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Abstract. Due to the completeness, reliability and zero-knowledge na-
ture, the zero-knowledge proof is widely used to design various protocols,
including zero-knowledge authentication protocols. However, the exist-
ing zero-knowledge proof scheme cannot realize bidirectional authenti-
cation. In this paper, we design a series of bidirectional zero-knowledge
protocols based on two new flavors of operations applicable to multi-
plicative cyclic group. The two notions are formally defined in this pa-
per. We also provide some formal definitions and properties for the two
notions. According to our definitions, any bounded polynomial function
defined on multiplicative cyclic group has duality and mirror. Based on
the two operations, we introduce and formally define dual commitment
scheme and mirror commitment scheme. Besides, we provide two efficient
constructions for dual commitment and mirror commitment respectively
based on CDH assumption and RSA assumption, and named DCCDH,
DCRSA, MCCDH and MCRSA respectively. We also provide the ex-
tended version supporting multiple messages in the appendix. Then, we
design some efficient non-interactive as well as interactive zero-knowledge
authentication protocols based on these commitments. The protocols al-
low two participants to achieve mutual zero-knowledge authentication
only a communication initialization is needed. Different from other com-
mitment schemes, our schemes can’t be used to construct other schemes
for cryptography, such as, verifiable secret sharing, zero-knowledge sets,
credentials and content extraction signatures, but also can provide tech-
nical support for privacy protection of users in distributed scenarios.

Keywords: duality, mirror, dual commitment, mirror commitment, zero-
knowledge authentication, non-interactive protocol
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1 Introduction

A zero-knowledge proof, proposed by Goldwasser, Micali and Rackoff in 1985 [8],
has become a fundamental protocol in cryptography. Due to the completeness,
reliability and zero-knowledge nature, the zero-knowledge proof is favored by ex-
perts and scholars. Then it is widely used for the construction of public key en-
cryption [9], signature [10], identity authentication [11,17–19], secret sharing [23]
and other classical cryptography fields as well as blockchain [12, 14–16, 24], pri-
vacy computing [13], cloud computing [20], MPC [21] and other popular technol-
ogy. However, the efficiency, scalability and other problems make zero-knowledge
proof unable to run on resource-constrained equipment. A large number of schol-
ars have carried out in-depth research on this issue and proposed a variety of
new zero-knowledge proof implementation schemes [26–32]. These schemes can
all make a prover be able to convince a verifier of the validity of some NP state-
ment disclosing more than the fact that the prover knows a witness that satisfies
the statement efficiently. Some of schemes even has good performance. But, un-
der the condition of only one initialization, all schemes can only verify the veri-
fier’s statement to the prover, and cannot realize role exchange. In this paper, we
designed a series of new zero-knowledge authentication protocols based on our
newly defined cryptographic primitive: dual commitment and mirror commit-
ment. These protocols can achieve mutual zero-knowledge authentication with
only a communication initialization needed. Besides, our schemes also can be
widely used for the construction of other schemes, such as verifiable secret shar-
ing, zero-knowledge sets, credentials and content extraction signatures and so
on. Our main contributions are as follows.

– We first provide two new notions applicable to multiplicative cyclic group,
named duality and mirror.

– We first propose two new cryptographic commitment schemes based on du-
ality and mirror, which we call dual commitment scheme and mirror com-
mitment scheme. Besides, we also provide two efficient constructions for dual
commitment and mirror commitment respectively based on CDH assumption
and RSA assumption, and namedDCCDH,DCRSA,MCCDH andMCRSA

respectively. Moreover, we give the extended version of these constructions,
which supports multiple messages.

– We first design two efficient non-interactive zero-knowledge authentication
protocols for these commitments. The protocols allow two participants to
submit commitments to each other so that they can achieve mutual zero-
knowledge authentication only a communication is needed.

2 Preliminaries

2.1 Notation

We denote by poly(λ) any polynomial function that is bounded by a polynomial
in λ, where λ ∈ N is the security parameter. We denote any function that is
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negligible in the security parameter with negl(λ) if it vanishes faster than the
inverse of any polynomial. We say that an algorithm is ppt if and only if it is
modeled as a probabilistic turing machine that runs in time polynomial in λ.
Given a set S, we denote by x← S that x is uniformly sampled from S.

2.2 Commitments

Commitment turned out to be an extremely important primitive in cryptography
and has been used as a building block to realize highly non-trivial protocols and
primitives. Informally, a commitment scheme is a two-phase protocol between
a prover P and a verifier V. In committing phase, the prover P commits to a
statement m with a string c using some appropriate algorithm. In the decom-
mitting stage, the prover reveals the opening information op and the message m
to the verifier, who can check whether c was indeed a valid commitment on m.
A commitment scheme is said to be non-interactive if each phase requires only
one message from P to V. All algorithms have access to a public random string
r generated by a trusted setup party.

In their most basic form commitment schemes are expected to meet hiding
and binding. A commitment scheme is hiding means with this that it should not
reveal information about the committed message to a computationally bounded
attacker.
Definition 1 (Hiding). A commitment scheme with commitment algorithm
Commit is hiding if there exists a negligible function negl(λ) such that for any
ppt attacker A, for a randomly sampled r ← Setup(1λ), and for all pairs of
messages (m0,m1), we have that

Pr[A(r, c) = b|b← 0, 1; c← Commit(r,mb)] ≤
1

2
+ negl(λ).

Definition 2 (Binding). A verification algorithm Verify is binding if there
exists a negligible function negl(λ) such that for any ppt attacker A and for a
randomly sampled r ← Setup(1λ), we have that

Pr[V erify(r, c, op,m) = 1 ∧ V erify(r, c, op′,m′) = 1 ∧m ̸= m′|
(c, op,m, op′,m′)← A(r)] ≤ negl(λ).

2.3 Computational Assumptions

Here we formally describe the computational hardness assumptions that we need
for the security of our construction.
Definition 3 (Discrete Logarithm Assumption). DLA Let G be a multi-
plicative cyclic group of order p proportional to the security parameter λ and
let g be a generator of G. We say that the discrete logarithm problem is hard if,
for a random integer x ∈ Zp and for all ppt attackers A, there exists a negligible
function negl(λ) such that

Pr[A(G, g, gx) = x] ≤ negl(λ).
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Definition 4 (Computational Diffie-Hellman Assumption, CDH). Let G
be a multiplicative cyclic group of order p proportional to the security parameter
λ and let g be a generator of G. We say that the computational Diffie-Hellman
problem is hard if, for two random integers x, y ∈ Zp and for all ppt attackers
A, there exists a negligible function negl(λ) such that

Pr[A(G, g, gx, gy) = gxy] ≤ negl(λ).

Definition 5 (RSA Assumption, RSA). Let λ ∈ N be the security param-
eter, N is a random RSA modulus of length, z be a random element in ZN

and e be an (ℓ + 1)-bit prime (for a parameter ℓ). Then we say that the RSA
assumption holds if for any ppt attackers A, the probability

Pr[A(N, y, ye) = z] ≤ negl(λ).

Definition 6 (Square Computational Diffie-Hellman Assumption, CDH)
Let G be a multiplicative cyclic group of order p proportional to the security pa-

rameter λ and let g be a generator of G and a
$←− Zp. We say that the Square

Computational Diffie-Hellman Assumption holds in G if for every ppt attackers
A, the probability

Pr[A(g, ga) = ga
2

] ≤ negl(λ)

In [2,3] is shown that the Square-CDH assumption is equivalent to the classical
Computational Diffie-Hellman (CDH) assumption.

2.4 Duality and Mirror Function on multiplicative cyclic group

Here we extend the notion of dual and mirror in logical algebra and provide a
formal definition of duality and mirror applicable to multiplicative cyclic group.
Definition 6 (Dual on multiplicative cyclic group). Let F be a polynomial
function defined on multiplicative cyclic group G, where g is the generator of
G. Another polynomial function F∗ defined on G is said to be the duality of
function F if it may be obtained from F by replacing the corresponding operation
symbols with the following replacement rules and has the same operation order
as F , recording as F ▷ F∗.

– Replace +,× with ×,+.
– Replace −, / with /,−, where / represents the inverse operation defined on

multiplicative cyclic group.
– Replace 1, 0 with 0, 1.

To facilitate readers to better understand the definition, we give three ex-
tended definitions and three examples to explain these definitions.
Definition 7 (unidirectional Dual) If F∗ is the duality of F while A∗ is not
the duality of F . We say F and F∗ are unidirectional dual, recording as F ▷F∗.
Definition 8 (Bidirectional Dual) If F is the duality of F∗ while F∗ is also
the duality of F . We say F and F∗ are bidirectional dual, recording as F ◁ ▷F∗.
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Definition 9 (Self Dual) If F is the duality of F . We say F is self-dual,

recording as
▽
F .

Example 1 F∗ = x ∗ g − y ∗ h is the duality of F = gx/hy, where g,h,x,y ∈ G.
However, F∗ is not the duality of F . Then, F ▷ F∗.
Example 2 F∗ = (x+ g) ∗ (y − h) ◁ ▷F = xg + y/h are Bidirectional dual.
Example 3 F∗ = z is self dual, where z ∈ G.
Definition 10 (Mirror on multiplicative cyclic group).Let F =

∑n
i=0 aix

bi
i

be a polynomial function defined on multiplicative cyclic group G, where g is
the generator of G and ∀i ∈ Zp, ai, xi, bi ∈ G. Another polynomial function F⋆

defined on G is said to be the mirror of function F if it equals to
∑n

i=0 an−ix
bn−i

i

and has the same operation order as F , recording as F ⇔ F⋆. To facilitate
readers to better understand the definition, we give a extended definition, a
example and a theorem based on definition 10.
Proposition 1. If F⋆ is the mirror of F , then F must also be the mirror of F⋆.
It can be easily proved according to definition 10.
Definition 11 (Self Mirror) If F is the mirror of F . We say F is self-mirror,

recording as
⋆

F .
Example 4 If F =

∑⌊n
2 ⌋

i=1 aix
bi
i + aix

bi
n−i, then, F must be self-mirror.

Proposition 2. If F is a poly(λ) defined on multiplicative cyclic group G, where
g is the generator of G, F∗ is the duality of F and (F ∗)⋆ is the mirror of F∗, F⋆

is the mirror of F and (F⋆)∗ is the duality of F⋆ then (F⋆)∗ = (F∗)⋆, recording
as F∗⋆. We show the diagram for F , F∗, F⋆ and F∗⋆ in Fig.1.

Example 5 If F =
∑n

i=0 aix
bi
i , then, we can get that F⋆ =

∑n
i=0 an−ix

bn−i

i ,
F∗ =

∑n
i=0(ai+ bixi). Then we can compute that (F⋆)∗ =

∑n
i=0(an−i+ bn−ixi)

and (F∗)⋆ =
∑n

i=0(an−i + bn−ixi). Obviously, (F∗)⋆ = (F⋆)∗ = F∗⋆.

(a) the dual is unidi-
rectional dual

(b) the dual is Bidi-
rectional dual

Fig. 1: Relation for F , F∗, F⋆ and F∗⋆

3 Dual Commitment

In this section, on the basis of the definition of duality in section 2.4, we provide a
formal definition of a dual commitment scheme, followed by two constructions.
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In the first construction, the commitment, designed based on CDH Assump-
tion, is a unidirectional dual commitment. While in the second construction, the
commitment, designed based on RSA Assumption, is a bidirectional dual com-
mitment. We also prove the security properties and discuss some useful features
of our constructions.

3.1 Definition

A dual commitment consists of seven ppt algorithms: Setup, Commit, Open,
Verifypart, Verifyfull, Updatemessage and Updateproof.

- (c, pp) ← Setup(1λ) Given the security parameter λ, the setup algorithm
Setup outputs a public random string c and some public parameters pp
(which implicitly define the message spaceMpp, randomizer space Rpp and
commitment space Cpp.)

- (c, c∗, aux) ← Commit(r,m, pp) Given the public random string r, a mes-
sage m and public parameters pp, the commitment algorithm Commit out-
puts a commitment c, a dual commitment c∗ and corresponding auxiliary
information aux.

- op← Open(m, aux, pp) This algorithm is run by the committer to produce
a proof op that m is the committed message and pp is the public parameters.
In particular, notice that in the case when some updates have occurred the
auxiliary information aux can include the update information produced by
these updates.

- b ← Verifypart(c,m, c|c∗, pp, op) Given the public random string c, a mes-
sage m, a commitment c and opening information op, the partial verification
algorithm V erifypart outputs 1 if op is a valid opening for commitment c or
dual commitment c∗ on message m.

- (b, t) ← Verifyfull(c,m, c, c∗, pp, op) Given the public random string c, a
message m, a commitment c, a commitment c∗, opening information op, the
full verification algorithm V erifyfull outputs b=1 if op is a valid opening for
commitment c and dual commitment c∗ on message m. V erifyfull outputs
t=2 if b=1 and c ◁ ▷ c∗ are Bidirectional dual, outputs t=1 if b=1 and c ▷ c∗,
outputs t=- 1 if other conditions occur.

- (c′, c∗
′
, U)← Updatemessage(c, c∗,m,m′) This algorithm is run by the com-

mitter to update the dual commitment by changing the message m to m′.
The algorithm takes as input the old message m, the new message m′, the
commitment c and the dual commitment c∗ of message m. It outputs a new
commitment c′ and a new dual commitment c∗

′
together with an update

information U .
- (op′) ← Updateproof(c, c∗, U, op) This algorithm can be run by any user
who holds a proof op for message m, and it allows the user to compute an
updated proof op′ (and the updated commitment c′ and c∗

′
) such that op′

will be valid. Basically, the value U contains the updated information.

For correctness, we require that ∀λ ∈ N, for all honestly generated parameters
pp, an honest committer should be able to correctly generate a commitment,
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a dual commitment and a proof op for all message m ∈ M. Then, a honest
verifier can correctly verify the correctness of a proof, a commitment and a dual
commitment and the relevance of the commitment and the dual commitment for
all message m ∈M.

For security, we require that a malicious committer should not be able to
convincingly present two different messages m and m′ with respect to c and c∗.
we formally define the security and correctness of a dual commitment scheme.
Definition 12. We say (Setup, Commit, Open, Verifypart, Verifyfull,
Updatemessage and Updateproof) is a secure dual commitment scheme if it
satisfies the following properties.
Correctness. Let (r, pp) ← Setup(1λ) and (c, c∗ , aux) ← Commit(r,m, pp).
For a commitment c and a dual commitment c∗ output by Commit(r,m, pp),
and all m ∈M, the output of Open(m, aux, pp) can be successfully verified by
Verifypart(r,m, c|c∗, pp, op) and Verifyfull(r,m, c, c∗, pp, op).
Binding. For all adversaries A = (A0,A1), where A0 is ppt (and A1 is not
computationally bounded), and for a randomly sampled (r, pp) ← Setup(1λ),
we have that:

Pr[V erifypart(r,m, c|c∗, pp, op) = 1 ∧ V erifypart

(r,m′, c|c∗, pp, op′) = 1 ∧m ̸= m′|(c|c∗, op,m)←
A0(r); (m

′, op′)← A1(r, state)] ≤ negl(λ).

Besides,

Pr[V erifyfull(r,m, c, c∗, pp, op) = 1 ∧ V erifyfull

(r,m′, c, c∗, pp, op′) = 1 ∧m ̸= m′|(c, c∗, op,m)←
A0(r); (m

′, op′)← A1(r, state)] ≤ negl(λ).

Hiding.for any ppt attacker A, for a randomly sampled (r, pp) ← Setup(1λ),
and for all pairs of messages (m0,m1), we have that

Pr[A(r, c, c∗) = b|b← 0, 1; (c, c∗, aux)← Commit(r,m, pp)] ≤ 1

2
+ negl(λ).

3.2 A unidirectional Dual Commitment based on CDH: DCCDH

Here we propose an implementation of concise unidirectional dual commitment
DCCDH for single message based on the CDH assumption of multiplicative
cyclic group of order p proportional to the security parameter λ, where g is
the generator . Precisely , the security of the scheme reduces to the Square
Computational Diffie-Hellman assumption (see Definition 6 in Section 2.1 ),
which has been shown equivalent of the standard CDH assumption [2, 3](see
Definition 4 in Section 2.1 ).
Setup(1λ) Let G be a multiplicative cyclic group of order p proportional to the
security parameter λ and let g be a generator of G. Randomly choose zc, z1, z2 ←
Zp. Set r = gzc , h1 = gz1 , h2 = gz2 . Set pp = (g, h1, h2). The message space is
M = Zp.
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Commit(r,m, pp) Compute

c = hm
1 hr

2, c∗ = m ∗ h1 + r ∗ h2

and output C = (c, c∗, aux) and the auxiliary information aux = none.
Open(m, r, pp) Compute

opc = hm
1 , opc∗ = m ∗ h1

and output op = (opc, opc∗).
Verifypart(r,m, c|c∗, pp, opc|opc∗) Compute

b1 =

{
1, if b = 1 and c = opc ∗ hr

2

0 otherwise
, b2 =

{
1, if c∗ = opc∗ + r ∗ h2

0 otherwise

and output b1 ∨ b2.
Verifyfull(r,m, c, c∗, pp, opc, opc∗) Compute

b1 =

{
1, if b = 1 and c = opc ∗ hr

2

0 otherwise
, b2 =

{
1, if c∗ = opc∗ + r ∗ h2

0 otherwise

b = b1 ∧ b2, t =


1, if b = 1 and c ◁ ▷c∗

0, if b = 1 and c ▷ c∗

−1 otherwise

and output (b,t).

Updatemessage(c, c∗,m,m′) Compute the updated commitment c′ = c ∗ hm′−m
1

and dual commitment c∗
′
= c∗ + h2(m

′ −m). Finally output C ′ = (c′, c∗
′
) and

U = (m,m′).
Updateproof(c, c∗, U, op) A client who owns a proof op, that is valid to c and c∗

for the messagem, can produce a new proof op′ = (opc∗hm′−m
1 , opc∗∗h1(m

′−m).
The correctness of the scheme can be easily verified by inspection. We prove

its security via the following theorem.
Theorem 1. If the CDH assumption holds, then the scheme defined above is a
concise dual commitment.

proof 1 We prove the theorem by showing that the scheme satisfies the
binding property. For the sake of contradiction assume that there exists
an efficient attackers A who produces two valid openings to two different
messages, then we show how to build an efficient algorithm B to break the
CDH assumption. First, B chooses z1, z2, z3 ← Zp,it computes: h1 = gz1 ,
h2 = gz2 , r = gz3 . B sets pp = (g, h1, h2) and runs A(pp). Notice that the
public parameters are perfectly distributed as the real ones. The adversary
is supposed to output a tuple (c, c∗,m,m′, opc, opc∗ , op

′
c, op

′

c∗) such that m ̸=
m′ and both opc, opc∗ and op′c, op

′

c∗ correctly verify. Then B computes

h1 = (opc/op
′
c)

(m−m′)−1

= (opc∗ − op
′

c∗) ∗ (m−m′)
−1
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To see that the output is correct, observe that since the two openings verify
correctly, then it holds:

opc ∗ hm′

1 = op′c ∗ hm
1

opc∗ + hm′

1 = op
′

c∗ + hm
1

which means that

h
(m−m′)
1 = op

′

c/opc = op
′

c∗ − opc∗

One can easily see that this justifies the correctness of B’s output. Notice
that if B has probability ϵ of breaking the Square CDH assumption.

3.3 A Double Dual Commitment based on RSA: DCRSA

Here we propose a realization of double dual commitment DCRSA for a single
message from the RSA assumption (whose definition is given in section 2.1).
Appendix A shows the double dual commitment scheme supporting multiple
messages.
Setup(1λ, ℓ) Randomly choose two ℓ/2-bit primes p1, p2, set N = p1p2, and
then choose 2(ℓ+ 1)-bit primes e1, e2, a, r that do not divide φ(N). Compute,

S1 = ae2 , S2 = ae1

The public parameters pp are (N, a, r, S1, S2, e1, e2). The message space is M =
{0, 1}ℓ.
Commit(r,m, pp) Compute

c = Sm
1 Sr

2 = ae2m+e1r, c∗ = a(e2+m)(e1+r)

and output C = (c, c∗, aux) and the auxiliary information aux = none.
Open(m, r, pp) Compute

opc = S
m
e2
1 , opc∗ = S

r
e1
1 S

m
e2
2

and output op = (opc, opc∗). Notice that knowledge of pp allows to compute opc
efficiently without the factorization of N .
Verifypart(r,m, c|c∗, pp, opc|opc∗) Compute

b1 =

{
1, if S1S2op

e1
c∗a

m∗r mod N = opc∗

0 otherwise
, b2 =

{
1, if Sr

2op
e2
c mod N = opc

0 otherwise

and output b = b1 ∨ b2.
Verifyfull(r,m, c, c∗, pp, opc, opc∗) Compute

b1 =

{
1, if S1S2op

e1
c∗a

m∗r mod N = c∗

0 otherwise
, b2 =

{
1, if (Sr

2op
e2
c ) mod N = c

0 otherwise
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b = b1 ∧ b2, t =


1, if b = 1 and c ◁ ▷c∗

0, if b = 1 and c ▷ c∗

−1 otherwise

and output (b,t).

Updatemessage(c, c∗,m,m′) Compute the updated commitment c′ = c ∗Sm′−m
1

and dual commitment c∗
′
= c∗ ∗ a(e1+r)(m′−m). Finally output C ′ = (c′, c∗

′
) and

U = (m,m′).
Updateproof(c, c∗, U, op) A client who owns a proof op, that is valid to c and c∗

for the message m, can produce a new proof op′ = (opc ∗ S
m−m′

e2
1 , opc∗ ∗ S

m−m′
e1

2 ).
In order for the verification process to be correct, notice that one should also

check that the S1, S2 are correctly generated with respect to a and the exponents
e1, e2. The correctness of the scheme can be easily verified by inspection. We
prove its security via the following theorem.
Theorem 2. If the RSA assumption holds, then the scheme defined above is a
concise dual commitment.

proof 2 We prove the theorem by showing that the scheme satisfies the
binding property. More precisely, assume for the sake of contradiction that
there exists an efficient adversary that produces two valid openings to two
different messages, then we show how a ppt attacker A builds an algorithm B
that breaks the RSA assumption. First, B is run on input (N, z, e1, e2), where
e is an (ℓ+1)-bit prime, then, it is used to compute a value y such that z1 =
ye1modN, z2 = ye2modN . The proceeds are as follows. First, it sets a1 =
z1, a2 = z2. B runs Setup and gets back (S1, S2,m,m′, opc, opc∗ , op

′, op′c∗)
where m ̸= m′ and both opc, opc′ and opc∗ , op

′
c∗ are correctly verified. From

the equations Sm
1 ope2c = Sm′

1 op
′e2
c , Sm

2 ope1c∗ = Sm′

2 op
′e1
c∗ we get

Sm−m′

1 = opc/op
′
c
e2 , Sm−m′

2 = opc∗/op
′
c∗

e1

if opc/op
′
c = 1 or opc∗/op

′
c∗ = 1 then we can factor with non-negligible proba-

bility. Thus, assuming opc/op
′
c ̸= 1 and opc∗/op

′
c∗ ̸= 1 we can apply Shamir’s

trick [4] to get an e1− th root of a1, a2. In particular, since gcd(me1, e2) = 1,
by the extended Euclidean Algorithm, we can compute two integers λ, µ such
that mλe1 + µe2 = 1. This leads to the equation

a1 = (opc/op
′
c)

λe2aµe1 , a2 = (opc∗/op
′
c∗)

λe2aµe1

thus (opc/op
′
c)

λe2aµe1 and (opc∗/op
′
c∗)

λe2aµe1 is the required corresponding
root.

4 Mirror Commitment

In this section, On the basis of the definition of mirror in section 2.4, we provide
a formal definition of a mirror commitment scheme, followed by two construc-
tions. In the first construction, the commitment was designed based on CDH
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Assumption. While in the second construction, the commitment was designed
based on RSA Assumption. We also prove the security properties and discuss
some useful features of our constructions.

4.1 Definition

A mirror commitment consists of seven ppt algorithms: Setup,Commit,Open,
Verifypart, Verifyfull, Updatemessage and Updateproof.

- (r, pp) ← Setup(1λ) Given the security parameter λ, the setup algorithm
Setup outputs a public random string r and some public parameters pp
(which implicitly define the message spaceMpp, randomizer space Rpp and
commitment space Cpp.)

- (c, c⋆, aux) ← Commit(r,m, pp) Given the public random string r, a mes-
sage m and public parameters pp, the commitment algorithm Commit out-
puts a commitment c, a dual commitment c⋆ and corresponding auxiliary
information aux.

- op← Open(m, aux, pp) This algorithm is run by the committer to produce
a proof op that m is the committed message and pp is the public parameters.
In particular, notice that in the case when some updates have occurred the
auxiliary information aux can include the update information produced by
these updates.

- b ← Verifypart(r,m, c|c⋆, pp, op) Given the public random string r, a mes-
sage m, a commitment c and opening information op, the partial verification
algorithm V erifypart outputs 1 if op is a valid opening for commitment c or
dual commitment c⋆ on message m.

- (b, t) ← Verifyfull(r,m, c, c⋆, pp, op) Given the public random string r, a
message m, a commitment c, a commitment c⋆, opening information op, the
full verification algorithm V erifyfull outputs b=1 if op is a valid opening for
commitment c and dual commitment c⋆ on message m. V erifyfull outputs
t=1 if b=1 and c⇔ c⋆, and outputs t=0 if other conditions occur.

- (c′, c⋆
′
, U)← Updatemessage(c, c⋆,m,m′) This algorithm is run by the com-

mitter to update the dual commitment by changing the message m to m′.
The algorithm takes as input the old message m, the new message m′, the
commitment c and the dual commitment c⋆ of message m. It outputs a new
commitment c′ and a new dual commitment c⋆

′
together with an updated

information U .
- (op′) ← Updateproof(c, c⋆, U, op) This algorithm can be run by any user
who holds a proof op for message m, and it allows the user to compute an
updated proof op′ (and the updated commitment c′ and c⋆

′
) such that op′

will be valid. Basically, the value U contains the update information.

For correctness, we require that ∀λ ∈ N, for all honestly generated parameters
pp, an honest committer should be able to correctly generate a commitment, a
mirror commitment and a proof op for all message m ∈ M. Then, an honest
verifier can correctly verify the correctness of a proof, a commitment and a mirror
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commitment and the relevance of the commitment and the mirror commitment
for all messages m ∈M.

For security, we require that a malicious committer should not be able to
convincingly present two different messages m and m′ with respect to c and c⋆.
we formally define the security and correctness of a mirror commitment scheme.
Definition 13. We say (Setup, Commit, Open, Verifypart, Verifyfull,
Updatemessage and Updateproof) is a secure dual commitment scheme if it
satisfies the following properties.
Correctness. Let (r, pp) ← Setup(1λ) and (c, c⋆ , aux) ← Commit(r,m, pp).
For a commitment c and a mirror commitment c∗ output by Commit(r,m, pp),
and all m ∈M, the output of Open(m, aux, pp) can be successfully verified by
Verifypart(r,m, c|c⋆, pp, op) and Verifyfull(r,m, c, c⋆, pp, op).
Binding. For all adversaries A = (A0,A1), where A0 is ppt (and A1 is not
computationally bounded), and for a randomly sampled (r, pp) ← Setup(1λ),
we have that:

Pr[V erifypart(r,m, c|c⋆, pp, op) = 1 ∧ V erifypart

(r,m′, c|c⋆, pp, op′) = 1 ∧m ̸= m′|(c|c⋆, op,m)←
A0(r); (m

′, op′)← A1(r, state)] ≤ negl(λ).

Besides,

Pr[V erifyfull(r,m, c, c⋆, pp, op) = 1 ∧ V erifyfull

(r,m′, c, c⋆, pp, op′) = 1 ∧m ̸= m′|(c, c⋆, op,m)←
A0(r); (m

′, op′)← A1(r, state)] ≤ negl(λ).

Hiding. For all ppt adversaries A, for a randomly sampled (r, pp)← Setup(1λ),
and for all pairs of messages (m0,m1), we have that

Pr[A(r, c, c⋆) = b|b← 0, 1; (c, c⋆, aux)← Commit(r,m, pp)] ≤ 1

2
+ negl(λ).

4.2 A Mirror Commitment based on CDH: MCCDH

Here we propose an implementation of concise mirror commitment MCCDH for
a single message based on the CDH assumption in multiplicative cyclic group G
of order p proportional to the security parameter λ, where g is the generator.
Precisely, the security of the scheme reduces to the Square Computational Diffie-
Hellman assumption(see Definition 6 in Section 2.1), which has been shown
equivalent to the standard CDH assumption [2, 3](see Definition 4 in Section
2.1). Appendix B shows the mirror commitment scheme supporting multiple
messages.
Setup(1λ) Let G be a multiplicative cyclic group of order p proportional to the
security parameter λ and let g be a generator of G. Randomly choose zc, z1, z2 ←
Zp. Set r = gzc , h1 = gz1 , h2 = gz2 . Set pp = (g, h1, h2). The message space is
M = Zp.
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Commit(r,m, pp) Compute

c = hm
1 hr

2, c⋆ = hr
1h

m
2

and output C = (c, c⋆, aux) and the auxiliary information aux = none.
Open(m, r, pp) Compute

opc = hm
1 , opc⋆ = hm

2

and output op = (opc, opc∗).
Verifypart(r,m, c|c⋆, pp, opc|opc⋆) Compute

b1 =

{
1, if c = opc ∗ hr

2

0 otherwise
, b2 =

{
1, if c = opc⋆ ∗ hr

1

0 otherwise

and output b = b1 ∨ b2.
Verifyfull(r,m, c, c⋆, pp, opc, opc⋆) Compute

b1 =

{
1, if c = opc ∗ hr

2

0 otherwise
, b2 =

{
1, if c = opc⋆ ∗ hr

1

0 otherwise

b = b1 ∧ b2, t =

{
1, if b = 1 and c⇔ c⋆

0 otherwise

and output (b,t).

Updatemessage(c, c⋆,m,m′) Compute the updated commitment c′ = c ∗ hm′−m
1

and dual commitment c⋆
′
= c⋆ ∗ hm′−m

2 . Finally output C ′ = (c′, c⋆
′
) and U =

(m,m′).
Updateproof(c, c⋆, U, op) A client who owns a proof op, that is valid to c and c⋆

for the message m, can produce a new proof op′ = (opc ∗ hm′−m
1 , opc⋆ ∗ hm′−m

2 ).
The correctness of the scheme can be easily verified by inspection. We prove

its security via the following theorem.
Theorem 3. If the CDH assumption holds, then the scheme defined above is a
concise dual commitment.

proof 3 We prove the theorem by showing that the scheme satisfies the
binding property. For the sake of contradiction assume that there exists
an efficient attacker A who produces two valid openings to two different
messages, then we show how to build an efficient algorithm B to break the
CDH assumption. First, A chooses z1, z2, z3 ← Zp,it computes: h1 = gz1 ,
h2 = gz2 , r = gz3 . B sets pp = (g, h1, h2) and runs Setup. Notice that the
public parameters are perfectly distributed as the real ones. The adversary
is supposed to output a tuple (c, c⋆,m,m′, opc, opc⋆ , op

′
c, op

′

c⋆) such that m ̸=
m′ and both opc, opc⋆ and op′c, op

′

c⋆ correctly verify. Then A computes

h1 = (opc/op
′
c)

m−m′−1

, h2 = (opc⋆/op
′

c⋆)
m−m′−1
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To see that the output is correct, observe that since the two openings verify
correctly, then it holds:

opc ∗ hm′

1 = op′ ∗ hm
1 , opc⋆ ∗ hm′

2 = op
′

c⋆ ∗ hm
2

which means that

hm−m′

1 = op′c/opc, hm−m′

2 = op
′

c⋆/opc⋆

One can easily see that this justifies the correctness of B’s output. Notice
that if A succeeds with probability ϵ breaking the Square CDH assumption.

4.3 A Mirror Commitment based on RSA: MCRSA

Here we propose an implication of mirror commitment MCRSA for a single
message from the RSA assumption (whose definition is given in section 2.1).
Appendix C shows the dual commitment scheme supporting multiple messages.
Setup(1λ, ℓ) Randomly choose two ℓ/2-bit primes p1, p2, set N = p1p2, and
then choose 2(ℓ+ 1)-bit primes e1, e2, a, r that do not divide φ(N). Compute,

S1 = ae2 , S2 = ae1

The public parameters pp are (N, a, r, S1, S2, e1, e2). The message space is M =
{0, 1}ℓ.
Commit(r,m, pp) Compute

c = Sm
1 Sr

2 = ae2m+e1r, c⋆ = Sr
1S

m
2 = ae1m+e2r

and output C = (c, c⋆, aux) and the auxiliary information aux = none.
Open(m, r, pp) Compute

opc = S
m
e2
1 mod N, opc⋆ = S

m
e1
2 mod N

and output op = (opc, opc⋆). Notice that knowledge of pp allows to compute opc
efficiently without the factorization of N .
Verifypart(r,m, c|c⋆, pp, opc|opc⋆) Compute

b1 =

{
1, if Sr

2op
e2
c mod N = c

0 otherwise
, b2 =

{
1, if Sr

1op
e1
c⋆ mod N = c⋆

0, otherwise

and output b = b1 ∨ b2.
Verifyfull(r,m, c, c∗, pp, opc, opc∗) Compute

b1 =

{
1, if Sr

2op
e2
c mod N = c

0 otherwise
, b2 =

{
1, if Sr

1op
e1
c⋆ mod N = c⋆

0, otherwise

b = b1 ∧ b2, t =

{
1, if b = 1 and c⇔ c∗

0, otherwise
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and output (b,t).

Updatemessage(c, c⋆,m,m′) Compute the updated commitment c′ = c ∗Sm′−m
1

and dual commitment c⋆
′
= c⋆ ∗ Sm′−m

2 . Finally output C ′ = (c′, c⋆
′
) and U =

(m,m′).
Updateproof(c, c⋆, U, op) A client who owns a proof op, that is valid to c and c⋆

for the message m, can produce a new proof op′ = (op⋆ ∗ S
m−m′

e2
1 , opc⋆ ∗ S

m−m′
e1

2 ).
In order for the verification process to be correct, notice that one should also

check that the S1, S2 are correctly generated with respect to a and the exponents
e1, e2. The correctness of the scheme can be easily verified by inspection. We
prove its security via the following theorem.
Theorem 4. If the RSA assumption holds, then the scheme defined above is a
concise mirror commitment.

proof 4 We prove the theorem by showing that the scheme satisfies the
binding property. More precisely, assume for the sake of contradiction that
there exists an efficient adversary that produces two valid openings to two
different messages at the same position, then we show how a ppt attacker
A buids an algorithm B that breaks the RSA assumption. Firstly, B is run
on input (N, z, e1, e2), where e is an (ℓ + 1)-bit prime, and it is used to
compute a value y such that z1 = ye1modN, z2 = ye2modN . The pro-
ceeds are as follows. First, it sets a1 = z1, a2 = z2. Then, it runs Setup
and gets back (S1, S2,m,m′, opc, opc⋆ , op

′, op′c⋆) where m ̸= m′ and both
opc, opc′ and opc⋆ , op

′
c⋆ are correctly verified. From the equations Sm

1 ope2c =

Sm′

1 op
′e2
c , Sm

2 ope1c⋆ = Sm′

2 op
′e1
c⋆ we get

Sm−m′

1 = opc/op
′
c
e2 , Sm−m′

2 = opc⋆/op
′
c⋆

e1

if opc/op
′
c = 1 or opc⋆/op

′
c⋆ = 1 then we can factor with non-negligible proba-

bility. Thus, assuming opc/op
′
c ̸= 1 and opc⋆/op

′
c⋆ ̸= 1 we can apply Shamir’s

trick [4] to get an e1− th root of a1, a2. In particular, since gcd(me1, e2) = 1,
by the extended Euclidean Algorithm, we can compute two integers λ, µ such
that mλe1 + µe2 = 1. This leads to the equation

a1 = (opc/op
′
c)

λe2aµe1 , a2 = (opc⋆/op
′
c⋆)

λe2aµe1

thus (opc/op
′
c)

λe2aµe1 and (opc⋆/op
′
c⋆)

λe2aµe1 is the required corresponding
root.

5 Features on Mirror Commitment and Dual
Commitment

We next discuss some important features of Mirror Commitment and Dual Com-
mitment.
Theorem 5. Homomorphism. DCCDH and MCCDH are both (additive)
homomorphic in nature.
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proof 5 Observe that given DCCDH commitments C1 = (c1, c
∗
1) and C2 =

(c2, c
∗
2) associated with message pairs ⟨m1,m2⟩ respectively, one can compute

the commitment C = (c, c∗) for m = m1 +m2 as C = (c1 ∗ c2, c∗1 + c∗2).
proof 6 Observe that given MCCDH commitments C1 = (c1, c

∗
1) and C2 =

(c2, c
∗
2) associated with message pairs ⟨m1,m2⟩ respectively, one can compute

the commitment C = (c, c∗) for m = m1 +m2 as C = (c1 ∗ c2, c∗1 ∗ c∗2).

Theorem 6. Standard Security Properties DCRSA and MCRSA are com-
putationally hiding under the RSA assumption. DCCDH and MCCDH are sta-
tistically binding.

proof 7 The construction is computationally hiding under the RSA assump-
tion, because the commitment algorithm is identical to the one for ElGa-
mal commitments. For binding, pedersen commitments are computationally
binding under the CDH assumption. We refer the reader to ElGamal [6] and
Pedersen [7] for detailed discussions.

Theorem 7. Trapdoor Commitment. DCCDH,MCCDH,DCRSA,MCRSA

are also trapdoor commitment schemes, where r = gzc is the trapdoor.

proof 8 For DCCDH, given r, a simulator can create witnesses for arbitrary
values with respect to C = hm

1 hr
2 for an unknown r. To ”prove” m (where m

is the message supposedly committed to by C), output op. It can easily be
checked that Verifypart(C,m, op, pp) = 1 and Verifyfull(C,m, op, pp) = 1
The same also applies to MCCDH, DCRSA, MCRSA.

6 Two-way Zero-knowledge Authentication Protocols

In this section, we describe the applications of our commitment schemes to con-
struct bidirectional non-interactive zero-knowledge authentication protocols. A
Prover(P) can convince a Verifier (V) that it is a legal user by proving c∗ is the
duality of c or c⋆ is the mirror of c without revealing any private information
and they can still continue to authenticate without another initialization even
after changing roles. Here, we give the instance of constructing non-interactive
and interactive bidirectional zero-knowledge authentication protocols through
DCRSA and MCRSA. However, DCCDH is an one-way dual commitment so it
can’t be used to build a bidirectional authentication protocol, but, it can be used
to build a tone-way authentication protocol. The rest 2 instances of constructing
zero-knowledge authentication protocol through DCCDH, MCCDH are similar
to DCRSA and MCRSA. They are shown in Appendix D.
zero-knowledge authentication for DCRSA

Let p1, p2 are two ℓ/2-bit primes , set N = p1p2. Let e1, e2, a, r are three
2(ℓ+1)-bit primes that do not divide φ(N). Let S1 = ae2 , S2 = ae1 ,m ∈ {0, 1}ℓ.
The protocol presented in algorithm 1 as a sigma protocol for the relation R1.

proof 9 Completeness follows trivially by inspection. We next show that
the protocol is 2-special sound by a standard rewinding argument, where
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Algorithm 1 Interactive protocol for DCRSA

R1 = c, c∗ ∈ G;m1,m2 ∈ Zl : c = ae2m+e1r, c∗ = a(e2+m)(e1+r)

P: r0, r1
$← Zl and computes :

R0 = ar0(e1+e2), R1 = ar1(e1−e2)

P→ V: R0, R1

V← P: t $← Zl

P: computes:
y0 = ar0+t(m+r), y1 = ar1+t(r−m)

P→ V: y0, y1
V: returns Accept if and only if the following hold:

y
(e1+e2)
0 ∗ y(e1−e2)

1 /c2t
?
= R0 ∗R1 (1)

we define an extractor that produces valid witness elements on accept-
ing transcripts using distinct verifier challenges. Fix an initial transcript
(c, c∗,R0,R1), and let c ̸= c′ be distinct verifier challenges for this transcript,
with corresponding responses (y0, y1) and (y′0, y

′
1). We apply Equations (1)

to these transcripts to obtain

(
y0
y′0

)(e1+e2)(
y1
y′1

)(e1−e2) = c2(c−c′)(2)

and hence

(
y0
y′0

)
(e1+e2)

(c−c′) (
y1
y′1

)
(e1−e2)

(c−c′) = c2(3)

Define α0 = (y0

y′
0
)

1
(c−c′) and α1 = (y1

y′
1
)

1
(c−c′) , and note that both are well-

defined since c ̸= c′. According to Equation (3) and definition, we obtain the
following expressions for c and c∗

c = (α0 ∗ α1)
e1
2 ∗ ( α0

α1)
)

e2
2 = ae2m+e1r

c∗ = (
α0

α1)
)

e1
2 ∗ (α0 ∗ α1)

e1
2 ∗ ae1e2+m∗r = a(e2+m)(e1+r)

We finally show that the protocol is a special honest-verifier zero-knowledge.
To do so, we define a simulator that, on a valid statement and uniformly
sampled verifier challenge, produces transcripts indistinguishable from those
of real proofs. Fix a valid prover statement (c, c∗) and sample a nonzero
challenge c ∈ Zl. The simulator samples random y0, y1 ∈ Zl and defines
R0, R1 using Equations (1), respectively. The resulting simulated proof will
be accepted by an honest verifier. Because e1, e2 are different primes, such
a simulated proof is distributed identically to a real proof, and hence the
protocol is special honest-verifier zero knowledge. This completes the proof.

This protocol may be made non-interactive via the Fiat-Shamir [33] technique,
where the verifier challenge is replaced by a suitable transcript hash. This tech-
nique further allows for binding an arbitrary proof context into the transcript.
Algorithm 2 shows an example non-interactive protocol.
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Algorithm 2 Non-interactive protocol for DCRSA

R1 = c, c∗ ∈ G;m1,m2 ∈ Zl : c = ae2m+e1r, c∗ = a(e2+m)(e1+r)

P: r0, r1
$← Zl and computes :

R0 = ar0(e1+e2), R1 = ar1(e1−e2)

t = Hs(R0 ∗R1, c, c
∗) where Hs(∗) is a hash function

y0 = ar0+t(m+r), y1 = ar1+t(r−m)

P→ V: t, y0, y1
V: returns Accept if and only if the following hold:

Hs(y
(e1+e2)
0 ∗ y(e1−e2)

1 /c2t, c, c∗)
?
= t

Theorem 8 Both non-interactive and interactive zero-knowledge authentication
protocols for DCRSA can be used to realize bidirectional authentication with
only an initialization.

proof 10 According to definition 8 in Section 3.4, we know c∗ is the dual
of c, the reverse is also true, so Prover P and Verifier V are allowed ex-
change roles so that they can realize bidirectional authentication with only
an initialization without additional initialization.

zero-knowledge authentication for MCRSA

Let p1, p2 are two ℓ/2-bit primes , set N = p1p2. Let e1, e2, a, r are three
2(ℓ+1)-bit primes that do not divide φ(N). Let S1 = ae2 , S2 = ae1 ,m ∈ {0, 1}ℓ.
The protocol presented in algorithm 3 as a sigma protocol for the relation R2.

Algorithm 3 Interactive protocol for MCRSA

R1 = c, c⋆ ∈ G;m1,m2 ∈ Zl : c = ae2m+e1r, c⋆ = ae2r+e1m

P: r0, r1
$← Zl and computes:

R0 = ar0(e1+e2), R1 = ar1(e1−e2)

P→ V: R0, R1

V← P: t $← Zl

P: computes:
y0 = ar0+t(m+r), y1 = ar1+t(m−r)

P→ V: y0, y1
V: returns Accept if and only if the following hold:

y
(e1+e2)
0 /(c ∗ c⋆)t ?

= R0 (4), y
(e1−e2)
1 /(c/c⋆)t

?
= R1 (5)

proof 11 Completeness follows trivially by inspection. We next show that
the protocol is 2-special sound by a standard rewinding argument, where
we define an extractor that produces valid witness elements on accept-
ing transcripts using distinct verifier challenges. Fix an initial transcript
(c, c⋆,R0,R1), and let c ̸= c′ be distinct verifier challenges for this transcript,
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with corresponding responses (y0, y1) and (y′0, y
′
1). We apply Equations (4)

and (5) to these transcripts to obtain

(
y0
y′0

)(e1+e2) = (c ∗ c⋆)c−c′(6)

(
y1
y′1

)(e1−e2) = (c ∗ c⋆)c−c′(7)

and hence

(
y0
y′0

)
(e1+e2)

(c−c′) = c ∗ c⋆(8)

(
y1
y′1

)
(e1−e2)

(c−c′) = c/c⋆(9)

Define α0 = (y0

y′
0
)

1
(c−c′) and α1 = (y1

y′
1
)

1
(c−c′) , and note that both are well-

defined since c ̸= c′. According Equations (6) and (7), we obtain the following
expressions for c and c⋆

c = (α0 ∗ α1)
e1
2 ∗ ( α0

α1)
)

e2
2 = ae2m+e1r

c⋆ = (
α0

α1)
)

e1
2 ∗ (α0 ∗ α1)

e1
2 = a(e2r)(e1m)

We finally show that the protocol is a special honest-verifier zero knowledge.
To do so, we define a simulator that, on a valid statement and uniformly
sampled verifier challenge, produces transcripts indistinguishable from those
of real proofs. Fix a valid prover statement (c, c⋆) and sample a nonzero
challenge c ∈ Zl. The simulator samples random y0, y1 ∈ Zl and defines
R0, R1 using Equations (4) and (5), respectively. The resulting simulated
proof will be accepted by an honest verifier. Because e1, e2 are different
primes, such a simulated proof is distributed identically over a real proof, and
hence the protocol is special honest-verifier zero knowledge. This completes
the proof.

This protocol may be made non-interactive via the Fiat-Shamir [33] technique,
where the verifier challenge is replaced by a suitable transcript hash. This tech-
nique further allows for binding an arbitrary proof context into the transcript.
Algorithm 4 shows an example non-interactive protocol.
Theorem 9Both non-interactive and interactive zero-knowledge authentication
protocols for MCRSA can be used to realize bidirectional authentication with
only an initialization.

proof 12 According to definition 10 in Section 3.4, we know c⋆ is the mirror
of c, the reverse is also true, so Prover P and Verifier V are allowed ex-
change roles so that they can realize bidirectional authentication with only
an initialization without additional initialization.
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Algorithm 4 Non-interactive protocol for MCRSA

R1 = c, c⋆ ∈ G;m1,m2 ∈ Zl : c = ae2m+e1r, c⋆ = ae2r+e1m

P: r0, r1
$← Zl and computes:

R0 = ar0(e1+e2), R1 = ar1(e1−e2)

t = Hs(R0, R1, c, c
⋆) where Hs(∗) is a hash function

y0 = ar0+t(m+r), y1 = ar1+t(m−r)

P→ V: t, y0, y1
V: returns Accept if and only if the following hold:

Hs(y
(e1+e2)
0 /(c ∗ c⋆)t, y(e1−e2)

1 /(c/c⋆)t, c, c∗)
?
= t

7 Open Problems

Finally, we list a few open problems related to the commitment and mirror com-
mitment schemes. 1. Is it possible to construct efficient polynomial commitment
schemes under weaker assumptions? 2. What other protocols do dual commit-
ment and mirror commitment improves? (For example, can commitment and
mirror commitment reduce communication of asynchronous VSS protocols or
verifiable shuffles? See the protocol of Groth and Ishai [5]) 3. We have mainly
focused on communication costs, but our construction asks for nontrivial compu-
tation. Is it possible to reduce computation costs as well? 4. Whether the dual
commitment and mirror commitment can be used to construct the oblivious
transfer protocols?
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Appendix

A DCRSA for multiple messages

Setup(1λ, ℓ, q) Randomly choose two ℓ/2-bit primes p1, p2, set N = p1p2, and
then choose 2(ℓ + 1)-bit primes e1, ..., eq, a that do not divide φ(N). For i = 1
to q Compute,

Si = a
∏q

j=1,j ̸=i ej

The public parameters pp are (N, a, S1, ..., Sq, e1, ...eq). The message space is
M = {0, 1}ℓ.
Commit(m1, ...mq, pp) Compute

c = Sm
1 ...Smq

q = a
∑q

i=1(mi
∏q

j=1,j ̸=i ej ), c∗ = a
∏q

i=1(mi+
∑q

j=1,j ̸=i ej)

and output C = (c, c∗, aux) and the auxiliary information aux = none.
Open(m, i, pp) Compute

opic = (

q∏
j=1,j ̸=i

S
mj

j )
1
ei mod N, opic∗ = (Smi

i )
1
ei (

q∏
j=1,j ̸=i

S
mj

j )
1
ei mod N

and output op = (opic, op
i
c∗). Notice that knowledge of pp allows to compute opic

efficiently without the factorization of N .
Verifypart(m, i, c|c∗, pp, opic|opic∗) Compute

b1 =

{
1, if

∏q
i=1 Si(op

i
c∗)

eia
∏q

i=1 mi mod N = opc∗

0 otherwise

b2 =

{
1, if

∏q
j=1,j ̸=i S

mj

j (opic)
ei mod N = opc

0 otherwise

and output b = b1 ∨ b2.
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Verifyfull(r,m, c, c∗, pp, opic, op
i
c∗) Compute

b1 =

{
1, if

∏q
i=1 Si(op

i
c∗)

eia
∏q

i=1 mi mod N = opc∗

0 otherwise

b2 =

{
1, if

∏q
j=1,j ̸=i S

mj

j (opic)
ei mod N = opc

0 otherwise

b = b1 ∧ b2, t =


1, if b = 1 and c ◁ ▷c∗

0, if b = 1 and c ▷ c∗

−1 otherwise

and output (b,t).

Updatemessage(c, c∗,m,m
′
, i) Compute the updated commitment c

′
= c∗Sm

′
−m

i

and dual commitment c∗
′
= c∗ ∗ a(ei+

∑q
j=1,j ̸=i)(m

′
−m). Finally output C ′ =

(c
′
, c∗

′
) and U = (m,m

′
, i).

Updateproof(c, c∗, U, i, opjc, op
j
c∗) A client who owns a proof opjc, op

j
c∗ , that is

valid to c and c∗ for some message at position j, can use the update information U

to compute the updated commitment c
′
, c∗

′
and to produce a new proof opj

′

c , op
j′

c∗

which will be valid c
′
, c∗

′
. We distinguish two cases:

1. i ̸= j. Compute the updated commitment as c
′
= comSm′−m

i , c∗
′
= c∗ ∗

a(ei+
∑q

j=1,j ̸=i)(m
′
−m) while the updated proof is opj

′

c = opjc ∗ (S
m−m

′

ej

i ), opj
′

c∗ =

opjc∗ ∗ S
m−m

′

ej

i (notice that such ej−th root can be efficiently computed using the
elements in the public key).

2. i = j. Compute the updated commitment while the updated proof remains
the same opic, op

i
c∗

In order for the verification process to be correct, notice that one should also
verify (only once) the validity of the public key by checking that the Si’s are
correctly generated with respect to a and the exponents e1, .., eq.

The correctness of the scheme can be easily verified by inspection. We prove
its security via the proof method similar to theorem 2.

B MCCDH for multiple messages

Setup(1λ, q) Let G be a multiplicative cyclic group of order p proportional
to the security parameter λ and let g be a generator of G. Randomly choose
z1, ..., zq ← Zp. Set hi = gzi for all i = 1, 2, ..., q. Set pp = (g, h1, ..., hq). The
message space isM = Zp.
Commit(m1, ..,mq, pp) Compute

c =

q∏
i=1

hmi
i , c⋆ =

q∏
i=1

h
(mq−i+1)
i
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and output C = (c, c⋆, aux) and the auxiliary information aux = (m1, ...mq).
Open(mi, i, pp) Compute

opic =

q∏
j=1,j ̸=i

h
mj

j , opic⋆ =

q∏
j=1,j ̸=q−i+1

h
mj

j

and output op = (opc, opc⋆).
Verifypart(m, i, c|c⋆, pp, opic|opic⋆) Compute

b1 =

{
1, if c/hmi

i = opic
0 otherwise

, b2 =

{
1, if c/h

mq−i+1

q−i+1 = opic⋆

0 otherwise

and output b.
Verifyfull(m, i, c, c⋆, pp, opic, op

i
c⋆) Compute

b1 =

{
1, if c/hmi

i = opic
0 otherwise

, b2 =

{
1, if c/h

mq−i+1

q−i+1 = opic⋆

0 otherwise

b = b1 ∧ b2, t =

{
1, if b = 1 and c⇔ c⋆

0 otherwise

and output (b,t).

Updatemessage(c, c⋆,m,m
′
, i) Compute the updated commitment c

′
= c∗hm

′
−m

i

and dual commitment c⋆
′
= c⋆ ∗ hm

′
−m

q−i+1 . Finally output C ′ = (c
′
, c⋆

′
) and

U = (m,m
′
, i).

Updateproof(c, c⋆, U, opjc, op
j
c⋆) A client who owns a proof opjc, op

j
c⋆ , that is valid

to c and c⋆ for the message m at position j, can use the update information
U = (m,m

′
, i) to compute the updated commitment c

′
, c⋆

′
and produce a new

proof opj
′

c , op
j′

c⋆ which will be valid w.r.t.c
′
, c⋆

′
. We distinguish two cases: 1. i ̸= j.

Compute the updated commitment c
′
= c ∗ hm

′
−m

i , c⋆
′
= c⋆ ∗ hm−m

′

q−i+1 while the

updated proof is opj
′

c = opjc ∗ hm
′
−m

i , opj
′

c⋆ = opq−j+1
c⋆ ∗ hm

′
−m

q−i+1 .

2. i = j. Compute the updated commitment as c
′
= c ∗ hm

′
−m

i , c⋆
′
= c⋆ ∗

hm−m
′

q−i+1 while the updated proof remains the same opic, op
i
c⋆ .

The correctness of the scheme can be easily verified by inspection. We prove
its security via the proof method similar to theorem 3.

C MCRSA for multiple messages

Setup(1λ, ℓ, q) Randomly choose two ℓ/2-bit primes p1, p2, set N = p1p2, and
then choose 2(ℓ + 1)-bit primes e1, ..., eq, a that do not divide φ(N). For i = 1
to q Compute,

Si = a
∏q

j=1,j ̸=i ej
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The public parameters pp are (N, a, S1, ..., Sq, e1, ...eq). The message space is
M = {0, 1}ℓ.
Commit(m1, ...mq, pp) Compute

c =

q∏
i=1

Smi
i = a

∑q
i=1(mi

∏q
j=1,j ̸=i ej), c⋆ =

q∏
i=1

S
mq−i+1

i = a
∑q

i=1(mq−i+1
∏q

j=1,j ̸=q−i+1 ej)

and output C = (c, c⋆, aux) and the auxiliary information aux = (m1, ...mq).
Open(m, i, pp) Compute

opc =

q∏
j=1,i̸=j

(S
mj

j )ei mod N, opc⋆ =

q∏
j=1,j ̸=q−i+1

S

mj
eq−i+1

j mod N

and output op = (opc, opc⋆). Notice that knowledge of pp allows to compute opc
efficiently without the factorization of N .
Verifypart(m, i, c|c⋆, pp, opic|opic⋆) Compute

b1 =

{
1, if (Sm

i (opic)
ei mod N = c

0 otherwise
, b2 =

{
1, if (S

mq−i+1

q−i+1 (opq−i+1
c⋆ )eq−i+1 mod N = c⋆

0 otherwise

and output b = b1 ∨ b2.
Verifyfull(r,m, c, c⋆, pp, opc, opc⋆) Compute

b1 =

{
1, if (Sm

i (opic)
ei mod N = c

0 otherwise
, b2 =

{
1, if (S

mq−i+1

q−i+1 (opq−i+1
c⋆ )eq−i+1 mod N = c⋆

0 otherwise

b = b1 ∧ b2, t =

{
1, if b = 1 and c⇔ c⋆

0 otherwise

and output (b,t).

Updatemessage(c, c⋆,m,m
′
, i) Compute the updated commitment c

′
= c∗Sm

′
−m

i

and dual commitment c⋆
′
= c⋆ ∗ Sm

′
q−i+1−mq−i+1

q−i+1 . Finally output C ′ = (c
′
, c⋆

′
)

and U = (m,m
′
, i).

Updateproof(c, c⋆, i, U, opjc, op
j
c⋆) A client who owns a proof opjc, op

j
c⋆ , that is

valid to c and c⋆ for some message at position j, can use the update information U

to compute the updated commitment c
′
, c⋆

′
and to produce a new proof opj

′

c , op
j′

c⋆

which will be valid c
′
, c⋆

′
. We distinguish two cases:

1. i ̸= j. Compute the updated commitment as c
′
= c ∗ Sm′−m

i , c⋆
′
= c⋆ ∗

Sm′−m
q−i+1 while the updated proof is opj

′

c = opjc ∗ S
m−m

′

ej

i , opj
′

c⋆ = opjc⋆ ∗ S
m−m

′

eq−j+1

q−i+1

(notice that such ej−th root can be efficiently computed using the elements in
the public key).

2. i = j. Compute the updated commitment while the updated proof remains
the same opic, op

i
c⋆



Title Suppressed Due to Excessive Length 27

In order for the verification process to be correct, notice that one should also
verify (only once) the validity of the public key by checking that the Si’s are
correctly generated with respect to a and the exponents e1, .., eq. The correctness
of the scheme can be easily verified by inspection. We prove its security via the
proof method similar to theorem 4.

D zero-knowledge authentication through DCCDH and MCCDH

Let G be a multiplicative cyclic group of order p proportional to the security
parameter λ where the discrete logarithm problem is hard. Let Fl be its scalar
field and g be a generator of G. Let 0 ̸= G, h1, h2 ∈ G be group elements with
no efficiently-computable discrete logarithm relation. We assume that G, G,H
are implicit public parameters where needed. The interactive zero-knowledge
authentication protocol presented in algorithm 5 is complete, special sound, and
special honest-verifier zero knowledge as a sigma protocol for the relation R3.
The corresponding non-interactive protocol is shown in algorithm 6

Algorithm 5 Interactive protocol for DCCDH

R1 = c, c∗ ∈ G;m1,m2 ∈ Zl : c = hm
1 hr

2, c
∗ = m ∗ h1 + r ∗ h2

P: r0, r1
$← Zland computes:

R = hr0+r1
1 hr0−r1

2

P→ V: R
V← P: t $← Zl

P: computes:
y0 = r0 + t(m+ r), y1 = r1 + t(m− r)
P→ V: y0, y1
V: returns Accept if and only if the following hold:

hy0−y1
2 ∗ hy0+y1

1 c−2t ?
= R

Algorithm 6 Non-interactive protocol for DCCDH

R1 = c, c∗ ∈ G;m1,m2 ∈ Zl : c = hm
1 hr

2, c
∗ = m ∗ h1 + r ∗ h2

P: r0, r1
$← Zl and computes:

R = hr0+r1
1 hr0−r1

2

t = Hs(R, c, c∗) where Hs(∗) is a hash function
y0 = r0 + t(m+ r), y1 = r1 + t(m− r)
P→ V: t, y0, y1
V: returns Accept if and only if the following hold:

Hs(h
y0−y1
2 ∗ hy0+y1

1 c−2t, c, c∗)
?
= t

The interactive zero-knowledge authentication protocol presented in algo-
rithm 7 is complete, special sound, and special honest-verifier zero knowledge as
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a sigma protocol for the relation R3. The corresponding non-interactive protocol
is shown in algorithm 8

Algorithm 7 Interactive protocol for MCCDH

R1 = c, c⋆ ∈ G;m1,m2 ∈ Zl : c = hm
1 hr

2, c
⋆ = hr

1h
m
2

P: r0, r1
$← Zl and computes:

R0 = (h1h2)
r0 , R1 = (h1/h2)

r1

P→ V: R0, R1

V← P: t $← F
P: computes:
y0 = r0 + t(m+ r), y1 = r1 + t(m− r)
P→ V: y0, y1
V: returns Accept if and only if the following hold:

(h1h2)
y0(cc⋆)−t ?

= R0, (h1/h2)
y1(c(c⋆)−1)−t ?

= R1

Algorithm 8 Non-interactive protocol for MCCDH

R1 = c, c⋆ ∈ G;m1,m2 ∈ Zl : c = hm
1 hr

2, c
⋆ = hr

1h
m
2

P: r0, r1
$← Zl and computes :

R0 = (h1h2)
r0 , R0 = (h1/h2)

r1

t = Hs(R0, R1, c, c
⋆) where Hs(∗) is a hash function

y0 = r0 + t(m+ r), y1 = r1 + t(m− r)
P→ V: t, y0, y1
V: returns Accept if and only if the following hold:

Hs((h1h2)
y0(cc⋆)−t, (h1/h2)

y1(c(c⋆)−1)−t, c, c⋆)
?
= t


