)
k ,m

(1)
1 , . . . ,m

(1)
k ), st← A([ski]i∈S),

[cti ← TFHE.Enc(pk,m
(b)
i )]ki=1,

b′ ← AEval(pk,.,ct1,...,ctk)(st, ct1, . . . , ctn),

return b′

The Eval(pk, ., ct1, . . . , ctk) oracle takes as input circuit in Ci ∈ Ld is such

that Ci(m
(0)
1 , . . . ,m

(0)
k ) = Ci(m

(1)
1 , . . . ,m

(1)
k ). The oracle computes and outputs

ctres ← Eval(pk, Ci, ct1, . . . , ctk) and µj ← PDec(skj , ctres) for all j ∈ [n].
The scheme THE is said to be λ-bit IND-THE-secure if, for any adversary A,

we have that λ ≤ log2
T (A)

advA
, where advA is defined as in Definition 8.
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5.2 Multikey Homomorphic Encryption

There many flavors of multikey homomorphic encryption in the literature. Most
of the definitions differ in syntax, but the overall concept is same. The main
differences between a multikey homomorphic encryption scheme and threshold
homomorphic encryption schemes are (1) in MKHE the secret keys are generated
by each user separately instead of by a single setup, (2) messages are encrypted
with public keys of each user instead of a master public key. Consequently, the
evaluation algorithm in MKHE “combines” ciphertexts with respect to different
public keys into one ciphertext, whereas in threshold HE the ciphertext is already
combined. Finally, (3) the decryption process in MKHE is a special case of
threshold HE where all secret keys are needed to decrypt the message.

Both primitives however, share the same interface for decryption. In particu-
lar, both primitives define a partial decryption algorithm PDec. Furthermore, to
the best of our knowledge, all current realizations of these primitives use a flavor
of noise flooding to realize PDec. Hence it makes sense in our paper to inves-
tigate multikey homomorphic encryption together with threshold homomorphic
encryption.

Below we give the syntax for multikey homomorphic encryption.

Definition 15 (Multikey Homomorphic Encryption). Let d ∈ N and let
Ld be a class of circuits of multiplicative depth smaller or equal to d. A multi-
key homomorphic encryption scheme MKHE on Ld is a tuple of five algorithms
MKHE = (KeyGen, Enc, Eval, PDec, Combine) with the following syntax.

KeyGen(λ, d)→ (pk, sk): Given a security parameter λ, the maximal multiplica-
tive depth of evaluatable circuits d, the algorithm returns a public key pk and
s secret key sk.

Enc(pk,m)→ ct: Given a public key pk and a message m, the algorithm returns
a ciphertext ct.

Eval(pk1, . . . , pkn, C, ct1, . . . , ctn)→ c: Given a list of public keys pk1, . . . , pkn,
a circuit C ∈ Ld and ciphertexts ct1, . . . , ctn, returns a ciphertext ct.

PDec(ski, ct)→ µ: Given a secret key ski and a ciphertext ct, returns a partial
decryption µ.

Combine({µi}i∈[n], ct)→ m: Given a set of partial decryptions {µi}i∈[n], returns
a message m.

Definition 16 (Multikey Ciphertext Error). Let MKHE = (KeyGen, Enc,
Eval, PDec, Combine) be a multikey homomorphic encryption scheme with mes-
sage spaceM. Furthermore, letM be a normed space with norm ||·|| :M 7→ R≥0.
For all public/secret key pairs (pki, ski)← KeyGen(λ) where i ∈ [k], any cipher-
texts ct in the image of Eval and message m ∈M the ciphertext error is defined
as

Error(sk1, . . . , skn, ct,m) = ||Combine([PDec(ski, ct)]i∈[k])−m||.

Below we give our definition of approximate correctness for multikey homo-
morphic encryption. Definition 18 gives our definition for indistinguishability
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security of multikey homomorphic encryption. Remind that this is the first se-
curity definition for multikey approximate homomorphic encryption that gives
the adversary access to partial decryptions. Previously [CDKS19], only stan-
dard semantic security was considered, and security in the presence of partial
decryptions were omitted.

Definition 17 (Approximate Correctness). Let us define MKHE = (KeyGen,
Enc, Eval, PDec, Combine) to be a multikey homomorphic encryption scheme

with message spaceM⊆ M̃ that is a normed space with norm || · || : M̃ 7→ R≥0.
Let L be the class of circuits, Lk ⊆ L be the subset of circuits with k input wires,
and let Estimate :

⊔
n∈N Lk×Rk

≥0 7→ R≥0 be an efficiently computable function.
We call HE an approximate homomorphic encryption scheme if for all k ∈ N,
for all C ∈ Lk, for all (pk, sk) ← KeyGen(λ), if ct1, . . . , ctk and m1, . . . ,mk are
such that Errorski(cti,mi) ≤ ti, ct← Eval(pk1, . . . , pkn, C, ct1, . . . , ctk), then

Error(sk1, . . . , skk, ct, C(m1, . . . ,mk)) ≤ Estimate(C, t1, . . . , tk).

Definition 18 (Ind-secure MKHE). Let d ∈ N and let Ld be a class of
circuits of multiplicative depth smaller or equal to d. Let MKHE = (KeyGen,
Enc, Eval, PDec, Combine) be a multikey homomorphic encryption scheme for a
class circuits in Ld. We define the experiment ExpIND-MKHE

b [A], where b ∈ {0, 1}
is a bit and A is an adversary. The experiment is defined as follows:

ExpIND-MKHE
b [A](λ) :

[r′i
$← U ]i∈[n],

[(ski, pki)← KeyGen(λ, d, r′i)]i∈[n],

i∗ ← A(pk1, . . . , pkn),

[ri
$← U ]i∈[n],

(m
(0)
1 , . . . ,m(0)

n ,m
(1)
1 , . . . ,m(1)

n ), st← A([ri, r′i]i∈[n]\{i∗}),

[cti ← MKHE.Enc(pki,m
(b)
i , ri)]i∈[n],

b′ ← AEval({pki}i∈[n],·,ct1,...,ctn)(st, [r′i]i∈[n]\{i∗}, [ri]i∈[n]\{i∗}, cti∗),

return b′

The Eval({pki}i∈[n], ·, ct1, . . . , ctn) oracle takes as input a circuit Ci ∈ Ld

such that Ci(m
(0)
1 , . . . ,m

(0)
k ) = Ci(m

(1)
1 , . . . ,m

(1)
k ). The oracle computes and

outputs ctres ← Eval({pki}i∈[n], Ci, ct1, . . . , ctn) and µj ← PDec(skj , ctres) for
all j ∈ [n].

The scheme MKHE is said to be λ-bit IND-MKHE-secure if, for any adversary

A, we have that λ ≤ log2
T (A)

advA
, where advA is defined as in Definition 8.

An important question when stating a new security definition is whether the
definition is meaningful in any way. Intuitively it seems that our definition cap-
tures what we would expect from the multikey HE. In particular, the adversary
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should not be able to distinguish encryptions even when given all secret keys
except one, and given partial decryptions on evaluated ciphertexts. To give a
more formal argument we show a multikey homomorphic encryption scheme for
two keys gives us a homomorphic encryption scheme with circuit privacy.

Theorem 9. Let MKHE be a IND-MKHE-secure multikey homomorphic encryp-
tion scheme for n = 2 parties. We can build a homomorphic encryption scheme
HE that is IND-CP-secure.

Proof. Let MKHE be a multikey homomorphic encryption for n = 2 keys. We
build the HE encryption as follows. The KeyGen and Enc algorithms are the same
as in MKHE. We denote the keys output by the KeyGen algorithm as (sk1, pk1).
The evaluation algorithm HE.Eval on input ct1 ← MKHE.Enc(pk1,m) first sam-
ples (pk2, sk2)← KeyGen(λ, d), encrypts the circuit C as ct2 ← Enc(pk2, C), and
evaluates ct← MKHE.Eval((pk1, pk2), U, ct1, ct2), where U is a circuit that takes
as input a message x and another circuit F and outputs F (x). Finally, the eval
algorithm outputs ct and µ2 ← PDec(sk2, ct).

The decryption algorithm HE.Dec runs ct ← MKHE.Eval((pk1, pk2), U , ct1,
ct2), µ1 ← PDec(sk1, ct), and m′ ← Combine({µi}i∈[n], ct). Note that from ap-
proximate correctness of MKHE we have that m′ is close to C(m), what implies
that the HE is approximately correct.

Now we proceed to show circuit privacy. We construct a solver S that uses
an adversary A against IND-CP of HE to break IND-MKHE. The solver S obtains
pk1, pk2 from the IND-MKHE challenger, and sends i∗ = 2 back. The solver S ob-
tains r1 and r′1 and passes both to the adversary. A responds with (m1, . . . ,mk)
and C0 and C1, and sends (m1, C0) and (m1, . . . ,mk−1, C1) the MKHE chal-
lenger. Consequently, S obtains ct1 and ct2, and queries the Eval oracle on the
U circuit and both ciphertexts. Denote the response of the oracle as µ2. The
solver returns µ2 and ct← Eval(pk1, pk2, U, ct1, . . . , ctn) to A. If A returns a bit
b′ the solver outputs it as its solution to the IND-MKHE experiment.

Note that S perfectly follows the IND-MKHE experiment. In particular, we

set (m
(b)
1 ,m

(b)
2 ) = (m1, . . . ,mk, Cb). Note that we set m

(b)
1 = (m1, . . . ,mk)

and m
(b)
2 = Cb. From the requirement on C0 and C1 imposed by the IND-CP

definition we have that C0(m1, . . . ,mk) = C1(m1, . . . ,mk), and what follows
U(C0,m1, . . . ,mk) = U(C1,m1, . . . ,mk) as required by the IND-MKHE experi-
ment. To summarize, we have that the simulator S has advantage advIND-CP[A](λ)
in returning the b′ such that b′ = b and also has a running time that is similar
to the running time of A.

Remark 1 (On threshold homomorphic encryption and circuit privacy). Remind
that we proved that multikey homomorphic encryption for two keys already
gives us homomorphic encryption with indistinguishability circuit privacy. Note
that the definition of threshold homomorphic encryption doesn’t let itself use
to build circuit privacy so easily. The reasons for this are that the common key
generation algorithm in Definition 13 returns just one public key and all secret
keys, and we cannot give the random seed to the adversary to generate its own
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keys honestly. Similarly, we would need to redefine the IND-THE experiment
and encrypt part of the messages using honestly sampled seeds that are then
passed to the adversary. Note that this modification strengthens the security
notion. However, we are still unable to provide a seed for the key generation
algorithm since IND-THE would be trivially broken. In this case, we would need
to introduce a relaxation of our indistinguishability circuit privacy definition
such that the adversary is given a secret key instead of a seed.

5.3 Achieving IND-MKHE security for MK-CKKS

In this subsection we analyze the scheme MK-CKKS from [CDKS19] and show
how to modify it to achieve IND-MKHE security. We stress that this construc-
tion can also be adapted to other MKHE schemes that share similarities with
MK-CKKS. In particular, the relevant properties we use are: the linearity of the
Combine algorithm and the structure of extended ciphertext in Rk, where all
elements except one are uniform random in fresh encryptions. We present the
algorithms of MK-CKKS, but we refer the reader to the original paper [CDKS19]
for a complete description.

MK-CKKS.Setup(λ): Given the security parameter λ, set n ∈ N and Q ∈ N, the
ring R := Rn

Q, the key distribution χ and the noise distribution ψ. Sample

a
$← Rn

Q uniformly. Return pp = (n,Q, χ, ψ, a).

MK-CKKS.KeyGen(pp): Sample s ← χ. Sample an error e ← ψ and compute
b = −sa+ e. Return ((b, a), s) as (pk, sk).

MK-CKKS.Enc(pk,m ∈ RQ): Sample v ← χ and e0, e1 ← ψ. Denoting pk =
(b, a), then compute c0 = vb0+m+e0 and c1 = va0+e1. Return (c0, c1) ∈ R2.

MK-CKKS.Eval({pki}i∈[k], C, ct1, . . . , ctk) : For given ciphertexts cti ∈ Rki+1,
we denote k ≥ maxi∈[k]{ki} the number of parties involved in at least one
of the cti. Rearrange the entries of each cti and pad zeroes in empty en-
tries to generate some ciphertexts ct

∗
i sharing the same secret key sk =

(1, sk1, . . . , skk). Then, the algorithm evaluates the arithmetic circuit C by
means of addition and multiplication:

CKKS.Add(ct0, ct1 ∈ Rk+1): Return the entry-by-entry addition ct0 + ct1.
CKKS.Mul({pki}i∈[k], ct0, ct1 ∈ Rk+1): Compute ct = ct1 ⊗ ct2 and return

the ciphertext ct
′ ← Relin(ct, {pki}i∈[k]). The Relin algorithm returns

a ciphertext ct ∈ Rk+1 encrypting m0m1 with an error that follows the
noise growth law of Lemma 5.

MK-CKKS.PDec(sk, ct ∈ Rk+1): Call ct.ai the component of ct associated to the
secret key sk. Return µ = sk · ct.ai. 1

MK-CKKS.Combine({µi}i∈[k], ct ∈ Rk+1): Return m = ct.b+
∑k

i=1 µi.

1 In the original scheme, the partial decryption algorithm already added a smudging
noise esm ← ϕ. Since ϕ is not described in detail, we decided not to include it here
so as to simplify the exposition of PDec in Algorithm 4.
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The estimate function of MK-CKKS is handled similarly to CKKS but with the
noise growth rule of Lemma 5.

To simplify the notation, from now on, we are going to refer to the entries
of a ciphertext ct ∈ Rk+1 as (ct.b, ct.a1, . . . , ct.ak). Also, when writing ct.a, we
will be referring to (ct.a1, . . . , ct.ak). We now show how to modify the Eval and
the PDec algorithm in MK-CKKS to achieve IND-MKHE security. The main idea
behind Eval′ is to re-randomize the ciphertext by adding a fresh encryption
of zero for each public key pk associated to ct and then to post-process the
component ct.b using an appropriate differential privacy mechanism MT .

Algorithm 3: The modified evaluation MK-CKKS.Eval′

Data: A set of public keys {pki}i∈[k], circuit C ∈ L, a vector of ciphertexts
ct1 ∈ Rk+1, . . . , ctN ∈ Rk+1.

begin
ctres ← Eval({pki}i∈[k], C, ct1, . . . , ctk) ;
For i = 1 to k: ctres ← ctres + Enc(pki, 0) ;
T ← ctres.t+ tfresh ;
ctres.b←MT (ctres.b);
return ctres ;

Algorithm 4: The modified partial decryption MK-CKKS.PDec′

Data: A secret key sk, a ciphertext ct ∈ Rk+1.

begin
µ←Mct.t(PDec(sk, ct)) ;
return µ ;

Theorem 10. Let MK-CKKS = (Setup, KeyGen, Enc, Eval, PDec, Combine) be
the MK-CKKS multikey homomorphic encryption scheme, with plaintext space
R and estimate function Estimate. Let q ∈ N. Let Mt be a ρ-KLDP mechanism
on R where ρ ≤ 2−λ−8/q. If MK-CKKS.Enc is (λ+8)-bit secure in the IND-CPA
game, then MK-CKKS with the modified MK-CKKS.Eval′ given by Algorithm 3
and with the modified MK-CKKS.PDec′ given by Algorithm 4 is λ-bit secure in
the IND-MKHE game where q is the maximum amount of oracle queries by the
adversary.

Proof. The high-level idea is as in Theorem 5. The main difference between the
two proofs is the structure of the game G1 that has not only to protect the
message choice b but also to guarantee the protection of ski∗ . Also, the output of
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the adversary’s queries is not a rLWE ciphertext anymore but it is a couple made
by an extended rLWE ciphertext and a partial decryption share. This makes the
tasks of upper-bounding the KL-divergence a little bit harder.

We start by describing the two indistinguishability games.

1. G0: theMK-CKKS scheme with the modified algorithms given by Algorithm 3
and Algorithm 4 in the IND-MKHE-security game with a bound of maximum
q queries.

2. G1: the original MK-CKKS scheme in a variant of the IND-MKHE-security
game with a bound of maximum q queries and the modified oracle Eval′. The
oracle Eval′({pki}ni=1, ·, ct1, . . . , ctn) takes as input a circuit Ci ∈ Ld such

that Ci(m
(0)
1 , . . . ,m

(0)
n ) = Ci(m

(1)
1 , . . . ,m

(1)
n ), and behaves in the following

way. When writing Encn(pk,m) we denote a noiseless encryption of m.

Eval′({pki}i∈[n], ·, ct1, . . . , ctn) :

mres ← C(m
(0)
1 , . . . ,m(0)

n ),

ctres ← Enc(pki∗ , 0) +
∑

j∈[n]∖{i∗}

Encn(pkj , 0),

ctres.t← Estimate(C, ct1.t, . . . , ctn.t) + (k + 1)tfresh,

µi∗ ←Mctres.t(ctres.b−
∑
j ̸=i∗

skj · ctres.aj),

[µi ← ski · ctres.ai]i̸=i∗ ,

ctres.b←Mctres.t(ctres.b+mres),

return(ctres, [µi]i∈[k])

In G0, the ciphertext ctres and the decryption shares µi are obtained by ho-
momorphically evaluating the circuit C on the input ciphertexts and partially
decrypting the resulting ciphertext. After computing them, we perform some
post-processing with a re-randomization on ctres and with a differential privacy
mechanism on both. In G1, the ciphertext ctres and the decryption shares µi are
simulated, and they do not depend from the input ciphertexts, from b or from
the secret key of the non-corrupted party i∗. ctres is a fresh, random encryption
of mres, and the share µi∗ is obtained without using ski∗ .

To simplify the notation in this proof, we will denote ctG0
res as ct0, ct

G1
res as ct1

and ctG0
res.t as t.

While assuming that ct0.a = ct1.a = a, we compute the norm of the difference
between ct0.b and ct1.b, which are the first components of the ciphertexts before
applying the differential privacy mechanism.

∥ct0.b− ct1.b∥ = ∥(ct0.b+ a · (sk1, . . . , skk))− (ct1.b+ a · (sk1, . . . , skk))∥
= ∥(m+ e0)− (m+ e1)∥ = ∥e0 − e1∥ ≤ t+ tfresh,

We will denote t + tfresh as T for the rest of the proof. Since we were able to
bound ∥ct0.b − ct1.b∥ with T , we can now use Definition 9 to bound their KL
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divergence after post-processing.

D(MT (ct0.b)|ct0.a = a||MT (ct1.b)|ct1.a = a) ≤ ρ.

We repeat the same reasoning with decryption shares. To simplify the notation
in this proof, we will denote µGb

j with µj,b. While assuming that ct0.b = ct1.b = b
and ct0.a = ct1.a = a are chosen, we compute the norm of the difference between
µi∗,0 and µi∗,1, which are the decryption shares before applying the differential
privacy mechanism.

∥µi∗,0 − µi∗,1∥ = ∥(ai∗ · ski∗)− (b−
∑
j ̸=i∗

aj · skj)∥ = ∥e0∥ ≤ t.

This implies, thanks to Definition 9, that

D(Mt(µ0,i∗)|(ct0.b = b, ct0.a = a)||Mt(µ1,i∗)|(ct1.b = b, ct1.a = a)) ≤ ρ

From this point forward, we often use the notation Da(X||Y) when referring to
D(X|(ct.a = a)||Y|(ct.a = a)). We now use Lemma 1 to obtain the following
inequality.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a)

≤ max
a

Da(Mt(µ0,i∗),MT (ct0.b)||Mt(µ1,i∗),MT (ct1.b)) +D(ct0.a||ct1.a)

It is easy to show that ct0.ai are uniform random in R for each i ∈ [k] because
we re-randomized each entry by adding Enc(pki, 0) to ct0. This is also true for
ct1.ai for each i ̸= i∗. We can also say that ct1.ai∗ is uniform random in R
because it is obtained as a fresh encryption of 0. This implies that the KL
divergence D(ct0.a||ct1.a) = 0. We can now apply Lemma 1 and obtain the
following inequality.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a)

≤ max
b,a

Db,a(Mt(µ0,i∗)||Mt(µ1,i∗)) + max
a

Da(MT (ct0.b)||MT (ct1.b))

We have already shown that ρ is an upper bound for each of these two terms,
for every a and b. This means that the upper bound can be rewritten as follows.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a) ≤ 2ρ

Then, we use Lemma 3 with Xθ defined as a query to the oracle Eval of G0 and
Yθ as a query to the oracle Eval′.

advA ≤ q

2
max
θ∈[q]

D(Xθ||Yθ) ≤
q

2
(2ρ) = qρ.

We conclude the proof by studying the bit security of G1. In the first phase of

the game the adversary receives a rLWE encryption of m
(b)
i∗ under ski∗ and then

receives a fresh encryption of zero under ski∗ for a polynomial number of times q.
This implies that, if MK-CKKS.Enc is (λ+8)-bit secure, then G1 is also (λ+8)-bit
secure. Provided that qρ ≤ 2−(λ+8), we can finally relate the bit security of G0
with the bit security of G1, using Lemma 2 and obtain that G0 is λ-bit secure in
the IND-MKHE-security game with maximum q oracle queries.



On Circuit Private, Multikey and Threshold Homomorphic Encryption 27

Analysis of the post-processing noise We give an analysis of the lost precision
when modifying the MK-CKKS scheme as in Theorem 10. We instantiate the
differential privacy mechanism from Definition 10 and ρ = 2−λ−8/q. Consider-
ing the output of the Combine algorithm, a Gaussian noise of standard devia-
tion 27/2

√
q2λ(ct.t + ktfresh) and (k − 1) Gaussian noises of standard deviation

27/2
√
q2λct.t are added to each coordinate. The additional bits of precision lost

are approximately λ/2 + log2
√
q + 7/2 + log2 k + log2 tfresh.

5.4 Tightness of the Differential Privacy Parameters

By Theorem 10, it is possible to achieve λ bits of IND-MKHE-security by post-
processing the outputs from Eval and PDec with a differentially private algo-
rithm. Concretely we choose the Gaussian mechanism with Gaussian noise of

variance σmax ← ct.t2

2ρ , where ρ ≤ 2−λ−8/q is the privacy bound for ρ-KL differ-

ential privacy (Definition 9). We show that, using an appreciably smaller vari-
ance σs ≪ σmax, leads to the existence of an adversary that wins the IND-MKHE
schemes with a non-negligible probability. In other words, we show that the
noise parameters are tight when using the Gaussian mechanism, and the added
Gaussian noise must be superpolynomial in the security parameter.

The adversary that we construct exploits the noise growth in the Eval algo-
rithm. This noise growth follows the rules of the following lemma.

Lemma 5 (Appendix C.3 of [CDKS19]). Let cti = MK-CKKS.Enc(pk,mi)
for i ∈ {0, 1} and their ciphertext error be, respectively, Error(sk, cti,mi) = ei.
The ciphertext error of the sum of both ciphertexts is equal to e0 + e1 and the
ciphertext error of the product of both ciphertexts is equal to m0e1 + m1e0 +
e0e1 + emult + elin, where the term emult depends on the parameters of the scheme
and on the two ciphertexts ct0, ct1.

Theorem 11. Let σs > 0. Let Evalσs and PDecσs be the modified MK-CKKS
algorithms we presented as Algorithm 3 and as Algorithm 4 but where the post-
processing noise are sampled from NZn(0, σ2

s ct.t
2In). Let σ be the standard de-

viation of the underlying rLWE error. Then there exists an adversary A against

MK-CKKSσs in the IND-MKHE security game such that advA = Ω
(

1
σ2
s σ

2n3

)
.

Proof. The high-level idea is as in the proof of Theorem 7. The main difference
between the two proofs is that the adversary cannot compute the error after the
homomorphic evaluation of the circuit because it depends from the encrypted
message of the non-corrupted party. Nonetheless, using the ring structure of R
and the circuit x1x2 − Bx2, we are still able to rewrite the error as a sample
of a Gaussian distribution where mean and variance only depend from the en-
crypted message and variables known by the challenger. Finally, we compute the
statistical distance between the two Gaussian distributions linked to the two pos-
sible messages and use this distance to obtain a lower bound on the adversary’s
advantage.
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Algorithm 5: Adversary A(λ).
Data: A security parameter λ. The adversary has oracle access to Evalσs .

begin
pp← Setup(λ, d);

[r′i
$← U ] ;

[(ski, pki)← KeyGen(pp, r′i)]i∈[2];
i∗ ← 1;

[ri
$← U ]i∈[2];

(m
(0)
1 ,m

(0)
2 ), (m

(1)
1 ,m

(1)
2 )← (0, B), (B,B) ;

C ← x1 · x2 −B · x1 ;

ct← Enc(pk1,m
(b)
1 , r1);

c̃t← Enc(pk2,m
(b)
2 , r2);

ẽ← Dec(sk2, ct2)−B ;
ctres, µ1, µ2 ← OEvalσs ({pki}i∈[2], C, ct1, ct2) ;
eres ← Combine(µ1, PDec(sk2, ctres), ctres) ;
Choose I ∈ {0, n− 1} such that |ẽI | is maximal ;
If |eres,I −BẽI | ≥ |eres,I | then return 0. Otherwise output 1 ;

The adversary knows the exact error ẽ := c̃t.e and obtains the resulting error
eres after post-processing. We denote as e← NZn(0, σ2In) the exact error of ct.
Recalling the error growth rule of MK-CKKS from Lemma 5, we can estimate
the two possible outputs for b ∈ {0, 1}. The resulting error after computing x · y
is equal to eẽ+mbẽ+Be+ emult. When subtracting B · x in the evaluation, we
also subtract Be from the error and we obtain that the error in the output of the

oracle ctres is eẽ+mbẽ+ emult+ e
(1)
sm where the e

(1)
sm is the post-processing noise of

Evalσs . When we compute the decryption of ctres using the Combine algorithm,
we obtain that the result is

eres = eẽ+mbẽ+ emult + e(1)sm + e(2)sm ,

where e
(2)
sm is the post-processing noise of PDecσs . Referring to the i-th coefficient

of e and ẽ as ei and as ẽi, we can rewrite eres as follows.

eres =

n−1∑
i=0

 i∑
j=0

ẽjei−j −
n−1∑
j=i

ẽjen+i−j +mbẽi

xi + emult + e(1)sm + e(2)sm

:=

n−1∑
i=0

Eix
i + emult + e(1)sm + e(2)sm

The adversary analyzes the polynomial ẽ and chooses I as the component where
the absolute value |ẽI | is maximal. We now focus on the I-th coefficient of eres
and, in particular, on EI . The term EI is an affine combination of {ei}n−1

i=0 that
are independently sampled from NZ(0, σ

2) with coefficients that are known to
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the adversary. This implies that EI is a sample from the Gaussian NZ(mbẽI ,∑n−1
i=0 ẽi

2σ2). To estimate the total variation distance, we assume that emult and
elin are significantly smaller than the other terms (Heuristic 1) and that we can
omit them; this approximation allows us to express eres,I as a sample from the
following Gaussian distribution.

NZ(mbẽI ,

n−1∑
i=0

ẽi
2σ2 + 2σ2

s ct.t
2).

Obtaining that |eres,I − BẽI | < |eres,I | is more likely when b = 1 while, if
|eres,I − BẽI | ≥ |eres,I |, it is at least more likely that b = 0 rather than b = 1.
To compute the advantage of this adversary in distinguishing these distribu-
tions, we need to compute the total variation distance between them. Com-
puting this quantity for discrete Gaussian is not easy; therefore, we will ap-
proximate it by considering their counterparts on the real numbers. We define
V :=

√
∥ẽ∥22σ2 + 2σ2

s ct.t
2 and use Lemma 3 to obtain the following lower bound.

∆(N (0, V ),N (BẽI , V )) ≥ 1

50

B|ẽI |√
V

= Θ

(
B|ẽI |√

|ẽ|22 + 2σ2
s ct.t

2

)

The advantage of the adversary in the IND-MKHE game is the square of the

total variation distance we just estimated which is Θ
(

B2|ẽI |2
|ẽ|22+2σ2

s ct.t
2

)
.

With high probability |ẽI | ≥ 1 and ∥ẽ∥can ≤ σn. This implies that ∥ẽ∥22 ≤
σ2n3 and also that ct.t ≤ O(Bσn3/2) . Putting together all these bounds, we ob-

tain that the advantage of the adversary is Ω
(

B2

σ4n3+2σ2
s B

2σ2n3

)
= Ω

(
1

σ2
s σ

2n3

)
.

Theorem 12. If the scheme MK-CKKS with the modified evaluation Evalσs and
the modified partial decryption PDecσs is λ-bit IND-MKHE-secure, then σs =
Ω(2λ/2/σn3/2), i.e. one must add at least λ/2 − Ω̃(σn3/2) bits of additional
Gaussian noise.

Proof. By using the definition of bit-security, we know that λ ≤ log2O(T (A)

advA
) ≤

log2O(σ2
sσ

2n3). This means that σs ≥ 2λ/2/(σn3/2) and λ/2− log2Ω(σn3/2) ≤
log2 σs.

6 Conclusion and Open Problems

In this paper, we introduced formal models for the study of circuit privacy in the
FHE approximate setting. We included the first security analysis for approximate
multikey homomorphic encryption and approximate threshold homomorphic en-
cryption that considers the knowledge of partial decryptions.

We presented a modified version of the CKKS scheme (Theorem 5) that is
able to achieve λ-bit IND-CP-security by post-processing the ciphertext with
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λ/2+ Õ(1) bits of noise. Additionally, we modified the MK-CKKS scheme (The-
orem 10) to achieve λ-bit IND-MKHE-security. We did this by post-processing
the ciphertext and the decryption shares with λ/2+Õ(1) bits of noise. We proved
that these bounds are essentially tight by providing adversaries for when only
λ/2− Ω̃(1) bits of noise are added.

Our work investigates Circuit Privacy for HE schemes in the approximate
setting and sanitizes ciphertexts by applying KL differential privacy mecha-
nisms. It would be interesting to investigate possible relations between the recent
funcCPA-security definition [AGHV22] and the approximate setting.
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