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Abstract

As a typical representative of the public key cryptosystem, RSA has
attracted a great deal of cryptanalysis since its invention, among which
a famous attack is the small private exponent attack. It is well-known
that the best theoretical upper bound for the private exponent d that
can be attacked is d ≤ N0.292, where N is a RSA modulus. However,
this bound may not be achieved in practical attacks since the lattice con-
structed by Coppersmith method may have a large enough dimension and
the lattice-based reduction algorithms cannot work so well in both effi-
ciency and quality. In this paper, we propose a new practical attack based
on the binary search for the most significant bits (MSBs) of prime divisors
of N and the Herrmann-May’s attack in 2010. The idea of binary search
is inspired by the discovery of phenomena called “multivalued-continuous
phenomena”, which can significantly accelerate our attack. Together with
several carefully selected parameters according to our exact and effec-
tive numerical estimations, we can improve the upper bound of d that
can be practically achieved. We believe our method can provide some
inspiration to practical attacks on RSA with mainstream-size moduli.

Keywords: Practical attack, Small private exponent attack, MSBs guess,
Multivalued-continuous phenomena, Binary search
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1 Introduction

1.1 Background

Since proposed in 1978, RSA public key cryptosystem [1] plays an important
role in lots of fields such as data encryption, key encapsulation, etc. A variety
of security analysis come along with its widespread application. As is known to
all, the small private exponent attack is one kind of the most famous attacks
on RSA.

For the sake of efficiency in the decryption process, one may choose a
small private exponent d relative to the RSA modulus N when generating the
parameters. Unfortunately, in 1990, Wiener [2] showed that the RSA cryp-
tosystem was insecure once d ≤ 1

3N
1/4 using a continued fraction method.

Many attempts were made based on Wiener’s idea, N1/4 was still the order of
magnitude of the upper bound of d without any additional condition, though
multiplied by a better coefficient [3–5]. A virtual significant improvement was
made in [6] by Boneh and Durfee with the lattice-based strategy using the
Coppersmith method. They firstly constructed a triangular lattice and got a
bound d ≤ N0.284. By removing some unhelpful polynomials, they obtained a
sublattice from the original one and improved the bound to d ≤ N0.292. How-
ever, the non-square sublattice brought plenty of troubles in the computation
of the lattice determinant. In 2010, Herrmann and May [7] (we call it HM2010
attack for short below) applied the technique of unravelled linearization, which
is introduced by Herrmann and May [8], to attack RSA and achieved the same
bound as [6]. More importantly, the lattice constructed in [7] is a lower trian-
gular square matrix which can avoid the complicated computation in [6]. Some
generalizations of Boneh-Durfee’s result can be seen in [9, 10], but the upper
bound of d was no better than [6] indeed. Overall, the upper bound d ≤ N0.292

showed by Boneh and Durfee remains to be the best theoretical achievement
till now.

1.2 Previous works

We note that all the bounds of the private exponent above are theoretical, i.e.,
those bounds are asymptotic which means that they will be achieved only if
the lattice dimensions are large enough. As we know, the reduction algorithm
cannot work so well in both efficiency and quality in a high-dimension lattice,
which means that the best theoretical upper bound given in [6, 7] may not
be achieved in practice. A natural question is what practical bound can be
achieved. Therefore, many attempts have been made hoping to give an answer
to this question.

One kind of the implementation of the practical small private exponent
attacks is using the lattices constructed in [6, 7]. In [11], Boneh and Durfee
ran their experiments to attack the RSA cryptosystem successfully when d ≤
N0.265 with moduli of 1000 bits, 3000 bits and 10000 bits. Later, Durfee got a
better results, namely, d ≤ N0.277 for a 1024-bit-modulus RSA and d ≤ N0.275
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for a 2048-bit-modulus RSA [21]. In 2001, Blömer and May proposed a new
attack and carried out some experiments [12]. In comparison with [11], they
didn’t improve the asymptotic bound but the dimension of the lattice they
constructed was lower under the same bound of d and the same size of N .
For a 1000-bit modulus N , they can implement an effective attack in 6 days
as long as d ≤ N0.278. Without the additional tricks like [6] (such as using a
reduction variant, Chebychev polynomials or some guess strategy), the early
lattice-based practical attacks [11, 12, 21] as well as the attack in [13] didn’t
seem to break through the bound d ≤ N0.278 when the size of N is not less
than 1024 bits. In 2021, Miller et al. [14] carried out their “focus group” attack
in which the bound of d was improved to d ≤ N0.280 for a 1000-bit modulus N .

Another kind of RSA practical attacks aimed to improve the bound of d
is implemented with knowledge of some bits of a prime factor p of N . Early
attacks of this kind were mainly theoretical since a large continuous fragment
of bits must be known [23, 24], which may not be feasible in practice. In 2003,
Suk stated that by knowing just 1

100 log2 N most significant bits (MSBs) of
p, one could break the RSA cryptosystem for d < N0.30 [22]. However, in his
experiments, by knowing 10 MSBs of p, he got a bound d ≤ N0.285 for a 1000-
bit modulus N , which did not reach N0.30 as he stated (detailed results can
be seen in Table 5.8 in [22]). Later in 2008, Sarkar et al. ran large numbers
of experiments and got some more detailed corresponding tables like [22] by
searching exhaustively a few MSBs of p [25]. The tables highlight that the
small private exponent RSA can be successfully attacked with a low-dimension
lattice in practice. Note that the experiments in [22] and [25] are confirmatory,
i.e., they verified that RSA can be broken when a few MSBs of p were already
known, instead of searching for each candidate of their values. They did not
finish the the complete attack and the running time of the the complete attack
was estimated. For example, in [25] they stated that, to break a 1000-bit-
modulus RSA for d ≤ N0.285, the total time was 215 × 484 seconds since each
run required around 484 seconds and 15 MSBs were needed to search, which
means that they needed about a week with a cluster of 26 machines using a
48-dimension lattice. More results of this kind can be seen in [26–30].

1.3 Our contributions

In this paper, we focus on the practical attack on RSA. As we can see from the
previous works, there is still a considerable gap between the best theoretical
bound of d and the practical one. Then, can the gap be further narrowed? If
so, what can be done to achieve this goal? With these questions, we firstly
take 1024-bit-modulus RSA as an example to carry out our practical attack
and then expand to the practical attack of RSA with other moduli, such as
2048-bit-modulus RSA.

Firstly, we do a complete, detailed calculation for specific values
of the dimension and the exponents of the variables in the lattice
determinant. Values of parameters in the lattice determinant were usually
given by orders of magnitude in previous works. However, when the dimension
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of the lattice is not large enough, those values may have great deviation from
real values of the parameters. Therefore, in practical attacks, extremely specific
parameter values are quite essential in instructional estimations and attack
implementations. In order to reduce the errors, by retaining all the low order
terms in the calculations, we give accurate analytical approximations and exact
numerical values of the dimension and the exponents.

Secondly, we give a detailed and relatively accurate numerical
estimation for the bound of d. And then, guided by the estimation,
we achieve an upper bound d ≤ N0.285 for a 1024-bit-modulus N ,
which is the best upper bound of this kind of attack as far as we
know. For the parameters m and t of Coppersmith method (for detailed intro-
duction, see section 2.2 and section 3), we get the optimal value of t responding
to every value of m by using our analytical approximations. After that, based
on the specific numerical parameter values and the experimental performance
estimation of LLL algorithm provided by Nguyen and Stehlé [15], we give a
detailed and relatively accurate estimation for the bound of d. The estimation
table for the solvable upper bound of d we make is well consistent with both
our experimental results and those in [25] especially in the case of medium-
dimension lattices, which is mainly used in our practical attack. Guided by
our estimation table, we implement our first practical attack to find the upper
bound we can achieve based on the HM2010’s lattice. When the parameters
m and t are set to 25 and 10, within 17 days on our PC, we successfully
attack 1024-bit-modulus RSA for d ≤ N0.285 (without any exhaustion strategy
or additional side channel information), which is better than all the previous
results we know.

Thirdly, inspired by the multivalued-continuous phenomena in
our experiments, we propose a new effective practical attack based
on the binary search for some MSBs of p. Our experiments imply that
it seems very difficult to successfully attack RSA for d > N0.285 in practice if
no other tricks are added, since the running time of the attack would be unac-
ceptable. Then what can we do to further improve the practical bound of d ?
A natural idea may be to enumerate all possible values of several MSBs of p,
which had been tried in some previous works. Frankly speaking, this idea is
simple and trivial. However, during our implementations, we find some non-
trivial and inspiring phenomena, which we call it the “multivalued-continuous
phenomena” for convenience: (I) besides the real value of the MSBs of p and q,
much more additional exhaustive values (helpful guess values) can also help to
attack the RSA cryptosystem successfully; (II) the helpful guess values appear
continuously around real values of the MSBs of p and q; (III) the closer p and q
are, the more helpful guess values there will be. Based on these inspiring phe-
nomena, we propose a new practical attack in which one helpful guess value
can be efficiently found by the binary search. As a result, we can significantly
accelerate the attack, which is far better than other current practical results.
More precisely, for a relatively close p and q, e.g., they share 4 MSBs, a 1024-
bit-modulus RSA can be successfully attacked within several hours in a single
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PC for d ≤ N0.292; even when p is quite far from q, the overwhelming major-
ity of 1024-bit-modulus RSA can be broken in a month with a single PC for
d ≤ N0.292. By the way, the expression “p is close to q” means the value of
|p− q| is relatively small, while “p is far from q” means the value of |p− q| is
relatively large.

Finally, we implement our new practical attack on 2048-bit-
modulus RSA and also get a nice upper bound. For a relatively close
p and q in our experiment (p and q share about 3 MSBs), the RSA can be
successfully attacked in about a week with a single PC for d ≤ N0.287; when p
is quite far from q, the overwhelming majority of 2048-bit-modulus RSA can
be broken in about a month with a single PC for d ≤ N0.287. Moreover, for
a quite close p and q, the RSA also can be efficiently broken for d ≤ N0.292,
e.g., in our experiment, with p and q sharing 50 MSBs, the RSA can be suc-
cessfully attacked within 12 days with a single PC for d ≤ N0.292. Though the
promotion effect is not so good as that of attack on 1024-bit-modulus RSA,
the bound d ≤ N0.287 (our attack on RSA can succeed with very special p and
q for d ≤ N0.292 but may not work well in a general case) is still better than
all previous works as far as we know.

We would like to note that all our experimental results are obtained with
a single PC, for more computing power, the running time given by our attack
will surely be further improved.

1.4 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we recall some
preliminary knowledge and lemmas to be used latter. In Section 3, we revisit
the Herrmann and May’s attack in 2010. In Section 4, we introduce in detail
our new practical attack on RSA based on the binary search. In Section 5, we
show some results of our experiments. Section 6 is the conclusion.

2 Preliminaries

2.1 Lattices and the LLL algorithm

Let u1, . . . ,uw ∈ Rn be w linearly independent vectors with w ≤ n. The n-
dimensional lattice L, spanned by u1, . . . ,uw, is the set of all integer linear
combinations of u1, . . . ,uw, namely,

L = {
w∑
i=1

kiui | k1, . . . , kw ∈ Z}.

The set of vectors u1, . . . ,uw is called a basis of L and the integer w is called
the rank of L. Specially, the lattice L is called full rank if w = n. Let U be the
w×n matrix consisting of row vectors u1, . . . ,uw. Then the determinant of L

is defined by detL =
√
UU t. A famous hard problem is to find a short non-

zero vector in L, especially the shortest one. The famous LLL algorithm [18]
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behaves well in finding a relatively short and nearly orthogonal lattice basis
in polynomial time. Specifically, the properties of the output lattice basis by
LLL algorithm can be seen in the following lemma.

Lemma 1 Let L be a full-rank lattice of dimension w and let ṽ1, . . . , ṽw be a reduced
basis of L output by the LLL algorithm. Then

∥ṽi∥ ≤ 2
w(w−1)

4(w+1−i) (detL)
1

(w+1−i) for any 1 ≤ i ≤ w,

where ∥ṽi∥ is the Euclidean norm of ṽi.

In most cases, the first reduced basis vector ṽ1 attracts major attention.
However, the upper bound 2

w−1
4 (detL)

1
w of ṽ1 given by Lemma 1 is quite

rough. In order to give a precise estimation as an instruction for our practical
attack, we need a more accurate bound for ṽ1. An experimental estimation for
the shortest lattice vector is given as follows by Nguyen et al. [15], namely,

λ1(L)/(detL)
1/w ≈ (1.02)w,

where λ1(L) denotes the Euclidean norm of the shortest lattice vector of L.
This estimation will be of great help in our attack later.

2.2 Coppersmith method

Let ∥h(x1, ..., xr)∥ denote the norm of a polynomial h(x1, ..., xr) which repre-
sents the Euclidean norm of the coefficient vector. Consider a modular equation
h(x1, ..., xr) = 0 (mod M), where all the absolute values of the target solu-
tions x1, ..., xr are bounded by X1, ..., Xr, respectively. In 1996, a polynomial
time algorithm to find all the solutions under the boundary was given by
Coppersmith if Πr

i=1Xi is smaller than M , determinately when r ≤ 2 and
heuristically when r > 2 [32]. Later, an important work was done by Howgrave-
Graham [17] who gave a simpler sufficient condition to transform a modular
equation into an integer equation.

Lemma 2 (Howgrave-Graham) Let m,M,X1, ..., Xr be positive integers. Let
g(x1, ..., xr) ∈ Z[x1, ..., xr] be a polynomial with at most n monomials and let
∥g(x1, ..., xr)∥ denote the norm of the polynomial g(x1, ..., xr). If

(1) g(x̃1, ..., x̃r) = 0 (mod Mm), where |x̃1| < X1, ..., |x̃r| < Xr and
(2) ∥g(x1X1, ..., xrXr)∥ < Mm/

√
n,

then g(x̃1, ..., x̃r) = 0 holds over Z.

Lemma 2 provides a key instruction in RSA cryptanalysis. From Condition
(2) of Lemma 2, we need to find polynomials with relatively small norms. Since
there is one-to-one correspondence between a polynomial and its coefficient
vector, the target of finding polynomials with small norms boils down to finding
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short non-zero vectors in the constructed lattice, which can be achieved in
polynomial time by LLL algorithm.

After finding enough short nonzero vectors, we need to compute the com-
mon roots of the polynomials corresponding to the vectors. Usually, we need
the following heuristic assumption. Recall that polynomials f1, f2, . . . , fm ∈
k[x1, x2, . . . , xn] are called algebraically independent over a field k, if
there is no nonzero m-variate polynomial Φ ∈ k[y1, y2, . . . , ym] such that
Φ(f1, f2, . . . , fm) = 0.
Assumption 1 The polynomials output by the LLL algorithm are alge-
braically independent, and so the common roots of these polynomials can be
computed by computing resultants or finding a Gröbner basis.

This assumption has been verified by experiments before as well as ours in
Section 5.

3 The HM2010 attack revisited

Our practical attack on RSA in this paper relies heavily on the work of Her-
rmann and May. Therefore, in this section we will revisit the HM2010 attack
briefly. In order to show its essence, we will revisit Boneh and Durfee’s work
together. For convenience, the lattices given by Boneh and Durfee that yield
the bounds 0.284 and 0.292 are called BD-0.284-lattice and BD-0.292-lattice,
respectively.

Let N = pq be a public RSA modulus whose prime factors p and q are
of the same bitsize. A public exponent e and a private exponent d satisfy
ed ≡ 1 (mod φ(N)), i.e.,

ed− k(N + 1− p− q) = 1 (1)

for some integer k. Let A = N + 1 and s = −p− q. Then it can be seen from
(1) that

k(A+ s) + 1 ≡ 0 (mod e).

Denote f(x, y) := x(A + y) + 1. The original aim to recover d and factor N
became to find small roots of the polynomial f(x, y)(mod e). With a fixed
positive integer m, a parameter t to be optimized and the definitions of the fol-
lowing polynomials (usually called x-shift polynomials and y-shift polynomials
respectively)

gi,k(x, y) : = xifkem−k, k = 0, . . . ,m and i = 0, . . . ,m− k;

hj,k(x, y) : = yjfkem−k, k = 0, . . . ,m and j = 1, . . . , t,

Boneh and Durfee constructed the BD-0.284-lattice using the Coppersmith
method. All the used shift polynomials are ordered as

gi,k(x, y) ≺ hj,k′(x, y) for any i, j, k, k′,

gi,k(x, y) ≺ gi′,k′(x, y) for i+ k < i′ + k′,
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gi,k(x, y) ≺ gi′,k′(x, y) for i+ k = i′ + k
′
and i > i′,

hj,k(x, y) ≺ hj′,k′(x, y) for j < j
′
,

hj,k(x, y) ≺ hj,k′(x, y) for k < k′.

A simple BD-0.284-lattice with m = 2, t = 1 is shown below (9× 9 matrix).
1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
fe e eAX eXY

x2e2 e2X2

xfe eX eAX2 eX2Y

f2 1 2AX 2XY A2X2 2AX2Y X2Y 2

ye2 e2Y

yfe eAXY eY eXY 2

yf2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3

Using the BD-0.284-lattice together with m → ∞, they got the bound d ≤ N0.284.
In order to decrease the determinant of the lattice and improve the upper bound of
d, they tried to remove some rows that enlarge the determinant. They constructed
the BD-0.292-lattice by throwing away the y-shift polynomials yjfkem−k from the
BD-0.284-lattice for all j and k < ⌊m/t⌋j. For example, when m = 2 and t = 1, the
bold rows of the above BD-0.284-lattice is removed, and then the BD-0.292-lattice
is as follows (7× 9 matrix).

1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
fe e eAX eXY

x2e2 e2X2

xfe eX eAX2 eX2Y

f2 1 2AX 2XY A2X2 2AX2Y X2Y 2

yf2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3

With the BD-0.292-lattice, the upper bound of d is improved to d ≤ N0.292.
However, the BD-0.292-lattice is not a square matrix which results in a complex
computation of the lattice determinant.

In order to avoid the complex computation of the determinant, Herrmann and
May applied a technique of unravelled linearization to construct a new square lattice
and got the same bound d ≤ N0.292. They stated the reason why the BD-0.292-lattice
is not square is that the first y-shift polynomial brings more than one new term to
the lattice. This phenomenon results in more than one column adding to the lattice
when one row is added. To solve the trouble, they applied the unravelled linearization
technique to their lattice construction. In the technique the substitution xy = u− 1
is used twice. The first use changes f(x, y) to f̃(u, x) = u + Ax. Since all the shift
polynomials are added according to the order defined above, the second use can make
sure that every new-added y-shift polynomial adds only one new term to the set
constituted by all the terms of the former polynomials, which keeps the lattice being
a square matrix. More detailed, consider yj f̃k being added to the lattice (the factor
em−k is omitted as it does not influence the set of terms). Since f̃(u, x) = u+Ax, it
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follows that

yj f̃k = ukyj +

k∑
i=1

(
k
i

)
Aiuk−ixiyj .

The term ukyj is a new-added term. Consider the other terms in yj f̃k. Using the
second substitution xy = u− 1 one can get

uk−ixiyj = uk−i(u− 1)min{i,j}xi−min{i,j}yj−min{i,j}.

If i ≥ j, then

uk−ixiyj = uk−i(u− 1)jxi−j =

j∑
l=0

(
j
l

)
(−1)j−luk−i+lxi−j ,

whose terms already appear in the x-shift polynomials xi−j f̃k−i, . . . , xi−j f̃k−i+j ; if
i < j, then

uk−ixiyj = uk−i(u− 1)iyj−i =

i∑
l=0

(
i
l

)
(−1)i−luk−i+lyj−i,

whose terms already appear in yj−if̃k−i, . . . , yj−if̃k. All these polynomials as well
as the terms have been added to the lattice before. Therefore, by this technique,
every y-shift polynomial yj f̃k adds only one new term ukyj to the lattice, which
makes sure that the lattice is square. A simple HM2010 lattice with m = 2, t = 1 is
shown below (7× 7 matrix).

1 x u x2 xu u2 u2y

e2 e2

xe2 e2X

f̃e eAX eU

x2e2 e2X2

xf̃e eAX2 eXU

f̃2 A2X2 2AXU U2

yf̃2 −A2X −2AU A2XU 2AU2 U2Y

Overall, the complete HM2010 attack can be briefly summarized as follows.

(1) Use the substitution xy = u− 1, f(x, y) becomes to f̃(u, x) = u+Ax, and then
gi,k(x, y) and hj,k(x, y) are changed to g̃i,k(u, x) and h̃j,k(u, x, y).

(2) Discard the y-shift polynomials h̃j,k(u, x, y) if k < ⌊m/t⌋j, and then the retained

y-shift polynomials are h̃j,k(u, x, y) := yj f̃kem−k with j = 1, . . . , t and k =
⌊m/t⌋j, . . . ,m.

(3) Reuse the substitution xy = u − 1 to substitute all the xy in the monomials of
g̃i,k(u, x) and h̃j,k(u, x, y).

(4) Construct a lower triangular lattice L based on g̃i,k(u, x) (k = 0, . . . ,m and

i = 0, . . . ,m− k) and h̃j,k(u, x, y) (j = 1, . . . , t and k = ⌊m/t⌋j, . . . ,m).

(5) Use the lattice basis reduction algorithm together with resultants computation
or a Gröbner basis method and finally get the value of d.

The core point of this technique is the double use of the substitution xy = u− 1
in step (1) and (3). The first use greatly reduces the terms of the polynomials and
results in a decrease of the lattice dimension. The second use makes sure that every
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new-added y-shift polynomial adds only one new term to the set constituted by all
the terms of the former polynomials, which keeps the lattice being a square matrix.

Let d ≤ Nδ for some real number δ. Let τ = m/t and let sX , sY , sU , se denote the
contribution of X,Y, U, e to the determinant detL. Based on the simplified condition
detL = XsXY sY UsU ese ≤ em dimL from Lemma 2, it can be obtained that

δ · m
3

6
+

1

2
· τ

2m3

6
+ (δ +

1

2
) · (1 + 2τ)m3

6
+

(2 + τ)m3

6
≤ (1 + τ)m2

2
·m, (2)

using the upper bounds X = Nδ, Y = N1/2, U = Nδ+1/2 together with the
approximate calculations of

sX =
m3

6
+ o(m3),

sY =
τ2m3

6
+ o(m3),

sU =
(1 + 2τ)m3

6
+ o(m3),

se =
(2 + τ)m3

6
+ o(m3),

dimL =
(1 + τ)m2

2
+ o(m2).

After getting an optimized value of τ = (1 − 2δ), they finally successfully obtained
the desired Boneh-Durfee bound

δ ≤ 1−
√
2

2
≈ 0.292.

For details, see [7].

4 A new practical small private exponent
attack on RSA

The majority of small private exponent attacks on RSA mainly focus on the theo-
retical asymptotic upper bound of the private exponent d. Therefore, as far as we
know, when calculating the values of the exponents in the lattice determinant, only
the highest order terms of the parameter m are retained. Considering that the value
of m cannot be too large in the practical attack, the low-order terms should be
retained for accurate estimations. In this section, we will consider the modulus N
with η-bit-size prime factors p and q where q < p < 2q and set d = Nδ.

With the same notations as Section 3, specific and relatively exact values of some
parameters used in the calculations of the dimension dimL and the determinant
detL are shown as follows.

Lemma 3 With the same notations as Section 3, we have

dimL =

m∑
k=0

m−k∑
i=0

1 +

τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
1 ≈ (m+ 1)(m+ 2)

2
+

τm2 + (2τ − 1)m

2
,

detL = XsXY sY UsU ese ,
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where

sX =

m∑
k=0

m−k∑
i=0

i =
m(m+ 1)(m+ 2)

6
,

sY =
τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
j ≈ τ2m3 + 3τ2m2 + 3τm−m

6
,

sU =

m∑
k=0

m−k∑
i=0

k +

τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
k ≈ (4τ2 + 2τ)m3 + (9τ2 + 3τ)m2 + (7τ − 1)m

12τ
,

se =

m∑
k=0

m−k∑
i=0

(m− k) +

τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
(m− k)

≈ m(m+ 1)(m+ 2)

3
+

2τ2m3 + (3τ2 − 3τ)m2 − (3τ − 1)m

12τ
.

Proof. See Appendix A.

With the same consideration as above, the second condition in Lemma 2 cannot
be simplified as detL ≤ em dimL. Let ṽ1 be the first reduced basis vector output by
LLL algorithm. Strictly following Lemma 2, we need

∥ṽ1∥ <
em√
dimL

.

By the LLL algorithm, the theoretical upper bound of ṽ1 can be given by

∥ṽ1∥ < 2(dimL−1)/4(detL)1/ dimL.

However, this estimation is too rough to instruct our experiments. Instead, in the
practical attack, we adopt the experimental estimation of ṽ1 given by Nguyen et al.
in [15], i.e.,

∥ṽ1∥ < (1.02)dimL(detL)1/ dimL.

Then we can utilize the following modified estimation formula to obtain the upper
bound of the solvable δ, namely,

(1.02)dimL(detL)1/ dimL <
em√
dimL

. (3)

In the rest of this section, we will at first explore the practical solvable bound
of δ using HM2010’s method. In order to break through the bound, we then try a
few MSBs exhaustion of p to obtain new bounds of δ. At last, we introduce our new
attack based on the binary search.

4.1 The practical solvable bound of δ in HM2010 attack

Firstly, we use the above method to estimate the upper bound of the solvable δ. Take
the logarithm of both sides of Inequality (3) to base N , we can obtain

(dimL)2 · logN 1.02 +
1

2
dimL · logN dimL+ logN detL < m · dimL · logN e.
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Since

logN 1.02 ≈ log2 1.02

2η
, logN dimL ≈ 1

2η
log2 dimL,

logN e ≈ 1, logN detL ≈ δ · sX +
1

2
sY + (δ +

1

2
) · sU + se,

it follows that

δ <
−(dimL)2 · log2 1.02

2η + (m− log2 dimL
4η ) · dimL− 1

2 (sY + sU )− se

sX + sU
. (4)

Since (4) is too complicated for us to give an optimal analytical expression of the
bound, instead we show the discrete corresponding relation of the upper bound of
δ with m and t. Using (4) together with analytical approximations in Lemma 3, we
can get the optimal t corresponding to various m. Based on the parameters m and
the optimal t, we can obtain the value of 1/τ (namely, m/t), which can help us to
get all the real values of the parameters in Lemma 3 by a rounding operation. Based
on the real values and (4), a corresponding relation between the upper bound of δ
and m, t is displayed in Table 1.

Table 1 A corresponding relation between δ and m, t for 2η = 1024

m Optimal t Actual τ δ m Optimal t Actual τ δ
5 2 0.4000 0.2679 16 7 0.4375 0.2821
6 2 0.3333 0.2704 17 7 0.4118 0.2827
7 3 0.4286 0.2731 18 7 0.3889 0.2832
8 3 0.3750 0.2752 19 8 0.4211 0.2834
9 4 0.4444 0.2763 20 8 0.4000 0.2839
10 4 0.4000 0.2779 21 9 0.4286 0.2840
11 5 0.4545 0.2789 22 9 0.4091 0.2844
12 5 0.4167 0.2797 23 10 0.4348 0.2845
13 5 0.3846 0.2806 24 10 0.4167 0.2848
14 6 0.4286 0.2811 25 10 0.4000 0.2851
15 6 0.4000 0.2818 26 11 0.4231 0.2854

As can be seen from Table 1, when m = 21, t = 9 and δ ≤ 0.284, the method
of HM2010 can successfully recover the private exponent d. This is also consistent
with our experimental results. Theoretical estimations and experimental results show
that the minimum parameters selected for solving δ ≤ 0.284 are m = 21, t = 9,
and the success rate of such experiments is more than 60% with 100 experiments.
Similarly, if the private exponent d with the size δ ≤ 0.285 is required to be solved,
the minimum parameters to be chosen are m = 25, t = 10. This is also consistent with
our experiments since the rate of our experiments is about 60% (see Section 5 for
details of our experiments). Considering the running time of our attack for δ ≈ 0.285,
it seems very difficult to get a better bound of δ in practical attacks on RSA.

Remark 1 A slight mismatch may exist between the estimation in Table 1 and our
experimental results if m is small. For example, when m = 6, the method of HM2010
can accomplish the attack with a high success rate as long as δ ≤ 0.271. When m = 7,
using the method of HM2010 the bound can reach 0.274.
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Remark 2 Inequality (4) has great deviation from asymptotic predictions when m
is relatively large. For example, when m = 76, the predicted bound will reach the
peak of 0.2875 under this estimation. When m > 76, the estimation bound will
decline, which is inconsistent with the theoretical asymptotic result and the actual
cognition. This experimental phenomenon may well illustrate the inapplicability of
the approximation formula (λ1(L))/(detL)

1/ dimL ≈ (1.02)dimL in high dimensional
case to some extent.

From Table 1 we can see that, to get a better bound of δ, we need a lager value
of m, thus resulting in a lattice with a higher dimension. However, as we know, the
LLL algorithm does not perform well in a lattice with a high dimension. This fact
makes it unpractical to further improve the bound by utilizing HM2010’s lattice
merely. There is no doubt that new ideas need to be added into the attack in order
to improve the practical bound of δ.

4.2 New bounds of δ with some MSBs exhaustion of p

When using HM2010 method directly to attack the small private exponent of RSA,
there will inevitably be a bottleneck. That is, a larger value ofm would lead to a larger
practical upper bound of solvable δ; while at the same time, when m increases, the
dimension of the lattice increases rapidly, which results in a sharp rise in the running
time. Based on our experiments, it seems very difficult to break 1024-bit-modulus
RSA at a reasonable time with HM2010 attack if δ > 0.285.

In order to further improve the practical upper bound of the assaultable private
exponent, we look back to Inequality (3). We note that, when m and t are fixed,
decreasing the value of detL will raise the upper bound of δ. In fact, let us consider
the equation

detL = XsXY sY UsU ese .

It can be seen from Lemma 3 that sX , sY , sU , se will remain unchanged for fixed m
and t. It is clear that if the bounds Y and U are decreased, then detL will decrease.
A natural and trivial idea to achieve this goal is to try an exhaustive search for some
MSBs of p, which is the same thought as Suk in [22] and Sarkar in [25]. At first we
will show how to compute the MSBs of q (or p) based on the MSBs of p (or q).

Lemma 4 Let N = pq and the η-bit-size prime factors p and q satisfy q < p < 2q. Let
pm, qm be the s MSBs of p, q and let pl, ql be the η − s least significant bits (LSBs)
of p, q. Then we have

qm =

⌊⌊
N

pm · 2η−s + 2η−s−1

⌋
/2η−s

⌋
+ α, α ∈ {−1, 0, 1}, (5)

pm =

⌊⌊
N

qm · 2η−s + 2η−s−1

⌋
/2η−s

⌋
+ α′, α′ ∈ {−1, 0, 1}. (6)

Proof Let p̃ = pm · 2η−s + 2η−s−1 and denote q̃ = N/p̃. Then

|q − q̃| = |q − N

p̃
| = q|p− p̃|

p̃
=

q|pl − 2η−s−1|
p̃

.
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The inequality |pl − 2η−s−1| < 2η−s−1 holds since 0 < pl < 2η−s. Since q < p < 2p̃,
we can get

|q − q̃| = q · 2|pl − 2η−s−1|
2p̃

< 2|pl − 2η−s−1| < 2 · 2η−s−1 = 2η−s. (7)

Let q̃m be the s MSBs of ⌊q̃⌋, that is

q̃m =

⌊
⌊q̃⌋
2η−s

⌋
=

⌊⌊
N

pm · 2η−s + 2η−s−1

⌋
/2η−s

⌋
.

From (7), we can get |qm− q̃m| ≤ 1 (otherwise, |qm− q̃m| ≥ 2, and so |q− q̃| > 2η−s,
which leads to a contradiction), and then (5) is obviously true.

Similarly, pm can also be computed when qm is known. Let q̃ = qm ·2η−s+2η−s−1

and p̃ = N/q̃. Then

|p− p̃| = |p− N

q̃
| = p|q − q̃|

q̃
=

p|ql − 2η−s−1|
q̃

.

The inequality |ql − 2η−s−1| < 2η−s−1 holds since 0 < ql < 2η−s. We note that
p, q, q̃ are all n-bit numbers, and so it is clear that p < 2q̃. Therefore, we can get

|p− p̃| = p · 2|ql − 2η−s−1|
2q̃

< 2|ql − 2η−s−1| < 2η−s,

which implies that (6) is true with a same discussion as above. This completes the
proof. �

Remark 3 From Lemma 4 we know, for pm and qm, no matter which one is known,
the other one can be computed successfully by the same method. Therefore, in our
experiments, pm and qm have the same status and effect.

In our new practical attack, we will take α = 0 (or take α′ = 0 if we need)
in Lemma 4. Although α = 0 does not always hold in practice, it will not be an
obstruction to our practical attack, since good approximations of pm and qm can also
help to realize a successful attack thanks to the multivalued-continuous phenomena
which will be introduced in Subsection 4.3.

When s MSBs of p is enumerated, Equation (1) then becomes to

ed− 1 = k(N + 1− (pm + qm) · 2η−s − (pl + ql)).

Let A′ = N + 1− (pm + qm) · 2η−s, y′ = −(pl + ql), x
′ = x = k. Then we have

f ′(x′, y′) = x′(A′ + y′) + 1 ≡ 0 (mod e).

Using the substitution u′ = x′y′ + 1, the equation above changes to

f ′(u′, x′) = u′ +A′x′ ≡ 0 (mod e).

Let 2s = Nξ. Then the bounds of the new variables become to

x′ < X ′ = Nδ, y′ < Y ′ = N
1
2−ξ,

e < N, u′ < U ′ = Nδ+ 1
2−ξ.

A result similar to (4) can be obtained, i.e.,

δ <
−(dimL)2 · log2 1.02

2η +
(
m− log2 dimL

4η

)
· dimL− ( 12 − ξ)(sY + sU )− se

sX + sU
. (8)
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Table 2 Partial numerical corresponding relation between δ and s with m = 7,
t = 3, 2η = 1024

s ξ(s/1024) δ
24 24/1024 0.2899
25 25/1024 0.2906
26 26/1024 0.2913
27 27/1024 0.2920
28 28/1024 0.2927
29 29/1024 0.2935
30 30/1024 0.2942

Table 3 Partial numerical corresponding relation between δ and s with m = 12,
t = 5, 2η = 1024

s ξ(s/1024) δ
16 16/1024 0.2910
17 17/1024 0.2917
18 18/1024 0.2924
19 19/1024 0.2931
20 20/1024 0.2938
21 21/1024 0.2946
22 22/1024 0.2953

Similar to Sarkar in [25], we hence adopt the discrete strategy to show the relationship
numerically instead. Partial numerical corresponding relations between δ and s are
given in Tables 2 and 3.

As can be seen from Tables 2 and 3, for a 1024-bit-modulus RSA, when m = 7
and t = 3, at least 27 MSBs of p need to be exhausted to raise the upper bound of
δ to 0.292. Similarly, when m = 12 and t = 5, the necessary number of exhausted
MSBs is 18 to achieve the same bound with a 1024-bit N . This is well consistent
with our experiments. In details, when m = 7 and t = 3, the success rate with a 26-
MSB exhaustion is 13%, while in sharp contrast the rate with 27-MSB exhaustion is
87%; when m = 12 and t = 5, the success rates of 17-MSB exhaustion and 18-MSB
exhaustion are 50% and 94%. For more details, see Section 5.

Remark 4 Tables 2 and 3 will play an important role in our new practical attack
which is introduced in Subsection 4.3. Since the necessary numbers of exhausted
MSBs in Tables 2 and 3 are given by our estimations and well consistent with
our experiments, they may be nice instructors for us to choose suitable parameters
(namely m, t, s) to implement our attack.

Similar results can be seen in [22] and [25] and we display part of them below in
Table 4. We note that the necessary numbers of exhausted MSBs in [22] are given
by estimations while those in [25] are given by experiments. Moreover, the maximum
number, the minimum number and the mean number of the necessary exhausted
MSBs were provided in [25] by large amounts of experiments. From Table 4 we can
see, 20-MSB exhaustion is needed to attain the bound δ ≤ 0.291 in [22] while the
mean number of necessary exhausted MSBs to attain the bound δ ≤ 0.290 is 23.8
in [25]; our estimations show that 24-MSB exhaustion is needed to attain the bound
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δ ≤ 0.2903, roughly the same as [25]. This implies that our estimation is reasonable
and more consistent with implementations than [22].

Table 4 Partial corresponding relation between δ and s given in [22], [25] and ours with
m = 7, t = 3

Suk 2003 [22] Sarkar 2008 [25] Ours
N (bit) s (bit) δ N (bit) mean s (bit) δ N (bit) s (bit) δ
1000 10 0.285 1000 9 0.280 1000 20 0.2874
1000 20 0.291 1000 16.4 0.285 1000 21 0.2882
1000 30 0.298 1000 23.8 0.290 1000 22 0.2889
1000 40 0.304 1000 31.8 0.295 1000 23 0.2896
1000 50 0.308 1000 38.6 0.300 1000 24 0.2903

4.3 A new practical attack based on the binary search

When implementing our practical small private exponent attack on RSA, some inter-
esting and nontrivial phenomena appear: (I) besides pm and qm, the real values of the
MSBs of p and q, a value close to pm or qm can also help to attack RSA successfully in
the exhaustion process; (II) these additional exhaustive values appear continuously
around pm and qm (the word “continuously” here means continuous integral point
in the interval); (III) the closer p and q are, the more additional exhaustive values
there will be. We call the above phenomena the “multivalued-continuous phenom-
ena”. The multivalued-continuous phenomena immediately inspire us a new attack
based on the binary search. That is, to complete the attack effectively, we can try
the binary search for the MSBs of p in the exhausted space. The binary search means
that we need neither to go through the exhausted space from the smallest value to
the largest ineffectively to find the real values of pm and qm, nor to know the exact
amount of these values close to pm and qm who can help to attack RSA successfully.
What we should do is just to efficiently find one of such values. Our experiments have
verified the correctness and effectiveness of our algorithm based on the binary search.

4.3.1 The multivalued-continuous phenomena

At first we give a necessary lemma, which will be helpful to prove the multivalued-
continuous phenomena.

Lemma 5 Let

h(x) = x+

⌊⌊
N

bx+ b/2

⌋
/b

⌋
− c,

where x is a non-negative integer and N, b, c are positive integers. Then

h(x) ≤ h(x− 1) if 1 ≤ x ≤

⌊√
N

b2
+

1

4

⌋
; and

h(x) ≥ h(x− 1) if x ≥

⌈√
N

b2
+

1

4

⌉
.
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Proof If 1 ≤ x ≤
⌊√

N
b2

+ 1
4

⌋
, then N ≥ b2(x+ 1/2)(x− 1/2), and so

N

b(x− 1) + b/2
− N

bx+ b/2
=

Nb

(bx+ b/2)(b(x− 1) + b/2)
=

Nb

b2(x+ 1/2)(x− 1/2)
≥ b.

We note that ⌊u⌋ − ⌊v⌋ ≥ w naturally holds for any positive real numbers u, v and
positive integer w with u− v ≥ w. Therefore, we have⌊

N

b(x− 1) + b/2

⌋
−
⌊

N

bx+ b/2

⌋
≥ b,

and hence ⌊
N

b(x− 1) + b/2

⌋
/b−

⌊
N

bx+ b/2

⌋
/b ≥ 1,

which implies that⌊⌊
N

b(x− 1) + b/2

⌋
/b

⌋
−
⌊⌊

N

bx+ b/2

⌋
/b

⌋
≥ 1.

Note that

h(x− 1)− h(x) = x− 1 +

⌊⌊
N

b(x− 1) + b/2

⌋
/b

⌋
− x−

⌊⌊
N

bx+ b/2

⌋
/b

⌋
=

⌊⌊
N

b(x− 1) + b/2

⌋
/b

⌋
−
⌊⌊

N

bx+ b/2

⌋
/b

⌋
− 1.

Therefore, h(x) ≤ h(x− 1) holds if 1 ≤ x ≤
⌊√

N
b2

+ 1
4

⌋
.

If x ≥
⌈√

N
b2

+ 1
4

⌉
, then N ≤ b2(x+ 1/2)(x− 1/2), and so

N

b(x− 1) + b/2
− N

bx+ b/2
=

Nb

b2(x+ 1/2)(x− 1/2)
≤ b.

With a similar discussion as above, we can get h(x) ≥ h(x− 1). This completes the
proof. �

Remark 5 It is not difficult to see that, for x ≥ 1,

h(x)− h(x− 1) =

⌊⌊
N

bx+ b/2

⌋
/b

⌋
−
⌊⌊

N

b(x− 1) + b/2

⌋
/b

⌋
+ 1 ≤ 1

since N
bx+b/2

< N
b(x−1)+b/2

. Then combining with Lemma 5 we can conclude that: if

x ≥
⌈√

N
b2

+ 1
4

⌉
, then 0 ≤ h(x)− h(x− 1) ≤ 1.

Let us consider the case where pm is known. Let A′ = N +1− (pm + qm) · 2η−s.
Then

ed− 1 = x′(A′ + y′) (9)

obviously holds if y′ = −(pl + ql), x′ = k. Without loss of generality, we assume
s > 2 and the value of s we choose will make sure that d can be correctly
recovered based on Equation (9).

Let p̃m be a guess value of pm. Since the MSB of p is 1, we can assume that
2s−1 ≤ p̃m < 2s. Then by Lemma 4,

q̃m =

⌊⌊
N

p̃m · 2η−s + 2η−s−1

⌋
/2η−s

⌋
(10)
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is a good approximation of qm. Let

∆(x) = x+

⌊⌊
N

bx+ b/2

⌋
/b

⌋
− (pm + qm), x ∈ [2s−1, 2s), (11)

where b = 2η−s. It is clear that ∆(p̃m) = (p̃m + q̃m)− (pm + qm). Let

p̃l = p− p̃m · 2η−s, q̃l = q − q̃m · 2η−s and A′′ = N + 1− (p̃m + q̃m) · 2η−s.

Then
ed− 1 = x′′(A′′ + y′′) (12)

obviously holds if y′′ = −(p̃l + q̃l), x′′ = k.
In our experiments, we find that there are some other guess values except pm and

qm that can help to correctly recover d. The reason why these guess values exist may
come from two aspects. The first one is that in most cases there exist some additional
p̃m besides pm and qm such that ∆(p̃m) = 0 (i.e., p̃m + q̃m = pm + qm), which
implies that Equation (12) is the same as Equation (9). In this case d can be correctly
recovered based on Equation (12). The second one is that the bound in Condition
(1) of Lemma 2 is not so tight. In other words, in practical cases, when the values of
some variables slightly exceed their presupposed upper bounds and other conditions
remain unchanged, g(x̃1, ..., x̃r) = 0 may still hold over Z. This means that, in our
experiments, even if |∆(p̃m)| is slightly larger than 0, the private exponent d may be
correctly recovered based on Equation (12), though the value of | − (p̃l + q̃l)| may

exceed its presupposed upper bound 2η−s = N
1
2−ξ.

From the discussion above, if d can be correctly recovered based on Equation
(12), the practical small private exponent attack will be successful. For convenience,
a guess value p̃m that can help to realize a successful small private exponent attack
on RSA is called a helpful guess value. A pair (p̃m, q̃m) is called a helpful guess
pair if p̃m is a helpful guess value. Such a set which consists of all the helpful guess
values is called the Helpful Guess Set, denoted by Ω. Note that the parameter s
we choose will guarantee that d can be correctly recovered based on Equation (9).
Therefore, we have {pm, qm} ⊆ Ω.

In order to present a better understanding of the “continuous” property, we need
a heuristic assumption as follows.
Assumption 2 There exist two largest non-negative integers ρ1 and ρ2 such that:
if −ρ1 ≤ ∆(p̃m) ≤ ρ2, then the private exponent d can be correctly recovered based
on Equation (12) by the CopperSmith method with the help of the LLL algorithm
and resultants computation.

Our experiments imply that ρ1 and ρ2 are small integers, which are closely
related to specific experimental instances (i.e., N, e, δ), the dimension of the lattice
constructed with the CopperSmith method and the ability of the LLL algorithm.

Now we give a strict statement of the “multivalued-continuous” phenomena,
which is stated as follows.

Theorem 1 Let Ω denote the Helpful Guess Set. Let ∆(x) be defined as (11) and
ρ1, ρ2 be the same as Assumption 2. Let pmin ∈ [2s−1, 2s) ∩ Z satisfying that
∆(pmin) = min{∆(x) | x ∈ [2s−1, 2s) ∩ Z}.

(I) If ∆(pmin) ≥ −ρ1, then there exist two integers a1 ≤ a2 such that {a1, a1 +
1, . . . , a2} ⊆ Ω, where a1, a2 can be uniquely determined by ρ2 satisfying that

∆(a1) ≤ ρ2 < ∆(a1 − 1), ∆(a2) = ρ2 < ∆(a2 + 1).
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(II) If ∆(pmin) < −ρ1, then there exist four integers b1 ≤ b2 < b3 ≤ b4 such
that {b1, b1 +1, . . . , b2} ∪ {b3, b3 +1, . . . , b4} ⊆ Ω, where b1, b2, b3, b4 can be uniquely
determined by ρ1, ρ2 satisfying that

∆(b1) ≤ ρ2 < ∆(b1 − 1), ∆(b4) = ρ2 < ∆(b4 + 1),

∆(b2 + 1) < −ρ1 ≤ ∆(b2), ∆(b3 − 1) < ∆(b3) = −ρ1.

Proof We note first that by Remark 5, for an arbitrary integer ρ between

∆

(⌈√
N
b2

+ 1
4

⌉)
and ∆ (2s − 1), there exists at least one guess value p̃mρ such that

∆(p̃mρ) = ρ.

(a) Case I (b) Case II

Fig. 1 A simple visualization of the two cases in the proof of Theorem 1

Case I: ∆(pmin) ≥ −ρ1.

Let pm, pl, qm, ql be the same meanings as above and b = 2η−s. Note that pm ≥
qm. Since

N

b2
+

1

4
>

N

b2
=

(pmb+ pl)(qmb+ ql)

b2
≥ b2q2m

b2
= q2m,

it can be seen that qm ≤
⌊√

N
b2

+ 1
4

⌋
. Note that −ρ1 ≤ ∆(qm) ≤ ρ2 since the value of

s we choose will guarantee the success of our attack. Therefore, according to Lemma

5, if ∆(2s−1) > ρ2, then there must exist an integer a1 ≤
⌊√

N
b2

+ 1
4

⌋
such that

∆(a1) ≤ ρ2 < ∆(a1 − 1). (13)

Meanwhile, according to Lemma 5 and the discussion at the beginning of this proof,

if ∆(2s − 1) > ρ2, there must exist an integer a2 ≥
⌈√

N
b2

+ 1
4

⌉
such that ∆(a2) =

ρ2 < ∆(a2 + 1). For β ∈ [a1, a2] ∩ Z, we have

−ρ1 ≤ ∆(pmin) ≤ ∆(β) ≤ max{∆(a1),∆(a2)} = ρ2.

Therefore, according to Assumption 2, for any β ∈ [a1, a2]∩Z, the private exponent
d can be correctly recovered based on Equation (12).



Springer Nature 2021 LATEX template

20 Practical Attacks on Small Private Exponent RSA: New Records and New Insights

If ∆(2s−1) ≤ ρ2 or ∆(2s − 1) ≤ ρ2, we can take a1 = 2s−1 or a2 = 2s − 1 and
get the same conclusion. A simple visualization of this case can be seen in Case I of
Figure 1.

To finish the proof of Case I, it suffices to show the uniqueness of a1 and a2.

Suppose there exists another integer a′1 ≤
⌊√

N
b2

+ 1
4

⌋
such that

∆(a′1) ≤ ρ2 < ∆(a′1 − 1). (14)

If a′1 ≥ a1 + 1, then it follows from Lemma 5 and Equations (13) and (14) that
∆(a′1 − 1) ≤ ∆(a1) ≤ ρ2 < ∆(a′1 − 1), a contradiction; if a′1 ≤ a1 − 1, we can get
that ∆(a′1) ≥ ∆(a1−1) > ρ2 ≥ ∆(a′1), still a contradiction. As a result, it must hold
that a′1 = a1. The uniqueness of a2 can be proved similarly.

Case II: ∆(pmin) < −ρ1.

If ∆(2s−1) > ρ2 and ∆(2s−1) > ρ2, with a similar discussion as Case I, we can
find b1 ≤ b2 < pmin < b3 ≤ b4 such that

∆(b1) ≤ ρ2 < ∆(b1 − 1), ∆(b4) = ρ2 < ∆(b4 + 1),

∆(b2 + 1) < −ρ1 ≤ ∆(b2), ∆(b3 − 1) < ∆(b3) = −ρ1.
For any β ∈ {[b1, b2] ∩ Z} ∪ {[b3, b4] ∩ Z}, according to Lemma 5, we have

−ρ1 = min{∆(b2),∆(b3)} ≤ ∆(β) ≤ max{∆(b1),∆(b4)} = ρ2.

If ∆(2s−1) ≤ ρ2 or ∆(2s − 1) ≤ ρ2, we can take b1 = 2s−1 or b4 = 2s − 1 and
get the same conclusion.

A simple visualization of this case can be seen in Case II of Figure 1.
Similarly, the uniqueness of b1, b2, b3, b4 can be proved as Case I. This completes

the proof of Theorem 1. �

Table 5 Experimental presentation of the multivalued-continuous phenomena for δ ≤ 0.292

m t s
Amount
of helpful

guess values
Helpful guess values

Range of

∆(p̃m)
Values of p, q, d

7 3 27 38
77936256∼77936271

108904916∼108904937
3∼-2
-2∼3

p=108791611503235673140185533091
50884154374894967508848133612045
43365870112083433518208166752126
34513230233723986376271419152033
80518373404428155128956096567

q=778551777306676461068475502186
11135114590047765139984700179502
00302423785621944272320203721259
52886515236996817319552121527522

5005359166335680284144577427
d=822132486821443838429019508289
20810532559690610604683764553272

9448691328114281177912705023

p=679486791883996600331778827685
93480036059591634701532395565550
86565666723761153014913169297896
63406996117945403134009928504337

6680194594851361518965438191
q=678837169337166310745226733340
50992083124031396996898938020837
71485358806632262195329165541096
64796783382129387505419864052820

9010624705809648621661183571
d=688450019926775649603539864984
76584008893082985088950620216788

3636867990095285712393863167

7 3 28 55
155872521∼155872543
217809833∼217809864

4∼-4
-4∼4

10 4 21 43
1217740∼1217757
1701633∼1701657

4∼-2
-2∼4

12 5 18 36
152207∼152221
212700∼212720

4∼-1
-1∼4

10 4 21 3851 1060371∼1064222 5∼1∼5

10 4 22 5819 2121683∼2127502 3∼0∼3

12 5 18 1276 132150∼133425 4∼1∼4

12 5 19 2093 264529∼266621 4∼0∼4
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In order to give a more intuitive presentation of the phenomena, we provide
partial specific experimental data in Table 5. As shown in Table 5, when |∆(p̃m)|
is slight greater than 0, such p̃m may still be a helpful guess value. For the first
specific (p, q, d), the set Ω contains two continuous intervals over Z. For example,
when (m, t, s) = (7, 3, 27), we find 38 helpful guess values which appear as two
parts around pm = 108904923 and qm = 77936267 respectively. For the second
specific (p, q, d), the set Ω contains one continuous interval over Z. For example, when
(m, t, s) = (12, 5, 19), we find 2093 helpful guess values which appear as a continuous
integer interval including pm = 265700 and qm = 265446.

Another phenomenon should be mentioned that there are much more helpful
guess values when p is close to q in our experiments (one of the detailed comparison
can be seen in Table 5, noting that the first |p− q| is much greater than the second
one). The “p close to q” contributes to the efficiency of our experiments pretty well.
It must be mentioned that the use of “p close to q” in our attack is quite different
from the attacks with small prime difference, in which the upper bound of |p − q|
should be known before implementing the attacks. While in our attack, we do not
need to know how close between p and q in advance.

4.3.2 A new practical attack based on the binary search

Based on the multivalued-continuous phenomena, we propose a new practical small
private exponent attack on RSA based on the binary search. The complete and
detailed algorithm is displayed as follows.

Algorithm 1: New practical attack based on the binary search

Input: N , e, δ; m, t , s
Output: p, q , d
0 η ← ⌊log2 p⌋
1 for j := 1, · · · , s− 1

2 for i := 1, · · · , 2j−1

3 p̃m ← 2s−1 + (2i− 1) · 2s−1−j ;

4 q̃m ←
⌊⌊

N
p̃m·2η−s+2η−s−1

⌋
/2η−s

⌋
;

5 A← N + 1− (p̃m + q̃m) · 2η−s;

6 Y ←
⌊√

N/2s
⌋
, X ← Nδ, U ←

⌊√
N/2s

⌋
·Nδ;

7 Run HM2010 attack with bounds in step 6;
8 if d is correctly found then
9 return d, p, q;
10 end if
11 end for
12 end for

We note that, the efficiency of Algorithm 1 relies on its input parameters m, t, s.
Then a question may come up immediately that how should we choose appropriate
m, t and s in order to attack the RSA cryptosystem efficiently.

According to our experiments and Miller’s discussion in [14], BKZ reduction
algorithm doesn’t perform well in the HM2010 attack. Therefore, we adopt LLL
algorithm in SageMath to carry out the lattice basis reduction in our attack.

It is not difficult to see that the total running time of our attack mainly comes
from two parts: the search of a helpful guess value and the lattice basis reduction.
In the following of this subsection, we first focus on the cost of LLL algorithm, and
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then discuss how to find appropriate m, t and s based on some theoretical derivation
and experimental results.

The time complexity of LLL algorithm and its variants is displayed below (the
vector length, the number of basis vectors, the size of vector norm are denoted by
n, d,B respectively).

LLL(1982)[18]

O(d5nB3)

LLL(Schnorr 1988)[19] L2(Nguyen 2005)[20]

O(d3n(d+B)2B) O(d4n(d+B)B)

Making a specific analysis on the lattice we constructed, we get

n = d = dimL′ =
(m+ 1)(m+ 2)

2
+

τm2 + (2τ − 1)m

2
. (15)

The size of the vector norm B is given by the following Proposition 1.

Proposition 1 With the notations as above, the approximate size of the largest vector
norm B in our new lattice is (m+ δm+ ( 12 − ξ)τm) logN , where 2s = Nξ.

Proof. See Appendix B.
It is not difficult to see that, the approximation size of B in Proposition 1 changes

very little with s, since s is at most several dozens and the size of N is more than 1000
bits in our experiments. Note that the optimal t is determined and so is the parameter
τ since τ = t/m for a fixed m. Therefore, based on Equation (15) and Proposition 1,
the dimension remains unchanged and vector norm B is almost unchanged for fixed
m. Above all, no matter whether MSBs guess strategy is added to HM2010 attack or
not, the running time of the LLL algorithm is nearly unchanged, which is consistent
with the results of our experiments.

Now we can try to determine the parametersm, t, s. Several groups of experiments
are implemented and one of them is displayed in Table 6. The set Ω consists of two
consecutive parts and the amount of helpful guess values is the sum of the two parts.
For the same m and t, as s increases by 1, the amount of helpful guess values is less
than twice as the original ones (all our experiments have verified the conclusion).
This result indicates that the guess bit should try as few as possible. Meanwhile, after
a simple computation we can conclude that an appropriately large m will reduce the
total running time of our new attack. As can be seen from Table 1, when m increases
continuously the improvement effect of upper bound of δ is less and less significant.
Therefore, we would like to choose a medium m for our attack.

From the discussion above, to get a practical bound δ ≤ 0.292 for 1024-bit-
modulus RSA, the recommended parameters we provide are m = 12, t = 5, s = 18.
The reason why we don’t recommend s = 17 is that the success rate cannot be
guaranteed both from the estimation in Table 3 and the experimental results in Table
8. These parameters may not be the optimal ones, but they can help to implement
our new attack very well to recover the private exponent for RSA with a 1024-bit
modulus. With the same discussion, for 2048-bit-modulus RSA, the recommended
parameters we provide are m = 12, t = 5, s = 19 to attain the bound δ ≤ 0.287.

5 Experiments

All our experiments are implemented in SageMath 9.1 on our PC with
Intel(R) Xeon(R) W-2255 CPU (3.70GHz, 160GB RAM Windows 10). The
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Table 6 Helpful guess value and running time with different m, t, s for a specific p, q, d

m t s
Amount of
helpful

guess values

Running
time

(second)
Values of p, q, d

7 3 27 88+83=171 22
p =

10919978044315432962287449
87495252293298287669810026
59912781166668189878340060
83751730218810152667600528
00195399170377886135507507
2818459763054393669447049

q =
10295169880070613266125506
25471632556952314949178730
85284380593751570671860226
57231423722833261496785534
27488924052692488680353874
1732160096107231687821563

d =
89299647071100914355096956
62873009629732090303014427
02686428014854729474633080

697710968831

7 3 28 123+116=239 22

7 3 29 175+165=340 22

7 3 30 245+231=476 22

10 4 21 122+115=237 405

10 4 22 157+148=305 405

10 4 23 209+197=406 405

12 5 17 70+66=136 1660

12 5 18 84+82=166 1660

12 5 19 122+115=237 1660

codes of experiments which are shown in Tables 7 to 10 can be seen in
https://pastebin.com/zpUkrfDh.

We carry out some experiments to research the practical bound of δ based on
HM2010 attack at first. Our experimental results on the upper bound of δ and some
comparison with [11, 12, 14, 21] are provided in Table 7.

Table 7 Our experimental results on the upper bound of δ and some comparison with
[11, 12, 14, 21]

log2 N δ Parameters Dim Running time Success%

[11] 1000 0.265 (m, t) = (5, 3) 39 45 minutes /

[12] 1000 0.278 (m, t) = (11, 5) 72 6 days /

[21] 1024 0.277 (m, t) = (7, 3) 45 2.5 hours /

[14] 1000 0.279 (m, t, σ, τ) = (10, 4, 2,−3) 92 / 62%

[14] 1000 0.280 (m, t, σ, τ) = (10, 4, 2,−3) 92 / 1%

Ours 1024 0.284 (m, t) = (21, 9) 304 89 hours 63%

Ours 1024 0.285 (m, t) = (25, 10) 429 16.4 days 60%

It should be made clear that the upper bound of δ we get in Table 7 is just based
on HM2010 attack. We implement 100 experiments for the bound 0.284. And for
the bound 0.285, 5 experiments have been done since the running time is too long.
From the experiments, we get a nice bound in an acceptable running time with a
reasonable success rate. Moreover, for a no-less-than-1000-bit modulus N , this bound
is the best practical one for this kind of attacks as far as we know.
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In order to investigate the necessary number of exhausted MSBs that can guar-
antee the success of the attack, we implement some experiments to verify the
estimations for δ = 0.292 in Tables 2 and 3, which is displayed in Table 8. As can be
seen in Table 8, when m = 7, we should choose s = 27 considering the comparison of
success rates; similarly, when m = 12, s should be chosen to 18 for the same reason.

Table 8 Experimental comparison of success rates with δ = 0.292, 2η = 1024 when m = 7
and m = 12

m t s number of experiments number of successes success rate

7 3 26 100 13 13%

7 3 27 100 87 87%

12 5 17 50 25 50%

12 5 18 50 47 94%

Based on Algorithm 1, we implement our new practical attack. The results are
shown in Table 9 below.

Table 9 Experimental results of our new practical attack on RSA with d ≤ N0.292 for
1024-bit moduli

Parameters Real MSBs
(pm, qm)

Helpful guess
pair (p̃m, q̃m)

Total
running
time

Exp. 1
m = 12
t = 5
s = 18

(132850, 132723) (133120, 132454) 2.3 hours

Exp. 2 (194574, 183696) (194560, 183709) 4.1 hours

Exp. 3 (255247, 152844) (255248, 152843) 21.6 days

All the three experiments above successfully recover the private exponent of 1024-
bit-modulus RSA with d ≤ N0.292 within a month, which is certainly an acceptable
running time for a practical attack on a cryptosystem. The validity of our algorithm
and the rationality of the recommended parameters are verified by the success of the
experiments. As we can see from Table 9, the helpful guess value p̃m who contributes
to the recovery of the private exponent actually does not equal to pm. It needs still
long to reach the real value pm by the binary search. The smaller |p− q| is, the more
helpful guess values there will be, thus leads to a shorter total running time. Detailed
parameters of the three experiments are shown in Appendix C.

As can be seen in [25], to implement an experiment for δ ≈ 0.285 with a 1000-
bit modulus, they need about a week with a cluster of 26 machines. While in our
implementations for δ ≈ 0.292 with a 1024-bit modulus, we can successfully complete
them in about 3 weeks with a single PC. Particularly, the running time may reach
several hours when p is appropriately close to q (e.g., p shares just several MSBs
with q in Exp. 1 in Table 9).

At last, we apply Algorithm 1 to a 2048-bit-modulus RSA. The improving effect
of upper bound of δ is not so good as the 1024-bit one since the proportion s/ log2 N
decreases for the same amount of guess bits. Moreover, the running time becomes
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about triple longer since the data size B in LLL reduction is twice as the original.
Three experiments are carried out for 2048-bit-modulus RSA, which are displayed
in Table 10.

Table 10 Experimental results of our new practical attack on RSA with 2048-bit moduli

Parameters δ Real MSBs
(pm, qm)

Helpful guess pair
(p̃m, q̃m)

Total
running
time

Exp. 4
m = 12
t = 5
s = 19

0.287 (363847, 306431) (306432, 363846) 7.1 days

Exp. 5 0.287 (514229, 312777) (514240, 312770) 35.8 days

Exp. 6 0.292 (7263440332, 7263440332) (7263485952, 7263394712) 11.2 days

From Table 10 we can see that, for random primes p and q (such as p, q in Exp.
5), a majority of the 2048-bit-modulus RSA can be successfully attacked in about a
month for δ ≤ 0.287; if p is slightly close to q (e.g., in Exp. 4, p, q share 3 MSBs),
the efficiency will be better than random case; while p is quite close to q (e.g., in our
setting in Exp. 6, p and q 50 MSBs), we can effectively recover the private exponent
when δ ≤ 0.292. Detailed parameters can be seen in Appendix D.

6 Conclusion

In this paper, we focus on the practical small private exponent attack on RSA. After
some detailed and relatively exact calculations of related parameters in the lattice
determinant, we give a few precise estimations about the upper bound of solvable
δ based the experimental LLL estimation by Nguyen et al.. With the instruction of
our estimations, we implement the HM2010 attack and get a better bound of δ than
the former results as far as we know. To improve the bound we can achieve by the
HM2010 attack, we add a simple idea of the MSBs guess of p. Based on the nontrivial
and inspiring multivalued-continuous phenomena, we propose a new attack based
on the binary search and succeed to attack the 1024-bit-modulus RSA cryptosystem
for δ ≤ 0.292. Additionally, a slightly weaker result δ ≤ 0.287 can be obtained after
applying our new attack to 2048-bit-modulus RSA, which is also the best one among
this kind of attacks as far as we know.

Furthermore, there are still some questions to be answered. Since the number of
helpful guess values has close relation to the value of |p − q| from the experiments,
how should we exactly understand the relationship? How can we estimate the lower
bound of the size of Ω? As the effect of our new attack turns weak in a 2048-bit-
modulus RSA attack, what else should we try to break through the 0.292 bound for
a mainstream practical RSA? Although the gaps still exist, we believe our attack can
provide some inspiration to search more practical attacks on RSA.
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Appendix A Proof of Lamma 3

Proof Take τ=m/t, then we have

sX =

m∑
k=0

m−k∑
i=0

i =

m∑
k=0

(m− k)(m− k + 1)

2

=
1

2

m∑
k=0

(
m(m+ 1)− (2m+ 1)k + k2

)
=

1

2

(
m(m+ 1)2 − (2m+ 1)

m(m+ 1)

2
+

m(m+ 1)(2m+ 1)

6

)
=

m(m+ 1)(m+ 2)

6
,

sY =

τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
j =

τm∑
j=1

j

(
m−

⌊
1

τ

⌋
j + 1

)

=

τm∑
j=1

(m+ 1)j −
τm∑
j=1

⌊
1

τ

⌋
j2
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=
(m+ 1)τm(τm+ 1)

2
−
⌊
1

τ

⌋
· τm(τm+ 1)(2τm+ 1)

6

≈ (m+ 1)τm(τm+ 1)

2
− 1

τ
· τm(τm+ 1)(2τm+ 1)

6

=
τ2m3 + 3τ2m2 + 3τm−m

6
,

sU =

m∑
k=0

m−k∑
i=0

k +

τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
k

=

m∑
k=0

k(m− k + 1) +

τm∑
j=1

(
m+

⌊
1
τ

⌋
j
)
(m−
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1
τ
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2
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k(m− k + 1) +
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τ j)(m−

1
τ j + 1)

2
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6τ2
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12τ
,

se =
m∑

k=0

m−k∑
i=0

(m− k) +
τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
(m− k)

=
m∑

k=0

(m− k)(m− k + 1)

+

τm∑
j=1

(
m(m−

⌊
1

τ

⌋
j + 1)−

(m+
⌊
1
τ

⌋
j)(m−

⌊
1
τ

⌋
j + 1)

2

)

≈
m∑

k=0

(m− k)(m− k + 1)

+

τm∑
j=1

(
m(m− 1

τ
j + 1)−

(m+ 1
τ j)(m−

1
τ j + 1)

2

)

=

m∑
k=0

(m(m+ 1)− (2m+ 1)k + k2) +
1

2

τm∑
j=1

(
(m− 1

τ
j)(m− 1

τ
j + 1)

)
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= m(m+ 1)2 − (2m+ 1)m(m+ 1)

2
+

m(m+ 1)(2m+ 1)

6

+

τm∑
j=1

(
m(m+ 1)− (2m+ 1)

1

τ
j +

1

τ2
j2
)

=
m(m+ 1)(m+ 2)

3

+
1

2

(
m(m+ 1)τm− (2m+ 1)τm(τm+ 1)

2τ
+

τm(τm+ 1)(2τm+ 1)

6τ2

)
=

m(m+ 1)(m+ 2)

3
+

2τ2m3 + (3τ2 − 3τ)m2 − (3τ − 1)m

12τ
,

dimL =

m∑
k=0

m−k∑
i=0

1 +

τm∑
j=1

m∑
k=⌊ 1

τ ⌋j
1

=

m∑
k=0

(m− k + 1) +

τm∑
j=1

(
m−

⌊
1

τ

⌋
j + 1

)

≈
m∑

k=0

(m− k + 1) +

τm∑
j=1

(
m− 1

τ
j + 1

)

= (m+ 1)2 − m(m+ 1)

2
+ τm(m+ 1)− 1

τ
· τm(τm+ 1)

2

=
(m+ 1)(m+ 2)

2
+

τm2 + (2τ − 1)m

2
.

The proof of Lamma 3 has completed. �

Appendix B Proof of Proposition 1

Proof It must be pointed out that the largest size of the vector norm B can be
perfectly approximated by the maximum component of all the vectors in the lattice
basis, e.g., the maximum coefficient of the term in all the polynomials.

At first we compute B in the lattice of the HM2010 attack. Note that vectors are
produced by x-shift polynomials and y-shift polynomials:

g̃i,k(u, x) = xif̃kem−k, i = 0, . . . ,m− k, k = 0, . . . ,m

h̃j,k(u, x, y) = yj f̃kem−k, j = 1, . . . , τm, k = ⌊1/τ⌋j, . . . ,m,

where f̃(u, x) = A+ ux and t = τm.
(I) The size of the maximum coefficient in x-shift polynomials
Note that

g̃i,k(u, x) = xif̃kem−k =
k∑

a=0

(
k

a

)
xiuaAk−axk−aem−k.

Terms in g̃i,k(u, x) are of the form
(k
a

)
uaAk−axk−a+iem−k. The final coefficients

of such terms (i.e., the values of vector components when constructing lattices) is(k
a

)
UaAk−aXk−a+iem−k with a size of
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(
a(

1

2
+ δ) + k − a+ (k − a+ i)δ +m− k

)
logN =

(
m− 1

2
a+ (k + i)δ

)
logN.

The size of the maximum coefficient is (m + mδ) logN according to the formula
above since 0 ≤ a ≤ k < m, 0 ≤ k + i ≤ k +m− k = m.

(II) The size of the maximum coefficient in y-shift polynomials

Note that Terms in h̃j,k(u, x, y) is of the form
(k
b

)
yjubAk−bxk−bem−k.

Case A:
When j ≥ k − b,

k∑
b=0

(
k

b

)
yjubAk−bxk−bem−k =

k∑
b=0

(
k

b

)
yj−(k−b)ubAk−bem−k(u− 1)k−b.

Therefore, the term which has the maximum coefficient is
(k
b

)
yj−(k−b)Ak−bukem−k

with the final coefficient
(k
b

)
Y j−(k−b)Ak−bUkem−k. In this case the size of the

maximum coefficient is(
1

2
(j − (k − b)) + k(

1

2
+ δ) + k − b+m− k

)
logN =

(
1

2
j − 1

2
b+ δk +m

)
logN.

We get
(
1
2 j −

1
2 b+ δk +m

)
logN ≤ (12 j−

1
2 b+δj+δb+m) for k ≤ j+b. Finally, the

size of the maximum coefficient is (m + τδm + 1
2τm) logN when j = τm, b = 0

as 0 ≤ b ≤ k ≤ m, 1 ≤ j ≤ τm.
Case B:
When j < k− b, after a similar discussion as Case A, we can get the size of the

maximum coefficient in yj f̃kem−k is(
(b+ j)(

1

2
+ δ) + k − b+ (k − b− j)δ +m− k

)
logN =

(
1

2
j − 1

2
b+ δk +m

)
logN.

Finally, since j < k − b, 0 ≤ b ≤ k, 1 ≤ j ≤ τm, ⌊1/τ⌋j ≤ k ≤ m, the size of the
maximum coefficient is (m + δm + 1

2τm) logN when j = τm, b = 0, k = m.
According to the detailed discussion, we obtain that

B = max{(m+mδ) logN, (m+ τδm+
1

2
τm) logN, (m+ δm+

1

2
τm) logN}

= (m+ δm+
1

2
τm) logN.

At the second step we compute B in our lattice. Use the notations above, the
upper bound of each variable becomes to

x′ < X ′ = Nδ, y′ < Y ′ = N
1
2−ξ,

e < N, u′ < U ′ = Nδ+ 1
2−ξ,

where 2s = Nξ and s is the amount of MSBs exhaustion. Note that the terms
in the polynomials do not change while the bounds of variables differs compar-
ing the lattice of HM2010 with ours. With a simple analysis as former, we can
obtain the maximum sizes of coefficient in x′-shift polynomials and y′-shift poly-
nomials are (m + mδ) logN and (m + δm + ( 12 − ξ)τm) logN . Finally we obtain

B = (m + δm + (12 − ξ)τm) logN .
Based on the discussion above, we can see that the largest size of vector norm B is

(m + δm + (12 − ξ)τm) logN . The proof of Proposition 1 has completed. �
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Appendix C Detailed parameters of the three
experiments in Table 9

Exp. 1:

N =

46126089040452448339448600417060313922101098426244293259787635

87074530673491676174094741308570008991308086429133694253082502

08322979383825756505663848479411358228528222527395327435101891

24124500359010333442383692988340095271183825614638791911699269

162046275028679426500348785157345976662456325437259705160061

e =

36614584641331081308456049556562616703353184435474954472543851

64159874655507513240178939924241301243795285290427026969984191

93417336370186256151741426122690631967234543279797441311494545

48205774006091224643569311902728986446145416739772661245661572

872595702072188094041649860081717657262961694486055770442903

p =

67948679188399660033177882768593480036059591634701532395565550

86565666723761153014913169297896634069961179454031340099285043

376680194594851361518965438191

q =

67883716933716631074522673334050992083124031396996898938020837

71485358806632262195329165541096647967833821293875054198640528

209010624705809648621661183571

d =

68845001992677564960353986498476584008893082985088950620216788

3636867990095285712393863167

Exp. 2:
N =

93502450932903310633064573151907317024294867669134678632093362

46297788099166895737544153127851852138932264560083819167132205

42943047406167744180006421454219231575086254775401435086568101

80893794178324182089403622394064939255883017451942933893424910

850870147643227272288485474147840684850717753717586472451201

e =

66858620224726705843141951973966747720864781039484831550691634

09294281451926768980157225811154880346715028924829626919171141

60786364943066431341308061576266724936876531701099477141597025
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75928828432166081285992511952702707653041998543208057095834381

069598542543859865005532560613469773387993762913083830903645

p =

99518569133681654608883617987619781762536839523918823141580161

97123835376178581844008644586889905048955222245453609041221097

121126837776453250821684510563

q =

93954778235710974203677377216985836253852371657508142242651124

33882347772961954728089804437932682899351880809635985985823721

278448590959326657930561582027

d =

84621421118866086279480677455817189905395785567701311624227231

1992184907517426187202723837

Exp. 3:
N =

10205793884912309428243538885795108687967400364358859068757105

27366676256258700648163154922583229485417321567269849917383364

64656067954130787989822823376442710598097310129836268241537114

71952829908327055972448207678376586518255364121854918727930884

3770512577006453837517293155340490761206708661611812914183899

e =

80900458040712014796201499026385729329804135026384835491013425

86092605732136485389209880857013543736344572515888256253718707

08436780537181756263571337006232687007715876604623603003318929

36401425760635712653711506424050436067133668344381418365690036

931579614717233156905341293247889945042931394909865508914479

p =

130550858861846841747727958575739547701679174283776488146464000

035126653179894990637272044524427541060375052834227051238884085

86029300473284150150163760489

q =

781748505822731655261191706621539039622764767903458858428781536

263460148861416123276603543978929241699568615263385404823218907

1292155782177922355115574691

d =

868126999952902548361525189983896174511773826207382896837234598

157112101757767726001029119
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Appendix D Detailed parameters of the three
experiments in Table 10

Exp. 4:

N =

13108249020538785310663414698582637064820950198561878706735851

65703644339810427940041439226962830915168487281788869208017778

64923887358082167988616026368541195282045124591109789444274263

26718715032735164557685449265721895500116475985815536552066383

98902635748400290357538362875036895327848802671465354828268316

19459190428496888414853786863007208331552517424436288121969788

57993634225342593766658498158262129054566502609859174903015093

10543060200243513864877744474764130353698543557524799219837216

81177688022836416789341375825625350075504640416012415003418082

73695609938403611734357471580735947449865433515838599015767

e =

89451479500251299951266471597772406719039486388733814263161727

77277693744087994022236345476762214316234081707614457014149993

07086353862705412696231771650983658024823969641299772311875452

35751367575578627668994418983506635558378045495835658481986197

64498956959651824723201619704850371101473507734971701102683193

24725402870657449338885605852347781947910706904405925408817023

60111680067003156460400937994396681812731602263538839593687345

62219589235850846108119781315380911546600335260644624325458166

47435720465040339844832330681577201708958823066483795645154297

8645874176685545024632447680732323591071139368778498577639

p =

12475716189463277471168125160458453539576717759904860818958950

12014825348919743719578184669777821230125550070704404895576204

52941396889634025921970794255590369593505603793752936553527919

38379990938303607598997653011866480954848015397181895617491220

3077504115908974119391542269233365957211095336385587786710643

q =

10507011238047985984905944714077857914018323916121653018787711

19630266681204488009378026133638912480941505942176252858307437

32991043217939651634566680101998984493904772645000773580396638

66392564560306397986626626825696478790443273047686349310580634

5028770283044102294594624281933734776943133629178895741769869
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d =

16203833775447352356853531181274614215508930119487698497783433

20417126835821821597640064942591829248499538916881397751938428

70347081603575753080006255052855504063533452418351103

Exp. 5:
N =

18909672181904151395097968169920434800151774976081336450891174

87637992213220042585977009330732380044765810427401976038590837

11873143826745772602607516127893011661052190642253756693227076

98926584779010796261564768643160271391197294787916627864241401

91442506166372883954050983092065122469794049346568026032600851

06520619119309685394418339932570134971764214265160652504821910

54728868131847284573195025675911240577689925121207663441802463

95424763276465590987069458679529387973710595569647138338589685

41003463475729539029975985698319117707054049488848688491897152

76445558134402328090544913847971380379882458726005541831877

e =

71750525858644602573827151612109334198329801833575974634891308

81495398383619485101066743946892399989979056836606216684862725

57211251358518687663563498732052487860671897005525731875587709

48285298803158025787222714686015007936511780408515333161477308

33938515599770436750069222320451660592526204534805678560379611

66401313318683780361047153401836775380248541241640858508425424

17567958496040977474953521700071041506080838448030690016792476

72933113105225110610011794291511678512931585633775157710522063

46208952124338836289923112469153753848820848393483936342199771

0031387152470262859696222361705999483806613844394759888651

p =

17632053007251238779460491844609267953184637057432293238819260

45182034840480286908458849795483938148101996899679104684164224

74443986695404811633893785378170226481910000920070470403858119

63853022804280585705368356890551045545683993527388328068472661

0142603148675130345130093490471284531708421254883794726933731

q =

10724600348086231138978615424494121452147302572884539393558466

49494608032097842525445414641585733688186933655325569963690234

73297386324910499142225474129024782995490552263782465106021625

38318333121616296839163140328592966430893795983414382893135148

9815771244076937362708739778582739737422552531974179680294967
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d =

74371802615146241472896188271041978689492703240379646141995046

73820493661253184594168451370887921723607130820247798059973262

06710810842150444333271043589416784775482885854461951

Exp. 6:
N =

23106605651041615213646000110077851420712757917776430930326056

60296830951476238797402172985663226841689573922131931924256474

42373164767688138199312178870617014197433167498889179888412544

74185076959806015212320711881448073618683164329640885570487353

50354182223829749002048540419684771479273577984952576597834431

10876017808739917408013571983470008797535808485837831985030128

18980694013921518439031616253599644305480276822960370194442400

29680528535253331304066794571579472555287555198582878649996706

70189200424088850932169339900976909686922394456370919349825147

79933248467489575820613721302800274215988236180595306270631

e =

12306595799514227604950469560934424785746654745458886525393457

58899783970499242533791938472818667104241589586924790854906048

54925263611470499944927026328816440185366245189763792436116837

57561103528778660481890339014924778781448952317743651644045890

34734358672625085976939766863203987473622112403467008193246531

18811333558134310761081974826858002018445896729330025874175254

08511656625722972253589317139568494268155847524384162663775384

56174150943940984854862543628588707580008442653426773237869939

26533039846186871551451618391840130895864570824139236237941156

12847782672209965094853232413711557861305091453331658286885

p =

15200857097888143612235928515088793346264155533550218885999558

43118029224237682629271323091741303390999578531540748865895441

28299767695057057649418113935154004959819709868376351089412151

66689369221389374628670381926958230967689721241987218903900245

6978031157591446602279278447377998069848764568730671548941379

q =

15200857097888130222480933300617571310430741971257868954229473

99010773432783299974566489666130612156702118428957004402934567

26259649410467624692928043525938992850157984384838932304533523

37960458325033282161048364788519071913365063106030773291799585

7967631386967340066303738923024637820931061972877004540650189
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d =

95106665770280602013064006456747612094114888110214050993001292

18842148846561624186845878708855870619895801364016214375097533

53978037760812938848119029882054844495851034227001786365


