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Abstract. As online group communication scenarios become more and
more common these years, malicious or unpleasant messages are much
easier to spread on the internet. Message franking is a crucial crypto-
graphic mechanism designed for content moderation in online end-to-end
messaging systems, allowing the receiver of a malicious message to re-
port the message to the moderator. Unfortunately, the existing message
franking schemes only consider 1-1 communication scenarios.
In this paper, we systematically explore message franking in group com-
munication scenarios. We introduce the notion of asymmetric group mes-
sage franking (AGMF), and formalize its security requirements. Then,
we provide a framework of constructing AGMF from a new primitive,
called HPS-KEMΣ. We also give a construction of HPS-KEMΣ based on
the DDH assumption. Plugging the concrete HPS-KEMΣ scheme into
our AGMF framework, we obtain a DDH-based AGMF scheme, which
supports message franking in group communication scenarios.

Keywords: Message franking; Hash proof system; Key encapsulation mecha-
nism; Signature of knowledge

1 Introduction

In recent years, secure messaging applications have become extremely popular
for conversations between individuals and groups. Billions of people communi-
cate with each other via messaging applications like Facebook Messager, Twitter,
Signal, Google Allo, etc. every day. However, these messaging applications are
abused for the spread of malicious information such as harassment messages,
phishing links, fake information and so on. Facebook Messager [20,21] intro-
duced the concept of message franking, which was formally studied in [24] later.
Generally, (symmetric or asymmetric) message franking [21,24,36] provides ac-
countability, i.e., it allows the receiver to report the malicious messages to some



moderator (e.g., the platform or some trusted third party), and meanwhile guar-
antees that no fake reports can be fabricated to frame an honest sender. Deni-
ability, as also an explicit goal of Facebook’s message franking based modera-
tion system [21], is formalized for asymmetric message franking (AMF) in [36].
Informally, deniability ensures that when the receiver reports some malicious
messages, only the moderator is able to validate the report. In other words,
after a compromise, the sender can deny sending the messages technically, in
order to avoid backlash or embarrassment (for more explanations, please refer
to [36]). Now, message franking is a vital security feature for secure messaging
applications, especially in government affairs, business and so on.

Compared with symmetric message franking, asymmetric message frank-
ing supports third-party moderation, decoupling the platform and the mod-
erator, which enables cross-platform moderation of multiple messaging systems.
As pointed out in [36], this property is necessary in decentralized or federated
messaging systems like Matrix [2] or Mastodon [1], and is advantageous if the
platform cannot adequately moderate messages, or if sub-communities want to
enforce their own content policies.

However, the existing AMF [36] only considers the case of 1-1 communica-
tion. As for another common scenarios, group communications, no works have
ever related to this topic. Group communication plays an important role in team-
work or other multi-user scenarios, and many popular instance communication
tools support it, such as WhatsApp and Signal. In addition, the IETF launched
the message-layer security (MLS) working group, which aims to standardize an
eponymous secure group messaging protocol. At the meanwhile, the academic
researchers also paid lots of attention, such as [39,23,13,3,4].

Contributions. In this paper, we systematically explore message franking in
group communication scenarios. The contributions are listed as follows.

– We introduce a new primitive called asymmetric group message franking
(AGMF), and formalize its security notions.

– We present a variant of key encapsulation mechanism (KEM), called HPS-KEMΣ,
and provide a construction based on the decisional Diffie-Hellman (DDH)
assumption. The construction can be extended to be built based on the
k-Linear assumption.

– We provide a framework of constructing AGMF from HPS-KEMΣ, and show
that it achieves the required security properties. Actually, we also obtain a
framework of constructing AMF from HPS-KEMΣ (i.e., when the size of the
receiver set is 1).

When plugging the concrete HPS-KEMΣ scheme into our AGMF frame-
work, we obtain an AGMF scheme based on the DDH assumption, which im-
plies a DDH-based AMF scheme. Note that the only existing AMF scheme [36]†

† Very recently, Issa et al. also consider a kind of AMF, called Hecate [28], but it
is somewhat different from [36]. Firstly, [36] and this paper only focus on the in-
trinsic/fundamental security properties of A(G)MF, while Hecate [28] also considers
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is constructed based on a somewhat exotic assumption, knowledge-of-exponent
assumption (KEA) [5], or the Gap Diffie-Hellman (GDH) assumption [6].

AGMF primitive. In the context of AGMF, there are three kinds of parties
involved: the sender, the multiple receivers, and the moderator (or called the
judge). Syntactically, similar to AMF, an AGMF consists of nine algorithms:
three algorithms for generating public parameters and key pairs, three algo-
rithms (Frank, Verify, Judge) for creating and verifying genuine signatures, and
the other three algorithms (Forge, RForge, JForge) for forging signatures. In a
nutshell, the sender invokes the signing algorithm Frank to generate signatures
for a receiver set. Any receiver calls Verify (with his/her secret key as input) to
verify the received signatures. If some receiver reports some malicious message
to the moderator, the moderator verifies the report with algorithm Judge. Algo-
rithms Forge, RForge and JForge are not intended to be run by legitimate users.
Their existence guarantee deniability in particular compromise scenarios.

We consider three kinds of security requirements for AGMF: accountability,
deniability, and receiver anonymity.

– Accountability.Accountability is formalized with two special properties: sender
binding and receiver binding. Sender binding guarantees that any sender
should not be able to trick receivers into accepting unreportable messages,
and receiver binding guarantees that any receivers cannot deceive the judge
or other honest receivers (to frame the innocent sender).

– Deniability. Deniability is formalized with three special properties: universal
deniability, receiver compromise deniability and judge compromise denia-
bility. Universal deniability is formalized to guarantee deniability when no
receiver secret key or judge secret key is compromised. Receiver compromise
deniability is formalized to guarantee deniability when the secret keys of
some receivers in the receiver set are compromised. Judge compromise deni-
ability is formalized to guarantee deniability when the judge’s secret key is
compromised.

– Receiver anonymity. Receiver anonymity is formalized to guarantee that any
one (except for the receivers in the receiver set), including the judge, cannot
tell which receiver set a signature is generated for.

When formalizing the above security requirements, the existence of multiple
receivers in group communication scenarios introduces new security risks, making
the security models in AGMF different from that in AMF.

First of all, due to the existence of multiple receivers, it is natural to consider
that the adversary in the security models of AGMF is able to corrupt some of
the receivers. These corruptions bring in the following concerns.

others, e.g., forward/backward secrecy. Secondly, [36] only needs one round of com-
munication and can generate the AMF signature on the fly, but Hecate [28] intro-
duces an AMF with preprocessing model, resulting in one more preprocessing round
with the moderator to get a “token” before generating the AMF signature. Hence,
we follow the definition in [36], not considering Hecate [28] when talking about AMF.
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– Compared with receiver binding for AMF, which requires that any single
receiver cannot deceive the judge to frame the innocent sender, receiver
binding for AGMF requires that any corrupted receivers cannot deceive the
judge or the other honest receivers to frame the innocent sender.

– Recall that receiver compromise deniability for AMF requires that a party
with the receiver’s secret key is able to create a signature, such that for
other parties with access to this secret key, it is indistinguishable from
honestly-generated signatures. Comparatively, receiver compromise denia-
bility for AGMF requires that any corrupted users in the receiver set are
able to create a signature, such that for other parties with access to these
corrupted users’ secret keys, it is indistinguishable from honestly-generated
signatures.

Secondly, we also formalize a new security notion called receiver anonymity,
which is not considered in AMF. Receiver anonymity requires that any one
(except for the receivers in the receiver set), including the judge, cannot tell
which receiver set a signature is generated for. With receiver anonymity, the re-
ceivers in group communication scenarios can report the malicious messages to
the moderator with less concerns. If the AGMF scheme does not support receiver
anonymity, then the judge can know some information about the identities of
receivers from the report. Then the reporter may be at the risk of vengeance,
especially if the judge is possible to leak the receiver’s identity information to the
sender. As a result, it would silence the reporters. Actually, anonymity has al-
ready been considered in many group scenarios, such as accountable anonymous
group messaging system [14,38,35], and proactively accountable anonymous mes-
saging [15].

More importantly, in all our proposed security models, the adversary is al-
lowed to corrupt the receivers adaptively. In other words, how many and whose
secret keys are compromised is unpredictable in practical scenarios, which is
greatly different from that in AMF (i.e., only one receiver’s secret key is compro-
mised). Compared with non-adaptive corruptions (i.e., the adversary is required
to announce all the corrupted users at the beginning before seeing all users’
public keys), adaptive corruptions are more natural, and cryptographic schemes
supporting adaptive corruptions are much more difficult to obtain, as mentioned
in [25,26,29,3].

AGMF construction. Following, we highlight the technical details of our
AGMF construction.
HPS-KEMΣ. In order to provide a framework of constructing AGMF, we intro-
duce a new primitive. This primitive is a variant of key encapsulation mechanism
(KEM) satisfying that (i) it can be interpreted from the perspective of hash proof
system (HPS) [17], and (ii) for some special relations (about the public/secret
keys, the encapsulated keys and ciphertexts), there exist corresponding Sigma
protocols [16]. We call this primitive HPS-based KEM supporting Sigma protocols
(HPS-KEMΣ).

A HPS-KEMΣ scheme HPS-KEMΣ mainly contains six algorithms: Setup,
KG, encapc, encapk, decap and encap∗c . In a nutshell, Setup outputs a public
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parameter, and KG outputs a pair of public/secret user keys. Taking the pub-
lic parameter as input, without user’s public key, encapc outputs a well-formed
ciphertext, and encap∗c outputs a ciphertext which could be well-formed or ill-
formed. The algorithm encapk, sharing the same randomness space with encapc,
takes the public parameter and user’s public key as input, and outputs an en-
capsulated key. With user’s secret key, the algorithm decap is invoked to decap-
sulate the ciphertexts to get the encapsulated keys. The correctness demands
that given a ciphertext output by encapc with randomness r, decap will recover
an encapsulated key, which is equivalent to that generated by encapk with the
same randomness r.

It is required that there are Sigma protocols to prove that some results are
exactly output by KG, encapc, encapk or encap∗c . We also require the following
properties informally.

1. Universality: when given a public key, it is difficult for any unbounded adver-
sary without the corresponding secret key to generate an ill-formed cipher-
text c, an encapsulated key k and a witness w (indicating that c is generated
via encap∗c), such that with the ciphertext c as input, decap outputs a key
equal to k.

2. Unexplainability: it is difficult to generate a ciphertext c and a witness w
(indicating that c is generated via encap∗c), such that c is well-formed.

3. Indistinguishability: the ciphertext output by encap∗c is indistinguishable
from the well-formed ciphertext output by encapc.

4. SK-second-preimage resistance: when given a pair of public and secret keys,
it is difficult to generate another valid secret key for this public key.

5. Smoothness: when given a public key, the algorithm decap, fed with a ci-
phertext generated via encap∗c and a user’s secret key randomly sampled
from the set of secret keys corresponding to the public key, will output a key
uniformly distributed over the encapsulated key space.

AGMF from HPS-KEMΣ. Taking HPS-KEMΣ as a building block, we construct
AGMF as follows.

The public/secret key pairs of all users (including the judge) are generated
by invoking the key generation algorithm KG of the HPS-KEMΣ.

Given a pair of sender’s public/secret keys (pks, sks), a receiver set S =
{pkri}i∈[|S|], the judge’s public key pkJ and a message m, the sender calls Frank
to generate the signature as follows:

(1) Compute c← encapc(pp; r), kJ ← encapk(pp, pkJ; r) and (kri ← encapk(pp, pkri ;
r))pkri

∈S with the same randomness r.
(2) Consider the following relation

R = { ( (sks, r, r∗), (pp, pks, pkJ, c, kJ) ) :
( (sks, pks) ∈ Rs ∧ (r, (c, kJ, pkJ)) ∈ Rc,k )

∨ ( (r∗, c) ∈ R∗c ) }
(1)

where Rs is a relation proving that the sender’s public/secret keys are valid,
Rc,k is a relation proving that (c, kJ) are generated via encapc and encapk

5



with the same randomness r, and R∗c is a relation proving that c is a cipher-
text output by encap∗c with randomness r∗. As the HPS-KEMΣ guarantees
that there are Sigma protocols for KG, encapc, encapk and encap∗c , we can
obtain a signature of knowledge (SoK) scheme for R by applying the Fiat-
Shamir transform [22] and composition operations of Sigma protocols [7].

(3) Employ the SoK scheme for R to generate a signature proof π of statement
(pp, pks, pkJ, c, kJ) for a messagem = (m||{kri}pkri

∈S) with a witness (sks, r).
(4) Return the signature σ = (π, c, kJ, {kri}pkri

∈S).

The verification algorithm Verify and the moderation algorithm Judge work
similarly. When some receiver receives a message and a signature or the judge
receives a report with a message and a signature, the first step of these algo-
rithms is to verify if the proof π in the signature is valid. If not valid, Verify
(resp., Judge) returns 0; otherwise, Verify (resp., Judge) returns 1 if and only if
decap(pp, skr, c) ∈ {kri} (resp., decap(pp, skJ, c) = kJ).

Now we turn to describe the forging algorithms Forge, RForge and JForge.
Given a sender’s public keys pks, a receiver set S = {pkri}i∈[|S|], the judge’s

public key pkJ and a message m, the universal forging algorithm Forge proceeds
as follows:

(1) Compute c ← encap∗c(pp; r
∗) with randomness r∗, kJ ← K, and (kri ←

K)pkri
∈S .

(2) Employ the SoK scheme for R in Eq. (1) to generate a signature proof π
of statement (pp, pks, pkJ, c, kJ) for a message m = (m||{kri}pkri

∈S) with a
witness r∗.

(3) Return the signature σ = (π, c, kJ, {kri}pkri
∈S).

Given a sender’s public key pks, a receiver set S = {pkri}i∈[|S|], the corrupted
receivers’ secret keys {skri}pkri

∈Scor
(where Scor ⊂ S), the judge’s public key pkJ

and a message m, the receiver compromise forging algorithm RForge proceeds
similarly to Forge, except that (kri)pkri

∈S are generated as follows: for each pkri ∈
S\Scor, samples kri ← K; for each pkri ∈ Scor, computes kri ← decap(pp, skri , c).

Given a sender’s public keys pks, a receiver set S = {pkri}i∈[|S|], the judge’s
secret key skJ and a message m, the judge compromise forging algorithm JForge
proceeds similarly to Forge, except that kJ is generated by kJ ← decap(pp, skJ, c).

Security analysis. Now we briefly show that our AGMF framework provides ac-
countability, deniability and receiver anonymity.

Informally, sender binding requires that any malicious sender cannot generate
a signature such that an honest receiver accepts it but the judge rejects it. If
there exists an adversary generating such a signature σ = (π, c, kJ, {kri}pkri

∈S),
then we have: (i) π is a valid proof for the relation R; (ii) k′ = decap(pp, skr, c) ∈
{kri}pkri

∈S ; (iii) decap(pp, skJ, c) ̸= kJ. Observe that to generate the valid proof
π for R, the adversary needs to know witness (sks, r) or r∗. According to (i)
and (iii), it implies that the adversary generates π using the witness r∗, which
suggests that c is generated via encap∗c . The unexplainability of HPS-KEMΣ

implies that c is not well-formed with overwhelming probability. So according to
(ii), (c, k′, r∗) leads to a successful attack on universality of HPS-KEMΣ.
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Receiver binding requires that any malicious receivers cannot generate a sig-
nature such that an honest receiver or the judge accepts it.

– Supposing that there exists an adversary generating a signature σ = (π, c, kJ,
{kri}pkri

∈S) such that an honest receiver accepts it, we have: (i) π is a valid
proof for the relation R; (ii) k′ = decap(pp, skr, c) ∈ {kri}pkri

∈S . Observe
that to generate the valid proof π for R, the adversary needs to know witness
(sks, r) or r

∗.
• If the adversary knows (sks, r), it implies that sks is a valid secret key
of the sender. Since the adversary is not allowed to corrupt the sender,
it is contradictory to SK-second-preimage resistance of HPS-KEMΣ.

• If the adversary knows r∗, it implies that c is generated via encap∗c .
The unexplainability of HPS-KEMΣ guarantees that c is not well-formed
with overwhelming probability. So according to (ii), (c, k′, r∗) leads to a
successful attack on universality of HPS-KEMΣ.

– Supposing that there exists an adversary generating a signature σ = (π, c, kJ,
{kri}pkri

∈S) such that the judge accepts it, we have: (i) π is a valid proof for
the relation R; (ii) decap(pp, skJ, c) = kJ. With similar analysis, this leads
to a successful attack on SK-second-preimage resistance or universality of
HPS-KEMΣ.

Next, we turn to analyze universal deniability, receiver compromise denia-
bility, and judge compromise deniability of our AGMF framework. Due to the
similarity of security analysis of these deniabilities, here we just show how uni-
versal deniability is achieved.

Universal deniability requires that the outputs of Frank and Forge are in-
distinguishable. For the generation of signature σ = (π, c, kJ, {kri}pkri

∈S), the
differences between the two algorithms are as follows.

– (c, kJ, {kri}pkri
∈S): Algorithm Frank computes c← encapc(pp; r), kJ ← encapk

(pp, pkJ; r) and (kri ← encapk(pp, pkri ; r))pkri
∈S with the same randomness

r, while algorithm Forge computes c ← encap∗c(pp; r
∗) with randomness r∗,

and samples kJ ← K and (kri ← K)pkri
∈S .

The indistinguishability of HPS-KEMΣ guarantees that c output by encapc
is indistinguishable from that output by encap∗c . When c← encapc(pp; r), we
have encapk(pp, pkri ; r) = decap(pp, skri , c) and encapk(pp, pkJ; r) = decap(pp,
skJ, c). On the other hand, when c ← encap∗c(pp; r

∗), the smoothness of
HPS-KEMΣ guarantees that the encapsulated keys kri ← decap(pp, skri , c)
and kJ ← decap(pp, skJ, c) are indistinguishable from those random keys
kri ← K and kJ ← K. Therefore, through hybrid arguments, we can show
that (c, kJ, {kri}pkri

∈S) output by Frank and Forge are indistinguishable.
– π: Frank generates a signature proof π for R with a witness (sks, r), while

Forge generates π for R with a witness r∗. Because of zero knowledge prop-
erty of the SoK scheme for R, anyone cannot distinguish the proof output
by Frank from that output by Forge.

Finally, we briefly explain why our AGMF framework achieves receiver anonymity.
Informally, receiver anonymity requires that given two receiver sets S0 and S1
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with the same size, a signature generated by Frank for S0 is indistinguishable
from that for S1. According to the above security analysis of universal deniabil-
ity, the signature output by Frank is indistinguishable from that output by Forge.
Notice that, the signature generated by Forge does not contain any information
about the receiver set. Thus, the signatures generated by Frank for S0 and for
S1 are indistinguishable.

Construction of HPS-KEMΣ. Inspired by the DDH-based HPS [17], we provide

a construction of HPS-KEMΣ, which can be extended to be built based on the
k-Linear assumption. The main algorithms are constructed as follows.

KG outputs a pair of public/secret keys (pk, sk) = (gx1
1 gx2

2 , (x1, x2)), where
g1, g2 are two generators of group G of prime order p, and x1, x2 are uniformly
sampled from Z∗p.

To generate a well-formed ciphertext c, encapc outputs c = (u1, u2) = (gr1, g
r
2),

where r is uniformly random sampled from Z∗p.
For generating a ciphertext, encap∗c chooses randomness r∗ = (r, r′) ∈ Z∗p

2

and outputs c = (u1, u2) = (gr1, g
r′

1 ).
Algorithm encapk outputs an encapsulated key k = pkr, where r is uniformly

random sampled from Z∗p.
When inputting a ciphertext c = (u1, u2) and a secret key sk = (x1, x2), the

algorithm decap outputs a key k′ = ux1
1 ux2

2 .
Note that there are Sigma protocols for KG, encapc, encapk or encap

∗
c : Okamoto’s

Sigma protocol [31] for KG, the Chaum-Pedersen protocol [11] for encapc and
encapk with the same randomness, and Schnorr’s Sigma protocol [33] for encap∗c .

Now we show our HPS-KEMΣ construction achieves the required properties.
With similar analysis in [17], we can easily obtain universality, indistinguisha-

bility and smoothness of our construction.
For unexplainability, suppose that there exists an adversary breaking the

unexplainability of our scheme. In other words, the adversary generates c =
(u1, u2) and w = (r, r′), such that (i) (u1 = gr1) ∧ (u2 = gr

′

1 ), and (ii) c is well-
formed. Note that c is well-formed implies that u2 = gr2. So we can compute

logg1 g2 = r′

r , solving the DL problem.
For SK-second-preimage resistance (SK-2PR), suppose that there exists an

adversary breaking the SK-2PR of our scheme. In other words, given a pub-
lic/secret key pair (pk, sk) = (gx1

1 gx2
2 , (x1, x2)), the adversary outputs another

secret key sk′ = (x′1, x
′
2) such that pk = g

x′
1

1 g
x′
2

2 . We can compute logg1 g2 =
(x1 − x′1)/(x

′
2 − x2), solving the DL problem.

Discussion I: Lower bound. Following we present a lower bound of the size
of AGMF signature.

Theorem 1. Any AGMF with receiver binding and receiver compromise deni-
ability must have signature size Ω(n), where n is the number of the members in
S.

Proof. Suppose that there exists a distinguisher D who knows all receivers’ secret
keys. Given a signature generated by RForge with a corrupted receiver set Scor,
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D can distinguish whether someone is in Scor or not, by verifying validity of
the signature. Note that receiver binding and receiver deniability guarantee that
only the receivers in Scor would accept the signature. Thus, D can determine the
set Scor when given a signature generated by RForge. Therefore, the signature
must contain enough bits to indicate Scor. Since Scor ⊆ S and it can be an
arbitrary subset, there are 2|S| = 2n kinds of different subsets. Thus, the bit
length of signature is at least log2 2

|S| = log2 2
n = n. Considering that the

signature output by Frank is indistinguishable from that output by RForge, the
bit length of signature output by Frank is also Ω(n). ⊓⊔

When plugging the concrete HPS-KEMΣ scheme into our AGMF framework,
we obtain an AGMF scheme based on the DDH assumption. The bit length of
the signature would be 9×|Z∗p|+(n+3)×|G|, where n is the number of receivers
and p is the order of group G.

Theorem 1 indicates that the size of signature of AGMF is linear in n, and
the coefficient of n in the size of signature of our AGMF scheme is |G|, which
is almost optimal. Note that a proof with similar idea is given by Damg̊ard et
al. in [18, Theorem 1], to show the lower bound of the size of multi-designated
verifier signatures with any-subset simulation and strong unforgeablity.

Discussion II: AGMF when n = 1. Note that our method actually provides
a framework of constructing AMF from HPS-KEMΣ (i.e., when the size of the
receiver set is 1). The AMF scheme [36] is firstly constructed based on a some-
what exotic assumption, the KEA assumption [5]. As mentioned by Tyagi et al.
[36], the KEA assumption poses a challenge for interpreting the concrete security
analyses since the KEA extractor is not concretely instantiated. Then, they also
show a variant scheme that can be proven secure using the GDH assumption [6],
at the cost of signatures with slightly larger size. Specifically, the bit length of the
AMF signature [36] based on the GDH assumption would be 9× |Z∗p|+ 4× |G|.

When plugging the concrete HPS-KEMΣ scheme into the AMF framework,
we obtain a DDH-based AMF scheme. Although the size of the signature of our
AMF scheme would be 9 × |Z∗p| + 4 × |G| as well, we stress that at the same
security level, the binary representation of the group element in our scheme has
smaller size than that in the GDH-based AMF scheme [36].

Discussion III: AGMF from AMF [36] directly. A trivial construction of
AGMF is extended directly from the existing AMF [36], e.g., integrating AMF
[36] with the “trivial” Signal group key mechanism (i.e., a set of individual links
to each member of the group). The extension has two shortcomings: i) the signa-
ture contains n NIZK proofs, and ii) it needs a non-standard assumption, which
is inherited from AMF [36]. Our scheme does not have these shortcomings. We
also consider another extension in Appendix B. The key point is that we extend
the relation used in AMF [36] for one receiver to a relation for multiple receivers.
However, this extension also has similar shortcomings mentioned above. Due to
space limitations, more details of the extension are placed in Appendix B.

Discussion IV: Integrating AGMF with group messaging protocols.
For end-to-end encryption systems, there are kinds of requirements, including
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message franking, privacy, forward/backward security, etc.. Our paper focuses
on asymmetric message franking in group communication scenarios, not caring
about the other intrinsic security of group messaging protocols (e.g., privacy
and authenticity in the form of post-compromise forward secrecy). Discussing a
unified security model capturing other security properties is out of the scope of
this paper and we remain it as a future work.

A potential method to integrate AGMF with group messaging protocols (e.g.,
[23,14,13,3]) is similar to AMF. In other words, we treat the output of AGMF
as a signature and then encrypt the message and the signature following these
protocols.

Related work. The technique of symmetric message franking (SMF) was firstly
introduced by Facebook [20,21]. Grubbs et al. [24] initiated a formal study of
SMF, formalizing a cryptographic primitive called compactly committing au-
thenticated encryption with associated data (AEAD), and then showing that
many in-use AEAD schemes can be used for SMF. Dodis et al. [19] pointed out
that the Facebook SMF scheme is actually insecure, and proposed an efficient
single-pass construction of compactly committing AEAD. Observing that in all
previous SMF schemes, to make a report the receiver has to reveal the whole
communication for a session, Leontiadis et al. [30] and Chen et al. [12] indepen-
dently presented SMF constructions to tackle this problem. In CRYPTO 2019,
Tyagi et al. [36] initiated a formal study of AMF, formalizing security notions
of accountability and deniability for AMF, and showing an AMF construction
via signature of knowledge [8].

Recently, some works [37,32,28] explore source-tracking, which allows the
moderator to pinpoint the original source of a viral message rather than the
immediate sender of the message (in the setting of message franking [24,36]).
These works mainly focus on end-to-end encrypted messaging. It is an interesting
direction to consider source-tracking in group settings.

Group messaging and its variants have been studied in many works [39,23,14,13,3,4],
focusing on different properties or security requirements. To the best of our
knowledge, currently there are no variants of group messaging which can provide
the aforementioned accountability, deniability and anonymity simultaneously.

In 2020, Damg̊ard et al. [18] proposed the notion of off-the-record for any
subset in the constructions of multi-designated verifier signature (MDVS) for the
group Off-the-Record messaging. The notion is somewhat similar to the receiver
compromise deniability defined in this paper. As designated verifier signature
does not have all desired properties in the setting of AMF [36], the MDVS
construction [18] does not provide all required properties (e.g., accountability)
in our AGMF scenarios either.

Roadmap. We recall some preliminaries in Section 2. Then in Section 3, we
present the primitive of AGMF and formalize its security notions of accountabil-
ity, deniability and receiver anonymity. Next, in Section 4, we introduce a primi-
tive called HPS-KEMΣ and present a concrete construction. Taking HPS-KEMΣ

as a building block, we provide a framework of constructing AGMF, and show
that it achieves accountability, deniability and receiver anonymity in Section 5.
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2 Preliminaries

Notations. Throughout this paper, let λ denote the security parameter. For any
k ∈ N, let [k] := {1, 2, · · · , k}. For a finite set S, we denote by |S| the number of
elements in S, and denote by a ← S the process of uniformly sampling a from
S. For a distribution X, we denote by a← X the process of sampling a from X.
For any probabilistic polynomial-time (PPT) algorithm Alg, we write Alg(x; r)
for the process of Alg on input x with inner randomness r, and use y ← Alg(x)
to denote the process of running Alg on input x with uniformly sampled inner
randomness r, and assigning y the result.

Now we recall the definitions of non-interactive zero knowledge (NIZK) proof
system in the random oracle model, Sigma protocol, and the Fiat-Shamir heuris-
tic [22] as follows. For convenience, the recalled NIZK is a variant integrating
the notion of signature of knowledge in [9,10,36] and the notion of NIZK in [7].

NIZK proof system. LetM be a message space. For a witness space X and
a statement space Y, let R ⊆ X × Y be a relation. A NIZK proof scheme
NIZKR = (prove, verify) for witness-statement relation R ⊆ X × Y is a pair of
PPT algorithms associated with a message spaceM and a proof space Π.

• π ← NIZKR.prove(m,x, y): The prove algorithm takes (m,x, y) ∈M×X×Y
as input, and outputs a proof π ∈ Π.

• b← NIZKR.verify(m,π, y): The verification algorithm takes (m,π, y) ∈M×
Π × Y as input, and outputs a bit b ∈ {0, 1}.

It is required to satisfies completeness, existential soundness, and zero-knowledge
in the random oracle model. The formal definitions are recalled as follows.

- Completeness. For allm ∈M and all (x, y) ∈ R, we always have NIZKR.verify
(m,NIZKR.prove(m,x, y), y) = 1.

- Existential soundness. For any PPT adversary A, Advsound
NIZK,A(λ) is negli-

gible, where Advsound
NIZK,A(λ) is the probability that A outputs (m, y) ∈M×Y

and π ∈ Π, such that NIZKR.verify(m,π, y) = 1 and (x′, y) /∈ R for all
x′ ∈ X .

- Zero-knowledge. There is a PPT simulator S = (Sprove,Sro), such that for
any PPT adversary A, the advantage

Advzk
NIZK,A(λ) :=

∣∣∣Pr[Greal
NIZK,A(λ) = 1]− Pr[Gideal

NIZK,A,S(λ) = 1]
∣∣∣

is negligible, where Greal
NIZK,A and Gideal

NIZK,A,S are both in Fig. 1. Suppose that

NIZKR makes use of a hash function Hash, and the hash function Hash with
output length len in Fig. 1 is modeled as a random oracle (a local array H
is employed).

Sigma protocol. A Sigma protocol for R ⊆ X × Y consists of two efficient
interactive protocol algorithms (P, V ), where P = (P1, P2) is the prover and
V = (V1, V2) is the verifier, associated with a challenge space CL. Specifically,
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Greal
NIZK,A(λ):

b← AO(1λ)
Return b

Oprove(m,x, y):
If (x, y) /∈ R: Return ⊥
π ← prove(m,x, y)
Return π

Oro(str):
If H[str] = ⊥:

r ← {0, 1}len; H[str] := r
Return H[str]

Gideal
NIZK,A,S(λ):

b← AO(1λ)
Return b

Oprove(m,x, y):
If (x, y) /∈ R: Return ⊥
(st, π)← Sprove(st,m, y)
Return π

Oro(str):
(st, r)← Sro(st, str)
Return r

Fig. 1 Games for defining zero knowledge of NIZKR

for any (x, y) ∈ R, the input of the prover (resp., verifier) is (x, y) (resp., y).
The prover first computes (cm, aux)← P1(x, y) and sends the commitment cm
to the verifier. The verifier (i.e., V1) returns a challenge cl ← CL. Then the
prover replies with z ← P2(cm, cl, x, y, aux). Receiving z, the verifier (i.e., V2)
outputs b ∈ {0, 1}. The tuple (cm, cl, z) is called a conversation. We require that
V does not make any random choices other than the selection of cl. For any
fixed (cm, cl, z), if the final output of V (y) is 1, (cm, cl, z) is called an accepting
conversation for y. Correctness requires for all (x, y) ∈ R, when P (x, y) and
V (y) interact with each other, the final output of V (y) is always 1.

The corresponding security notions are as follows.

Definition 1. (Knowledge soundness). We say that a Sigma protocol (P, V )
for R ⊆ X × Y provides knowledge soundness, if there is an efficient determin-
istic algorithm Ext such that on input y ∈ Y and two accepting conversations
(cm, cl, z), (cm, cl′, z′) where cl ̸= cl′, Ext always outputs an x ∈ X satisfying
(x, y) ∈ R.

Definition 2. (Special HVZK). We say that a Sigma protocol (P, V ) for R ⊆
X ×Y with challenge space CL is special honest verifier zero knowledge (special
HVZK), if there is a PPT simulator S which takes (y, cl) ∈ Y×CL as input and
satisfies the following properties:

(i) for all (y, cl) ∈ Y ×CL, S always outputs a pair (cm, z) such that (cm, cl, z)
is an accepting conversation for y;

(ii) for all (x, y) ∈ R, the tuple (cm, cl, z), generated via cl← CL and (cm, z)←
S(y, cl), has the same distribution as that of a transcript of a conversation
between P (x, y) and V (y).

The Fiat-Shamir heuristic. LetM be a message space, and (P, V ) = ((P1, P2),
(V1, V2)) be a Sigma protocol for a relation R ⊆ X ×Y, where its conversations
(cm, cl, z) belong to some space CM × CL ×Z. Let Hash : M × CM → CL
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be a hash function. The Fiat-Shamir non-interactive proof system NIZKFS =
(proveFS, verifyFS), with proof space Π = CM×Z, is as follows:

• proveFS(m,x, y): On input (m,x, y) ∈ M × X × Y, this algorithm firstly
generates (cm, aux)← P1(x, y) and cl = Hash(m, cm, y), and then computes
z ← P2(cm, cl, x, y, aux). Finally, it outputs π = (cm, z).

• verifyFS(m, (cm, z), y): On input (m, (cm, z), y) ∈ M ×(CM× Z) × Y, this
algorithm firstly computes cl = Hash(m, cm, y), and then runs V2(y) to check
whether (cm, cl, z) is a valid conversation for y. If so, verifyFS returns 1;
otherwise, it returns 0.

According to [22,7], NIZKFS is an NIZK proof system if Hash is modeled as
a random oracle. To be noted, in order to reduce the size of π, we replace cm
with cl (i.e., we have π = (z, cl)), following [7].

Cryptographic assumptions. Let G be a cyclic group of prime order p and g
be the generator of G.

Definition 3. (The DL assumption). We say that the discrete logarithm
(DL) assumption holds for G, if for any PPT adversary A, Advdl

G,A(λ) :=

Pr[Gdl
G,A(λ) = 1] is negligible, where Gdl

G,A(λ) is shown in Fig. 2.

Definition 4. (The DDH assumption). We say that the decisional Diffie-
Hellman (DDH) assumption holds for G, if for any PPT adversary D, Advddh

G,D(λ) :=

|Pr[Gddh
G,D(λ) = 1]− 1

2 | is negligible, where Gddh
G,D(λ) is in Fig. 2.

Gdl
G,A(λ):

x← Z∗
p

x′ ← A(G, p, g, gx)
Return (x = x′)

Gddh
G,D(λ):

c← {0, 1}
(a, b)← Z∗

p
2

If c = 1: Z = gab

Else: Z ← G
c′ ← D(G, p, g, ga, gb, Z)
Return (c = c′)

Fig. 2 Games for the DL and DDH assumptions

3 Asymmetric group message franking

In this section, we introduce a primitive called asymmetric group message frank-
ing (AGMF) and formalize its security notions. Generally, AGMF is a crypto-
graphic primitive providing accountability, deniability and receiver anonymity
in group communication scenarios simultaneously.
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3.1 AGMF algorithms

We will firstly present the detailed notations of AGMF, and then explain the
syntax of the algorithms.

Formally, an asymmetric group message franking (AGMF) scheme AGMF =
(Setup,KGJ,KGu,Frank,Verify, Judge,Forge,RForge, JForge) is a tuple of algorithms
associated with a public key space PK, a secret key space SK, a message space
M and a signature space SG. Without loss of generality, we assume that all pk
inputs are in PK, all sk inputs are in SK, all m inputs are in M, and all σ
inputs are in SG.

The detailed descriptions of the nine algorithms are as follows.

• pp← Setup(λ): The setup algorithm takes the security parameter as input,
and outputs a global public parameters pp.

• (pkJ, skJ)← KGJ(pp): The randomized key generation algorithm KGJ takes
pp as input, and outputs a key pair (pkJ, skJ) for the judge.

• (pk, sk)← KGu(pp): The randomized key generation algorithm KGu takes pp
as input, and outputs a key pair (pku, sku) for users. Below we usually use
(pks, sks) (resp., (pkr, skr)) to denote sender (resp., receiver) public/secret
key pair.

• σ ← Frank(pp, sks, S, pkJ,m): The franking algorithm takes the public pa-
rameter pp, a sender’s secret key sks, a polynomial-size receiver’s public key
set S = {pkri}i∈[|S|] ⊂ PK, the judge’s public key pkJ and a message m as
input, and outputs a signature σ.

• b ← Verify(pp, pks, skr, pkJ,m, σ): The deterministic receiver verification al-
gorithm takes (pp, pks, skr, pkJ), a message m and a signature σ as input,
and outputs a bit b, which indicates that the signature is valid or not.

• b ← Judge(pp, pks, skJ,m, σ): The deterministic judge authentication algo-
rithm takes (pp, pks, skJ), a message m and a signature σ as input, and
returns b ∈ {0, 1}.

• σ ← Forge(pp, pks, S, pkJ,m): The universal forging algorithm, on input
(pp, pks, S, pkJ) and a message m, returns a “forged” signature σ, where
S ⊂ PK.

• σ ← RForge(pp, pks, (pkri , skri)pkri
∈Scor

, S, pkJ,m): The receiver compromise
forging algorithm takes (pp, pks, (pkri , skri)pkri

∈Scor
, S, pkJ) and a message m

as input, and returns a “forged” signature σ, where Scor ⊂ S ⊂ PK.
• σ ← JForge(pp, pks, S, skJ,m): The judge compromise forging algorithm
takes (pp, pks, S, skJ) and a message m as input, and outputs a “forged”
signature σ, where S ⊂ PK.

Correctness. For any normal signature generated by Frank, the correctness
requires that (i) each receiver in the receiver set can call Verify to verify the
signature successfully, and (ii) the moderator can invoke Judge to validate a
report successfully once he receives a valid report. The formal requirements are
shown as follows.

Given any pp generated by Setup, any key pairs (pks, sks) and (pkr, skr)
output by KGu, and any key pair (pkJ, skJ) output by KGJ, we require that

14



for any S ⊂ PK satisfying pkr ∈ S, any message m ∈ M, and any σ ←
Frank(pp, sks, S, pkJ,m), it holds that:

(1) Verify(pp, pks, skr, pkJ,m, σ) = 1;
(2) Judge(pp, pks, skJ,m, σ) = 1.

3.2 Security notions for AGMF

Now we formalize some security notions for AGMF, including the security no-
tions for accountability, deniability and receiver anonymity of AGMF. Note that
we consider the adaptive security in the following games. It means that the
adversary A is allowed to query the corruption oracle on different public keys
adaptively, obtaining corresponding secret keys.

Accountability. Analogous to the setting of end-to-end communication, one
of the most important security requirements in group scenarios is to prevent
malicious impersonation. In other words, AGMF needs to ensure that no one will
be impersonated successfully as long as her/his secret key is not compromised.
Specifically, AGMF needs to guarantee that (i) no receivers can trick the judge
or any receiver in the receiver set (except the adversarial receiver herself if she is
also in this set) into accepting a message that is not actually sent by the sender,
and (ii) no sender can create a signature such that it is accepted by some receiver
but meanwhile rejected by the judge. Following the terminology in AMF [36], we
also refer to these security requirements as receiver binding and sender binding,
respectively.

Gr-bind
AGMF,A,n(λ):

pp← Setup(λ); (pkJ, skJ)← KGJ(pp)
Qsig := ∅; U := ∅; Ukey := ∅; Ucor := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

(pk∗
s , pk

∗
r ,m

∗, σ∗)← AO(pp, U, pkJ)
If Verify(pp, pk∗

s , sk
∗
r , pkJ,m

∗, σ∗) = 1:
If pk∗

s , pk
∗
r /∈ Ucor:

If ∄(pk∗
s , S

′,m∗) ∈ Qsig s.t. pk∗
r ∈ S′:

Return 1
If Judge(pp, pk∗

s , skJ,m
∗, σ∗) = 1:

If (pk∗
s /∈ Ucor) ∧ (∄(pk∗

s , S
′,m∗) ∈ Qsig):

Return 1
Return 0

OCor(pk′):

Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OFrank(pk′
s, S

′,m′):

Qsig ← Qsig ∪ {(pk′
s, S

′,m′)}
Return Frank(pp, sk′

s, S
′, pkJ,m

′)

OVerify(pk′
s, pk

′
r,m

′, σ′):

Return Verify(pp, pk′
s, sk

′
r, pkJ,m

′, σ′)

OJudge(pk′
s,m

′, σ′):

Return Judge(pp, pk′
s, skJ,m

′, σ′)

Gs-bind
AGMF,A,n(λ):

pp← Setup(λ); (pkJ, skJ)← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

(pk∗
s , pk

∗
r ,m

∗, σ∗)← AO(pp, U, pkJ)
If pk∗

r ∈ Ucor: Return 0
b1 ← Verify(pp, pk∗

s , sk
∗
r , pkJ,m

∗, σ∗)
b2 ← Judge(pp, pk∗

s , skJ,m
∗, σ∗)

Return b1 ∧ ¬b2

OCor(pk′):

Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OFrank(pk′
s, S

′,m′):

Return Frank(pp, sk′
s, S

′, pkJ,m
′)

OVerify(pk′
s, pk

′
r,m

′, σ′):

Return Verify(pp, pk′
s, sk

′
r, pkJ,m

′, σ′)

OJudge(pk′
s,m

′, σ′):

Return Judge(pp, pk′
s, skJ,m

′, σ′)

Fig. 3 Games for defining receiver-binding and sender-binding of AGMF
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Now, we present the formal definitions as below.

Definition 5. (r-BIND). An AGMF scheme AGMF is receiver-binding, if for
any PPT adversary A, its advantage

Advr-bind
AGMF,A,n(λ) := Pr[Gr-bind

AGMF,A,n(λ) = 1]

is negligible, where Gr-bind
AGMF,A,n(λ) is defined in Fig. 3.

Definition 6. (s-BIND). An AGMF scheme AGMF is sender-binding, if for
any PPT adversary A, its advantage

Advs-bind
AGMF,A,n(λ) := Pr[Gs-bind

AGMF,A,n(λ) = 1]

is negligible, where Gs-bind
AGMF,A,n(λ) is defined in Fig. 3.

Remark 1. The receiver binding game Gr-bind
AGMF,A,n(λ) is much more complicated

than that in AMF [36], essentially because in the setting of group scenarios,
there are multiple receivers. For example, compared with the receiver binding
game in AMF, here we additionally need to consider the probability that A
tricks the other honest receivers in the same receiver set. We want to stress that
this security model implies unforgeability.

Remark 2. InGr-bind
AGMF,A,n(λ), ifA outputs (pk∗s , pk

∗
r , σ
∗,m∗) such that Verify(pp, pk∗s ,

sk∗r , pkJ,m
∗, σ∗) = 1, then A wins only if

(pk∗s /∈ Ucor) ∧ (pk∗r /∈ Ucor) ∧ (∄ (pk∗s , S
′,m∗) ∈ Qsig s.t. pk∗r ∈ S′).

That’s because (i) if pk∗s ∈ Ucor or there is some (pk∗s , S
′,m∗) ∈ Qsig such that

pk∗r ∈ S′, A can trivially win; (ii) if pk∗r ∈ Ucor, A still can generate such a tuple
to win this game by running algorithm RForge.

Remark 3. Compared with the security models of receiver-binding and sender-
binding in AMF [36], here we provide the adversary A with more abilities. For
example, in Gr-bind

AGMF,A,n(λ) and Gs-bind
AGMF,A,n(λ), A is allowed to query OFrank on

(pk′s, S
′,m′) and query OVerify on (pk′s, pk

′
r,m

′, σ′), where pk′s can be any users’
public keys (including pk∗s and pk∗r ), and so can pk′r. The ability is not provided
in the receiver/sender binding game of AMF in [36].

Deniability. To support deniability, we need to consider universal deniability,
receiver compromise deniability, and judge compromise deniability for AGMF.
Generally speaking, universal deniability requires that any non-participating
party (i.e., no access to the secret key of the sender, the secret key of any user
in the receiver set, or the secret key of the judge) can create a signature, such
that for other non-participating parties, it is indistinguishable from honestly-
generated signatures. Receiver compromise deniability requires that any cor-
rupted users in the receiver set are able to create a signature, such that for other
parties with access to these corrupted users’ secret keys, it is indistinguishable
from honestly-generated signatures. Judge compromise deniability requires that
a party with the judge’s secret key is able to create a signature, such that for
other parties with access to the judge’s secret key, it is indistinguishable from
honestly-generated signatures.

The formal definitions are presented as follows.
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GUnivDen
AGMF,A,n(λ):

b← {0, 1}; pp← Setup(λ)
(pkJ, skJ)← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

b′ ← AO(pp, U, pkJ)
Return (b = b′)

OCor(pk′):

If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-F(pk′
s, S

′,m′):

If S′ ∩ Ucor ̸= ∅ : Return ⊥
Q∗ ← Q∗ ∪ S′

σ0 ← Frank(pp, sk′
s, S

′, pkJ,m
′)

σ1 ← Forge(pp, pk′
s, S

′, pkJ,m
′)

Return σb

GReComDen
AGMF,A,n (λ):

b← {0, 1}; pp← Setup(λ)
(pkJ, skJ)← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

b′ ← AO(pp, U, pkJ)
Return (b = b′)

OCor(pk′):

If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-RF(pk′
s, S

′, S′
cor,m

′):

If (S′
cor ⊈ S′) ∨ ((S′ \ S′

cor) ∩ Ucor ̸= ∅): Return ⊥
Q∗ ← Q∗ ∪ (S′ \ S′

cor)
σ0 ← Frank(pp, sk′

s, S
′, pkJ,m

′)
σ1 ← RForge(pp, pk′

s, (pkri
, skri

)pkri
∈Scor , S

′, pkJ,m
′)

Return σb

GJuComDen
AGMF,A,n (λ):

b← {0, 1}; pp← Setup(λ)
(pkJ, skJ)← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

b′ ← AO(pp, U, pkJ, skJ)
Return (b = b′)

OCor(pk′):

If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-JF(pk′
s, S

′,m′):

If S′ ∩ Ucor ̸= ∅: Return ⊥
Q∗ ← Q∗ ∪ S′

σ0 ← Frank(pp, sk′
s, S

′, pkJ,m
′)

σ1 ← JForge(pp, pk′
s, S

′, skJ,m
′)

Return σb

Fig. 4 Games for defining universal deniability, receiver compromise deniability, and
judge compromise deniability of AGMF

Definition 7. (UnivDen). An AGMF scheme AGMF is universally deniable,
if for any PPT adversary A, its advantage

AdvUnivDen
AGMF,A,n(λ) := |Pr[GUnivDen

AGMF,A,n(λ) = 1]− 1

2
|

is negligible, where GUnivDen
AGMF,A,n(λ) is defined in Fig. 4.

Definition 8. (ReComDen). An AGMF scheme AGMF is receiver-compromise
deniable, if for any PPT adversary A, its advantage

AdvReComDen
AGMF,A,n (λ) := |Pr[GReComDen

AGMF,A,n (λ) = 1]− 1

2
|

is negligible, where GReComDen
AGMF,A,n (λ) is defined in Fig. 4.

Definition 9. (JuComDen). An AGMF scheme AGMF is judge-compromise
deniable, if for any PPT adversary A, its advantage

AdvJuComDen
AGMF,A,n (λ) := |Pr[GJuComDen

AGMF,A,n (λ) = 1]− 1

2
|

is negligible, where GJuComDen
AGMF,A,n (λ) is defined in Fig. 4.

Remark 4. In universal deniability game (resp., judge compromise deniability
game), for A’s each OF-F-oracle (resp., OF-JF-oracle) query (pk′s, S

′,m′), A is
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not allowed to see the secret keys of the receivers in S′. In receiver compromise
deniability game, for A’s each OF-RF-oracle query (pk′s, S

′, S′cor,m
′), A is not

allowed to see the secret keys of the receivers in S′\S′cor. We use Q∗ to specify
the receivers whose secret keys are not provided to A.

Remark 5. Note that in these games, the adversary is allowed to access the
sender’s secret key, as long as the sender is not in the receiver set. Compared
with the judge compromise deniability formally defined in AMF [36], where the
adversary A is offered both the receiver’s and the judge’s keys, our judge com-
promise deniability only provides the judge’s key to A. We stress that the judge
compromise deniability formally defined in [36] conflicts with strong authentica-
tion (i.e., as pointed out in [36], “forgeries by the moderator cannot be detected
by the receiver”). Our judge compromise deniability follows one of the ideas of
the judge compromise deniability formalization when considering strong authen-
tication, which is also introduced in [36, Appendix B]. Some more discussions
on definitions of deniability is presented in Appendix C.

Receiver Anonymity. Generally speaking, receiver anonymity requires that
any one (except for the receivers in the receiver set), including the judge, cannot
tell which receiver set a signature is generated for. With receiver anonymity, the
receivers in group communication scenarios can report the malicious messages
to the moderator with less concerns.

The formal definition is presented as follows.

Definition 10. (RecAnony). An AGMF scheme AGMF is receiver anony-
mous, if for any PPT adversary A, its advantage

AdvRecAnony
AGMF,A,n(λ) := |Pr[G

RecAnony
AGMF,A,n(λ) = 1]− 1

2
|

is negligible, where GRecAnony
AGMF,A,n(λ) is defined in Fig. 5.

GRecAnony
AGMF,A,n (λ):

b← {0, 1}; pp← Setup(λ); (pkJ, skJ)← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅
Q∗

tpl := ∅; Q
∗ := ∅

For i = 1 . . . n:
(pki, ski)← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

(pk∗
s , S0, S1,m

∗, st)← AO
1 (pp, U, pkJ, skJ)

If |S0| ̸= |S1|: Return 0
If ((S0 ∪ S1) ∩ Ucor) ̸= ∅: Return 0
Q∗ ← Q∗ ∪ (S0 ∪ S1)
σ∗ ← Frank(pp, sk∗

s , Sb, pkJ,m
∗)

Q∗
tpl ← Q∗

tpl ∪ {(pk
∗
s , pkr,m

∗, σ∗) | pkr ∈ S0 ∪ S1}
b′ ← AO

2 (σ∗, st)
Return (b = b′)

OCor(pk′):

If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OFrank(pk′
s, S

′,m′):

Return Frank(pp, sk′
s, S

′, pkJ,m
′)

OVerify(pk′
s, pk

′
r,m

′, σ′):

If pk′
s ∈ Ucor: Return ⊥

If (pk′
s, pk

′
r,m

′, σ′) ∈ Q∗
tpl: Return ⊥

Return Verify(pp, pk′
s, sk

′
r, pkJ,m

′, σ′)

Fig. 5 Game for defining receiver anonymity of AGMF

Discussion. In the following sections, we will present an AGMF scheme achiev-
ing the above security features. In fact, our scheme can be proved secure under
stronger security models. For example, the receiver anonymity gameGRecAnony

AGMF,A,n(λ)
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in Fig. 5 can be strengthened by allowing the adversary to know the secret keys
of the users belonging to S0 ∩ S1. Our scheme also achieves the strengthened
receiver anonymity. It is an interesting direction to further strengthen these se-
curity models.

4 HPS-based KEM supporting Sigma protocols

In this section, we introduce a new primitive, which we will take as a building
block to construct AGMF in Section 5. This primitive is a variant of key en-
capsulation mechanism (KEM) satisfying that (i) it can be interpreted from the
perspective of hash proof system (HPS) [17], and (ii) for some special relations
(about the public/secret keys, the encapsulated keys and ciphertexts), there
exist corresponding Sigma protocols. We call this primitive HPS-based KEM
supporting Sigma protocols (HPS-KEMΣ). We also provide a concrete construc-
tion based on the DDH assumption. Note that our construction can be easily
extended to be built based on the k-Linear assumption [27,34].

4.1 Definition

A HPS-KEMΣ scheme HPS-KEMΣ = (KEMSetup,KG,CheckKey, encapc, encapk,
encap∗c , decap,CheckCwel) is a tuple of algorithms associated with a secret key
space SK, an encapsulated key space K, where encapc and encapk have the same
randomness space RS, and we denote by RS∗ the randomness space of encap∗c .

• pp ← KEMSetup(1λ): On input a security parameter λ, it outputs a public
parameter pp.

• (pk, sk) ← KG(pp): On input the public parameter pp, it outputs a pair of
public/secret keys (pk, sk).

• b ← CheckKey(pp, sk, pk): On input the public parameter pp, a secret key
sk and a public key pk, it outputs a bit b. Let SKpp,pk := {sk ∈ SK |
CheckKey(pp, sk, pk) = 1}.

• c ← encapc(pp; r): On input the public parameter pp with inner random-
ness r ∈ RS, it outputs a well-formed ciphertext c. Let Cwell-f

pp := {c =
encapc(pp; r) | r ∈ RS}.

• k ← encapk(pp, pk; r): On input the public parameter pp and a public key
pk with inner randomness r ∈ RS, it outputs an encapsulated key k ∈ K.

• c← encap∗c(pp; r
∗): On input the public parameter pp with inner randomness

r∗ ∈ RS∗, it outputs a ciphertext c. Let C∗pp := {encap∗c(pp; r∗) | r∗ ∈ RS
∗}.

We require that Cwell-f
pp ⊂ C∗pp.

• k′ ← decap(pp, sk, c): On input the public parameter pp, the ciphertext c
and a secret key sk, it outputs an encapsulated key k′ ∈ K.

• b ← CheckCwel(pp, c, r∗): On input the public parameter pp, a ciphertext c
and a random number r∗ ∈ RS∗, it outputs a bit b.

To generate a well-formed ciphertext and its corresponding encapsulated key,
one can invoke encapc and encapk at the same time with the same random-
ness r. For simplicity, we introduce another algorithm encap, and use “(c, k)←
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encap(pp, pk; r)” to denote the procedures “c← encapc(pp; r), k ← encapk(pp, pk; r)”.
Note that only k contains the information about the public key pk.

Correctness is as follows.

(1) For any pp generated by KEMSetup(1λ), and any (pk, sk) output by KG(pp),
CheckKey(pp, sk, pk) = 1.

(2) For any pp generated by KEMSetup(1λ), any (pk, sk) satisfying CheckKey(pp,
sk, pk) = 1, and any (c, k)← encap(pp, pk), it holds that decap(pp, sk, c) = k.

(3) For any pp generated by KEMSetup(1λ), and any c generated with encap∗c(pp; r
∗),

CheckCwel(pp, c, r∗) = 1 if and only if c ∈ Cwell-f
pp .

For any pp generated by KEMSetup(1λ), we define some relations as follows:

Rs = {(sk, pk) : CheckKey(pp, sk, pk) = 1}
Rc,k = {(r, (c, k, pk)) : (c, k) = encap(pp, pk; r)}
R∗c = {(r∗, c) : c = encap∗c(pp; r

∗)}
(2)

We require that for each relation in Eq. (2), there is a Sigma protocol.
We also require the properties: universality, unexplainability, indistinguisha-

bility, SK-2PR and smoothness, the definitions of which are as follows.

Definition 11. (Universality). We say that a HPS-KEMΣ scheme HPS-KEMΣ

is universal, if for any computationally unbounded adversary A, the advantage

Advuniv
HPS-KEMΣ,A(λ) := Pr[Guniv

HPS-KEMΣ,A(λ) = 1]

is negligible, where Guniv
HPS-KEMΣ,A(λ) is defined in Fig. 6.

Guniv
HPS-KEMΣ,A(λ):

pp← KEMSetup(1λ), (pk, sk)← KG(pp)
(c, k, w)← A(pp, pk) s.t. ((w, c) ∈ R∗

c) ∧ (c /∈ Cwell-f
pp )

If k = decap(pp, sk, c): Return 1
Else Return 0

Fig. 6 Game for defining universality of HPS-KEMΣ

Definition 12. (Unexplainability). We say that a HPS-KEMΣ scheme HPS-KEMΣ

is unexplainable, if for any PPT adversary A, the advantage

Advunexpl
HPS-KEMΣ,A(λ) := Pr[Gunexpl

HPS-KEMΣ,A(λ) = 1]

is negligible, where Gunexpl
HPS-KEMΣ,A(λ) is defined in Fig. 7.

Gunexpl

HPS-KEMΣ,A(λ):

pp← KEMSetup(1λ); (c, w)← A(pp) s.t. (w, c) ∈ R∗
c

If c ∈ Cwell-f
pp : Return 1

Else Return 0

Fig. 7 Game for defining unexplainability of HPS-KEMΣ

20



Remark 6. Generally, unexplainability requires that for any PPT adversary, it
is difficult to explain a well-formed ciphertext as a result generated with encap∗c .

Definition 13. (Indistinguishability). We say that a HPS-KEMΣ scheme
HPS-KEMΣ is indistinguishable, if for any PPT adversary A, the advantage

Advind
HPS-KEMΣ,A(λ) := |Pr[G

ind
HPS-KEMΣ,A(λ) = 1]− 1

2
|

is negligible, where Gind
HPS-KEMΣ,A(λ) is defined in Fig. 8.

Definition 14. (SK-2PR). We say that a HPS-KEMΣ scheme HPS-KEMΣ is
SK-second-preimage resistant, if for any PPT adversary A, the advantage

Advsk-2pr
HPS-KEMΣ,A(λ) := Pr[Gsk-2pr

HPS-KEMΣ,A(λ) = 1]

is negligible, where Gsk-2pr
HPS-KEMΣ,A(λ) is defined in Fig. 8.

Gind
HPS-KEMΣ,A(λ):

pp← KEMSetup(1λ)
b← {0, 1}
c0 ← encapc(pp)
c1 ← encap∗c(pp)
b′ ← A(pp, cb)
Return (b′

?
= b)

Gsk-2pr

HPS-KEMΣ,A(λ):

pp← KEMSetup(1λ)
(pk, sk)← KG(pp)
sk′ ← A(pp, pk, sk)
If (sk′ ̸= sk)∧(CheckKey(pp, sk′, pk) = 1):

Return 1
Return 0

Fig. 8 Games for defining indistinguishability and SK-second-preimage resistance of
HPS-KEMΣ

Definition 15. (Smoothness). We say that a HPS-KEMΣ scheme HPS-KEMΣ

is smooth, if for any fixed pp generated by KEMSetup and any fixed pk generated
by KG,

∆((c, k), (c, k′)) ≤ negl(λ),

where c← encap∗c(pp), k ← K, sk ← SKpp,pk and k′ = decap(pp, sk, c).

Remark 7. Smoothness guarantees that 1
|SKpp,pk| is a negligible function of λ.

4.2 Construction

Here, we present a concrete construction of HPS-KEMΣ, which satisfies all the
aforementioned security properties. The algorithms are described as follows.

• KEMSetup(1λ): Given a security parameter λ, choose a prime-order group G
such that the order of G is p and the bit-length of p is λ. Then, choose the
generators g1, g2 of G uniformly at random. The public parameter is

pp = (G, p, g1, g2).
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• KG(pp): Given the public parameter pp = (G, p, g1, g2), choose two random-
nesses (x1, x2) ∈ Z∗p

2, set h = gx1
1 gx2

2 and the pair of public/secret keys is
set as

(pk = h, sk = (x1, x2)).

• CheckKey(pp, sk, pk): Given the public parameter pp = (G, p, g1, g2) and a
pair of public/secret keys (pk = h, sk = (x1, x2)), check whether gx1

1 gx2
2 = h

holds. If not, output 0; otherwise output 1.
• encapc(pp; r): Given the public parameter pp = (G, p, g1, g2) and a random-
ness r ∈ Z∗p, output a well-formed encapsulated ciphertext

c = (u1 = gr1, u2 = gr2).

• encapk(pp, pk; r): Given the public parameter pp = (G, p, g1, g2), a public key
pk = h and a randomness r ∈ Z∗p, output an encapsulated key k = hr.

• encap∗c(pp; r
∗): Given the public parameter pp = (G, p, g1, g2) and random-

ness r∗ = (r, r′) ∈ Z∗p
2, output a ciphertext

c = (u1 = gr1, u2 = gr
′

1 ).

• decap(pp, sk, c): Given the public parameter pp = (G, p, g1, g2), an encap-
sulated ciphertext c = (u1, u2) and a secret key sk = (x1, x2), output an
encapsulated key k′ = ux1

1 ux2
2 .

• CheckCwel(pp, c, r∗): Given the public parameter pp = (G, p, g1, g2), a cipher-
text c = (u1, u2) and a random number r∗ = (r, r′) ∈ Z∗p

2, it outputs 1 if
gr2 = u2; otherwise, it outputs 0.

It is clear that the above construction satisfies correctness. Then the relations
Rs, Rc,k and R∗c are constructed as follows.

Rs = {((x1, x2), pk) : pk = gx1
1 gx2

2 }
Rc,k = {(r, ((u1, u2), k, pk)) : u1 = gr1 ∧ u2 = gr2 ∧ k = pkr}

R∗c = {((r, r′), (u1, u2)) : u1 = gr1 ∧ u2 = gr
′

1 }
(3)

We show that there are Sigma protocols for relations Rs, Rc,k and R∗c :
Okamoto’s Sigma protocol [31] for Rs, the Chaum-Pedersen protocol [11] for
Rc,k and Schnorr’s Sigma protocol [33] for R∗c .

We now prove that the above construction satisfies universality, unexplain-
ability, indistinguishability, SK-second-preimage resistance, and smoothness. For-
mally, we have the following theorems.

Theorem 2. The above HPS-KEMΣ scheme is universal.

Theorem 3. If the DL assumption holds in G, the above HPS-KEMΣ scheme
is unexplainable.

Theorem 4. If the DDH assumption holds in G, the above HPS-KEMΣ scheme
is indistinguishable.

Theorem 5. If the DL assumption holds in G, the above HPS-KEMΣ scheme
is SK-second-preimage resistant.
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Theorem 6. The above HPS-KEMΣ scheme is smooth.

The proofs of Theorem 2-6 are as follows.

Proof (of Theorem 2). For any computationally unbounded adversary A attack-
ing universality of HPS-KEMΣ, let (pp = (G, p, g1, g2), pk = gx1

1 gx2
2 ) be A’s in-

put, where (pk, sk = (x1, x2)) are generated by KG(pp). Denote by a := logg1 g2.
Let (c = (u1, u2), k, w = (r, r′)) be A’s final output satisfying ((w, c) ∈ R∗c)∧(c /∈
Cwell-f
pp ).

Note that (w, c) ∈ R∗c implies that u1 = gr1 and u2 = gr
′

1 . On the other hand,
since Cwell-f

pp = {(gr̃1, gr̃2) | r̃ ∈ Z∗p} = {(gr̃1, gar̃1 ) | r̃ ∈ Z∗p}, we derive that r′ ̸= ar.
As a result,

decap(pp, sk, c) = ux1
1 ux2

2 = grx1
1 gr

′x2
1 = g

r(x1+ax2)+r′x2−rax2

1

= (gx1
1 gx2

2 )r · g(r
′−ra)x2

1 = pkr · g(r
′−ra)x2

1 .

Notice that sk = (x1, x2) is uniformly sampled from Z∗p
2, and the only infor-

mation that A has about sk is logg1 pk = x1 + ax2. Thus, from A’s point
of view, given (pp, pk), x2 is still uniformly distributed, which implies that

decap(pp, sk, c) = pkr · g(r
′−ra)x2

1 is also uniformly distributed.
Hence,Advuniv

HPS-KEMΣ,A(λ) = Pr[k = decap(pp, sk, c)] is negligible, concluding
the proof of this theorem. ⊓⊔

Proof (of Theorem 3). Suppose that there exists a PPT adversary A winning the
game of unexplainability with non-negligible probability. It is easy to construct
a PPT algorithm B that makes use of A to solve the DL problem with non-
negligible probability. Algorithm B is given a random tuple (G, p, g, ga), and
runs A as follows.
B first sets g1 = g and g2 = ga, and sends the public parameter pp =

(G, p, g1, g2) to A. Then, the adversary A outputs (w, c) ∈ R∗c . Parse c = (u1, u2)
and w = (r, r′). Note that (w, c) ∈ R∗c guarantees that u1 = gr1 and u2 = gr

′

1 . If
A wins the game of unexplainability, then c ∈ Cwell-f

pp , which means that u1 = gr1
and u2 = gr2. In this case, we have u2 = gr2 = gr

′

1 . Therefore, B can output a = r′

r
as the solution of the DL problem. ⊓⊔

Proof (of Theorem 4). Suppose that there exists a PPT adversary A winning
the game of indistinguishability with non-negligible probability. It is easy to
construct a PPT algorithm B that makes use of A to solve the DDH problem
with non-negligible probability. Algorithm B is given a random tuple (G, p, g,
ga, gb, Z), where Z = gab or Z is uniformly and independently sampled in G. B
runs A as follows.
B first sets g1 = g, g2 = ga, u1 = gb, u2 = Z. Then, it sends the public

parameter pp = (G, p, g1, g2) and the encapsulated ciphertext c = (u1, u2) to the
adversary A. Finally, A outputs a bit and B also outputs the bit.

Observe that, if Z = gab, then u1 = gb1, u2 = gb2, and from the perspective of
the adversary the distribution of the ciphertext c = (u1, u2) is identical to the
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distribution of the well-formed encapsulated ciphertext generated by encapc. If
Z is a random element in G, then u1, u2 are random elements in G, and from
the perspective of the adversary the distribution of the ciphertext c = (u1, u2) is
identical to the distribution of the ciphertext generated by encap∗c . Therefore, if
A can win the game of indistinguishability with non-negligible probability, B can
make use of A to solve the DDH problem with non-negligible probability. ⊓⊔

Proof (of Theorem 5). Suppose that there exists a PPT adversary A winning
the game of SK-second-preimage resistance with non-negligible probability. It
is easy to construct a PPT algorithm B that makes use of A to solve the DL
problem with non-negligible probability. Algorithm B is given a random tuple
(G, p, g, ga), and runs A as follows.
B first sets g1 = g and g2 = ga. Next, it chooses x1, x2 ∈ Z∗p uniformly at

random, and generates a pair of public/secret keys (pk = gx1
1 gx2

2 , sk = (x1, x2)).
Then, B sends the public parameter pp = (G, p, g1, g2) and the pair of pub-
lic/secret keys (pk, sk) toA. The adversaryA outputs a secret key sk′ = (x′1, x

′
2).

If A wins the game of SK-second-preimage resistance, we have sk′ ̸= sk and

CheckKey(pp, sk′, pk) = 1. That is to say, g
x′
1

1 g
x′
2

2 = gx1
1 gx2

2 and x′1 ̸= x1, x
′
2 ̸= x2.

Therefore, B can output a = (x1−x′1)/(x
′
2−x2) as the solution of the DL prob-

lem. ⊓⊔

Proof (of Theorem 6). For any fixed pp = (G, p, g1, g2) and any fixed pk = h
generated by KG, let a := logg1 g2, b := logg1 h. Then, SKpp,pk = {(x1, x2) ∈
Z∗p

2 | x1 + ax2 = b}.
Note that the ciphertext space of encap∗c is C∗ = (G \ {1G})2, where 1G

is the identity element of G, and the encapsulated key space K = G. For all
ĉ ∈ (G \ {1G})2, we parse ĉ = (û1, û2), and write S1 := {(û1, û2) ∈ (G \ {1G})2 |
logg1 û2 ̸= a logg1 û1} and S2 := {(û1, û2) ∈ (G \ {1G})2 | logg1 û2 = a logg1 û1}.
So,

∆((c, k), (c, k′)) =
1

2

∑
(ĉ,k̂)∈C∗×K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|

=
1

2

∑
ĉ∈S1

∑
k̂∈K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|

+
1

2

∑
ĉ∈S2

∑
k̂∈K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|. (4)

We present the following two lemmas with postponed proofs.

Lemma 1.
∑

ĉ∈S1

∑
k̂∈K |Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]| = 0.

Lemma 2.
∑

ĉ∈S2

∑
k̂∈K |Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]| = 2

p .

Combining Eq. (4), Lemma 1 and Lemma 2, we obtain ∆((c, k), (c, k′)) = 1
p ,

concluding the proof of this theorem.
So what remains is to prove the above two lemmas.
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Proof (of Lemma 1). For any ĉ = (û1, û2) ∈ S1 and any k̂ ∈ K = G, we have

Pr[(c, k) = (ĉ, k̂)] = 1
(p−1)2p , and Pr[(c, k′) = (ĉ, k̂)] = 1

(p−1)2 Pr[k
′ = k̂ | c = ĉ].

Note that c = (gr1, g
r′

1 ) = ĉ implies r = logg1 û1 and r′ = logg1 û2. Since
ĉ ∈ S1, we obtain r′ ̸= ar. We also notice that sk = (x1, x2) is uniformly
sampled from SK, so the distribution of sk can be seen as “uniformly sampling
x2 from Z∗p, and letting x1 = b−ax2”. As a result, given a fixed c = ĉ (i.e., given
fixed r = logg1 û1 and r′ = logg1 û2), when sk ← SK, k′ = decap(pp, sk, c) =

grx1
1 gr

′x2
1 = g

r(b−ax2)+r′x2

1 = hrg
(r′−ar)x2

1 is uniformly distributed over K. Hence,

Pr[k′ = k̂ | c = ĉ] = 1
p .

So we conclude that for any ĉ ∈ S1 and any k̂ ∈ K, Pr[(c, k′) = (ĉ, k̂)] =
1

(p−1)2p = Pr[(c, k) = (ĉ, k̂)]. ⊓⊔

Proof (of Lemma 2). For any ĉ = (û1, û2) ∈ S2 and any k̂ ∈ K = G, we have

Pr[(c, k) = (ĉ, k̂)] = 1
(p−1)2p , and Pr[(c, k′) = (ĉ, k̂)] = 1

(p−1)2 Pr[k
′ = k̂ | c = ĉ].

Note that c = (gr1, g
r′

1 ) = ĉ implies r = logg1 û1 and r′ = logg1 û2. Since
ĉ ∈ S2, we obtain r′ = ar. Thus, given a fixed c = ĉ (i.e., given fixed r =

logg1 û1 and r′ = logg1 û2), we derive that k′ = decap(pp, sk, c) = grx1
1 gr

′x2
1 =

g
r(b−ax2)+r′x2

1 = hrg
(r′−ar)x2

1 = hr = hlogg1
û1 , which is also fixed (since pk = h

and û1 are both fixed values).
Hence, ∑

ĉ∈S2

∑
k̂∈K

|Pr[(c, k) = (ĉ, k̂)]− Pr[(c, k′) = (ĉ, k̂)]|

=
∑
ĉ∈S2

∑
k̂∈K

| 1

(p− 1)2p
− 1

(p− 1)2
Pr[k′ = k̂ | c = ĉ]|

=
∑
ĉ∈S2

(
∑

k̂ ̸=h
logg1

û1

| 1

(p− 1)2p
− 0|+ | 1

(p− 1)2p
− 1

(p− 1)2
· 1|)

=
∑
ĉ∈S2

((p− 1)
1

(p− 1)2p
+

1

(p− 1)p
) =

∑
ĉ∈S2

2

(p− 1)p
=

2

p
.

⊓⊔

Thus, we complete the proof. ⊓⊔

5 Generic construction of AGMF from HPS-KEMΣ

In this section, we provide a framework of constructing AGMF from HPS-KEMΣ,
and show that it achieves the required securities.

Let HPS-KEMΣ = (KEMSetup,KG,CheckKey, encapc, encapk, encap
∗
c , decap,

CheckCwel) be a HPS-KEMΣ scheme supporting universality, unexplainability,
indistinguishability, SK-second-preimage resistance and smoothness, where RS
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denotes the randomness space of encapc and encapk, RS∗ denotes the random-
ness space of encap∗c , and K denotes the encapsulated key space.

Our generic AGMF scheme AGMF = (Setup,KGJ,KGu,Frank,Verify, Judge,
Forge,RForge, JForge) is described as follows.

Setup, KGJ and KGu are shown in Fig. 9, where Setup directly invokes the
setup algorithm of HPS-KEMΣ, and both KGJ and KGu invoke the key generation
algorithm of HPS-KEMΣ.

Setup(λ): pp← KEMSetup(1λ); Return pp

KGJ(pp): (pkJ, skJ)← KG(pp); Return (pkJ, skJ)

KGu(pp): (pk, sk)← KG(pp); Return (pk, sk)

Fig. 9 Algorithm descriptions of Setup, KGJ and KGu

The main body of AGMF (i.e., Frank, Verify and Judge) is shown in Fig. 10.
Specifically, algorithm Frank calls encapc and encapk of HPS-KEMΣ to generate
a well-formed ciphertext and encapsulated keys respectively. Besides, it calls a
NIZK proof algorithm NIZKR.PoK to generate a NIZK proof, where the relation
R is defined in Eq. (5) and NIZKR = (PoK,PoKVer) is a NIZK proof using the
Fiat-Shamir transform from the Sigma protocols induced by HPS-KEMΣ. The
verification algorithm Verify and the moderation algorithm Judge are similar.
They first call NIZKR.PoKVer to check if the NIZK proof is valid, and then call
decap with the receiver’s/judge’s secret key to check whether the encapsulated
key and the corresponding decapsulated key are identical or not.

The three forging algorithms (i.e., Forge, RForge, JForge), focusing on dif-
ferent compromise scenarios, are described in Fig. 11. They firstly call encap∗c
of HPS-KEMΣ to generate an ill-formed ciphertext. Then, for each one of the
receivers (and for the judge) whose secret key is not compromised, randomly
sample an encapsulated key from K; for each one of the receivers (and for the
judge) whose secret key is compromised, employ decap to generate an encapsu-
lated key. Finally, they call NIZKR.PoK to generate a NIZK proof.

For the NIZK proof system NIZKR = (PoK,PoKVer) used in Fig. 10 and Fig.
11, we obtain it as follows. The relation R is defined in Eq. (5).

R = { ( (sks, r, r∗), (pp, pks, pkJ, c, kJ) ) :
( (sks, pks) ∈ Rs ∧ (r, (c, kJ, pkJ)) ∈ Rc,k )

∨ ( (r∗, c) ∈ R∗c ) }
(5)

where Rs, Rc,k and R∗c are defined in Eq. (2). Note that for every sub-relation

(i.e.,Rs,Rc,k,R∗c), the HPS-KEMΣ scheme guarantees that there is a Sigma pro-
tocol. So, with the technique of trivially combining Sigma protocols for AND/OR
proofs [7, Sec. 19.7], we obtain a new Sigma protocol for relation R. Then,
using the Fiat-Shamir transform, we derive a NIZK proof system NIZKR =
(PoK,PoKVer) for R in the random oracle model.

Now, we provide some explanations about relation R.
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Frank(pp, sks, S, pkJ,m):
r ←RS; c← encapc(pp; r); kJ ← encapk(pp, pkJ; r)
For pkri ∈ S:

kri ← encapk(pp, pkri ; r)
x← (sks, r,⊥); y ← (pp, pks, pkJ, c, kJ)
m← (m||{kri}pkri

∈S); π ← NIZKR.PoK(m,x, y)
Return σ ← (π, c, kJ, {kri}pkri

∈S)

Verify(pp, pks, skr, pkJ,m, σ):
(π, c, kJ, {kri}pkri

∈S)← σ; y ← (pp, pks, pkJ, c, kJ)
m← (m||{kri}pkri

∈S)

If NIZKR.PoKVer(m,π, y) = 0: Return 0
If decap(pp, skr, c) ∈ {kri}pkri

∈S : Return 1
Return 0

Judge(pp, pks, skJ,m, σ):
(π, c, kJ, {kri}pkri

∈S)← σ; y ← (pp, pks, pkJ, c, kJ)
m← (m||{kri}pkri

∈S)

If NIZKR.PoKVer(m,π, y) = 0: Return 0
If decap(pp, skJ, c) ̸= kJ: Return 0
Return 1

Fig. 10 Algorithm descriptions of Frank, Verify and Judge

The first part (i.e., ((sks, pks) ∈ Rs)∧ ((r, (c, kJ, pkJ)) ∈ Rc,k)) of the expres-
sion of R contains two sub-parts: (i) ((sks, pks) ∈ Rs) guarantees the authenti-
cation of the sender; (ii) ((r, (c, kJ, pkJ)) ∈ Rc,k) guarantees that the ciphertext
c and the corresponding encapsulated key kJ for the judge are well-formed, and
further convinces the receiver that c and kJ can be verified successfully by the
judge. In other words, once the receiver reports to the judge, the judge will
accept the report.

The second part (i.e., ((r∗, c) ∈ R∗c)) of the expression of R is prepared to
guarantee deniability. More specifically, it is prepared for the forgers (including
the universal, the receivers and the judge) to construct a valid NIZK proof, since
they do not know the sender’s secret key. The three forging algorithms in Fig.
11 show that the forgers generate the ill-formed ciphertext via encap∗c(pp; r

∗).
Therefore, the forgers can always obtain the witness r∗ for the second part of R.

The relation R combines the two parts with an “OR” operation, so either
the sender or the forgers can generate a valid NIZK proof for R.

Remark 8. In our framework AGMF, in order to reduce the size of signature,
kJ and kri are all encapsulated in the same ciphertext c. This suggests that
KGJ and KGu are built based on the identical HPS-KEMΣ. Actually, kJ can
be encapsulated in another ciphertext, which can be generated with an inde-
pendent HPS-KEMΣ. Hence, the judge can run KGJ based on an independent
HPS-KEMΣ, to generate the public/secret key pair. In this case, the obtained
AGMF can support third-party moderation better.
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Forge(pp, pks, S, pkJ,m):
r∗ ←RS∗; c← encap∗c(pp; r

∗); kJ ← K
For pkri ∈ S: kri ← K
x← (⊥,⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m← (m||{kri}pkri

∈S)

π ← NIZKR.PoK(m,x, y)
Return σ ← (π, c, kJ, {kri}pkri

∈S)

RForge(pp, pks, {pkri , skri}pkri
∈Scor , S, pkJ,m):

�Scor here is the set of corrupted receivers
r∗ ←RS∗; c← encap∗c(pp; r

∗); kJ ← K
For pkri ∈ S\Scor: kri ← K
For pkri ∈ Scor: kri ← decap(pp, skri , c)
x← (⊥,⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m← (m||{kri}pkri

∈S)

π ← NIZKR.PoK(m,x, y)
Return σ ← (π, c, kJ, {kri}pkri

∈S)

JForge(pp, pks, S, skJ,m):
r∗ ←RS∗; c← encap∗c(pp; r

∗); kJ ← decap(pp, skJ, c)
For pkri ∈ S: kri ← K
x← (⊥,⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m← (m||{kri}pkri

∈S)

π ← NIZKR.PoK(m,x, y)
Return σ ← (π, c, kJ, {kri}pkri

∈S)

Fig. 11 Algorithm descriptions of Forge, RForge and JForge

Correctness. Now we show the correctness of the above scheme AGMF here.
For any signature σ ← Frank(pp, sks, S, pkJ,m) and any pkr ∈ S, we parse σ =
(π, c, kJ, {kri}pkri

∈S), and let y := (pp, pks, pkJ, c, kJ) and m := (m||{kri}pkri
∈S).

We first analyze the output of Verify as follows: (i) the correctness of NIZKR

guarantees that NIZKR.PoKVer(m,π, y) = 1; (ii) the correctness of HPS-KEMΣ

guarantees that decap(pp, skr, c) ∈ {kri}pkri
∈S since pkr ∈ S. So, Verify will

return 1.

Next, we analyze the output of Judge as follows: (i) the correctness of NIZKR

guarantees that NIZKR.PoKVer(m,π, y) = 1; (ii) the correctness of HPS-KEMΣ

guarantees that decap(pp, skJ, c) = kJ. Therefore, Judge will also return 1.

Security. For security, we have the following theorem.

Theorem 7. If a HPS-KEMΣ scheme HPS-KEMΣ is universal, unexplainable,
indistinguishble, SK-second-preimage resistant and smooth, and NIZKR = (PoK,
PoKVer) is a Fiat-Shamir NIZK proof system for R, then our scheme AGMF
achieves the accountability (receiver binding and sender binding), deniability
(universal deniability, receiver compromise deniability, and judge compromise
deniability) and receiver anonymity simultaneously.

We put the proof of Theorem 7 in Appendix A. Specifically, the proofs of
receiver binding and sender binding are presented in Appendix A.1 and Appendix
A.2, respectively. For deniability, the proofs are in Appendix A.3. The proof of
receiver anonymity is given in Appendix A.4.
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23. Goldberg, I., Ustaoğlu, B., Van Gundy, M.D., Chen, H.: Multi-party off-the-record
messaging. In: CCS 2009. pp. 358–368 (2009)

24. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: CRYPTO 2017. pp. 66–97. Springer (2017)

25. Hofheinz, D.: Algebraic partitioning: Fully compact and (almost) tightly secure
cryptography. In: TCC 2016-A. vol. 9562, pp. 251–281. Springer (2016)

26. Hofheinz, D.: Adaptive partitioning. In: EUROCRYPT 2017. vol. 10212, pp. 489–
518 (2017)

27. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsula-
tion. In: Menezes, A. (ed.) Advances in Cryptology - CRYPTO 2007. pp. 553–571.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

28. Issa, R., AlHaddad, N., Varia, M.: Hecate: Abuse reporting in secure messengers
with sealed sender. Cryptology ePrint Archive (2021)

29. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.:
Be adaptive, avoid overcommitting. In: CRYPTO 2017. vol. 10401, pp. 133–163.
Springer (2017)

30. Leontiadis, I., Vaudenay, S.: Private message franking with after opening privacy.
Cryptology ePrint Archive, Report 2018/938 (2018), https://eprint.iacr.org/
2018/938

31. Okamoto, T.: An efficient divisible electronic cash scheme. In: CRYPTO 1995. pp.
438–451. Springer (1995)

32. Peale, C., Eskandarian, S., Boneh, D.: Secure complaint-enabled source-tracking
for encrypted messaging. In: CCS 2021. p. 1484–1506 (2021)

33. Schnorr, C.: Efficient identification and signatures for smart cards. In: CRYPTO
1989. pp. 239–252. Springer (1989)

34. Shacham, H.: A Cramer-Shoup Encryption Scheme from the Linear Assumption
and from Progressively Weaker Linear Variants. Cryptology ePrint Archive, Report
2007/074 (2007)

35. Syta, E., Corrigan-Gibbs, H., Weng, S.C., Wolinsky, D., Ford, B., Johnson, A.:
Security analysis of accountable anonymity in dissent. TISSEC 17(1), 1–35 (2014)

36. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-
ing: Content moderation for metadata-private end-to-end encryption. In: CRYPTO
2019. pp. 222–250. Springer (2019)

37. Tyagi, N., Miers, I., Ristenpart, T.: Traceback for end-to-end encrypted messaging.
In: CCS 2019. pp. 413–430 (2019)

38. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
Making strong anonymity scale. In: OSDI 2012. pp. 179–182 (2012)

39. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Transactions on Networking 8(1), 16–30 (2000)

30

https://www.messenger.com/
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://eprint.iacr.org/2018/938
https://eprint.iacr.org/2018/938


Appendix

A Proof of Theorem 7

A.1 Proof of receiver binding

Proof. For any PPT adversary A attacking the receiver-binding property of
AGMF, we denote A’s input as (pp, {pki|i ∈ [n]}, pkJ), and A’s final output

as (pk∗s , pk
∗
r ,m

∗, σ∗). Then, we parse σ∗ = (π̂, ĉ, k̂J, {k̂ri}pkri
∈S). Let m∗ =

m∗∥{k̂ri}pkri
∈S , and ŷ = (pp, pk∗s , pkJ, ĉ, k̂J). Let Ucor (resp., Qsig) denote the

set of public keys (resp., tuples) that A has submitted to OCor (resp., OFrank).
Since NIZKR = (PoK,PoKVer) is a NIZK proof obtained via the Fiat-Shamir
transform, we can further parse π̂ = (ĉm, ẑ).

Without loss of generality, we assume that A has queried the random oracle
on (m∗, ĉm, ŷ) before returning its final output (pk∗s , pk

∗
r ,m

∗, σ∗).
Let evt1 denote the event that Verify(pp, pk∗s , sk

∗
r , pkJ,m

∗, σ∗) = 1 where
(pk∗s , pk

∗
r /∈ Ucor)∧(∄(pk∗s , S′,m∗) ∈ Qsig s.t. pk

∗
r ∈ S′), and evt2 denote the event

that Judge(pp, pk∗s , skJ,m
∗, σ∗) = 1 where (pk∗s /∈ Ucor)∧(∄(pk∗s , S′,m∗) ∈ Qsig).

Obviously, we have

Advr-bind
AGMF,A,n(λ) = Pr[Gr-bind

AGMF,A,n(λ) = 1] ≤ Pr[evt1] + Pr[evt2]. (6)

We present the following two lemmas with postponed proofs.

Lemma 3. Pr[evt1] ≤ negl(λ).

Lemma 4. Pr[evt2] ≤ negl(λ).

Combining Eq. (6), Lemma 3 and Lemma 4, we obtain that

Advr-bind
AGMF,A,n(λ) ≤ negl(λ).

So what remains is to prove the above two lemmas.

Proof (of Lemma 3). Assume that Pr[evt1] is non-negligible.
Event evt1 occurs if and only if Verify(pp, pk∗s , sk

∗
r , pkJ,m

∗, σ∗) = 1 where
(pk∗s , pk

∗
r /∈ Ucor)∧ (∄(pk∗s , S′,m∗) ∈ Qsig s.t. pk∗r ∈ S′). Note that Verify(pp, pk∗s ,

sk∗r , pkJ,m
∗, σ∗) = 1 implies that NIZKR.PoKVer(m∗, π̂, ŷ) = 1. Since NIZKR is a

NIZK proof system obtained via the Fiat-Shamir transform from a Sigma proto-
col, according to a rewinding lemma [7, Lemma 19.2] and knowledge soundness of

the Sigma protocol, a witness x̂ for ŷ (satisfying x̂ = (ŝks, r̂,⊥) or x̂ = (⊥,⊥, r̂∗))
can be extracted with non-negligible probability. The reason is as follows.

Let qro denote the total number of random oracle queries made by A. Since
we assume that A has queried the random oracle on (m∗, ĉm, ŷ) before returning

its final output (pk∗s , pk
∗
r ,m

∗, σ∗), for j ∈ [qro], let evt
(j)
1 denote the event that

evt1 occurs and (m∗, ĉm, ŷ) is A’s j-th random oracle query. Obviously, Pr[evt1]

=
∑qro

j=1 Pr[evt
(j)
1 ]. So the fact that Pr[evt1] is non-negligible implies that there
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must be some j∗ ∈ [qro], such that Pr[evt
(j∗)
1 ] is non-negligible. On the other

hand, when evt
(j∗)
1 occurs, we can rewind back to the moment when A made

its j∗-th random oracle query, and respond with a fresh and uniformly sampled

value for this query. If evt
(j∗)
1 occurs again, we can use the knowledge soundness

of the Sigma protocol to extract a valid witness x̂ for ŷ. Since Pr[evt
(j∗)
1 ] is non-

negligible, the rewinding lemma [7, Lemma 19.2] guarantees that the witness
can be extracted successfully with non-negligible probability.

Hence, let evt
(ŝks,r̂,⊥) (resp., evt(⊥,⊥,r̂∗)) denote the event that evt1 occurs and

a witness x̂ = (ŝks, r̂,⊥) (resp., x̂ = (⊥,⊥, r̂∗)) for ŷ is successfully extracted.
Since Pr[evt1] is non-negligible, we derive that at least one of Pr[evt(ŝks,r̂,⊥)] and

Pr[evt(⊥,⊥,r̂∗)] is non-negligible.

Case 1: Pr[evt
(ŝks,r̂,⊥)] is non-negligible:

We show a PPT adversary B attacking SK-second-preimage resistance of
HPS-KEMΣ as follows.

Upon receiving (p̃p, p̃k, s̃k), B samples ĩ← [n], sets pp := p̃p and (pkĩ, skĩ) :=

(p̃k, s̃k), and generates (pkJ, skJ) and (pki, ski)i∈[n]\{ĩ} by himself. Then, with

these parameters, B simulates Gr-bind
AGMF,A,n(λ) for A. Note that B can answer

A’s oracle queries by himself. Receiving A’s final output (pk∗s , pk
∗
r ,m

∗, σ∗), if

pk∗s = pkĩ and evt
(ŝks,r̂,⊥) occurs, B returns ŝks; otherwise, B returns a random

secret key.

Now we analyze B’s advantage.
Note that B wins if and only if pk∗s = pkĩ, evt(ŝks,r̂,⊥) occurs and ŝks ̸= sk∗s ,

i.e.,

Advsk-2pr
HPS-KEMΣ,B(λ) =

1

n
Pr[evt

(ŝks,r̂,⊥) ∧ (ŝks ̸= sk∗s )]

=
1

n
(Pr[evt

(ŝks,r̂,⊥)]− Pr[evt
(ŝks,r̂,⊥) ∧ (ŝks = sk∗s )])

≥ 1

n
(Pr[evt

(ŝks,r̂,⊥)]− Pr[ŝks = sk∗s | evt(ŝks,r̂,⊥)]).

Next, we turn to Pr[ŝks = sk∗s | evt(ŝks,r̂,⊥)]. From A’s point of view, the

information on sk∗s beyond pk∗s is released only in the responses returned by
OCor, OFrank and OVerify. Note that evt1 guarantees pk∗s /∈ Ucor, so OCor will not
provide any information about sk∗s . OFrank will not provide any information on
sk∗s beyond pk∗s either except with negligible probability, because of the zero-
knowledge property of NIZKR (note that during the execution of Frank, the secret
key is only used as a component of the witness to generate the NIZK proof).
On the other hand, at best, each query to OVerify will help A to eliminate one
possible value of sk∗s , and the total number of verification queries is polynomial
in λ (which we denote as qverf). Therefore,

Pr[ŝks = sk∗s | evt(ŝks,r̂,⊥)] ≤
1

|SKpp,pk∗
s
| − qverf

+ negl(λ),

which is also negligible.
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So we derive that Advsk-2pr
HPS-KEMΣ,B(λ) is non-negligible, contradicting SK-

second-preimage resistance of HPS-KEMΣ.

Case 2: If Pr[evt(⊥,⊥,r̂∗)] is non-negligible:

For all i ∈ [n], let evt
(i)
(⊥,⊥,r̂∗) denote the event that evt(⊥,⊥,r̂∗) occurs and

pk∗r = pki. Obviously, Pr[evt(⊥,⊥,r̂∗)] =
∑n

i=1 Pr[evt
(i)
(⊥,⊥,r̂∗)]. So there must be

some i∗ ∈ [n], such that Pr[evt
(i∗)
(⊥,⊥,r̂∗)] is non-negligible.

Now we use a sequence of games to show the proof.

Game G0: This is the original game Gr-bind
AGMF,A,n(λ). Specifically, the challenger

generates pp, (pki, ski)i∈[n] and (pkJ, skJ), and initiates a set Qm-sig := ∅. The
challenger maintains a local array Lro to keep track of A’s random oracle queries
(here we use CL to denote the range of the hash function modelled as a random
oracle). Then, the challenger sends (pp, (pki)i∈[n], pkJ) to A, and answers A’s
oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl; otherwise,
the challenger samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OCor(pk′): The challenger returns the corresponding secret key sk′.

– OFrank(pk′s, S
′,m′): The challenger generates σ′ ← Frank(pp, sk′s, S

′, pkJ,m
′),

sets Qm-sig := Qm-sig ∪ {(pk′s, S′,m′, σ′)}, and returns σ′ to A.
– OVerify(pk′s, pk

′
r,m

′, σ′): The challenger returns Verify(pp, pk′s, sk
′
r, pkJ,m

′, σ′)
to A.

– OJudge(pk′s,m
′, σ′): The challenger returns Judge(pp, pk′s, skJ,m

′, σ′) to A.

Receiving A’s final output (pk∗s , pk
∗
r ,m

∗, σ∗), the challenger checks whether

evt
(i∗)
(⊥,⊥,r̂∗) occurs. If so, the challenger outputs 1; otherwise, it outputs 0. In the

following, we use Gi ⇒ 1 to denote that the challenger finally outputs 1 in game
Gi (i ∈ {0, 1, · · · , 4}).

We note that σ∗ can be parsed as (π̂, ĉ, k̂J, {k̂ri}pkri
∈S). When evt

(i∗)
(⊥,⊥,r̂∗)

occurs, we have (r̂∗, ĉ) ∈ R∗c
Since G0 = Gr-bind

AGMF,A,n(λ), we derive that

Pr[G0 ⇒ 1] = Pr[evt
(i∗)
(⊥,⊥,r̂∗)]. (7)

GameG1: This game is the same asG0, except that when evt
(i∗)
(⊥,⊥,r̂∗) occurs, the

challenger returns 0 if ĉ ∈ Cwell-f
pp . Note that the challenger can employ algorithm

CheckCwel to check whether ĉ ∈ Cwell-f
pp (with the help of r̂∗) efficiently. The

unexplainability of HPS-KEMΣ guarantees that

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ). (8)

Game G2: This game is the same as G1, except that when A submits pki∗ to
OCor, the challenger aborts the game (with a random bit as its final output)
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immediately. Note that when A has queried OCor on pki∗ , pki∗ will be added to

Ucor. In this case, evt
(i∗)
(⊥,⊥,r̂∗) will not occur. So we obtain that

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1]. (9)

Game G3: This game is the same as G2, except that when A queries OFrank on
(pk′s = pki∗ , S

′,m′), the challenger generates the response as follows:

(i) Sample r′ ← RS, and compute c′ ← encapc(pp; r
′) and k′J ← encapk(pp,

pkJ; r
′).

(ii) For each pkri ∈ S′, compute k′ri ← encapk(pp, pkri ; r
′).

(iii) Set y′ := (pp, pk′s, pkJ, c
′, k′J) and m′ := (m′||{k′ri}pkri

∈S′), and then generate
a proof π′ with the simulator (taking (m′, y′) as input) of the Fiat-Shamir
NIZK proof system NIZKR.

(iv) Set σ′ := (π′, c, k′J, {k′ri}pkri
∈S′) and Qm-sig := Qm-sig ∪ {(pk′s, S′,m′, σ′)},

and return σ′ to A.

The zero-knowledge property of NIZKR guarantees that

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ negl(λ). (10)

Game G4: This game is the same as G3, except that when A queries OVerify

on (pk′s, pk
′
r = pki∗ ,m

′, σ′) satisfying that “∄(pk′s, S′,m′, σ′) ∈ Qm-sig s.t. pki∗ ∈
S′”, the challenger generates the response as follows:

(i) Parse σ′ = (π′, c′, k′J, {k′ri}pkri
∈S). Let m′ = m′∥{k′ri}pkri

∈S , y
′ = (pp, pk′s,

pkJ, c
′, k′J).

(ii) Check whether c′ ∈ Cwell-f
pp or not (with the help of some unbounded algo-

rithm):
- If c′ /∈ Cwell-f

pp , return 0 to A directly.

- If c′ ∈ Cwell-f
pp , find r′ ∈ RS satisfying encapc(pp; r

′) = c′ (with the
help of some unbounded algorithm). Then, the challenger checks whether
encapk(pp, pk

′
r; r
′) ∈ {k′ri}pkri

∈S or not. If so, it returns 1 to A; otherwise,
it returns 0 to A.

We stress that G4 is an inefficient game.
Let bad denote the event that “A submits a verification query (pk′s, pk

′
r =

pki∗ ,m
′, σ′ = (π′, c′, k′J, {k′ri}pkri

∈S)) satisfying that (i) there is no (pk
′
s, S
′,m′, σ′) ∈

Qm-sig such that pki∗ ∈ S′, (ii) c′ ∈ C∗pp \ Cwell-f
pp , and (iii) decap(pp, ski∗ , c

′) ∈
{k′ri}pkri

∈S”. Note that from A’s point of view, G4 and G3 are identical except

that bad occurs. The universality of HPS-KEMΣ guarantees that the probability
that bad occurs is negligible (note that when c′ ∈ C∗pp \ Cwell-f

pp , an unbounded
algorithm can trivially find r′ satisfying (r′, c′) ∈ R∗c). So we derive that

|Pr[G4 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ Pr[bad] ≤ negl(λ). (11)

Next, we show an unbounded adversary B′, which simulates G4 for A, at-
tacking the universality of HPS-KEMΣ as follows.
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Upon receiving (p̃p, p̃k), B′ initiates a set Qm-sig := ∅, samples ĩ ← [n],

sets pp := p̃p and pkĩ := p̃k, and generates (pkJ, skJ) and (pki, ski)i∈[n]\{ĩ} by

herself. B′ maintains a local array Lro to keep track of A’s random oracle queries
(here we use CL to denote the range of the hash function modelled as a random
oracle). Then, B′ sends (pp, (pki)i∈[n], pkJ) to A and answers A’s oracle queries
as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, B′ returns cl; otherwise, B′ samples
cl← CL, adds (str, cl) to Lro, and returns cl.

– OCor(pk′): If pk′ ̸= pkĩ, B′ returns the corresponding secret key; if pk′ = pkĩ,

B′ aborts the simulation and returns a random tuple (cran, kran, wran) as her
final output.

– OFrank(pk′s, S
′,m′): If pk′s ̸= pkĩ, B′ uses the corresponding secret key sk′s

to run Frank(pp, sk′s, S
′, pkJ,m

′) and returns the results to A; otherwise, B′
proceeds as follows.

(i) Sample r′ ← RS, and compute c′ ← encapc(pp; r
′) and k′J ← encapk(pp,

pkJ; r
′).

(ii) For each pkri ∈ S′, compute k′ri ← encapk(pp, pkri ; r
′).

(iii) Set y′ := (pp, pk′s, pkJ, c
′, k′J) and m′ := (m′||{k′ri}pkri

∈S′), and then
generate a proof π′ with the simulator (taking (m′, y′) as input) of the
Fiat-Shamir NIZK proof system NIZKR.

(iv) Set σ′ := (π′, c, k′J, {k′ri}pkri
∈S′) and Qm-sig := Qm-sig∪{(pk′s, S′,m′, σ′)},

and return σ′ to A.
– OVerify(pk′s, pk

′
r,m

′, σ′): If pk′r ̸= pkĩ, B′ uses the corresponding secret key sk′r
to run Verify(pp, pk′s, sk

′
r, pkJ,m

′, σ′) and returns the result to A; if pk′r = pkĩ
and there is some S′ satisfying that (pk′r ∈ S′) ∧ ((pk′s, S

′,m′, σ′) ∈ Qm-sig),
then B′ returns 1 to A directly; otherwise, B′ proceeds as follows.
(i) Parse σ′ = (π′, c′, k′J, {k′ri}pkri

∈S). Letm
′ = m′∥{k′ri}pkri

∈S , y
′ = (pp, pk′s,

pkJ, c
′, k′J).

(ii) If NIZKR.PoKVer(m′, π′, y′) = 0, return 0 to A.
(iii) B′ checks whether c′ ∈ Cwell-f

pp or not:

- If c′ /∈ Cwell-f
pp , B′ returns 0 to A directly.

- If c′ ∈ Cwell-f
pp , B′ finds r′ ∈ RS satisfying encapc(pp; r

′) = c′. Then,
B′ checks whether encapk(pp, pk

′
r; r
′) ∈ {k′ri}pkri

∈S or not. If so, B′
returns 1 to A; otherwise, she returns 0 to A.

– OJudge(pk′s,m
′, σ′): B′ returns Judge(pp, pk′s, skJ,m′, σ′) to A.

Receiving A’s final output (pk∗s , pk∗r ,m∗, σ∗), if pk∗r ̸= pkĩ, B′ returns a ran-
dom tuple (cran, kran, wran) as her final output. Otherwise, since B′ cannot check
whether evt1 occurs by herself (because she does not have skĩ), she proceeds as
follows.

(1) If (pk∗s ∈ Ucor) ∨ (pk∗r ∈ Ucor) ∨ (∃(pk∗s , S′,m∗) ∈ Qsig s.t. pk∗r ∈ S′), then
B′ aborts the simulation and returns a random tuple (cran, kran, wran) as her
final output.
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(2) Parse σ∗ = (π̂, ĉ, k̂J, {k̂ri}pkri
∈S). Letm

∗ = m∗∥{k̂ri}pkri
∈S , and ŷ = (pp, pk∗s ,

pkJ, ĉ, k̂J).
(3) If NIZKR.PoKVer(m∗, π̂, ŷ) = 0, then B′ aborts the simulation and returns a

random tuple (cran, kran, wran) as her final output.
(4) If NIZKR.PoKVer(m∗, π̂, ŷ) = 1, extract a witness x̂ for ŷ (via the rewinding

technique) such that x̂ = (ŝks, r̂,⊥) or x̂ = (⊥,⊥, r̂∗):
- If x̂ = (ŝks, r̂,⊥), B′ aborts the simulation and returns a random tuple
(cran, kran, wran) as her final output.

- If x̂ = (⊥,⊥, r̂∗), B′ firstly checks whether ĉ ∈ Cwell-f
pp . If so, B′ aborts the

simulation and returns a random tuple (cran, kran, wran) as her final out-

put. Otherwise, B′ samples a key k̃ uniformly random from {k̂ri}pkri
∈S ,

and returns (ĉ, k̃, r̂∗) as her final output.

That’s the construction of B′.
Obviously, when ĩ = i∗, B′ perfectly simulates G4 for A. On the other hand,

since k̃ is uniformly sampled from {k̂ri}pkri
∈S . So when G4 ⇒ 1, the probability

that k̃ is the encapsulated key for pk∗r is at least 1
n . Therefore, we obtain that

Advuniv
HPS-KEMΣ,B′(λ) ≥

1

n2
Pr[G4 ⇒ 1]. (12)

Combining equations (7)-(12), we obtain that

Advuniv
HPS-KEMΣ,B′(λ) ≥

1

n2
(Pr[evt

(i∗)
(⊥,⊥,r̂∗)]− negl(λ)),

which is also non-negligible, contradicting universality of HPS-KEMΣ. ⊓⊔

Proof (of Lemma 4). Assume that Pr[evt2] is non-negligible.
Event evt2 occurs if and only if Judge(pp, pk∗s , skJ,m

∗, σ∗) = 1 where (pk∗s /∈
Ucor)∧ (∄(pk∗s , S′,m∗) ∈ Qsig). Note that Judge(pp, pk∗s , skJ,m

∗, σ∗) = 1 implies

that NIZKR.PoKVer(m∗, π̂, ŷ) = 1. Since NIZKR is a NIZK proof system obtained
via the Fiat-Shamir transform from a Sigma protocol, a witness x̂ for ŷ can be

extracted such that x̂ = (ŝks, r̂,⊥) or x̂ = (⊥,⊥, r̂∗).
Hence, let evt

(ŝks,r̂,⊥) (resp., evt(⊥,⊥,r̂∗)) denote the event that evt2 occurs and

a witness x̂ = (ŝks, r̂,⊥) (resp., x̂ = (⊥,⊥, r̂∗)) for ŷ is successfully extracted.‡

Since Pr[evt2] is non-negligible, we derive that at least one of Pr[evt(ŝks,r̂,⊥)] and

Pr[evt(⊥,⊥,r̂∗)] is non-negligible.

Case 1: If Pr[evt
(ŝks,r̂,⊥)] is non-negligible:

A PPT adversary B attacking SK-one-wayness of HPS-KEMΣ with non-
negligible advantage can be shown. The construction and analysis of B are totally

‡ For simplicity, we abuse the notations here. The events evt(ŝks,r̂,⊥) and evt(⊥,⊥,r̂∗)

here are different from that in the proof of Lemma 3. For example, the “evt(ŝks,r̂,⊥)”

in the proof of Lemma 3 denotes that “evt1” occurs and a witness x̂ = (ŝks, r̂,⊥) is
successfully extracted.
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identical with the “adversary B” in the proof of Lemma 3. So we do not repeat
the details here.

Case 2: If Pr[evt(⊥,⊥,r̂∗)] is non-negligible:

Now we use a sequence of games to show the proof.
Game G0: This is the original game Gr-bind

AGMF,A,n(λ). Specifically, the challenger
generates pp, (pki, ski)i∈[n] and (pkJ, skJ), and initiates a set Qm-sig := ∅. The
challenger maintains a local array Lro to keep track of A’s random oracle queries
(here we use CL to denote the range of the hash function modelled as a random
oracle). Then, the challenger sends (pp, (pki)i∈[n], pkJ) to A, and answers A’s
oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl; otherwise,
the challenger samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OCor(pk′): The challenger returns the corresponding secret key sk′.

– OFrank(pk′s, S
′,m′): The challenger generates σ′ ← Frank(pp, sk′s, S

′, pkJ,m
′),

sets Qm-sig := Qm-sig ∪ {(pk′s, S′,m′, σ′)}, and returns σ′ to A.
– OVerify(pk′s, pk

′
r,m

′, σ′): The challenger returns Verify(pp, pk′s, sk
′
r, pkJ,m

′, σ′)
to A.

– OJudge(pk′s,m
′, σ′): The challenger returns Judge(pp, pk′s, skJ,m

′, σ′) to A.

Receiving A’s final output (pk∗s , pk
∗
r ,m

∗, σ∗), the challenger checks whether
evt(⊥,⊥,r̂∗) occurs. If so, the challenger outputs 1; otherwise, it outputs 0. In the
following, we use Gi ⇒ 1 to denote that the challenger finally outputs 1 in game
Gi (i ∈ {0, 1, 2}).

We note that σ∗ can be parsed as (π̂, ĉ, k̂J, {k̂ri}pkri
∈S). When evt(⊥,⊥,r̂∗)

occurs, we have (r̂∗, ĉ) ∈ R∗c
Since G0 = Gr-bind

AGMF,A,n(λ), we derive that

Pr[G0 ⇒ 1] = Pr[evt(⊥,⊥,r̂∗)]. (13)

GameG1: This game is the same asG0, except that when evt(⊥,⊥,r̂∗) occurs, the

challenger returns 0 if ĉ ∈ Cwell-f
pp . Note that the challenger can employ algorithm

CheckCwel to check whether ĉ ∈ Cwell-f
pp (with the help of r̂∗) efficiently. The

unexplainability of HPS-KEMΣ guarantees that

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ). (14)

Game G2: This game is the same as G1, except that when A queries OJudge on
(pk′s,m

′, σ′) satisfying that “∄(pk′s, S′,m′, σ′) ∈ Qm-sig”, the challenger generates
the response as follows:

(i) Parse σ′ = (π′, c′, k′J, {k′ri}pkri
∈S). Let m′ = m′∥{k′ri}pkri

∈S , y
′ = (pp, pk′s,

pkJ, c
′, k′J).

(ii) If NIZKR.PoKVer(m′, π′, y′) = 0, return 0 to A.
(iii) Check whether c′ ∈ Cwell-f

pp or not (with the help of some unbounded algo-
rithm):
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- If c′ /∈ Cwell-f
pp , return 0 to A directly.

- If c′ ∈ Cwell-f
pp , find r′ ∈ RS satisfying encapc(pp; r

′) = c′ (with the
help of some unbounded algorithm). Then, the challenger checks whether
encapk(pp, pkJ; r

′) = k′J or not. If so, it returns 1 to A; otherwise, it
returns 0 to A.

We stress that G2 is an inefficient game.
Let bad denote the event that “A submits a judge query (pk′s,m

′, σ′ =
(π′, c′, k′J, {k′ri}pkri

∈S)) satisfying that (i) there is no (pk′s, S
′,m′, σ′) ∈ Qm-sig,

(ii) c′ ∈ C∗pp \ Cwell-f
pp , and (iii) decap(pp, skJ, c

′) = k′J”. Note that from A’s point
of view, G2 and G1 are identical except that bad occurs. The universality of
HPS-KEMΣ guarantees that the probability that bad occurs is negligible (note
that when c′ ∈ C∗pp\Cwell-f

pp , an unbounded algorithm can trivially find r′ satisfying
(r′, c′) ∈ R∗c). So we derive that

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Pr[bad] ≤ negl(λ). (15)

Next, we show an unbounded adversary B′, which simulates G2 for A, at-
tacking the universality of HPS-KEMΣ as follows.

Upon receiving (p̃p, p̃k), B′ initiates a set Qm-sig := ∅, sets pp := p̃p and

pkJ := p̃k, and generates (pki, ski)i∈[n] by herself. B′ maintains a local array Lro

to keep track of A’s random oracle queries (here we use CL to denote the range
of the hash function modelled as a random oracle). Then, with these parameters,
B′ simulates Gr-bind

AGMF,A,n(λ) for A, answering A’s oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, B′ returns cl; otherwise, B′ samples
cl← CL, adds (str, cl) to Lro, and returns cl.

– OCor(pk′): B′ returns the corresponding secret key.

– OFrank(pk′s, S
′,m′): B′ generates σ′ ← Frank(pp, sk′s, S

′, pkJ,m
′), setsQm-sig :=

Qm-sig ∪ {(pk′s, S′,m′, σ′)}, and returns σ′ to A.
– OVerify(pk′s, pk

′
r,m

′, σ′): B′ returns Verify(pp, pk′s, sk′r, pkJ,m′, σ′) to A.
– OJudge(pk′s,m

′, σ′): If there is (pk′s, S
′,m′, σ′) ∈ Qm-sig, then B′ returns 1 to

A directly; otherwise, B′ proceeds as follows.
(i) Parse σ′ = (π′, c′, k′J, {k′ri}pkri

∈S). Letm
′ = m′∥{k′ri}pkri

∈S , y
′ = (pp, pk′s,

pkJ, c
′, k′J).

(ii) If NIZKR.PoKVer(m′, π′, y′) = 0, return 0 to A.
(iii) B′ checks whether c′ ∈ Cwell-f

pp or not:

- If c′ /∈ Cwell-f
pp , B′ returns 0 to A directly.

- If c′ ∈ Cwell-f
pp , B′ finds r′ ∈ RS satisfying encapc(pp; r

′) = c′. Then,
B′ checks whether encapk(pp, pkJ; r′) = k′J or not. If so, B′ returns 1
to A; otherwise, she returns 0 to A.

Receiving A’s final output (pk∗s , pk∗r ,m∗, σ∗), since B′ cannot check whether
evt2 occurs by herself (because she does not have skJ), she proceeds as follows.

(1) If (pk∗s ∈ Ucor) ∨ (∃(pk∗s , S′,m∗) ∈ Qsig), then B′ aborts the simulation and
returns a random tuple (cran, kran, wran) as her final output.
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(2) Parse σ∗ = (π̂, ĉ, k̂J, {k̂ri}pkri
∈S). Letm

∗ = m∗∥{k̂ri}pkri
∈S , and ŷ = (pp, pk∗s ,

pkJ, ĉ, k̂J).
(3) If NIZKR.PoKVer(m∗, π̂, ŷ) = 0, then B′ aborts the simulation and returns a

random tuple (cran, kran, wran) as her final output.
(4) If NIZKR.PoKVer(m∗, π̂, ŷ) = 1, extract a witness x̂ for ŷ (via the rewinding

technique) such that x̂ = (ŝks, r̂,⊥) or x̂ = (⊥,⊥, r̂∗):
- If x̂ = (ŝks, r̂,⊥), B′ aborts the simulation and returns a random tuple
(cran, kran, wran) as her final output.

- If x̂ = (⊥,⊥, r̂∗), B′ firstly checks whether ĉ ∈ Cwell-f
pp . If so, B′ aborts

the simulation and returns a random tuple (cran, kran, wran) as her final

output. Otherwise, B′ returns (ĉ, k̂J, r̂∗) as her final output.

That’s the construction of B′.
Obviously, B′ perfectly simulates G2 for A. So we obtain that

Advuniv
HPS-KEMΣ,B′(λ) ≥ Pr[G2 ⇒ 1]. (16)

Combining equations (13)-(16), we obtain that

Advuniv
HPS-KEMΣ,B′(λ) ≥ Pr[evt(⊥,⊥,r̂∗)]− negl(λ),

which is also non-negligible, contradicting universality of HPS-KEMΣ. ⊓⊔
⊓⊔

A.2 Proof of sender binding

Proof. For any PPT adversaryA attacking the sender-binding property of AGMF,
we denote A’s input as (pp, {pki|i ∈ [n]}, pkJ), and A’s final output as (pk∗s , pk∗r ,
m∗, σ∗). Then, we parse σ∗ = (π̂, ĉ, k̂J, {k̂ri}pkri

∈S). Let m∗ = m∗∥{k̂ri}pkri
∈S ,

and ŷ = (pp, pk∗s , pkJ, ĉ, k̂J). Let Ucor (resp., Qsig) denote the set of public keys

(resp., tuples) that A has submitted to OCor (resp., OFrank). Since NIZKR =
(PoK,PoKVer) is a NIZK proof obtained via the Fiat-Shamir transform, we can
further parse π̂ = (ĉm, ẑ).

Without loss of generality, we assume that A has queried the random oracle
on (m∗, ĉm, ŷ) before returning its final output (pk∗s , pk

∗
r ,m

∗, σ∗).
Let evt denote the event that (Verify(pp, pk∗s , sk

∗
r , pkJ,m

∗, σ∗) = 1)∧(Judge(pp,
pk∗s , skJ,m

∗, σ∗) = 0) where pk∗r /∈ Ucor.
Obviously, we have

Advs-bind
AGMF,A,n(λ) = Pr[Gs-bind

AGMF,A,n(λ) = 1] = Pr[evt]. (17)

So what remains is to prove that Pr[evt] is negligible.
Assume that Pr[evt] is non-negligible.
Note that when evt occurs, we have Verify(pp, pk∗s , sk

∗
r , pkJ,m

∗, σ∗) = 1 and
Judge(pp, pk∗s , skJ,m

∗, σ∗) = 0. Verify(pp, pk∗s , sk
∗
r , pkJ,m

∗, σ∗) = 1 implies that
NIZKR.PoKVer(m∗, π̂, ŷ) = 1. Since NIZKR is a NIZK proof system obtained
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via the Fiat-Shamir transform from a Sigma protocol, according to a rewinding
lemma [7, Lemma 19.2] and knowledge soundness of the Sigma protocol, a wit-

ness x̂ for ŷ (satisfying x̂ = (ŝks, r̂,⊥) or x̂ = (⊥,⊥, r̂∗)) can be extracted with
non-negligible probability. The reason is as follows.

Let qro denote the total number of random oracle queries made by A. Since
we assume that A has queried the random oracle on (m∗, ĉm, ŷ) before returning
its final output (pk∗s , pk

∗
r ,m

∗, σ∗), for j ∈ [qro], let evt(j) denote the event that
evt occurs and (m∗, ĉm, ŷ) is A’s j-th random oracle query. Obviously, Pr[evt]
=

∑qro
j=1 Pr[evt

(j)]. So the fact that Pr[evt] is non-negligible implies that there

must be some j∗ ∈ [qro], such that Pr[evt(j
∗)] is non-negligible. On the other

hand, when evt(j
∗) occurs, we can rewind back to the moment when A made

its j∗-th random oracle query, and respond with a fresh and uniformly sampled
value for this query. If evt(j

∗) occurs again, we can use the knowledge soundness
of the Sigma protocol to extract a valid witness x̂ for ŷ. Since Pr[evt(j

∗)] is non-
negligible, the rewinding lemma [7, Lemma 19.2] guarantees that the witness
can be extracted successfully with non-negligible probability.

Note that when Verify(pp, pk∗s , sk
∗
r , pkJ,m

∗, σ∗) = 1, if the extracted witness

x̂ for ŷ is (ŝks, r̂,⊥) , then Judge(pp, pk∗s , skJ,m
∗, σ∗) = 1, which implies that

evt does not occur. So we derive that when evt occurs, the extracted witness for
ŷ is x̂ = (⊥,⊥, r̂∗).

Hence, let evt(⊥,⊥,r̂∗) denote the event that evt occurs and a witness x̂ =
(⊥,⊥, r̂∗) for ŷ is successfully extracted. Since Pr[evt] is non-negligible, we derive
that Pr[evt(⊥,⊥,r̂∗)] is also non-negligible.

For all i ∈ [n], let evt
(i)
(⊥,⊥,r̂∗) denote the event that evt(⊥,⊥,r̂∗) occurs and

pk∗r = pki. Obviously, Pr[evt(⊥,⊥,r̂∗)] =
∑n

i=1 Pr[evt
(i)
(⊥,⊥,r̂∗)]. So there must be

some i∗ ∈ [n], such that Pr[evt
(i∗)
(⊥,⊥,r̂∗)] is non-negligible.

Next, we utilize a sequence of games to show the proof.
Game G0: This is the original game Gs-bind

AGMF,A,n(λ). Specifically, the challenger
generates pp, (pki, ski)i∈[n] and (pkJ, skJ), and initiates a set Qm-sig := ∅. The
challenger maintains a local array Lro to keep track of A’s random oracle queries
(here we use CL to denote the range of the hash function modelled as a random
oracle). Then, the challenger sends (pp, (pki)i∈[n], pkJ) to A, and answers A’s
oracle queries as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, the challenger returns cl; otherwise,
the challenger samples cl← CL, adds (str, cl) to Lro, and returns cl.

– OCor(pk′): The challenger returns the corresponding secret key sk′.

– OFrank(pk′s, S
′,m′): The challenger generates σ′ ← Frank(pp, sk′s, S

′, pkJ,m
′),

sets Qm-sig := Qm-sig ∪ {(pk′s, S′,m′, σ′)}, and returns σ′ to A.
– OVerify(pk′s, pk

′
r,m

′, σ′): The challenger returns Verify(pp, pk′s, sk
′
r, pkJ,m

′, σ′)
to A.

– OJudge(pk′s,m
′, σ′): The challenger returns Judge(pp, pk′s, skJ,m

′, σ′) to A.

Receiving A’s final output (pk∗s , pk
∗
r ,m

∗, σ∗), the challenger checks whether

evt
(i)
(⊥,⊥,r̂∗) occurs. If so, the challenger outputs 1; otherwise, it outputs 0.
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In the following, we use Gi ⇒ 1 to denote that the challenger finally outputs
1 in game Gi (i ∈ {0, 1, · · · , 4}).

We note that σ∗ can be parsed as (π̂, ĉ, k̂J, {k̂ri}pkri
∈S). When evt

(i∗)
(⊥,⊥,r̂∗)

occurs, we have (r̂∗, ĉ) ∈ R∗c
Since G0 = Gs-bind

AGMF,A,n(λ), we derive that

Pr[G0 ⇒ 1] = Pr[evt
(i∗)
(⊥,⊥,r̂∗)]. (18)

GameG1: This game is the same asG0, except that when evt
(i∗)
(⊥,⊥,r̂∗) occurs, the

challenger returns 0 if ĉ ∈ Cwell-f
pp . Note that the challenger can employ algorithm

CheckCwel to check whether ĉ ∈ Cwell-f
pp (with the help of r̂∗) efficiently. The

unexplainability of HPS-KEMΣ guarantees that

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ negl(λ). (19)

Game G2: This game is the same as G1, except that when A submits pki∗ to
OCor, the challenger aborts the game (with a random bit as its final output)
immediately. Note that when A has queried OCor on pki∗ , pki∗ will be added to

Ucor. In this case, evt
(i∗)
(⊥,⊥,r̂∗) will not occur. So we obtain that

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1]. (20)

Game G3: This game is the same as G2, except that when A queries OFrank on
(pk′s = pki∗ , S

′,m′), the challenger generates the response as follows:

(i) Sample r′ ← RS, and compute c′ ← encapc(pp; r
′) and k′J ← encapk(pp,

pkJ; r
′).

(ii) For each pkri ∈ S′, compute k′ri ← encapk(pp, pkri ; r
′).

(iii) Set y′ := (pp, pk′s, pkJ, c
′, k′J) and m′ := (m′||{k′ri}pkri

∈S′), and then generate
a proof π′ with the simulator (taking (m′, y′) as input) of the Fiat-Shamir
NIZK proof system NIZKR.

(iv) Set σ′ := (π′, c, k′J, {k′ri}pkri
∈S′) and Qm-sig := Qm-sig ∪ {(pk′s, S′,m′, σ′)},

and return σ′ to A.

The zero-knowledge property of NIZKR guarantees that

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ negl(λ). (21)

Game G4: This game is the same as G3, except that when A queries OVerify

on (pk′s, pk
′
r = pki∗ ,m

′, σ′) satisfying that “∄(pk′s, S′,m′, σ′) ∈ Qm-sig s.t. pki∗ ∈
S′”, the challenger generates the response as follows:

(i) Parse σ′ = (π′, c′, k′J, {k′ri}pkri
∈S). Let m′ = m′∥{k′ri}pkri

∈S , y
′ = (pp, pk′s,

pkJ, c
′, k′J).

(ii) Check whether c′ ∈ Cwell-f
pp or not (with the help of some unbounded algo-

rithm):
- If c′ /∈ Cwell-f

pp , return 0 to A directly.
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- If c′ ∈ Cwell-f
pp , find r′ ∈ RS satisfying encapc(pp; r

′) = c′ (with the
help of some unbounded algorithm). Then, the challenger checks whether
encapk(pp, pk

′
r; r
′) ∈ {k′ri}pkri

∈S or not. If so, it returns 1 to A; otherwise,
it returns 0 to A.

We stress that G4 is an inefficient game.
Let bad denote the event that “A submits a verification query (pk′s, pk

′
r =

pki∗ ,m
′, σ′ = (π′, c′, k′J, {k′ri}pkri

∈S)) satisfying that (i) there is no (pk
′
s, S
′,m′, σ′) ∈

Qm-sig such that pki∗ ∈ S′, (ii) c′ ∈ C∗pp \ Cwell-f
pp , and (iii) decap(pp, ski∗ , c

′) ∈
{k′ri}pkri

∈S”. Note that from A’s point of view, G4 and G3 are identical except

that bad occurs. The universality of HPS-KEMΣ guarantees that the probability
that bad occurs is negligible (note that when c′ ∈ C∗pp \ Cwell-f

pp , an unbounded
algorithm can trivially find r′ satisfying (r′, c′) ∈ R∗c). So we derive that

|Pr[G4 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ Pr[bad] ≤ negl(λ). (22)

Now, we show an unbounded adversary B′, which simulates G4 for A, at-
tacking the universality of HPS-KEMΣ as follows.

Upon receiving (p̃p, p̃k), B′ initiates a set Qm-sig := ∅, samples ĩ ← [n],

sets pp := p̃p and pkĩ := p̃k, and generates (pkJ, skJ) and (pki, ski)i∈[n]\{ĩ} by

herself. B′ maintains a local array Lro to keep track of A’s random oracle queries
(here we use CL to denote the range of the hash function modelled as a random
oracle). Then, B′ sends (pp, (pki)i∈[n], pkJ) to A and answers A’s oracle queries
as follows:

– ORO(str): If there is some (str, cl) ∈ Lro, B′ returns cl; otherwise, B′ samples
cl← CL, adds (str, cl) to Lro, and returns cl.

– OCor(pk′): If pk′ ̸= pkĩ, B′ returns the corresponding secret key; if pk′ = pkĩ,

B′ aborts the simulation and returns a random tuple (cran, kran, wran) as her
final output.

– OFrank(pk′s, S
′,m′): If pk′s ̸= pkĩ, B′ uses the corresponding secret key sk′s

to run Frank(pp, sk′s, S
′, pkJ,m

′) and returns the results to A; otherwise, B′
proceeds as follows.
(i) Sample r′ ← RS, and compute c′ ← encapc(pp; r

′) and k′J ← encapk(pp,
pkJ; r

′).
(ii) For each pkri ∈ S′, compute k′ri ← encapk(pp, pkri ; r

′).
(iii) Set y′ := (pp, pk′s, pkJ, c

′, k′J) and m′ := (m′||{k′ri}pkri
∈S′), and then

generate a proof π′ with the simulator (taking (m′, y′) as input) of the
Fiat-Shamir NIZK proof system NIZKR.

(iv) Set σ′ := (π′, c, k′J, {k′ri}pkri
∈S′) and Qm-sig := Qm-sig∪{(pk′s, S′,m′, σ′)},

and return σ′ to A.
– OVerify(pk′s, pk

′
r,m

′, σ′): If pk′r ̸= pkĩ, B′ uses the corresponding secret key sk′r
to run Verify(pp, pk′s, sk

′
r, pkJ,m

′, σ′) and returns the result to A; if pk′r = pkĩ
and there is some S′ satisfying that (pk′r ∈ S′) ∧ ((pk′s, S

′,m′, σ′) ∈ Qm-sig),
then B′ returns 1 to A directly; otherwise, B′ proceeds as follows.
(i) Parse σ′ = (π′, c′, k′J, {k′ri}pkri

∈S). Letm
′ = m′∥{k′ri}pkri

∈S , y
′ = (pp, pk′s,

pkJ, c
′, k′J).
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(ii) If NIZKR.PoKVer(m′, π′, y′) = 0, return 0 to A.
(iii) B′ checks whether c′ ∈ Cwell-f

pp or not:

- If c′ /∈ Cwell-f
pp , B′ returns 0 to A directly.

- If c′ ∈ Cwell-f
pp , B′ finds r′ ∈ RS satisfying encapc(pp; r

′) = c′. Then,
B′ checks whether encapk(pp, pk

′
r; r
′) ∈ {k′ri}pkri

∈S or not. If so, B′
returns 1 to A; otherwise, she returns 0 to A.

– OJudge(pk′s,m
′, σ′): B′ returns Judge(pp, pk′s, skJ,m′, σ′) to A.

Receiving A’s final output (pk∗s , pk∗r ,m∗, σ∗), if pk∗r ̸= pkĩ, B′ returns a ran-
dom tuple (cran, kran, wran) as her final output. Otherwise, since B′ cannot check
whether evt occurs by herself (because she does not have skĩ), she proceeds as
follows.

(1) If pk∗r ∈ Ucor, then B′ aborts the simulation and returns a random tuple
(cran, kran, wran) as her final output.

(2) Parse σ∗ = (π̂, ĉ, k̂J, {k̂ri}pkri
∈S). Letm

∗ = m∗∥{k̂ri}pkri
∈S , and ŷ = (pp, pk∗s ,

pkJ, ĉ, k̂J).
(3) If NIZKR.PoKVer(m∗, π̂, ŷ) = 0, then B′ aborts the simulation and returns a

random tuple (cran, kran, wran) as her final output.
(4) If NIZKR.PoKVer(m∗, π̂, ŷ) = 1, extract a witness x̂ for ŷ (via the rewinding

technique) such that x̂ = (ŝks, r̂,⊥) or x̂ = (⊥,⊥, r̂∗):
- If x̂ = (ŝks, r̂,⊥), B′ aborts the simulation and returns a random tuple
(cran, kran, wran) as her final output.

- If x̂ = (⊥,⊥, r̂∗), B′ firstly checks whether ĉ ∈ Cwell-f
pp . If so, B′ aborts the

simulation and returns a random tuple (cran, kran, wran) as her final out-

put. Otherwise, B′ samples a key k̃ uniformly random from {k̂ri}pkri
∈S ,

and returns (ĉ, k̃, r̂∗) as her final output.

That’s the construction of B′.
Obviously, when ĩ = i∗, B′ perfectly simulates G4 for A. On the other hand,

since k̃ is uniformly sampled from {k̂ri}pkri
∈S . So when G4 ⇒ 1, the probability

that k̃ is the encapsulated key for pk∗r is at least 1
n . Therefore, we obtain that

Advuniv
HPS-KEMΣ,B′(λ) ≥

1

n2
Pr[G4 ⇒ 1]. (23)

Combining equations (18)-(23), we obtain that

Advuniv
HPS-KEMΣ,B′(λ) ≥

1

n2
(Pr[evt

(i∗)
(⊥,⊥,r̂∗)]− negl(λ)),

which is also non-negligible, contradicting universality of HPS-KEMΣ. ⊓⊔

A.3 Proof of deniability

Proof (of universal deniability). We prove the universal deniability using a game
hops. The games are defined as follows (also see in Fig. 12).
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Game0 Game1 − Game4 Game2 − Game5 Game3 − Game5 Game4 − Game5 Game5 :

b← {0, 1}; pp← Setup(λ); (pkJ, skJ)← KGJ(pp)

U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}; Ukey ← Ukey ∪ {pki, ski}
b′ ← AO(pp, U, pkJ)

Return (b = b′)

OCor(pk′):

If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-F(pk′
s, S

′,m′):

If S′ ∩ Ucor ̸= ∅: Return ⊥
Q∗ ← Q∗ ∪ S′

r ←RS; c← encapc(pp; r); kJ ← encapk(pp, pkJ; r)

r ←RS; c← encapc(pp; r); kJ ← decap(pp, skJ, c)

r∗ ←RS∗; c← encap∗c(pp; r
∗); kJ ← decap(pp, skJ, c)

r∗ ← RS∗; c← encap∗c(pp; r
∗); kJ ← K

For pkri ∈ S′:

kri ← encapk(pp, pkri ; r) kri ← decap(pp, skri , c) kri ← K
m← (m′||{kri}pkri

∈S′)

x← (sks, r,⊥); y ← (pp, pk′
s, pkJ, c, kJ); π ← NIZKR.PoK(m,x, y)

x← (⊥,⊥,⊥); y ← (pp, pk′
s, pkJ, c, kJ); π ← S(m,x, y)

x← (⊥,⊥, r∗); y ← (pp, pk′
s, pkJ, c, kJ); π ← NIZKR.PoK(m,x, y)

Return σ ← (π, c, kJ, {kri}pkri
∈S′)

Fig. 12 Games for the proof of universal deniability (codes in the boxes are only
executed in the corresponding games)
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Game0 : corresponds to the universal deniability game GUnivDen
AGMF,A,n when b = 0.

When the adversary A issues OF-F(pk′s, S
′,m′) queries, the challenger pro-

ceeds as follows.
1. If the secret keys of some receivers in S′ have been queried to the oracle
OCor by the adversary, return ⊥.

2. Sample r′ ← RS, and compute c′ ← encapc(pp; r
′) and k′J ← encapk(pp,

pkJ; r
′).

3. For each pk′ri ∈ S′, compute k′ri ← encapk(pp, pk
′
ri ; r

′).
4. Set x′ := (sk′s, r

′,⊥), y′ := (pp, pk′s, pkJ, c
′, k′J) andm′ := (m′||{k′ri}pk′

ri
∈S′),

and then compute the proof π′ ← NIZKR.PoK(m′, x′, y′).
5. Return σ′ = (π′, c′, k′J, {k′ri}pk′

ri
∈S′) to the adversary.

The adversary A can also know some secret keys by querying the correspond-
ing public keys to OCor. We require that the secret keys of these receivers in
S′ are not allowed to be queried to the oracle OCor. Therefore, the game will
not give the corresponding secret keys of the receivers in S′ to A. Finally, A
guesses a bit b′.

Game1 : is the same as Game0, except that when generating the NIZK proof in
the OF-F, the challenger calls the simulator S of the Fiat-Shamir NIZK proof
system for R and the witness x′ are set empty.

Game2 : is same as Game1 except that in the response of the adversary’sOF-F(pk′s,
S′,m′) queries, k′J, k′ri are generated by decap. That is to say, the chal-
lenger computes k′J ← decap(pp, skJ, c

′), and for each pk′ri ∈ S′, computes
k′ri ← decap(pp, sk′ri , c

′).
Game3 : is same as Game2 except that in the response of the adversary’sOF-F(pk′s,

S′,m′) queries, c′ is generated by encap∗c . That is to say, the challenger
chooses r∗ ← RS, and computes c′ ← encap∗c(pp; r

∗).
Game4 : is same as Game3 except that in the response of the adversary’sOF-F(pk′s,

S′,m′) queries, k′J ← K, and for each pk′ri ∈ S′, k′ri ← K.
Game5 : is the same as Game4, except that when generating the NIZK proof,

the challenger calls the NIZK generation algorithm NIZKR.PoK. In fact,
Game5 corresponds to the universal deniability game GUnivDen

AGMF,A,n when b = 1.

In other words, when the adversary A issues OF-F(pk′s, S
′,m′) queries, the

challenger proceeds as follows.
1. If the secret keys of some receivers in S′ have been queried to the oracle
OCor by the adversary, return ⊥.

2. Sample r∗ ← RS∗, and compute c′ ← encap∗c(pp; r
∗) and choose k′J ← K.

3. For each pk′ri ∈ S′, choose k′ri ← K.
4. Set x′ := (⊥,⊥, r∗), y′ := (pp, pk′s, pkJ, c

′, k′J) andm′ := (m′||{k′ri}pk′
ri
∈S′),

and then compute the proof π′ ← NIZKR.PoK(m′, x′, y′).
5. Return σ′ = (π′, c′, k′J, {k′ri}pk′

ri
∈S′) to the adversary.

We will show that these games are indistinguishable. Therefore, we conclude
that any PPT adversary cannot distinguish between Game0 (i.e., the universal
deniability game when b = 1) and Game5 (i.e., the universal deniability game
when b = 1) with non-negligible probability. That is to say, the advantage of the
adversary in the receiver compromise deniability game is negligible.
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So what remains is to prove that Game0 and Game5 are indistinguishable.
Game0 → Game1. If Pr[Game0(λ) = 1] and Pr[Game1(λ) = 1] are distinguish-

able with non-negligible probability, then we construct an adversary B to win
the game of zero-knowledge of NIZK in the random oracle model. The adversary
B plays the role of challenger in both Game0 and Game1. The adversary B ini-
tializes n secret-public keys pairs and the judge’s key pair first, as the challenger
does, then proceeds as follows

1. When A queries to OCor, B returns the result as the challenger does.
2. When A queries to OF-F, B generates the ciphertext and encapsulated keys

as they are generated in Frank algorithm. When generating the NIZK proof,
B embeds a proof which is generated either by the real word or by the ideal
word.

After that, B outputs the returned value from A. If the proof is generated
by the real word, B communicates with A in Game0. If the proof is generated by
the ideal word, B communicates with A in Game1. Thus, we have

Advzk
NIZK,B(λ) = |Pr[G

real
NIZK,B(λ) = 1]− Pr[Gideal

NIZK,B(λ) = 1]|
= |Pr[Game0(λ) = 1]− Pr[Game1(λ) = 1]|.

Note that the zero proof of NIZK requires that Advzk
NIZK,B(λ) is negligible.

Therefore, we have |Pr[Game0(λ) = 1]− Pr[Game1(λ) = 1]| = negl(λ).
Game1 → Game2. Due to the correctness property of the HPS-KEMΣ scheme,

when c′ ← encapc(pp; r
′), we have encapk(pp, pkJ; r

′) = decap(pp, skJ, c
′) and

encapk(pp, pk
′
ri ; r

′) = decap(pp, sk′ri , c
′) for each pk′ri ∈ S′. Therefore, Game2 is

identical to Game1.
Game2 → Game3. The difference between Game2 and Game3 lies in the way

to generate c′ in the response of the adversary’s OF-F queries. In Game2, c
′ is

generated by encapc, and in Game3, c
′ is generated by encap∗c . Due to the indis-

tinguishability property of the HPS-KEMΣ scheme, any PPT adversary cannot
distinguish between Game2 and Game3 with non-negligible probability.

Game3 → Game4. By smoothness of the HPS-KEMΣ, we have∆((c, k), (c, k′)) ≤
negl(λ), where c← encap∗c(pp), k ← K, sk ← SKpp,pk and k′ = decap(pp, sk, c).
Thus, we have |Pr[Game3(λ) = 1]− Pr[Game4(λ) = 1| = negl(λ).

Game4 → Game5. The case is similar to that in Game0 → Game1. If Pr[Game4(λ) =
1] and Pr[Game5(λ) = 1] are distinguishable with non-negligible probability, then
we construct an adversary B to win the game of zero-knowledge of NIZK in the
random oracle model. For simplicity, we omit the details and directly draw the
conclusion here, |Pr[Game4(λ) = 1]− Pr[Game5(λ) = 1| = negl(λ).

Finally, we have AdvUnivDen
AGMF,A,n(λ) = |Pr[Game0(λ) = 1] − Pr[Game5(λ) =

1]| = negl(λ). Thus, it holds that AdvUnivDen
AGMF,A,n(λ) is negligible. ⊓⊔

Proof (of receiver compromise deniability). We will prove receiver compromise
deniability using a hybrid argument over a sequence of games (also see in Fig.
13).
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Game0 Game1 − Game4 Game2 − Game5 Game3 − Game5 Game4 − Game5 Game5 :

b← {0, 1}; pp← Setup(λ); (pkJ, skJ)← KGJ(pp)

U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}; Ukey ← Ukey ∪ {pki, ski}
b′ ← AO(pp, U, pkJ)

Return (b = b′)

OCor(pk′):

If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-RF(pk′
s, S

′, S′
cor,m

′):

(S′
cor ⊈ S′) ∨ ((S′ \ S′

cor) ∩ Ucor ̸= ∅): Return ⊥
Q∗ ← Q∗ ∪ S′

r ← RS; c← encapc(pp; r); kJ ← encapk(pp, pkJ; r)

r ←RS; c← encapc(pp; r); kJ ← decap(pp, skJ, c)

r∗ ←RS∗; c← encap∗c(pp; r
∗); kJ ← decap(pp, skJ, c)

r∗ ← RS∗; c← encap∗c(pp; r
∗); kJ ← K

For pkri ∈ Scor: kri ← decap(pp, skri , c)

For pkri ∈ S′: For pkri ∈ S′\S′
cor :

kri ← encapk(pp, pkri ; r) kri ← decap(pp, skri , c) kri ← K
m← (m′||{kri}pkri

∈S′)

x← (sks, r,⊥); y ← (pp, pk′
s, pkJ, c, kJ); π ← NIZKR.PoK(m,x, y)

x← (⊥,⊥,⊥); y ← (pp, pk′
s, pkJ, c, kJ); π ← S(m,x, y)

x← (⊥,⊥, r∗); y ← (pp, pk′
s, pkJ, c, kJ); π ← NIZKR.PoK(m,x, y)

Return σ ← (π, c, kJ, {kri}pkri
∈S′)

Fig. 13 Games for the proof of receiver compromise deniability (codes in the boxes
are only executed in the corresponding games)
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Game0 : corresponds to receiver compromise deniability game when b = 0. Note
that, in this game, when the adversary issues OF-RF(pk′s, S

′, S′cor,m
′) queries,

the challenger proceeds as follows.
1. If S′cor ⊈ S′ or the secret keys of some receivers in S′ \ S′cor have been

queried to the oracle OCor by the adversary, return ⊥.
2. Sample r′ ← RS, and compute c′ ← encapc(pp; r

′) and k′J ← encapk(pp,
pkJ; r

′).
3. For each pk′ri ∈ S′, compute k′ri ← encapk(pp, pk

′
ri ; r

′).
4. Set x′ := (sk′s, r

′,⊥), y′ := (pp, pk′s, pkJ, c
′, k′J) andm′ := (m′||{k′ri}pk′

ri
∈S′),

and then compute the proof π′ ← NIZKR.PoK(m′, x′, y′).
5. Return σ′ = (π′, c′, k′J, {k′ri}pk′

ri
∈S′) to the adversary.

Game1 : is same as Game0 except that, in the response of the adversary’sOF-RF(pk′s,
S′, S′cor,m

′) queries, the proof π′ is generated by the simulator of the Fiat-
Shamir NIZK proof system for R, without using the witness x′.

Game2 : is same as Game1 except that in the response of the adversary’sOF-RF(pk′s,
S′, S′cor,m

′) queries, k′J, k
′
ri are generated by decap. That is to say, the chal-

lenger computes k′J ← decap(pp, skJ, c
′), and for each pk′ri ∈ S′, computes

k′ri ← decap(pp, sk′ri , c
′).

Game3 : is same as Game2 except that in the response of the adversary’sOF-RF(pk′s,
S′, S′cor,m

′) queries, c′ is generated by encap∗c . That is to say, the challenger
chooses r∗ ← RS∗, and computes c′ ← encap∗c(pp; r

∗).
Game4 : is same as Game3 except that in the response of the adversary’sOF-RF(pk′s,

S′, S′cor,m
′) queries, k′J ← K, and for each pk′ri ∈ S′ \ S′cor, k′ri ← K.

Game5 : corresponds to receiver compromise deniability game when b = 1. Note
that, in this game, when the adversary issues OF-RF(pk′s, S

′, S′cor,m
′) queries,

the challenger proceeds as follows.
1. If S′cor ⊈ S′ or the secret keys of some receivers in S′ \ S′cor have been

queried to the oracle OCor by the adversary, return ⊥.
2. Sample r∗ ← RS∗, and compute c′ ← encap∗c(pp; r

∗) and choose k′J ← K.
3. For each pk′ri ∈ S′ \ S′cor, choose k′ri ← K.
4. For each pk′ri ∈ S′cor, compute k′ri ← decap(pp, sk′ri , c

′).
5. Set x′ := (⊥,⊥, r∗), y′ := (pp, pk′s, pkJ, c

′, k′J) andm′ := (m′||{k′ri}pk′
ri
∈S′),

and then compute the proof π′ ← NIZKR.PoK(m′, x′, y′).
6. Return σ′ = (π′, c′, k′J, {k′ri}pk′

ri
∈S′) to the adversary.

We will show that these games are indistinguishable. Therefore, we conclude
that any PPT adversary cannot distinguish between Game0 (i.e., the receiver
compromise deniability game when b = 1) and Game5 (i.e., the receiver compro-
mise deniability game when b = 1) with non-negligible probability. That is to
say, the advantage of the adversary in the receiver compromise deniability game
is negligible.

So what remains is to prove that Game0 and Game5 are indistinguishable.
Game0 → Game1. The difference between Game0 and Game1 lies in the way

to generate the proofs π′ in the response of the adversary’s OF-RF queries. In
Game0, the proofs are generated by NIZKR.PoK, and in Game1, the proofs are

48



generated by the simulator of the Fiat-Shamir NIZK proof system NIZKR. Due
to the zero-knowledge property of the Fiat-Shamir NIZK proof system NIZKR,
any PPT adversary cannot distinguish between Game0 and Game1 with non-
negligible probability.

Game1 → Game2. Due to the correctness property of the HPS-KEMΣ scheme,
when c′ ← encapc(pp; r

′), we have encapk(pp, pkJ; r
′) = decap(pp, skJ, c

′) and
encapk(pp, pk

′
ri ; r

′) = decap(pp, sk′ri , c
′) for each pk′ri ∈ S′. Therefore, Game2 is

identical to Game1.
Game2 → Game3. The difference between Game2 and Game3 lies in the way

to generate c′ in the response of the adversary’s OF-RF queries. In Game2, c
′ is

generated by encapc, and in Game3, c
′ is generated by encap∗c . Due to the indis-

tinguishability property of the HPS-KEMΣ scheme, any PPT adversary cannot
distinguish between Game2 and Game3 with non-negligible probability.

Game3 → Game4. The difference between Game3 and Game4 lies in the way to
generate k′J and k′ri for pk′ri ∈ S′ \ S′cor in the response of the adversary’s OF-RF

queries. In Game3, k
′
J is generated by running decap(pp, skJ, c

′), and for each
pk′ri ∈ S′ \ S′cor, k′ri is generated by running decap(pp, sk′ri , c

′), and in Game4,
these values are chosen in K uniformly at random. Note that, in Game3 and
Game4, c

′ is generated by encap∗c . Hence, due to the smoothness property of the
HPS-KEMΣ scheme, Game3 and Game4 are indistinguishable.

Game4 → Game5. Observe that, the difference between Game4 and Game5
lies in the way to generate the proof π′ in the response of the adversary’s
OF-RF queries. In Game4, the proofs are generated by the simulator of the Fiat-
Shamir NIZK proof system NIZKR, and in Game5, the proofs are generated
by NIZKR.PoK. Due to the zero-knowledge property of the Fiat-Shamir NIZK
proof system NIZKR, any PPT adversary cannot distinguish between Game4 and
Game5 with non-negligible probability. ⊓⊔

Proof (of judge compromise deniability). We will prove judge compromise de-
niability using a hybrid argument over a sequence of games (also see in Fig.
14).

Game0 : corresponds to judge compromise deniability game when b = 0. Note
that, in this game, when the adversary issues OF-JF(pk′s, S

′,m′) queries, the
challenger proceeds as follows.
1. If the secret keys of some receivers in S′ have been queried to the oracle
OCor by the adversary, return ⊥.

2. Sample r′ ← RS, and compute c′ ← encapc(pp; r
′) and k′J ← encapk(pp,

pkJ; r
′).

3. For each pk′ri ∈ S′, compute k′ri ← encapk(pp, pk
′
ri ; r

′).
4. Set x′ := (sk′s, r

′,⊥), y′ := (pp, pk′s, pkJ, c
′, k′J) andm′ := (m′||{k′ri}pk′

ri
∈S′),

and then compute the proof π′ ← NIZKR.PoK(m′, x′, y′).
5. Return σ′ = (π′, c′, k′J, {k′ri}pk′

ri
∈S′) to the adversary.

Game1 : is same as Game0 except that, in the response of the adversary’sOF-JF(pk′s,
S′,m′) queries, the proof π′ is generated by the simulator of the Fiat-Shamir
NIZK proof system for R, without using the witness x′.
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Game0 Game1 − Game4 Game2 − Game5 Game3 − Game5 Game4 − Game5 Game5 :

b← {0, 1}; pp← Setup(λ); (pkJ, skJ)← KGJ(pp)

U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski)← KGu(pp); U ← U ∪ {pki}; Ukey ← Ukey ∪ {pki, ski}
b′ ← AO(pp, U, pkJ, skJ)

Return (b = b′)

OCor(pk′):

If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-JF(pk′
s, S

′,m′):

If S′ ∩ Ucor ̸= ∅: Return ⊥
Q∗ ← Q∗ ∪ S′

r ←RS; c← encapc(pp; r); kJ ← encapk(pp, pkJ; r)

r ←RS; c← encapc(pp; r); kJ ← decap(pp, skJ, c)

r∗ ←RS∗; c← encap∗c(pp; r
∗); kJ ← decap(pp, skJ, c)

For pkri ∈ S′:

kri ← encapk(pp, pkri ; r) kri ← decap(pp, skri , c) kri ← K
m← (m′||{kri}pkri

∈S′)

x← (sks, r,⊥); y ← (pp, pk′
s, pkJ, c, kJ); π ← NIZKR.PoK(m,x, y)

x← (⊥,⊥,⊥); y ← (pp, pk′
s, pkJ, c, kJ); π ← S(m,x, y)

x← (⊥,⊥, r∗); y ← (pp, pk′
s, pkJ, c, kJ); π ← NIZKR.PoK(m,x, y)

Return σ ← (π, c, kJ, {kri}pkri
∈S′)

Fig. 14 Games for the proof of judge compromise deniability (codes in the boxes are
only executed in the corresponding games)
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Game2 : is same as Game1 except that in the response of the adversary’sOF-JF(pk′s,
S′,m′) queries, k′J, k

′
ri are generated by decap. That is to say, the chal-

lenger computes k′J ← decap(pp, skJ, c
′), and for each pk′ri ∈ S′, computes

k′ri ← decap(pp, sk′ri , c
′).

Game3 : is same as Game2 except that in the response of the adversary’sOF-JF(pk′s,
S′,m′) queries, c′ is generated by encap∗c . That is to say, the challenger
chooses r∗ ← RS∗, and computes c′ ← encap∗c(pp; r

∗).
Game4 : is same as Game3 except that in the response of the adversary’sOF-JF(pk′s,

S′,m′) queries, for each pk′ri ∈ S′, k′ri ← K.
Game5 : corresponds to judge compromise deniability game when b = 1. Note

that, in this game, when the adversary issues OF-JF(pk′s, S
′,m′) queries, the

challenger proceeds as follows.
1. If the secret keys of some receivers in S′ have been queried to the oracle
OCor by the adversary, return ⊥.

2. Sample r∗ ← RS∗, and compute c′ ← encap∗c(pp; r
∗) and k′J ← decap(pp,

skJ, c
′).

3. For each pk′ri ∈ S′, choose k′ri ← K.
4. Set x′ := (⊥,⊥, r∗), y′ := (pp, pk′s, pkJ, c

′, k′J) andm′ := (m′||{k′ri}pk′
ri
∈S′),

and then compute the proof π′ ← NIZKR.PoK(m′, x′, y′).
5. Return σ′ = (π′, c′, k′J, {k′ri}pk′

ri
∈S′) to the adversary.

We will show that these games are indistinguishable. Therefore, we conclude
that any PPT adversary cannot distinguish between Game0 (i.e., the judge com-
promise deniability game when b = 1) and Game5 (i.e., the judge compromise
deniability game when b = 1) with non-negligible probability. That is to say,
the advantage of the adversary in the judge compromise deniability game is
negligible.

So what remains is to prove that Game0 and Game5 are indistinguishable.
Game0 → Game1. The difference between Game0 and Game1 lies in the way

to generate the proofs π′ in the response of the adversary’s OF-JF queries. In
Game0, the proofs are generated by NIZKR.PoK, and in Game1, the proofs are
generated by the simulator of the Fiat-Shamir NIZK proof system NIZKR. Due
to the zero-knowledge property of the Fiat-Shamir NIZK proof system NIZKR,
any PPT adversary cannot distinguish between Game0 and Game1 with non-
negligible probability.

Game1 → Game2. Due to the correctness property of the HPS-KEMΣ scheme,
when c′ ← encapc(pp; r

′), we have encapk(pp, pkJ; r
′) = decap(pp, skJ, c

′) and
encapk(pp, pk

′
ri ; r

′) = decap(pp, sk′ri , c
′) for each pk′ri ∈ S′. Therefore, Game2 is

identical to Game1.
Game2 → Game3. The difference between Game2 and Game3 lies in the way

to generate c′ in the response of the adversary’s OF-JF queries. In Game2, c
′ is

generated by encapc, and in Game3, c
′ is generated by encap∗c . Due to the indis-

tinguishability property of the HPS-KEMΣ scheme, any PPT adversary cannot
distinguish between Game2 and Game3 with non-negligible probability.

Game3 → Game4. The difference between Game3 and Game4 lies in the way
to generate k′ri for pk′ri ∈ S′ in the response of the adversary’s OF-JF queries. In
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Game3, for each pk′ri ∈ S′, k′ri is generated by running decap(pp, sk′ri , c
′), and in

Game4, these values are chosen in K uniformly at random. Note that, in Game3
and Game4, c

′ is generated by encap∗c . Hence, due to the smoothness property of
the HPS-KEMΣ scheme, Game3 and Game4 are indistinguishable.

Game4 → Game5. Observe that, the difference between Game4 and Game5
lies in the way to generate the proof π′ in the response of the adversary’s
OF-JF queries. In Game4, the proofs are generated by the simulator of the Fiat-
Shamir NIZK proof system NIZKR, and in Game5, the proofs are generated
by NIZKR.PoK. Due to the zero-knowledge property of the Fiat-Shamir NIZK
proof system NIZKR, any PPT adversary cannot distinguish between Game4 and
Game5 with non-negligible probability. ⊓⊔

A.4 Proof of receiver anonymity

Proof. We will prove receiver anonymity using a hybrid argument over a se-
quence of games.

Game−5 : corresponds to the real receiver anonymity game. Without loss of
generality, we assume that the challenger initiates a set Qm-sig := ∅ at
the beginning, and then when answering the adversary’s OFrank-oracle query
(pk′s, S

′,m′) (with response σ′), the challenge sets that Qm-sig := Qm-sig ∪
{(pk′s, S′,m′, σ′)}. Note that, in the challenge phase, the adversary comes up
with a sender’s public key pk∗s , a message m∗ and two receiver’s public key
sets S0, S1 of equal size |S0| = |S1| = l. The challenger proceeds as follows.
1. Sample r ← RS, and compute c ← encapc(pp; r) and kJ ← encapk(pp,

pkJ; r).
2. Choose a random bit b ∈ {0, 1}. Let Sb = {pkr1 , pkr2 , . . . , pkrl}. For each

i ∈ [l], compute kri ← encapk(pp, pkri ; r).
3. Set x∗ := (sk∗s , r,⊥), y∗ := (pp, pk∗s , pkJ, c, kJ) andm∗ := (m∗||{kri}pkri

∈Sb
),

and then compute the proof π∗ ← NIZKR.PoK(m∗, x∗, y∗).
4. Return σ∗ = (π∗, c, kJ, {kri}pkri

∈Sb
) to the adversary.

Game−4 : is the same as Game−5 except that when the adversary issuesOFrank(pk′s,
S′,m′) queries, if pk′s has never been queried to the oracle OCor by the ad-
versary, the challenger proceeds as follows.
1. Sample r′ ← RS, and compute c′ ← encapc(pp; r

′) and k′J ← encapk(pp,
pkJ; r

′).
2. For each pk′ri ∈ S′, compute k′ri ← encapk(pp, pk

′
ri ; r

′).
3. Set y′ := (pp, pk′s, pkJ, c

′, k′J) and m′ := (m′||{k′ri}pk′
ri
∈S′), and then

generate a proof π′ with the simulator (taking (m′, y′) as input) of the
Fiat-Shamir NIZK proof system NIZKR.

4. Return σ′ = (π′, c′, k′J, {k′ri}pk′
ri
∈S′) to the adversary.

Game−3 : is the same as Game−4 except that when the adversary issuesOVerify(pk′s,
pk′r,m

′, σ′) queries, if (1) neither pk′s nor pk′r has been queried to the ora-
cle OCor by the adversary, and (2) there is no S′ such that (pk′r ∈ S′) ∧
((pk′s, S

′,m′, σ′) ∈ Qm-sig), then the challenger returns 0 to the adversary
directly.
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Game−2 : is the same as Game−3 except that in the challenge phase, kJ, kri
are generated by decap. That is to say, the challenger computes kJ ←
decap(pp, skJ, c), and for i ∈ [l], computes kri ← decap(pp, skri , c).

Game−1 : is same as Game−2 except that in the challenge phase, the proof π∗

is generated by the simulator of the Fiat-Shamir NIZK proof system for R,
without using the witness x∗.

Game0 : is the same as Game−1 except that in the challenge phase, c is generated
by encap∗c . That is to say, the challenger chooses r∗ ← RS∗, and computes
c← encap∗c(pp; r

∗).
Gameν(1 ≤ ν ≤ l) : is the same as Game0 except that in the challenge phase,

for each 1 ≤ i ≤ ν, kri ← K.

We will show that these games are indistinguishable. Note that in Gamel,
the value of b (i.e., the receiver’s public key set Sb) is information-theoretically
hidden from the adversary. Hence the adversary has no advantage in Gamel.
Therefore, we conclude that the advantage of the adversary in Game−5 (i.e., the
original receiver anonymity game) is negligible.

So what remains is to prove that Game−5 and Gamel are indistinguishable.
Game−5 → Game−4. The difference between Game−5 and Game−4 lies in the

way to generate the proofs π′ in the response of the adversary’s OFrank queries. In
Game−5, the proofs are generated by NIZKR.PoK, and in Game−4, the proofs are
generated by the simulator of the Fiat-Shamir NIZK proof system NIZKR. Due
to the zero-knowledge property of NIZKR, any PPT adversary cannot distinguish
between Game−5 and Game−4 with non-negligible probability.

Game−4 → Game−3. Observe that, Game−3 and Game−4 are the same except
that the event that “A submits a verification query (pk′s, pk

′
r,m

′, σ′) such that
(1) neither pk′s nor pk′r has been queried to the oracle OCor by the adversary,
(2) there is no S′ such that (pk′r ∈ S′) ∧ ((pk′s, S

′,m′, σ′) ∈ Qm-sig), and (3)
Verify(pp, pk′s, sk

′
r, pkJ,m

′, σ′) = 1” occurs (note that if pk′s has been queried
to OCor, the challenger will return ⊥). Due to the receiver-binding property of
AGMF, the above event happens with negligible probability. Hence, any PPT
adversary cannot distinguish between Game−4 and Game−3 with non-negligible
probability.

Game−3 → Game−2. Due to the correctness property of the HPS-KEMΣ scheme,
when c← encapc(pp; r), we have encapk(pp, pkJ; r) = decap(pp, skJ, c) and encapk
(pp, pkri ; r) = decap(pp, skri , c) for i ∈ [l]. Therefore, Game−2 is identical to
Game−3.

Game−2 → Game−1. The difference between Game−2 and Game−1 lies in the
way to generate the proof π∗ in the challenge phase. In Game−2, π

∗ is generated
by NIZKR.PoK, and in Game−1, the proof is generated by the simulator of the
Fiat-Shamir NIZK proof system NIZKR. Due to the zero-knowledge property
NIZKR, any PPT adversary cannot distinguish between Game−2 and Game−1
with non-negligible probability.

Game−1 → Game0. The difference between Game−1 and Game0 lies in the way
to generate c in the challenge phase. In Game−1, c is generated by encapc, and
in Game0, c is generated by encap∗c . Due to the indistinguishability property of
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the HPS-KEMΣ scheme, any PPT adversary cannot distinguish between Game−1
and Game0 with non-negligible probability.

Gameν−1 → Gameν(1 ≤ ν ≤ l). The difference between Gameν−1 and Gameν
lies in the way to generate krν in the challenge phase. In Gameν−1, krν is gener-
ated by running decap(pp, skrν , c), and in Gameν , krν is chosen in K uniformly
at random. Note that, in Gameν−1 and Gameν , c is generated by encap∗c . Hence,
due to the smoothness property of the HPS-KEMΣ scheme, Gameν−1 and Gameν
are indistinguishable. ⊓⊔

B Extension from AMF [36]

We first recall the relation of Tygai et al.’s AMF [36] here. In their AMF scheme,
an honest sender constructs

(aJ = (pkJ)
α, eJ = gα) and (ar = (pkr)

β , er = gβ) (24)

where (α, β) ← (Z∗p)2, and then sends these values to the receiver, where pkJ
is the judge’s public key and pkr is the receiver’s public key, along with the
signature of knowledge derived from the following relation:

RAMF = {((t, u, v, w), (pks, pkJ, aJ, eJ, ar)) :
(pks = gt ∨ aJ = gv)

∧ ((aJ = (pkJ)
u ∧ aJ = gu) ∨ ar = gw)}. (25)

However, the above scheme conflicts with strong authentication (i.e., as
pointed out in [36], “forgeries by the moderator cannot be detected by the re-
ceiver”).

Now, we adjust the above relation to be compatible with strong authentica-
tion, as shown in Eq. (26).

RAMF = {((t, u, v, w), (pks, pkJ, aJ, eJ, ar)) :
(pks = gt ∧ (aJ = (pkJ)

u ∧ eJ = gu))

∨ (aJ = gv ∧ ar = gw)}. (26)

Observe that anyone without the receiver’s secret key skr cannot generate a
valid DDH tuple (pkr, er, ar) and know the discrete logarithm of ar at the same
time. Therefore, the forger without the receiver’s secret key cannot deceive the
receiver. Hence, it is compatible with strong authentication.

Following the idea, we can construct AGMF as follows. An honest sender
constructs (aJ = (pkJ)

α, eJ = gα) (for the judge) and (ari = (pkri)
βi , eri = gβi)

(for each receiver with public key pkri). Then he/she sends these values along
with the signature of knowledge derived from the following relation:

R̃ = {((t, u, v, {wi}i∈[|S|]), (pks, pkJ, aJ, eJ, {ari}i∈[|S|])) :
(pks = gt ∧ (aJ = (pkJ)

u ∧ eJ = gu))
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∨ (aJ = gv ∧ (ari = gwi)i∈[|S|])}, (27)

where S is the receiver set. However, it has two shortcomings: 1) it needs a non-
standard assumption (KEA assumption), which inherits from AMF[36]; 2) the
size of the NIZK proof is still O(n).

C More discussions on deniability

In AMF [36, page 9], when the authors define the judge compromise deniability,
they explain the meaning behind it in this way: “Judge compromise deniability
requires that a party with access to the judge’s secret key can forge a signature
that is indistinguishable from honestly-generated signatures to other parties with
access to the judge’s secret key.”

However, the definition of judge compromise deniability in AMF [36] does
not match the above informal statement, as the adversary in [36] has access to
both the judge’s secret key and the receiver’s secret key. The way we define judge
compromise deniability here is more natural to interpret the meaning, following
the same style of universal deniability and receiver compromise deniability. In
addition, it is compatible with strong authentication.

If considering the corruption of the judge and receivers in the deniability
game, then it is more natural to consider judge-receiver compromise deniability.
Following the style of the existing deniability definitions, judge-receiver compro-
mise deniability means that a party with access to the judge’s secret key and
some corrupted receivers’ keys can forge a signature that is indistinguishable
from honestly-generated signatures to other parties with access to the judge’s
secret key and these corrupted receivers’ secret keys. Then, a corresponding
forging algorithm should be added in the primitive, that is JRForge. It takes
as input the public parameter, the sender’s public key, the key pairs of the cor-
rupted receivers, the receiver set, the key pair of the judge and a message. Then,
it outputs a “forged” signature.

We stress that our AGMF construction can fulfill the above requirements
and it supports strong authentication.

The intuition is as follows. We can easily construct JRForge algorithm by
combining RForge and JForge. The judge can be seen as a special receiver in
our construction, since the computation with respect to the judge is analogous
to that with respect to the receivers. Then, the proofs of judge-receiver compro-
mise deniability and strong authentication can be obtained from the proofs of
receiver compromise deniability and receiver binding with minor modifications,
respectively.

In fact, our security models can be strengthened from many aspects. This
paper mainly focuses on introducing the primitive of AGMF and presenting the
framework of its construction, so we only provide the basic security notions,
mainly extended from the definitions of AMF [36].
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