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Abstract

Quantum cryptography leverages many unique features of quantum information in order to
construct cryptographic primitives that are oftentimes impossible classically. In this work, we
build on the no-cloning principle of quantum mechanics and design cryptographic schemes with
key-revocation capabilities. We consider schemes where secret keys are represented as quantum
states with the guarantee that, once the secret key is successfully revoked from a user, they no
longer have the ability to perform the same functionality as before.

We define and construct several fundamental cryptographic primitives with key-revocation
capabilities, namely pseudorandom functions, secret-key and public-key encryption, and even
fully homomorphic encryption, assuming the quantum subexponential hardness of the learning
with errors problem. Central to all our constructions is our approach for making the Dual-Regev
encryption scheme (Gentry, Peikert and Vaikuntanathan, STOC 2008) revocable.
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1 Introduction

Quantum computing presents exciting new opportunities for cryptography, using remarkable proper-
ties of quantum information to construct cryptographic primitives that are unattainable classically.
At the heart of quantum cryptography lies the no-cloning principle [WZ82, Die82] of quantum in-
formation which stipulates that it is fundamentally impossible to copy an unknown quantum state.
Indeed, Wiesner [Wie83] in his seminal work from the 1970s, used the no-cloning principle to con-
struct a quantum money scheme, wherein quantum states are used to construct banknotes that
can be verified to be authentic (using a secret key) but cannot be counterfeited. Ever since this
watershed moment, and especially so in the recent years, a wide variety of primitives referred to as
unclonable primitives have been studied and constructed in the context of encryption [Got02, BL20,
BI20b, GZ20], digital signatures [LLQZ22] and pseudorandom functions [CLLZ21].

Our Work: Revocable Cryptography. Delegation and recovation of privilege are problems
of great importance in cryptography. Indeed, the problem of revocation in the context of digital
signatures and certificates in the classical world is a thorny problem [Stu95, Riv98]. In this work, we
undertake a systematic study of revocable (quantum) cryptography which allows us to delegate and
revoke privileges in the context of several fundamental cryptographic primitives. This continues a
recent line of work in quantum cryptography dealing with revoking (or certifiably deleting) states
such as quantum ciphertexts or simple quantum programs [Unr13, BI20b, GZ20, AL21, HMNY21a,
Por22, BK22].

As a motivating example, consider the setting of an employee at a company who takes a vacation
and wishes to authorize a colleague to perform certain tasks on her behalf, tasks that involve handling
sensitive data. Since the sensitive data is (required to be) encrypted, the employee must necessarily
share her decryption keys with her colleague. When she returns from vacation, she would like to
have her decryption key back; naturally, one would like to ensure that her colleague should not be
able to decrypt future ciphertexts (which are encrypted under the same public key) once the key is
“returned”. Evidently, if the decryption key is a classical object, this is impossible to achieve.

In revocable (quantum) cryptography, we associate a cryptographic functionality, such as de-
cryption using a secret key, with a quantum state in such a way that a user can compute this
functionality if and only if they are in possession of the quantum state. We then design a revocation
algorithm which enables the user to certifiably return the quantum state to the owner. Security
requires that once the user returns the state (via our revocation algorithm), they should not have
the ability to evaluate the functionality (e.g. decrypt ciphertexts) anymore. We refer to this new
security notion as revocation security.

Another, possibly non-obvious, application is to detecting malware attacks. Consider a malicious
party who hacks into an electronic device and manages to steal a user’s decryption keys. If crypto-
graphic keys are represented by classical bits, it is inherently challenging to detect phishing attacks
that compromise user keys. For all we know, the intruder could have stolen the user’s decryption
keys without leaving a trace. Indeed, a few years ago, decryption keys which were used to protect
cell-phone communications [Int15] were successfully stolen by spies without being detected. With
revocable cryptography, a malicious user successfully stealing a user key would invariably revoke
the decryption capability from the user. This latter event can be detected.
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Our Results in a Nutshell. We construct revocable cryptographic objects under standard cryp-
tographic assumptions. Our first main result constructs a key-revocable public-key encryption
scheme, and our second main result constructs a key-revocable pseudorandom function. We obtain
several corollaries and extensions, including key-revocable secret-key encryption and key-revocable
fully homomorphic encryption. In all these primitives, secret keys are represented as quantum states
that retain the functionality of the original secret keys. We design revocation procedures and guar-
antee that once a user successfully passes the procedure, they cannot compute the functionality any
more.

All our constructions are secure under the quantum subexponential hardness of learning with
errors [Reg05]. At the heart of all of our contributions lies our result which shows that the Dual-
Regev public-key encryption scheme [GPV07] satisfies revocation security.

Related Notions. There are several recent notions in quantum cryptography that are related
to revocability. Of particular relevance is the stronger notion of copy-protection introduced by
Aaronson [Aar09]. Breaking the revocable security of a task gives the adversary a way to make
two copies of a (possibly different) state both of which are capable of computing the same func-
tionality. Thus, uncloneability is a stronger notion. However, the only known constructions of
copy-protection [CLLZ21, LLQZ22] rely on the heavy hammer of post-quantum secure indistin-
guishability obfuscation for which there are no known constructions based on well-studied assump-
tions. Our constructions, in contrast, rely on the post-quantum hardness of the standard learning
with errors problem. Another related notion is the significantly weaker definition of secure software
leasing [AL21] which guarantees that once the quantum state computing a functionality is returned,
the honest evaluation algorithm cannot compute the original functionality. Yet another orthogo-
nal notion is that of certifiably deleting ciphertexts, originating from the works of Unruh [Unr13]
and Broadbent and Islam [BI20b]. In contrast, our goal is to delegate and revoke cryptographic
capabilities enabled by private keys. For detailed comparisons, we refer the reader to Section 1.4.

1.1 Our Contributions in More Detail

We present our results in more detail below. First, we introduce the notion of key-revocable public-
key encryption. Our main result is that dual-Regev public-key encryption scheme [GPV07] satisfies
revocation security. After that, we study revocation security in the context of fully homomorphic
encryption and pseudorandom functions.

Key-Revocable Public-Key Encryption. We consider public-key encryption schemes where
the decryption key, modeled as a quantum state, can be delegated to a third party and can later be
revoked [GZ20]. The syntax of a key-revocable public-key scheme (Definition 5.1) is as follows:

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆): this is a setup procedure which outputs a public key 𝖯𝖪, a master secret key
𝖬𝖲𝖪 and a decryption key 𝜌𝖲𝖪. While the master secret key is typically a classical string, the
decryption key is modeled as a quantum state. (The use cases of 𝖬𝖲𝖪 and 𝜌𝖲𝖪 are different,
as will be evident below.)

• 𝖤𝗇𝖼(𝖯𝖪, 𝑥): this is the regular classical encryption algorithm which outputs a ciphertext 𝖢𝖳.

• 𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳): this is a quantum algorithm which takes as input the quantum decryption key
𝜌𝖲𝖪 and a classical ciphertext, and produces a plaintext.
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• 𝖱𝖾𝗏𝗈𝗄𝖾(𝖯𝖪,𝖬𝖲𝖪, 𝜎): this is the revocation procedure that outputs 𝖵𝖺𝗅𝗂𝖽 or 𝖨𝗇𝗏𝖺𝗅𝗂𝖽. If 𝜎 equals
the decryption key 𝜌𝖲𝖪, then 𝖱𝖾𝗏𝗈𝗄𝖾 is expected to output 𝖵𝖺𝗅𝗂𝖽 with high probability.

After the decryption key is returned, we require that the sender loses its ability to decrypt cipher-
texts. This is formalized as follows (see Definition 5.3): conditioned on revocation being successful,
the adversary should not be able to predict whether it is given an encryption of a message versus
uniform distribution over the ciphertext space with probability better than1 1

2 + 𝗇𝖾𝗀𝗅(𝜆). We prove
the following in Theorem 6.1.

Theorem 1.1 (Informal). Assuming that the 𝖫𝖶𝖤 and 𝖲𝖨𝖲 problems with subexponential modulus
are hard against quantum adversaries running in subexponential time (see Section 2.2), there exists
a key-revocable public-key encryption scheme.

Due to the quantum reduction from 𝖲𝖨𝖲 to 𝖫𝖶𝖤 [SSTX09], the two assumptions are, in some sense,
equivalent. Therefore, we can in principle rely on the subexponential hardness of 𝖫𝖶𝖤 alone.

Our work improves upon prior works, which either use post-quantum secure indistinguishability
obfuscation [GZ20, CLLZ21] or consider the weaker private-key setting [KN22].

Key-Revocable Fully Homomorphic Encryption. We go beyond the traditional public-key
setting and design the first fully homomorphic encryption (FHE) scheme [Gen09, BV14b] with key-
revocation capabilities. Our construction is based on a variant of the (leveled) FHE scheme of
Gentry, Sahai and Waters [GSW13], which we extend to a key-revocable encryption scheme using
Gaussian superpositions. The syntax of a key-revocable FHE scheme is the same as in the key-
revocable public-key setting from before (Definition 5.1), except for the additional algorithm Eval
which is the same as in a regular FHE scheme. We prove the following in Theorem 7.1.

Theorem 1.2 (Informal). Assuming that the 𝖫𝖶𝖤 and 𝖲𝖨𝖲 problems with subexponential modulus
are hard against quantum adversaries running in subexponential time (see Section 2.2), there exists
a key-revocable (leveled) fully homomorphic encryption scheme.

We prove the theorem by invoking the security of our key-revocable Dual-Regev public-key
encryption scheme in Section 6.

(Key-)Revocable Pseudorandom Functions. We consider other cryptographic primitives with
key-revocation capabilities that go beyond decryption functionalities; specifically, we introduce the
notion of key-revocable pseudorandom functions (PRFs) with the following syntax:

• 𝖦𝖾𝗇(1𝜆): outputs a PRF key 𝑘, a quantum key 𝜌𝑘 and a master secret key 𝖬𝖲𝖪.

• 𝖯𝖱𝖥(𝑘;𝑥): on key 𝑘 and input 𝑥, output a value 𝑦. This is a deterministic algorithm.

• 𝖤𝗏𝖺𝗅(𝜌𝑘, 𝑥): on input a state 𝜌𝑘 and an input 𝑥, output a value 𝑦.

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪, 𝜎): on input verification 𝖬𝖲𝖪 and state 𝜎, outputs 𝖵𝖺𝗅𝗂𝖽 or 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.
1The definition is intentionally formulated as a 1-bit unpredictability game; this is inspired by the notion of

uncloneable-indistinguishable security considered by Broadbent and Lord [BL20]. Unlike the traditional cryptography
literature, in this setting, 1-bit unpredictability is not equivalent to computational indistinguishability; the reason is
that we also incorporate whether revocation is successful in the security experiment. Nonetheless, our construction
satisfies the indistinguishability-based security notion as well.
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After the quantum key 𝜌𝑘 is successfully returned, we require that the sender loses its ability to
evaluate the 𝖯𝖱𝖥. This is formalized as follows (see Definition 8.3): any efficient adversary can
simultaneously pass the revocation phase and succeed in predicting the output of a pseudorandom
function on a challenge input 𝑥* versus uniform with probability at most 1

2 + 𝗇𝖾𝗀𝗅(𝜆). In fact, we
consider a more general definition where the adversary receives many challenge inputs instead of
just one challenge input.

We give the first construction of key-revocable pseudorandom functions (PRFs) from standard
assumptions. Previous schemes implicit in [CLLZ21] either require indistinguishability obfusca-
tion, or considered weaker notions of revocable PRFs in the form of secure software leasing [AL21,
KNY21a], which merely prevents the possiblity of honestly evaluating the PRF once the key is
revoked.

Since in the context of pseudorandom functions, it is clear what is being revoked, we instead
simply call the notion revocable pseudorandom functions.

Theorem 1.3 (Informal). Assuming that the 𝖫𝖶𝖤 and 𝖲𝖨𝖲 problems with subexponential modulus
are hard against quantum adversaries running in subexponential time (see Section 2.2), there exist
key-revocable pseudorandom functions.

Revocable pseudorandom functions immediately give us key-revocable (many time secure) secret-
key encrypton schemes.

Discussion: Unclonable Cryptography from LWE. Over the years, the existence of many
fundamental cryptographic primitives such as pseudorandom functions [BPR12], fully homomorphic
encryption [BV14a], attribute-based encryption [BGG+14] and succinct argument systems [CJJ22]
have been based on the existence of learning with errors. In fact, as far as we know, there are only a
few foundational primitives remaining (indistinguishability obfuscation is one such example) whose
existence is not (yet) known to be based on learning with errors.

This situation is quite different in the world of unclonable cryptography. Most of the prominent
results have information-theoretic guarantees but restricted functionalities [BI20b, BL20] or are
based on the existence of post-quantum indistinguishability obfuscation [Zha21, CLLZ21]. While
there are works [KNY21b] that do propose lattice-based constructions of unclonable primitives, there
are still many primitives, such as quantum money and quantum copy-protection, whose feasibility
we would like to establish based on the existence of learning with errors. We hope that our work
presents new toolkits towards building more unclonable primitives from 𝖫𝖶𝖤.

Independent and Concurrent Work. Independently and concurrently, Agrawal et al. [AKN+23],
explored the notion of public-key encryption with secure leasing which is related to key-revocable
public-key encryption. Their notion as such is stronger than ours: they achieve classical revocation
whereas we achieve quantum revocation. On the one hand, they achieve a generic construction
based on any post-quantum secure public-key encryption whereas our notion is based on the post-
quantum hardness of learning with errors. They also explore other notions of advanced encryption
with secure leasing including attribute-based encryption and functional encryption, which are not
explored in our work.

On the other hand, their construction of revocable public-key encryption involves many abstrac-
tions whereas our construction is based on the versatile Dual-Regev public-key encryption scheme.
Additionally, we obtain key-revocable fully homomorphic encryption and key-revocable pseudoran-
dom functions which are unique to our work.
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1.2 Overview

We now give a technical overview of our constructions and their high level proof ideas. We begin
with the key-revocable public-key encryption construction. A natural idea would be to start with
Regev’s public-key encryption scheme [Reg05] and to then upgrade the construction in order to
make it revocable. However, natural attempts to associate an unclonable quantum state with the
decryption key fail and thus, we instead consider the Dual-Regev public-key encryption scheme and
make it key-revocable. We describe the scheme below.

Key-Revocable Dual-Regev Public-Key Encryption. Our first construction is based on the
Dual-Regev public-key encryption scheme [GPV07] and makes use of Gaussian superpositions which
serve as a quantum decryption key. We give an overview of Construction 2 below.

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝑛): sample a matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 along with a short trapdoor basis 𝗍𝖽𝐀. To generate
the decryption key, we employ the following procedure2: Using the matrix 𝐀 as input, first
create a Gaussian superposition of short vectors in ℤ𝑚 ∩ (− 𝑞

2 ,
𝑞
2 ]
𝑚, denoted by3

|𝜓⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝜌𝜎(𝐱) |𝐱⟩ ⊗ |𝐀 · 𝐱 (mod 𝑞)⟩

where 𝜌𝜎(𝐱) = exp(−𝜋‖𝐱‖2/𝜎2) is the Gaussian measure, for some 𝜎 > 0. Next, measure the
second register which partially collapses the superposition and results in the coset state

|𝜓𝐲⟩ =
∑︁

𝐱∈ℤ𝑚
𝑞 :

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩

for some outcome 𝐲 ∈ ℤ𝑛𝑞 . Finally, we let |𝜓𝐲⟩ be the decryption key 𝜌𝖲𝖪, (𝐀,𝐲) be the public
key 𝖯𝖪, and we let the trapdoor 𝗍𝖽𝐀 serve as the master secret key 𝖬𝖲𝖪.

• 𝖤𝗇𝖼(𝖯𝖪, 𝜇): to encrypt a bit 𝜇 ∈ {0, 1}, sample a random string 𝐬
$←− ℤ𝑛𝑞 together with discrete

Gaussian errors 𝐞 ∈ ℤ𝑚 and 𝑒′ ∈ ℤ, and output the (classical) ciphertext 𝖢𝖳 given by

𝖢𝖳 = (𝐬⊺𝐀+ 𝐞⊺, 𝐬⊺𝐲 + 𝑒′ + 𝜇 · ⌊𝑞
2
⌋) ∈ ℤ𝑚𝑞 × ℤ𝑞.

• 𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳): to decrypt a ciphertext 𝖢𝖳 using the decryption key 𝜌𝖲𝖪 = |𝜓𝐲⟩, first apply
the unitary 𝑈 : |𝐱⟩ |0⟩ → |𝐱⟩ |𝖢𝖳 · (−𝐱, 1)⊺⟩ on input |𝜓𝐲⟩ |0⟩, and then measure the second
register in the computational basis. Because |𝜓𝐲⟩ is a superposition of short vectors 𝐱 subject
to 𝐀 · 𝐱 = 𝐲 (mod 𝑞), we obtain an approximation of 𝜇 · ⌊ 𝑞2⌋ from which we can recover 𝜇.4

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝖯𝖪,𝖬𝖲𝖪, 𝜌): to verify the returned state 𝜌 given as input the public key (𝐀,𝐲) and
master secret key 𝗍𝖽𝐀, apply the projective measurement {|𝜓𝐲⟩⟨𝜓𝐲|, 𝐼 − |𝜓𝐲⟩⟨𝜓𝐲|} onto 𝜌.
Output 𝖵𝖺𝗅𝗂𝖽, if the measurement succeeds, and output 𝖨𝗇𝗏𝖺𝗅𝗂𝖽, otherwise.

2In Section 3.2, this is formalized as the procedure 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌 (see Algorithm 1).
3Note that the state is not normalized for convenience.
4For approriate choices of parameters, decryption via rounding succeeds at outputting 𝜇 with overwhelming

probability and hence we can invoke the Almost as Good as New Lemma [Aar16] to recover the original state |𝜓𝐲⟩.
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Implementing revocation, efficiently. Note that performing a projective measurement onto a
fixed Gaussian state |𝜓𝐲⟩ is, in general, computationally infeasable. In fact, if it were to be possible
to efficiently perform this projection using (𝐀,𝐲) alone, then one could easily use such a procedure
to solve the short integer solution (𝖲𝖨𝖲) problem. Fortunately, we additionally have the trapdoor
for 𝐀 at our disposal to perform the projection.

One of our contributions is to design a quantum discrete Gaussian sampler for 𝑞-ary lattices5

which, given as input (𝐀,𝐲, 𝗍𝖽𝐀, 𝜎), implements a unitary that efficiently prepares the Gaussian
superposition |𝜓𝐲⟩ from scratch with access to the trapdoor 𝗍𝖽𝐀. At a high level, our Gaussian sam-
pler can be thought of as an explicit quantum reduction from the inhomogenous 𝖲𝖨𝖲 problem [Ajt96]
to the search variant of the 𝖫𝖶𝖤 problem (see Section 3.3).

Proving security: Initial challenges. Let us first discuss some high level ideas behind proving
the security of the above constrution. We would like to prove that if the above scheme is insecure
in the presence of a particular adversary, then we can use such an adverary to contradict some well-
known computational assumption. That is, there exists an adversary who can simultaneously pass
the revocation step successfully and also predict whether it receives a ciphertext or a uniform element
from the ciphertext space. Towards designing such a reduction, an initial attempt would be to use the
predictor, predicting an encryption of a valid message versus uniform, to break some computational
assumption. Indeed, since the ciphertexts look like samples from the 𝖫𝖶𝖤 distribution, we might
be tempted to directly invoke 𝖫𝖶𝖤 to prove this. Unfortunately, this argument is flawed! For all
we know, the adversary could be doing the following: given the state |𝜓𝐲⟩, it clones it, returns the
cloned version and, then uses the original copy to distinguish encryption of a valid message versus
uniform. In this case, the predictor is running the decryption algorithm honestly and thus it is not
feasible to use such an adversary to break 𝖫𝖶𝖤.

This suggests that we may be able to argue that a computationally bounded adversary cannot
possibly clone the state |𝜓𝐲⟩. Indeed, if the adversary did succeed at cloning |𝜓𝐲⟩, then we should
be able to measure the two copies separately in order to come up with a short solution in the kernel
of 𝐀 ∈ ℤ𝑛×𝑚𝑞 – thereby solving the short integer solution (𝖲𝖨𝖲) problem [Ajt96]. However, it is not
clear if the adversary needs to clone the state in order for it to succeed. Perhaps the adversary did
not clone the state after all and nevertheless succeeded at distinguishing a valid ciphertext versus
uniform ciphertext. For all we know, the adversary could have been successful in breaking 𝖫𝖶𝖤.

Since it is not possible to detect which scenario we are in (i.e. whether the adversary successfully
cloned or whether it solved the 𝖫𝖶𝖤 problem), it is important that the reduction leverages the fact
that the adversary simultaneously returns the original state and yet at the same time violates the
1-bit unpredictability experiment, in order to break some computational assumption.

Insight: Reduction to SIS. Our goal is to use the state returned by the adversary and to
leverage the 1-bit prediction guarantee in order to break some computational problem. It should
seem suspicious whether such a reduction is even possible: after all the adversary is returning the
state we gave them! How could this possibly help? Our main insight lies in the following observation:
while the adversary does eventually return the state we give them, the only way it can later succeed
in the prediction experiment is if it retains useful information about the state. If we could somehow
extract this information from the adversary, then using the extracted information alongside the
returned state, we could hope to break some computational assumption. For instance, suppose we

5In Section 3.3, this is formalized as the procedure QSampGauss (see Algorithm 2).
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can extract a short vector 𝐱 such that 𝐀 · 𝐱 = 𝐲 (mod 𝑞). By measuring the state returned by the
adversary, we could then hope to get a second short vector 𝐱′ such that 𝐀 · 𝐱′ = 𝐲 (mod 𝑞), and
from this, we can recover a short solution in the kernel of 𝐀 ∈ ℤ𝑛×𝑚𝑞 .

Even if, for a moment, we disregard the issue of being able to extract 𝐱 from the adversary,
there are still some important missing steps in the above proof template:

• Firstly, measuring the returned state should give a vector different from 𝐱 with non-negligible
probability. In order to prove this, we need to argue that the squared ampltidue of every term
is bounded away from 1. We prove this statement (Lemma 2.9) holds as long as 𝐀 is full rank.

• Secondly, the reduction to 𝖲𝖨𝖲 would only get as input 𝐀 and not a trapdoor for 𝐀. This
means that it will no longer be possible for the reduction to actually check whether the state
returned by the adversary is valid. We observe that, instead of first verifying whether the
returned state is valid and then measuring in the computational basis, we can in fact skip
verification and immediately go ahead and measure the state in the computational basis; this
is implicit in the analysis in the proof of Lemma 6.9.

• Finally, the adversary could have entangled the returned state with its residual state in such
a way that measuring the returned state always yields the same vector 𝐱 as the one extracted
from the adversary. In the same analysis in the proof of Lemma 6.9, we prove that, even if
the adversary entangles its state with the returned state, with non-negligible probability we
get two distinct short vectors mapping 𝐀 to 𝐲.

All that is left is to argue that it is possible to extract 𝐱 from the adversary while simultaneously
verifying whether the returned state is correct or not. To show that we can indeed extract another
short pre-image from the adversary’s quantum side information, we prove what we call a simul-
taneous search-to-decision reduction with quantum auxiliary input with respect to the Dual-Regev
scheme (see Theorem 6.8). This constitutes the main technical result of this work.

Main contribution: Simultaneous search-to-decision reduction with quantum advice.
Informally, our theorem says the following: any successful Dual-Regev distinguisher with access to
quantum side information Aux (which depends on the decryption key) can be converted into a
successful extractor that finds a key on input Aux – even conditioned on 𝖱𝖾𝗏𝗈𝗄𝖾 succeeding on a
seperate register 𝑅. We now present some intuition behind our proof.

Suppose there exists a successful Dual-Regev distinguisher 𝒟 (as part of the adversary 𝒜) that,
given quantum auxiliary information Aux, can distinguish between (𝐬⊺𝐀+𝐞⊺, 𝐬⊺𝐲+𝑒′) and uniform
(𝐮, 𝑟) ∈ ℤ𝑚𝑞 × ℤ𝑞 with advantage 𝜖.

Ignoring register 𝑅: For now, let us ignore the fact that 𝖱𝖾𝗏𝗈𝗄𝖾 is simultaneously applied on sys-
tem 𝑅. Inspired by techniques from the leakage resilience literature [DGT+10], we now make the
following observation. Letting 𝐲 = 𝐀 · 𝐱0 (mod 𝑞), for some Gaussian vector 𝐱0 with distribution
proportional to 𝜌𝜎(𝐱0), the former sample can be written as (𝐬⊺𝐀+ 𝐞⊺, (𝐬⊺𝐀+ 𝐞⊺) · 𝐱0 + 𝑒′). Here,
we assume a noise flooding regime in which the noise magnitude of 𝑒′ is significantly larger than
that of 𝐞⊺ · 𝐱0. Because the distributions are statistically close, the distinguisher 𝒟 must succeed
at distinguishing the sample from uniform with probability negligibly close to 𝜖. Finally, we invoke
the 𝖫𝖶𝖤 assumption and claim that the same distinguishing advantage persists, even if we replace
(𝐬⊺𝐀+𝐞⊺) with a random string 𝐮 ∈ ℤ𝑚𝑞 . Here, we rely on the fact that the underlying 𝖫𝖶𝖤 sample

9



is, in some sense, independent of the auxiliary input Aux handed to the distinguisher 𝒟. To show
that this is the case, we need to argue that the reduction can generate the appropriate inputs to 𝒟
on input 𝐀; in particular it should be able to generate the auxiliary input Aux (which depends on
a state |𝜓𝐲⟩), while simultaneously producing a Gaussian vector 𝐱0 such that 𝐀 · 𝐱0 = 𝐲 (mod 𝑞).
Note that this seems to violate the 𝖲𝖨𝖲 assumption, since the ability to produce both a superposition
|𝜓𝐲⟩ of pre-images and a single pre-image 𝐱0 would allow one to obtain a collision for 𝐲.

Invoking Gaussian-collapsing: To overcome this issue, we ask the reduction to generate the quantum
auxiliary input in a different way; rather than computing Aux as a function of |𝜓𝐲⟩, we compute
it as a function of |𝐱0⟩, where 𝐱0 results from collapsing the state |𝜓𝐲⟩ via a measurement in the
computational basis. By invoking the Gaussian collapsing property [Por22], we can show that the
auxiliary information computed using |𝜓𝐲⟩ is computationally indistinguishable from the auxiliary
information computed using |𝐱0⟩. Once we invoke the collapsed version of |𝜓𝐲⟩, we can carry out
the reduction and conclude that 𝒟 can distinguish between the samples (𝐮,𝐮⊺𝐱0) and (𝐮, 𝑟), where
𝐮 and 𝑟 are random and 𝐱0 is Gaussian, with advantage negligibly close to 𝜖.6 Notice that 𝒟 now
resembles a so-called Goldreich-Levin distinguisher [GL89].

Reduction to Goldreich-Levin: Assuming the existence of a quantum Goldreich-Levin theorem for
the field ℤ𝑞, one could then convert 𝒟 into an extractor that extracts 𝐱0 with high probability.
Prior to our work, a quantum Goldreich-Levin theorem was only known for ℤ2 [AC02, CLLZ21].
In particular, it is unclear how to extend prior work towards higher order fields ℤ𝑞 because the in-
terference pattern in the analysis of the quantum extractor does not seem to generalize beyond the
case when 𝑞 = 2. Fortunately, we can rely on the classical Goldreich-Levin theorem for finite fields
due to Dodis et al. [DGT+10], as well as recent work by Bitansky, Brakerski and Kalai. [BBK22]
which shows that a large class of classical reductions can be generically converted into a quantum
reductions. This allows us to obtain the first quantum Goldreich-Levin theorem for large fields,
which we prove in Section 4. Specifically, we can show that a distinguisher 𝒟 that, given auxiliary
input Aux, can distinguish between (𝐮,𝐮⊺𝐱0) and (𝐮, 𝑟) with advantage 𝜀 can be converted into a
quantum extractor that can extract 𝐱0 given Aux in time poly(1/𝜀, 𝑞) with probability negligibly
close to 1. The fact that the extractor succeeds with probability negligibly close to 1 is crucial in
our analysis mentioned below.

Incorporating 𝑅: To complete the security proof behind our key-revocable Dual-Regev scheme, we
need to show something stronger ; namely, we need to argue that the Goldreich-Levin extractor
succeeds on input Aux – even conditioned on the fact that 𝖱𝖾𝗏𝗈𝗄𝖾 outputs 𝖵𝖺𝗅𝗂𝖽 when applied on
a separate register 𝑅 (which may be entangled with Aux). At first sight, it might seem as though
all the previous ideas are of no use since the guarantee of the Goldreich-Levin extractor only holds
when we ignore the register 𝑅.

Fortunately, the Goldreich-Levin extractor succeeds with probability negligibly close to 1. Since
the probability that revocation succeeds is non-negligible, this implies that the extractor has to
succeed with non-negligible probability – even if we condition on revocation succeeding on register
𝑅. Using this fact, we can successfully carry out the reduction to 𝖲𝖨𝖲.

6Technically, 𝒟 can distinguish between (𝐮,𝐮⊺𝐱0 + 𝑒′) and (𝐮, 𝑟) for a Gaussian error 𝑒′. However, by defining a
distinguisher 𝒟̃ that first shifts 𝐮 by a Gaussian vector 𝑒′ and then runs 𝒟, we obtain the desired distinguisher.
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1.3 Applications

We leverage our result of key-revocable Dual-Regev encryption to get key-revocable fully homomor-
phic encryption and revocable pseudorandom functions.

Key-Revocable Dual-Regev Fully Homomorphic Encryption. Our first application of our
key-revocable public-key encryption concerns fully homomorphic encryption schemes. We extend
our key-revocable Dual-Regev scheme towards a (leveled) 𝖥𝖧𝖤 scheme in Construction 3 by using
the DualGSW variant of the 𝖥𝖧𝖤 scheme by Gentry, Sahai and Waters [GSW13, Mah18].

To encrypt a bit 𝜇 ∈ {0, 1} with respect to the public-key (𝐀,𝐲), sample a matrix 𝐒 $←−ℤ𝑛×𝑁𝑞

together with a Gaussian error matrix 𝐄 ∈ ℤ𝑚×𝑁 and row vector 𝐞 ∈ ℤ𝑁 , and output the ciphertext

𝖢𝖳 =
[︁
𝐀⊺𝐒+𝐄

𝐲⊺𝐒+𝐞

]︁
+ 𝜇 ·𝐆 (mod 𝑞) ∈ ℤ(𝑚+1)×𝑁

𝑞 .

Here, 𝐆 is the gadget matrix which converts a binary vector in into its field representation over ℤ𝑞.
As before, the decryption key consists of a Gaussian superposition |𝜓𝐲⟩ of pre-images of 𝐲.

Note that the DualGSW ciphertext can be thought of as a column-wise concatenation of 𝑁 -many
independent Dual-Regev ciphertexts. In Theorem 7.1, we prove the security of our construction by
invoking the security of our key-revocable Dual-Regev scheme.

Revocable Pseudorandom Functions. Our next focus is on leveraging the techniques behind
key-revocable public-key encryption to obtain revocable pseudorandom functions. Recall that the
revocation security of pseudorandom functions stipulates the following: any efficient adversary
(after successfully revoking the state that enables it to evaluate pseudorandom functions) cannot
predict whether it receives pseudorandom outputs on many challenge inputs versus strings picked
uniformly at random with probability better than 1

2 + 𝗇𝖾𝗀𝗅(𝜆). An astute reader might notice that
revocation security does not even imply the traditional pseudorandomness guarantee! Hence, we
need to additionally impose the requirement that a revocable pseudorandom function should also
satisfy the traditional pseudorandomness guarantee.

Towards realizing a construction satisfying our definitions, we consider the following template:

1. First show that there exists a 𝜇-revocable pseudorandom function for 𝜇 = 1. Here, 𝜇-
revocation security means the adversary receives 𝜇-many random inputs after revocation.

2. Next, we show that any 1-revocable pseudorandom function also satisfies the stronger notion
of revocation security where there is no a priori bound on the number of challenge inputs
received by the adversary.

3. Finally, we show that we can generically upgrade any revocable 𝖯𝖱𝖥 in such a way that it
also satisfies the traditional pseudorandomness property.

The second bullet is proven using a hybrid argument. The third bullet is realized by combining a
revocable 𝖯𝖱𝖥 with a post-quantum secure 𝖯𝖱𝖥 (not necessarily satisfying revocation security).

Hence, we focus the rest of our attention on proving the first bullet.

1-revocation security. We start with the following warmup construction. The secret key 𝑘 comprises
of matrices 𝐀, {𝐒𝑖,0,𝐒𝑖,1}𝑖∈[ℓ],𝑏∈{0,1}, where 𝐀

$←− ℤ𝑛×𝑚𝑞 , 𝐒𝑖,𝑏 ∈ ℤ𝑛×𝑛𝑞 such that all 𝐒𝑖,𝑏 are sampled
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from some error distribution and the output of the pseudorandom function on 𝑥 is denoted to be
⌊
∑︀

𝑖∈[ℓ] 𝐒𝑖,𝑥𝑖𝐀⌉𝑝, where 𝑞 ≫ 𝑝 and ⌊·⌉𝑝 refers to a particular rounding operation modulo 𝑝.
In addition to handing out a regular 𝖯𝖱𝖥 key 𝑘, we also need to generate a quantum key 𝜌𝑘 such

that, given 𝜌𝑘 and any input 𝑥, we can efficiently compute 𝖯𝖱𝖥(𝑘, 𝑥). Moreover, 𝜌𝑘 can be revoked
such that any efficient adversary after revocation loses the ability to evaluate the pseudorandom
function. To enable the generation of 𝜌𝑘, we first modify the above construction. We generate
𝐲 ∈ ℤ𝑛𝑞 and include this as part of the key. The modified pseudorandom function, on input 𝑥,
outputs ⌊

∑︀
𝑖∈[ℓ] 𝐒𝑖,𝑥𝑖𝐲⌉𝑝. We denote

∑︀
𝑖∈[ℓ] 𝐒𝑖,𝑥𝑖 by 𝐒𝑥 and, with this new notation, the output of

the pseudorandom function can be written as ⌊𝐒𝑥𝐲⌉𝑝.
With this modified construction, we now describe the elements as part of the quantum key 𝜌𝑘:

• For every 𝑖 ∈ [ℓ], include 𝐒𝑖,𝑏𝐀+𝐄𝑖,𝑏 in 𝜌𝑘, where 𝑖 ∈ [ℓ] and 𝑏 ∈ {0, 1}. We sample 𝐒𝑖,𝑏 and
𝐄𝑖,𝑏 from a discrete Gaussian distribution with appropriate standard deviation 𝜎 > 0.

• Include |𝜓𝐲⟩ which, as defined in the key-revocable Dual-Regev construction, is a Gaussian
superposition of short solutions mapping 𝐀 to 𝐲.

To evaluate on an input 𝑥 using 𝜌𝑘, compute
∑︀

𝑖 𝐒𝑖,𝑥𝑖𝐀+𝐄𝑖,𝑥𝑖 and then using the state |𝜓𝐲⟩, map
this to

∑︀
𝑖 𝐒𝑖,𝑥𝑖𝐲 +𝐄𝑖,𝑥𝑖 . Finally, perform the rounding operation to get the desired result.

Our goal is to show that after the adversary revokes |𝜓𝐲⟩, on input a challenge input 𝑥* picked
uniformly at random, it cannot predict whether it has received ⌊

∑︀
𝑖∈[𝑁 ] 𝐒𝑖,𝑥*𝑖 𝐲⌉𝑝 or a uniformly

random vector in ℤ𝑛𝑝 .

Challenges in proving security: We would like to argue that when the state |𝜓𝐲⟩ is revoked, the
adversary loses its ability to evaluate the pseudorandom function. Unfortunately, this is not com-
pletely true. For all we know, the adversary could have computed the pseudorandom function on
many inputs of its choice before the revocation phase and it could leverage this to break the secu-
rity after revocation. For instance, suppose say the input is of length 𝑂(log 𝜆) then in this case,
the adversary could evaluate the pseudorandom function on all possible inputs before revocation.
After revocation, on any challenge input 𝑥*, the adversary can then successfully predict whether it
receives a pseudorandom output or a uniformly chosen random output. Indeed, a pseudorandom
function with 𝑂(log 𝜆)-length input is learnable and hence, there should be no hope of proving it
to be key-revocable. This suggests that, at the very least, we need to explicitly incorporate the fact
that 𝑥* is of length 𝜔(log 𝜆), and more importantly, should have enough entropy, in order to prove
security.

Our insight: Our insight is to reduce the security of revocable pseudorandom function to the security
of key-revocable Dual-Regev public-key encryption. At a high level, our goal is to set up the
parameters in such a way that the following holds:

• (𝐀,𝐲), defined above, is set to be the public key corresponding to the Dual-Regev public-key
encryption scheme,

• |𝜓𝐲⟩, which is part of the pseudorandom function key, is set to be the decryption key of the
Dual Regev scheme,

• Suppose that the challenge ciphertext, denoted by 𝖢𝖳*, comprises of two parts: 𝖢𝖳*1 ∈ ℤ𝑛×𝑚𝑞

and 𝖢𝖳*2 ∈ ℤ𝑛𝑞 . Note that if 𝖢𝖳*1 ≈ 𝐬⊺𝐀 and 𝖢𝖳*2 ≈ 𝐬⊺𝐲, for some 𝖫𝖶𝖤 secret vector 𝐬, then
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𝖢𝖳*1 can be mapped onto 𝖢𝖳*2 using the state |𝜓𝐲⟩. We use 𝖢𝖳*1 to set the challenge input
𝑥* in such a way that 𝖢𝖳*2 is the output of the pseudorandom function on 𝑥*. This implicitly
resolves the entropy issue we discussed above; by the semantic security of Dual-Regev, there
should be enough entropy in 𝖢𝖳*1 which translates to the entropy of 𝑥*.

It turns our goal is quite ambitious: in particular, it is unclear how to set up the parameters in such
that the output of the pseudorandom function on 𝑥 is exactly 𝖢𝖳*2. Fortunately, this will not be a
deterrant, we can set up the parameters such that the output is ≈ 𝖢𝖳*2 + 𝐮, where 𝐮 is a vector
that is known to reduction.

Once we set up the parameters, we can then reduce the security of revocable pseudorandom
functions to revocable Dual Regev.

Implementation details: So far we established the proof template should work but the implemen-
tation details of the proof need to be fleshed out. Firstly, we set up the parameters in such a way
that ℓ = 𝑛𝑚⌈log 𝑞⌉. This means that there is a bijective function mapping [𝑛] × [𝑚] × [⌈log 𝑞⌉] to
[ℓ]. As a result, the quantum key 𝜌𝑘 can be alternately viewed as follows:

• For every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝜏 ∈ [⌈log 𝑞⌉], 𝑏 ∈ {0, 1}, include 𝐒
(𝑖,𝑗,𝜏)
𝑏 𝐀+𝐄

(𝑖,𝑗,𝜏)
𝑏 in 𝜌𝑘. We sample

𝐒
(𝑖,𝑗,𝜏)
𝑏 and 𝐄

(𝑖,𝑗,𝜏)
𝑏 from a discrete Gaussian with appropriate standard deviation 𝜎 > 0.

The output of the pseudorandom function on input 𝑥 can now be interpreted as

𝖯𝖱𝖥(𝑘, 𝑥) =

⎡⎢⎢⎢⎢⎢
∑︁

𝑖∈[𝑛],𝑗∈[𝑚]
𝜏∈[⌈log 𝑞⌉]

𝐒(𝑖,𝑗,𝜏)
𝑥𝑖 𝐲

⎤⎥⎥⎥⎥⎥
𝑝

Next, we modify 𝜌𝑘 as follows: instead of generating, 𝐒(𝑖,𝑗,𝜏)
𝑏 𝐀 + 𝐄

(𝑖,𝑗,𝜏)
𝑏 , we instead generate

𝐒
(𝑖,𝑗,𝜏)
𝑏 𝐀 + 𝐄

(𝑖,𝑗,𝜏)
𝑏 +𝖬

(𝑖,𝑗,𝑘)
𝑏 , for any set of matrices {𝖬(𝑖,𝑗,𝜏)

𝑏 }. The change should be undetectable
to a computationally bounded adversary, thanks to the quantum hardness of learning with errors.
In the security proof, we set up the challenge input 𝑥* in such a way that summing up the matrices
𝖬

(𝑖,𝑗,𝜏)
𝑥*𝑖

corresponds to 𝖢𝖳*1, where 𝖢𝖳*1 is part of the key-revocable Dual-Regev challenge ciphertext
as discussed above. With this modification, when 𝜌𝑘 is evaluated on 𝑥*, we get an output that is
close to 𝖢𝖳*2 + 𝐮, where 𝐮 ≈

∑︀
𝑖∈[𝑛],𝑗∈[𝑚],𝜏∈[⌈log(𝑞)⌉] 𝐲 is known to the reduction (discussed above) –

thereby violating the security of key-revocable Dual-Regev scheme.

1.4 Related Work

Copy-Protection. Of particular relevance to our work is the foundational notion of copy-protection
introduced by Aaronson [Aar09]. Informally speaking, a copy-protection scheme is a compiler that
transforms programs into quantum states in such a way that using the resulting states, one can run
the original program. Yet, the security guarantee stipulates that any adversary given one copy of
the state cannot produce a bipartite state wherein both parts compute the original program.

While copy-protection is known to be impossible for arbitrary unlearnable functions [AL21,
AK22], identifying interesting functionalities for which copy-protection is feasible has been an active
research direction [CMP20, AKL+22, AKL23]. Of particular significance is the problem of copy-
protecting cryptographic functionalities, such as decryption and signing functionalities. Coladangelo
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et al. [CLLZ21] took the first step in this direction and showed that it is feasible to copy-protect
decryption functionalities and pseudorandom functions assuming the existence of post-quantum
indistinguishability obfuscation. While a very significant first step, the assumption of post-quantum
iO is unsatisfactory: there have been numerous post-quantum iO candidate proposals [BMSZ16,
CVW18, BDGM20, DQV+21, GP21, WW21], but not one of them have been based on well-studied
assumptions7.

Our work can be viewed as copy-protecting cryptographic functionalities based on learning with
errors under a weaker yet meaningful security guarantee.

Secure Software Leasing. Another primitive relavent to revocable cryptography is secure soft-
ware leasing [AL21]. The notion of secure software leasing states that any program can be compiled
into a functionally equivalent program, represented as a quantum state, in such a way that once
the compiled program is returned back8, the honest evaluation algorithm on the residual state can-
not compute the original functionality. Key-revocable encryption can be viewed as secure software
leasing for decryption algorithms. However, unlike secure software leasing, key-revocable encryp-
tion satisfies a much stronger security guarantee, where there is no restriction on the adversary to
run honestly after returning back the software. Secure leasing for different functionalities, namely,
point functions [CMP20, BJL+21], evasive functions [AL21, KNY21b] and pseudorandom func-
tions [ALL+21] have been studied by recent works.

Encryption Schemes with Revocable Ciphertexts. Unruh [Unr13] proposed a (private-key)
quantum timed-release encryption scheme that is revocable, i.e. it allows a user to return the cipher-
text of a quantum timed-release encryption scheme, thereby losing all access to the data. Unruh’s
scheme uses conjugate coding [Wie83, BB84] and relies on the monogamy of entanglement in or-
der to guarantee that revocation necessarily erases information about the plaintext. Broadbent and
Islam [BI20b] introduced the notion of certified deletion9 and constructed a private-key quantum en-
cryption scheme with the aforementioned feature which is inspired by the quantum key distribution
protocol [BB84, TL17]. In contrast with Unruh’s [Unr13] notion of revocable quantum cipher-
texts which are eventually returned and verified, Broadbent and Islam [BI20b] consider certificates
which are entirely classical. Moreover, the security definition requires that, once the certificate is
successfully verified, the plaintext remains hidden even if the secret key is later revealed.

Using a hybrid encryption scheme, Hiroka, Morimae, Nishimaki and Yamakawa [HMNY21b]
extended the scheme in [BI20a] to both public-key and attribute-based encryption with certified
deletion via receiver non-committing encryption [JL00, CFGN96]. As a complementary result, the
authors also gave a public-key encryption scheme with certified deletion which is publicly verifiable
assuming the existence of one-shot signatures and extractable witness encryption. Using Gaussian
superpositions, Poremba [Por22] proposed Dual-Regev -based public-key and fully homomorphic en-
cryption schemes with certified deletion which are publicly verifiable and proven secure assuming
a strong Gaussian-collapsing conjecture — a strengthening of the collapsing property of the Ajtai
hash. Bartusek and Khurana [BK22] revisited the notion of certified deletion and presented a unified

7We remark that, there do exist post-quantum-insecure iO schemes based on well-founded assumptions [JLS21].
8Acording to the terminology of [AL21], this refers to finite term secure software leasing.
9This notion is incomparable with another related notion called unclonable encryption [BL20, AK21, AKL+22],

which informally guarantees that it should be infeasible to clone quantum ciphertexts without losing information
about the encrypted message.
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approach for how to generically convert any public-key, attribute-based, fully-homomorphic, timed-
release or witness encryption scheme into an equivalent quantum encryption scheme with certified
deletion. In particular, they considered a stronger notion called certified everlasting security which
allows the adversary to be computationally unbounded once a valid deletion certificate is submitted.

Acknowledgements

P.A. thanks Fatih Kaleoglu for several insightful discussions.
This work was done (in part) while the authors were visiting the Simons Institute for the

Theory of Computing. P.A. is supported by a research gift from Cisco. A.P. is partially supported
by AFOSR YIP (award number FA9550-16-1-0495), the Institute for Quantum Information and
Matter (an NSF Physics Frontiers Center; NSF Grant PHY-1733907) and by a grant from the
Simons Foundation (828076, TV).

2 Preliminaries

Let 𝜆 ∈ ℕ denote the security parameter throughout this work. We assume that the reader is
familiar with the fundamental cryptographic concepts.

2.1 Quantum Computing

For a comprehensive background on quantum computation, we refer to [NC11, Wil13]. We denote
a finite-dimensional complex Hilbert space by ℋ, and we use subscripts to distinguish between
different systems (or registers). For example, we let ℋ𝐴 be the Hilbert space corresponding to a
system 𝐴. The tensor product of two Hilbert spaces ℋ𝐴 and ℋ𝐵 is another Hilbert space denoted by
ℋ𝐴𝐵 = ℋ𝐴⊗ℋ𝐵. Let ℒ(ℋ) denote the set of linear operators over ℋ. A quantum system over the
2-dimensional Hilbert space ℋ = ℂ2 is called a qubit. For 𝑛 ∈ ℕ, we refer to quantum registers over
the Hilbert space ℋ =

(︀
ℂ2
)︀⊗𝑛 as 𝑛-qubit states. More generally, we associate qudits of dimension

𝑑 ≥ 2 with a 𝑑-dimensional Hilbert space ℋ = ℂ𝑑. For brevity, we write ℋ𝑛𝑑 = ℋ⊗𝑛𝑑 , where ℋ𝑑 is
𝑑-dimensional. We use the word quantum state to refer to both pure states (unit vectors |𝜓⟩ ∈ ℋ)
and density matrices 𝜌 ∈ 𝒟(ℋ), where we use the notation 𝒟(ℋ) to refer to the space of positive
semidefinite matrices of unit trace acting on ℋ. Occasionally, we consider subnormalized states, i.e.
states in the space of positive semidefinite operators over ℋ with trace norm not exceeding 1.

The trace distance of two density matrices 𝜌, 𝜎 ∈ 𝒟(ℋ) is given by

TD(𝜌, 𝜎) =
1

2
Tr

[︂√︁
(𝜌− 𝜎)†(𝜌− 𝜎)

]︂
.

Let 𝑞 ≥ 2 be a modulus and 𝑛 ∈ ℕ and let 𝜔𝑞 = 𝑒
2𝜋𝑖
𝑞 ∈ ℂ denote the primitive 𝑞-th root of

unity. The 𝑛-qudit 𝑞-ary quantum Fourier transform over the ring ℤ𝑛𝑞 is defined by the operation,

𝖥𝖳𝑞 : |𝐱⟩ ↦→
√︀
𝑞−𝑛

∑︁
𝐲∈ℤ𝑛

𝑞

𝜔⟨𝐱,𝐲⟩𝑞 |𝐲⟩ , ∀𝐱 ∈ ℤ𝑛𝑞 .

The 𝑞-ary quantum Fourier transform is unitary and can be efficiently performed on a quantum
computer for any modulus 𝑞 ≥ 2 [HH00].

15



A quantum channel Φ : ℒ(ℋ𝐴) → ℒ(ℋ𝐵) is a linear map between linear operators over the
Hilbert spaces ℋ𝐴 and ℋ𝐵. Oftentimes, we use the compact notation Φ𝐴→𝐵 to denote a quantum
channel between ℒ(ℋ𝐴) and ℒ(ℋ𝐵). We say that a channel Φ is completely positive if, for a reference
system 𝑅 of arbitrary size, the induced map 𝐼𝑅 ⊗ Φ is positive, and we call it trace-preserving if
Tr[Φ(𝑋)] = Tr[𝑋], for all 𝑋 ∈ ℒ(ℋ). A quantum channel that is both completely positive and
trace-preserving is called a quantum 𝖢𝖯𝖳𝖯 channel.

A polynomial-time uniform quantum algorithm (or 𝖰𝖯𝖳 algorithm) is a polynomial-time family
of quantum circuits given by 𝒞 = {𝐶𝜆}𝜆∈ℕ, where each circuit 𝐶 ∈ 𝒞 is described by a sequence of
unitary gates and measurements; moreover, for each 𝜆 ∈ ℕ, there exists a deterministic polynomial-
time Turing machine that, on input 1𝜆, outputs a circuit description of 𝐶𝜆. Similarly, we also
define (classical) probabilistic polynomial-time (𝖯𝖯𝖳) algorithms. A quantum algorithm may, in
general, receive (mixed) quantum states as inputs and produce (mixed) quantum states as outputs.
Occasionally, we restrict 𝖰𝖯𝖳 algorithms implicitly; for example, if we write Pr[𝒜(1𝜆) = 1] for a
𝖰𝖯𝖳 algorithm 𝒜, it is implicit that 𝒜 is a 𝖰𝖯𝖳 algorithm that outputs a single classical bit.

A polynomial-time non-uniform quantum algorithm is a family {(𝐶𝜆, 𝜈𝜆)}𝜆∈ℕ, where {𝐶𝜆}𝜆∈ℕ
is a polynomial-size (not necessarily uniformly generated) family of circuits where, for each 𝜆 ∈ ℕ,
a subset of input qubits to 𝐶𝜆 consists of a polynomial-size auxiliary density matrix 𝜈𝜆. We use the
following notion of indistinguishability of quantum states in the presence of auxiliary inputs.

Definition 2.1 (Indistinguishability of ensembles of quantum states, [Wat05]). Let 𝑝 : ℕ → ℕ
be a polynomially bounded function, and let 𝜌𝜆 and 𝜎𝜆 be 𝑝(𝜆)-qubit quantum states. We say that
{𝜌𝜆}𝜆∈ℕ and {𝜎𝜆}𝜆∈ℕ are quantum computationally indistinguishable ensembles of quantum states,
denoted by 𝜌𝜆 ≈𝑐 𝜎𝜆 , if, for any 𝖰𝖯𝖳 distinguisher 𝒟 with single-bit output, any polynomially
bounded 𝑞 : ℕ→ ℕ, any family of 𝑞(𝜆)-qubit auxiliary states {𝜈𝜆}𝜆∈ℕ, and every 𝜆 ∈ ℕ,⃒⃒

Pr[𝒟(𝜌𝜆 ⊗ 𝜈𝜆) = 1]− Pr[𝒟(𝜎𝜆 ⊗ 𝜈𝜆) = 1]
⃒⃒
≤ 𝗇𝖾𝗀𝗅(𝜆) .

Lemma 2.2 ("Almost As Good As New" Lemma, [Aar16]). Let 𝜌 ∈ 𝒟(ℋ) be a density matrix over
a Hilbert space ℋ. Let 𝑈 be an arbitrary unitary and let (𝚷0,𝚷1 = 𝐈−𝚷0) be projectors acting on
ℋ⊗ℋ𝖺𝗎𝗑. We interpret (𝑈,𝚷0,𝚷1) as a measurement performed by appending an ancillary system in
the state |0⟩⟨0|𝖺𝗎𝗑, applying the unitary 𝑈 and subsequently performing the two-outcome measurement
{𝚷0,𝚷1} on the larger system. Suppose that the outcome corresponding to 𝚷0 occurs with probability
1− 𝜀, for some 𝜀 ∈ [0, 1]. In other words, it holds that Tr[𝚷0(𝑈𝜌⊗ |0⟩⟨0|𝖺𝗎𝗑 𝑈 †)] = 1− 𝜀. Then,

TD(𝜌, ̃︀𝜌) ≤ √𝜀,
where ̃︀𝜌 is the state after performing the measurement and applying 𝑈 †, and after tracing out ℋ𝖺𝗎𝗑:

̃︀𝜌 = Tr𝖺𝗎𝗑

[︁
𝑈 †
(︁
𝚷0𝑈(𝜌⊗ |0⟩⟨0|𝖺𝗎𝗑)𝑈

†𝚷0 +𝚷1𝑈(𝜌⊗ |0⟩⟨0|𝖺𝗎𝗑)𝑈
†𝚷1

)︁
𝑈
]︁
.

Lemma 2.3 (Quantum Union Bound, [Gao15]). Let 𝜌 ∈ 𝒟(ℋ) be a state and let 𝚷1, . . . ,𝚷𝑛 ≥ 0
be sequence of (orthogonal) projections acting on ℋ. Suppose that, for every 𝑖 ∈ [𝑛], it holds that
Tr[𝚷𝑖𝜌] = 1 − 𝜀𝑖, for 𝜀𝑖 ∈ [0, 1]. Then, if we sequentially measure 𝜌 with projective measurements
{𝚷1, 𝐈−𝚷1}, . . . , {𝚷𝑛, 𝐈−𝚷𝑛}, the probability that all measurements succeed is at least

Tr[𝚷𝑛 · · ·𝚷1𝜌𝚷1 · · ·𝚷𝑛] ≥ 1− 4
𝑛∑︁
𝑖=1

𝜀𝑖.
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2.2 Lattices and Cryptography

Let 𝑛,𝑚, 𝑝, 𝑞 ∈ ℕ be positive integers. The rounding operation for 𝑞 ≥ 𝑝 ≥ 2 is the function

⌊·⌋𝑝 : ℤ𝑞 → ℤ𝑝 : 𝑥 ↦→ ⌊(𝑝/𝑞) · 𝑥⌋ (mod 𝑝).

A lattice Λ ⊂ ℝ𝑚 is a discrete subgroup of ℝ𝑚. Given a lattice Λ ⊂ ℝ𝑚 and a vector 𝐭 ∈ ℝ𝑚, we
define the coset with respect to vector 𝐭 as the lattice shift Λ − 𝐭 = {𝐱 ∈ ℝ𝑚 : 𝐱 + 𝐭 ∈ Λ}. Note
that many different shifts 𝐭 can define the same coset. The dual of a lattice Λ ⊂ ℝ𝑚, denoted by
Λ*, is the lattice of all 𝑦 ∈ ℝ𝑚 that satisfy ⟨𝐲,𝐱⟩ ∈ ℤ, for every 𝐱 ∈ Λ. In other words, we let

Λ* = {𝐲 ∈ ℝ𝑚 : ⟨𝐲,𝐱⟩ ∈ ℤ, for all 𝐱 ∈ Λ} .

In this work, we mainly consider 𝑞-ary lattices Λ that that satisfy 𝑞ℤ𝑚 ⊆ Λ ⊆ ℤ𝑚, for some
integer modulus 𝑞 ≥ 2. Specifically, we consider the lattice generated by a matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 for
some 𝑛,𝑚 ∈ ℕ that consists of all vectors which are perpendicular to the rows of 𝐀, namely

Λ⊥𝑞 (𝐀) = {𝐱 ∈ ℤ𝑚 : 𝐀 · 𝐱 = 𝟎 (mod 𝑞)}.

For any syndrome 𝐲 ∈ ℤ𝑛𝑞 in the column span of 𝐀, we also consider the coset Λ𝐲
𝑞 (𝐀) given by

Λ𝐲
𝑞 (𝐀) = {𝐱 ∈ ℤ𝑚 : 𝐀 · 𝐱 = 𝐲 (mod 𝑞)} = Λ⊥𝑞 (𝐀) + 𝐜,

where 𝐜 ∈ ℤ𝑚 is an arbitrary integer solution to the equation 𝐀𝐜 = 𝐲 (mod 𝑞).
We use the following facts due to Gentry, Peikert and Vaikuntanathan [GPV07].

Lemma 2.4 ([GPV07], Lemma 5.1). Let 𝑛 ∈ ℕ and let 𝑞 ≥ 2 be a prime modulus with 𝑚 ≥ 2𝑛 log 𝑞.
Then, for all but a 𝑞−𝑛 fraction of 𝐀 ∈ ℤ𝑛×𝑚𝑞 , the subset-sums of the columns of 𝐀 generate ℤ𝑛𝑞 .
In other words, a uniformly random matrix 𝐀 $←−ℤ𝑛×𝑚𝑞 is full-rank with overwhelming probability.

Gaussian Distribution. The Gaussian measure 𝜌𝜎 with parameter 𝜎 > 0 is defined as

𝜌𝜎(𝐱) = exp(−𝜋‖𝐱‖2/𝜎2), ∀𝐱 ∈ ℝ𝑚.

Let Λ ⊂ ℝ𝑚 be a lattice and let 𝐭 ∈ ℝ𝑚. We define the Gaussian mass of Λ− 𝐭 as the quantity

𝜌𝜎(Λ− 𝐭) =
∑︁
𝐲∈Λ

𝜌𝜎(𝐲 − 𝐭).

The discrete Gaussian distribution 𝐷Λ−𝐭,𝜎 assigns probability proportional to 𝑒−𝜋‖𝐱−𝐭‖2/𝜎2 to
every lattice point 𝐱 ∈ Λ. In other words, we have

𝐷Λ−𝐭,𝜎(𝐱) =
𝜌𝜎(𝐱− 𝐭)

𝜌𝜎(Λ− 𝐭)
, ∀𝐱 ∈ Λ.

The following lemma follows from [PR06, Lemma 2.11] and [GPV07, Lemma 5.3].

Lemma 2.5. Let 𝑛 ∈ ℕ and let 𝑞 be a prime with 𝑚 ≥ 2𝑛 log 𝑞. Let 𝐀 ∈ ℤ𝑛×𝑚𝑞 be a matrix
whose columns generate ℤ𝑛𝑞 . Let 𝐲 ∈ ℤ𝑛𝑞 be arbitrary. Then, for any 𝜎 ≥ 𝜔(

√
log𝑚), there exists a

negligible function 𝜀(𝑚) such that

𝐷Λ𝐲
𝑞 (𝐀),𝜎(𝐱) ≤ 2−𝑚 · 1 + 𝜀

1− 𝜀
, ∀𝐱 ∈ Λ⊥𝑞 (𝐀).
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Let ℬ𝑚(𝟎, 𝑟) = {𝐱 ∈ ℝ𝑚 : ‖𝐱‖ ≤ 𝑟} denote the 𝑚-dimensional ball of radius 𝑟 > 0. We use of
the following tail bound for the Gaussian mass of a lattice [Ban93, Lemma 1.5 (ii)].

Lemma 2.6. For any 𝑚-dimensional lattice Λ, shift 𝐭 ∈ ℝ𝑚, 𝜎 > 0 and 𝑐 ≥ (2𝜋)−
1
2 it holds that

𝜌𝜎
(︀
(Λ− 𝐭) ∖ ℬ𝑚(𝟎, 𝑐

√
𝑚𝜎)

)︀
≤ (2𝜋𝑒𝑐2)

𝑚
2 𝑒−𝜋𝑐

2𝑚𝜌𝜎(Λ).

In addition, we also make use of the following tail bound for the discrete Gaussian which follows
from [MR04, Lemma 4.4] and [GPV07, Lemma 5.3].

Lemma 2.7. Let 𝑛 ∈ ℕ and let 𝑞 be a prime with 𝑚 ≥ 2𝑛 log 𝑞. Let 𝐀 ∈ ℤ𝑛×𝑚𝑞 be a matrix
whose columns generate ℤ𝑛𝑞 . Let 𝐲 ∈ ℤ𝑛𝑞 be arbitrary. Then, for any 𝜎 ≥ 𝜔(

√
log𝑚), there exists a

negligible function 𝜀(𝑚) such that

Pr
𝐱∼𝐷

Λ
𝐲
𝑞 (𝐀),𝜎

[︁
‖𝐱‖ > 𝜎

√
𝑚
]︁
≤ 2−𝑚 · 1 + 𝜀

1− 𝜀
.

Given a modulus 𝑞 ∈ ℕ and 𝜎 ∈ (0, 𝑞/2
√
𝑚), the truncated discrete Gaussian distribution 𝐷ℤ𝑚

𝑞 ,𝜎

over ℤ𝑚 ∩ (− 𝑞
2 ,

𝑞
2 ]
𝑚 with support {𝐱 ∈ ℤ𝑚𝑞 : ‖𝐱‖ ≤ 𝜎

√
𝑚} is the density function defined below:

𝐷ℤ𝑚
𝑞 ,𝜎(𝐱) =

𝜌𝜎(𝐱)∑︁
𝐳∈ℤ𝑚

𝑞 ,‖𝐳‖≤𝜎
√
𝑚

𝜌𝜎(𝐳)
.

Finally, we recall the following noise smudging property.

Lemma 2.8 (Noise smudging, [DGT+10]). Let 𝑦, 𝜎 > 0. Then, the statistical distance between the
distribution 𝐷ℤ,𝜎 and 𝐷ℤ,𝜎+𝑦 is at most 𝑦/𝜎.

We use the following technical lemma on the min-entropy of the truncated discrete Gaussian
distribution, which we prove below.

Lemma 2.9. Let 𝑛 ∈ ℕ and let 𝑞 be a prime with 𝑚 ≥ 2𝑛 log 𝑞. Let 𝐀 ∈ ℤ𝑛×𝑚𝑞 be a matrix whose
columns generate ℤ𝑛𝑞 . Then, for any 𝜎 ≥ 𝜔(

√
log𝑚), there exists a negligible 𝜀(𝑚) such that

max
𝐲∈ℤ𝑛

𝑞

max
𝐱∈ℤ𝑚

𝑞 , ‖𝐱‖≤𝜎
√
𝑚

𝐀𝐱=𝐲 (mod 𝑞)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜌𝜎(𝐱)∑︁

𝐳∈ℤ𝑚
𝑞 ,‖𝐳‖≤𝜎

√
𝑚

𝐀𝐳=𝐲 (mod 𝑞)

𝜌𝜎(𝐳)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≤ 2−𝑚+1 · 1 + 𝜀

1− 𝜀
.
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Proof. Suppose that 𝐀 ∈ ℤ𝑛×𝑚𝑞 is a matrix whose columns generate ℤ𝑛𝑞 , i.e. 𝐀 is full-rank. Then,

max
𝐲∈ℤ𝑛

𝑞

max
𝐱∈ℤ𝑚

𝑞 , ‖𝐱‖≤𝜎
√
𝑚

𝐀𝐱=𝐲 (mod 𝑞)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜌𝜎(𝐱)∑︁

𝐳∈ℤ𝑚
𝑞 ,‖𝐳‖≤𝜎

√
𝑚

𝐀𝐳=𝐲 (mod 𝑞)

𝜌𝜎(𝐳)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≤ max

𝐲∈ℤ𝑛
𝑞

sup
𝐱∈Λ⊥

𝑞 (𝐀)

𝐷Λ𝐲
𝑞 (𝐀),𝜎(𝐱)

+ max
𝐲∈ℤ𝑛

𝑞

max
𝐱∈ℤ𝑚

𝑞 , ‖𝐱‖≤𝜎
√
𝑚

𝐀𝐱=𝐲 (mod 𝑞)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ 𝜌𝜎(𝐱)∑︁
𝐳∈ℤ𝑚

𝑞 ,‖𝐳‖≤𝜎
√
𝑚

𝐀𝐳=𝐲 (mod 𝑞)

𝜌𝜎(𝐳)
− 𝜌𝜎(𝐱)∑︁

𝐳∈ℤ𝑚

𝐀𝐳=𝐲 (mod 𝑞)

𝜌𝜎(𝐳)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

≤ max
𝐲∈ℤ𝑛

𝑞

sup
𝐱∈Λ⊥

𝑞 (𝐀)

𝐷Λ𝐲
𝑞 (𝐀),𝜎(𝐱)

+ max
𝐲∈ℤ𝑛

𝑞

max
𝐱∈ℤ𝑚

𝑞 , ‖𝐱‖≤𝜎
√
𝑚

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱)∑︁
𝐳∈ℤ𝑚

𝑞 ,‖𝐳‖≤𝜎
√
𝑚

𝐀𝐳=𝐲 (mod 𝑞)

𝜌𝜎(𝐳)
· 𝜌𝜎(Λ

𝐲
𝑞 (𝐀) ∖ ℬ𝑚(𝟎, 𝜎

√
𝑚))

𝜌𝜎(Λ
𝐲
𝑞 (𝐀))

where 𝐵𝑚(𝟎, 𝑟) = {𝐱 ∈ ℝ𝑚 : ‖𝐱‖ ≤ 𝑟}. Using the fact that

𝜌𝜎(𝐱)∑︁
𝐳∈ℤ𝑚

𝑞 ,‖𝐳‖≤𝜎
√
𝑚

𝐀𝐳=𝐲 (mod 𝑞)

𝜌𝜎(𝐳)
≤ 1,

for 𝐱 ∈ ℤ𝑚𝑞 with 𝐀𝐱 = 𝐲 (mod 𝑞), and the fact that

Pr
𝐯∼𝐷

Λ
𝐲
𝑞 (𝐀),𝜎

[︁
‖𝐯‖ > 𝜎

√
𝑚
]︁
=
𝜌𝜎(Λ

𝐲
𝑞 (𝐀) ∖ ℬ𝑚(𝟎, 𝜎

√
𝑚))

𝜌𝜎(Λ
𝐲
𝑞 (𝐀))

we get that

max
𝐲∈ℤ𝑛

𝑞

max
𝐱∈ℤ𝑚

𝑞 , ‖𝐱‖≤𝜎
√
𝑚

𝐀𝐱=𝐲 (mod 𝑞)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜌𝜎(𝐱)∑︁

𝐳∈ℤ𝑚
𝑞 ,‖𝐳‖≤𝜎

√
𝑚

𝐀𝐳=𝐲 (mod 𝑞)

𝜌𝜎(𝐳)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≤ max

𝐲∈ℤ𝑛
𝑞

{︃
sup

𝐱∈Λ⊥
𝑞 (𝐀)

𝐷Λ𝐲
𝑞 (𝐀),𝜎(𝐱) + Pr

𝐯∼𝐷
Λ
𝐲
𝑞 (𝐀),𝜎

[︁
‖𝐯‖ > 𝜎

√
𝑚
]︁}︃

.

Because 𝜎 ≥ 𝜔(
√
log𝑚), the claim then follows from Lemma 2.5 and Lemma 2.7.
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The Short Integer Solution problem. The Short Integer Solution (𝖲𝖨𝖲) problem was intro-
duced by Ajtai [Ajt96] in his seminal work on average-case lattice problems.

Definition 2.10 (Short Integer Solution problem, [Ajt96]). Let 𝑛,𝑚 ∈ ℕ, 𝑞 ≥ 2 be a modulus and
let 𝛽 > 0 be a parameter. The Short Integer Solution problem (𝖲𝖨𝖲𝑚𝑛,𝑞,𝛽) problem is to find a short
solution 𝐱 ∈ ℤ𝑚 with ‖𝐱‖ ≤ 𝛽 such that 𝐀 · 𝐱 = 𝟎 (mod 𝑞) given as input a matrix 𝐀 $←−ℤ𝑛×𝑚𝑞 .

Micciancio and Regev [MR07] showed that the 𝖲𝖨𝖲 problem is, on the average, as hard as ap-
proximating worst-case lattice problems to within small factors. Subsequently, Gentry, Peikert and
Vaikuntanathan [GPV07] gave an improved reduction showing that, for parameters 𝑚 = poly(𝑛),
𝛽 = poly(𝑛) and prime 𝑞 ≥ 𝛽 · 𝜔(

√
𝑛 log 𝑞), the average-case 𝖲𝖨𝖲𝑚𝑛,𝑞,𝛽 problem is as hard as ap-

proximating the shortest independent vector problem (𝖲𝖨𝖵𝖯) problem in the worst case to within a
factor 𝛾 = 𝛽 · 𝑂̃(

√
𝑛). We assume that 𝖲𝖨𝖲𝑚𝑛,𝑞,𝛽 , for 𝑚 = Ω(𝑛 log 𝑞), 𝛽 = 2𝑜(𝑛) and 𝑞 = 2𝑜(𝑛), is hard

against quantum adversaries running in time poly(𝑞) with success probability poly(1/𝑞).

The Learning with Errors problem. The Learning with Errors problem was introduced by
Regev [Reg05] and serves as the primary basis of hardness of post-quantum cryptosystems. The
problem is defined as follows.

Definition 2.11 (Learning with Errors problem, [Reg05]). Let 𝑛,𝑚 ∈ ℕ be integers, let 𝑞 ≥ 2
be a modulus and let 𝛼 ∈ (0, 1) be a noise ratio parameter. The (decisional) Learning with Errors
(𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞) problem is to distinguish between the following samples

(𝐀 $←−ℤ𝑛×𝑚𝑞 , 𝐬⊺𝐀+ 𝐞⊺ (mod 𝑞)) and (𝐀 $←−ℤ𝑛×𝑚𝑞 ,𝐮 $←−ℤ𝑚𝑞 ),

where 𝐬 $←−ℤ𝑛𝑞 is a uniformly random vector and where 𝐞 ∼ 𝐷ℤ𝑚,𝛼𝑞 is a discrete Gaussian error
vector. We rely on the quantum 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 assumption which states that the samples above are
computationally indistinguishable for any 𝖰𝖯𝖳 algorithm.

As shown in [Reg05], the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 problem with parameter 𝛼𝑞 ≥ 2
√
𝑛 is at least as hard as

approximating the shortest independent vector problem (𝖲𝖨𝖵𝖯) to within a factor of 𝛾 = ̃︀𝑂(𝑛/𝛼) in
worst case lattices of dimension 𝑛. In this work we assume the subexponential hardness of 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞
which relies on the worst case hardness of approximating short vector problems in lattices to within
a subexponential factor. We assume that the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 problem, for 𝑚 = Ω(𝑛 log 𝑞), 𝑞 = 2𝑜(𝑛),
𝛼 = 1/2𝑜(𝑛), is hard against quantum adversaries running in time poly(𝑞). We note that this
parameter regime implies 𝖲𝖨𝖲𝑚𝑛,𝑞,𝛽 [SSTX09].

Trapdoors for lattices. We use the following trapdoor property for the 𝖫𝖶𝖤 problem.

Theorem 2.12 ([MP11], Theorem 5.1). Let 𝑛,𝑚 ∈ ℕ and 𝑞 ∈ ℕ be a prime with 𝑚 = Ω(𝑛 log 𝑞).
There exists a randomized algorithms with the following properties:

• 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞): on input 1𝑛, 1𝑚 and 𝑞, returns a matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 and a trapdoor 𝗍𝖽𝐀
such that the distribution of 𝐀 is negligibly (in the parameter 𝑛) close to uniform.

• 𝖨𝗇𝗏𝖾𝗋𝗍(𝐀, 𝗍𝖽𝐀,𝐛): on input 𝐀, 𝗍𝖽𝐀 and 𝐛 = 𝐬⊺ ·𝐀+ 𝐞⊺ (mod 𝑞), where ‖𝐞‖ ≤ 𝑞/(𝐶𝑇
√
𝑛 log 𝑞)

and 𝐶𝑇 > 0 is a universal constant, returns 𝐬 and 𝐞 with overwhelming probability over
(𝐀, 𝗍𝖽𝐀)← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞).
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3 Quantum Discrete Gaussian Sampling for 𝑞-ary Lattices

In this section, we review some basic facts about Gaussian superpositions and present our quantum
discrete Gaussian sampler which is used to revoke the decryption keys for our schemes.

3.1 Gaussian Superpositions

In this section, we review some basic facts about Gaussian superpositions. Given 𝑞 ∈ ℕ, 𝑚 ∈ ℕ and
𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚), we consider Gaussian superpositions over ℤ𝑚 ∩ (− 𝑞

2 ,
𝑞
2 ]
𝑚 of the form

|𝜓⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝜌𝜎(𝐱) |𝐱⟩ .

Note that the state |𝜓⟩ is not normalized for convenience and ease of notation. The tail bound
in Lemma 2.6 implies that (the normalized variant of) |𝜓⟩ is within negligible trace distance of a
truncated discrete Gaussian superposition |𝜓⟩ with support {𝐱 ∈ ℤ𝑚𝑞 : ‖𝐱‖ ≤ 𝜎

√︀
𝑚
2 }, where

|𝜓⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

√︁
𝐷ℤ𝑚

𝑞 ,
𝜎√
2
(𝐱) |𝐱⟩ =

⎛⎜⎝ ∑︁
𝐳∈ℤ𝑚

𝑞 ,‖𝐳‖≤𝜎
√

𝑚
2

𝜌 𝜎√
2
(𝐳)

⎞⎟⎠
− 1

2 ∑︁
𝐱∈ℤ𝑚

𝑞 :‖𝐱‖≤𝜎
√

𝑚
2

𝜌𝜎(𝐱) |𝐱⟩ .

In this work, we consider Gaussian superpositions with parameter 𝜎 = Ω(
√
𝑚) which can be ef-

ficiently implemented using standard quantum state preparation techniques; for example using
quantum rejection sampling and the Grover-Rudolph algorithm [GR02, Reg05, Bra18, BCM+21].

Gaussian coset states. Our key-revocable encryption schemes in Section 6 and Section 7 rely
on Gaussian superpositions over 𝐱 ∈ ℤ𝑚𝑞 subject to a constraint of the form 𝐀 · 𝐱 = 𝐲 (mod 𝑞), for
some matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 and image 𝐲 ∈ ℤ𝑛𝑞 . In Algorithm 1, we give a procedure called 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌
that, on input 𝐀 and 𝜎 > 0, generates a Gaussian superposition state of the form

|𝜓𝐲⟩ =
∑︁

𝐱∈ℤ𝑚
𝑞 :

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ ,

for some 𝐲 ∈ ℤ𝑛𝑞 which is statistically close to uniform whenever 𝑚 ≥ 2𝑛 log 𝑞 and 𝜎 ≥ 𝜔(
√
log𝑚).

Because |𝜓𝐲⟩ corresponds to a (truncated) Gaussian superposition over a particular lattice coset,

Λ𝐲
𝑞 (𝐀) = {𝐱 ∈ ℤ𝑚 : 𝐀 · 𝐱 = 𝐲 (mod 𝑞)},

of the 𝑞-ary lattice Λ⊥𝑞 (𝐀) = {𝐱 ∈ ℤ𝑚 : 𝐀 ·𝐱 = 𝟎 (mod 𝑞)}, we refer to it as a Gaussian coset state.
Finally, we recall an important property of Gaussian coset states.

Gaussian-collapsing hash functions. Unruh [Unr15] introduced the notion of collapsing hash
functions in his seminal work on computationally binding quantum commitments. Informally, a hash
function is called collapsing if it is computationally difficult to distinguish between a superposition
of pre-images and a single (measured) pre-image.
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In recent work, Poremba [Por22] proposed a special variant of the collapsing property with
respect to Gaussian superpositions. Previously, Liu and Zhandry [LZ19] implicitly showed that the
Ajtai hash function 𝑕𝐀(𝐱) = 𝐀𝐱 (mod 𝑞) is collapsing – and thus Gaussian-collapsing – via the
notion of lossy functions and by assuming the superpolynomial hardness of (decisional) 𝖫𝖶𝖤.

We use the following result on the Gaussian-collapsing property of the Ajtai hash function.

Theorem 3.1 (Gaussian-collapsing property, [Por22], Theorem 4). Let 𝑛 ∈ ℕ and 𝑞 be a prime with
𝑚 ≥ 2𝑛 log 𝑞, each parameterized by 𝜆 ∈ ℕ. Let 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚). Then, the following samples

are computationally indistinguishable assuming the quantum hardness of decisional 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞, for
any noise ratio 𝛼 ∈ (0, 1) with relative noise magnitude 1/𝛼 = 𝜎 · 2𝑜(𝑛) :(︃

𝐀 $←−ℤ𝑛×𝑚𝑞 , |𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ , 𝐲 ∈ ℤ𝑛𝑞

)︃
≈𝑐

(︃
𝐀 $←−ℤ𝑛×𝑚𝑞 , |𝐱0⟩ , 𝐀 · 𝐱0 ∈ ℤ𝑛𝑞

)︃

where (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) and where 𝐱0 ∼ 𝐷ℤ𝑚
𝑞 ,

𝜎√
2

is a discrete Gaussian error.

3.2 Algorithm: GenGauss

The state preparation procedure 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) is defined as follows.

Algorithm 1: 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎)
Input: Matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 and parameter 𝜎 = Ω(

√
𝑚).

Output: Gaussian state |𝜓𝐲⟩ and 𝐲 ∈ ℤ𝑛𝑞 .
1 Prepare a Gaussian superposition in system 𝑋 with parameter 𝜎 > 0:

|𝜓⟩𝑋𝑌 =
∑︁
𝐱∈ℤ𝑚

𝑞

𝜌𝜎(𝐱) |𝐱⟩𝑋 ⊗ |𝟎⟩𝑌 .

2 Apply the unitary 𝑈𝐀 : |𝐱⟩ |𝟎⟩ → |𝐱⟩ |𝐀 · 𝐱 (mod 𝑞)⟩ on systems 𝑋 and 𝑌 :

|𝜓⟩𝑋𝑌 =
∑︁
𝐱∈ℤ𝑚

𝑞

𝜌𝜎(𝐱) |𝐱⟩𝑋 ⊗ |𝐀 · 𝐱 (mod 𝑞)⟩𝑌 .

3 Measure system 𝑌 in the computational basis, resulting in the state

|𝜓𝐲⟩𝑋𝑌 =
∑︁

𝐱∈ℤ𝑚
𝑞 :

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩𝑋 ⊗ |𝐲⟩𝑌 .

4 Output the state |𝜓𝐲⟩ in system 𝑋 and the outcome 𝐲 ∈ ℤ𝑛𝑞 in system 𝑌 .
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3.3 Algorithm: QSampGauss

Recall that, in Algorithm 1, we gave a procedure called 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) that prepares a Gaussian
coset state |𝜓𝐲⟩, for a randomly generated 𝐲 ∈ ℤ𝑛𝑞 . In general, however, generating a specific
Gaussian coset state on input (𝐀,𝐲) requires a short trapdoor basis 𝗍𝖽𝐀 for the matrix 𝐀. This
task can be thought of as a quantum analogue of the discrete Gaussian sampling problem [GPV07],
where the goal is to output a sample 𝐱 ∼ 𝐷𝑍𝑚,𝜎 such that 𝐀 · 𝐱 = 𝐲 (mod 𝑞) on input (𝐀,𝐲) and
𝜎 > 0.

In Algorithm 2, we give a procedure called 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌 which, on input (𝐀, 𝗍𝖽𝐀,𝐲, 𝜎) generates
a specific Gaussian coset state |𝜓𝐲⟩ of the form

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ .

Our procedure 𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌 in Algorithm 2 can be thought of as an explicit quantum reduction from
𝖨𝖲𝖨𝖲𝑚

𝑛,𝑞,𝜎
√
𝑚/2

to 𝖫𝖶𝖤𝑚
𝑛,𝑞,𝑞/

√
2𝜎

which is inspired by the quantum reduction of Stehlé et al. [SSTX09]

which reduces 𝖲𝖨𝖲 to 𝖫𝖶𝖤. To obtain the aforementioned reduction, one simply needs to replace
the procedure 𝖨𝗇𝗏𝖾𝗋𝗍(𝐀, 𝗍𝖽𝐀, ·) in Step 4 in Algorithm 2 with a solver for the 𝖫𝖶𝖤𝑚

𝑛,𝑞,𝑞/
√
2𝜎

problem.
In Theorem 3.3, we prove the correctness of Algorithm 2. As a technical ingredient, we rely on

a duality lemma [Por22] that characterizes the Fourier transform of a Gaussian coset state in terms
of its dual state. Note that |𝜓𝐲⟩ corresponds to a Gaussian superposition over a lattice coset,

Λ𝐲
𝑞 (𝐀) = {𝐱 ∈ ℤ𝑚 : 𝐀 · 𝐱 = 𝐲 (mod 𝑞)},

of the 𝑞-ary lattice Λ⊥𝑞 (𝐀) = {𝐱 ∈ ℤ𝑚 : 𝐀 · 𝐱 = 𝟎 (mod 𝑞)}. Here, the dual of Λ⊥𝑞 (𝐀) satisfies
𝑞 · Λ⊥𝑞 (𝐀)* = Λ𝑞(𝐀), where Λ𝑞(𝐀) corresponds to the lattice generated by 𝐀⊺, i.e.

Λ𝑞(𝐀) = {𝐳 ∈ ℤ𝑚 : 𝐳 = 𝐀⊺ · 𝐬 (mod 𝑞), for some 𝐬 ∈ ℤ𝑛}.

The following lemma relates the Fourier transform of |𝜓𝐲⟩ with a superposition of 𝖫𝖶𝖤 samples with
respect to a matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 and a phase which depends on 𝐲. In other words, the resulting state
can be thought of as a superposition of Gaussian balls around random lattice vectors in Λ𝑞(𝐀).

Lemma 3.2 ([Por22], Lemma 16). Let 𝑚 ∈ ℕ, 𝑞 ≥ 2 be a prime and 𝜎 ∈ (
√
2𝑚, 𝑞/

√
2𝑚). Let

𝐀 ∈ ℤ𝑛×𝑚𝑞 be a matrix whose columns generate ℤ𝑛𝑞 and let 𝐲 ∈ ℤ𝑛𝑞 be arbitrary. Then, the 𝑞-ary
quantum Fourier transform of the (normalized variant of the) Gaussian coset state

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩

is within negligible (in 𝑚 ∈ ℕ) trace distance of the (normalized variant of the) Gaussian state

|𝜓𝐲⟩ =
∑︁
𝐬∈ℤ𝑛

𝑞

∑︁
𝐞∈ℤ𝑚

𝑞

𝜌𝑞/𝜎(𝐞)𝜔
−⟨𝐬,𝐲⟩
𝑞 |𝐬⊺𝐀+ 𝐞⊺ (mod 𝑞)⟩ .

The procedure 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌(𝐀, 𝗍𝖽𝐀,𝐲, 𝜎) is defined as follows.
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Algorithm 2: 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌(𝐀, 𝗍𝖽𝐀,𝐲, 𝜎)

Input: Matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 , a trapdoor 𝗍𝖽𝐀, an image 𝐲 ∈ ℤ𝑛𝑞 and parameter 𝜎 = 𝑂( 𝑞√
𝑚
).

Output: Gaussian state |𝜓𝐲⟩.
1 Prepare the following superposition with parameter 𝑞/𝜎 > 0:∑︁

𝐬∈ℤ𝑛
𝑞

|𝐬⟩ ⊗
∑︁
𝐞∈ℤ𝑚

𝑞

𝜌𝑞/𝜎(𝐞) |𝐞⟩ ⊗ |𝟎⟩

2 Apply the generalized Pauli operator 𝐙−𝐲𝑞 on the first register, resulting in the state∑︁
𝐬∈ℤ𝑛

𝑞

𝜔−⟨𝐬,𝐲⟩𝑞 |𝐬⟩ ⊗
∑︁
𝐞∈ℤ𝑚

𝑞

𝜌𝑞/𝜎(𝐞) |𝐞⟩ ⊗ |𝟎⟩

3 Apply the unitary 𝑈𝐀 : |𝐬⟩ |𝐞⟩ |𝟎⟩ → |𝐬⟩ |𝐞⟩ |𝐬⊺𝐀+ 𝐞⊺ (mod 𝑞)⟩, resulting in the state∑︁
𝐬∈ℤ𝑛

𝑞

∑︁
𝐞∈ℤ𝑚

𝑞

𝜌𝑞/𝜎(𝐞)𝜔
−⟨𝐬,𝐲⟩
𝑞 |𝐬⟩ |𝐞⟩ |𝐬⊺𝐀+ 𝐞⊺ (mod 𝑞)⟩

4 Coherently run 𝖨𝗇𝗏𝖾𝗋𝗍(𝐀, 𝗍𝖽𝐀, ·) on the third register in order to uncompute the first and
the second register, resulting in a state that is close in trace distance to the following state:∑︁

𝐬∈ℤ𝑛
𝑞

∑︁
𝐞∈ℤ𝑚

𝑞

𝜌𝑞/𝜎(𝐞)𝜔
−⟨𝐬,𝐲⟩
𝑞 |0⟩ |0⟩ |𝐬⊺𝐀+ 𝐞⊺ (mod 𝑞)⟩

5 Discard the first two registers. Apply the (inverse) quantum Fourier transform and output
the resulting state.

Let us now prove the correctness of Algorithm 2.

Theorem 3.3 (Quantum Discrete Gaussian Sampler). Let 𝑛 ∈ ℕ, 𝑞 be a prime with 𝑚 ≥ 2𝑛 log 𝑞
and 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚). Let (𝐀, 𝗍𝖽𝐀)← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) be sampled as in Theorem 2.12 and let

𝐲 ∈ ℤ𝑛𝑞 be arbitrary. Then, with overwhelming probability, 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌(𝐀, 𝗍𝖽𝐀,𝐲, 𝜎) in Algorithm
2 outputs a state which is within negligible trace distance of the (normalized variant of the) state,

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩ .

Proof. From Lemma 2.4 and Theorem 2.12, it follows that (𝐀, 𝗍𝖽𝐀) ← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) yields a
matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 be a matrix whose columns generate ℤ𝑛𝑞 with overwhelming probability. Moreover,
since 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚), the inversion procedure 𝖨𝗇𝗏𝖾𝗋𝗍(𝐀, 𝗍𝖽𝐀, ·) from Theorem 2.12 in Step 4 in
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Algorithm 2 succeeds with overwhelming probability at generating the Gaussian state

|𝜓𝐲⟩ =
∑︁
𝐬∈ℤ𝑛

𝑞

∑︁
𝐞∈ℤ𝑚

𝑞

𝜌𝑞/𝜎(𝐞)𝜔
−⟨𝐬,𝐲⟩
𝑞 |𝐬⊺𝐀+ 𝐞⊺ (mod 𝑞)⟩

Applying the (inverse) quantum Fourier transform 𝖥𝖳†𝑞, the claim then follows from Lemma 3.2.

4 Quantum Goldreich-Levin Theorem for Large Fields

In this section, we give a proof of the first quantum Goldreich-Levin theorem for large fields ℤ𝑞.

4.1 Post-Quantum Reductions and Quantum Rewinding

We first review some recent work by Bitansky, Brakerski and Kalai [BBK22] that enables us to
convert a wide range of classical reductions into post-quantum reductions (which allow for quantum
auxiliary input) in a constructive manner. We first review some basic terminology from [BBK22].

Let 𝜆 ∈ ℕ be a parameter. A non-interactive assumption 𝖯 = (𝖦,𝖵, 𝑐) with respect to a set of
polynomials 𝑑(𝜆), 𝑛(𝜆) and 𝑚(𝜆) is characterized as follows:

• The generator 𝖦 takes as input 1𝜆 and 𝑟 ∈ {0, 1}𝑑, and returns 𝑥 ∈ {0, 1}𝑛.

• The verifier 𝖵 takes as input 1𝜆 and (𝑟, 𝑦) ∈ {0, 1}𝑑×{0, 1}𝑚, and returns a single bit output.

• 𝑐(𝜆) is the threshold associated with the assumption.

Given a (possibly randomized) solver, we characterize the advantage in solving an assumption 𝖯 in
terms of the absolute distance between the solving probability (or, value) and the threshold 𝑐; for
example, for a decision assumption 𝖯 (with 𝑚 = 1) we characterize the value in solving 𝖯 in terms
of 1

2 + 𝜀, where the threshold is given by 𝑐(𝜆) = 1
2 and 𝜀 > 0 is corresponds to the advantage. We

say that a reduction is black-box if it is oblivious to the representation and inner workings of the
solver that is being used. Moreover, we say that a reduction is non-adaptive if all queries to the
solver are known ahead of time.

We use the following theorem.

Theorem 4.1 ([BBK22], adapted from Theorem 7.1). Let 𝑐 ∈ ℝ. Suppose that there exists a clas-
sical reduction from solving a non-interactive assumption 𝖰 to solving a non-interactive assumption
𝖯 such that the following holds: if the 𝖯-solver has advantage 𝜀 > 0 then the 𝖰-solver has advantage
𝑐 (independent of 𝜀) with running time poly(1/𝜀, 𝑐, 𝜆).

Then, there exists a quantum reduction from solving 𝖰 to quantumly solving 𝖯 such that the
following holds: if the quantum 𝖯-solver (with non-uniform quantum advice) has advantage given
by 𝜀 > 0, then the the 𝖰-solver has advantage 𝑐 (the same as the classical reduction) with running
time poly(1/𝜀, 𝑐, 𝜆).

Remark 4.2. We note that [BBK22] consider a more general theorem where the advantage of the
classical 𝖰-solver can depend on the advantage of the 𝖯-solver. But in the case when the classical 𝖰-
solver’s advantage is independent of the 𝖯-solver’s advantage then, as reflected in the above theorem,
it turns out the advantage of the quantum 𝖰-solver is the same as the classical 𝖰-solver.
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4.2 Goldreich-Levin Theorems for Large Fields

The following result is implicit in the work of Dodis et al. [DGT+10].

Theorem 4.3 (Classical Goldreich-Levin Theorem for Large Fields, [DGT+10], Theorem 1). Let 𝑞
be a prime and 𝑚 ∈ ℕ. Let 𝜎 ∈ (2

√
𝑚, 𝑞/2

√
𝑚) and let 𝐻 = {𝐱 ∈ ℤ𝑚𝑞 : ‖𝐱‖ ≤ 𝜎

√
𝑚} be a subset

of ℤ𝑚𝑞 . Let 𝖺𝗎𝗑 : 𝐻 → {0, 1}* be any (possibly randomized) auxiliary information. Suppose there
exists a distinguisher 𝒟 which runs in time 𝑇 (𝒟) such that

Pr

[︂
𝒟
(︀
𝐮,𝐮⊺𝐱, 𝖺𝗎𝗑(𝐱)

)︀
= 1 : 𝐮

$←− ℤ𝑚
𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

]︂
− Pr

[︂
𝒟
(︀
𝐮, 𝑟, 𝖺𝗎𝗑(𝐱)

)︀
= 1 : 𝐮

$←− ℤ𝑚
𝑞 , 𝑟

$←− ℤ𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

]︂
= 𝜀.

Then, there exists a (classical) non-adaptive black-box extractor ℰ whose running time is given by
𝑇 (ℰ) = 𝑇 (𝒟) · poly(𝑚,𝜎, 1/𝜀) and succeeds with probability at least

Pr
[︁
ℰ
(︀
𝖺𝗎𝗑(𝐱)

)︀
= 𝐱 : 𝐱 ∼ 𝐷ℤ𝑚

𝑞 ,𝜎

]︁
≥ 𝜀3

512 ·𝑚 · 𝑞2
.

Using the constructive post-quantum reduction from Theorem 4.1, we can convert Theorem 4.3
into a quantum Goldreich-Levin Theorem for finite fields, and obtain the following.

Theorem 4.4 (Quantum Goldreich-Levin Theorem for Large Fields). Let 𝑞 be a prime and 𝑚 ∈ ℕ.
Let 𝜎 ∈ (2

√
𝑚, 𝑞/2

√
𝑚) and let Φ : ℒ(ℋ𝑚𝑞 ) → ℒ(ℋAux) be any 𝖢𝖯𝖳𝖯 map with auxiliary system

ℋAux. Suppose there exists a distinguisher 𝒟 which runs in time 𝑇 (𝒟) such that⃒⃒⃒⃒
⃒Pr

[︃
𝒟
(︀
𝐮,𝐮⊺𝐱, 𝖺𝗎𝗑(𝐱)

)︀
= 1 :

𝐮
$←− ℤ𝑚

𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝖺𝗎𝗑(𝐱)←Φ(|𝐱⟩⟨𝐱|)

]︃
− Pr

[︃
𝒟
(︀
𝐮, 𝑟, 𝖺𝗎𝗑(𝐱)

)︀
= 1 :

𝐮
$←− ℤ𝑚

𝑞 , 𝑟
$←− ℤ𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝖺𝗎𝗑(𝐱)←Φ(|𝐱⟩⟨𝐱|)

]︃ ⃒⃒⃒⃒
⃒ = 𝜀.

Then, there exists a quantum extractor ℰ that runs in time 𝑇 (ℰ) = poly(𝑚,𝑇 (𝒟), 𝜎, 𝑞, 1/𝜀) with

Pr
[︁
ℰ
(︀
𝖺𝗎𝗑(𝐱)

)︀
= 𝐱 :

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝖺𝗎𝗑(𝐱)←Φ(|𝐱⟩⟨𝐱|)

]︁
≥ poly

(︀
1/𝑚, 1/𝑇 (𝒟), 1/𝜎, 1/𝑞, 𝜀

)︀
.

Proof. The proof follows immediately by combining Theorem 4.3 and Theorem 4.1.

4.3 Amplification

We now show that it is possible to boost the success probability of the Goldreich-Levin extractor,
assuming a particular kind of leakage on the hidden vector. Consider the following algorithm.

Algorithm 3: 𝖡𝗈𝗈𝗌𝗍𝖾𝖽𝖤𝗑𝗍𝗋𝖺𝖼𝗍𝗈𝗋(𝐀,𝐲, 𝖺𝗎𝗑(𝐱))
Input: Matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 , vector 𝐲 ∈ ℤ𝑛𝑞 and auxiliary input 𝖺𝗎𝗑(𝐱) ∈ {0, 1}*.
Parameters: 𝜈, 𝛿 ∈ (0, 1).
Output: Vector 𝐱 ∈ ℤ𝑚𝑞 .

1 for 𝑖 = 1, . . . , ⌈ 1𝜈 ln
(︀
1
𝛿

)︀
⌉ do

2 run 𝐱𝑖 ← ℰ(𝖺𝗎𝗑(𝐱)), where ℰ is the Goldreich-Levin extractor in Theorem 4.3.
3 if 𝐱𝑖 ∈ Λ𝐲

𝑞 (𝐀) ∩ ℬ𝑚(𝟎, 𝜎
√
𝑚) then

4 output 𝐱𝑖
5 else
6 continue
7 end
8 end
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Theorem 4.5 (Boosted Classical Goldreich-Levin Theorem for Large Fields). Let 𝑛,𝑚 ∈ ℕ be
integers and let 𝑞 be a prime. Let 𝜎 ∈ (2

√
𝑚, 𝑞/2

√
𝑚) and let 𝐻 = {𝐱 ∈ ℤ𝑚𝑞 : ‖𝐱‖ ≤ 𝜎

√
𝑚} be a

subset of ℤ𝑚𝑞 . Let 𝖺𝗎𝗑 : 𝐻 → {0, 1}* be any (possibly randomized) auxiliary information. Suppose
that there exists a distinguisher 𝒟 which runs in time 𝑇 (𝒟) such that

Pr

⎡⎢⎣𝒟(︀𝐀,𝐲,𝐮,𝐮⊺𝐱, 𝖺𝗎𝗑(𝐱)
)︀
= 1 :

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐮
$←− ℤ𝑚

𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝐲←𝐀𝐱(mod 𝑞)

⎤⎥⎦− Pr

⎡⎢⎢⎢⎣𝒟(︀𝐀,𝐲,𝐮, 𝑟, 𝖺𝗎𝗑(𝐱))︀ = 1 :

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐮
$←− ℤ𝑚

𝑞

𝑟
$←− ℤ𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝐲←𝐀𝐱(mod 𝑞)

⎤⎥⎥⎥⎦ = 𝜀.

Let 𝜈 = 512𝑚𝑞2/𝜀3 and 𝛿 = exp(−Ω(𝑛)) be parameters. Then, 𝖡𝗈𝗈𝗌𝗍𝖾𝖽𝖤𝗑𝗍𝗋𝖺𝖼𝗍𝗈𝗋(𝐀,𝐲, 𝖺𝗎𝗑(𝐱)) in
Algorithm 3 is a non-adaptive black-box extractor that runs in time 𝑇 (𝒟) · poly(𝑛,𝑚, 𝜎, 𝑞, 1/𝜀) and
outputs a short vector in the coset Λ𝐲

𝑞 (𝐀) with probability at least

Pr

[︃
𝖡𝗈𝗈𝗌𝗍𝖾𝖽𝖤𝗑𝗍𝗋𝖺𝖼𝗍𝗈𝗋(𝐀,𝐲, 𝖺𝗎𝗑(𝐱)) ∈ Λ𝐲

𝑞 (𝐀) ∩ ℬ𝑚(𝟎, 𝜎
√
𝑚) :

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝐲←𝐀𝐱 (mod 𝑞)

]︃
≥ 1− exp(−Ω(𝑛)).

Proof. Recall that the Goldreich-Levin extractor ℰ in Theorem 4.3 is a non-adaptive black-box
extractor running in time 𝑇 (ℰ) = 𝑇 (𝒟) · poly(𝑚,𝜎, 1/𝜀) that, on input 𝖺𝗎𝗑(𝐱), outputs 𝐱 with
probability at least 𝜀3/512𝑚𝑞2. Let 𝐿 = ⌈ 1𝜈 ln

(︀
1
𝛿

)︀
⌉ with 𝜈 = 512𝑚𝑞2/𝜀3 and 𝛿 = exp(−Ω(𝑛)).

Therefore, the probability that 𝖡𝗈𝗈𝗌𝗍𝖾𝖽𝖤𝗑𝗍𝗋𝖺𝖼𝗍𝗈𝗋(𝐀,𝐲, 𝖺𝗎𝗑(𝐱)) in Algorithm 3 fails is at most

(1− 𝜈)𝐿 ≤ exp(−𝐿 · 𝜈) ≤ exp(−Ω(𝑛)).

This proves the claim.

Using the constructive post-quantum reduction from Theorem 4.1, we can convert Theorem 4.5
into a (boosted) quantum Goldreich-Levin Theorem for finite fields, and obtain the following.

Theorem 4.6 (Boosted Quantum Goldreich-Levin Theorem for Large Fields). Let 𝑛,𝑚 ∈ ℕ and 𝑞
be a prime. Let 𝜎 ∈ (2

√
𝑚, 𝑞/2

√
𝑚). Let Φ : ℒ(ℋ𝑚𝑞 ) → ℒ(ℋAux) be any 𝖢𝖯𝖳𝖯 map with auxiliary

system ℋAux. Suppose that there exists a distinguisher 𝒟 which runs in time 𝑇 (𝒟) such that

Pr

⎡⎢⎣𝒟(︀𝐀,𝐲,𝐮,𝐮⊺𝐱, 𝖺𝗎𝗑(𝐱)
)︀
= 1 :

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐮
$←− ℤ𝑚

𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝐲←𝐀𝐱(mod 𝑞)

⎤⎥⎦− Pr

⎡⎢⎢⎢⎣𝒟(︀𝐀,𝐲,𝐮, 𝑟, 𝖺𝗎𝗑(𝐱))︀ = 1 :

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐮
$←− ℤ𝑚

𝑞

𝑟
$←− ℤ𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝐲←𝐀𝐱(mod 𝑞)

⎤⎥⎥⎥⎦ = 𝜀,

where 𝖺𝗎𝗑(𝐱) ← Φ(|𝐱⟩⟨𝐱|). Then, there exists a quantum extractor ℰ that has a running time of
𝑇 (ℰ) = 𝑇 (𝒟) · poly(𝑛,𝑚, 𝜎, 𝑞, 1/𝜀) and outputs a short vector in Λ𝐲

𝑞 (𝐀) with probability at least

Pr

[︃
ℰ(𝐀,𝐲, 𝖺𝗎𝗑(𝐱)) ∈ Λ𝐲

𝑞 (𝐀) ∩ ℬ𝑚(𝟎, 𝜎
√
𝑚) :

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐱∼𝐷ℤ𝑚𝑞 ,𝜎

𝐲←𝐀𝐱 (mod 𝑞)

]︃
≥ 1− exp(−Ω(𝑛)).

Proof. The proof follows immediately by combining Theorem 4.5 and Theorem 4.1.
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5 Definition: Key-Revocable Public-Key Encryption

Let us now give a formal definition of key-revocable public-key encryption schemes.

Definition 5.1 (Key-Revocable Public-Key Encryption). A key-revocable public-key encryption
scheme consists efficient algorithms (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾), where 𝖤𝗇𝖼 is a 𝖯𝖯𝖳 algorithm and
𝖪𝖾𝗒𝖦𝖾𝗇,𝖣𝖾𝖼 and 𝖱𝖾𝗏𝗈𝗄𝖾 are 𝖰𝖯𝖳 algorithms defined as follows:

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆): given as input a security parameter 𝜆, output a public key 𝖯𝖪, a master secret
key 𝖬𝖲𝖪 and a quantum decryption key 𝜌𝖲𝖪.

• 𝖤𝗇𝖼(𝖯𝖪, 𝑥): given a public key 𝖯𝖪 and plaintext 𝑥 ∈ {0, 1}ℓ, output a ciphertext 𝖢𝖳.

• 𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳): given a decryption key 𝜌𝖲𝖪 and ciphertext 𝖢𝖳, output a message 𝑦.

• 𝖱𝖾𝗏𝗈𝗄𝖾 (𝖯𝖪,𝖬𝖲𝖪, 𝜎): given as input a master secret key 𝖬𝖲𝖪, a public key 𝖯𝖪 and quantum
state 𝜎, output 𝖵𝖺𝗅𝗂𝖽 or 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

Correctness of Decryption. For every 𝑥 ∈ {0, 1}ℓ, the following holds:

𝖯𝗋

[︂
𝑥← 𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳) :

(𝖯𝖪,𝖬𝖲𝖪,𝜌𝖲𝖪)←𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)

𝖢𝖳←𝖤𝗇𝖼(𝖯𝖪,𝑥)

]︂
≥ 1− 𝜈(𝜆),

where 𝜈(·) is a negligible function.

Correctness of Revocation. The following holds:

𝖯𝗋
[︁
𝖵𝖺𝗅𝗂𝖽← 𝖱𝖾𝗏𝗈𝗄𝖾 (𝖯𝖪,𝖬𝖲𝖪, 𝜌𝖲𝖪) : (𝖯𝖪,𝖬𝖲𝖪, 𝜌𝖲𝖪)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)

]︁
≥ 1− 𝜈(𝜆),

where 𝜈(·) is a negligible function.

Remark 5.2. Using the well-known “Almost As Good As New Lemma” (Lemma 2.2), the procedure
𝖣𝖾𝖼 can be purified to obtain another quantum circuit ̃︂𝖣𝖾𝖼 such that ̃︂𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳) yields (𝑥, 𝜌′𝖲𝖪)
with probability at least 1− 𝜈(𝜆) and moreover, 𝖢𝖳 is an encryption of 𝑥 and TD(𝜌′𝖲𝖪, 𝜌𝖲𝖪) ≤ 𝜈 ′(𝜆)
with 𝜈 ′(𝜆) is another negligible function.

5.1 Security Definition

Let Σ = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) be a key-revocable public-key encryption scheme. We consider
the following security experiment, defined below.

Definition 5.3. A key-revocable public-key encryption scheme Σ = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) is
secure if, for every 𝖰𝖯𝖳 adversary 𝒜, the following holds:

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜Σ(1

𝜆, 𝑏) : 𝑏
$←− {0, 1}

]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆),

where 𝖤𝗑𝗉𝗍𝒜Σ(1
𝜆, 𝑏) is as defined in Figure 1.
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𝖤𝗑𝗉𝗍𝒜Σ
(︀
1𝜆, 𝑏

)︀
:

Initialization Phase:

• The challenger runs (𝖯𝖪,𝖬𝖲𝖪, 𝜌𝖲𝖪)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) and sends (𝖯𝖪, 𝜌𝖲𝖪) to 𝒜.

Revocation Phase:

• The challenger sends the message REVOKE to 𝒜.

• The adversary 𝒜 returns a state 𝜎.

• The challenger aborts if 𝖱𝖾𝗏𝗈𝗄𝖾(𝖯𝖪,𝖬𝖲𝖪, 𝜎) outputs 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

Guessing Phase:

• 𝒜 submits a plaintext 𝑥 ∈ {0, 1}ℓ to the challenger.

• If 𝑏 = 0: The challenger sends 𝖢𝖳 ← 𝖤𝗇𝖼(𝖯𝖪, 𝑥) to 𝒜. Else, if 𝑏 = 1, the
challenger sends 𝖢𝖳

$←− 𝒞, where 𝒞 is the ciphertext space of ℓ bit messages.

• Output 𝑏𝒜 if the output of 𝒜 is 𝑏𝒜.

Figure 1: Security Experiment

Remark 5.4. In the traditional setting, 1-bit unpredictability and computational indistinguishability
are equivalent in the following sense: if there are two distributions 𝐷0 and 𝐷1 such that an efficient
adversary can distinguish these two distributions with advantage 𝜖 then the same adversary can
predict 𝐷0 versus 𝐷1 with probability 1

2 + 𝜖
2 .

This observation no longer applies to the above setting where we simultaneously need to consider
the success probability of 𝖱𝖾𝗏𝗈𝗄𝖾. As a result, our definition is incomparable with a variant of
the above definition where we instead require the adversary to distinguish a valid ciphertext versus
uniform.

Hybrid Lemma. We present a hybrid lemma for 1-bit unpredictability below. This lemma will
be useful in applications where we can employ hybrid argument in a similar vein as done in the
computational indistinguishability setting.

Lemma 5.5 (Hybrid Lemma for 1-Bit Unpredictability). Suppose there exists a sequence of hybrid
experiments 𝖧1, . . . ,𝖧𝑘 such that any 𝖰𝖯𝖳 predictor 𝒜 can predict 𝖧𝑖 versus 𝖧𝑖+1 with advantage
at most 𝜖𝑖. Then, 𝒜 can only predict hybrid 𝖧1 versus 𝖧𝑘 with advantage of at most

∑︀𝑘−1
𝑖=1 𝜖𝑖.

Proof. Let 𝒜 be a 𝖰𝖯𝖳 adversary and suppose that for 𝑖 ∈ [𝑘 − 1]:

1

2
𝖯𝗋[0← 𝖧𝒜𝑖 ] +

1

2
𝖯𝗋[1← 𝖧𝒜𝑖+1] =

1

2
+ 𝜖𝑖.
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We give a proof by induction. First, note that the base case for 𝑘 = 2 follows immediately by
the definition of 𝜖1. Now fix an arbitrary 𝑘 ≥ 2, and suppose that 𝒜 can predict hybrid 𝖧1 versus
𝖧𝑘 with advantage at most

∑︀𝑘−1
𝑖=1 𝜖𝑖. In other words, by the induction hypothesis we have

1

2
𝖯𝗋[0← 𝖧𝒜1 ] +

1

2
𝖯𝗋[1← 𝖧𝒜𝑘 ] =

1

2
+

𝑘−1∑︁
𝑖=1

𝜖𝑖.

Suppose also that
1

2
𝖯𝗋[0← 𝖧𝒜𝑘 ] +

1

2
𝖯𝗋[1← 𝖧𝒜𝑘+1] =

1

2
+ 𝜖𝑘.

By taking the sum of the two equations above, we get

1

2
𝖯𝗋[0← 𝖧𝒜1 ] +

1

2
𝖯𝗋[1← 𝖧𝒜𝑘 ] +

1

2
𝖯𝗋[0← 𝖧𝒜𝑘 ] +

1

2
𝖯𝗋[1← 𝖧𝒜𝑘+1] = 1 +

𝑘∑︁
𝑖=1

𝜖𝑖.

Using the identity 𝖯𝗋[0← 𝖧𝒜𝑘 ] + 𝖯𝗋[1← 𝖧𝒜𝑘 ] = 1, we obtain the desired identity for 𝑘 + 1:

1

2
𝖯𝗋[0← 𝖧𝒜1 ] +

1

2
𝖯𝗋[1← 𝖧𝒜𝑘+1] =

1

2
+

𝑘∑︁
𝑖=1

𝜖𝑖.

This proves the claim.

5.2 Key-Revocable Public-Key Fully Homomorphic Encryption

A key-revocable public-key fully homomorphic encryption scheme defined for a class of functions
ℱ , in addition to (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾), consists of the following PPT algorithm:

• 𝖤𝗏𝖺𝗅(𝖯𝖪, 𝑓,𝖢𝖳): on input a public key 𝖯𝖪, function 𝑓 ∈ ℱ , ciphertext 𝖢𝖳, outputs another
ciphertext 𝖢𝖳′.

Remark 5.6. Sometimes we allow 𝖪𝖾𝗒𝖦𝖾𝗇 to additionally take as input different parameters asso-
ciated with the implementations of the functions in ℱ . For example, we allow 𝖪𝖾𝗒𝖦𝖾𝗇 to take as
input a parameter 𝐿 in such a way that all the parameters in the system depend on 𝐿 and moreover,
the homomorphic evaluation is only supported on circuits (in ℱ) of depth at most 𝐿.

Correctness of Evaluation and Decryption. For every 𝑓 ∈ ℱ with ℓ-bit inputs, every 𝑥 ∈
{0, 1}ℓ, the following holds:

𝖯𝗋

⎡⎣𝑓(𝑥)← 𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳
′) :

(𝖯𝖪,𝖬𝖲𝖪,𝜌𝖲𝖪)←𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)

𝖢𝖳←𝖤𝗇𝖼(𝖯𝖪,𝑥)

𝖢𝖳′←𝖤𝗏𝖺𝗅(𝖯𝖪,𝑓,𝖢𝖳)

⎤⎦ ≥ 1− 𝜈(𝜆),

where 𝜈(·) is a negligible function.

Correctness of Revocation. Defined as before.

Security. Defined as before (Definition 5.3).
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5.3 From Single-Bit to Multi-Bit Security

Consider the following transformation from a single-bit key-revocable public-key encryption scheme
to a multi-bit scheme. While such a transformation was known for indistinguishability-based en-
cryption schemes, we show that the same transformation also works in the 1-bit unpredictability
setting.

Construction 1 (Single-Bit to Multi-Bit Transformation). Let Σ = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) be a
single-bit key-revocable public-key encryption scheme. Then, for 𝑘 ∈ ℕ, we define the corresponding
multi-bit transformation Σ𝑘 =

(︀
𝖪𝖾𝗒𝖦𝖾𝗇𝑘,𝖤𝗇𝖼𝑘,𝖣𝖾𝖼𝑘,𝖱𝖾𝗏𝗈𝗄𝖾𝑘

)︀
as follows:

• 𝖪𝖾𝗒𝖦𝖾𝗇𝑘(1𝜆): given as input a security parameter 𝜆, run 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) to output a public key
𝖯𝖪, a master secret key 𝖬𝖲𝖪 and a quantum decryption key 𝜌𝖲𝖪.

• 𝖤𝗇𝖼𝑘(𝖯𝖪, 𝑥): given a public key 𝖯𝖪 and plaintext 𝑥 ∈ {0, 1}𝑘, output the ciphertext

𝖢𝖳 = (𝖤𝗇𝖼(𝖯𝖪, 𝑥1), . . . ,𝖤𝗇𝖼(𝖯𝖪, 𝑥𝑘)) .

• 𝖣𝖾𝖼𝑘(𝜌𝖲𝖪,𝖢𝖳): given a decryption key 𝜌𝖲𝖪 and a ciphertext 𝖢𝖳 = 𝖢𝖳1, . . . ,𝖢𝖳𝑘, decrypt each
of the ciphertexts separately by running the purified variant10 of 𝖣𝖾𝖼 and re-using the key.

• 𝖱𝖾𝗏𝗈𝗄𝖾𝑘 (𝖯𝖪,𝖬𝖲𝖪, 𝜎): given as input a master secret key 𝖬𝖲𝖪, a public key 𝖯𝖪 and quantum
state 𝜎, run 𝖱𝖾𝗏𝗈𝗄𝖾 (𝖯𝖪,𝖬𝖲𝖪, 𝜎) to output 𝖵𝖺𝗅𝗂𝖽 or 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

The following claim follows immediately from the “Almost As Good As New Lemma” (Lemma 2.2)
mentioned in Remark 5.2.

Claim 5.7. Let 𝜆 ∈ ℕ be the security parameter. If Σ = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) satisfies
correctness of decryption and revocation, then so does Σ𝑘 in Construction 1 for any 𝑘 = poly(𝜆).

Finally, we show the following.

Claim 5.8. Let 𝜆 ∈ ℕ be the security parameter. If Σ = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) is a secure
key-revocable public-key encryption scheme, then so is Σ𝑘 in Construction 1 for any 𝑘 = poly(𝜆).

Proof. Let 𝜆 ∈ ℕ and 𝑘 = poly(𝜆). Let 𝒜 be a 𝖰𝖯𝖳 adversary and suppose that

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜Σ𝑘(1

𝜆, 𝑏) : 𝑏
$←− {0, 1}

]︁
=

1

2
+ 𝜖(𝜆),

for some 𝜀(𝜆) with respect to 𝖤𝗑𝗉𝗍𝒜Σ𝑘(1𝜆, 𝑏) in Figure 1. We show that 𝜀(𝜆) is negligible.
For 𝑖 ∈ [𝑘], we now consider the following sequence of intermediate hybrid experiments 𝖧𝒜𝑖

defined in Figure 2, where 𝖧1 = 𝖤𝗑𝗉𝗍𝒜Σ𝑘(1𝜆, 0) and 𝖧𝑘 = 𝖤𝗑𝗉𝗍𝒜Σ𝑘(1𝜆, 1). Because the single-bit
scheme Σ is secure, there exist negligible functions 𝜖𝑖(𝜆) such that for each 𝑖 ∈ [𝑘 − 1],

1

2
𝖯𝗋[0← 𝖧𝒜𝑖 (1

𝜆)] +
1

2
𝖯𝗋[1← 𝖧𝒜𝑖+1(1

𝜆)] =
1

2
+ 𝜖𝑖(𝜆).

Using Lemma 5.5, we get that 𝜖(𝜆) ≤
∑︀𝑘−1

𝑖=1 𝜖𝑖(𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆). This proves the claim.

10See Remark 5.2.
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𝖧𝒜𝑖
(︀
1𝜆
)︀
:

Initialization Phase:

• The challenger runs (𝖯𝖪,𝖬𝖲𝖪, 𝜌𝖲𝖪)← 𝖪𝖾𝗒𝖦𝖾𝗇𝑘(1𝜆) and sends (𝖯𝖪, 𝜌𝖲𝖪) to 𝒜.

Revocation Phase:

• The challenger sends the message REVOKE to 𝒜.

• The adversary 𝒜 returns a state 𝜎.

• The challenger aborts if 𝖱𝖾𝗏𝗈𝗄𝖾𝑘(𝖯𝖪,𝖬𝖲𝖪, 𝜎) outputs 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

Guessing Phase:

• 𝒜 submits a plaintext 𝑥 ∈ {0, 1}𝑘 to the challenger.

• The challenger samples 𝐶1, . . . , 𝐶𝑖−1
$←− 𝒞, where 𝒞 is the space of all ciphertexts

of single-bit messages, and sends the following to 𝒜:

𝖢𝖳 = (𝐶1, 𝐶2, . . . , 𝐶𝑖−1,𝖤𝗇𝖼(𝖯𝖪, 𝑥𝑖), . . .𝖤𝗇𝖼(𝖯𝖪, 𝑥𝑘)).

• Output 𝑏𝒜 if the output of 𝒜 is 𝑏𝒜.

Figure 2: The hybrid experiment 𝖧𝒜𝑖
(︀
1𝜆
)︀
.

6 Key-Revocable Dual-Regev Encryption

In this section, we present the first construction of key-revocable public-key encryption from stan-
dard assumptions. Our construction involves making the Dual Regev public-key encryption of
Gentry, Peikert and Vaikuntanathan [GPV07] key revocable.

6.1 Construction

We define our Dual-Regev construction below.

Construction 2 (Key-Revocable Dual-Regev Encryption). Let 𝑛 ∈ ℕ be the security parameter
and 𝑚 ∈ ℕ. Let 𝑞 ≥ 2 be a prime and let 𝛼, 𝛽, 𝜎 > 0 be parameters. The key-revocable public-key
scheme 𝖱𝖾𝗏𝖣𝗎𝖺𝗅 = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) consists of the following 𝖰𝖯𝖳 algorithms:

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)→ (𝖯𝖪, 𝜌𝖲𝖪,𝖬𝖲𝖪) : sample (𝐀 ∈ ℤ𝑛×𝑚𝑞 , 𝗍𝖽𝐀)← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) and generate
a Gaussian superposition (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) with

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ ,
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for some 𝐲 ∈ ℤ𝑛𝑞 . Output 𝖯𝖪 = (𝐀,𝐲), 𝜌𝖲𝖪 = |𝜓𝐲⟩ and 𝖬𝖲𝖪 = 𝗍𝖽𝐀.

• 𝖤𝗇𝖼(𝖯𝖪, 𝜇) → 𝖢𝖳 : to encrypt a bit 𝜇 ∈ {0, 1}, sample a random vector 𝐬 $←−ℤ𝑛𝑞 and errors
𝐞 ∼ 𝐷ℤ𝑚, 𝛼𝑞 and 𝑒′ ∼ 𝐷ℤ, 𝛽𝑞, and output the ciphertext pair

𝖢𝖳 =
(︁
𝐬⊺𝐀+ 𝐞⊺ (mod 𝑞), 𝐬⊺𝐲 + 𝑒′ + 𝜇 · ⌊𝑞

2
⌋ (mod 𝑞)

)︁
∈ ℤ𝑚𝑞 × ℤ𝑞.

• 𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳) → {0, 1} : to decrypt 𝖢𝖳, apply the unitary 𝑈 : |𝐱⟩ |0⟩ → |𝐱⟩ |𝖢𝖳 · (−𝐱, 1)⊺⟩ on
input |𝜓𝐲⟩ |0⟩, where 𝜌𝖲𝖪 = |𝜓𝐲⟩, and measure the second register in the computational basis.
Output 0, if the measurement outcome is closer to 0 than to ⌊ 𝑞2⌋, and output 1, otherwise.

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪,𝖯𝖪, 𝜌) → {⊤,⊥}: on input 𝗍𝖽𝐀 ← 𝖬𝖲𝖪 and (𝐀,𝐲) ← 𝖯𝖪, apply the measure-
ment {|𝜓𝐲⟩⟨𝜓𝐲| , 𝐼 − |𝜓𝐲⟩⟨𝜓𝐲|} onto the state 𝜌 using the procedure 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌(𝐀, 𝗍𝖽𝐀,𝐲, 𝜎)
in Algorithm 2. Output ⊤, if the measurement is successful, and output ⊥ otherwise.

Correctness of Decryption. Follows from the correctness of Dual-Regev public-key encryption.

Correctness of Revocation. Follows from Theorem 3.3.
Let us now prove the security of our key-revocable Dual-Regev construction.

Theorem 6.1. Let 𝑛 ∈ ℕ and 𝑞 be a prime modulus with 𝑞 = 2𝑜(𝑛) and 𝑚 ≥ 2𝑛 log 𝑞, each
parameterized by the security parameter 𝜆 ∈ ℕ. Let 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚) and let 𝛼, 𝛽 ∈ (0, 1) be noise

ratios chosen such that 𝛽/𝛼 = 2𝑜(𝑛) and 1/𝛼 = 2𝑜(𝑛) ·𝜎. Then, assuming the subexponential hardness
of the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 and 𝖲𝖨𝖲𝑚

𝑛,𝑞,𝜎
√
2𝑚

problems, the scheme 𝖱𝖾𝗏𝖣𝗎𝖺𝗅 = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) in
Construction 2 is a secure key-revocable public-key encryption scheme according to Definition 5.3.

Remark 6.2. Note that our construction only handles 1-bit messages. However, we can apply the
transformation in Definition 5.3 to obtain a key-revocable public-key encryption scheme for multi-bit
messages.

Guide for proving Theorem 6.1.

• The first step towards proving Theorem 6.1 is the simultaneous search-to-decision reduction
(Theorem 6.8). Here, we show how to extract a short vector mapping 𝐀 to 𝐲 from an efficient
adversary who has a non-negligible advantage in Definition 5.3.

• Next, we exploit the search-to-reduction to extract two distinct short vectors mapping 𝐀 to
𝐲. This is proven in Section 6.3.

• Finally, we put all the pieces together in Section 6.4 and show how to use the result from Sec-
tion 6.3 in order to break the 𝖲𝖨𝖲 assumption.

6.2 Simultaneous Search-to-Decision Reduction with Quantum Auxiliary Input

Our first result concerns distinguishers with quantum auxiliary input that can distinguish between
Dual-Regev samples and uniformly random samples with high probability. In Theorem 6.3, we give
a search-to-decision reduction: we show that such distinguishers can be converted into a quantum
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extractor that can obtain a Dual-Regev secret key with overwhelming probability. We then improve
on the result and give a simultaneous search-to-decision reduction in Theorem 6.8 which holds even
if additionally require that a revocation procedure succeeds on a separate register.

We first show the following result.

Theorem 6.3 (Search-to-Decision Reduction with Quantum Auxiliary Input). Let 𝑛 ∈ ℕ and
𝑞 be a prime modulus with 𝑞 = 2𝑜(𝑛) and let 𝑚 ≥ 2𝑛 log 𝑞, each parameterized by the security
parameter 𝜆 ∈ ℕ. Let 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚) and let 𝛼, 𝛽 ∈ (0, 1) be noise ratios with 𝛽/𝛼 = 2𝑜(𝑛) and

1/𝛼 = 2𝑜(𝑛) · 𝜎. Let 𝒜 = {(𝒜𝜆,𝐀, 𝜈𝜆)}𝜆∈ℕ be any non-uniform quantum algorithm consisting of a
family of polynomial-sized quantum circuits{︃

𝒜𝜆,𝐀 : ℒ(ℋ𝑚𝑞 ⊗ℋ𝐵𝜆
)→ ℒ(ℋ𝑅𝜆

⊗ℋaux𝜆
)

}︃
𝐀∈ℤ𝑛×𝑚

𝑞

and polynomial-sized advice states 𝜈𝜆 ∈ 𝒟(ℋ𝐵𝜆
) which are independent of 𝐀. Then, assuming the

quantum hardness of the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 assumption, the following holds for every 𝖰𝖯𝖳 distinguisher 𝒟.
Suppose that there exists a function 𝜀(𝜆) = 1/poly(𝜆) such that

𝖯𝗋
[︁
1← 𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟(1𝜆, 0)

]︁
− 𝖯𝗋

[︁
1← 𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟(1𝜆, 1)

]︁
= 𝜀(𝜆).

𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟
(︀
1𝜆, 𝑏

)︀
:

• If 𝑏 = 0: output 𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀

defined in Figure 4.

• If 𝑏 = 1: output 𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀

defined in Figure 5.

Figure 3: The experiment 𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟
(︀
1𝜆, 𝑏

)︀
.

Then, there exists a quantum extractor ℰ that takes as input 𝐀, 𝐲 and system Aux of the state
𝜌𝑅,Aux and outputs a short vector in the coset Λ𝐲

𝑞 (𝐀) in time poly(𝜆,𝑚, 𝜎, 𝑞, 1/𝜀) such that

Pr

[︃
ℰ(𝐀,𝐲,𝜌Aux)=𝐱⋀︀

𝐱 ∈ Λ𝐲
𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎

√
𝑚
2
)

𝐀
$←− ℤ𝑛×𝑚

𝑞

(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)
𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃
≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

Proof. Let 𝜆 ∈ ℕ be the security parameter and let 𝒜 = {(𝒜𝜆,𝐀, 𝜈𝜆)}𝐀∈ℤ𝑛×𝑚
𝑞

be a non-uniform
quantum algorithm. Suppose that 𝒟 is a 𝖰𝖯𝖳 distinguisher with advantage 𝜀 = 1/poly(𝜆).

To prove the claim, we consider the following sequence of hybrid distributions.

𝖧0: This is the distribution 𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀

in Figure 4.

𝖧1: This is the following distribution:
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𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
:

1. Sample 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Generate (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎).

3. Generate 𝜌𝑅,Aux ← 𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲| ⊗ 𝜈𝜆).
4. Sample 𝐬 $←−ℤ𝑛𝑞 , 𝐞 ∼ 𝐷ℤ𝑚,𝛼𝑞 and 𝑒′ ∼ 𝐷ℤ,𝛽𝑞.

5. Generate 𝜌𝑅,Aux ← 𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲| ⊗ 𝜈𝜆).
6. Run 𝑏′ ← 𝒟(𝐀,𝐲, 𝐬⊺𝐀+ 𝐞⊺, 𝐬⊺𝐲 + 𝑒′, 𝜌Aux) on the reduced state. Output 𝑏′.

Figure 4: The distribution 𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
.

1. Sample a random matrix 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Sample 𝐬 $←−ℤ𝑛𝑞 , 𝐞 ∼ 𝐷ℤ𝑚,𝛼𝑞 and 𝑒′ ∼ 𝐷ℤ,𝛽𝑞.

3. Sample a Gaussian vector 𝐱0 ∼ 𝐷ℤ𝑚
𝑞 ,

𝜎√
2

and let 𝐲 = 𝐀 · 𝐱0 (mod 𝑞).

4. Run 𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0| ⊗ 𝜈𝜆) to generate a state 𝜌𝑅,aux in systems 𝑅 and aux.

5. Run the distinguisher 𝒟(𝐀,𝐲, 𝐬⊺𝐀+ 𝐞⊺, 𝐬⊺𝐲 + 𝑒′, 𝜌aux) on the reduced state 𝜌aux.

𝖧2 : This is the following distribution:

1. Sample a uniformly random matrix 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Sample 𝐬 $←−ℤ𝑛𝑞 , 𝐞 ∼ 𝐷ℤ𝑚,𝛼𝑞 and 𝑒′ ∼ 𝐷ℤ,𝛽𝑞. Let 𝐮 = 𝐀⊺𝐬+ 𝐞.

3. Sample a Gaussian vector 𝐱0 ∼ 𝐷ℤ𝑚
𝑞 ,

𝜎√
2

and let 𝐲 = 𝐀 · 𝐱0 (mod 𝑞).

4. Run 𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0| ⊗ 𝜈𝜆) to generate a state 𝜌𝑅,aux in systems 𝑅 and aux.

5. Run the distinguisher 𝒟(𝐀,𝐲,𝐮,𝐮⊺𝐱0 + 𝑒′, 𝜌aux) on the reduced state 𝜌aux.

𝖧3 : This is the following distribution:

1. Sample a uniformly random matrix 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Sample 𝐮 $←−ℤ𝑚𝑞 and 𝑒′ ∼ 𝐷ℤ,𝛽𝑞.

3. Sample a Gaussian vector 𝐱0 ∼ 𝐷ℤ𝑚
𝑞 ,

𝜎√
2

and let 𝐲 = 𝐀 · 𝐱0 (mod 𝑞).

4. Run 𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0| ⊗ 𝜈𝜆) to generate a state 𝜌𝑅,aux in systems 𝑅 and aux.

5. Run the distinguisher 𝒟(𝐀,𝐲,𝐮,𝐮⊺𝐱0 + 𝑒′, 𝜌aux) on the reduced state 𝜌aux.

𝖧4: This is the following distribution:

1. Sample a uniformly random matrix 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Sample 𝐮 $←−ℤ𝑚𝑞 and 𝑟 $←−ℤ𝑞.
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3. Sample a Gaussian vector 𝐱0 ∼ 𝐷ℤ𝑚
𝑞 ,

𝜎√
2

and let 𝐲 = 𝐀 · 𝐱0 (mod 𝑞).

4. Run 𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0| ⊗ 𝜈𝜆) to generate a state 𝜌𝑅,aux in systems 𝑅 and aux.
5. Run the distinguisher 𝒟(𝐀,𝐲,𝐮, 𝑟, 𝜌aux) on the reduced state 𝜌aux.

𝖧5: This is the distribution 𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀

in Figure 5.

𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
:

1. Sample 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Sample 𝐮 $←−ℤ𝑚𝑞 and 𝑟 $←−ℤ𝑞.
3. Run (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎).

4. Generate 𝜌𝑅,Aux ← 𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲| ⊗ 𝜈𝜆).
5. Run 𝑏′ ← 𝒟(𝐀,𝐲,𝐮, 𝑟, 𝜌Aux) on the reduced state. Output 𝑏′.

Figure 5: The distribution 𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
.

We now show the following:

Claim 6.4. Assuming 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞, the hybrids 𝖧0 and 𝖧1 are computationally indistinguishable,

𝖧0 ≈𝑐 𝖧1.

Proof. Here, we invoke the Gaussian-collapsing property in Theorem 3.1 which states that the
following samples are indistinguishable under 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞,(︁

𝐀 $←−ℤ𝑛×𝑚𝑞 , |𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ , 𝐲 ∈ ℤ𝑛𝑞
)︁
≈𝑐

(︁
𝐀 $←−ℤ𝑛×𝑚𝑞 , |𝐱0⟩ , 𝐀 · 𝐱0 ∈ ℤ𝑛𝑞

)︁

where (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) and where 𝐱0 ∼ 𝐷ℤ𝑚
𝑞 ,

𝜎√
2

is a sample from the discrete Gaussian
distribution. Because 𝒜𝜆,𝐀 is a family efficient quantum algorithms, this implies that

𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲| ⊗ 𝜈𝜆) ≈𝑐 𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0| ⊗ 𝜈𝜆),

for any polynomial-sized advice state 𝜈𝜆 ∈ 𝒟(ℋ𝐵𝜆
) which is independent of 𝐀.

Claim 6.5. Hybrids 𝖧1 and 𝖧2 are statistically indistinguishable. In other words,

𝖧1 ≈𝑠 𝖧2.

Proof. Here, we invoke the noise flooding property in Lemma 2.8 to argue that 𝐞⊺𝐱0 ≪ 𝑒′ holds
with overwhelming probability for our choice of parameters. Therefore, the distributions in 𝖧1 and
𝖧2 are computationally indistinguishable.
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Claim 6.6. Assuming 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞, the hybrids 𝖧2 and 𝖧3 are computationally indistinguishable,

𝖧2 ≈𝑐 𝖧3.

Proof. This follows from the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 assumption since the reduction can sample 𝐱0 ∼ 𝐷ℤ𝑚, 𝜎√
2

itself and generate 𝜌𝑅,aux ← 𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0| ⊗ 𝜈𝜆) on input 𝐀 ∈ ℤ𝑛×𝑚𝑞 and 𝜈𝜆.

Finally, we show the following:

Claim 6.7. Assuming 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞, the hybrids 𝖧4 and 𝖧5 are computationally indistinguishable,

𝖧4 ≈𝑐 𝖧5.

Proof. Here, we invoke the Gaussian-collapsing property in Theorem 3.1 again.

Recall that 𝖧0 and 𝖧5 can be distinguished with probability 𝜀 = 1/poly(𝜆). We proved that
the hybrids 𝖧0 and 𝖧3 are computationally indistinguishable and moreover, hybrids 𝖧4 and 𝖧5

are computationally indistinguishable. As a consequence, it holds that hybrids 𝖧3 and 𝖧4 can be
distinguished with probability at least 𝜀− 𝗇𝖾𝗀𝗅(𝜆).

We leverage this to obtain a Goldreich-Levin reduction. Consider the following distinguisher.

𝒟̃
(︀
𝐀,𝐲,𝐮, 𝑣, 𝜌

)︀
:

Input: 𝐀 ∈ ℤ𝑛×𝑚𝑞 , 𝐲 ∈ ℤ𝑛𝑞 , 𝐮 ∈ ℤ𝑛𝑞 , 𝑣 ∈ ℤ𝑞 and 𝜌 ∈ 𝐿(ℋAux).
Output: A bit 𝑏′ ∈ {0, 1}.

Procedure:

1. Sample 𝑒′ ∼ 𝐷ℤ,𝛽𝑞.

2. Output 𝑏′ ← 𝒟
(︀
𝐀,𝐲,𝐮, 𝑣 + 𝑒′, 𝜌

)︀
.

Figure 6: The distinguisher 𝒟̃
(︀
𝐀,𝐲,𝐮, 𝑣, 𝜌

)︀
.

Note that 𝑟 + 𝑒′ (mod 𝑞) is uniform whenever 𝑟 $←−ℤ𝑞 and 𝑒′ ∼ 𝐷ℤ,𝛽𝑞. Therefore, our previous
argument shows that there exists a negligible function 𝜂 such that:

Pr

⎡⎣𝒟̃(𝐀,𝐲,𝐮,𝐮⊺𝐱0, 𝜌aux) = 1
𝐀

$←− ℤ𝑛×𝑚
𝑞 ,𝐮

$←− ℤ𝑚
𝑞

𝐱0∼𝐷ℤ𝑚𝑞 , 𝜎√
2
,𝐲←𝐀·𝐱0 (mod 𝑞)

𝜌𝑅 aux←𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0|⊗𝜈𝜆)

⎤⎦

− Pr

⎡⎢⎢⎣𝒟̃(𝐀,𝐲,𝐮, 𝐫, 𝜌aux) = 1

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐮
$←− ℤ𝑚

𝑞 , 𝑟
$←− ℤ𝑞

𝐱0∼𝐷ℤ𝑚𝑞 , 𝜎√
2
,𝐲←𝐀·𝐱0 (mod 𝑞)

𝜌𝑅 aux←𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0|⊗𝜈𝜆)

⎤⎥⎥⎦ ≥ 𝜀− 𝜂(𝜆).
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Using Theorem 4.6, it follows that there exists a quantum Goldreich-Levin extractor ℰ running
in time 𝑇 (ℰ) = poly(𝜆, 𝑛,𝑚, 𝜎, 𝑞, 1/𝜀) that outputs a short vector in Λ𝐲

𝑞 (𝐀) with probability at
least

Pr

⎡⎢⎣ ℰ(𝐀,𝐲,𝜌Aux)=𝐱⋀︀
𝐱 ∈ Λ𝐲

𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎
√

𝑚
2
)
:

𝐀
$←− ℤ𝑛×𝑚

𝑞

𝐱0∼𝐷ℤ𝑚𝑞 , 𝜎√
2

𝐲←𝐀𝐱0 (mod 𝑞)
𝜌𝑅 aux←𝒜𝜆,𝐀(|𝐱0⟩⟨𝐱0|⊗𝜈𝜆)

⎤⎥⎦ ≥ 1− exp(−Ω(𝑛)).

Assuming the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 assumption, we can invoke the Gaussian-collapsing property in Theorem 3.1
once again which implies that the quantum extractor ℰ satisfies

Pr

[︃
ℰ(𝐀,𝐲,𝜌Aux)=𝐱⋀︀

𝐱 ∈ Λ𝐲
𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎

√
𝑚
2
)
:

𝐀
$←− ℤ𝑛×𝑚

𝑞

(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)
𝜌𝑅 aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃
≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

This proves the claim.

Next, we improve on the result in Theorem 6.3 and give a simultaneous search-to-decision
reduction with quantum auxiliary input which holds even if additionally require that a revocation
procedure succeeds on a separate register.

To formalize the notion that revocation is applied on a separate register, we introduce the
following procedure called 𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾 which is defined below.

𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲, 𝜎, 𝜌𝑅):

Input: 𝐀 ∈ ℤ𝑛×𝑚𝑞 , 𝐲 ∈ ℤ𝑛𝑞 and 𝜌 ∈ 𝐿(ℋ𝑅).
Output: Accept (⊤) or reject (⊥).

Procedure:

1. Apply the (inefficient) projective measurement{︀
|𝜓𝐲⟩⟨𝜓𝐲|, 𝐼 − |𝜓𝐲⟩⟨𝜓𝐲|

}︀
where |𝜓𝐲⟩ is the Gaussian coset state

|𝜓𝐲⟩ =
∑︁

𝐱∈ℤ𝑚
𝑞 :

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩ .

2. If the measurement succeeds, output ⊤. Else, output ⊥.

Figure 7: The procedure 𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲, 𝜎, 𝜌𝑅).

Finally, we prove the following theorem which constitutes the main technical result of this work.
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Theorem 6.8 (Simultaneous Search-to-Decision Reduction with Quantum Auxiliary Input). Let
𝑛 ∈ ℕ and 𝑞 be a prime modulus with 𝑞 = 2𝑜(𝑛) and let 𝑚 ≥ 2𝑛 log 𝑞, each parameterized by
the security parameter 𝜆 ∈ ℕ. Let 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚) and let 𝛼, 𝛽 ∈ (0, 1) be noise ratios with

𝛽/𝛼 = 2𝑜(𝑛) and 1/𝛼 = 2𝑜(𝑛) · 𝜎. Let 𝒜 = {(𝒜𝜆,𝐀, 𝜈𝜆)}𝜆∈ℕ be any non-uniform quantum algorithm
consisting of a family of polynomial-sized quantum circuits{︃

𝒜𝜆,𝐀 : ℒ(ℋ𝑚𝑞 ⊗ℋ𝐵𝜆
)→ ℒ(ℋ𝑅𝜆

⊗ℋaux𝜆
)

}︃
𝐀∈ℤ𝑛×𝑚

𝑞

and polynomial-sized advice states 𝜈𝜆 ∈ 𝒟(ℋ𝐵𝜆
) which are independent of 𝐀. Then, assuming the

quantum hardness of the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 assumption, the following holds for every 𝖰𝖯𝖳 distinguisher 𝒟.
Suppose that there exists a function 𝜀(𝜆) = 1/poly(𝜆) such that

𝖯𝗋
[︁
𝑏← 𝖲𝗂𝗆𝗎𝗅𝗍𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟(1𝜆, 𝑏) : 𝑏 $←−{0, 1}

]︁
=

1

2
+ 𝜀(𝜆).

𝖲𝗂𝗆𝗎𝗅𝗍𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟
(︀
1𝜆, 𝑏

)︀
:

• If 𝑏 = 0: output 𝗌𝗂𝗆𝗎𝗅𝗍.𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀

defined in Figure 9.

• If 𝑏 = 1: output 𝗌𝗂𝗆𝗎𝗅𝗍.𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀

defined in Figure 10.

Figure 8: The experiment 𝖲𝗂𝗆𝗎𝗅𝗍𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟
(︀
1𝜆, 𝑏

)︀
.

Then, there exists a quantum extractor ℰ that takes as input 𝐀, 𝐲 and system Aux of the state
𝜌𝑅,Aux and outputs a short vector in the coset Λ𝐲

𝑞 (𝐀) in time poly(𝜆,𝑚, 𝜎, 𝑞, 1/𝜀) such that

Pr

[︃
(𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲,𝜎,·)⊗ℰ(𝐀,𝐲,·))(𝜌𝑅,Aux)=(⊤,𝐱)⋀︀

𝐱 ∈ Λ𝐲
𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎

√
𝑚
2
)

:
𝐀

$←− ℤ𝑛×𝑚
𝑞

(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)
𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃

≥ Pr

[︃
(𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲, 𝜎, 𝜌𝑅) = ⊤ :

𝐀
$←− ℤ𝑛×𝑚

𝑞

(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)
𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃
− 𝗇𝖾𝗀𝗅(𝜆).

Proof. Let 𝒜 = {(𝒜𝜆,𝐀, 𝜈𝜆)}𝜆∈ℕ be a non-uniform quantum algorithm and let 𝒟 be any 𝖰𝖯𝖳
distinguisher. Let 𝗌𝗂𝗆𝗎𝗅𝗍.𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟 and 𝗌𝗂𝗆𝗎𝗅𝗍.𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟 be the two distributions which are
defined in Figure 9 and Figure 10, respectively.

By assumption, we have that there exists a function 𝜀(𝜆) = 1/poly(𝜆) such that

𝖯𝗋
[︁
𝑏← 𝖲𝗂𝗆𝗎𝗅𝗍𝖲𝖾𝖺𝗋𝖼𝗁𝖳𝗈𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖤𝗑𝗉𝗍𝒜,𝒟(1𝜆, 𝑏) : 𝑏 $←−{0, 1}

]︁
=

1

2
𝖯𝗋[0← 𝗌𝗂𝗆𝗎𝗅𝗍.𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟(1𝜆)] +

1

2
𝖯𝗋[1← 𝗌𝗂𝗆𝗎𝗅𝗍.𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟(1𝜆)] =

1

2
+ 𝜀(𝜆).
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𝗌𝗂𝗆𝗎𝗅𝗍.𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
:

1. Sample 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Generate (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎).

3. Generate 𝜌𝑅,Aux ← 𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲| ⊗ 𝜈𝜆).

4. Sample 𝐬 $←−ℤ𝑛𝑞 , 𝐞 ∼ 𝐷ℤ𝑚,𝛼𝑞 and 𝑒′ ∼ 𝐷ℤ,𝛽𝑞.

5. Generate 𝜌𝑅,Aux ← 𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲| ⊗ 𝜈𝜆).

6. Run 𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲, 𝜎, ·) on system 𝑅. If it outputs ⊤, continue. Otherwise,
output 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

7. Run 𝑏′ ← 𝒟(𝐀,𝐲, 𝐬⊺𝐀+ 𝐞⊺, 𝐬⊺𝐲 + 𝑒′, ·) on system Aux. Output 𝑏′.

Figure 9: The distribution 𝗌𝗂𝗆𝗎𝗅𝗍.𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
.

𝗌𝗂𝗆𝗎𝗅𝗍.𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
:

1. Sample 𝐀 $←−ℤ𝑛×𝑚𝑞 .

2. Generate (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎).

3. Sample 𝐮 $←−ℤ𝑚𝑞 and 𝑟 $←−ℤ𝑞.

4. Generate 𝜌𝑅,Aux ← 𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲| ⊗ 𝜈𝜆).

5. Run 𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲, 𝜎, ·) on system 𝑅. If it outputs ⊤, continue. Otherwise,
output 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

6. Run 𝑏′ ← 𝒟(𝐀,𝐲,𝐮, 𝑟, ·) on system Aux. Output 𝑏′.

Figure 10: The distribution 𝗌𝗂𝗆𝗎𝗅𝗍.𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟
(︀
1𝜆
)︀
.

Recall that the distributions 𝗅𝗐𝖾.𝖣𝗂𝗌𝗍 (Figure 4) and 𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍 (Figure 5) are the same as the dis-
tributions 𝗌𝗂𝗆𝗎𝗅𝗍.𝗅𝗐𝖾.𝖣𝗂𝗌𝗍 and 𝗌𝗂𝗆𝗎𝗅𝗍.𝖣𝗂𝗌𝗍, except that the procedure 𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾 is not performed in
the experiment; instead, the register 𝑅 is simply traced out and 𝒟 is run on the reduced state in
system Aux.
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Using the fact that dropping 𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾 can only increase the success probability, we get

1

2
𝖯𝗋[0← 𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟(1𝜆)] +

1

2
𝖯𝗋[1← 𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟(1𝜆)]

≥ 1

2
𝖯𝗋[0← 𝗌𝗂𝗆𝗎𝗅𝗍.𝗅𝗐𝖾.𝖣𝗂𝗌𝗍𝒜,𝒟(1𝜆)] +

1

2
𝖯𝗋[1← 𝗌𝗂𝗆𝗎𝗅𝗍.𝗎𝗇𝗂𝖿.𝖣𝗂𝗌𝗍𝒜,𝒟(1𝜆)] =

1

2
+ 𝜀(𝜆).

In other words, the 𝖰𝖯𝖳 algorithm 𝒟 can successfully predict whether it has received a Dual-Regev
sample or a uniformly random sample. Therefore,11 we can now invoke Theorem 6.3 to argue there
exists a quantum extractor ℰ that takes as input 𝐀, 𝐲 and system Aux of the state 𝜌𝑅,Aux and
outputs a short vector in the coset Λ𝐲

𝑞 (𝐀) in time poly(𝜆,𝑚, 𝜎, 𝑞, 1/𝜀) such that

Pr

[︃
ℰ(𝐀,𝐲,𝜌Aux)=𝐱⋀︀

𝐱 ∈ Λ𝐲
𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎

√
𝑚
2
)

𝐀
$←− ℤ𝑛×𝑚

𝑞

(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)
𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃
≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

By expanding the above probability in terms of conditional probabilities with respect to whether
𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾 succeeds (or fails), we get that

Pr

[︃
(𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲,𝜎,·)⊗ℰ(𝐀,𝐲,·))(𝜌𝑅,Aux)=(⊤,𝐱)⋀︀

𝐱 ∈ Λ𝐲
𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎

√
𝑚
2
)

:
𝐀

$←− ℤ𝑛×𝑚
𝑞

(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)
𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃

≥ Pr

[︃
(𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲, 𝜎, 𝜌𝑅) = ⊤ :

𝐀
$←− ℤ𝑛×𝑚

𝑞

(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)
𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃
− 𝗇𝖾𝗀𝗅(𝜆).

6.3 Distinct Pair Extraction

The following lemma allows us to analyze the probability of simultaneously extracting two distinct
preimages in terms of the success probability of revocation and the success probability of extracting
a preimage from the adversary’s state.

Lemma 6.9 (Projection onto Distinct Pairs). Let 𝜌 ∈ 𝒟(ℋ𝑋 ⊗ℋ𝑌 ) be an any density matrix, for
some Hilbert spaces ℋ𝑋 and ℋ𝑌 . Let |𝜓⟩ =

∑︀
𝑥∈𝒮 𝛼𝑥 |𝑥⟩ ∈ ℋ𝑋 be any state supported on a subset

𝒮 ⊆ 𝒳 , and let 𝚷 = |𝜓⟩⟨𝜓| denote its associated projection. Let 𝚷𝒮 be the projector onto 𝒮 with

𝚷𝒮 =
∑︁
𝑥∈𝒮
|𝑥⟩⟨𝑥|.

Let ℰ : ℒ(ℋ𝑌 )→ ℒ(ℋ𝑋′) be any 𝖢𝖯𝖳𝖯 map of the form

ℰ𝑌→𝑋′(𝜎) = Tr𝐸

[︁
𝑉𝑌→𝑋′𝐸 𝜎 𝑉

†
𝑌→𝑋′𝐸

]︁
, ∀𝜎 ∈ 𝒟(ℋ𝑌 ),

for some unitary 𝑉𝑌→𝑋′𝐸. Consider the projector 𝚪 given by

𝚪 =
∑︁

𝑥,𝑥′∈𝒮:𝑥 ̸=𝑥′
|𝑥⟩⟨𝑥|𝑋 ⊗ 𝑉

†
𝑌→𝑋′𝐸(|𝑥

′⟩⟨𝑥′|𝑋′ ⊗ 𝐼𝐸)𝑉𝑌→𝑋′𝐸 .

11Here, we use the following fact: Suppose that 𝐷0 and 𝐷1 are two distributions. Then, any QPT algorithm can
predict 𝑏 when given a sample from 𝐷𝑏, where 𝑏 $←− {0, 1}, with probability 1

2
+ 𝜀

2
if and only if the algorithm can

distinguish between the distributions 𝐷0 and 𝐷1 with probability 𝜀.
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Let 𝜌𝑋 = Tr𝑌 [𝜌𝑋𝑌 ] denote the reduced state. Then, it holds that

Tr[𝚪𝜌] ≥
(︂
1−max

𝑥∈𝒮
|𝛼𝑥|2

)︂
· Tr[𝚷𝜌𝑋 ] · Tr [𝚷𝒮 ℰ𝑌→𝑋′(𝜎)] ,

where 𝜎 = Tr[(𝚷⊗ 𝐼)𝜌]−1 · Tr𝑋 [(𝚷⊗ 𝐼)𝜌] is a reduced state in system 𝑌 .

Proof. Because the order in which we apply 𝚪 and (𝚷⊗ 𝐼) does not matter, we have the inequality

Tr [𝚪𝜌] ≥ Tr [(𝚷⊗ 𝐼)𝚪𝜌] = Tr [𝚪(𝚷⊗ 𝐼)𝜌] . (1)

Notice also that (𝚷⊗ 𝐼)𝜌(𝚷⊗ 𝐼) lies in the image of (𝚷⊗ 𝐼) with 𝚷 = |𝜓⟩⟨𝜓|, and thus

(𝚷⊗ 𝐼)𝜌(𝚷⊗ 𝐼) = Tr[(𝚷⊗ 𝐼)𝜌] · (|𝜓⟩⟨𝜓| ⊗ 𝜎), (2)

for some 𝜎 ∈ 𝒟(ℋ𝑌 ). Putting everything together, we get that

Tr [𝚪𝜌] ≥ Tr [𝚪(𝚷⊗ 𝐼)𝜌] (using inequality (1))
= Tr [𝚪(𝚷⊗ 𝐼)𝜌(𝚷⊗ 𝐼)𝚪] (since 𝚪(𝚷⊗ 𝐼) is a projector)
= Tr[(𝚷⊗ 𝐼)𝜌] · Tr [𝚪 (|𝜓⟩⟨𝜓| ⊗ 𝜎)𝚪] (using equation (2))
= Tr[(𝚷⊗ 𝐼)𝜌] · Tr [𝚪 (|𝜓⟩⟨𝜓| ⊗ 𝜎)] (since 𝚪 is a projector)

= Tr[𝚷𝜌𝑋 ] · Tr

⎡⎣ ∑︁
𝑥,𝑥′∈𝒮:𝑥 ̸=𝑥′

|𝑥⟩⟨𝑥|𝑋 ⊗ 𝑉
†
𝑌→𝑋′𝐸

(︀
|𝑥′⟩⟨𝑥′|𝑋′ ⊗ 𝐼𝐸

)︀
𝑉𝑌→𝑋′𝐸 (|𝜓⟩⟨𝜓| ⊗ 𝜎)

⎤⎦
= Tr[𝚷𝜌𝑋 ] ·

∑︁
𝑥′∈𝒮

⎛⎝ ∑︁
𝑥∈𝒮:𝑥 ̸=𝑥′

|⟨𝑥|𝜓⟩|2
⎞⎠Tr

[︁
𝑉 †𝑌→𝑋′𝐸(|𝑥

′⟩⟨𝑥′|𝑋′ ⊗ 𝐼𝐸)𝑉𝑌→𝑋′𝐸 𝜎
]︁

= Tr[𝚷𝜌𝑋 ] ·
∑︁
𝑥′∈𝒮

(︀
1− |𝛼𝑥′ |2

)︀
Tr
[︁
(|𝑥′⟩⟨𝑥′|𝑋′ ⊗ 𝐼𝐸)𝑉𝑌→𝑋′𝐸 𝜎 𝑉

†
𝑌→𝑋′𝐸

]︁
≥ Tr[𝚷𝜌𝑋 ] ·

(︂
1−max

𝑥∈𝒮
|𝛼𝑥|2

)︂
·
∑︁
𝑥′∈𝒮

Tr
[︁
(|𝑥′⟩⟨𝑥′|𝑋′ ⊗ 𝐼𝐸)𝑉𝑌→𝑋′𝐸 𝜎 𝑉

†
𝑌→𝑋′𝐸

]︁
= Tr[𝚷𝜌𝑋 ] ·

(︂
1−max

𝑥∈𝒮
|𝛼𝑥|2

)︂
·
∑︁
𝑥′∈𝒮

Tr
[︁
|𝑥′⟩⟨𝑥′|𝑋′ Tr𝐸

[︁
𝑉𝑌→𝑋′𝐸 𝜎 𝑉

†
𝑌→𝑋′𝐸

]︁]︁
= Tr[𝚷𝜌𝑋 ] ·

(︂
1−max

𝑥∈𝒮
|𝛼𝑥|2

)︂
· Tr [𝚷𝒮 ℰ𝑌→𝑋′(𝜎)] .

This proves the claim.

6.4 Proof of Theorem 6.1

Proof. Let 𝒜 be a 𝖰𝖯𝖳 adversary and suppose that

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) : 𝑏

$←− {0, 1}
]︁
=

1

2
+ 𝜖(𝜆),

for some 𝜀(𝜆) with respect to 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) in Figure 11. We show that 𝜀(𝜆) is negligible.
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𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏):

1. The challenger samples (𝐀 ∈ ℤ𝑛×𝑚𝑞 , 𝗍𝖽𝐀)← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) and generates

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩ ,

for some 𝐲 ∈ ℤ𝑛𝑞 , by running (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎). The challenger lets
𝖬𝖲𝖪← 𝗍𝖽𝐀 and 𝖯𝖪← (𝐀,𝐲) and sends 𝜌𝖲𝖪 ← |𝜓𝐲⟩ to the adversary 𝒜.

2. 𝒜 generates a (possibly entangled) bipartite state 𝜌𝑅,aux in systems ℋ𝑅⊗ℋAux
with ℋ𝑅 = ℋ𝑚𝑞 , returns system 𝑅 and holds onto the auxiliary system Aux.

3. The challenger runs 𝖱𝖾𝗏𝗈𝗄𝖾(𝖯𝖪,𝖬𝖲𝖪, 𝜌𝑅), where 𝜌𝑅 is the reduced state in
system 𝑅. If the outcome is ⊤, the game continues. Otherwise, output Invalid.

4. 𝒜 submits a plaintext bit 𝜇 ∈ {0, 1}.

5. The challenger does the following depending on 𝑏 ∈ {0, 1}:

• if 𝑏 = 0: the challenger samples a vector 𝐬 $←−ℤ𝑛𝑞 and errors 𝐞 ∼ 𝐷ℤ𝑚, 𝛼𝑞

and 𝑒′ ∼ 𝐷ℤ, 𝛽𝑞, and sends a Dual-Regev encryption of 𝜇 ∈ {0, 1} to 𝒜:

𝖢𝖳 =
(︁
𝐬⊺𝐀+ 𝐞⊺, 𝐬⊺𝐲 + 𝑒′ + 𝜇 · ⌊𝑞

2
⌋
)︁
∈ ℤ𝑚𝑞 × ℤ𝑞.

• if 𝑏 = 1: the challenger samples 𝐮 $←−ℤ𝑚𝑞 and 𝑟 $←−ℤ𝑞 uniformly at random
and sends the following pair to 𝒜:

(𝐮, 𝑟) ∈ ℤ𝑚𝑞 × ℤ𝑞.

6. 𝒜 returns a bit 𝑏′ ∈ {0, 1}.

Figure 11: The key-revocable security experiment according to Definition 5.3.
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Suppose for the sake of contradiction that 𝜖(𝜆) is non-negligible. We show that we can use 𝒜 to
break the 𝖲𝖨𝖲𝑚

𝑛,𝑞,𝜎
√
2𝑚

problem. Without loss of generality, we assume that 𝒜 submits the plaintext
𝑥 = 0. By the assumption that 𝜖(𝜆) ≥ 1/poly(𝜆), it follows from Theorem 6.8 that there exists a
quantum Goldreich-Levin extractor ℰ that takes as input 𝐀, 𝐲 and system Aux of the state 𝜌𝑅,Aux
and outputs a short vector in the coset Λ𝐲

𝑞 (𝐀) in time poly(𝜆,𝑚, 𝜎, 𝑞, 1/𝜀) such that

Pr

[︃
(𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝗍𝖽𝐀,𝐲,·)⊗ℰ(𝐀,𝐲,·))(𝜌𝑅,Aux)=(⊤,𝐱)⋀︀

𝐱 ∈ Λ𝐲
𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎

√
𝑚
2
)

:
(𝐀,𝗍𝖽𝐀)←𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛,1𝑚,𝑞)
(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)

𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃
≥ 1/poly(𝜆).

Here, we rely on the correctness of 𝖦𝖾𝗇𝖳𝗋𝖺𝗉 in Theorem 2.12 and 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌 in Theorem 3.3, as
well as the fact that revocation must necessarily succeed with inverse-polyomial probability.
Consider the following procedure in Algorithm 4.

Algorithm 4: 𝖲𝖨𝖲_𝖲𝗈𝗅𝗏𝖾𝗋(𝐀)

Input: Matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 .
Output: Vector 𝐱 ∈ ℤ𝑚.

1 Generate a Gaussian state (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) with

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩

for some vector 𝐲 ∈ ℤ𝑛𝑞 .
2 Run 𝒜 to generate a bipartite state 𝜌𝑅Aux in systems ℋ𝑅 ⊗ℋaux with ℋ𝑅 = ℋ𝑚𝑞 .
3 Measure system 𝑅 in the computational basis, and let 𝐱0 ∈ ℤ𝑛𝑞 denote the outcome.
4 Run the quantum Goldreich-Levin extractor ℰ(𝐀,𝐲, 𝜌aux) from Theorem 6.8, where 𝜌Aux is

the reduced state in system ℋAux, and let 𝐱1 ∈ ℤ𝑛𝑞 denote the outcome.
5 Output the vector 𝐱 = 𝐱1 − 𝐱0.

To conclude the proof, we show that 𝖲𝖨𝖲_𝖲𝗈𝗅𝗏𝖾𝗋(𝐀) in Algorithm 4 breaks the 𝖲𝖨𝖲𝑚
𝑛,𝑞,𝜎

√
2𝑚

problem
whenever 𝜀(𝜆) = 1/poly(𝜆). In order to guarantee that 𝖲𝖨𝖲_𝖲𝗈𝗅𝗏𝖾𝗋(𝐀) is successful, we use the
distinct pair extraction result of Lemma 6.9. This allows us to analyze the probability of simul-
taneously extracting two distinct short pre-images 𝐱0 ̸= 𝐱1 such that 𝐀𝐱0 = 𝐲 = 𝐀𝐱1 (mod 𝑞) –
both in terms of the success probability of revocation and the success probability of extracting a
pre-image from the adversary’s state 𝜌Aux in system ℋAux. Assuming that 𝐱0,𝐱1 are distinct short
pre-images such that ‖𝐱0‖ ≤ 𝜎

√︀
𝑚
2 and ‖𝐱1‖ ≤ 𝜎

√︀
𝑚
2 , it then follows that the vector 𝐱 = 𝐱1 − 𝐱0

output by 𝖲𝖨𝖲_𝖲𝗈𝗅𝗏𝖾𝗋(𝐀) has norm at most 𝜎
√
2𝑚, and thus yields a solution to 𝖲𝖨𝖲𝑚

𝑛,𝑞,𝜎
√
2𝑚

.
We remark that the state |𝜓𝐲⟩ prepared by Algorithm 4 is not normalized for ease of notation.

Note that the tail bound in Lemma 2.6 implies that (the normalized variant of) |𝜓𝐲⟩ is within
negligible trace distance of the state with support {𝐱 ∈ ℤ𝑚𝑞 : ‖𝐱‖ ≤ 𝜎

√︀
𝑚
2 }. Therefore, for the sake
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of Lemma 6.9, we can assume that |𝜓𝐲⟩ is a normalized state of the form

|𝜓𝐲⟩ =

⎛⎜⎜⎜⎜⎝
∑︁

𝐳∈ℤ𝑚
𝑞 ,‖𝐳‖≤𝜎

√
𝑚
2

𝐀𝐳=𝐲 (mod 𝑞)

𝜌 𝜎√
2
(𝐳)

⎞⎟⎟⎟⎟⎠
− 1

2 ∑︁
𝐱∈ℤ𝑚

𝑞 ,‖𝐱‖≤𝜎
√

𝑚
2

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩ .

Before we analyze Algorithm 4, we first make two technical remarks. First, since 𝜎 ≥ 𝜔(
√
log𝑚),

it follows from Lemma 2.9 that, for any full-rank 𝐀 ∈ ℤ𝑛×𝑚𝑞 and for any 𝐲 ∈ ℤ𝑛𝑞 , we have

max
𝐱∈ℤ𝑚

𝑞 , ‖𝐱‖≤𝜎
√

𝑚
2

𝐀𝐱=𝐲 (mod 𝑞)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝜌 𝜎√

2
(𝐱)∑︁

𝐳∈ℤ𝑚
𝑞 ,‖𝐳‖≤𝜎

√
𝑚
2

𝐀𝐳=𝐲 (mod 𝑞)

𝜌 𝜎√
2
(𝐳)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
≤ 2−Ω(𝑚).

Second, we can replace the procedure 𝖱𝖾𝗏𝗈𝗄𝖾(𝐀, 𝗍𝖽𝐀,𝐲, 𝜌𝑅) by an (inefficient) projective measure-
ment {|𝜓𝐲⟩⟨𝜓𝐲|, 𝐼−|𝜓𝐲⟩⟨𝜓𝐲|}, since they produce statistically close outcomes. This follows from the
fact that 𝖱𝖾𝗏𝗈𝗄𝖾(𝐀, 𝗍𝖽𝐀,𝐲, 𝜌𝑅) applies the procedure 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌 in Algorithm 2 as a subroutine,
which is correct with overwhelming probability acccording to Theorem 3.3.

Let us now analyze the success probability of Algorithm 4. Putting everything together, we get

𝖯𝗋

[︃
𝐱←𝖲𝖨𝖲_𝖲𝗈𝗅𝗏𝖾𝗋(𝐀)⋀︀

𝐱 ̸=𝟎 s.t. ‖𝐱‖≤𝜎
√
2𝑚

: 𝐀 $←−ℤ𝑛×𝑚𝑞

]︃

≥

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1− max

𝐱∈ℤ𝑚
𝑞 , ‖𝐱‖≤𝜎

√
𝑚
2

𝐀𝐱=𝐲 (mod 𝑞)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
𝜌 𝜎√

2
(𝐱)∑︁

𝐳∈ℤ𝑚
𝑞 ,‖𝐳‖≤𝜎

√
𝑚
2

𝐀𝐳=𝐲 (mod 𝑞)

𝜌 𝜎√
2
(𝐳)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎠
· Pr

[︃
𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲, 𝜌𝑅) = ⊤ :

𝐀
$←− ℤ𝑛×𝑚

𝑞 s.t. 𝐀 is full-rank
(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)

𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

]︃

· Pr

⎡⎣ℰ(︀𝐀,𝐲, 𝜌Aux
)︀
∈ Λ𝐲

𝑞 (𝐀) ∩ ℬ𝑚(𝟎, 𝜎
√︀
𝑚/2) :

𝐀
$←− ℤ𝑛×𝑚

𝑞 s.t. 𝐀 is full-rank
(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)

𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)
⊤←𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲,𝜌𝑅)

⎤⎦
≥
(︁
1− 2−Ω(𝑚)

)︁
· Pr

⎡⎣(𝖨𝗇𝖾ff𝖱𝖾𝗏𝗈𝗄𝖾(𝐀,𝐲,·)⊗ℰ(𝐀,𝐲,·))(𝜌𝑅 aux)=(⊤,𝐱1)⋀︀
𝐱1∈ ∈ Λ𝐲

𝑞 (𝐀)∩ℬ𝑚(𝟎,𝜎
√

𝑚
2
)

:
𝐀

$←− ℤ𝑛×𝑚
𝑞

s.t. 𝐀 is full-rank
(|𝜓𝐲⟩,𝐲)←𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀,𝜎)

𝜌𝑅,Aux←𝒜𝜆,𝐀(|𝜓𝐲⟩⟨𝜓𝐲|⊗𝜈𝜆)

⎤⎦
≥
(︁
1− 2−Ω(𝑚)

)︁
·
(︀
1/poly(𝜆)− 𝑞−𝑛

)︀
≥ 1/poly(𝜆).

In the last line, we applied the simultaneous search-to-decision reduction from Theorem 6.8 and
Lemma 2.4. Therefore, 𝖲𝖨𝖲_𝖲𝗈𝗅𝗏𝖾𝗋(𝐀) in Algorithm 4 runs in time poly(𝑞, 1/𝜀) and solves 𝖲𝖨𝖲𝑚

𝑛,𝑞,𝜎
√
2𝑚

whenever 𝜀 = 1/poly(𝜆). Therefore, we conclude that 𝜀(𝜆) must be negligible.
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7 Key-Revocable Fully Homomorphic Encryption

In this section, we describe our key-revocable (leveled) fully homomorphic encryption scheme from
𝖫𝖶𝖤 which is based on the so-called 𝖣𝗎𝖺𝗅𝖦𝖲𝖶 scheme used by Mahadev [Mah18] which itself is a
variant of the homomorphic encryption scheme by Gentry, Sahai and Waters [GSW13].

Let 𝜆 ∈ ℕ be the security parameter. Suppose we would like to evaluate 𝐿-depth circuits
consisting of 𝖭𝖠𝖭𝖣 gates. We choose 𝑛(𝜆, 𝐿) ≫ 𝐿 and a prime 𝑞 = 2𝑜(𝑛). Then, for integer
parameters 𝑚 ≥ 2𝑛 log 𝑞 and 𝑁 = (𝑚+1) · ⌈log 𝑞⌉, we let 𝐈 be the (𝑚+1)× (𝑚+1) identity matrix
and let 𝐆 = [𝐈 ‖ 2𝐈 ‖ . . . ‖ 2⌈log 𝑞⌉−1𝐈] ∈ ℤ(𝑚+1)×𝑁

𝑞 denote the so-called gadget matrix which converts
a binary representation of a vector back to its original vector representation over the field ℤ𝑞. Note
that the associated (non-linear) inverse operation 𝐆−1 converts vectors in ℤ𝑚+1

𝑞 to their binary
representation in {0, 1}𝑁 . In other words, we have that 𝐆 ∘𝐆−1 acts as the identity operator.

7.1 Construction

Construction 3 (Key-Revocable DualGSW encryption). Let 𝜆 ∈ ℕ be the security parameter. The
scheme 𝖱𝖾𝗏𝖣𝗎𝖺𝗅𝖦𝖲𝖶 = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) consists of the following 𝖰𝖯𝖳 algorithms:

𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆, 1𝐿) → (𝖯𝖪, 𝜌𝖲𝖪) : sample a pair (𝐀 ∈ ℤ𝑛×𝑚𝑞 , 𝗍𝖽𝐀) ← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) and generate
a Gaussian superposition (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) with

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ ,

for some 𝐲 ∈ ℤ𝑛𝑞 . Output 𝖯𝖪 = (𝐀,𝐲), 𝜌𝖲𝖪 = |𝜓𝐲⟩ and 𝖬𝖲𝖪 = 𝗍𝖽𝐀.

𝖤𝗇𝖼(𝖯𝖪, 𝜇) : to encrypt 𝜇 ∈ {0, 1}, parse (𝐀,𝐲) ← 𝖯𝖪, sample a random matrix 𝐒 $←−ℤ𝑛×𝑁𝑞 and
𝐄 ∼ 𝐷ℤ𝑚×𝑁 , 𝛼𝑞 and row vector 𝐞 ∼ 𝐷ℤ𝑁 , 𝛽𝑞, and output the ciphertext

𝖢𝖳 =
[︁
𝐀⊺𝐒+𝐄

𝐲⊺𝐒+𝐞

]︁
+ 𝜇 ·𝐆 (mod 𝑞) ∈ ℤ(𝑚+1)×𝑁

𝑞 .

𝖤𝗏𝖺𝗅(𝖢𝖳0,𝖢𝖳1) : to apply a 𝖭𝖠𝖭𝖣 gate on a ciphertext pair 𝖢𝖳0 and 𝖢𝖳1, output the matrix

𝐆− 𝖢𝖳0 ·𝐆−1(𝖢𝖳1) (mod 𝑞) ∈ ℤ(𝑚+1)×𝑁
𝑞 .

𝖣𝖾𝖼(𝜌𝖲𝖪,𝖢𝖳)→ {0, 1} : to decrypt 𝖢𝖳, apply the unitary 𝑈 : |𝐱⟩ |0⟩ → |𝐱⟩ |(−𝐱, 1) · 𝖢𝖳𝑁 ⟩ on input
|𝜓𝐲⟩ ← 𝜌𝖲𝖪, where 𝖢𝖳𝑁 ∈ ℤ𝑚+1

𝑞 is the 𝑁 -th column of 𝖢𝖳, and measure the second register
in the computational basis. Output 0, if the measurement outcome is closer to 0 than to ⌊ 𝑞2⌋,
and output 1, otherwise.

𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪,𝖯𝖪, 𝜌) → {⊤,⊥}: on input 𝗍𝖽𝐀 ← 𝖬𝖲𝖪 and (𝐀,𝐲) ← 𝖯𝖪, apply the projective
measurement {|𝜓𝐲⟩⟨𝜓𝐲| , 𝐼 − |𝜓𝐲⟩⟨𝜓𝐲|} onto 𝜌 using 𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌(𝐀, 𝗍𝖽𝐀,𝐲, 𝜎) in Algorithm 2.
Output ⊤ if the measurement is successful, and output ⊥ otherwise.
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𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏):

1. The challenger samples (𝐀 ∈ ℤ𝑛×𝑚𝑞 , 𝗍𝖽𝐀)← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) and generates

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩ ,

for some 𝐲 ∈ ℤ𝑛𝑞 , by running (|𝜓𝐲⟩ ,𝐲)← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎). The challenger lets
𝖬𝖲𝖪← 𝗍𝖽𝐀 and 𝖯𝖪← (𝐀,𝐲) and sends 𝜌𝖲𝖪 ← |𝜓𝐲⟩ to the adversary 𝒜.

2. 𝒜 generates a (possibly entangled) bipartite state 𝜌𝑅,aux in systems ℋ𝑅⊗ℋAux
with ℋ𝑅 = ℋ𝑚𝑞 , returns system 𝑅 and holds onto the auxiliary system Aux.

3. The challenger runs 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪,𝖯𝖪, 𝜌𝑅), where 𝜌𝑅 is the reduced state in
system 𝑅. If the outcome is ⊤, the game continues. Otherwise, output Invalid.

4. 𝒜 submits a plaintext bit 𝜇 ∈ {0, 1}.

5. The challenger does the following depending on 𝑏 ∈ {0, 1}:

• if 𝑏 = 0: The challenger samples a random matrix 𝐒 $←−ℤ𝑛×𝑁𝑞 and errors
𝐄 ∼ 𝐷ℤ𝑚×𝑁 , 𝛼𝑞 and row vector 𝐞 ∼ 𝐷ℤ𝑁 , 𝛽𝑞, and outputs the ciphertext

𝖢𝖳 =
[︁
𝐀⊺𝐒+𝐄

𝐲⊺𝐒+𝐞

]︁
+ 𝜇 ·𝐆 ∈ ℤ(𝑚+1)×𝑁

𝑞 .

• if 𝑏 = 1: the challenger samples a matrix 𝐔 $←−ℤ𝑚×𝑁𝑞 and row vector
𝑟 $←−ℤ𝑁𝑞 uniformly at random, and sends the following to 𝒜:[︁

𝐔

𝐫

]︁
∈ ℤ(𝑚+1)×𝑁

𝑞 .

6. 𝒜 returns a bit 𝑏′ ∈ {0, 1}.

Figure 12: The key-revocable security experiment according to Definition 5.3.

7.2 Proof of Theorem 7.1

Theorem 7.1. Let 𝐿 be an upper bound on the 𝖭𝖠𝖭𝖣-depth of the circuit which is to be evaluated.
Let 𝑛 ∈ ℕ and 𝑞 be a prime modulus with 𝑛 = 𝑛(𝜆, 𝐿) ≫ 𝐿, 𝑞 = 2𝑜(𝑛) and 𝑚 ≥ 2𝑛 log 𝑞, each
parameterized by the security parameter 𝜆 ∈ ℕ. Let 𝑁 = (𝑚 + 1) · ⌈log 𝑞⌉ be an integer. Let
𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚) and let 𝛼, 𝛽 ∈ (0, 1) be parameters such that 𝛽/𝛼 = 2𝑜(𝑛) and 1/𝛼 = 2𝑜(𝑛) · 𝜎.

Then, assuming the subexponential hardness of the 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 and 𝖲𝖨𝖲𝑚
𝑛,𝑞,𝜎

√
2𝑚

problems, the scheme
𝖱𝖾𝗏𝖣𝗎𝖺𝗅𝖦𝖲𝖶 = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) in Construction 3 is a secure key-revocable (leveled)
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fully homomorphic encryption scheme according to Definition 5.3.

Proof. Let 𝒜 be a 𝖰𝖯𝖳 adversary and suppose that

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) : 𝑏

$←− {0, 1}
]︁
=

1

2
+ 𝜖(𝜆),

for some 𝜀(𝜆) with respect to 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) in Figure 12. Note that the RevDualGSW ciphertext can
(up to an additive shift) be thought of as a column-wise concatenation of 𝑁 -many independent
ciphertexts of our key-revocable Dual-Regev scheme in Construction 2. Therefore, we can invoke
Claim 5.8 and Theorem 6.1 in order to argue that 𝜀(𝜆) is at most negligible.

8 Revocable Pseudorandom Functions

In this section, we introduce the notion of key-revocable pseudorandom functions (or simply, called
revocable) and present the first construction from (quantum hardness of) learning with errors.

8.1 Definition

Let us first recall the traditional notion of 𝖯𝖱𝖥 security [GGM86], defined as follows.

Definition 8.1 (Pseudorandom Function). Let 𝜆 ∈ ℕ and 𝜅(𝜆), ℓ(𝜆) and ℓ′(𝜆) be polynomials. A
(post-quantum) pseudorandom function (𝗉𝗊𝖯𝖱𝖥) is a pair (𝖦𝖾𝗇,𝖯𝖱𝖥) of 𝖯𝖯𝖳 algorithms given by

• 𝖦𝖾𝗇(1𝜆) : On input 1𝜆, it outputs a key 𝑘 ∈ {0, 1}𝜅.

• 𝖯𝖱𝖥(𝑘, 𝑥) : On input 𝑘 ∈ {0, 1}𝜅 and 𝑥 ∈ {0, 1}ℓ, it outputs a value 𝑦 ∈ {0, 1}ℓ
′
.

with the property that, for any 𝖰𝖯𝖳 distinguisher 𝒟, we have

Pr
[︁
𝒟𝖯𝖱𝖥(𝑘,·)(1𝜆) = 1] : 𝑘 ← 𝖦𝖾𝗇(1𝜆)

]︁
− Pr

[︁
𝒟𝐹 (·)(1𝜆) = 1] : 𝐹 $←−ℱ ℓ,ℓ

′
]︁
≤ 𝗇𝖾𝗀𝗅(𝜆),

where ℱ ℓ,ℓ′ is the set of all functions with domain {0, 1}ℓ and range {0, 1}ℓ
′
.

We now present a formal definition of revocable pseudorandom functions below.

Definition 8.2 (Revocable Pseudorandom Function). Let 𝜆 ∈ ℕ be the security parameter and
let 𝜅(𝜆), ℓ(𝜆) and ℓ′(𝜆) be polynomials. A revocable pseudorandom function (𝗋𝖯𝖱𝖥) is a scheme
(𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) consisting of the following efficient algorithms:

• 𝖦𝖾𝗇(1𝜆): on input the security parameter 𝜆 ∈ ℕ, it outputs a 𝖯𝖱𝖥 key 𝑘 ∈ {0, 1}𝜅, a quantum
state 𝜌𝑘 and a master secret key 𝖬𝖲𝖪.

• 𝖯𝖱𝖥(𝑘, 𝑥): on input a key 𝑘 ∈ {0, 1}𝜅 and an input string 𝑥 ∈ {0, 1}ℓ, it outputs a value
𝑦 ∈ {0, 1}ℓ′. This is a deterministic algorithm.

• 𝖤𝗏𝖺𝗅(𝜌𝑘, 𝑥): on input a state 𝜌𝑘 and an input 𝑥 ∈ {0, 1}ℓ, it outputs a value 𝑦 ∈ {0, 1}ℓ′.

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪, 𝜎): on input key 𝖬𝖲𝖪 and a state 𝜎, it outputs 𝖵𝖺𝗅𝗂𝖽 or 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

We additionally require that the following holds:
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Correctness. For each (𝑘, 𝜌𝑘,𝖬𝖲𝖪) in the support of 𝖦𝖾𝗇(1𝜆) and for every 𝑥 ∈ {0, 1}ℓ:
• (Correctness of evaluation:)

𝖯𝗋 [𝖯𝖱𝖥(𝑘, 𝑥) = 𝖤𝗏𝖺𝗅(𝜌𝑘, 𝑥)] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

• (Correctness of revocation:)

𝖯𝗋 [𝖵𝖺𝗅𝗂𝖽← 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪, 𝜌𝑘)] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

8.2 Security

We define revocable 𝖯𝖱𝖥 security below.

𝖤𝗑𝗉𝗍𝒜,𝜇(1𝜆, 𝑏):

Initialization Phase:

• The challenger computes (𝑘, 𝜌𝑘,𝖬𝖲𝖪)← 𝖦𝖾𝗇(1𝜆) and sends 𝜌𝑘 to 𝒜.

Revocation Phase:

• The challenger sends the message REVOKE to 𝒜.

• The adversary 𝒜 sends a state 𝜎 to the challenger.

• The challenger aborts if 𝖱𝖾𝗏𝗈𝗄𝖾 (𝖬𝖲𝖪, 𝜎) outputs 𝖨𝗇𝗏𝖺𝗅𝗂𝖽.

Guessing Phase:

• The challenger samples bit 𝑏← {0, 1}.

• The challenger samples random inputs 𝑥1, . . . , 𝑥𝜇 $←−{0, 1}ℓ and then sends the
values (𝑥1, . . . , 𝑥𝜇) and (𝑦1, . . . , 𝑦𝜇) to 𝒜, where:

– If 𝑏 = 0, set 𝑦1 = 𝖯𝖱𝖥(𝑘, 𝑥1), . . . , 𝑦𝜇 = 𝖯𝖱𝖥(𝑘, 𝑥𝜇) and,

– If 𝑏 = 1, set 𝑦1, . . . , 𝑦𝜇 $←−{0, 1}ℓ
′ .

• 𝒜 outputs a bit 𝑏′ and wins if 𝑏′ = 𝑏.

Figure 13: Revocable 𝖯𝖱𝖥 security

Definition 8.3 (Revocable 𝖯𝖱𝖥 Security). A revocable pseudorandom function (𝗋𝖯𝖱𝖥) satisfies
revocable 𝖯𝖱𝖥 security if, for every QPT adversary 𝒜 and every polynomial 𝜇 = 𝜇(𝜆) ∈ ℕ,

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜,𝜇(1𝜆, 𝑏) : 𝑏

$←− {0, 1}
]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆),

where 𝖤𝗑𝗉𝗍𝒜,𝜇 is as defined in Figure 13. If the above property holds for a fixed polynomial 𝜇(𝜆),
then we say that 𝗋𝖯𝖱𝖥 satisfies 𝜇-revocable 𝖯𝖱𝖥 security.
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From one-query to multi-query security. We show that proving security with respect to 𝜇 = 1
is sufficient. That is, we show the following.

Claim 8.4. Supoose an 𝗋𝖯𝖱𝖥 scheme (𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) satisfies 1-revocable 𝖯𝖱𝖥 security.
Then, 𝗋𝖯𝖱𝖥 also satisfies the stronger notion of (multi-query) revocable PRF security.

Proof. We consider a sequence of hybrids defined as follows. Let 𝒜 be a QPT adversary partici-
pating in the revocable PRF security experiment and let (𝑥1, 𝑦1), . . . , (𝑥𝜇, 𝑦𝜇) denote the challenge
input-output pairs, for some polynomial 𝜇 = 𝜇(𝜆). We also denote by 𝑘 the 𝖯𝖱𝖥 key sampled using
𝖦𝖾𝗇 by the challenger in Figure 13.

𝖧𝑖, for 𝑖 ∈ [𝜇 + 1]: In this hybrid, 𝑦1, . . . , 𝑦𝑖−1 are sampled uniformly at random from {0, 1}ℓ′ and
𝑦𝑖, . . . , 𝑦𝜇 are generated as follows: 𝑦𝑗 = 𝖯𝖱𝖥(𝑘, 𝑥𝑗) for 𝑗 ≥ 𝑖.

We claim that 𝒜 can win the 1-bit unpredictability game between hybrids 𝖧𝑖 and 𝖧𝑖+1, for all
𝑖 ∈ [𝜇], with probability 1

2 + 𝗇𝖾𝗀𝗅(𝜆). That is, a bit 𝑏 is sampled uniformly at random and if 𝑏 = 0
then 𝒜 participates in 𝖧𝑖 and if 𝑏 = 1 then 𝒜 participates in 𝖧𝑖+1. We claim that 𝒜 can predict
𝑏 with probability 1

2 + 𝗇𝖾𝗀𝗅(𝜆). Once we show this, we can then invoke the hybrid lemma for 1-bit
unpredictability (Lemma 5.5) to complete the proof.

Suppose the above claim is not true. Let the prediction probability of 𝒜 be 1
2 + 𝜀, where 𝜀 is

inverse polynomial. Then we use 𝒜 to break 1-revocation security of 𝗋𝖯𝖱𝖥. Specifically, we construct
a reduction ℬ that does the following:

• Get 𝜌𝑘 from the challenger.

• Sample 𝑥𝑖+1, . . . , 𝑥𝜇 uniformly at random from {0, 1}ℓ. Denote 𝜌(𝑖+1)
𝑘 = 𝜌𝑘. Do the following

for 𝑗 = 𝑖+ 1, . . . , 𝜇: 𝖤𝗏𝖺𝗅(𝜌
(𝑗)
𝑘 , 𝑥𝑗) to obtain 𝑦𝑗 . Using Almost as good as new lemma [Aar16],

recover 𝜌(𝑗+1)
𝑘 , where 𝜌(𝑗+1)

𝑘 is negligibly12 close to 𝜌𝑘 in trace distance.

• Forward 𝜌(𝜇+1)
𝑘 to 𝒜.

• When the challenger sends the message REVOKE then forward this message to 𝒜.

• If 𝒜 sends 𝜎. Forward this to the challenger.

• If the revocation did not fail, the guessing phase begins. The challenger sends (𝑥*, 𝑦*). Then,
sample 𝑥1, . . . , 𝑥𝑖−1 uniformly at random from {0, 1}ℓ and 𝑦1, . . . , 𝑦𝑖−1 uniformly at random
from {0, 1}ℓ′ . Set 𝑥𝑖 = 𝑥* and 𝑦𝑖 = 𝑦*. Send (𝑥1, 𝑦1), . . . , (𝑥𝜇, 𝑦𝜇) to 𝒜.

• Output 𝑏, where 𝑏 is the output of 𝒜.

From the quantum union bound Lemma 2.3, “Almost As Good As New” lemma (Lemma 2.2) and
the correctness of 𝗋𝖯𝖱𝖥, it follows that TD(𝜌𝑘, 𝜌

(𝜇+1)
𝑘 ) ≤ 𝗇𝖾𝗀𝗅(𝜆) and thus, the success probability

of 𝒜 when given 𝜌(𝜇+1)
𝑘 instead of 𝜌𝑘 is now at least 1

2 + 𝜀− 𝗇𝖾𝗀𝗅(𝜆). Moreover, by the design of ℬ,
it follows that the success probability of ℬ in breaking 1-revocation security of 𝗋𝖯𝖱𝖥 is exactly the

12Technically, this depends on the correctness error and we start with a 𝗋𝖯𝖱𝖥 that is correct with probability
negligibly close to 1.
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same as the success probability of 𝒜 in breaking revocation security of 𝗋𝖯𝖱𝖥. This contradicts the
fact that 𝗋𝖯𝖱𝖥 satisfies 1-revocation security.

Remark 8.5. As in the case of key revocable public-key encryption, we could consider an alternate
definition defined with respect to computational indistinguishability: instead of requiring the adver-
sary (in the guessing phase) to predict whether it receives a pseudorandom output or a string sampled
uniformly at random, we could instead require the adversary to distinguish a pseudorandom sample
from the uniform distribution. For a reason similar to the revocable PKE case, these two definitions
are incomparable. We leave the investigation of the indistinguishability-based definition to the future
works.

Remark 8.6. Our notion of revocable 𝖯𝖱𝖥 security from Definition 8.3 does not directly imply
traditional notion of 𝗉𝗊𝖯𝖱𝖥 security13 from Definition 8.1. The reason is that the definition does
not preclude the possibility of there being an input 𝑥 (say an all zeroes string) on which, 𝖯𝖱𝖥 outputs
𝑥 itself (or the first bit of 𝑥 if the output of 𝖯𝖱𝖥 is a single bit).

Motivated by Remark 8.6, we now introduce the following notion of a strong 𝗋𝖯𝖱𝖥.

Definition 8.7 (Strong 𝗋𝖯𝖱𝖥). We say that a scheme (𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) is a strong revocable
pseudorandom function (or, strong 𝗋𝖯𝖱𝖥) if the following two properties hold:

1. (𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) satisfy revocable 𝖯𝖱𝖥 security according to Definition 8.3, and

2. (𝖦𝖾𝗇,𝖯𝖱𝖥) satisfy 𝗉𝗊𝖯𝖱𝖥 security according to Definition 8.1.

Remark 8.8. Instantiating pseudorandom functions in the textbook construction of private-key
encryption [Gol06] from revocable pseudorandom functions, we get a private-key revocable encryption
scheme.

We show that the issue raised in Remark 8.6 is not inherent. In fact, we give a simple generic
transformation that allows us to obtain strong 𝗋𝖯𝖱𝖥s by making use of traditional 𝗉𝗊𝖯𝖱𝖥s.

Claim 8.9 (Generic Transformation for Strong 𝗋𝖯𝖱𝖥s). Let (𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) be an 𝗋𝖯𝖱𝖥
scheme which satisfies revocable 𝖯𝖱𝖥 security, and let (𝖦𝖾𝗇,𝖯𝖱𝖥) be a 𝗉𝗊𝖯𝖱𝖥. Then, the scheme
(̃︂𝖦𝖾𝗇, ̃︂𝖯𝖱𝖥,̃︂𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) is a strong 𝗋𝖯𝖱𝖥 which consists of the following algorithms:

• ̃︂𝖦𝖾𝗇(1𝜆): on input the security parameter 1𝜆, first run (𝑘, 𝜌𝑘,𝖬𝖲𝖪)← 𝖦𝖾𝗇(1𝜆) and then output
((𝐾, 𝑘), (𝐾, 𝜌𝑘),𝖬𝖲𝖪), where 𝐾 ← 𝖦𝖾𝗇(1𝜆) is a 𝗉𝗊𝖯𝖱𝖥 key.

• ̃︂𝖯𝖱𝖥((𝐾, 𝑘), 𝑥): on input a key (𝐾, 𝑘) and string 𝑥 ∈ {0, 1}ℓ, output 𝖯𝖱𝖥(𝐾,𝑥)⊕ 𝖯𝖱𝖥(𝑘, 𝑥).

• ̃︂𝖤𝗏𝖺𝗅((𝐾, 𝜌𝑘), 𝑥): on input (𝐾, 𝜌𝑘) and 𝑥 ∈ {0, 1}ℓ, output 𝖯𝖱𝖥(𝐾,𝑥)⊕ 𝖤𝗏𝖺𝗅(𝜌𝑘, 𝑥).

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪, (𝐾,𝜎)): on input a master secret key 𝖬𝖲𝖪 and a pair (𝐾, 𝜌𝑘), first discard the
key 𝐾 and then run 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪, 𝜎).

13Although any revocable 𝖯𝖱𝖥 is a weak PRF. Recall that a weak PRF is one where the adversary receives as input
(𝑥1, 𝑦1), . . . , (𝑥𝜇, 𝑦𝜇), where 𝑥𝑖s are picked uniformly at random. The goal of the adversary is to distinguish the two
cases: all 𝑦𝑖s are pseudorandom or all 𝑦𝑖s are picked uniformly at random.
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Proof. Let us first show that the scheme (̃︂𝖦𝖾𝗇, ̃︂𝖯𝖱𝖥,̃︂𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) maintains revocable 𝖯𝖱𝖥 security.
Suppose that there exists a 𝖰𝖯𝖳 adversary 𝒜 and a polynomial 𝜇 = 𝜇(𝜆) ∈ ℕ such that

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜,𝜇(1𝜆, 𝑏) : 𝑏

$←− {0, 1}
]︁
=

1

2
+ 𝜖(𝜆),

for some function 𝜖(𝜆) = 1/poly(𝜆) and 𝖤𝗑𝗉𝗍𝒜,𝜇 as defined in Figure 13. We show that this implies
the existence of a 𝖰𝖯𝖳 distinguisher 𝒟 that breaks the revocable 𝖯𝖱𝖥 security of the scheme
(𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾). The distinguisher 𝒟 proceeds as follows:

1. 𝒟 receives as input a quantum state 𝜌𝑘, where (𝑘, 𝜌𝑘,𝖬𝖲𝖪) ← 𝖦𝖾𝗇(1𝜆) is generated by the
challenger. Then, 𝒟 generates a 𝗉𝗊𝖯𝖱𝖥 key 𝐾 ← 𝖦𝖾𝗇(1𝜆) and sends (𝐾, 𝜌𝑘) to 𝒜.

2. When 𝒜 returns a state 𝜌, 𝒟 forwards it to the challenger as part of the revocation phase.

3. When 𝒟 receives the challenge input (𝑥1, . . . , 𝑥𝜇) and (𝑦1, . . . , 𝑦𝜇) from the challenger, 𝒟 sends
(𝑥1, . . . , 𝑥𝜇) and (𝖯𝖱𝖥(𝐾,𝑥1)⊕ 𝑦1, . . . ,𝖯𝖱𝖥(𝐾,𝑥𝜇)⊕ 𝑦𝜇) to 𝒜.

4. When 𝒜 outputs 𝑏′, so does the distinguisher 𝒟.

Note that the simulated challenge distribution above precisely matches the challenge distribution
from the experiment 𝖤𝗑𝗉𝗍𝒜,𝜇 from Figure 13. Therefore, if 𝒜 succeeds with inverse polynomial
advantage 𝜖(𝜆) = 1/poly(𝜆), so does 𝒟 – thereby breaking the revocable 𝖯𝖱𝖥 security of the scheme
(𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾). Consequently, (̃︂𝖦𝖾𝗇, ̃︂𝖯𝖱𝖥,̃︂𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾) satisfies revocable 𝖯𝖱𝖥 security.

To see why (̃︂𝖦𝖾𝗇, ̃︂𝖯𝖱𝖥) satisfy 𝗉𝗊𝖯𝖱𝖥 security according to Definition 8.1, we can follow a similar
argument as above to break the 𝗉𝗊𝖯𝖱𝖥 security of (𝖦𝖾𝗇,𝖯𝖱𝖥). Here, we rely on the fact that the
keys (𝑘, 𝜌𝑘,𝖬𝖲𝖪)← 𝖦𝖾𝗇(1𝜆) and 𝐾 ← 𝖦𝖾𝗇(1𝜆) are sampled independently from another.

Remark 8.10. We note that previous works [CLLZ21, KNY21b] do not explicitly require in their
definitions that either secure software leasing or copy-protection of pseudorandom functions to pre-
serve the pseudorandomness property (although their constructions could still satisfy the traditional
pseudorandomness property).

8.3 Construction

We construct a PRF satisfying 1-revocation security (Definition 8.3).

Shift-Hiding Construction. We construct a shift-hiding function which is loosely inspired by
shift-hiding shiftable functions introduced by Peikert and Shiehian [PS18].

Let 𝑛,𝑚 ∈ ℕ, 𝑞 ∈ ℕ be a modulus and let ℓ = 𝑛𝑚⌈log 𝑞⌉. In the following, we consider
matrix-valued functions 𝐹 : {0, 1}ℓ → ℤ𝑛×𝑚𝑞 , where 𝐹 is one of the following functions:

• 𝒵 : {0, 1}ℓ → ℤ𝑛×𝑚𝑞 which, on input 𝑥 ∈ {0, 1}ℓ, outputs an all zeroes matrix 𝟎 ∈ ℤ𝑛×𝑚𝑞 , or:

• 𝐻𝑟 : {0, 1}ℓ → ℤ𝑛×𝑚𝑞 which, on input 𝑥 ∈ {0, 1}ℓ, outputs 𝐌 ∈ ℤ𝑛×𝑚𝑞 , where 𝑟 ∈ {0, 1}ℓ
and 𝑥 = 𝑟 ⊕ 𝖻𝗂𝗇𝖽𝖾𝖼𝗈𝗆𝗉(𝐌), where 𝐌 ∈ ℤ𝑛×𝑚𝑞 and 𝖻𝗂𝗇𝖽𝖾𝖼𝗈𝗆𝗉(·) takes as input a matrix and
outputs a binary string that is obtained by concatenating the binary decompositions of all the
elements in the matrix (in some order).
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We show that there exist 𝖯𝖯𝖳 algorithms (𝒦𝒢, ℰ) (formally defined in Construction 4) with the
following properties:

• 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀, 𝐹 ): on input 1𝑛, 1𝑚, a modulus 𝑞 ∈ ℕ, a matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 and a function
𝐹 ∈ {𝒵} ∪ {𝐻𝑟 : 𝑟 ∈ {0, 1}ℓ}, it outputs a pair of keys (𝑝𝑘𝐹 , 𝑠𝑘𝐹 ).

• ℰ(𝑝𝑘𝐹 , 𝑥): on input 𝑝𝑘𝐹 , 𝑥 ∈ {0, 1}ℓ, it outputs 𝐒𝑥𝐀 + 𝐄𝑥 + 𝐹 (𝑥), where 𝐒𝑥 ∈ ℤ𝑛×𝑛𝑞 and
𝐄𝑥 ∈ ℤ𝑛×𝑚𝑞 , where ||𝐄𝑥||∞ ≤ (𝑚𝜎)2 · (𝑛𝑚⌈log(𝑞)⌉). Moreover, there is an efficient algorithm
that recovers 𝐒𝑥 given 𝑠𝑘𝐹 and 𝑥.

We show that our construction of (𝒦𝒢, ℰ) satisfies a shift-hiding property ; namely, for any 𝑟 ∈ {0, 1}ℓ,

{𝑝𝑘𝒵} ≈𝑐 {𝑝𝑘𝐻𝑟},

for any 𝑝𝑘𝐹 with (𝑝𝑘𝐹 , 𝑠𝑘𝐹 )← 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀, 𝐹 ), where 𝐀
$←− ℤ𝑛×𝑚𝑞 , and 𝐹 ∈ {𝒵, 𝐻𝑟}.

In the construction below, we consider a bijective function 𝜑 : [𝑛]× [𝑚]× [⌈log(𝑞)⌉]→ [ℓ].

Construction 4. Consider the 𝖯𝖯𝖳 algorithms (𝒦𝒢, ℰ) defined as follows:

• 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀, 𝐹 ): on input 1𝑛, 1𝑚, a modulus 𝑞 ∈ ℕ, a matrix 𝐀 ∈ ℤ𝑛×𝑚𝑞 and function
𝐹 ∈ {𝒵} ∪ {𝐻𝑟 : 𝑟 ∈ {0, 1}ℓ}, it outputs a pair of keys 𝜅𝐹 = (𝑝𝑘𝐹 , 𝑠𝑘𝐹 ) generated as follows:

1. For every 𝑖, 𝑗 ∈ [𝑛], 𝜏 ∈ [⌈log(𝑞)⌉], define {𝖬(𝑖,𝑗,𝜏)
𝑏 } as follows:

– If 𝐹 = 𝒵, then for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝜏 ∈ [⌈log(𝑞)⌉], let 𝖬(𝑖,𝑗,𝜏)
𝑏 = 𝟎 ∈ ℤ𝑛×𝑛𝑞 ,

– If 𝐹 = 𝐻𝑟, then for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝜏 ∈ [⌈log(𝑞)⌉], let 𝖬(𝑖,𝑗,𝜏)
𝑏 = (𝑏⊕ 𝑟𝜑(𝑖,𝑗,𝜏)) ·

𝐈𝑛×𝑛.

2. For every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝜏 ∈ [⌈log(𝑞)⌉], 𝑏 ∈ {0, 1}, compute:

𝑝𝑘
(𝑖,𝑗,𝜏)
𝑏 = 𝐒

(𝑖,𝑗,𝜏)
𝑏 𝐀+𝐄

(𝑖,𝑗,𝜏)
𝑏 +𝖬

(𝑖,𝑗,𝜏)
𝑏 ,

𝑠𝑘
(𝑖,𝑗,𝜏)
𝑏 =

(︁{︁
𝐒
(𝑖,𝑗,𝜏)
𝑏 ,𝐄

(𝑖,𝑗,𝜏)
𝑏

}︁)︁
,

where for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝜏 ∈ [⌈log(𝑞)⌉], 𝑏 ∈ {0, 1}:

– 𝐒
(𝑖,𝑗,𝜏)
𝑏 ← 𝐷𝑛×𝑛

ℤ𝑞 ,𝜎
,

– 𝐄
(𝑖,𝑗,𝜏)
𝑏 ← 𝐷𝑛×𝑚

ℤ𝑞 ,𝜎

3. Output 𝑝𝑘𝐹 =

(︃
𝐀,
{︁
𝑝𝑘

(𝑖,𝑗,𝜏)
𝑏

}︁
𝑖∈[𝑛],𝑗∈[𝑚],

𝜏∈[⌈log(𝑞)⌉],𝑏∈{0,1}

)︃
and 𝑠𝑘𝐹 =

{︁
𝑠𝑘

(𝑖,𝑗,𝜏)
𝑏

}︁
𝑖∈[𝑛],𝑗∈[𝑚],

𝜏∈[⌈log(𝑞)⌉],𝑏∈{0,1}
.

• ℰ(𝑝𝑘𝐹 , 𝑥): on input 𝑝𝑘𝐹 and 𝑥 ∈ {0, 1}ℓ, proceed as follows:

1. Parse 𝑝𝑘𝐹 =

(︃
𝐀
{︁
𝑝𝑘

(𝑖,𝑗,𝜏)
𝑏

}︁
𝑖∈[𝑛],𝑗∈[𝑚],

𝜏∈[⌈log(𝑞)⌉],𝑏∈{0,1}

)︃
2. Output

∑︀
𝑖∈[𝑛],𝑗∈[𝑚],
𝜏∈[⌈log(𝑞)⌉]

𝑝𝑘
(𝑖,𝑗,𝜏)
𝑥𝜑(𝑖,𝑗,𝜏).
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Claim 8.11 (Correctness). Let (𝒦𝒢, ℰ) be the pair of 𝖯𝖯𝖳 algorithms in Construction 4. Let
(𝑝𝑘𝐹 , 𝑠𝑘𝐹 )← 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀, 𝐹 ) with 𝐹 ∈ {𝒵}∪ {𝐻𝑟 : 𝑟 ∈ {0, 1}ℓ}. Then, the output of ℰ(𝑝𝑘𝐹 , 𝑥)
is of the form:

ℰ(𝑝𝑘𝐹 , 𝑥) = 𝐒𝑥𝐀+𝐄𝑥 + 𝐹 (𝑥),

where 𝐒𝑥 ∈ ℤ𝑛×𝑛𝑞 and 𝐄𝑥 ∈ ℤ𝑛×𝑚𝑞 with ||𝐄𝑥||∞ ≤ (𝑚𝜎)2 · (𝑛𝑚⌈log(𝑞)⌉). Moreover, there is an
efficient algorithm that recovers 𝐒𝑥 given (𝑝𝑘𝐹 , 𝑠𝑘𝐹 ).

Proof. Let (𝑝𝑘𝐹 , 𝑠𝑘𝐹 ) ← 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀, 𝐹 ). Parse 𝑝𝑘𝐹 =

(︃
𝐀,
{︁
𝑝𝑘

(𝑖,𝑗,𝜏)
𝑏

}︁
𝑖∈[𝑛],𝑗∈[𝑚],

𝜏∈[⌈log(𝑞)⌉],𝑏∈{0,1}

)︃
and

𝑠𝑘𝐹 =
{︁
𝑠𝑘

(𝑖,𝑗,𝜏)
𝑏

}︁
𝑖∈[𝑛],𝑗∈[𝑚],

𝜏∈[⌈log(𝑞)⌉],𝑏∈{0,1}
, where:

𝑝𝑘
(𝑖,𝑗,𝜏)
𝑏 = 𝐒

(𝑖,𝑗,𝜏)
𝑏 𝐀+𝐄

(𝑖,𝑗,𝜏)
𝑏 +𝖬

(𝑖,𝑗,𝜏)
𝑏 ,

𝑠𝑘
(𝑖,𝑗,𝜏)
𝑏 =

(︁
{𝐒(𝑖,𝑗,𝜏)

𝑏 ,𝐄
(𝑖,𝑗,𝜏)
𝑏 }

)︁
There are two cases to consider here:

Case 1. 𝐹 = 𝒵: in this case, 𝖬(𝑖,𝑗,𝜏)
𝑏 = 𝟎, for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝜏 ∈ [⌈log(𝑞)⌉], 𝑏 ∈ {0, 1}. Thus,

the following holds:

∑︁
𝑖∈[𝑛],𝑗∈[𝑚],
𝜏∈[⌈log(𝑞)⌉]

𝑝𝑘(𝑖,𝑗,𝜏)𝑥𝜑(𝑖,𝑗,𝜏)
=

⎛⎜⎜⎝ ∑︁
𝑖∈[𝑛],𝑗∈[𝑚],
𝜏∈[⌈log(𝑞)⌉]

𝐒(𝑖,𝑗,𝜏)
𝑥𝜑(𝑖,𝑗,𝜏)

⎞⎟⎟⎠
⏟  ⏞  

𝐒𝑥

𝐀+

⎛⎜⎜⎝ ∑︁
𝑖∈[𝑛],𝑗∈[𝑚],
𝜏∈[⌈log(𝑞)⌉]

𝐄(𝑖,𝑗,𝜏)
𝑥𝜑(𝑖,𝑗,𝜏)

⎞⎟⎟⎠
⏟  ⏞  

𝐄𝑥

+

⎛⎜⎜⎝ ∑︁
𝑖∈[𝑛],𝑗∈[𝑚],
𝜏∈[⌈log(𝑞)⌉]

𝖬(𝑖,𝑗,𝜏)
𝑥𝜑(𝑖,𝑗,𝜏)

⎞⎟⎟⎠
= 𝐒𝑥𝐀+𝐄𝑥 + 𝒵(𝑥)

Moreover, ||𝐄(𝑖,𝑗,𝜏)
𝑏 ||∞ ≤ (𝑚𝜎)2 and thus, ||𝐄𝑥||∞ ≤ (𝑚𝜎)2 · (𝑛𝑚⌈log(𝑞)⌉).

Case 2. 𝐹 = 𝐻𝑟:

∑︁
𝑖∈[𝑛],𝑗∈[𝑚],
𝜏∈[⌈log(𝑞)⌉]

𝑝𝑘(𝑖,𝑗,𝜏)𝑥𝜑(𝑖,𝑗,𝜏)
= 𝐒𝑥𝐀+𝐄𝑥 +

⎛⎜⎜⎝ ∑︁
𝑖∈[𝑛],𝑗∈[𝑚],
𝜏∈[⌈log(𝑞)⌉]

𝖬(𝑖,𝑗,𝜏)
𝑥𝜑(𝑖,𝑗,𝜏)

⎞⎟⎟⎠
= 𝐒𝑥𝐀+𝐄𝑥 +𝐻𝑟(𝑥),

where 𝐒𝑥 and 𝐄𝑥 are as defined above. The second equality holds because of the fact that 𝖬(𝑖,𝑗,𝜏)
𝑥𝜑(𝑖,𝑗,𝜏)

has the value (𝑏⊕ 𝑟𝜑(𝑖,𝑗,𝜏)) · 2𝜏 in the (𝑖, 𝑗)𝑡𝑕 position and zero, everywhere else. Thus, summing up
all the 𝖬

(𝑖,𝑗,𝜏)
𝑥𝜑(𝑖,𝑗,𝜏) matrices results in the matrix 𝖬, where 𝑥⊕ 𝑟 is the binary decomposition of 𝖬.

Finally, it is clear that 𝐒𝑥 can be efficiently recovered from 𝑠𝑘𝐹 and 𝑥.
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Claim 8.12 (Shift-hiding property). Assuming the quantum hardness of learning with errors, the
pair (𝒦𝒢, ℰ) in Construction 4 has the property that

{𝑝𝑘𝒵} ≈𝑐 {𝑝𝑘𝐻𝑟},

for any 𝑝𝑘𝐹 with (𝑝𝑘𝐹 , 𝑠𝑘𝐹 )← 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀, 𝐹 ), where 𝐀
$←− ℤ𝑛×𝑚𝑞 , 𝑟 ∈ {0, 1}ℓ and 𝐹 ∈ {𝒵, 𝐻𝑟}.

Proof. For every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚], 𝜏 ∈ [⌈log(𝑞)⌉], 𝑏 ∈ {0, 1}, let 𝖬
(𝑖,𝑗,𝜏)
𝑏 = (𝑏 ⊕ 𝑟𝜑(𝑖,𝑗,𝜏)) · 𝐈𝑛×𝑛.

Then from the quantum hardness of learning with errors, the following holds for every (𝑖, 𝑗, 𝜏) and
𝑏 ∈ {0, 1}:

{𝐒(𝑖,𝑗,𝜏)
𝑏 𝐀+𝐄

(𝑖,𝑗,𝜏)
𝑏 } ≈𝑐 {𝐒(𝑖,𝑗,𝜏)

𝑏 𝐀+𝐄
(𝑖,𝑗,𝜏)
𝑏 +𝖬

(𝑖,𝑗,𝜏)
𝑏 }

Since {𝐒(𝑖,𝑗,𝜏)
𝑏 } and {𝐄(𝑖,𝑗,𝜏)

𝑏 } are sampled independently for every (𝑖, 𝑗, 𝜏) and 𝑏 ∈ {0, 1}, the proof
of the claim follows.

Remark 8.13. When consider the all-zeroes function 𝒵, we drop the notation from the parameters.
For instance, we denote 𝑝𝑘𝒵 to be simply 𝑝𝑘.

Construction. We consider the following parameters which are relevant to our 𝖯𝖱𝖥 construction.
Let 𝑛,𝑚 ∈ ℕ and let 𝑞 ∈ ℕ be a modulus with 𝑞 = 2𝑜(𝑛). Let ℓ = 𝑛𝑚⌈log 𝑞⌉. Let 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚)

and let 𝑝≪ 𝑞 be a sufficiently large rounding parameter with

𝑛 ·𝑚3.5𝜎3⌈log 𝑞⌉ = (𝑞/𝑝) · 2−𝑜(𝑛).

We describe our construction below.

Construction 5 (Revocable 𝖯𝖱𝖥 scheme). Let 𝑛 ∈ ℕ be the security parameter and 𝑚 ∈ ℕ. Let
𝑞 ≥ 2 be a prime and let 𝜎 > 0 be a parameter. Let (𝒦𝒢, ℰ) be the procedure in Construction 4.
Our revocable 𝖯𝖱𝖥 scheme is defined as follows:

• 𝖦𝖾𝗇(1𝜆): This is the following key generation procedure:

1. Sample (𝐀, 𝗍𝖽𝐀)← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞).

2. Compute 𝜅𝒵 ← 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀,𝒵), where 𝒵 : {0, 1}ℓ → ℤ𝑛×𝑚𝑞 is the such that 𝒵(𝑥)
outputs an all zero matrix for every 𝑥 ∈ {0, 1}ℓ. Parse 𝜅𝒵 as (𝑝𝑘, 𝑠𝑘).

3. Generate a Gaussian superposition (|𝜓𝐲⟩ ,𝐲 ∈ ℤ𝑛𝑞 )← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) with

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ .

Output 𝑘 = (𝑝𝑘, 𝑠𝑘,𝐲), 𝜌𝑘 = (𝑝𝑘, |𝜓𝐲⟩) and 𝖬𝖲𝖪 = 𝗍𝖽𝐀.

• 𝖯𝖱𝖥(𝑘, 𝑥): this is the following procedure:

1. Parse the key 𝑘 as a tuple (𝑝𝑘, 𝑠𝑘),𝐲).

2. Output ⌊𝐒𝑥𝐲⌉𝑝. Here, 𝐒𝑥 ∈ ℤ𝑛×𝑛𝑞 is a matrix that can be efficiently recovered from 𝑠𝑘 as
stated in Claim 8.11.
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• 𝖤𝗏𝖺𝗅(𝜌𝑘, 𝑥): this is the following evaluation algorithm:

1. Parse 𝜌𝑘 as (𝑝𝑘, 𝜌).

2. Compute 𝖬𝑥 ← ℰ(𝑝𝑘, 𝑥).
3. Measure the register 𝖠𝗎𝗑 of the state 𝑈(𝜌 ⊗ |0⟩⟨0|𝖠𝗎𝗑)𝑈 †. Denote the resulting outcome

to be 𝐳, where 𝑈 is defined as follows:

𝑈 |𝐭⟩ |0⟩𝖠𝗎𝗑 → |𝐭⟩ |⌊𝖬𝑥 · 𝐭⌉𝑝⟩𝖠𝗎𝗑

4. Output 𝐳.

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪, 𝜌): given as input the trapdoor 𝗍𝖽𝐀 ← 𝖬𝖲𝖪, apply the projective measurement
{|𝜓𝐲⟩⟨𝜓𝐲| , 𝐼 − |𝜓𝐲⟩⟨𝜓𝐲|} onto the state 𝜌 using the procedure 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌(𝐀, 𝗍𝖽𝐀,𝐲, 𝜎) in
Algorithm 2. Output 𝖵𝖺𝗅𝗂𝖽 if the measurement is successful, and 𝖨𝗇𝗏𝖺𝗅𝗂𝖽 otherwise.

Lemma 8.14. The above scheme satisfies correctness for our choice of parameters.

Proof. The correctness of revocation follows immediately from the correctness of 𝖰𝖲𝖺𝗆𝗉𝖦𝖺𝗎𝗌𝗌 in
Algorithm 2, which we showed in Theorem 3.3. Next, we show the correctness of evaluation. Let
𝜅𝒵 ← 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀,𝒵) with 𝜅𝒵 = (𝖯𝖪,𝖲𝖪). From Claim 8.11, we have for any 𝑥 ∈ {0, 1}ℓ:

ℰ(𝖯𝖪, 𝑥) = 𝐒𝑥𝐀+𝐄𝑥 (mod 𝑞),

where 𝐒𝑥 ∈ ℤ𝑛×𝑛𝑞 and 𝐄𝑥 ∈ ℤ𝑛×𝑚𝑞 with ||𝐄𝑥||∞ ≤ (𝑚𝜎)2 ·(𝑛𝑚⌈log(𝑞)⌉). Recall that 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎)
outputs a state |𝜓𝐲⟩ that is overwhelmingly supported on vectors 𝐭 ∈ ℤ𝑚𝑞 such that ‖𝐭‖ ≤ 𝜎

√︀
𝑚
2

with 𝐀 · 𝐭 = 𝐲 (mod 𝑞). Therefore, we have for any input 𝑥 ∈ {0, 1}ℓ:

⌊ℰ(𝖯𝖪, 𝑥) · 𝐭⌉𝑝 = ⌊𝐒𝑥𝐀 · 𝐭+𝐄𝑥 · 𝐭⌉𝑝 = ⌊𝐒𝑥 · 𝐲 +𝐄𝑥 · 𝐭⌉𝑝 = ⌊𝐒𝑥 · 𝐲⌉𝑝 ,

where the last equality follows from the fact that

‖𝐄𝑥 · 𝐭‖∞ ≤ ‖𝐄𝑥‖∞ · ‖𝐭‖∞ ≤ (𝑚𝜎)2 · (𝑛𝑚⌈log(𝑞)⌉) · 𝜎
√︀
𝑚/2.

and 𝑛 ·𝑚3.5𝜎3⌈log 𝑞⌉ = (𝑞/𝑝) · 2−𝑜(𝑛) for our choice of parameters.

Theorem 8.15. Let 𝑛 ∈ ℕ and 𝑞 be a prime modulus with 𝑞 = 2𝑜(𝑛) and 𝑚 ≥ 2𝑛 log 𝑞, each
parameterized by 𝜆 ∈ ℕ. Let ℓ = 𝑛𝑚⌈log 𝑞⌉. Let 𝜎 ∈ (

√
2𝑚, 𝑞/

√
2𝑚) and 𝛼 ∈ (0, 1) be any noise

ratio with 1/𝛼 = 𝜎 · 2𝑜(𝑛), and let 𝑝≪ 𝑞 be a sufficiently large rounding parameter with

𝑛 ·𝑚3.5𝜎3⌈log 𝑞⌉ = (𝑞/𝑝) · 2−𝑜(𝑛).

Then, assuming the quantum subexponential hardness of 𝖫𝖶𝖤𝑚𝑛,𝑞,𝛼𝑞 and 𝖲𝖨𝖲𝑚
𝑛,𝑞,𝜎

√
2𝑚

, our revocable
𝖯𝖱𝖥 scheme (𝖦𝖾𝗇,𝖯𝖱𝖥,𝖤𝗏𝖺𝗅,𝖱𝖾𝗏𝗈𝗄𝖾)defined in Construction 5 satisfies 1-revocation security accord-
ing to Definition 8.3.

Proof. Let 𝒜 be a 𝖰𝖯𝖳 adversary and suppose that

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) : 𝑏

$←− {0, 1}
]︁
=

1

2
+ 𝜖(𝜆),
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𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏):

Initialization Phase:

• The challenger runs the procedure 𝖦𝖾𝗇(1𝜆):

1. Sample (𝐀, 𝗍𝖽𝐀)← 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞).

2. Generate 𝐀𝑁 ∈ ℤ(𝑛+𝑚)×𝑚
𝑞 with 𝐀𝑁

$←− ℤ𝑚×𝑚𝑞 and 𝐀𝑁 = 𝐀.

3. Compute 𝜅𝒵 ← 𝒦𝒢(1𝑛, 1𝑚, 1𝑞,𝐀𝑁 ,𝒵), where 𝒦𝒢 is as defined
in Construction 4 and 𝒵 : {0, 1}ℓ → ℤ𝑛×𝑚𝑞 is such that 𝒵(𝑥) out-
puts an all zero matrix for every 𝑥 ∈ {0, 1}ℓ. Parse 𝜅𝒵 as (𝑝𝑘, 𝑠𝑘).

4. Generate (|𝜓𝐲⟩ ,𝐲 ∈ ℤ𝑛𝑞 )← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) with

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲 (mod 𝑞)

𝜌𝜎(𝐱) |𝐱⟩ .

5. Let 𝑘 = (𝑝𝑘, 𝑠𝑘,𝐲), 𝜌𝑘 = (𝑝𝑘, |𝜓𝐲⟩) and 𝖬𝖲𝖪 = 𝗍𝖽𝐀.

• The challenger sends 𝜌𝑘 = (𝑝𝑘, |𝜓𝐲⟩) to 𝒜.

Revocation Phase:

• The challenger sends the message REVOKE to 𝒜.

• 𝒜 generates a (possibly entangled) bipartite quantum state 𝜌𝑅,aux in
systems ℋ𝑅 ⊗ ℋAux with ℋ𝑅 = ℋ𝑚𝑞 , returns system 𝑅 and holds onto
the auxiliary system Aux.

• The challenger runs 𝖱𝖾𝗏𝗈𝗄𝖾(𝖬𝖲𝖪, 𝜌𝑅), where 𝜌𝑅 is the reduced state in
system 𝑅. If the outcome is 𝖨𝗇𝗏𝖺𝗅𝗂𝖽, the challenger aborts.

Guessing Phase:

• The challenger samples 𝑥← {0, 1}ℓ and sends (𝑥, 𝑦) to 𝒜, where

– If 𝑏 = 0: compute 𝐒𝑥 from 𝑠𝑘 as in Claim 8.11. Set 𝑦 = ⌊𝐒𝑥𝐲⌉𝑝.
– If 𝑏 = 1: sample 𝑦 ← {0, 1}𝑛.

• 𝒜 outputs a string 𝑏′ and wins if 𝑏′ = 𝑏.

Figure 14: The revocable 𝖯𝖱𝖥 experiment 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) for Construction 5.

57



for some 𝜀(𝜆) with respect to experiment 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) in Figure 14. Let us now show that 𝜀(𝜆) is
negligible.

Suppose for the sake of contradition that 𝜖(𝜆) = 1/poly(𝜆). Let us now introduce a sequence of
hybrid experiments which will be relevant for the remainder of the proof.

Let 𝖱𝖾𝗏𝖣𝗎𝖺𝗅 = (𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼,𝖱𝖾𝗏𝗈𝗄𝖾) be the 𝑛-bit key-revocable Dual-Regev scheme from
Construction 2. Fix 𝜇 = 0𝑛, where 𝜇 is the challenge message in the dual-Regev encryption security.

𝖧0: This is 𝖤𝗑𝗉𝗍𝒜(1𝜆, 0) in Figure 14.

𝖧1: This is the same experiment as 𝖤𝗑𝗉𝗍𝒜(1𝜆, 0), except for the following changes:

• Sample a random string 𝑟 ← {0, 1}ℓ.

• Run the procedure 𝖱𝖾𝗏𝖣𝗎𝖺𝗅.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) instead of 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) and 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) to
obtain (𝐀 ∈ ℤ𝑛×𝑚𝑞 ,𝐲 ∈ ℤ𝑛𝑞 ,𝖬𝖲𝖪, 𝜌𝖲𝖪).

• Compute (𝖢𝖳1,𝖢𝖳2)← 𝖱𝖾𝗏𝖣𝗎𝖺𝗅.𝖤𝗇𝖼(𝐀,𝐲, 𝜇), where 𝖢𝖳1 ∈ ℤ𝑛×𝑚𝑞 and 𝖢𝖳2 ∈ ℤ𝑛𝑞 .

• Set 𝑥 = 𝑟 ⊕ 𝖻𝗂𝗇𝖽𝖾𝖼𝗈𝗆𝗉(𝖢𝖳1).

The rest of the hybrid is the same as before.
Note that Hybrids 𝖧0 and 𝖧1 are identically distributed.

𝖧2: This is the same experiment as before, except that the challenger now uses an alternative
key-generation algorithm:

• As before, run the procedure 𝖱𝖾𝗏𝖣𝗎𝖺𝗅.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) instead of 𝖦𝖾𝗇𝖳𝗋𝖺𝗉(1𝑛, 1𝑚, 𝑞) and 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎)
to obtain (𝐀 ∈ ℤ𝑛×𝑚𝑞 ,𝐲 ∈ ℤ𝑛𝑞 ,𝖬𝖲𝖪, 𝜌𝖲𝖪). Sample 𝑟 ← {0, 1}ℓ.

• Let 𝐻𝑟 : {0, 1}ℓ → ℤ𝑛×𝑚𝑞 be as defined in the beginning of Section 8.3.

• Run the alternate algorithm 𝜅𝐻 ← 𝒦𝒢(1𝑛, 1𝑚, 1𝑞,𝐀, 𝐻𝑟) instead of 𝜅𝒵 ← 𝒦𝒢(1𝑛, 1𝑚, 1𝑞,𝐀,𝒵).

• Compute the ciphertext (𝖢𝖳*1,𝖢𝖳
*
2) ← 𝖱𝖾𝗏𝖣𝗎𝖺𝗅.𝖤𝗇𝖼(𝐀,𝐲, 𝜇), where 𝖢𝖳*1 ∈ ℤ𝑛×𝑚𝑞 . Then, set

𝑥* = 𝑟 ⊕ 𝖻𝗂𝗇𝖽𝖾𝖼𝗈𝗆𝗉(𝖢𝖳*1). Send 𝑥* to the adversary in the guessing phase.

𝖧3: This is the same hybrid as before, except that we choose 𝖢𝖳*1
$←−ℤ𝑛×𝑚𝑞 and 𝖢𝖳*2

$←−ℤ𝑛𝑞 .

𝖧4: This is the 𝖤𝗑𝗉𝗍𝒜(1𝜆, 1) in Figure 14.
Note that hybrids 𝖧3 and 𝖧4 are identically distributed.

Suppose that the following holds:

1

2
𝖯𝗋[0← 𝖧𝒜1 (1

𝜆)] +
1

2
𝖯𝗋[1← 𝖧𝒜2 (1

𝜆)] =
1

2
+ 𝛿1(𝜆), and

1

2
𝖯𝗋[0← 𝖧𝒜2 (1

𝜆)] +
1

2
𝖯𝗋[1← 𝖧𝒜3 (1

𝜆)] =
1

2
+ 𝛿2(𝜆)
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for some functions 𝛿1(𝜆) and 𝛿2(𝜆). We claim that either 𝛿1(𝜆) ≥ 1/poly(𝜆) or 𝛿2(𝜆) ≥ 1/poly(𝜆)
must hold. This is easily seen as follows. By taking the sum of the two expressions above, we get

1

2
𝖯𝗋[0← 𝖧𝒜1 (1

𝜆)] +
1

2
𝖯𝗋[1← 𝖧𝒜2 (1

𝜆)] +
1

2
𝖯𝗋[0← 𝖧𝒜2 (1

𝜆)] +
1

2
𝖯𝗋[1← 𝖧𝒜3 (1

𝜆)]

=
1

2
+ 𝛿1(𝜆) +

1

2
+ 𝛿2(𝜆).

Note that we have the identity 𝖯𝗋[0 ← 𝖧𝒜2 (1
𝜆)] + 𝖯𝗋[1 ← 𝖧𝒜2 (1

𝜆)] = 1. Moreover, because the
hybrids 𝖧0 and 𝖧1, as well as hybrids 𝖧3 and 𝖧4, are identically distributed, we have

𝖯𝗋[0← 𝖧𝒜1 (1
𝜆)] = 𝖯𝗋[0← 𝖧𝒜0 (1

𝜆)] = 𝖯𝗋[0← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 0)] and

𝖯𝗋[1← 𝖧𝒜3 (1
𝜆)] = 𝖯𝗋[1← 𝖧𝒜4 (1

𝜆)] = 𝖯𝗋[1← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 1)].

Plugging the identities above into the equation from before, we get

1

2
+ 𝜀(𝜆) =

1

2
𝖯𝗋[0← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 0)] +

1

2
𝖯𝗋[1← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 1)]

=
1

2
+ 𝛿1(𝜆) + 𝛿2(𝜆).

In other words, we get 𝛿1(𝜆) + 𝛿2(𝜆) = 𝜖(𝜆), which implies that either 𝛿1(𝜆) ≥ 1/poly(𝜆) or
𝛿2(𝜆) ≥ 1/poly(𝜆). To complete the proof, we show that both 𝛿1(𝜆) and 𝛿2(𝜆) are negligible, which
yields a contradiction to our assumption that 𝜀 = 1/poly(𝜆).

Claim 8.16. By the shift-hiding property14 of (𝒦𝒢, ℰ) in Claim 8.12, we have 𝛿1(𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆).

Proof. We first define alternate hybrids ̃︁𝖧1 and ̃︁𝖧2 as follows:

• ̃︁𝖧1 is the same as 𝖧1 except that 𝖱𝖾𝗏𝗈𝗄𝖾 is not applied on the returned state,

• ̃︁𝖧2 is the same as 𝖧2 except that 𝖱𝖾𝗏𝗈𝗄𝖾 is not applied on the returned state.

Since ignoring 𝖱𝖾𝗏𝗈𝗄𝖾 only increases the success probability of the adversary, the following holds:

1

2
𝖯𝗋[0← ̃︁𝖧1

𝒜
(1𝜆)] +

1

2
𝖯𝗋[1← ̃︁𝖧2

𝒜
(1𝜆)] ≥ 1

2
+ 𝛿1(𝜆)

We now argue that 𝛿1(𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆).
Suppose not. We design a reduction ℬ that violates the shift-hiding property as follows.

• Sample 𝑟 $←− {0, 1}ℓ. Send (𝒵, 𝐻𝑟) to the challenger.

• The challenger responds with 𝑝𝑘 =

(︃
𝐀,
{︁
𝖢𝖳

(𝑖,𝑗,𝜏)
𝑏

}︁
𝑖∈[𝑛],𝑗∈[𝑚]

𝜏∈[⌈log(𝑞)⌉],𝑏∈{0,1}

)︃
• Compute (|𝜓𝐲⟩ ,𝐲 ∈ ℤ𝑛𝑞 )← 𝖦𝖾𝗇𝖦𝖺𝗎𝗌𝗌(𝐀, 𝜎) from the challenger.

• Set 𝜌𝑘 = (𝑝𝑘, 𝜌).
14Technically, we are invoking the 1-bit indistinguishability variant of the shift-hiding property of (𝒦𝒢, ℰ) in

Claim 8.12, which is implied by the regular indistinguishability notion.
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• Compute (𝖢𝖳1,𝖢𝖳2) ← 𝖱𝖾𝗏𝖣𝗎𝖺𝗅.𝖤𝗇𝖼(𝐀,𝐲, 𝜇), where 𝖢𝖳1 ∈ ℤ𝑛×𝑚𝑞 and 𝖢𝖳2 ∈ ℤ𝑛𝑞 . Set 𝑥* =
𝑟 ⊕ 𝖻𝗂𝗇𝖽𝖾𝖼𝗈𝗆𝗉(𝖢𝖳1).

• Compute 𝖤𝗏𝖺𝗅(𝜌𝑘, 𝑥*) to obtain 𝑦* while recovering 𝜌*𝑘 (using almost as good as new lemma [Aar09])
such that 𝖳𝖣(𝜌*𝑘, 𝜌𝑘) ≤ 𝗇𝖾𝗀𝗅(𝜆).

• Send 𝜌*𝑘 to 𝒜.

• 𝒜 computes a state on two registers 𝑅 and aux. It returns the state on the register 𝑅.

• 𝒜, on input the register aux and (𝑥*, 𝑦*), outputs a bit 𝑏′.

• Output 𝑏′.

If 𝑝𝑘 is generated using 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀,𝒵) then we are in the hybrid, ̃︁𝖧1
𝒜

. If 𝑝𝑘 is generated
using 𝒦𝒢(1𝑛, 1𝑚, 𝑞,𝐀, 𝐻𝑟) then we are in the hybrid, ̃︁𝖧2

𝒜
. Thus, we violate the shift-hiding property

with advantage 𝛿1(𝜆). This completes the proof.

Next, we invoke the security of the 𝑛-bit variant of our key-revocable Dual-Regev scheme which
follows from Claim 5.8 and Theorem 6.1.

Claim 8.17. By the security of our 𝑛-bit key-revocable Dual-Regev encryption scheme which is based
on the transformation in Construction 1, we have that 𝛿2(𝜆) ≤ 𝗇𝖾𝗀𝗅(𝜆).

Proof. Suppose 𝛿2(𝜆) = 1/poly(𝜆). Using 𝒜, we design a reduction ℬ that violates the revocation
security of Construction 1, thus contradicting Theorem 6.1.

The reduction ℬ proceeds as follows.

• First, it receives as input 𝐀,𝐲 and a quantum state

|𝜓𝐲⟩ =
∑︁
𝐱∈ℤ𝑚

𝑞

𝐀𝐱=𝐲

𝜌𝜎(𝐱) |𝐱⟩ .

• The reduction generates a quantum state 𝜌𝑘 as follows:

– Sample a random string 𝑟 $←−{0, 1}ℓ.
– Let 𝐻𝑟 : {0, 1}ℓ → ℤ𝑛×𝑚𝑞 be as defined in the beginning of Section 8.3.

– Run the algorithm 𝜅𝐻 ← 𝒦𝒢(1𝑛, 1𝑚, 1𝑞,𝐀, 𝐻𝑟) and parse 𝜅𝐻 as (𝑝𝑘, 𝑠𝑘).

– Set 𝜌𝑘 = (𝑝𝑘, |𝜓𝐲⟩).

Send 𝜌𝑘 to 𝒜.

• 𝒜 outputs a state on two registers 𝑅 and aux. The register 𝑅 is returned. The reduction
forwards the register 𝑅 to the challenger.
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• The reduction then gets the challenge ciphertext 𝖢𝖳 = [𝖢𝖳1,𝖢𝖳2]
⊺ ∈ ℤ𝑛×𝑚𝑞 × ℤ𝑛𝑞 . The

reduction then sets
𝑥* = 𝑟 ⊕ 𝖻𝗂𝗇𝖽𝖾𝖼𝗈𝗆𝗉(𝖢𝖳1)

and sends 𝑥* to 𝒜 in the guessing phase, together with 𝑦 = ⌊𝐒𝑥*𝐲+𝖢𝖳2⌉𝑝 which is computed
using the secret key 𝖲𝖪 (c.f. Claim 8.11).

• 𝒜 outputs a bit 𝑏′. ℬ outputs 𝑏′.

There are two cases to consider here. In the first case, we have 𝖢𝖳 = [𝖢𝖳1,𝖢𝖳2]
⊺ ∈ ℤ𝑛×𝑚𝑞 × ℤ𝑛𝑞

is a Dual-Regev ciphertext. Here, 𝑦 = ⌊𝐒𝑥*𝐲 + 𝖢𝖳2⌉𝑝 precisely corresponds to the output of the
pseudorandom function on 𝜌𝑘 and 𝑥. In the second case, we have 𝖢𝖳 = [𝖢𝖳1,𝖢𝖳2]

⊺ ∈ ℤ𝑛×𝑚𝑞 × ℤ𝑛𝑞 ,

where 𝖢𝖳1
$←− ℤ𝑛×𝑚𝑞 and 𝖢𝖳2

$←− ℤ𝑚𝑞 . Here, 𝑦 = ⌊𝐒𝑥*𝐲 + 𝖢𝖳2⌉𝑝 is (negligibly close) to a uniform
distribution on ℤ𝑚𝑝 .

Thus, the first case precisely corresponds to 𝖧2 and the second case corresponds to 𝖧3. As a
result, ℬ violates the revocation security of Construction 1 with advantage 𝛿2(𝜆). This completes
the proof.

Putting everything together, we have shown that

Pr
[︁
𝑏← 𝖤𝗑𝗉𝗍𝒜(1𝜆, 𝑏) : 𝑏

$←− {0, 1}
]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).
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