
A Sharding-Based Approach for Enhancing
Efficiency in ISSDOs for Sharing Scattered Values

Reza Ghasemi
Bu-Ali Sina University

Department of Mathematics, Faculty of Sciences
Email: r.ghasemi@basu.ac.ir

Abstract—Data outsourcing is a solution aimed at addressing
the security and reliability issues of data storage by ensuring
professional handling of the data. The growing use of outsourcing
is causing concern among users due to the lack of assurance
regarding the security and reliability of data stored on servers. To
address these issues, some attempts have been made to implement
Secret Sharing-based Data Outsourcing (SSDO) schemes. The
low efficiency of these schemes led researchers to use an index
server (IS). However, IS are susceptible to frequency analysis.
Bucket-Chain B+Tree (BCB+Tree) was proposed to tackle the
frequency analysis in the current Index Server Secret Sharing-
based Data Outsourcing (ISSDO) schemes. Nevertheless, this
scheme works very well when the data is discrete with a limited
range. Otherwise, the scheme’s efficiency declines significantly
as it has to store one index in each bucket and the number of
buckets rises significantly, rendering the use of an IS useless. In
this paper, a new data structure is proposed to store the indexes
in IS to mitigate this efficiency concern. Briefly, the domain of
values is divided into several segments, and indexes of values
in each segment are stored inside a Shard. Additionally, a data
outsourcing scheme has been presented based on the proposed
data structure. It can withstand collaboration from up to k − 1
dishonest servers even if they have access to the IS.

I. INTRODUCTION

Data is considered to be a valuable asset for both individuals
and organizations. Any unauthorized exposure or leakage
of this data can result in serious consequences, including
financial and reputational losses. Therefore, it is essential for
companies to employ experts in data security to safeguard their
sensitive information. Similarly, individuals are also interested
in learning about the best practices and strategies to ensure the
protection of their confidential data.

Despite advancements in data security, daily data breaches
still occur due to outdated knowledge and systems [1]. To
address this, some companies offer Data-as-a-Service (DaaS),
where they handle the data storage for their customers, re-
ducing hardware and software costs. These companies hire
skilled professionals and regularly update their systems to
ensure robust protection against attacks. However, outsourcing
data to DaaS providers raises privacy concerns, as they may
extract metadata and potentially sell it [2]. When privacy is
a priority, these current data outsourcing methods may not be
suitable.

Outsourcing raw data to an untrusted party may not fully
address privacy and reliability concerns. Encrypting the data
and outsourcing it to DaaS providers can address privacy

concerns but reduces scalability [3]. Symmetric encryption al-
lows for simple queries but requires frequent interactions with
the data owner, affecting performance. Asymmetric encryption
allows the database to perform operations without the owner’s
help, but increases computation and becomes impractical as
data size grows [4, 5]. Ultimately, encryption-based, namely
symmetric and asymmetric, schemes may not be practical
when outsourcing data and requiring the database to perform
operations.

Data outsourcing schemes based on Secret sharing (SSDO)
emerged as a possible solution for data outsourcing. In these
schemes, data is shared among several servers. Each server
receives a piece of information, called share, such that solely
predefined subsets of these servers can recover the shared data
with the help of their shares. Therefore, if some servers lose
stored shares, the shared data is still recoverable, ensuring
reliability. The main advantage of such schemes is that data
servers can answer most, if not all, types of users’ queries [6].
Recently, the weakness of SSDOs has been highlighted by
successful attacks [7]. This weakness stems from the use of a
fixed secret vector for all secrets in the sharing process. Some
authors [8] have proposed using ISs to address this issue. In
this scheme, denoted by ISSDO, each record is assigned a
unique secret vector and an index. Then, generated shares and
the index are sent to the data servers. In addition, there is an
index server that stores these generated indexes. Ghasemi [9]
has demonstrated that, despite the benefits of index trees, these
schemes remain vulnerable. Bahrami et. al. [10] proposed
Bucket Chain B+tree (BCB+tree) to hide the frequency of
shared records that can be leveraged to recover the shared
records. In their scheme, a chain of buckets is used to store
the indexes corresponding to records that have the same value.

While Bahrami et al.’s scheme can handle multiple queries,
it can be observed that When records have dispersed values,
running time increases substantially since for each record a
bucket should be assigned. As a result, scattered values incur
high communication costs which slow down the scheme’s
performance and increase the running time. Consequently,
leveraging BCB+tree will not bring benefit to the scheme
greatly when the values are dispersed. In this paper, an ISSDO
scheme enjoying a new data structure for saving the indexes
is presented to handle scattered values. The domain of the
values is partitioned and each of these partitions is assigned a
shard that stores indexes of all records in the corresponding

partition. The reduction of communication cost, which is the
primary bottleneck in running time, facilitates the scheme to
enhance its performance.

The main contributions of this paper are,
1) Presenting a new data structure for saving the indexes.
2) Proposing an efficient and secure scheme to handle

scattered values in records.
The present paper is structured as follows. The succeeding

section constitutes the problem statement. The subsequent
section, referred to as preliminaries, presents the necessary
primitives. A novel ISSDO, capable of effectively handling
scattered values, is proposed in the Section four. In the
subsequent section, the proposed approach’s scalability is
demonstrated through various implementations. The paper
concludes with a final section. The security proof has been put
in an Appendix. Interested readers are referred to see Appendix
A for formal proof of why the proposed scheme is k−1-secure
(Appendix is not included in the ePrint version. A full version
of this paper will be published later.).

II. PROBLEM STATEMENT

Data outsourcing is crucial in data management as it ad-
dresses the issue of insufficient data privacy knowledge and
high hardware costs faced by individuals. As a result, data
owners opt for outsourcing their data instead of storing it
locally. Sharing data among multiple servers can enhance
security and reliability, and secret sharing techniques have
been utilized to develop new ISSDOs schemes.

A. Raw Data

A data owner with sensitive information desires to outsource
its data for the sake of security and reliability. Assume that
the data has the following format,

Name SIN Number Age Salary Weight (gr.)
1 Sarah R5234D56 28 45k 57463
2 Jack G556F35 48 52k 75938
3 David S098A34 21 39k 69884
4 John S930F44 52 72k 101075
5 Thomas K898L88 61 63k 81640
6 Daniel R117L08 13 0k 48523

TABLE I: Confidential raw data which data owner wants to
outsource.

Table (I) is the raw data. Rows and columns represent
records and features, respectively. For clarity of presentation,
we solely focus on sharing one feature, say Weight. Note that
the proposed schemes can easily be adapted to share more
features. Weight can be considered as a scattered data as it
ranges from 2k to 150k kilograms.

B. Main structure and threat model

ISSDOs enjoy an index server that stores indexes assigned
to each record. Consequently, there is no need to use a fixed
secret vector, improving the security and reliability of the
schemes. Interested readers are referred to read [9] paper for
more details of how assigning different secret vectors can
secure the scheme against current frequency analysis attacks.

Generally, ISSDOs include four different entities, depicted
in Fig. 1.

Users

Clients

Data
Servers

Index Server

Fig. 1: General structure of ISSDO schemes.

• Data servers (DS): Data servers are semi-honest entities
that store the generated shares in the sharing process.
They might collaborate with each other to infer mean-
ingful information from the stored shares.

• Index server (IS): Index server stores indexes of records,
improving the scheme’s performance in terms of both
speed and security. The IS is considered semi-honest and
may work with corrupt DSs to obtain information about
the shared records.

• Clients (CL): Clients serve as a trusted intermediary
connecting all parties. They store confidential information
necessary for sharing and retrieval. In addition to data
sharing and retrieval, clients respond to inquiries after
communicating with IS and DSs.

• Users: Users’ queries will be answered by sending their
queries to the clients.

C. Problem
Bahrami et. al. [10] proposed a new data structure, the

BCB+tree, for storing indexes in an index tree. This struc-
ture significantly improves running time and strengthens the
scheme’s security against potential attacks. The BCB+tree
dedicates a chain of buckets to a value and stores the cor-
responding indexes within a chain of buckets. Only clients,
equipped with a secret key, can identify the relation between
the buckets and retrieve all indexes associated with a specific
value. However, this scheme only works effectively when the
values are not dispersed. if values are scattered, a large number
of chains with only one stored index are generated, leading
to increased communication between the IS and clients. This
significantly reduces the scheme’s performance due to the fact
that clients need numerous communication with IS to handle
queries which is a bottleneck in running time. Scattered values
are very common and should not be neglected. This paper
proposes a new efficient and secure ISSDO scheme to address
records with scattered values.

III. PRELIMINARIES

In this section, secret sharing is reviewed because it is used
in sharing process in ISSDO schemes.

A. Shamir Secret Sharing

When handling confidential information, it is imperative to
prioritize both security and reliability. For example, losing
an encryption key for a database can have catastrophic con-
sequences, as data recovery would then become impossible.
To mitigate this risk, it is necessary to employ a method
for securely storing the sensitive information that keeps it
protected from unauthorized access, yet also allows for its
recovery by authorized entities when needed. Shamir [11]
and Blakely [12] proposed secret sharing scheme in which a
secret is shared among some participants by assigning a share
to each of them such that predefined subsets of participants
can recover the shared secret through putting their shared
together. The creation of these shares is designed to ensure
two key objectives: confidentiality and recoverability. Firstly,
each share, or even some combination of shares, should not
reveal significant information to the participants. Secondly, in
the event that some participants lose their shares, the secret
remains recoverable through the predefined combination of the
remaining shares. These features reinforce both security and
reliability.

Shamir proposed a (k, n)-threshold secret sharing scheme
where k, n are positive integers and k ≤ n. In his scheme, k
represent threshold which is the minimum shares required to
recover the shared secret. The parameter n denotes the number
of all participants that receive a share after sharing process.

1) Sharing stage: In order to share a value v among n
participants P1, . . . , Pn, a polynomial f(x) ∈ F[x] of degree
k − 1 is selected randomly, where f(0) = v. Then, every Pi

(i = 1, . . . , n) is given sharei(v) = f(i) as their shares.
2) Recovering stage: In order to recover the secret v, a

coalition of k shares are needed. For simplicity, assume k
participants P1, . . . Pk decide to recover the secret. They will
put their shares and using interpolation the secret can be
recovered as follows,

v = f(0) =

k∑

i=1

f(i)ℓi , ℓi =

k∏

j=1
i ̸=j

j

j − i

In secret sharing, all computations must be done in a finite
field Zp for a large prime number p. Therefore, in this paper,
all computations are in a finite field.

B. Pseudorandom generators

In the proposed scheme, pseudorandom generators are used.
Therefore, it is briefly explained here.

Definition 1. [13] Let ℓ(·) be a polynomial and let G be
a deterministic polynomial time algorithm such that for any
input s ∈ {0, 1}n , algorithm G outputs a string of length
ℓ(n). We say that G is a pseudorandom generator (PRG) if
the following two conditions hold:

1) For every n it holds that ℓ(n) > n.

2) For all probabilistic polynomial-time distinguishers D,
there exists a negligible function negl such that:

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ negl(n)

where r is chosen uniformly at random from {0, 1}ℓ(n), the
seed s is chosen uniformly at random from {0, 1}n , and the
probabilities are taken over the random coins used by D and
the choice of r and s.

Approximately, pseudorandom generators produce se-
quences that are indistinguishable from actual random se-
quences from the perspective of polynomial observers.

C. Security definition

We adopt security definition from [10] paper. Roughly
speaking, we call a scheme r-secure w.r.t this definition,
if r data server collaborate, they cannot extract meaningful
information about the shared data while accessing the index
server.

Definition 2. [10] A secret sharing based data outsourcing is
called r-secure if any probabilistic polynomial time (PPT) ad-
versary (A) has negligible advantage in winning the following
game,

1) Challenger runs Setup(1λ, n, k) and shares a random
database D.

2) A receives the shares stored on r data servers and the
index tree.

3) A selects two different values v0 and v1 and sends them
to the challenger.

4) Challenger selects at random b ∈ {0, 1} and shares vb.
5) Challenger sends the updated index tree and generated

shares regarding the r servers to A.
6) A outputs its guess of b represented by outA.

The advantage of A is,

AdvA,r(λ) = |Pr[outA = b]− 1

2
|

IV. A FAST AND SECURE SECRET SHARING BASED DATA
OUTSOURCING

In this section, a secure and efficient ISSDO is presented
which mitigates the concern of dealing with scattered data.
Roughly speaking, confidential features which are scattered are
shared via Shamir’s secret sharing. Then, an index is generated
and stored in an index server for each record. In order to store
indexes, the client partitions the domain of the confidential
attribute, and for each segment generates a Shard, see Fig. (3).
Each shard contains all indexes corresponding to the records
whose confidential attribute’s value lies in the segment of
which the Shard has been generated. Indexes inside a shard
are stored in a chain of buckets, increasing the security of the
scheme against frequency analysis. Note that only clients who
have access to a secret key can identify which bucket belongs
to which shard. Consequently, an outsider cannot identify the
relationship between these buckets.

A. The structure of the proposed ISSDO

Our scheme consists of four main entities, Data servers
(DSs), Index Server (IS), Clients (CLs), and users as depicted
in Fig. (1). There are two phases, namely Data Sharing and
Answering queries. In the first phase, all records are shared
among data servers. In the second phase, upon receiving a
query, the client translates the query for the index server and
relevant DSs. Following potential interactions with the index
server and DSs, the client provides the answer to the user’s
query.

B. Data Sharing

During this phase, the four entities exchange information or
data among themselves. Data sharing contains three stages, I)
Generating parameters, II) Generating shares, and III) Adding
indexes to IS.

1) Generating parameters: Before sharing any record, the
following steps should be taken. At the first step, a probabilis-
tic polynomial algorithm Setup(1λ, n, k) is run where λ, n
and k are security parameter, the number of DSs and threshold,
respectively. This algorithm outputs the following items,

• Finite field Zp in which all computations are done.
• Secret key sk.
• Secret vector X = {x1, . . . , xn}
• Partition Dp = {D1, D2 . . . , Dr} of Zp where,

1) Order is preserved. In other words, for all x ∈ Di

and x′ ∈ Dj , x ≤ x′ iff i ≤ j. See Ex. 1.
2) For each i, j ∈ {1, 2, . . . , r},

∑

x∈Di

P (x) =
∑

x∈Dj

P (x)

Example 1. Suppose we have a normal distribution, and we
want to divide its domain into four sections in a manner that
maintains the relative order of values and ensures that each
section contains an equal probability of a randomly selected
value belonging to it. As it can be observed, this might result
in unequal segment lengths.

selected index is given to the corresponding DS. Furthermore,
the index is sent to the index server.

The entities involved in storing a database and answering
queries work together as follows:

• The clients initiate the process by selecting a secret
key sk based on the security parameter λ through a
randomized algorithm.

• Data owners send their data, in the form of a table with
multiple records, to a client (as shown in Fig. ?? and
described in (??)).

• The client divides the data into shares using a threshold
secret sharing scheme based on the number of DSs and
the threshold, represented by n and k, respectively.

• For each record, a random index is selected, and each
share along with the index is assigned to the correspond-
ing DS.

• Finally, the index is sent to the index server.
This process enables the secure storage of data in a decentral-
ized manner and enables clients to retrieve and answer queries
efficiently.

Upon receiving a query, the client translates the query
for the index server and relevant DSs. Following potential
interactions with the index server and DSs, the client provides
the answer to the user’s query.

In the next section, we will explore the workings and
interactions of the four entities in two phases: Data Sharing
and Query Responses.

Data Sharing: During this phase, the four entities exchange
information or data among themselves. This exchange can
occur through direct connections or through a central server.
The purpose of this sharing is to keep each entity updated on
the current status of the system and to ensure that all entities
have access to the same data.

Query Responses: In this phase, the entities receive and
process requests for information. When a query is made, the
entity receiving the request will search its local database for
the relevant information and return a response to the requester.

B. Data Sharing

In this stage, we will explain sharing a record. At first
step, a probabilistic polynomial algorithm Setup(1λ, n, k) is
run where λ, n and k are security parameter, the number of
DSs and threshold, respectively. This algorithm outputs the
following items,

• Finite field Zp in which all computations are done.
• Secret key sk.
• Secret vector X = {x1, . . . , xn}
• Partition Dp = {D1, D2 . . . , Dr} of Zp where,

1) Order is preserved. In other words, for all x ∈ Di

and x′ ∈ Dj , x ≤ x′ iff i ≤ j. See the example ??.
2) For each i, j ∈ {1, 2, . . . , r},

∑

x∈Di

P (x) =
∑

x∈Dj

P (x)

Example 1. Suppose we have a normal distribution.

D1 D3D2 D4

The parameters are selected based on the security parameter
and will remain constant once set. To illustrate the process of
record sharing, we will use an example. Let’s consider the
following record that is given to a client for sharing purposes,

Name SIN Number Age Salary Weight (gr.)
2 Jack G556F35 48 52k 75938

Here, Weight is the secret data that required to be kept
hidden. The client runs the following algorithm to share this
record,

Algorithm 1 Generating DSs’ shares.

Require: The record
X = {x1, . . . , xn}: Private vector.
n: The number of the data servers.
k: Threshold.

1: Procedure:
2: Chooses at random a polynomial f(x) ∈ Zp[x] of degree

k − 1 where f(0) = Weight.
3: Generates n shares sharei = f(xi), i ∈ {1, 2, . . . , n}.

Upon generating the records, the client generates a random
index indexrec and sends the following information to the ith

DS.

Name SIN Number Age Salary share index
2 Jack G556F35 48 52k sharei indexrec

1) Adding the generated index to IS: Prior to explaining
the index addition process, we will introduce a data structure
utilized by the IS for index storage. As previously mentioned,
the confidential value domain D is divided into r segments
D1, . . . , Dr. The IS has r shards, each of which holds multiple
buckets where the indexes are stored. Each bucket consists of
a header and body, as depicted in Figure 2. The header serves
as a label to aid the IS and CLs in managing and accessing the
buckets as needed. The body is where the indexes are kept.
indexrec is stored on IS according to the following algo-

rithm. Assume that the Weight ∈ Dj . Therefore, this index
is added to jth shard.

Briefly, Alg. 2 traverses all the buckets in the corresponding
shard to find the latest one which has empty space, and IS is
asked to add the index to this bucket.

Fig. 2: Partitioning into four segments. Based on this partition-
ing into four segments, the index server will have four shards
to store the indexes for strings.

The parameters are selected based on the security parameter
and will remain constant once set.

Name SIN Number Age Salary Weight (gr.)
2 Jack G556F35 48 52k 75938

2) Generating shares: To illustrate the process of gener-
ating shares, we will use a toy example. Let’s consider the
following record that is given to a client for sharing purposes,

Here, Weight is the secret data that is required to be kept
hidden. The client runs the following algorithm to share this
record,

Algorithm 1 Generating DSs’ shares.

Require: The record
X = {x1, . . . , xn}: Private vector.
n: The number of the data servers.
k: Threshold.

1: Procedure:
2: Chooses at random a polynomial f(x) ∈ Zp[x] of degree

k − 1 where f(0) = Weight.
3: Generates n shares sharei = f(xi), i ∈ {1, 2, . . . , n}.

Upon generating the records, the client generates a random
index indexrec and sends the following information to the ith

DS.

Name SIN Number Age Salary share index
2 Jack G556F35 48 52k sharei indexrec

3) Adding indexes to IS: Prior to explaining the index
addition process, we will introduce a data structure utilized
by the IS for index storage. As previously mentioned, the
confidential value domain D is divided into r segments
D1, . . . , Dr. Therefore, IS has r shards, each of which holds
multiple buckets where the indexes are stored. Each bucket
consists of a header and body, as depicted in Fig. 3. The
header serves as a label to aid the IS and CLs in managing
and accessing the buckets as needed. The body is where the
indexes are kept.

When share generation finishes, generated index indexrec

is stored on IS according to Alg. (2). Briefly, this algorithm
traverses all the buckets in the corresponding shard to find the
latest one which has empty space, and IS is asked to add the
index to this bucket. Thus, if the Weight ∈ Dj , this index is
added to jth shard.

It should be noted that the headers of the buckets are pro-
duced using a pseudorandom generator (PRG), making them
indistinguishable from random sequences. Hence, adversaries
cannot uncover any correlation between the generated buckets.
This enhances the security of the scheme, which will be
discussed in further detail in the following sections.

C. Answering queries

Clients are responsible for the translation of the queries
they receive before forwarding them to the DSs and IS. They
then respond with the information they have stored in their
databases. Finally, the client evaluates the answer and passes
it to the user. The proposed scheme guarantees the security

Shard1

Shard2

Shard3

Header

Body

Fig. 3: Sharding data structure to store indexes inside IS. This data structure consists of three Shards. In each shard,
corresponding to a partition, indexes are stored in several buckets. Each bucket consists of two parts, Header and Body.
The ith bucket in the jth shard is magnified.

Algorithm 2 Adding an index into index server.

Require: indexrec: chosen index;
G: a PRG;
t: bucket size;
sk: Secret key;

1: Procedure:
2: m=1; {Bucketm represents the mth bucket in this shard

and its header is G(sk|j|m).}
3: while |Bucketm| < t do
4: m = m+ 1;
5: Ask IS to send Bucketm;
6: end while
7: Ask IS to add indexrec to Bucketm;

of stored records while responding to queries. This process
is secure as it has been demonstrated that even if fewer than
k servers were to work together and have access to the IS,
they would still not be able to gain any information about the
shared records.

The proposed scheme can answer different types of queries.
The first type is Exact match in which the customer tries
to understand how many records satisfy a specific condition.
Range is another type of query that can be answered. The next
type of query that can be handled by the proposed scheme is
Aggregation queries, such as Sum, Max etc. Finally, Update
and Projection are other kinds of queries that can be easily
performed by the scheme.

To make the answering process more comprehensible, we
will demonstrate how the scheme operates when the input data
is represented by the table (I). For the sake of simplicity, we
will consider a scenario with only two DSs, S1 and S2, and
a single client and weight will be the attribute that should be
hidden.

a) Exact match: The objective of this query is to de-
termine the number of records that meet a specific criterion.
Assume that a user tries to understand the number of indi-

viduals with a weight of 76 kilograms. Hence, the query is
submitted to the client as follows,

“SELECT * FROM Table WHERE Wei. = 67k”

For simplicity, Wei. is used instead of Weight. Upon
receiving the request, CL should identify the shard that holds
the indexes of records whose weight is 67 kilograms. After
identifying the shard, CL requests the IS to provide all the
indexes found within it. Subsequently, CL requests the servers
to send the corresponding shares for the provided indexes,
enabling the recovery of all secrets. Finally, CL will deliver
the count of individuals weighing 67 kilograms to the user.

b) Range query: The next commonly used query is called
Range. In cases where the data is discrete and the range of the
data is confined, the Range query can be easily transformed
into a series of Exact Match queries. However, this approach is
significantly inefficient when the shared attribute is scattered,
especially when it is a real number. Instead of this approach
adopted by current schemes, we use another approach that
reduces running time. Suppose a client requests the answer to
the following query,

“SELECT * FROM Table WHERE 67k ≤ Wei. ≤ 88k”

User sends this query to CL. The client determines shards
(pShards) which can possibly contain the indexes correspond-
ing to the values in (67k, 88k).

pShards = {Shardα|Dα ∩ (67k, 88k) ̸= ∅}
The shards in pShards can be divided into two groups,
• pShardsin = {shardα ∈ pShards|Dα ⊂ (67k, 88k)}
• pShardsbound =

{shardα ∈ pShards|Dα ∩ {67k, 88k} ≠ ∅}
Obviously, we have,

pShards = pShardsin ∪ pShardsbound

In addition, all records whose indexes are in the shards in
pShardsin satisfy the condition of the query. Therefore, the

client does not need to recover their value and only can count
them and save it in a variable result. In contrast, records
whose indexes are in the shards in pShardsbound should be
recovered because some of them might not meet the condition
stated in the query. Therefore, first, they should be recovered,
second, the number of them that satisfy the query’s condition
will be added to result to achieve the final answer. Then, the
result is passed to the customer.

c) Aggregation query: Another type of query which can
be answered by the scheme is aggregation query. MIN, MAX
and SUM are three queries that lie in this type and can be
answered by the proposed scheme. A MAX query is submitted
by a user has the following form,

“SELECT Name FROM Table WHERE WEIGHT =
MAX(wei.)”

MAX and MIN: In order to answer this query as described in
Alg. (3), CL asks for all data in the last non-empty shard that
contains the maximum value. After recovering all the records
whose index in this shard, client can identify the maximum
value and send it to the user. The same routine can be applied
for MIN query. The only difference is that the client asks for
the all records whose indexes are in the first shard.

Algorithm 3 Max Query

1: Procedure: // Executed by the client.
2: Recover all records in the last Shard.
3: Find the maximum value.
4: Return the found maximum to the customer.

SUM: Shamir secret sharing is additive. In other words,
DSs can add their shares to obtain the share of the summation
of values and send these shares to the client to recover the
summation of the values.

d) Update query: In the proposed scheme, the dynamic
nature of databases is taken into account, allowing for the
replacement, deletion, or modification of all or parts of the
database. This flexibility is essential in ensuring the effective-
ness and efficiency of the database system. In the proposed
scheme, these operations can be performed.

Delete: First operation is deletion. Suppose the data owner
tries to remove some part of the stored data. (S)he asks a client
to remove that part and then client does the following steps
to remove the determined parts,

• Find the shards that contain indexes of the part data owner
wants to remove.

• Recover the records whose indexes are in these shards.
• Withdraw records that data owners try to remove.
• Share the remained records.
Modify: In order to modify the some records, a client

recovers them, and after modifying, records are shared again.
Insert: Insertion is the easiest operation as it does not need

recovering. According to Sec. IV-B new records are be added.
e) Selection query: In this kind of query, some columns

and some conditions are given and users want to know which

records satisfy the determined conditions. Following is an
example of these queries,

“SELECT Name FROM Table
WHERE 32 ≤ AGE ≤ 52 AND Wei. = 77k”

In order to answer the above query, a client follows the
following steps,

• Finds the possible shards that contain records satisfying
the conditions.

• Recovers corresponding records.
• Finds answers.
• Sends the results to the user.

V. IMPLEMENTATION

Multiple implementations were conducted to assess the
efficiency of the scheme. The scheme has two stages, namely
sharing and answering the queries.

A. Answering the queries

The duration of the process of answering the queries can
be influenced by various factors,

• Database’s Size.
• PCs’ configurations.
• Buckets’ size.
• Query’s type.
To simplify the analysis, only two data servers were con-

sidered. Additionally, only queries that have longer response
times were selected, while others were excluded. To minimize
the impact of noise, each part of the implementation was re-
peated five times, and the average running time was computed.
The findings of the analysis are presented in Fig.4.

Database’s Size: It is observable that the running time
increases as the size of the database increases. We can make
the assertion that the running time will increase linearly with
the number of records, and it will not surpass one second even
for a database size of seven million records.

PCs’ Configurations: Implementations have been exe-
cuted over two different PCs, PC1 and PC2. PC1 has Intel
Core i5-7400 3 GHz CPU and 4 GB of RAM and PC2

has Intel Core i7-7700 GHz CPU and 16 GB of RAM. The
implementation is done via Python 3.7 on Windows 10 for
both PCs. Overall, the findings indicate that the proposed
scheme is highly scalable, as queries can be answered in under
a second, even on a home computer.

Buckets’ Size: Increasing the size of the buckets (t) has
a minor impact on the running time. As can be observed in
the results, increasing the size of the buckets slightly reduces
the running time. This is mainly because a larger t reduces
the number of possible buckets that need to be searched for
a given query, as the number of indexes stored per bucket
increases. As a result, decreasing the size of the buckets can
increase communication costs, which in turn increases the
running time. However, the change in running time resulting
from adjusting the bucket size is relatively insignificant and
can be disregarded.

0

0.5

1

1.5

2

2.5

3

1M 3M 5M 7M

Count Query PC1

0

0.5

1

1.5

2

2.5

3

1M 3M 5M 7M

Max Query PC1

0

50

100

150

200

1M 3M 5M 7M

Range Query PC1

0

0.01

0.02

0.03

0.04

0.05

0.06

1M 3M 5M 7M

Count Query PC2

0

0.2

0.4

0.6

0.8

1

1M 3M 5M 7M

Max Query PC2

0

10

20

30

40

50

1M 3M 5M 7M

Range Query PC2

Fig. 4: Implementation of the scheme over two systems with different configurations (PC1: Intel Core i5-7400 3 GHz CPU
and 4 GB of RAM, PC2: Intel Core i7-7700 GHz CPU and 16 GB of RAM). Y-Axis represents running time in milliseconds
and X-Axis is the number of shared data among data servers. In these figures, ▲ and + signs represent different size of the
buckets, 10 and 20 respectively.

Query’s Type: According to the results, Range query
stays the highest among all possible queries. This roots in
the fact that during the process of Range query, several shards
should be assessed to reach the final answer and the client
might have to recover irrelevant records, incurring higher
communication and computation throughput. However, it can
be clearly seen that the presented scheme is quite scalable and
handle range queries securely.

B. Sharing process

The investigation will encompass an analysis of the sharing
process in terms of the required time. The results obtained
indicate that a typical computer is capable of sharing seven
million records under one minute, given a scheme that utilizes
two data servers. It should be noted that the sharing process
is a one-time and offline operation that has negligible effects
on the scheme’s scalability.

C. Comprehension

To establish a benchmark for the scheme, a comprehensive
comparison has been conducted based on the obtained results.
The results are presented in a detailed table, outlining a
comprehensive analysis of both the proposed scheme and
current IDSSOs, with particular attention paid to factors of
security and efficiency.

Schemes Queries False Hits Attack resistance Fake records Scattered Values
Range Max Count Selection Sum

Hadavi [8] 7.9 130 NA NA NA × × ✓ ×
Emekci [14] 3.5 100 NA NA NA ✓ × × ×
Hacigumucs [15] 1.8 NA NA NA NA ✓ ✓ × ×
Bahrami [10] 0.139 138 1 13 0.115 × ✓ × ×
Proposed scheme 170 2.5 2.7 320 23 ✓ ✓ × ✓

TABLE II: Comparison between the proposed scheme and the current schemes. The running times are
in m.s. All queries are calculated over a database with 5k Records.

The range of queries supported by the proposed scheme is
wider than that of the current schemes, as demonstrated in
Table II. In addition, the proposed scheme exhibits efficient
and secure handling of scattered data, in contrast to other
schemes that cannot provide a scalable solution for dispersed
values. Ghasemi [9] presented an attack technique that enables
an unauthorized individual to retrieve sensitive information
from shares stored in DSs. The impact of this attack on various
schemes and the presented scheme has been documented in
the ”Attack resistance” column of a table. According to the
table, the proposed scheme resists this attack. Some schemes,
add fake records to increase the security of their scheme. In
contrast, in the presented scheme, there is no need for adding
fake records and it has been proved that it is secure with
respect to the security definition presented in [10]. Note that
the in the proposed scheme, there are false hits in the process
of queries, affecting running time. However, implementations
demonstrate that this does not have a noticeable impact on the
running time and the scheme still is able to handle queries
efficiently.

VI. CONCLUSION

The current ISSDOs schemes are inefficient in handling
scattered values due to their data structure. This paper proposes
a new data structure that significantly reduces communication
costs compared to current schemes when dealing with scat-
tered values. Unlike the current schemes, this data structure
utilizes shards to store indexes of values, resulting in a
reduction in the number of buckets and communication costs.
However, the use of sharding may result in false hits, which
can increase the running time. Nonetheless, several imple-
mentations have demonstrated that false hits have negligible
effects on running time, and all queries can be answered in a
few milliseconds. Furthermore, the proposed scheme has been
proven to be k− 1-secure in terms of security. Therefore, any
coalition consisting of no more than k − 1 servers and the
index server will be unable to extract meaningful information
about shared data.

REFERENCES

[1] “Aaron souppouris. linkedin investigating reports that
6.46 million hashed passwords have leaked online.”
http://www.theverge.com/2012/6/6/3067523/linkedin-
password-leak-online., 2012.

[2] “Cambridge analytica and facebook:
The scandal and the fallout so far.”
https://www.nytimes.com/2018/04/04/us/politics/cambridge-
analytica-scandal-fallout.html, 2012.

[3] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic
searchable symmetric encryption,” in Proceedings of the
2012 ACM conference on Computer and communications
security, 2012, pp. 965–976.

[4] M. Bellare and P. Rogaway, “Optimal asymmetric en-
cryption,” in Workshop on the Theory and Application
of of Cryptographic Techniques. Springer, 1994, pp.
92–111.

[5] G. J. Simmons, “Symmetric and asymmetric encryption,”
in Secure Communications and Asymmetric Cryptosys-
tems. Routledge, 2019, pp. 241–298.

[6] Z. Tang, “Secret sharing-based iot text data outsourcing:
A secure and efficient scheme,” IEEE Access, vol. 9, pp.
76 908–76 920, 2021.

[7] J. L. Dautrich and C. V. Ravishankar, “Security lim-
itations of using secret sharing for data outsourcing,”
in IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 2012, pp. 145–160.

[8] M. A. Hadavi, R. Jalili, E. Damiani, and S. Cimato,
“Security and searchability in secret sharing-based data
outsourcing,” International Journal of Information Secu-
rity, vol. 14, no. 6, pp. 513–529, 2015.

[9] R. Ghasemi, “Resolving a common vulnerability in se-
cret sharing scheme–based data outsourcing schemes,”
Concurrency and Computation: Practice and Experience,
vol. 32, no. 2, p. e5363, 2020.

[10] S. Bahrami and R. Ghasemi, “A new secure and search-
able data outsourcing leveraging a bucket-chain index

tree,” Journal of Information Security and Applications,
vol. 67, p. 103206, 2022.

[11] A. Shamir, “How to share a secret,” Communications of
the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[12] G. R. Blakley, “Safeguarding cryptographic keys,” in
Managing Requirements Knowledge, International Work-
shop on. IEEE Computer Society, 1979, pp. 313–313.

[13] J. Katz and Y. Lindell, Introduction to Modern
Cryptography, Second Edition, ser. Chapman &
Hall/CRC Cryptography and Network Security
Series. Taylor & Francis, 2014. [Online]. Available:
https://books.google.com/books?id=OWZYBQAAQBAJ

[14] F. Emekci, A. Methwally, D. Agrawal, and A. El Abbadi,
“Dividing secrets to secure data outsourcing,” Informa-
tion Sciences, vol. 263, pp. 198–210, 2014.

[15] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Exe-
cuting sql over encrypted data in the database-service-
provider model,” in Proceedings of the 2002 ACM SIG-
MOD international conference on Management of data,
2002, pp. 216–227.

APPENDIX

A detailed formal proof will be added to the paper in the
final version later.

