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Abstract—Nakamoto consensus (NC) powers major proof-
of-work (PoW) and proof-of-stake (PoS) blockchains such as
Bitcoin or Cardano. Given a network of nodes with certain
communication and computation capacities, against what fraction
of adversarial power (the resilience) is Nakamoto consensus
secure for a given block production rate? Prior security analyses
of NC used a bounded delay model which does not capture
network congestion resulting from high block production rates,
bursty release of adversarial blocks, and in PoS, spamming
due to equivocations. For PoW, we find a new attack, called
teasing attack, that exploits congestion to increase the time taken
to download and verify blocks, thereby succeeding at lower
adversarial power than the private attack which was deemed to
be the worst-case attack in prior analysis. By adopting a bounded
bandwidth model to capture congestion, and through an improved
analysis method, we identify the resilience of PoW NC for a
given block production rate. In PoS, we augment our attack with
equivocations to further increase congestion, making the vanilla
PoS NC protocol insecure against any adversarial power except
at very low block production rates. To counter equivocation
spamming in PoS, we present a new NC-style protocol Sanitizing
PoS (SaPoS) which achieves the same resilience as PoW NC.

I. INTRODUCTION

The goal of a blockchain protocol is to create a secure and
decentralized ledger of transactions. This protocol is run by
a network of nodes, each with certain capabilities in terms of
communication rates and computing power. In this work, we
study the connection between these processing capacities of
individual nodes and the security of the system.

In order to remain secure under adversaries controlling
up to 50% of the network, blockchain protocols have been
parameterized to leave a ‘security margin’ between the block
production rate under normal operation, and each node’s
capacity limits. For instance, Bitcoin only produces one block
of transactions per ten minutes, though it usually only takes a
few seconds for a node to download and process each block
[1]. On the other hand, protocols that push close to the limits
of their nodes become insecure as the processing capacities of
nodes are overwhelmed (such as Solana [2]–[4]). The natural
question that arises is: given a capacity limit of nodes, what is
the trade-off between the block production rate and the fraction
of adversarial power that the protocol tolerates?

In this work, we focus on Nakamoto consensus (NC) proto-
cols (a.k.a. longest chain (LC) consensus [5])—a popular class
of blockchain protocols that can be instantiated using various
Sybil resistance mechanisms such as proof-of-work (PoW) [5],
[6] and proof-of-stake (PoS) [7]–[10]. In NC protocols, a
continuously running lottery selects which nodes can produce
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Fig. 1. Regions of fraction β of adversarial nodes and block production rate
λ with security proofs ( ) and attacks ( ) for Nakamoto consensus under a
fixed processing capacity of C = 1 block per second. Analysis in the bounded
delay model [11], [12] (with ∆ = 1 s) proves that the private attack ( )
succeeds ( ) iff β ≥ 1−β

1+(1−β)λ , and that for all other values of β, λ, no
attack succeeds ( ). The latter claim is limited to the bounded delay model,
as our teasing attack exploits congested block processing and succeeds at
lower adversary β than the private attack ( , ). Our analysis in a bounded
bandwidth model characterizes a security region ( ) for both PoW and SaPoS
(a PoS variant).

the next block and when they can do so. A selected node
collects pending transactions, creates a new block extending
the longest chain of blocks it sees, pushes the block’s header
to the network, and makes its transaction content available for
download.

In order to extend a chain, nodes must first process, i.e.,
download and verify, the content of blocks in that chain, to
ensure that the content is available and valid. The lottery
makes block production occur at random times, which means
the download and verification load of the network is bursty.
With limited processing capacity, during times of high load,
new blocks will be queued for processing. This leads to a
queuing delay, in addition to the processing delay of blocks.
Nodes cannot produce (‘mine’) new blocks extending blocks
that they have not yet processed, so the growth of the honest
nodes’ chain slows down. Since the security of NC is based
on the honest chain outgrowing any adversarial chain, the
reduced growth of the honest nodes’ chain makes it easier
for an adversary to attack the system.

Moreover, the adversary can selectively delay the release
of blocks that it produces, so the network load can be
adversarially controlled to some extent. These blocks may not
extend the longest chain or may otherwise be invalid. Thus,
to ensure that nodes can process the ‘most important’ blocks
first, they must use a ‘scheduling policy’: given a set of new
block headers, which blocks to download and verify first. Since
a node extends their longest chain to produce new blocks,
the most obvious policy is to first process blocks along the



2

longest chain that the node has seen. Indeed, this policy can
be found in major implementations of Nakamoto consensus
(Bitcoin [13], Cardano [14]).

NC security depends critically on the delay between an
honest node producing a new block and any other honest
node being able to mine on top of it. How should this delay
be modeled? To analyze the security of Nakamoto consensus,
previous work [6], [9], [11], [12], [15]–[18] has considered the
‘bounded delay’ model. This model assumes that all honest
nodes are able to mine on a block after a maximum delay
of ∆ seconds after the block is published. Using this model,
the works [11], [12] give a tight characterization of the trade-
off between the fraction β of adversarial nodes and the block
production rate λ for a given delay bound ∆. However, the
bounded delay model assumes that the processing time of each
block is bounded by ∆, irrespective of the total processing
load. Thus, the model fails to capture the earlier discussed
effects of queuing.

The bounded delay analysis [11], [12] predicts that the
private attack is the worst-case attack strategy. That is, under
parameters where the private attack fails, all other attacks fail,
too. In the private attack, the adversary produces a chain of
blocks that it keeps private until it becomes longer than the
public longest chain, which it can then displace. Note that
during this attack, the adversary does not release any blocks.
In this case, the scheduling policy ensures that whenever an
honest block is proposed at a new height, each honest node first
processes that block and thereafter can produce a new block
extending it. Therefore, under the private attack, the honest
nodes’ chain grows at the same rate as under the bounded
delay model with ∆ taken to be the time to process one
block (this is further explained and experimentally validated
in Sec. II). Hence, the bounded delay analysis can be used
to calculate the fraction of adversarial power with which the
private attack succeeds, shown in Fig. 1. We ask whether there
are stronger attacks in which the adversary adds to the network
load to increase queuing delays, an effect that was not captured
by the bounded delay model.

Result 1. We show a teasing attack (Sec. II-B) which is
stronger than the private attack, i.e., it succeeds in regions
of (λ, β) where the private attack does not succeed (Fig. 1).

In this attack, the adversary ‘teases’ honest nodes to process
a longer chain it announces, but makes this effort ‘useless’
by not releasing the block contents for the entire chain. The
adversary effectively doubles the network load and queuing
delays while also building a longer chain to break security.
This halves the maximum secure block rate λ.

While insecurity can be shown through attacks in experi-
ments, security (i.e., non-existence of any attacks) cannot be
shown in experiments, but requires mathematical proof.

To study queuing effects on blockchain security, we adopt
the ‘bounded bandwidth’ model proposed in [19]. As per
this model, we consider the scheduling policy as a part
of the protocol description as it affects the security of the
protocol. Henceforth, though we adopt the word ‘bandwidth’,

we continue to mean ‘capacity’ in the wider sense, i.e., rate
limits on communication, computation, and storage. Similarly,
we use ‘download’ to mean ‘process’ in the wider sense.

Result 2. Using the bounded bandwidth model, we character-
ize a region of block mining rate λ and adversarial fraction β
for which we prove that proof-of-work Nakamoto consensus,
with a wide range of suitable scheduling policies, is secure
(Thm. 1). This region is shown in Fig. 1.

In proof-of-stake, the block production lottery does not
depend on the block content or the parent block, to avoid
grinding attacks [20]. However, this allows the adversary
to produce equivocations—multiple blocks with the same
lottery but different content and/or parents—and send them to
different nodes. Analysis in the bounded delay model predicted
that this new attack vector does not change the security region
[11], [21]. However, since nodes cannot always predict which
of two conflicting blocks will eventually be part of the chain,
they may waste processing capacity on blocks that are later
discarded. Thus, the attacker has infinitely many blocks which
it can use to increase the network load and queuing delays
(more than in PoW), as observed in [19].

Result 3. We show an equiv-teasing attack (Sec. II-C) which
extends the teasing attack using equivocations. This attack
succeeds with probability ε if λ = Ω

(
1

log(1/ε)

)
.

Therefore, in PoS, as the security error probability goes to
zero, the throughput goes to zero as well. This was not the
case in PoW because the adversary had a budget constraint:
blocks spent to drive up congestion for an attack today cannot
be spent tomorrow, and vice versa. To re-introduce the budget
constraint into PoS NC, we propose equivocation removal:
nodes download at most one of possibly many equivocating
blocks (Sec. VI). Additionally, nodes use equivocation proofs
to collectively remove the content of equivocating blocks from
the ledger, so that no node needs to download the equivocating
blocks to form the ledger. A deadline for considering equivo-
cation proofs ensures that content is not removed from the
ledger after it is confirmed. We present the protocol SaPoS
(Sanitizing Proof-of-Stake) with these modifications.

Result 4. SaPoS is secure for the same block production rates
and adversarial fractions as PoW NC (Thm. 2).

Based on Thms. 1 and 2, we calculate the bandwidth
sufficient to secure PoW NC and SaPoS with the parameters
of major PoW/PoS blockchain implementations (Fig. 3).

Equivocation removal in SaPoS comes with a drawback: At
the time of block production, an honest node might not yet
have learned about equivocating blocks in its prefix, and as a
result might add transactions to the newly produced block that
at execution turn out invalid, due to equivocation removal. This
lack of predictable transaction validity leads to attacks where
the adversary spams the ledger with transactions that are later
invalidated. Moreover, the funding source of such transactions
may also be invalidated, so no fees can be claimed for the
resources these transactions occupy.
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Fig. 2. Regions of fraction β of adversarial nodes and block production rate
λ with security proofs [19] ( ) and attacks ( ) for PoS Nakamoto consensus
under a fixed processing capacity of C = 1 block per second. The private
attack succeeds with overwhelming probability for parameters in while it
fails with overwhelming probability otherwise. In contrary, our equiv-teasing
attack continues to succeed at a lower adversarial fraction as the required
attack success probability is decreased (in order, , , ), as analyzed in
App. H-B. This explains why the security region (against all attacks) proven in
[19] shrinks as the desired security error probability decreases (in order, ,

, ). Our new protocol SaPoS, by using equivocation removal, achieves
a security region ( ) that is independent of the security error probability.
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Fig. 3. Calculation based on Thms. 1 and 2 of the bandwidth per node
that is sufficient to ensure security of NC with the parametrizations used by
two major blockchains: Bitcoin (PoW, λ = 1/600 blocks/s, max. block
size 4 MB, ), and Cardano (PoS, λ = 1/20 blocks/s, max. block
size 88 KB, ). Dotted lines show the corresponding predictions from
the bounded delay analysis, which holds for the private attack only ( ,

). This suggests that while the commonly recommended 0.4 Mbps [22]
is enough to secure Bitcoin against a 48% private attack adversary ( ), higher
bandwidth may be required to defend against all attacks.

Result 5. We present mechanisms (Sec. VII) to ensure that
miners receive fees for every transaction they include, and thus
ensure that spamming the chain with invalidated transactions
comes at a cost to the adversary.

A. Related Works

Several earlier works have analyzed the security of PoW [5],
[6], [11], [12], [16]–[18] and PoS [7]–[11], [15], [20] Naka-
moto consensus in the bounded delay model. Our analysis
builds on tools from several of these works, primarily piv-

ots [9] (or Nakamoto blocks [11]), and convergence opportu-
nities [9], [17], [18] (or similar [11], [16]).

Limitations of the bounded delay model have been observed
in previous work. To use the bounded delay model to set the
protocol’s block production rate, one needs to find the value of
the bound ∆. This is tricky because unlike the bandwidth limit,
which is a physical limit of the hardware used, delay depends
on the network load. One approach is to set the delay to the
‘time taken to process one block’, i.e., ∆ = 1/C. While this
may be reasonable at rates much smaller than the bandwidth
(as processing queues are mostly empty), queuing delay breaks
this bound otherwise. We also see that parameterizing using
∆ = 1/C suffices for defending against the private attack.
For security against other attacks that may manipulate queuing
delays, a more conservative approach is to set the delay to be
at the tail of the probability distribution of the delay. In theory,
given an enqueuing and dequeuing process, it is possible to
characterize the distribution of the queuing delay, and this
approach is taken in [23]. In practice, the delay distribution can
be estimated through network experiments [1], [24]. Another
work [25] analyzes security in a random (iid) delay model.

The problem is that the network load, hence queuing delay,
is not purely a random process, but is controlled by the adver-
sary. Experiments cannot show us the security impact under
all possible adversarial manipulations of queuing delays. In
analytical work [19], the bounded bandwidth model captures
this effect. Since the analysis in [19] focuses on proof-of-stake,
it allows the adversary to use infinitely many equivocations
of each block it produces. Therefore, at every moment the
adversary has infinitely many blocks to add to the network
load. As a result, the earlier analysis proves security only when
λ = O

(
1

log(1/ε)

)
where ε is the desired maximum security

error probability. In fact, our equiv-teasing attack succeeds
with probability ε when λ = Ω

(
1

log(1/ε)

)
, showing that the

dependence of λ on ε is not just a result of weak analysis.
Fig. 2 shows the security results of [19] and the parameters
under which the equiv-teasing attack succeeds, as the security
error probability varies.

Applying the analysis of [19] to PoW is too pessimistic
because the adversary can not repeatedly re-use its blocks
at every moment. Our first improvement over [19] is a new
analysis technique which accounts for the budget constraint
in PoW to eliminate the dependence on ε. In PoS however,
our equiv-teasing attack shows that the dependence of block
rate on the security error probability requires not just tighter
analysis, but a change to protocol and/or scheduling policy.
Thus, our second improvement over [19] is to design SaPoS
which overcomes the dependence of block rate on ε in PoS.
It is also worth noting that while [19] shows that PoS NC is
insecure with the ‘longest header chain’ download rule and
secure with the ‘freshest block’ rule, we show that both PoW
NC and SaPoS are secure with a wide range of download rules
including the ones considered in [19]. Moreover, since our
equiv-teasing attack works against all those download rules,
it indicates that securing PoS NC requires a change such as
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Fig. 4. (a) Sleepy analysis [9] is based on pivots. Pivots are special honest
blocks (cf. liveness) which by a combinatorial argument remain in the
chain forever (cf. safety), and by a probabilistic argument happen frequently.
The equivalence of the qualities required for the probabilistic/combinatorial
argument follows from the bounded delay model. (b) Our new analysis
(red) decomposes pivots’ probabilistic/combinatorial qualities into ppivots and
cpivots. These are no longer equivalent under bounded bandwidth, but among
many consecutive ppivots exists one cpivot. A new probabilistic argument
shows the abundance of ppivots.

equivocation removal and not just a different download rule.
See Fig. 2 to compare the security regions of the standard PoS
NC protocol and our SaPoS protocol.

Capacity limits apply not only to downloads, but also to
computational processing of blocks. For instance, to validate a
block, an Ethereum validator must execute all smart contracts
in it. While download and validation are similar in that the
time taken increases with the number of transactions, they
are different in that validation is hard to parallelize due to
transactions that depend on each other. A line of work [26],
[27] studies methods to parallelize execution of smart contracts
to make use of multicore architectures.

B. Overview of Methods

1) New Analysis Technique: Traditional Nakamoto consen-
sus security analysis (Fig. 4(a)) is based on the notion of a
pivot [9] (or Nakamoto block [11]). A pivot is a point of time in
which a block is produced by an honest node (i.e., it includes
pending transactions) with an additional property that in every
time interval around the pivot, there are more honest than
adversarial block production opportunities. A probabilistic
argument shows that typically pivots happen frequently. A
combinatorial argument shows that the pivot block remains
in the longest chains of all honest nodes forever. Safety and
liveness of NC with suitable parameters follow swiftly.

In the bounded delay network model, the qualities required
for the probabilistic and combinatorial argument, respectively,
are equivalent. As a result, it has not been widely observed
that these properties are actually not identical. In the bounded
bandwidth model, these properties are no longer equivalent.
Our first conceptual contribution is to decompose pivots’
probabilistic/combinatorial qualities into ppivots and cpivots
(Fig. 4(b)). Ppivots are honest block production events where

in every time interval around them there are more honest
than adversarial block production opportunities (same as pivots
in the bounded delay analysis). Cpivots are honest block
production events where in every time interval around them
there are more chain growth events than non-chain-growth
events (chain growth occurs only when an honest block is
produced and soon downloaded by all honest nodes).

Some ppivots no longer turn into cpivots under bounded
bandwidth, because adversarial block release can delay the
download of honestly produced blocks, and thus some honest
block production opportunities might not translate to chain
growth. Our second technical contribution is a combinatorial
argument to show that if there is a sufficiently high density of
ppivots over a long time interval, then one of these ppivots is
typically a cpivot. This relies on the adversary’s limited budget
of blocks it can spam with.

The original probabilistic argument of Sleepy [9] guarantees
only a fairly low density of ppivots. Thus, our third technical
contribution is to show, using a Chernoff-style tail bound for
weakly dependent random processes, that long time intervals
typically have a high density of ppivots. This completes the
analysis for PoW NC.

2) Equivocation Removal: The above analysis does not
hold for the vanilla PoS NC protocols in [9], [10], [15], [19]
because the analysis relies on the adversary having a limited
budget of blocks that it can make honest nodes download.
However, in PoS NC, the adversary has unlimited budget
through equivocations. Indeed, our equiv-teasing attack in
Sec. II-C exploits this to show that the vanilla PoS NC is
not secure under the same parameters as PoW NC.

In SaPoS, we stipulate that per block production opportu-
nity, every honest node downloads at most one block. This
makes honest nodes immune to the effects of equivocation
spamming. However, we need to ensure that honest nodes can
still switch from one chain to another longer chain, both of
which might contain different equivocating blocks from the
same block production opportunity. For this, note that headers
of two equivocating blocks from the same block production
opportunity can serve as a succinct equivocation proof to
convince other nodes that an equivocation was committed.
Therefore, in SaPoS, if an honest node sees an equivocation
for a block in its longest chain, it publishes an equivocation
proof in the block that it produces, which allows all nodes
to consistently treat the equivocating block’s content as empty
without downloading it.

A caveat so far is that an adversary could reveal an
equivocation late and cause inconsistent ledgers across honest
nodes and/or time. To avoid this, we enforce a deadline for
how late an equivocation proof can be included in the chain.
Our analysis shows how to parameterize the deadline and the
NC protocol’s confirmation time such that, if any honest node
has removed the content of any equivocating block on its
longest chain, then an appropriate equivocation proof is timely
included on-chain, and all honest nodes remove the block’s
content before it reaches the output ledger.
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3) Ensuring Fees Get Paid despite Lack of Predictable
Validity: Equivocation removal in SaPoS leads to lack of
predictable transaction validity, i.e., honest nodes do not
know whether transactions they include in their block will be
valid, since the content of blocks in the prefix may later be
removed due to an equivocation. This risks that the adversary
gets to spam the ledger with invalid transactions for free.
In one solution to prevent this, we focus on guaranteeing
transaction fees are always paid regardless of equivocations,
by introducing gas deposit accounts that can only be used to
pay transaction fees. Any deposit to such an account takes
effect only after the deadline has passed for the inclusion
of any equivocation proof that might lead to removal of
transactions from the deposit’s prefix. This gives honest block
producers a lower bound on the account’s balance which they
can use to reliably determine whether a transaction can pay
fees.

II. ATTACKS AND EXPERIMENTS

In this section, we describe the teasing attack and equiv-
teasing attack. We simulate both attacks on a network of 100
nodes.1 Setup details are in App. A. Honest nodes collectively
produce blocks at a rate λhon = 1 block per second. Each
node has a limited processing rate of C blocks per second.
Blocks consist of content (transactions) and a header (block
production lottery information and parent block pointer). The
header contains information to verify the block production
lottery, thus nodes only process validly created blocks. Given
a tree of valid block headers, nodes run the longest-header-
chain policy: nodes attempt to process (download and verify)
the first unprocessed block along the longest header chain. If
the longest chain is already processed, or if the content of
any block on that chain is unavailable or invalid, then the rule
considers the next longest header chain, and so on.

A. Recap of the Private Attack

In the private attack, the adversary produces a chain of
blocks that it keeps private until it becomes longer than the
honest nodes’ longest chain. Subsequently, releasing the chain
causes honest nodes to switch their longest chain. Recall that
in Nakamoto consensus, honest nodes confirm transactions
which are at least kconf blocks deep in their longest down-
loaded chain, for some parameter kconf chosen by the node.
Therefore, if the adversary’s chain differs from the honest
nodes’ original longest chain by kconf blocks, then the attack
causes honest nodes to alter their ledger, which is a safety
violation.

Note that during this attack, the adversary does not release
any blocks. So, honest nodes undergo processing delay due
to honest blocks only. The growth of the honest nodes’ chain
in this case is illustrated in Fig. 5. Due to processing delays,
the chain growth rate λpvt

grwth is less than the honest mining
rate λhon (‘no attack’ in Fig. 8). In this case, the honest chain
growth rate is approximately the same as that under a network

1Source code: https://github.com/avivz/finitebwlc/tree/stable
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Fig. 5. Honest chain growth when the adversary does not release blocks (no
attack or the private attack). Semi-transparent blocks have been announced
(i.e., headers released) but were not yet downloaded by honest nodes. (a)
A new block is announced at height 2. This block is not yet processed by
most of the nodes. As per the longest-header-chain policy, all honest nodes
start processing this block. Until honest nodes process this block, they still
attempt to mine a new block at height 2. (b) Some blocks may be mined at
the same height 2, which do not lead to chain growth. (c) When honest nodes
finish processing the first block at height 2 (which takes at most 1/C time
since that block was announced), they now attempt to mine the next block
extending it at height 3. Note: If the same node produces two consecutive
blocks, then the second of the two blocks will be at a new height as this node
has already processed the first. However, when the number of nodes is large,
the probability that the same node produces two consecutive blocks is very
small, and therefore can be neglected.

where all blocks are processed within ∆ = 1/C time after they
are announced (the bounded delay model), as seen in Fig. 8.

The success of the private attack (and the attacks we
describe ahead) depend crucially on the race between the
honest chain growth rate λgrwth and the adversary’s block
production rate λadv. If λadv > λgrwth, then with high
probability, in the long run, the adversary’s private chain is
longer than the honest chain, so the attack succeeds. Thus, the
honest chain growth rate determines the adversarial fraction
β required for the attack.2 Conversely, if λadv < λgrwth, then
with high probability, in the long run, the adversary’s chain is
shorter than the honest chain. In the short run however, even
if λadv < λgrwth, with some probability, the adversary’s chain
can get longer than the honest chain. Our attacks exploit this
to save up blocks which will be released during the attack.

B. The Teasing Attack (PoW and PoS)

In Fig. 6, we describe the teasing attack. We see that the
adversary utilizes the chain that it constructs not only to later
overtake the public chain and break safety, but also to induce
processing of one extra block for every block that grows the
length of the honest chain. It therefore effectively doubles the
processing invested per growth event of the public main chain.

Before the attack starts, the honest chain grows at the rate
λpvt

grwth just as in the private attack, because the adversary does
not release any blocks. To start the attack, the adversary mines
a short private chain, which succeeds with some probability
even if the adversary’s mining rate is λadv < λpvt

grwth. The
attacker then releases blocks from this chain during the teasing
attack. Thereafter, the teasing attack slows down the honest
chain growth rate to λteaser

grwth < λpvt
grwth (‘teasing attack’ in

Fig. 6). If the adversary’s mining rate λadv exceeds λteaser
grwth,

then the adversary can maintain a chain that is longer than the
honest chain and continue the attack forever. Since λteaser

grwth <

λpvt
grwth, the teasing attack succeeds with lower adversarial

2Precisely, the attack succeeds if β , λadv
λadv+λhon

>
λgrwth

λgrwth+λhon

https://github.com/avivz/finitebwlc/tree/stable
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Fig. 6. Teasing attack: Green/red are honest/adversarial blocks, and numbers
on blocks indicate height in the blockchain. Semi-transparent blocks have been
announced (i.e., headers released) but were not yet downloaded by honest
nodes. (a) We begin when honest nodes have a chain of length 2. All blocks
have been downloaded and validated by honest nodes. The adversary mines a
private chain extending its own block at height 1 that it keeps withheld. (b) An
honest node builds a block at height h = 3, and announces it. The majority of
the nodes are still mining on top of the block at height h− 1. The adversary
wishes to delay the download of the new block. (c) The adversary announces a
block at height h+1 from the chain it had been withholding. Since this is the
longest announced chain, honest nodes prioritize its download beginning with
the adversary’s block 2. (d) Honest nodes have downloaded and validated the
adversary’s block 2. Since they do not yet have a longer validated chain, they
keep mining as before. When they request the adversary’s block of height
h = 3, they find it to be unavailable (‘?’), i.e. the adversary does not release
its content. So honest nodes ignore the rest of the attacker’s chain and resume
downloading the honest block of height h = 3. (e) While download of the
honest block was delayed, some mining power may have been wasted and
another honest block of height h = 3 may have been produced. Notice now
that we are in a scenario similar to that in step (a), so the adversary can repeat
steps (b) with the next honest block of height h+ 1. (f) Once an honest node
mines a block of height 4, the attacker announces a block at height 5, and
proceeds to allow a download of height 3, delaying again the verification
of the honest block at height 4. Eventually, the attack breaks safety as the
adversary releases content for the rest of its chain to overtake the honest chain.

(c) G
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Fig. 7. Equiv-teasing attack: Steps (a)-(e) are the same as in the teasing
attack (Fig. 6). Recall that in (c), to delay the download of the honest block
at height h = 3, the adversary announces a block at height h + 1 which
it was withholding. Since this is the longest announced chain, honest nodes
prioritize downloading block 2 on this chain. New steps: (f) Once an honest
node produces a block at height 4, the adversary announces equivocations
1′, 2′, ... of its withheld chain of length 5 instead of announcing one new
block extending the chain 1, 2, ... Therefore, honest nodes have to process
blocks 1′, 2′ even though they processed 1, 2 earlier. The adversary makes
content available for only 1′, 2′, 3′. As the attack goes on, the adversary’s
announced chain gets longer, and it consumes even more of the honest node’s
processing capacity.

mining power than the private attack. This attack works in
both PoW and PoS.

C. The Equiv-Teasing Attack (PoS)

In PoS, the adversary can greatly increase the network’s
processing load using equivocations. The equiv-teasing attack,
described in Fig. 7, uses equivocations to announce a whole
new chain at every instance when the teasing attack would
have announced a single new block. As the attack goes on, the
length of the new announced chain increases. This increases
the time honest nodes spend downloading this chain, and
decelerates the honest chain growth until it comes to a halt. As
a result, in Fig. 8, the chain growth rate under the equiv-teasing
attack is nearly zero (the small nonzero value is because there
is some chain growth at the start).

As in the teasing attack, the adversary starts by producing
a private chain. Assuming the adversary’s block production
rate λadv is less than the honest chain growth rate before the
attack (λpvt

grwth), the probability that the adversary produces
a chain of length L before the honest chain reaches length
L is e−O(L) [5], [11]. This means that with probability ε,
the adversary eventually produces a private chain of length
L = O(log(1/ε)), of which it can announce equivocations
during the attack. Since this chain is longer than the honest
chain, it has higher download priority. It takes honest nodes
L/C time to download such a chain, during which time,
honest nodes do not download blocks on the honest chain.
So, any honest blocks produced within L/C time after the
first honest block at height h do not grow the honest chain
(Fig. 6(e)). If λhonL/C is large, then there are many honest
blocks that do not lead to chain growth, causing the chain
growth rate λgrwth to drop (Fig. 8). As in the teasing attack,
if the adversary’s block production rate λadv exceeds λgrwth,
then the adversary succeeds in maintaining the number of
block productions required for the attack to go on forever.
This eventually slows honest chain growth to a halt. Thus,
if λhonL/C is large, i.e., λhon = Ω(1/L) = Ω

(
1

log(1/ε)

)
,

then the attack succeeds with probability ε. A more detailed
analysis can be found in App. H-B.

It may seem at first that the above attacks exploit the
specific longest-header-chain scheduling policy to tease honest
nodes into downloading adversarial blocks. However, even
for other scheduling policies, it is possible to devise attack
strategies which exploit increased queuing delays and thereby
succeed for parameter regimes where the private attack does
not succeed. For example, the teasing attack would not succeed
if honest nodes ‘greedily’ prioritized processing blocks that
extend their longest chain. But this is vulnerable to a forking
attack in which, following a short network split, honest nodes
build two separate chains and fail to ever catch up with
the other chain. Some such generalizations of our attacks
are described in App. H. The overarching conclusion is that
models for security analysis must capture effects of adversarial
queuing delay.
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Fig. 8. Simulation results: The rate of chain growth relative to honest block
production rate, when nodes prioritize downloads towards the longest header
chain, for various bandwidths. When the attacker does not release any blocks
(no attack or private attack), we already see λgrwth < λhon due to natural
congestion ( ). As described in Sec. II-A, the honest chain growth rate under
the private attack is approximately the same whether simulated on a network
with finite processing capacity C ( ), or on an idealized network with bounded
delay ∆ = 1/C ( ). With a teasing attack, processing is slowed roughly
by a factor of 2, which lowers the growth rate of the chain further ( ). This
lowers security compared to a private attack, cf. Fig. 1. Due to equivocations
in PoS, the honest chain grinds to a halt under the equiv-teasing attack ( ),
implying vulnerability even to adversaries with close to zero stake.

III. PROTOCOL & MODEL

Pseudocode of an idealized Nakamoto consensus protocol
Πρ,τ,kconf is provided in Alg. 1. Details of the protocol’s
resource-based block production lottery, i.e., of production and
verification of blocks, are abstracted through an idealized func-
tionality Fhdrtree (cf. [9, Fig. 2], [19, Alg. 3]). Pseudocode for
instantiations FPoW,ρ

hdrtree and FPoS,ρ
hdrtree modeling proof-of-work

(PoW) and proof-of-stake (PoS) are provided in Alg. 2 and
Alg. 3, respectively. Helper functions used in the pseudocode
are detailed in App. G-A. We study these protocols in a unified
model for a network Z with finite bandwidth (Fig. 9), and for
the powers and limits of an adversary A.

A. Nakamoto’s Longest Chain Consensus Protocols

For ease of exposition, the execution features a static set
of N equipotent nodes, each of which runs an independent
instance of Πρ,τ,kconf . Temporary crash faults (‘sleepiness’) of
nodes (in PoW and PoS), heterogeneous distribution of hash
power (in PoW) or stake (in PoS), and stake shift (in PoS)
or difficulty adjustment (in PoW), are left to be addressed
with techniques from [7], [9], [10], [28]. We are interested in
the large system regime N → ∞. Nodes interact with each
other and with the adversary A through an environment Z that
models the network and is detailed in Sec. III-B and App. G-B.
The protocol proceeds in slots of duration τ (Alg. 1, l. 20). At
each slot t, the protocol queries the block production lottery
Fhdrtree in an attempt to extend the longest downloaded chain
dC in the node’s view with a new block of pending transactions
txs. If successful, the node disseminates both the resulting
block header C′ and the associated block content txs via the
environment Z to all nodes. Finally, the protocol identifies
the kconf -deep prefix dCdkconf containing all but the last kconf

Algorithm 1 Idealized NC protocol Πρ,τ,kconf with download
logic (helper functions: App. G-A, environment Z: App. G-B,
functionality Fhdrtree: Alg. 2 for PoW, Alg. 3 for PoS)

1: . Global counter of slots t← 1, 2, ... of duration τ (for PoW: τ → 0, cf. Sec. V)
2: on INIT(genesisC, genesisTxs)
3: . Initialize header tree hT , longest downloaded chain dC, and mappings from

block header to content blkTxs
4: hT , dC ← {genesisC}, genesisC
5: blkTxs[genesisC]← genesisTxs . Unset entries of blkTxs are UNKNOWN

6: on RECEIVEDHEADERCHAIN(C) . Called by Z or A
7: assert Fhdrtree.VERIFY(C) . Validate header chain
8: hT ← hT ∪ prefixChainsOf(C) . Add C and its prefixes to hT
9: Z.BROADCASTHEADERCHAIN(C)

10: on RECEIVEDCONTENT(C, txs) . Called by Z or A
11: . Defer processing the content until all prefixes’ contents are downloaded
12: defer until ∀C′ ≺ C : blkTxs[C′] 6= UNKNOWN
13: assert C.txsHash = Hash(txs)
14: RECEIVEDHEADERCHAIN(C) . Validate header chain
15: blkTxs[C]← txs
16: Z.UPLOADCONTENT(C, txs)
17: . Update the longest downloaded chain among downloaded chains
18: T ′ ← {C′ ∈ hT | blkTxs[C′] 6= UNKNOWN}
19: dC ← arg maxC′∈T ′

∣∣C′∣∣
20: at slot t← 1, 2, ... . NC protocol main loop
21: txs← Z.RECEIVEPENDINGTXS()
22: . Produce and disseminate a new block if eligible
23: if C′ 6= ⊥ with C′ ← Fhdrtree.EXTEND(dC, txs)
24: Z.BROADCASTHEADERCHAIN(C′)
25: Z.UPLOADCONTENT(C′, txs)
26: . Confirm all but the last kconf blocks on the longest downloaded chain
27: LOGt ← txsLedger(blkTxs, Cdkconf ) . Ledger of node p at t: LOGtp

28: do throughout
29: Download content for some C chosen by download rule (e.g. Alg. 4)

Algorithm 2 Idealized functionality FPoW,ρ
hdrtree: block produc-

tion lottery and header chain structure for PoW (helper func-
tions: App. G-A)

1: on INIT(genesisC, numNodes)
2: N ← numNodes
3: T ← {genesisC} . Global set of valid header chains
4: on EXTEND(C, txs) from node P (possibly adversarial) at slot t
5: . Abstraction of proof-of-work lottery: each node can call this once per slot

and produces a block with probability ρ/N independently of other nodes and slots
6: if lottery[P, t] 6= ⊥ return ⊥ . Only one ticket per node and slot

7: lottery[P, t]
$← (true with probability ρ/N , else false)

8: if C ∈ T ∧ lottery[P, t] . Parent chain C is valid and lottery was won?
9: . Produce a new block header extending C

10: C′ ← C‖ newBlock(txsHash : Hash(txs))
11: T ← T ∪ {C′} . Register new header chain in header tree
12: return C′
13: return ⊥
14: on VERIFY(C)
15: return C ∈ T . Header chain is valid if previously added to header tree

blocks of dC. The transactions along dCdkconf are concatenated
to produce the output ledger LOGt.

When a node p receives a new valid block header C
(Alg. 1, l. 6), p adds C to its header tree hT , records C as first
seen at the current slot, and relays C to all other nodes via Z .
Throughout the execution, the protocol requests from Z the
content for block headers decided by a download priority rule
(also called scheduling policy) (Alg. 1, l. 29). As a concrete
example, we use the longest-header-chain rule (Alg. 4) in
which a node downloads content for the first block header
with unknown content on the longest header chain it has seen.
Once a valid block’s content is received (Alg. 1, l. 10), the
node makes it available to other nodes via Z , and updates its
dC.
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Algorithm 3 Idealized functionality FPoS,ρ
hdrtree: block produc-

tion lottery and header chain structure for PoS (helper func-
tions: App. G-A)

1: . INIT(genesisC, numNodes) and VERIFY(C) same as in Alg. 2
2: on ISLEADER(P, t) from A (only for adversarial node P ) or FPoS,ρ

hdrtree
3: . Abstraction of proof-of-stake lottery: each node is chosen leader in each slot

with probability ρ/N independently of other nodes and slots
4: if lottery[P, t] = ⊥
5: lottery[P, t]

$← (true with probability ρ/N , else false)

6: return lottery[P, t]

7: on EXTEND(t′, C, txs) from A (only for adversarial node P ) or FPoS,ρ
hdrtree

8: . New header chain is valid if parent chain C is valid, P is leader for slot t′,
and t′ is later than the tip of C and is not in the future

9: if (C ∈ T ) ∧ FPoS,ρ
hdrtree.ISLEADER(P, t′) ∧ (C.time < t′ ≤ t)

10: . Produce a new block header extending C
11: C′ ← C‖ newBlock(time : t′, node : P, txsHash : Hash(txs))
12: T ← T ∪ {C′} . Register new header chain in header tree
13: return C′
14: return ⊥
15: on EXTEND(C, txs) from node P (possibly adversarial) at slot t
16: return FPoS,ρ

hdrtree.EXTEND(t, C, txs)

Algorithm 4 Longest-header-chain rule Dlong

1: function dlLongestHdrChain(hT , blkTxs)
2: T ′ ← {C ∈ T ′ | blkTxs[C] = UNKNOWN} . Ignore downloaded chains
3: C ← arg maxC′∈T ′

∣∣C′∣∣ . Select the longest chain
4: C′ ← arg minC′′�C : blkTxs[C′′]=UNKNOWN

∣∣C′′∣∣ . First unknown block on
that chain (if non-existent: ⊥)

5: return C′

a) Proof-of-Work: The characteristics of PoW-based
block production, e.g., in Bitcoin [5], [6], are captured by the
idealized functionality FPoW,ρ

hdrtree (Alg. 2). Each block produc-
tion attempt is committed to a parent block and block content
(Alg. 2, l. 4), and only a single block is produced when the
attempt is successful. Per slot, each node can make one block
production attempt that will be successful with probability
ρ/N , independently of other nodes and slots (Alg. 2, l. 7). This
model, for ease of exposition, assumes uniform hash power
across all nodes. Since each slot represents a single PoW
evaluation, we study PoW in the regime ρ = Θ(τ), τ → 0. In
turn as ρ→ 0, with probability 1, each slot produces at most
one block across all nodes. The PoW model thus implies that
every block must be produced in a slot strictly after its parent
block.

b) Proof-of-Stake: PoS NC protocols such as from the
Ouroboros [7], [8], [15] or Sleepy Consensus [9], [10] families
can be modeled using FPoS,ρ

hdrtree (Alg. 3). As in PoW, each
node can make one block production attempt per slot that will
be successful with probability ρ/N , independently of other
nodes and slots (Alg. 3, l. 5)3, modeling uniform stake. In
PoS, however, (even past) block production opportunities can
be ‘reused’ to produce multiple blocks with different parents
and/or content, i.e., to equivocate (Alg. 3, ll. 2 and 7). The
regime of interest is τ = Θ(1).

B. Bandwidth Constrained Network

We borrow the bandwidth constrained network model
of [19] (Fig. 9). In this model, Z abstracts push-based flooding

3There may be multiple blocks in one slot, as in the Ouroboros [7], [8],
[15] and Sleepy Consensus [9], [10] protocols.
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Fig. 9. Bandwidth constrained network model [19, Fig. 4]: 1 Honest node
produces a block, made of header and content. A hash in the header commits
to the content. 2 Header is flooded (Z.BROADCASTHEADERCHAIN), and
arrives at all nodes (Πρ,τ,kconf .RECEIVEDHEADERCHAIN) with at most ∆h

delay. 3 Content is made available for peer-to-peer pull-based download
(Z.UPLOADCONTENT). 4 Content associated with the header is downloaded
(Πρ,τ,kconf .RECEIVEDCONTENT), subject to a maximum rate of C. 5 The
adversary can push headers and content to nodes, bypassing the delay and
bandwidth constraints.

of ‘small’ block headers and pull-based downloading of ‘large’
block contents from peers. Block header chains sent via
Z.BROADCASTHEADERCHAIN are eventually delivered by Z
to every node, cf. Alg. 1, l. 6. Headers are delivered with a
per-node per-header delay determined by A, up to a commonly
known delay upper bound ∆h. Block content made available
via Z.UPLOADCONTENT is kept by Z in what can be thought
of as a ‘cloud’. Nodes can request the content associated with
a particular header. If content matching the header is available,
then it is delivered by Z to the node, cf. Alg. 1, l. 10. Content
download is subject to a per-node bandwidth constraint of C.
See App. G-B for a more formal description of Z .

The ‘cloud’ captures key properties of pull-based peer-
to-peer downloading. At first, content matching a particular
header might not be available (e.g., A produced a block and
disseminated its header, but withheld its content). Later, such
content can become available (e.g., A releases the content
to one honest node). Thus, the ‘cloud’ ensures neither data
availability nor strong consistency of query outcomes, unlike
stronger primitives such as verifiable information dispersal
[29]–[32]. However, once content for a header does become
available, it is unique and remains available. This captures
the header’s binding commitment to the content, and the
fact that honest nodes share content with peers. Requests for
unavailable content do not count towards the download budget.
Also note that the adversary can push headers and content
bypassing bandwidth and delay constraints, and this models
non-uniform bandwidth across nodes, and additional effects
(analogous to adversarially controlled delay up to maximum
∆ in the bounded delay model).

a) Powers and Limits of the Adversary: The static ad-
versary A chooses a set of nodes (up to a fraction β of all
N nodes, where β is common knowledge) to corrupt before
the randomness of the execution is drawn and the execution
commences. Uncorrupted honest nodes follow Πρ,τ,kconf at all
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times. Corrupted adversarial nodes follow arbitrary computa-
tionally bounded Byzantine behavior, coordinated by A in an
attempt to break consensus. Among other things, the adversary
can: withhold block headers and content, or release them late
or selectively to honest nodes; push headers and content to
nodes while bypassing the delay and bandwidth constraints;
break ties in Πρ,τ,kconf ’s chain selection and content down-
load policy; in PoS, reuse block production opportunities to
produce multiple blocks (equivocations, cf. FPoS,ρ

hdrtree.EXTEND),
and extend chains using past opportunities as long as the
purported block production slots along every chain remain
strictly increasing.

C. Security of Ledger Protocols

For an execution of Πρ,τ,kconf where every honest node p
at every slot t outputs a ledger LOGtp, we recall the security
desiderata:
• Safety: For all adversarial strategies, for all slots t, t′, and

for all honest nodes p, q: LOGtp � LOGt
′

q or LOGt
′

q �
LOGtp.

• Liveness with parameter Tlive: For all adversarial strategies,
if a transaction tx is received by all honest nodes by slot t,
then for every honest node p and for all slots t′ ≥ t+Tlive,
tx ∈ LOGt

′

p .
A consensus protocol is secure over time horizon Thrzn slots
with parameter Tlive iff it satisfies safety, and liveness with pa-
rameter Tlive, with overwhelming probability over executions
of time horizon Thrzn slots.

D. Notation

Nodes are identified using p, q. Our notation distinguishes
between three notions of ‘time’: Slots of Πρ,τ,kconf are indi-
cated by r, s, t. Slots in which one or more blocks are produced
form a sub-sequence {tk}, defined in Sec. IV-B. Indices into
this sub-sequence are denoted by i, j, k. Physical parameters
of our model, header propagation delay ∆h and bandwidth C,
are specified in units of real time.

We denote intervals of indices (or slots) as (i, j] , {i +
1, ..., j}, with the convention that (i, j] , ∅ for j ≤ i. We
study executions over a finite horizon of Thrzn slots (or Khrzn

indices), and any interval (i, j] with i < 0 or j > Khrzn

considered truncated accordingly. The notation (i, j] � K
(resp. �,≺,�,�) is short for j−i > K (resp. ≥, <,≤,=). In
the analysis, we denote with upper-case Latin letters several
random processes over indices (e.g., Xk) or slots (e.g., Ht).
For any set I of indices (analogously for slots), we define
XI ,

∑
k∈I Xk.

We denote by κ the security parameter. An event Eκ occurs
with overwhelming probability if Pr [Eκ] ≥ 1−negl(κ). Here,
a function f(κ) is negligible negl(κ), if for all n > 0, there
exists κ∗n such that for all κ > κ∗n, f(κ) < 1

κn .

IV. SECURITY ANALYSIS

A. Unified Model for PoW and PoS

We develop a unified probabilistic model for the block
production of both PoW and PoS as per Algs. 2 and 3. This

enables us to prove properties of the block production process
and block tree structure that are common to both variants
(Sec. IV-C). We then use these properties to prove security
of PoW NC (Sec. V) and PoS NC (Sec. VI).

Recall that the protocol runs in discrete units of time of
duration τ called slots, and that we consider τ → 0 to model
PoW. A block production opportunity (BPO) is a pair (p, t)
where according to the PoW/PoS block production lottery,
node p is eligible to produce a block in slot t. A BPO is
called honest (resp. adversarial) if node p is honest (resp. ad-
versarial). The random variables Ht and At denote the number
of honest and adversarial BPOs in slot t, respectively. When
the number of nodes N → ∞ and each node holds an equal
rate of block production, by the Poisson approximation of a
binomial random variable, we have Ht

i.i.d.∼ Poisson((1−β)ρ)

and At
i.i.d.∼ Poisson(βρ), independent of each other and across

slots. The total number of BPOs per slot is Qt = Ht + At.
An execution refers to a particular realization of the random
process {(Ht, At)}.

In PoW, as we take τ → 0, the block production process
converges to a Poisson point process. As noted in Sec. III-A,
each BPO corresponds to a different slot, and thus in PoW,
blocks in one chain must come from increasing slots. In PoS
the latter property is by design (Alg. 3, l. 9).

In this unified model, we make the adversary’s powers
the strongest of both PoW and PoS. Specifically, we allow
the adversary to create multiple blocks from the same BPO
(equivocations) which is only possible in PoS but not in PoW.
However, we assume in the unified analysis that honest nodes
use a download rule which downloads at most one block per
BPO. From a bandwidth perspective, this puts both PoW and
PoS on an equal footing. Then as seen in [11], [12], the
additional ability to equivocate does not change the block tree
properties and therefore allows us to use similar techniques in
our unified analysis. The assumption of downloading at most
one block per BPO clearly holds for any download rule in
PoW, but we define an equivocation removal policy to achieve
this in PoS, so that the unified model applies to PoS as well.

B. Definitions

‘Good’ slots are slots with exactly one honest BPO and
no adversarial BPOs in that slot, and no BPOs in ν slots
after. This definition is inspired by convergence opportunities
[9], [17], [18], loners [11], and laggers [16]. Here, ν is an
analysis parameter whose value is chosen such that each
honest node can receive the block header from the honest BPO,
and download content for C̃ blocks within ν + 1 slots, i.e.,

(ν + 1)τ , ∆h + C̃/C. (1)

Definition 1. We call a slot t good, bad, empty, respectively,
denoted as Good(t), Bad(t), Empty(t), respectively, iff:

Good(t) , (Ht = 1) ∧ (At = 0)

∧(H(t,t+ν] +A(t,t+ν] = 0) (2)

Bad(t) , (Ht +At > 0) ∧ ¬Good(t) (3)
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Empty(t) , (Ht +At = 0). (4)

Note that Empty(t) = ¬Good(t) ∧ ¬Bad(t). We denote by
tk the k-th non-empty slot. Then, we can introduce random
processes over indices, with index k corresponding to the k-th
non-empty slot tk. The process {Gk} counts good slots, with
Gk , 1 if Good(tk), and Gk , 0 otherwise (i.e., if Bad(tk)).
Correspondingly, {Gk} counts bad slots, Gk , 1−Gk.

Proposition 1. The random variables {Gk} are independent
and identically distributed (iid) with

Pr [Gk = 1] , pG = (1− β)
ρe−ρ(ν+1)

1− e−ρ
. (5)

The proof is by noting that the inter-arrival times between
non-empty slots are iid and independent of how many and
what kind (honest/adversarial) BPOs occur in that non-empty
slot. Details are in App. E-A. Throughout the analysis, we will
assume that pG > 1

2 (‘honest majority’ assumption).
A special role is played by good slots tk as these are

candidate slots in which the block produced at tk is ‘soon’
downloaded by all honest nodes. We count these slots with
{Dk}, and all other non-empty slots with {Dk}. Specifically,
Dk , 1 if Good(tk) and the block produced at tk has been
downloaded by all honest nodes by the end of slot tk + ν,
Dk , 0 otherwise, and Dk , 1 − Dk. We call slots k with
Dk = 1 as D-slots and those with Dk = 1 as D-slots.

Finally, we define two random walks on indices of non-
empty slots with increments {Xk} and {Yk} that will come
in handy for the definition of probabilistic and combinatorial
pivots:

Xk , Gk −Gk Yk , Dk −Dk (6)

Note that the increments {Xk} are iid, and not affected by
adversarial action, while the increments {Yk} do depend on
the adversarial action and are thus in particular not iid. Also
note that ∀k : Yk ≤ Xk since Dk = 1 =⇒ Gk = 1.

Definition 2. We call an index k a ppivot (short for proba-
bilistic pivot), denoted as PPivot(k), iff:

PPivot(k) , (∀ (i, j] 3 k : X(0,i] < X(0,k] ≤ X(0,j]) (7)

This definition of ppivots captures the probabilistic aspects
of [9, Def. 5] used in [9, Sec. 5.6.3] and casts them as
conditions on a random walk, inspired by [11], [33], to
simplify the analysis.

Definition 3. We call an index k a cpivot (short for combina-
torial pivot), denoted as CPivot(k), iff:

CPivot(k) , (∀ (i, j] 3 k : Y(0,i] < Y(0,k] ≤ Y(0,j]) (8)

This definition of cpivots captures the combinatorial aspects
of [9, Def. 5] used in [9, Sec. 5.6.2] and casts them as
conditions on a random walk, inspired by [11], to simplify the
analysis. Note that a cpivot is also a ppivot because Yi ≤ Xi.

We denote by dCp(t) the longest fully downloaded chain of
an honest node p at the end of slot t, and let |b| denote the
height of a block b. We use the same notation |C| to denote the

length of a chain C, define Lp(t) = |dCp(t)| and Lmin(t) =
minp Lp(t).

C. Unified Analysis in the Probabilistic Model

In this section, we develop all the tools needed to prove the
safety and liveness of PoW and PoS Nakamoto consensus.

In Sec. IV-C1 we show that a block produced in a slot
corresponding to a cpivot stabilizes, i.e., remains in the longest
downloaded chain of all honest nodes. This is useful because if
transactions in a block are confirmed after waiting long enough
so at least one cpivot occurs, the prefix of the cpivot stabilizes
and so those transactions remain in every honest node’s ledger
(safety). The occurrence of cpivots also guarantees liveness
because the block from a cpivot is honest, so it adds new
valid transactions to the ledger.

Further, we show that ppivots occur very often (Sec. IV-C2)
and the adversary cannot prevent all ppivots from becoming
cpivots (Sec. IV-C3). Thus, at least one cpivot occurs in a
long enough time interval, the length of which can be set as
the confirmation time.

1) Combinatorial Pivots Stabilize: In this section, we show
that the honest block produced in a slot corresponding to a
cpivot persists in the longest downloaded chain of all honest
nodes after ν slots. Towards this, we first show that if Dk = 1,
i.e., if all honest nodes download the block produced in
the good slot tk, then the length of the longest downloaded
chain of honest nodes increases (made precise in Prop. 2).
Due to this, since all intervals around a cpivot contain more
indices with Dk = 1 than those with Dk = 0, there can
never be a chain which is longer than an honest node’s
longest downloaded chain and does not contain the block
corresponding to the cpivot (Lem. 1). In turn, this means that
the block corresponding to the cpivot remains in all honest
nodes’ longest downloaded chains forever. Lem. 1 is proved
in App. E-B using tools similar to [9], [11].

Proposition 2. If Dk = 1, then Lmin(tk + ν) ≥ Lmin(tk −
1) + 1.

Proof. Since Dk = 1, slot tk is a good slot. Let b be the unique
honest block produced in slot tk, and let honest node p be its
producer. Since honest nodes produce blocks on their longest
downloaded chain, |b| = Lp(tk − 1) + 1 ≥ Lmin(tk − 1) + 1.
Further, Dk = 1 means that the block b is downloaded by all
honest nodes by the end of slot tk + ν. Therefore, Lmin(tk +
ν) ≥ |b|.

Lemma 1. Let b∗ be the block produced in a non-empty slot
tk such that CPivot(k). Then for all header chains C′ that are
valid at slot t ≥ tk + ν and |C′| ≥ Lmin(t), b∗ ∈ C′. Further,
for all honest nodes p and for all slots t ≥ tk+ν, b∗ ∈ dCp(t).

2) Probabilistic Pivots Are Abundant: Sufficiently long
intervals of indices contain a number of ppivots proportional
to the interval length.

Lemma 2. For Kcp = Ω(κ2), and Khrzn = poly(κ),

Pr
[
∀ (i, j] � Kcp : P(i,j] ≥ (1− δ)pppivotKcp

]
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(a) − + + + − + + + − + + + −
0 Kcp

(b) − + + + − + + + − + + + −

Fig. 10. (a) Example realization of block production opportunities in
(0,Kcp], with good (+) and bad (−) indices, and resulting ppivots ( ). (b)
To prevent a ppivot from being a cpivot, the adversary needs to prevent the
timely download ( ) of some blocks produced at good indices, so that around
the respective ppivot there is an interval ( ) in which the cpivot condition (cf.
Def. 3) is violated. Here, the first two ppivots are not cpivots. To prevent the
timely download of a block from a good index, the adversary must ‘spend’ C̃
blocks. Once the adversary runs out of blocks, a ppivot remains cpivot (here
the third ppivot).

≥ 1− exp(−Ω(κ)) = 1− negl(κ). (9)

The proof is in App. B-B.
3) Many Probabilistic Pivots Imply One Combinatorial

Pivot: The longest-header-chain rule Dlong has some useful
properties. Intuitively, nodes using this rule

(P1) do not download the same block twice,
(P2) download at most one block from each BPO (in PoW),
(P3) either download the most recent honest block, or fully

utilize their bandwidth to download other blocks (don’t
stay idle), and

(P4) download only blocks that were produced ‘recently’.
(P1) clearly holds as this rule only downloads content

for headers whose content is yet UNKNOWN, hence was not
downloaded before. (P2) holds in PoW because there is only
one block per BPO. In PoS, the download rule is modified
to satisfy this property (Sec. VI). (P3) holds because the
download rule Dlong is never idle, and will always download
towards an honest block when it has downloaded all longer
chains and there is bandwidth remaining. Moreover, we expect
that under a secure execution, (P4) holds because the longest
header chain can not fork off too much from the longest
downloaded chain of an honest node, otherwise it would cause
a safety violation. More precisely, due to Lem. 1, any longest
header chain in any honest node’s view must extend the block
produced in the most recent cpivot, and therefore blocks with
the highest download priority must have been produced after
the most recent cpivot (Prop. 3).

Proposition 3. If Gk = 1 and Dk = 0, then during slots
[tk, tk + ν], all honest nodes using the download rule Dlong

download content of at least C̃ blocks that are produced in
(i, k], where i < k is the largest index such that CPivot(i) (if
such an i does not exist, i = 0).

Given the above properties of the download rule, we now
want to show that cpivots occur often. Fig. 10 illustrates the
key argument for this. To start, let us show that there is at
least one cpivot in (0,Kcp]. From Lem. 2, there are many
ppivots in (0,Kcp]. If there were no cpivots in (0,Kcp], then
the adversary must prevent each ppivot from turning into a
cpivot. We know that in any interval around a ppivot, there are
more good indices than bad indices (see top row in Fig. 10).

In fact, good indices outnumber bad indices by a margin that
increases linearly with the size of the interval. Therefore, for
a ppivot to not be a cpivot, the adversary must prevent an
honest node from downloading the most recent honest block
in several of these good indices (so that the Gk = 1 indices
have Dk = 0). Fig. 10 shows an example where the adversary
prevented download of the honest block in one good index, and
as a result, two of the ppivots fail to become a cpivot. In the
proof of Lem. 3, through a combinatorial argument, we show
that to prevent all of n ppivots in (0,Kcp] from becoming
cpivots, the adversary must prevent download of the honest
block in at least n/4 good indices in (0, 2Kcp]. From Prop. 3,
for each such index, the adversary must ‘spend’ at least C̃
blocks that the honest node downloads. These blocks must
come from a ‘budget’ that can contain at most all blocks mined
during (0, 2Kcp]. If this ‘budget’ falls short of the number of
blocks required to overthrow all cpivots, then there must be at
least one cpivot in (0,Kcp].

Next, we would like to show that there is at least one
cpivot in (mKcp, (m+ 1)Kcp] for all m ≥ 0 (where we just
saw the base case m = 0). Here, the adversary might save
up many blocks from the past and attempt to make honest
nodes download these blocks at a particular target slot tk.
This is where the property of the download rule proven in
Prop. 3 becomes useful. Given that one cpivot occurred in
((m− 1)Kcp,mKcp], Prop. 3 ensures that honest nodes will
only download blocks that are produced after (m−1)Kcp. This
allows us to bound the ‘budget’ of blocks that the adversary
can use to overthrow cpivots, and therefore show that there
is at least one cpivot in (mKcp, (m+ 1)Kcp]. The above
arguments are formalized in Lem. 3.

Lemma 3. If all honest nodes use the download rule Dlong,
and if

∀ (i, j] � Kcp :
C̃

2

(
G(i,j] −G(i,j]

)
> Q(i−2Kcp,j], (10)

∀m ≥ 0:
C̃

4
P(mKcp,(m+1)Kcp] > Q((m−2)Kcp,(m+2)Kcp], (11)

then ∀m ≥ 0: ∃k∗m ∈ (mKcp, (m+ 1)Kcp] : CPivot(k∗m).

Here, Q(.,.] is the adversary’s block budget, and the ex-
pressions on the left in eqns. (10) and (11) are the minimum
number of blocks the adversary needs to produce to ensure
that there are no cpivots, in terms of the number of ppivots
P(.,.] and number of good indices G(.,.]. Lem. 3 is proven
inductively using Prop. 3. The proofs of Prop. 3 and Lem. 3
are in App. B-C.

While all the analysis below is done for the download rule
Dlong, the proofs only use the properties (P1), (P2), (P3), (P4)
and thus apply to several other simple download rules. A few
examples are i) “download towards the freshest block” [19],
ii) “download only blocks that are consistent with the node’s
confirmed chain”, or iii) “at slot tk, only download blocks
produced in slots (tk − Tdl, tk]” for some Tdl. In fact, iii) gives
an alternative definition of the property (P4) instead of the one
in Prop. 3. In this work, we did not adopt i) because ‘freshness’
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cannot be determined in PoW, and ii) and iii) because they
would fail to recover from a network split (as demonstrated
in the forking attack briefly mentioned in Sec. II). In Sec. VI,
we modify the ‘download longest header chain rule’ to remove
equivocations in PoS. We show that this rule satisfies the above
properties, and hence the analysis of this section carries over
in PoS as well.

V. PROOF-OF-WORK

For PoW, we use the simple download rule ‘download the
longest header chain’. In Lem. 3, we showed that under this
download rule, cpivots occur in every Kcp-interval. We will
use this to prove safety and liveness and identify the protocol
parameters for which this holds with overwhelming probability
in Thm. 1.

As noted in Sec. III-A, it is most appropriate for PoW to
set τ → 0, and to state its security properties in terms of
real time. In order to use the results from Sec. IV, we must
bridge between indices and real time. This is easy to do as
the number of indices or non-empty slots is proportional to the
time interval. In fact, as τ → 0, the block production process
converges to a Poisson point process with rate λ , ρ/τ .
Moreover, each non-empty slot has exactly one BPO (arrivals
of a Poisson point process do not coincide).

Proof details in App. C. Result with ∆h ≈ 0 (reasonable
approximation for large block sizes) plotted in Fig. 1.

Theorem 1. For all β < 1/2, λ > 0, such that

λ < max
C̃

1

∆h + C̃/C
ln

(
2(1− β)C̃

C̃ + 4 +
√

8C̃ + 16

)
, (12)

the PoW Nakamoto consensus protocol Πρ,τ,kconf with the
download rule Dlong, τ → 0, ρ = λτ , and kconf = Θ(κ2)
is secure with liveness latency T real

live , Tliveτ = Θ(κ2) over a
time horizon of Khrzn = poly(κ) block productions.

VI. SANITIZING-PROOF-OF-STAKE (SAPOS)

A. Equivocation Removal

For PoS, due to spamming by equivocations, we need a
policy to ensure that nodes download at most one block from
each BPO. We therefore propose the Sanitizing-Proof-of-Stake
(SaPoS) protocol, in which the contents of provably equivo-
cating blocks are sanitized from the blockchain. Pseudocodes
Alg. 5 and Alg. 6 are in App. D-A.

a) The Download Rule in SaPoS: On top of any existing
download rule (such as longest-header-chain), we add another
rule that an honest node does not download content for a
header C if it has seen another equivocating header from the
same BPO (same producing node and slot) as C. Instead of
downloading content for such a header, the node considers
that content to be “downloaded” and sets it to be empty
(Alg. 5, l. 21). This means that the node can continue to
download content for headers that extend C, and these blocks
will be candidates for the node’s longest downloaded chain
dC.

b) Equivocation Proofs: With only the above download
rule, one honest node may download content for a header
while another may not (depending on when each node saw
an equivocating header). In order to output a consistent ledger
that all honest nodes have downloaded, reaching consensus
on just the header chain is not enough. For nodes to later
catch up to the confirmed header chain’s contents, the content
must be available in the network. Unfortunately, verifying data
availability [34] comes with several challenges.

Instead, we ensure that honest nodes agree on which blocks
had an equivocation, and unilaterally blank their contents. For
this, when an honest node produces a new block header, it
adds an ‘equivocation proof’ against any equivocating blocks
among the recent blocks in its downloaded longest chain.
Specifically, the node picks from among the last kepf block
headers in its longest downloaded chain dC, block headers
C′ for which the node has seen an equivocating block header
C′, and there is no equivocation proof against it in any block
header in dC. The node then creates an equivocation proof
which consists of the two block headers C and C′ and adds
the equivocation proof to the header of the block that it creates
(Alg. 5, l. 6).

The deadline kepf for adding equivocation proofs exists so
that the adversary cannot release an equivocation after its block
has been confirmed, and force honest nodes to then blank the
content for that block, thereby altering the ledger. The deadline
also keeps the size of equivocation proofs in a header limited.
We also don’t want an equivocation proof to be repeated in
several headers in a chain. Therefore, a block header C is
considered invalid if it contains an equivocation proof against
a block not in the prefix of C, a block more than kepf blocks
above C, or contains an equivocation proof that has already
been proven in the prefix of C (Alg. 6, l. 6).

c) Ledger Construction in SaPoS: To create the ledger at
the end of slot t, an honest node takes all blocks on its longest
header chain that are kconf -deep, then blanks the contents of
any block against which there is an equivocation proof in a
block header following it (Alg. 5, l. 12).

B. Security Theorem

Recall that the analysis in Sec. IV-C3 uses four properties
of the download rule. It is easy to see that with the addi-
tion of equivocation removal, the ‘download longest header
chain’ rule satisfies these properties in PoS. The equivocation
removal rule in SaPoS clearly satisfies the property that each
honest node never downloads the same block twice (P1), and
downloads at most one block from each BPO (P2). The rule
will never prohibit download of an honest block because it
has no equivocations, and blocks in its prefix will either be
downloaded or blanked. Moreover, the rule never remains idle
as long as there are block headers remaining with UNKNOWN

content (P3). Finally, SaPoS does not spend bandwidth on any
more blocks than the base download rule does, and since the
base download rule Dlong does not download blocks before
the most recent cpivot (Prop. 3), the rule with equivocation
removal also does not (P4). This means that the analysis of
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Sec. IV-C3 works for SaPoS. Just like in PoW, this leads to
liveness and consistency of the confirmed header chains of all
honest nodes. Therefore, to ensure consistency of the ledger,
we only need to show that the ledger construction process in
SaPoS retains consistency. That is, if one honest node blanks
the content of a block in its ledger, then all honest nodes do.
Conversely, if one honest node does not blank the content for
a block in its ledger, no honest node does. Proof details are
in App. D-B.

Theorem 2. For all β < 1/2, C̃ ∈ N, and ρ, τ satisfying

C̃

16

(2pG − 1)2

pG
>

ρ

1− e−ρ
, pG = (1− β)e−

ρ
τ (∆h+C̃/C), (13)

there exists kepf , kconf = Θ(κ2) such that the SaPoS protocol
Π
ρ,τ,kconf ,kepf

SaPoS with the download rule Dlong, is secure with
liveness latency T real

live = Θ(κ2) slots over a time horizon of
Khrzn = poly(κ) block productions.

By choosing ρ, τ → 0 such that ρ/τ = λ (small slot
approximation), we get the same security region as PoW,
which is shown in Fig. 1. However, in PoS, we do have the
additional freedom to choose a larger τ , offering a potentially
larger set of secure parameters. The exact confirmation depth
and liveness latency are larger for SaPoS than for PoW NC
(details in App. D-B and App. E-F).

VII. PREDICTABLE VALIDITY

A. Predictable Transaction Validity

Definition 4. A transaction has predictable validity if it is
valid4 both at the time an honest node adds it to a block and
when that block is executed.

The sanitization in SaPoS leads to a loss of predictable
transaction validity. An honest block B may include a trans-
action that depends on the contents of a previous block A
whose equivocations were not known at the time. After block
B is produced, the adversary could release an equivocation
for the block A, forcing honest nodes to sanitize block A’s
contents, which may invalidate the transaction in block B.
Such invalidated transactions take up free space in honest
blocks and lower the effective throughput (valid confirmed
transactions) of the ledger.

Traditional NC protocols, require a node to download and
validate blocks before building on them, satisfying predictable
validity. On the other hand, protocols which lack state deter-
minism, such as DAG-based [35], [36] and LazyLedger [37]
blockchain protocols, choose to forego predictable validity and
accept that not all transactions will ultimately be executed.

We propose a simple solution to recover predictable validity
for SaPoS: If nodes limit transactions included in a block to
those that don’t depend on any recent state, then they can
be sure that all equivocations that could affect the validity
state of a transaction have a corresponding equivocation proof

4In UTXO-based systems (e.g., Bitcoin), valid means the inputs of the
transaction have not been spent. In account-based systems (e.g., Ethereum),
valid means the transaction execution succeeds and fees are paid.

included in the chain. This is because at the time of creating
a block, honest nodes have seen all transactions which will
be executed, however, not all transactions nodes have seen
will be executed. The following lemma follows naturally. See
App. F for proof details.

Lemma 4. If a node produces a block whose transactions do
not share state with any transaction included in the last kepf

blocks, then the block satisfies predictable transaction validity.

B. Predictable Fee Validity
In practice, for instance in popular Defi-ecosystems which

consist of very interdependent transactions (e.g., transactions
interacting with major token exchanges and other prominent
smart contracts) [38], [39], it may not always be practical to
limit the interaction between transactions. As an alternative
to predictable transaction validity, we would like to preserve
the minimum requirement that each transaction pays its fee,
regardless of the outcome of its execution. This guarantees
that miners are compensated for space used in their blocks,
and also makes it costly for the adversary to take up space
with invalid transactions.

Definition 5. A transaction has predictable fee validity if its
fee can be paid both when an honest node adds it to a block
and when that block is executed.

In systems like Ethereum, transactions have a max gas value
set by the sender, which limits the computation allowed by
the transaction and ultimately its fee. We consider a protocol
with this gas mechanism, as well as a base transaction cost
that covers the block space taken up by the transaction. We
introduce a notion of gas deposit accounts to SaPoS that can
only be used for transaction fees (transactions internally do
not have access to these accounts). When a miner includes a
transaction, it checks that the account funding the transaction
has enough funds to cover the maximum gas, even if all
transactions in its recent ancestor blocks make it to the
sanitized ledger and consume their maximum gas. Users thus
need to maintain a balance proportional to the complexity
and frequency of the transactions they make. Thus, users who
primarily make simple transactions (direct transfers having low
max gas) or transact infrequently (few transactions in recent
ancestor blocks) need to maintain smaller balances than those
who are spending more on fees. We also require that any
deposit to the account is not considered in the balance until
kepf blocks after the deposit transaction. Withdraws however
can take place immediately, as direct transactions.

Lemma 5. If a node produces a block whose transactions
are funded by gas deposit accounts with sufficient balance
(balance before kepf blocks minus any fees since), then all
transactions in the block satisfy predictable fee validity.

See App. F for proof details. Thus, by sanitizing the contents
of equivocating blocks and using our gas deposit scheme, we
ensure that nodes download a maximum of one block per slot
and that honest block creators only include transactions that
pay for their spot in the block.
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The solutions in Sec. VII-A and Sec. VII-B are complemen-
tary and could each be adopted as per-miner heuristics (i.e.,
not a consensus rule), or by the system based on the use-case
(e.g., expected inter-dependency of transactions). Note that
there are user-side complexities both schemes do not directly
address. Since transactions can be sanitized, we can no longer
rely on transaction nonce schemes that are strictly incremental
but instead must relax them to strictly increasing. In lieu of
stronger validity guarantees, it is the onus of the user to make
sure their transactions behave correctly in the event some get
sanitized. Sanitizing block content also opens up the potential
for the adversary to perform free options (for a limited amount
of time) by including transactions in a block that they can
later decide to cancel (by revealing an equivocation at no cost
within the allowed window).

VIII. CONCLUSION

In this work we focused on the security of Nakamoto
consensus both in the PoW and PoS settings. While block
downloading and processing is usually implemented in an ad-
hoc manner and is not typically discussed in the context of the
protocol’s security analysis, our work highlights the impor-
tance of correctly prioritizing block download and processing.
In addition to providing a security proof using new techniques,
and attacks on natural prioritization rules in the PoW setting,
we also propose SaPoS, a new proof-of-stake variant. Several
important open questions remain:
• There remain gaps between security bounds we provide in

the PoW setting and the known attacks in this case (cf.
Fig. 1). Can better attacks be found?

• Dealing with equivocations in SaPoS came at a cost of
higher latency of transaction execution, and decreased cer-
tainty about the state at which the transaction is eventually
executed. Can these costs be avoided?

• The difficulty adjustment algorithm (DAA) seems to apply
even more stress to limited capacity nodes. How should we
design DAAs and analyze their security?

• Can processing and download parallelization, pre-
processing and pre-fetching of blocks be utilized to
securely improve the throughput of NC based protocols?

• In SaPoS, the equivocation proof deadline is not user-
dependent, but baked into the protocol. A user cannot
increase this to lower error probability. Can we avoid this
drawback compared to traditional Nakamoto consensus?
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APPENDIX A
SIMULATION DETAILS

Nodes in our simulation generate blocks in a Poisson
process with rate proportional to their mining power. We
assume the mining difficulty is fixed, and do not include
any adjustment by a difficulty adjustment algorithm (DAA).
In fact, DAAs tend to worsen processing problems as they
increase the block creation rate if the chain does not grow fast
enough—which in turn requires more download from nodes.

Nodes process blocks one at a time according to the priority
dictated by the processing policy, at a rate determined by
their capacity. They are allowed to preempt their current task
if new information (headers that are published, blocks that
they mined) presents them with a higher priority target. Since

queues can grow large if nodes do not manage to process
all blocks in a timely manner, we maintain priority queues
of bounded size (typically 100) and evict low priority tasks
from the queue as needed. As preemption of downloads may
cause nodes to alternate between downloads, we allow nodes
to retain partial work in an LRU cache of size 10.

Except where we note otherwise, headers are assumed to
propagate instantly in the simulations. To simulate an idealized
bounded delay network, we set the header propagation delay
to ∆ and the capacity of each node to be∞. Block headers in
both PoW and PoS contain the relevant lottery information
which can be easily validated. We therefore assume the
adversary never publishes headers it did not actually mine.

To remain close to the theoretical analysis, we model all
processing tasks as dependent only on the resources available
to the node itself. In reality, things are much more complex:
nodes typically propagate blocks in a P2P network, which
means both the overlay network topology and the underlying
internet topology both greatly impact block download rates
and performance. Our simplified setting allows us to focus
more on the congestion effects in isolation from the effects of
topology and other P2P related issues.

APPENDIX B
SECURITY ANALYSIS PROOFS

A. Combinatorial Pivots Stabilize

The following proposition is helpful for our proofs. The
proof of Lem. 1 is similar to that of [9, Lem. 5], [11, Thm. 3.2],
or [19, Lem. 11] and is hence deferred to App. B-A.

Proposition 4. For any i < j,

Lmin(tj + ν) ≥ Lmin(ti+1 − 1) +D(i,j]. (14)

Proof. By noting that if Dk = 1, then tk+1 > tk + ν, and
adding the result of Prop. 2 for each index with Dk = 1.

B. Probabilistic Pivots Are Abundant

These alternative characterizations of ppivots are insightful:

Proposition 5.

PPivot(k) ⇐⇒ (∀ (i, j] 3 k : X(i,j] > 0) (15)

⇐⇒ (∀ (i, j] 3 k : G(i,j] > G(i,j]) (16)
⇐⇒ (Xk = 1) ∧ (∀j ≥ k : X(k,j] ≥ 0)

∧ (∀i < (k − 1) : X(i,k−1] ≥ 0) (17)

Proof. Elementary, using X(i,j] = X(0,j] −X(0,i].

In particular, eqn. (17) characterizes a ppivot as an index k
such that Gk = 1 and the simple random walks ` 7→ X(k,k+`]

and ` 7→ X(k−1−`,k−1] starting at 0 remain non-negative
forever (Fig. 11). The process {Pk} counts ppivots, with
increments Pk , 1{PPivot(k)}.

We build up to the proof of Lem. 2 through a series of
propositions. Assume that pG = 1

2 + εG with εG ∈ (0, 1/2]

Proposition 6. With α2 , 2ε2
G, ∀ (i, j] : ∀δ ≥ 0:

Pr
[
X(i,j] ≤ (1− δ)2εG(j − i)

]
≤ exp(−α2δ

2(j − i)). (18)

https://eprint.iacr.org/2021/1544
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
http://cs229.stanford.edu/extra-notes/hoeffding.pdf
http://cs229.stanford.edu/extra-notes/hoeffding.pdf
https://math.stackexchange.com/q/4449213
https://mathworld.wolfram.com/q-PochhammerSymbol.html
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Fig. 11. Illustration of ppivot (eqn. (17)): A ppivot as an index k so that
Xk = 1 ( ) and X(0,.] is strictly below X(0,k] left of k and weakly above
X(0,k] right of k ( ), elsewhere ( ).

Proposition 7.

∀k : Pr [PPivot(k)] ≥ (2pG − 1)2/pG , pppivot (19)

Proposition 8. With α3 , 2p2
ppivot,

∀ (i, j] � 2K1K2 : Pr
[
P(i,j] ≤ (1− δ)pppivot2K1K2

]
≤ 2K1 exp(−α3δ

2K2) +K2
hrzn exp(−α2K1). (20)

Proof of Prop. 6 is by Hoeffding’s inequality [40] [41,
Thm. 4]. Prop. 7 is proved using the probability of a random
walk never returning to zero [42]. The proof of Prop. 8
is similar to that of [9, Thm. 5], except that we use a
concentration bound to show that there are many ppivots in
(i, j] and not just one as shown in [9]. Details are in App. B-B.

Proof of Lem. 2. From Prop. 8 by setting K1,K2 = Ω(κ) and
Kcp = 2K1K2.

C. Many Probabilistic Pivots Imply One Combinatorial Pivot

Proof of Prop. 3. In slot tk, there is exactly one block b
produced by an honest node, and the block header is made
public at the beginning of the slot, and is seen by all honest
nodes within ∆h time. Thereafter, each node has enough time
to download C̃ blocks during slots [tk, tk + ν].

Under the download rule Dlong, all honest nodes download
content for their longest header chain. If Dk = 0 i.e. an honest
node did not download content for the block b before the
end of slot tk + ν, then that honest node must download the
content for at least C̃ blocks on chains longer than the height
of the block b or in the prefix of the block b. Since honest
nodes produce blocks extending their longest chain, b extends
dCp(tk−1) for some p. Let b∗ be the block produced in slot ti
where CPivot(i) (suppose i exists). CPivot(i) =⇒ Yi = 1,
therefore this block is unique, and also tk > ti + ν. Due
to Lem. 1, any valid header chain longer than b at time
slot tk must contain b∗. Therefore, the only blocks that are
downloaded by an honest node during slots [tk, tk + ν]

1) must be produced after ti because they extend b∗, and
2) must be produced no later than tk because there are no

blocks produced in (tk, tk + ν].
In case a cpivot i < k does not exist, the claim is trivial.

Proposition 9.

¬CPivot(k) =⇒ ∃ (i, j] 3 k : Y(i,j] ≤ 0. (21)

Proof. From Def. 3, ¬CPivot(k) implies that either there
exists i < k such that Y(0,i] ≥ Y(0,k] or there exists j ≥ k
such that Y(0,k] > Y(0,j]. In the first case, (i, k] 3 k
and Y(i,k] ≤ 0. In the second case, (k − 1, j] 3 k and
Y(k−1,j] ≤ Y(k,j] + 1 ≤ 0.

Proposition 10. If Y(i,j] ≤ 0, then

D(i,j] ≥ D(i,j], (22)

G(i,j] −D(i,j] ≥
1

2

(
G(i,j] −G(i,j]

)
. (23)

Proof. Eqn. (22) is by the definition Yi = Di −Di. Then,

G(i,j] +G(i,j] = D(i,j] +D(i,j] (24)

G(i,j] +G(i,j] ≥ 2D(i,j] (25)

2G(i,j] − 2D(i,j] ≥ G(i,j] −G(i,j]. (26)

Proposition 11. If P(i,j] > 0, then G(i,j] −G(i,j] ≥ P(i,j].

Proof. Let n = P(i,j]. First, consider the case n = 1. There
is exactly one ppivot k ∈ (i, j]. From Def. 2, X(0,i] < X(0,j].
Therefore, X(i,j] > 0, hence G(i,j] −G(i,j] ≥ 1.

For the general case, let k1, ..., kn be the ppivots in (i, j].
Then, we can apply the n = 1 case on the disjoint intervals
(i, k1], (k1, k2] , ..., (kn−1, j] and then sum them up.

Lemma 6. If all honest nodes use the download rule Dlong,
and if

∀ (i, j] � Kcp, i < Kcp :
C̃

2

(
G(i,j] −G(i,j]

)
> Q(0,j], (27)

C̃

4
P(0,Kcp] > Q(0,2Kcp], (28)

then ∃k∗1 ∈ (0,Kcp] : CPivot(k∗1).

Proof. Due to eqn. (28), there is at least one ppivot in (0,Kcp]
(otherwise P(0,Kcp] = 0). Suppose for contradiction that there
is no cpivot in (0,Kcp]. Since cpivots are also ppivots, it is
enough to consider that none of the ppivots is a cpivot. Then
around each ppivot, there must be at least one interval which
violates the combinatorial pivot condition. Formally, there is
a set of intervals I such that:⋃

I∈I
I ⊇ {k ∈ (0,Kcp] : PPivot(k)} (29)

∀I ∈ I : YI ≤ 0 (from Prop. 9). (30)

Without loss of generality, each interval I ∈ I contains at least
one ppivot (removing all intervals that do not contain a ppivot
maintains eqns. (29) and (30)). Then if (i, j] ∈ I, i < Kcp.

First, let’s consider the large intervals with |I| ≥ Kcp.
Consider indices k ∈ I for which Gk = 1 (good) but Dk = 0
(D-slot). From Prop. 3, for each such index, all honest nodes
download C̃ blocks that are produced no later than tk. The
number of indices k ∈ I with Gk = 1 and Dk = 0 is
exactly GI − DI . For each such index, there must exist C̃
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distinct blocks produced in or before the interval I . Therefore
if I = (i, j],

Q(0,j] ≥ C̃
(
G(i,j] −D(i,j]

)
(31)

≥ C̃

2

(
G(i,j] −G(i,j]

)
(from Prop. 10). (32)

This is a contradiction to eqn. (27).
Therefore all intervals I ∈ I are small (|I| < Kcp). Then

for each I ∈ I, I ⊂ (0, 2Kcp]. Also,

GI −DI ≥
1

2

(
GI −GI

)
(from Prop. 10) (33)

≥ 1

2
PI (from Prop. 11). (34)

Consider the indices k ∈ (0, 2Kcp] with Gk = 1 and Dk =
0. Let Ik = {I ∈ I : k ∈ I} be the set of intervals that
contain k. Let ILk be an interval in Ik that stretches farthest to
the left, and let IRk be an interval that stretches farthest to the
right (these may also be the same). Note that all other intervals
in Ik are contained in ILk ∪ IRk . Therefore, all intervals in Ik
except ILk and IRk can be removed from I while maintaining
eqns. (29) and (30) (see Fig. 12(a)). This process is repeated
for all k ∈ (0, 2Kcp] with Gk = 1 and Dk = 0, so that in the
resulting set I, each such index k is contained in at most two
intervals. Then,∑
k∈(0,2Kcp] : Gk=1,Dk=0

|Ik| ≤
∑

k∈(0,2Kcp] : Gk=1,Dk=0

2 (35)

= 2
(
G(0,2Kcp] −D(0,2Kcp]

)
. (36)

This sum can be rewritten as∑
k∈(0,2Kcp] : Gk=1,Dk=0

|Ik| =
∑
I∈I

(GI −DI) (37)

≥
∑
I∈I

1

2
PI (38)

≥ 1

2
P(0,Kcp] (eqn. (29)). (39)

Therefore,

G(0,2Kcp] −D(0,2Kcp] ≥
1

4
P(0,Kcp]. (40)

This can also be seen from Fig. 12(b).
Finally, as shown before, for each k with Gk = 1 and

Dk = 0, all honest nodes download at least C̃ distinct blocks
produced in or before index k (Prop. 3). This gives

Q(0,2Kcp] ≥ C̃
(
G(0,2Kcp] −D(0,2Kcp]

)
(41)

≥ C̃

4
P(0,Kcp] (42)

which is a contradiction to eqn. (28).

Proof of Lem. 3. This is proved by induction. For the base
case (m = 0), Lem. 6 shows that ∃k∗1 ∈ (0,Kcp] : CPivot(k∗1).
For m ≥ 1, assume that ∃k∗m−1 ∈ ((m− 1)Kcp,mKcp]
such that CPivot(k∗m−1). Now we want to show that ∃k∗m ∈
(mKcp, (m+ 1)Kcp] such that CPivot(k∗m). The proof for this

(a)
A BC

(b)

Fig. 12. Blue circles represent ppivots, red crosses represent indices with
Gk = 1 and Dk = 0. (a) Given intervals A,B,C all containing the 2nd
blue circle from left, interval C is redundant. (b) Given n blue circles, the
adversary needs at least n/4 red crosses to draw a set of intervals satisfying
eqns. (29) and (30). Here is a placement of red crosses relative to blue circles
that achieves the minimum number of red crosses.

follows the same steps as the proof of Lem. 6, except that we
make use of Prop. 3 to note that honest nodes only download
blocks proposed after the most recent cpivot. Then due to
the induction assumption, during an interval of indices (i, j]
where i < (m + 1)Kcp, honest nodes only download blocks
produced in indices (i− 2Kcp, j]. The details of this proof are
in App. E-D.

APPENDIX C
PROOF-OF-WORK SECURITY PROOFS

Lemma 7. If for some Kcp > 0,

∀m ≥ 0: ∃k∗m ∈ (mKcp, (m+ 1)Kcp] : CPivot(k∗m), (43)

then the PoW Nakamoto consensus protocol Πρ,τ,kconf with
kconf = 2Kcp + 1 satisfies safety. Further, if

∀k ∈ N,K ≥ Kcp : tk+K − tk <
K

λτ(1− δ)
, (44)

then it also satisfies liveness with Tlive =
6Kcp+2
λτ(1−δ) .

The proof of Lem. 7 is similar to that of the PoS case (in
fact, much simpler) which is shown in App. D-B. Eqn. (44)
shows an event which occurs with overwhelming probability,
and helps to determine the latency in real time from the
analysis which is in terms of indices. Detailed proof for the
PoW case is in App. E-E.

Briefly, to prove Thm. 1, we calculate for given ∆h, C, C̃,
the values of λ for which with overwhelming probability, the
conditions of Lem. 3 hold. This ensures that cpivots occur
and then Lem. 7 proves safety and liveness. Finally, since C̃
is just an analysis parameter, we optimize over C̃ to find the
maximum λ. Details are in App. E-E.

APPENDIX D
PROOF-OF-STAKE (SAPOS)

A. Pseudocodes for Equivocation Removal

See Algs. 5 and 6. Changes with respect to Algs. 1 and 2
are highlighted in green.

B. Security Proofs

Lemma 8. If for some Kcp > 0,

∀m ≥ 0: ∃k∗m ∈ (mKcp, (m+ 1)Kcp] : CPivot(k∗m), (45)

∀k ∈ N,K ≥ Kcp : tk+K − tk <
K/(1− e−ρ)

1− δ
, (46)

then SaPoS with kconf = 6Kcp + 1 and kepf = 4Kcp satisfies
safety and liveness with Tlive =

14Kcp+2
(1−e−ρ)(1−δ) .
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Algorithm 5 PoS NC protocol Π
ρ,τ,kconf ,kepf

SaPoS with download
logic and equivocation removal (helper functions: App. G-A,
environment Z: App. G-B, functionality F ′PoS,ρ

hdrtree: Alg. 6)
1: . Global counter of time slots t← 1, 2, ... of duration τ
2: . Same as in Alg. 1: INIT(genesisC, genesisTxs), RECEIVEDHEADERCHAIN(C),

RECEIVEDCONTENT(C, txs)
3: . (C

BPO
≡ C′) , (C 6= C′) ∧ (C.node = C′.node) ∧ (C.time = C′.time)

4: at time slot t← 1, 2, ... . NC protocol main loop
5: txs← Z.RECEIVEPENDINGTXS()
6: . Construct equivocation proofs against headers in prefix not already proven

7: eqProofs ← {(C1 � dC, C2 ∈ hT ) | (C1
BPO
≡ C2) ∧ (|C1| > |dC| −

kepf ) ∧ ((C1, C2) 6∈
⋃
C�dC C.eqProofs)}

8: . Produce and disseminate a new block if eligible
9: if C′ 6= ⊥ with C′ ← Fhdrtree.EXTEND(dC, txs, eqProofs)

10: Z.UPLOADCONTENT(C′, txs)
11: Z.BROADCASTHEADERCHAIN(C′)
12: . Blank the content of blocks against which there was an equivocation proof
13: blkTxs′[C]← (∅ if (C, ) ∈

⋃
C′�C∗ C

′.eqProofs, else blkTxs[C])
14: . Confirm all but the last kconf blocks on the longest downloaded chain
15: LOGt ← txsLedger(blkTxs, Cdkconf ) . Ledger of node p at t: LOGtp

16: do throughout
17: . Choose C from download rule (e.g. Alg. 4)

18: if ∃C′ ∈ hT : C′
BPO
≡ C

19: blkTxs[C]← ∅ . Do not download C, query download rule again
20: else
21: Download content for C

Algorithm 6 Idealized functionality F ′PoS,ρ
hdrtree: block produc-

tion lottery and header chain structure for PoS (helper func-
tions: App. G-A)

1: . INIT(genesisC, numNodes) and VERIFY(C) same as in Alg. 2
2: . ISLEADER(P, t) same as in Alg. 3
3: on EXTEND(t′, C, txs, eqProofs) from A (adversary node P ) or FPoS,ρ

hdrtree
4: . New header chain is valid if parent chain C is valid, P is leader for slot t′,

and t′ is later than the tip of C and is not in the future
5: if (C ∈ T ) ∧ FPoS,ρ

hdrtree.ISLEADER(P, t′) ∧ (C.time < t′ ≤ t)
6: . Check equiv. pfs. are valid, point to ‘recent’ headers, and do not repeat

7: if ∀(C1, C2) ∈ eqProofs : (C1 � C) ∧ (C2 ∈ T ) ∧ (C1
BPO
≡ C2)

∧(|C1| > |C| − kepf ) ∧ ((C1, C2) 6∈
⋃
C′�C C

′.eqProofs)}
8: . Produce a new block header extending C
9: C′ ← C‖ newBlock(time : t′, node : P, txsHash : Hash(txs))

10: T ← T ∪ {C′} . Register new header chain in header tree
11: return C′
12: return ⊥
13: on EXTEND(C, txs, eqProofs) from node P (possibly adversarial) at time slot t
14: return FPoS,ρ

hdrtree.EXTEND(t, C, txs, eqProofs)

Proof. First, we prove safety. Consider arbitrary slots t ≤ t′

and let h be the largest index such that th ≤ t. Consider a
block bi ∈ dCp(t)dkconf which was produced in index i ≤ h−
kconf . From eqn. (45), every interval of 2Kcp indices contains
at least one cpivot. Therefore for any i, there exist cpivots j, k
such that

i < j < k ≤ i+ 4Kcp. (47)

Also, let l be the last cpivot before (excluding) index h. Then

l ≥ h− 2Kcp ≥ i+ kconf − 2Kcp > i+ 4Kcp. (48)

From eqn. (47) and eqn. (48), we have

i < j < k ≤ i+ kepf < l < h. (49)

These are shown in Fig. 13. Let bj , bk, bl be the blocks
corresponding to the respective cpivots (see Fig. 13). Due to
Lem. 1 and t ≥ th > tl + ν,

bi � bj � bk � bl � dCp(t) ∩ dCq(t′). (50)

bi bj bk bl
... ...... ...... ...

kepf blocks

kconf blocks

Latest possible equivocation
proof against bi stabilizes

Includes equivocation proof against bi

Header of bi seen by all honest nodes

Fig. 13. Illustration for the proof of Lem. 8. Consider an arbitrary block bi
that is kconf -deep in the longest chain of a node. Indices j, k, l are cpivots.
Since cpivots stabilize, the corresponding blocks bj , bk, bl are in all honest
nodes’ longest chains. At cpivot j, we know for sure that all honest nodes saw
the header of bi because they saw the header for bj . At cpivot k, we know
for sure that if bi had an equivocation, then an equivocation proof against bi
must have entered the chain. At cpivot l, we know for sure that the last block
that can add an equivocation proof against bi has stabilized (as the deadline
of kepf blocks has passed). Thus, a ledger formed from kconf -deep blocks
(sufficient to obtain three cpivots) will remain safe.

Since the above holds for all bi ∈ dCp(t)dkconf , we obtain that
dCp(t)dkconf � dCq(t′). We can thus conclude that

dCp(t)dkconf �� dCq(t′)dkconf (51)

where C1 �� C2 denotes C1 � C2 or C2 � C1. Due to eqn. (51),
the kconf -deep header chains of p at t and of q at t′ are
consistent. Without equivocation removal, this was enough to
show safety of the corresponding ledgers. Now to show that
the two ledgers LOGtp and LOGt

′

q are consistent, we only need
to show that if the content of a block is blanked in LOGtp, it
is also blanked in LOGt

′

q , and conversely if it is not blanked
in LOGtp, it is not blanked in LOGt

′

q .
Suppose that the content of bi is blanked in LOGtp. This

means that either there was an equivocation for bi in node p’s
view (hence node p did not download the content), or there
is an equivocation proof against bi in a header in dCp(t). The
header of bi must be seen by all honest nodes p before the end
of slot tj + ν (since bj ∈ dCp(tj + ν)). Then since block bk
is honest, tk > tj + ν, and k ≤ i+ kepf , either bk or another
block in its prefix must include an equivocation proof against
bi. We know that bk ∈ dCq(t′), so the content of block bi will
be blanked in LOGt

′

q as well.
Suppose that the content of bi is not blanked in LOGtp. This

means that there is no equivocation proof against bi in dCp(t).
Since l ≥ h− 2Kcp, the block bl cannot be more than 2Kcp-
deep in dCp(t), i.e.,

|bl| ≥ |dCp(t)| − 2Kcp. (52)

But bi is kconf -deep in dCp(t) (as assumed), so

|bi| ≤ |dCp(t)| − kconf . (53)

Together, we have

|bl| ≥ |bi|+ kconf − 2Kcp > |bi|+ kepf . (54)
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Therefore bl or any block extending it cannot contain an equi-
vocation proof against bi. Since bl ∈ dCp(t) and bl ∈ dCq(t′),
there cannot be any block in dCq(t′) before bl, that is not
in dCp(t). Therefore, there is no equivocation proof against
bi in dCq(t′). Also, node q must have downloaded block bi,
otherwise there must have been an equivocation proof in bk
or its prefix as discussed in the previous paragraph. So, the
content of bi is not blanked in LOGt

′

q . We can thus conclude
that either LOGtp � LOGt

′

q or LOGt
′

q � LOGtp. Therefore,
safety holds.

Next we prove liveness. Assume a transaction tx is received
by all honest nodes before slot t. Again let h be the largest
index such that th ≤ t. We know that there exists k∗ ∈ (h, h+
2Kcp] such that CPivot(k∗). The honest block b∗ from index
k∗ or its prefix must contain tx since tx is seen by all honest
nodes at time t < tk∗ . Since k∗ is a cpivot, for all (i, j] 3 k∗,
D(i,j] > D(i,j] (Def. 3 and eqn. (6)), and hence D(i,j] >

j−i
2 .

Particularly,

D(k∗−1,k∗+2kconf−1] > kconf (55)
=⇒ D(k∗,k∗+2kconf−1] > kconf − 1. (56)

Then from Prop. 4,

Lmin(tk∗+2kconf−1 + ν)− Lmin(tk∗+1 − 1) ≥ D(k∗,k∗+2kconf−1]

≥ kconf . (57)

Due to Lem. 1, b∗ ∈ dCp(t′) for all honest nodes p and t′ ≥
tk∗ + ν, and Lmin(tk∗+1 − 1) ≥ |b∗|. This means that b∗

is kconf -deep in dCp(t′) for all honest nodes p and all t′ ≥
tk∗+2kconf−1 + ν. Further, the content of an honest block will
never be blanked out in any honest node’s ledger. Finally, with
k∗ ≤ h+ 2Kcp and eqn. (44),

tk∗+2kconf−1 + ν − t ≤ th+2Kcp+2kconf−1 + ν − th
≤ th+2Kcp+2kconf

− th

<
2Kcp + 2kconf

(1− e−ρ)(1− δ)
. (58)

Therefore, tx ∈ LOGt
′

p for all t′ ≥ t + Tlive with Tlive as in
the lemma statement.

To prove Thm. 2, we calculate for given ∆h, C, C̃, the
values of ρ, τ for which with overwhelming probability, the
conditions of Lem. 3 hold. This ensures that cpivots occur
and then Lem. 7 proves safety and liveness. Details are in
App. E-F.

APPENDIX E
PROOF DETAILS

A. Proof Details for Sec. IV-B

Proof of Prop. 1. First, for any k,

Pr [Gk = 1] = Pr [Good(tk) | ¬Empty(tk)] (59)

=
Pr [Good(tk)]

Pr [Empty(tk)]
=

(1− β)ρe−ρ(ν+1)

1− e−ρ
. (60)

Take an iid random process {Tk} with Pr [Tk = t] = (1 −
pE)ptE for t ≥ 0 where pE = Pr [Ht +At = 0]. The ran-
dom variables {Tk} describe the inter-arrival times between
non-empty slots. Take another iid random process {G′k},
independent of {Tk}, such that G′k = 1 with probability
Pr [Ht = 1 ∧At = 0 | Ht +At > 0] and G′k = 0 otherwise.
The random process {Gk} can be equivalently defined as
Gk = 1 iff G′k = 1 and Tk ≥ ν.

The independence of the random variables {Gk} then
follows from the independence of the random variables
{(Tk, G′k)}.

B. Proof Details for Sec. IV-C1

Proof of Lem. 1. Note that dCp(t) is a valid chain at slot t and
|dCp(t)| = Lp(t) ≥ Lmin(t). Therefore, it suffices to show the
first claim of the lemma.

For contradiction, let s ≥ tk + ν be the first slot in which
there is a valid header chain C′ such that |C′| ≥ Lmin(s) and
b∗ 6∈ C′.

Let b′ be the block with maximum height on the chain C′,
such that b′ was produced in a slot ti with Di = 1. For C′
to be a valid chain at slot s, we need ti ≤ s. Since the block
b′ is produced by an honest node, b′ extends dCq(ti − 1) for
some honest node q. Therefore, dCq(ti − 1) is a prefix of C′.
This means that b∗ 6∈ dCq(ti − 1). Moreover, |dCq(ti − 1)| =
Lq(ti − 1) ≥ Lmin(ti − 1). If i > k, then ti − 1 ≥ tk + ν
(since Dk = 1) and ti − 1 < s (shown above). This is a
contradiction because we assumed that s is the first slot such
that s ≥ tk+ν and b∗ /∈ C′ and |C′| ≥ Lmin(s) for some valid
chain C′. Since b∗ is the only block produced in slot tk, i = k
is also not possible. We conclude that i < k.

Since Di = 1 and b′ is produced in slot ti,

Lmin(ti + ν) ≥ |b′|. (61)

By assumption,

|C′| ≥ Lmin(s). (62)

Let tj be the last non-empty slot such that tj ≤ s. Note that
j ≥ k > i. We must consider two cases:
1) Case 1: s ≥ tj + ν or Dj = 0. If Dj = 0, we don’t

have to worry about whether the block from slot tj was
downloaded by all honest nodes. If Dj = 1 but s ≥ tj+ν,
then we know that all honest nodes have downloaded the
block from slot tj before the end of slot s. That is,

Lmin(s) ≥ Lmin(tj + ν) (63)
≥ Lmin(ti+1 − 1) +D(i,j] (from Prop. 4) (64)
≥ Lmin(ti + ν) +D(i,j]. (65)

By definition of b′, all blocks in C′ appearing after b′

correspond to D-slots. These blocks must be from distinct
indices greater than i but at most j. So,

|C′| ≤ |b′|+D(i,j]. (66)

From eqns. (61), (62), (65) and (66), we derive

D(i,j] ≤ D(i,j] =⇒ Y(i,j] ≤ 0 =⇒ Y(0,i] < Y(0,j] (67)
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where i < k ≤ j.
2) Case 2: tj ≤ s < tj+ν and Dj = 1. In this case, the block

from slot tj may not have enough time to be downloaded
by all honest nodes before the end of slot s. However,
for any l < j such that Dl = 1, tl + ν < tj ≤ s, so
there is enough time to download the block from slot tl.
Let l ∈ (i, j − 1] be the greatest index such that Dl = 1.
Then, tj > tl + ν, and D(i,l] = D(i,j−1].

Lmin(s) ≥ Lmin(tj) (68)
≥ Lmin(tl + ν) (69)
≥ Lmin(ti+1 − 1) +D(i,l] (from Prop. 4) (70)
≥ Lmin(ti + ν) +D(i,j−1]. (71)

Note that since Dj = 1, D(i,j] = D(i,j−1]. Therefore, as
in the previous case,

|C′| ≤ |b′|+D(i,j−1]. (72)

From eqns. (61), (62), (68) and (72),

D(i,j−1] ≤ D(i,j−1] =⇒ Y(i,j−1] ≤ 0

=⇒ Y(0,i] < Y(0,j−1]. (73)

Note that since we assumed s ≥ tk + ν and s < tj + ν,
we know that j > k. Therefore, i < k ≤ j − 1.

In either case, eqn. (67) or eqn. (73) contradict the assumption
CPivot(k) (Def. 3).

C. Proof Details for Sec. IV-C2

Proposition 12 (Hoeffding’s inequality [40] [41, Thm. 4]).
Let Z1, ..., Zn be independent bounded random variables with
∀i : Zi ∈ [a, b], where −∞ < a ≤ b <∞. Then, ∀t ≥ 0:

Pr

[(
n∑
i=1

Zi

)
≥ E

[
n∑
i=1

Zi

]
+ tn

]
≤ exp

(
−2nt2

(b− a)2

)
(74)

Pr

[(
n∑
i=1

Zi

)
≤ E

[
n∑
i=1

Zi

]
− tn

]
≤ exp

(
−2nt2

(b− a)2

)
(75)

Proof of Prop. 7. Eqn. (17) characterizes PPivot(k) as the
intersection of three independent events:

E1 , {Xk = 1} (76)
E2 , {∀` : X(k,k+`] ≥ 0} (77)

E3 , {∀` : X(k−1−`,k−1] ≥ 0} (78)

Their probabilities are easily calculated [42]:

Pr [E1] = pG Pr [E2] = Pr [E3] = (2pG − 1)/pG (79)

Proof. Let E , {∀ (i, j] � K1 : X(i,j] > 0}. From Prop. 6
with δ = 1, and a union bound over all intervals (≤ K2

hrzn

many), we get

Pr [¬E ] ≤ K2
hrzn exp(−α2K1). (80)

For any given index k, we can partition the intervals of
eqn. (15) into ‘long’ and ‘short’ intervals (length at least vs.
less than K1):

Ek , {PPivot(k)} = EL
k ∧ ES

k (81)
EL
k , {∀k ∈ (i, j] � K1 : X(i,j] > 0} (82)

ES
k , {∀k ∈ (i, j] ≺ K1 : X(i,j] > 0}. (83)

Note that EL
k ⊇ E . Thus, for any two given indices k1, k2, if

k1, k2 are ‘far apart’, i.e., if |k1 − k2| ≥ 2K1, then Ek1 and
Ek2 are conditionally independent given E (since ES

k1
and ES

k2
are).

We decompose I∗ , (i, j] = (i, i+ 2K1K2] =
⋃2K1

`=1 I`:

∀` ∈ {1, ..., 2K1} : I` , {i+ 0 · 2K1 + `, ...

..., i+ (K2 − 1) · 2K1 + `}. (84)

We define corresponding events, ∀` ∈ {1, ..., 2K1}:

E∗ , {PI∗ ≤ (1− δ)pppivot2K1K2} (85)
E` , {PI` ≤ (1− δ)pppivotK2} . (86)

Clearly, E∗ ⊆
⋃2K1

`=1 E`. Thus, by a union bound,

Pr [E∗ | E ] ≤
2K1∑
`=1

Pr [E` | E ] . (87)

Furthermore, ∀` ∈ {1, ..., 2K1}, and with µ` , E [PI` | E ]:

Pr [E` | E ] = Pr [PI` ≤ (1− δ)pppivotK2 | E ] (88)
(a)
≤ Pr [PI` ≤ (1− δ)µ` | E ] (89)
(b)
≤ exp(−2δ2µ2

`/K2)
(c)
≤ exp(−2p2

ppivotδ
2K2), (90)

where (a) and (c) use

µ` = K2E
[
1{PPivot(k)}

∣∣ E] ≥ K2E
[
1{PPivot(k)}

]
≥ K2pppivot (91)

(Prop. 7), and (b) uses that {PPivot(k1)} and {PPivot(k2)}
are conditionally independent given E for k1, k2 ∈ I`, and
Hoeffding’s inequality (Prop. 12).

Thus, we complete the proof by observing, that with α3 =
2p2

ppivot,

Pr [E∗] = Pr [E∗ ∩ E ] + Pr [E∗ ∩ ¬E ] (92)
≤ Pr [E∗ | E ] + Pr [¬E ] (93)
≤ 2K1 exp(−α3δ

2K2) +K2
hrzn exp(−α2K1). (94)

D. Proof Details for Sec. IV-C3

Proof of Lem. 3. This will be proved through induction. For
the base case (m = 0), Lem. 6 shows that ∃k∗1 ∈
(0,Kcp] : CPivot(k∗1).

For m ≥ 1, assume that ∃k∗m−1 ∈ ((m− 1)Kcp,mKcp]
such that CPivot(k∗m−1). Now we want to show that ∃k∗m ∈
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(mKcp, (m+ 1)Kcp] such that CPivot(k∗m). Suppose for con-
tradiction that there is no cpivot in (mKcp, (m+ 1)Kcp]. As
in the proof of Lem. 6, there is a set of intervals I such that:⋃

I∈I
I ⊇ {k ∈ (mKcp, (m+ 1)Kcp] : PPivot(k)} (95)

∀I ∈ I : YI ≤ 0. (96)

Without loss of generality, each interval I ∈ I contains at
least one ppivot. Then if (i, j] ∈ I, i < (m + 1)Kcp and
j > mKcp.

First, consider the large intervals with |I| ≥ Kcp. Consider
indices k ∈ I for which Gk = 1 (good) but Dk = 0
(D-slot). From Prop. 3, for each such index k, all honest
nodes download C̃ blocks that are produced in the interval(
k∗m−1, k

]
. The number of indices k ∈ I with Gk = 1 and

Dk = 0 is exactly GI −DI . For each such index, there must
exist C̃ distinct blocks from distinct BPOs that are downloaded
by honest nodes. Therefore if I = (i, j],

Q(k∗m−1,j]
≥ C̃

(
G(i,j] −D(i,j]

)
(97)

≥ C̃

2

(
G(i,j] −G(i,j]

)
(from Prop. 10). (98)

But k∗m−1 > (m − 1)Kcp and i < (m + 1)Kcp. Therefore
Q(k∗m−1,j]

≤ Q(i−2Kcp,j]. Then we have a contradiction to
eqn. (10).

Therefore all intervals I ∈ I are small (|I| < Kcp). Then
for each I ∈ I, I ⊂ ((m− 1)Kcp, (m+ 1)Kcp]. Also,

GI −DI ≥
1

2

(
GI −GI

)
≥ 1

2
PI (Props. 10 and 11) (99)

Consider the indices k ∈ ((m− 1)Kcp, (m+ 1)Kcp] with
Gk = 1 and Dk = 0. Following the arguments in the proof of
Lem. 6, we can reduce the set I so that in the resulting set I,
each such index k is contained in at most two intervals. Then,∑

k∈((m−1)Kcp,(m+1)Kcp] : Gk=1,Dk=0

|Ik|

≤ 2
(
G((m−1)Kcp,(m+1)Kcp] −D((m−1)Kcp,(m+1)Kcp]

)
. (100)

This sum can be rewritten as∑
k∈((m−1)Kcp,(m+1)Kcp] : Gk=1,Dk=0

|Ik| (101)

=
∑
I∈I

(GI −DI) (102)

≥
∑
I∈I

1

2
PI (103)

≥ 1

2
P(mKcp,(m+1)Kcp]. (104)

Therefore,

G((m−1)Kcp,(m+1)Kcp] −D((m−1)Kcp,(m+1)Kcp]

≥ 1

4
P(mKcp,(m+1)Kcp]. (105)

Finally, for each k with Gk = 1 and Dk = 0,
all honest nodes download at least C̃ distinct blocks pro-
duced in or before the most recent cpivot before (m −
1)Kcp. By induction assumption, we have a cpivot k∗m−2 ∈
((m− 2)Kcp, (m− 1)Kcp]. This gives

Q((m−2)Kcp,(m+1)Kcp]

≥ C̃
(
G((m−1)Kcp,(m+1)Kcp] −D((m−1)Kcp,(m+1)Kcp]

)
(106)

≥ C̃

4
P(mKcp,(m+1)Kcp] (107)

which is a contradiction.

E. Proof Details for Sec. V

Proposition 13.

∀k,K ∈ N : Pr

[
τ(tk+K − tk) ≥ K

λ(1− δ)

]
≤ e

−Kδ2
2(1+δ) . (108)

Proof. This results from a Poisson tail bound for the number
of BPOs in real time K/λ, and noting that each non-empty
slot has exactly one BPO.

Proof of Lem. 7. Safety: For an arbitrary slot t, let k be the
largest index such that tk ≤ t. From eqn. (43), every interval
of 2Kcp indices contains at least one cpivot. Therefore, there
exists k∗ ∈ (k − 2Kcp − 1, k − 1] such that CPivot(k∗). Let
b∗ be the block from index k∗. Due to Lem. 1, for all honest
nodes p, q and t′ ≥ t, b∗ ∈ dCp(t) and b∗ ∈ dCq(t′). But
k∗ ≥ k − kconf , so the block b∗ cannot be kconf -deep in any
chain at slot t Therefore, LOGtp is a prefix of b∗ which in
turn is a prefix of dCq(t′). We can thus conclude that either
LOGtp � LOGt

′

q or LOGt
′

q � LOGtp. Therefore, safety holds.
Liveness: Assume a transaction tx is received by all honest

nodes before slot t. Again let k be the largest index such that
tk ≤ t. We know that there exists k∗ ∈ (k, k+2Kcp] such that
CPivot(k∗). The honest block b∗ from index k∗ or its prefix
must contain tx since tx is seen by all honest nodes at time
t < tk∗ . Since k∗ is a cpivot, for all (i, j] 3 k∗, D(i,j] > D(i,j]

(Def. 3 and eqn. (6)), and hence D(i,j] >
j−i
2 . Particularly,

D(k∗−1,k∗+2kconf−1] > kconf (109)
=⇒ D(k∗,k∗+2kconf−1] > kconf − 1. (110)

Then from Prop. 4,

Lmin(tk∗+2kconf−1 + ν)− Lmin(tk∗+1 − 1) ≥ D(k∗,k∗+2kconf−1]

≥ kconf . (111)

Due to Lem. 1, b∗ ∈ dCp(t′) for all honest nodes p and t′ ≥
tk∗ + ν, and Lmin(tk∗+1 − 1) ≥ |b∗|. This means that b∗

is kconf -deep in dCp(t′) for all honest nodes p and all t′ ≥
tk∗+2kconf−1 + ν. Finally, with k∗ ≤ k+ 2Kcp and eqn. (44),

tk∗+2kconf−1 + ν − t ≤ tk+6Kcp+1 + ν − tk
≤ tk+6Kcp+2 − tk

<
6Kcp + 2

λτ(1− δ)
. (112)

Therefore, tx ∈ LOGt
′

p for all t′ ≥ t+ Tlive.
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Proof of Thm. 1. First, we show that the conditions of Lem. 3
hold, and therefore cpivots occur. Define the event

E1 =
{
∀ (i, j] � Kcp : P(i,j] > (1− δ)pppivot(j − i)

}
(113)

Suppose that E1 occurs, and C̃
16pppivot(1− δ) > 1. Then,

∀ (i, j] � Kcp :
C̃

4
P(i,j] >

C̃

4
(1− δ)pppivot(j − i) (114)

> 4(j − i) (115)
(a)
= Q(i−2Kcp,j+Kcp] (116)

where (a) is because as τ → 0, each non-empty slot has exactly
one BPO. This satisfies eqn. (11) in Lem. 3. Further,

C̃

2

(
G(i,j] −G(i,j]

)
≥ C̃

2
P(i,j] > 3(j − i) > Q(i−2Kcp,j] (117)

which satisfies condition eqn. (10) in Lem. 3. There-
fore there is one cpivot in every interval of the form
(mKcp, (m+ 1)Kcp]. Also suppose the following event oc-
curs:

E2 =

{
∀k ∈ N,K ≥ Kcp : tk+K − tk <

K

λτ(1− δ)

}
. (118)

Then Lem. 7 guarantees safety and liveness with kconf = 2Kcp

and Tlive =
6Kcp+2
λτ(1−δ) .

By choosing Kcp = Ω(κ2), Khrzn = poly(κ), and using
Lem. 2, Prop. 13 and a union bound, the probability of failure
of either E1 or E2 is negl(κ). Indices are mapped to real time
as T real

live , Tliveτ .
Finally, we take the limit τ → 0. With the relations λ =

ρ/τ , (ν + 1)τ ≥ ∆h + C̃/C, and pppivot = (2pG − 1)2/pG,

pG = (1− β)
ρe−ρ(ν+1)

1− e−ρ
→ (1− β)e−λ(∆h+C̃/C), (119)

C̃

16

(2pG − 1)2

pG
(1− δ) > 1 (120)

Note that C̃ is an analysis parameter whose value is ar-
bitrarily. To find the maximum block production rate λ that
the protocol can achieve, we should optimize over C̃. To find
the maximum achievable λ, we can take δ → 0 as we can
increase the latency through increasing Kcp to still satisfy the
error bounds. Maximizing over C̃ from eqns. (120) and (119)
gives the resulting threshold.

F. Proof Details for Sec. VI

The proposition below helps to derive the confirmation
latency in units of real time from the analysis.

Proposition 14. For all δ ∈ (0, 1), k,K ∈ N,

Pr

[
tk+K − tk ≥

K/(1− e−ρ)
1− δ

]
≤ e−2K(1−e−ρ)δ2 , (121)

Proof. This results from a Hoeffding bound for the number
of non-empty slots in K/(1− e−ρ) slots.

We also need another proposition to bound the number of
BPOs in a given number of slots, in order to bound Q(i,j].

Proposition 15.

∀t, T ∈ N : Pr

[
t+T∑
r=t

(Ht +At) ≥ ρT (1 + δ)

]
≤ e

−ρTδ2
2(1+δ) . (122)

Proof. This results from a Poisson tail bound since∑t+T
r=t (Ht +At) ∼ Poisson(ρT ).

Proof of Thm. 2. First, we show that the conditions of Lem. 3
hold, and therefore cpivots occur. Suppose that the following
three events occur.

E1 =
{
∀ (i, j] � Kcp : P(i,j] > (1− 2δ)pppivot(j − i)

}
,

E2 =

{
∀t ∈ N, T ≥ Kcp

1− e−ρ
:

t+T∑
r=t

(Ht +At) < ρT (1 + δ)

}
,

E3 =

{
∀k ∈ N,K ≥ Kcp : tk+K − tk <

K/(1− e−ρ)
1− δ

}
.

From E2 and E3, we get

∀ (i, j] � Kcp : Q(i,j] ,
j∑

k=i+1

(Htk +Atk) (123)

with T =
j − i

(1− e−ρ)(1− δ)
, ≤

ti+T∑
t=ti

(Ht +At) (124)

<
ρ(j − i)(1 + δ)

(1− e−ρ)(1− δ)
(125)

≤ ρ(j − i)
(1− e−ρ)(1− 2δ)

. (126)

Then if C̃
16pppivot(1− 4δ) > ρ

(1−e−ρ) ,

∀ (i, j] � Kcp :
C̃

4
P(i,j] >

C̃

4
(1− 2δ)pppivot(j − i) (127)

>
4ρ(j − 1)(1− 2δ)

(1− e−ρ)(1− 4δ)
(128)

>
4ρ(j − 1)

(1− e−ρ)(1− 2δ)
(129)

> Q(i−2Kcp,j+Kcp]. (130)

This satisfies eqn. (11) in Lem. 3. Further,

C̃

2

(
G(i,j] −G(i,j]

)
≥ C̃

2
P(i,j] (131)

>
3ρ(j − 1)

(1− e−ρ)(1− 2δ)
(132)

> Q(i−2Kcp,j] (133)

which satisfies condition eqn. (10) in Lem. 3. There-
fore there is one cpivot in every interval of the form
(mKcp, (m+ 1)Kcp]. Then by Lem. 8, the protocol achieves
safety and liveness with appropriately chosen kconf , kepf , Tlive.

By using Lem. 2, Kcp = Ω(κ2), Khrzn = poly(κ),
Props. 14 and 15, and union bounds, the probability of failure
of either E1, E2 or E3 is negl(κ).
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The required security threshold is obtained from (ν+1)τ ≥
∆h + C̃/C, pG = (1− β)ρe

−ρ(ν+1)

1−e−ρ , C
16pppivot >

ρ
1−e−ρ , and

pppivot = (2pG − 1)2/pG,. As in the case of PoW, C̃ is a
free parameter that can be optimized to find the best set of
parameters.

APPENDIX F
TRANSACTION VALIDITY PROOFS

Proof of Lem. 4. In Sec. VI-A, we have that equivocation
proofs against a block need to be included within the next kepf

blocks. A node creating a block thus knows all equivocation
proofs that will ever be included in their header chain against
blocks that are kepf -deep, thus the state of the kepf -deep chain
is determined. Since equivocations for the last kepf blocks can
only remove transactions, the node knows all transactions that
may be included in the final chain. From this, the node can
determine all states S that could be touched by any transaction
in the last kepf blocks.5 A transaction tx that does not depend
on any state in S for its execution, can thus be executed on the
state of the kepf -deep chain, therefore, satisfying predictable
transaction validity. A node then only includes transactions
that don’t rely on a state in S. Note that transactions in the
same block could depend on the same state.

Proof of Lem. 5. Consider a funding gas account acc with
balance b before the last kepf blocks in the chain. This balance
is set for that account as no equivocation proofs against blocks
that are kepf -deep are allowed by the protocol. Note that any
transactions in the last kepf blocks that fund the account can
still be sanitized from the ledger so we do not consider them
in the balance yet. The node instead considers all transactions
Tacc(kepf ) in the last kepf which use the funds from the account
(including any withdrawals). Since the transactions funded by
acc that end up in the ledger are a subset of Tacc(kepf ), and
all fees are extracted regardless of how a transaction executes,
the node will at worst underestimate the balance of acc at the
tip of the chain.

APPENDIX G
PROTOCOL ALGORITHMS REFERENCE

A. Helper Functions for Pseudocode

• Hash(txs): Cryptographic hash function to produce a
binding commitment to txs (modelled as a random oracle)

• C′ � C, C � C′: Relation describing that C′ is a prefix of
C

• C‖C′: Concatenation of C and C′
• |C|: Length of C
• (true with probability x, else false): Bernoulli random

variable with success probability x
• prefixChainsOf(C): Set of prefixes of C, i.e., all C′ with
C′ � C

5Note that this includes all states a transaction could have changed if it
executed differently. This could be achieved by transactions needing to include
an access list of all states they are allowed to change. One can imagine a DOS
attack where a transaction’s access list could prevent future transactions.

• newBlock(txsHash : Hash(txs)) and
newBlock(time : t, node : P, txsHash : Hash(txs)): Pro-
duce a new PoW and PoS block header with given pa-
rameters, respectively

• txsLedger(blkTxs, C): Concatenates the block contents
stored in blkTxs for the blocks along the chain C, to obtain
the corresponding transaction ledger

• (C BPO≡ C′) , (C 6= C′) ∧ (C.node = C′.node) ∧ (C.time =
C′.time): Relation for distinct headers from the same BPO
(i.e. equivocations)

B. Environment Z
The environment Z initializes N nodes and lets A corrupt

up to βN nodes at the beginning of the execution. Corrupted
nodes are controlled by the adversary. Honest nodes run
Πρ,τ,kconf . The environment maintains a mapping Z.blkTxs
from block headers to the block content (transactions). This
mapping is referred to as the ‘cloud’ in Sec. III and Fig. 9. Z
also maintains for each node a queue of pending block headers
to be delivered after a delay determined by the adversary. If
A has not instructed Z to deliver a header ∆h real time after
it was added to the queue of pending block headers, then Z
delivers it to the node.

Honest nodes and A interact with Z via the following
functions:
• Z.BROADCASTHEADERCHAIN(C):

If called by an honest node, Z enqueues C in the queue
of pending block headers for each node, and notifies
A. Then, for each node P , on receiving DELIVER(C, P )
from A, or when ∆h time has passed since C was
added to the queue of pending headers, Z triggers
P.RECEIVEDHEADERCHAIN(C).

• Z.UPLOADCONTENT(C, txs):
Z stores a mapping from the header chain C to the content
txs of its last block by setting Z.blkTxs[C] = txs. Z only
stores the content txs if Hash(txs) = C.txsHash.

• Z.RECEIVEPENDINGTXS():
Z generates a set of pending transactions and returns them.

• If node P at slot t requests the content associated with a
block header C, Z acts as follows. If Z.blkTxs[C] is set,
then let txs = Z.blkTxs[C] (if not, Z ignores the request).
If the request was received from an honest node P , if Z
has recently triggered P.RECEIVEDCONTENT(.) at a rate
below C, then Z triggers P.RECEIVEDCONTENT(C, txs)
(else, Z ignores the request). If the request was received
from A, Z sends (C, txs) to A.

At all times, A can trigger P.RECEIVEDHEADERCHAIN(C)
and P.RECEIVEDCONTENT(C, txs) for honest nodes P (by-
passing header delay and bandwidth constraint in an adversar-
ially chosen way).

APPENDIX H
CONGESTION-BASED ATTACKS

A. Forking Attack
The teasing attack relied strongly on the fact that the

attacker could entice nodes with a long header chain that is
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Fig. 14. The rate nodes grow the agreed chain after the network splits into two
sets of 50 nodes for 15 secs, when the download rule is “longest-header-chain”
( ) or “greedy” ( ). Nodes using the greedy policy prioritize downloads on
their current chain. Under low bandwidth, they do not recover from the split,
resulting in two chains forking at genesis, providing no growth of the agreed
chain. Thus, longest chain is insecure without an adversary (cf. Fig. 1(c)).

later discovered to be unavailable for download. It is natural
in this case to consider adjusting the download rule to one that
prefers the proverbial ‘bird in the hand over two birds in the
bush’, i.e., to extend the blocks we already downloaded over
the illusive promise of a longer chain that the attacker may
withhold from us.

The Greedy policy. This policy prioritizes downloading
blocks that extend the chain a node has already processed. If
a header of a block at height h is announced, and we already
have hi blocks from that chain, then we set the priority of the
block to be (hi, h) and compare between the two priorities
lexicographically.

While the greedy policy performs well at high processing
rates, we unfortunately find that it preforms poorly in the low
processing rate regime. Specifically, if a fork in the chain
occurs, and nodes are split evenly between the two alternatives,
the fork may never resolve. This is because nodes extend their
own chain, and prioritize download on their side of the split,
while having insufficient processing power to catch up with
the other alternative chain. A fork in the chain can result
from a deliberate attack by an attacker that releases blocks
selectively to different nodes, by a network split, or worse, by
an unlucky timing of honest node mining events. In this case,
the blockchain fails even for small attackers. Importantly, a
fork that never resolves is either a safety or a liveness failure,
as no transaction on either side of the split can be safely
accepted.

To demonstrate this download rule in action, we simulate
a network of 100 nodes that are split evenly between two
partitions for only 15 seconds, i.e., for an expected time
required to produce 15 blocks.6 Once the network split ends,
the simulation continues for another 4000 seconds, allowing
nodes the opportunity to converge on a chain. We measure the
height of the latest block all nodes agree upon. If nodes do
not recover from the partition, this block will be the genesis

6Such short splits are relatively easy to induce in reality (transient problems
with Internet routing, denial-of-service on the network, etc.) and thus a
practical scheduling rule must recover from such splits.

and the liveness of the protocol has failed. Otherwise, nodes
quickly agree on the main chain and the height of the latest
agreed block is just a little behind the longest tip of the chain.

We simulate the evolution after a brief partition for both the
longest-header-chain policy as well as for the greedy policy.
Our results (Fig. 14) show that in settings where bandwidth
is greater than 1/2, nodes manage to catch up with the
chain and the rate of growth matches for both scheduling
policies. In lower bandwidth settings, however, nodes never
catch up. Note that this attack requires no adversarial mining,
yet the protocol is insecure (cf. Fig. 1(c)). This is in stark
contrast to the bounded-delay analysis which suggests that
the protocol retains security against a non-mining adversary
at any bandwidth (cf. Fig. 1(a)), and highlights again the need
to study the security of blockchains at capacity.

B. Equiv-Teasing Attack

In this section, we present an attack to establish a bound
(as a function of the security level) on the block production
rate (and hence, throughput, or bandwidth requirement) of a
single chain PoS NC protocol without an equivocation removal
policy. For concreteness, we demonstrate this attack on PoS
NC using any one of three download rules: ‘download the
longest header chain’, ‘download towards the freshest block’,
and ‘equivocation avoidance’. For the ‘download the longest
header chain’ rule, [19, Figure 3] showed one attack and the
attack in this section generalizes that. On the other hand, [19]
proved PoS NC secure under the other two download rules
by setting the duration of a slot proportional to the security
parameter κ, to achieve security with probability 1− negl(κ).
Hence the block production rate (and throughput) decays as
O
(

1
κ

)
. In this section, we show an attack which succeeds if

the block production rate is Ω
(

1
log(κ)

)
.

Furthermore, while the attack in [19, Figure 3] required that
the PoS NC protocol rejects blocks with invalid transactions
after downloading them, this attack does not require that.
Therefore, this attack works even if the PoS NC protocol
accepts blocks with invalid transactions into the output ledger
(e.g., to subsequently clean them up deterministically across
honest nodes). This is because as noted in Sec. VII, even if the
protocol accepts blocks with invalid transactions, honest nodes
must download the block content (to ensure data availability).
This is why we require an equivocation removal policy so that
honest nodes can unilaterally discard content for blocks that
they do not download. This is what allows us to overcome the
Ω
(

1
log(κ)

)
throughput bound in this work.

Before describing the attack, we briefly recap the download
rules analyzed in this section. In the ‘download towards the
freshest block’ rule (cf. [19, Alg. 2]), a node chooses the block
produced in the most recent time slot (‘freshest’), and if it
not yet downloaded, downloads the first unknown block in
the chain containing that block. One the node downloads the
freshest block, it stops downloading any blocks until a block
header from a more recent slot shows up. In the ‘equivocation
avoidance’ rule ( [19, Alg. 4]), the node first filters the tree



25

of its headers by keeping only one leaf per BPO (ties broken
by the adversary). From among the remaining headers, the
node picks a block to download as per the ‘download longest
header chain’ rule. The ‘download longest header chain’ rule
is as described in Alg. 4.

C. Attack Strategy

The attack works in two phases. See Fig. 15 for reference.
C is the bandwidth constraint (in blocks per second), τ is the
slot duration, and κ is the security parameter.

a) Setup phase: At time slot t0, the adversary creates a
chain C which forks off the honest chain C0 by at least L =
log(κ) blocks, and is at least as long as C0. The prefix length
L is chosen so that the setup succeeds with non-negligible
probability. The adversary initially keeps C private.

b) Execution phase: The adversary creates different
chains C1, C2, ... which contain equivocations of the blocks
in C, and pushes one chain to each honest node.
(1) Let t1 > t0 be the first time slot with a block production.

For any block b1 produced in slot t1, if b1 is produced
by an honest node, then, the adversary breaks ties such
that b1 extends one of the equivocating chains Ci. If b1
is produced by the adversary, the adversary produces b1
at the tip of another chain made of equivocations of the
blocks in C. Regardless, any block b1 produced in t1
extends a chain that forks off the downloaded longest
chain by L new blocks that need to be downloaded, hence
it will take a long time for an honest node to download
up to the block b1.

(2) The adversary repeats step (1) in all time slots t2, t3, ...
with a block production. Assuming there are many honest
nodes, each block extends a different equivocating chain
and is too long to catch up with. The adversary continues
this until the following condition occurs.

(3) Let t∗ be the first time slot since t0 in which an honest
block b∗ is produced, such that there are no other blocks
produced in slots [t∗, t∗+L/(Cτ)). This condition ensures
that there is enough time for b∗ to be downloaded by all
honest nodes.
If the adversary had at least one block production oppor-
tunity t′ ∈ [t0, t

∗+L/(Cτ)), then the adversary attaches a
block b′ produced in slot t′ to the chain C. The adversary
makes the following updates,
• C0 ← chain ending in b∗,
• C ← chain ending in b′,
• t0 ← t∗,
• L← L+ 1,

and thereafter repeats steps (1)–(3).
If the adversary failed to get one block production op-
portunity in [t0, t

∗ + L/(Cτ)), then the adversary gives
up.

D. Analysis Overview

The analysis below reuses notation defined in Sec. IV-B.
For the attack to succeed, we assume the following:

C0

C
b1

C′
b2

b∗ (new C0)

b′ (new C)

L = log(κ) blocks

Time t0 t1 t2 t∗ t∗ + L
Cτ

No blocks

Fig. 15. Illustration of the new attack of Section H-D. At time t0, C0 is the
longest downloaded chain of all honest nodes, and the adversary produces a
chain C that forks off C0 by L = log(κ) blocks. Blocks produced in time
slots t1, t2, ... (whether honest or adversarial) extend the chain C or a chain
C′ containing equivocation of the blocks in C, and are not downloaded by
all honest nodes in time before the next block production opportunity. Time
slot t∗ is the first slot such that there are no block productions in the L

Cτ
slots after t∗. The block b∗ produced in slot t∗ therefore gets downloaded.
If the adversary had at least one block production opportunity t′ ∈ [t0, t∗ +
L/(Cτ)], then the adversary sets the chain ending in b∗ as new C0 and the
chain ending in b′ as new C, and repeats the attack.

• The protocol parameters ρ, τ satisfy ρ
τ > C

log κ log 1−β
β ,

where β is the fraction of adversarial nodes and C is the
bandwidth constraint of each honest node in blocks per
second.

• The total number of nodes N is large.
• The adversary is allowed to break ties among equally long

chains in the fork choice rule.
• The adversary is allowed to break ties among equal priority

chains in the download rule.

The fork length L = log(κ) is chosen such that the
adversary can succeed in the setup phase with probability
at least e−O(L) = 1/ poly(κ) at any given time, even with
a minority stake. Hence this setup can be achieved by the
adversary with non-negligible probability eventually during an
execution of length poly(κ).

Now consider the execution phase. The key vulnerability
exploited in this attack is that if the highest priority chain
according to the download rule is on a long fork of which
honest nodes have not downloaded any blocks, it will take
a long time for honest nodes to download up to the tip of
this chain. If the next block arrival happens before this chain
is downloaded, the adversary makes honest nodes shift their
download priority to a different chain, which is also on an
equally long fork. This keeps repeating and honest nodes never
finish downloading a chain that would help grow their longest
downloaded chain.

Honest nodes get some respite when there is an honest
block produced in slot t∗ such that there are no other blocks
produced in slots [t∗, t∗ + L/(Cτ)). The three download
rules ‘download longest header chain’, ‘download towards the
freshest block’, and ‘equivocation avoidance’ ensure that the
honest block b∗ produced in slot t∗ remains the highest priority
chain to download during the slots [t∗, t∗+L/(Cτ)). Given a
bandwidth constraint of C blocks per second, i.e., Cτ blocks
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per time slot, honest nodes can completely download a fork
of length L in L/(Cτ) time slots.

However, this does not end the attack. While waiting for
one honest block production opportunity with L/(Cτ) empty
slots following it, if the adversary gets one block production
opportunity, this allows the adversary to create a new chain
whose length matches the longest downloaded chain of honest
nodes. The situation now looks just like at the start of the
execution phase, except that the adversary’s chain now forks
from the honest nodes’ new downloaded longest chain by L+1
blocks (one more than before). The adversary then and repeats
the execution phase all over again with the new chain it has
produced, and with L← L+1. As the adversary’s fork length
L increase, it takes more time for honest nodes to download
up to the tip of a newly produced block extending that fork.
This means it takes even longer for honest nodes to produce a
block after which there are L/(Cτ) empty slots such that the
block gets downloaded. Thereby, it becomes more likely that
the adversary produces one block before honest downloads
download a new chain, and continue the attack for another
iteration with a larger fork length L. As a result of this vicious
cycle, the adversary can continue this attack forever with non-
negligible probability!

This attack breaks safety of the protocol because the down-
loaded longest chain of honest nodes switches to a different
chain every time the condition in App. H-C (3) occurs.

E. Analysis Details

Building up on the definitions from Sec. IV-B, define a time
slot t to be honest if Ht > 0, and attacking if At > 0. Also
define H(r,s] and A(r,s] as the number of honest and attacking
slots respectively in the interval (r, s]. B(r,s] is the number of
slots t ∈ (r, s] such that Ht +At > 0.

Definition 6. For all t, define the event

Ft :=
{
∃r < t : (Hr > 0) ∧ (A(r,t] ≥ H(r,t]) ∧ (A(r,t] ≥ L)

}
.

Lemma 9. If Ft occurs, then the setup phase of the attack
succeeds at time slot t, i.e., there exists an adversarial strategy
which creates a chain C that forks off the longest downloaded
chain of all honest nodes at time t by L blocks and is at least
as long as the longest downloaded chain.

Proof. Let b be an honest block produced in slot r < t where
r satisfies (Hr > 0) ∧ (A(r,t] ≥ H(r,t]) ∧ (A(r,t] ≥ L). The
adversary’s strategy is as follows. In time slot r, the adversary
pushes the block b to all nodes irrespective of bandwidth, so
that |dCp(r)| = |b| for all honest nodes i. The adversary then
creates a private chain using its own blocks, extending the
block b (all these blocks are kept hidden). The adversary can
add one block to this chain in every slot in which the adversary
produces a block, therefore the length of the adversary’s chain
at time t is |b| + A(r,t]. On the other hand, in every time
slot that an honest block is produced, at most one block is
added to the longest chain of all honest nodes, therefore the
length of the honest chain at time t is at most |b| + H(r,t].
Since A(r,t] ≥ H(r,t], the adversary’s chain has the same or

greater length compared to the honest chain at time slot t.
Since the last block that is common between the honest and
adversary’s chain is b, and A(r,t] ≥ L, the adversary’s chain
forks off the honest chain by at least L blocks. Therefore, we
have the required conditions for the attack setup. Note that
the adversary does not need to be able to predict when the
event Ft would occur. Since creating blocks in proof-of-stake
does not require computation time, the adversary can create
this chain after it observes that the event Ft occurred.

Lemma 10. Let t > t0 be a successful time slot (i.e., Ht +
At > 0) such that there exists another successful time slot
t′ ∈ (t, t + L/(Cτ)]. Then none of the blocks produced in
slot t are ever downloaded by any honest node. Hence for all
honest nodes p, Lp(t′ − 1) = Lp(t).

Proof. For all blocks b that are produced in slot t, the attack
strategy in App. H-C ensures that the number of blocks to be
downloaded in the prefix of b (including b) is L + 1. Since
each honest node can download at most Cτ blocks per time
slots, no honest node can download the entire prefix within
L/(Cτ) time slots (the adversary does not push any blocks
to honest nodes during this period). At time slot t′, either an
adversarial block or an honest block (or both) are produced.
In either case, step (2) of the execution phase ensures that at
slot t′, this new block has the highest priority under all three
download rules. This is because i) it is clearly the freshest
block at slot t′, ii) it is one of the longest chains (and the
adversary breaks ties), and iii) it has a non-equivocating tip
and has length L+ 1, which is one of the longest chains (and
the adversary breaks ties), Therefore, at time slot t′, all honest
nodes switch to download a different block, and therefore the
block b is not downloaded. Since for all honest nodes p, no
block is downloaded, it is clear that Lp(t′ − 1) = Lp(t).

Lemma 11. Let t be a successful time slot such that for all
time slots t′ ∈ (t, t+L/(Cτ)], there are no blocks produced in
slot t′ (i.e., Ht′+At′ = 0). Then, each honest node downloads
at least one block produced in slot t, and for all honest nodes
p, Lp(t+ L/(Cτ)) = Lp(t) + 1.

Proof. Since t is an honest time slot, let b be one of the
honestly produced blocks in this time slot. At time slot t,
b is one of the freshest blocks. It remains one of the freshest
blocks until time slot t+ L/(Cτ) because there are no other
blocks produced in this interval. As per the attack strategy,
for both honest and adversarial blocks b, the block b is on the
longest chain in every node’s view, and is not an equivocation.

In case of a tie in the download rules, we assume that all
honest nodes break the tie in favour of the same block b (as
this is chosen by the adversary). Therefore, the block b has
the highest download priority for all honest nodes in slots
[t, t+L/(Cτ)]. Since the number of blocks to be downloaded
in the prefix of b (including b) is L + 1, these blocks can be
downloaded before the end of slot t+L/(Cτ). We know that
b is longer than all honest nodes’ longest downloaded chains
at slot t because of the attack strategy and Lem. 10. Therefore
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the length of the longest downloaded chain of every honest
node grows by 1.

Lemma 12. Let ta be the first time slot such that ta > t0 +
Tconf , ta is a successful time slot, and there are no blocks
produced in slots (ta, ta + L′/(Cτ)] where L′ is the value
of the attacker’s parameter L at time slot t0 + Tconf . If the
attacker does not terminate before slot ta, then there is a safety
violation.

Proof. At the end of time slot t0 + Tconf , let LOGt0+Tconf
p

denote the ledger output by an honest node p. Note that this
ledger contains all blocks mined before slot t0 in the longest
downloaded chain of node p, dCp(t0+Tconf). As per the attack
strategy App. H-C steps (1) and (2), the block produced in
time slot ta extends a different equivocating chain that forks
off dCp(t0 + Tconf) by L′ blocks. Since there are no blocks
produced in slots (ta, ta+L′/(Cτ)], all honest nodes download
this new chain and hence update their longest downloaded
chain. However, note that at least L′ blocks that were in
LOGt0+Tconf

p are replaced by different blocks in dCp(ta), and
therefore LOGt0+Tconf

p and LOGtap are not prefixes of each
other. This causes a safety violation.

Lemma 13. For all t,

Pr [Ft] ≥ pH

(
1− 2e−L/9

) 1√
8L
e−4α4L, (134)

where α4 = 1
4 ln

(
p

4pH

)
+ 3

4 ln
(

3p
4pH

)
and pH ,

Pr [Ht > 0] = 1− e−(1−β)ρ.

Proof. Let T = 2L
p (1 + ε) for some ε > 0 and let s = t− T .

Pr [Ft]

= Pr
[
∃r < t : (Hr > 0) ∧ (A(r,t] ≥ H(r,t]) ∧ (A(r,t] ≥ L)

]
≥ Pr

[
Hs > 0 ∧ A(s,t] ≥ H(s,t] ∧ A(s,t] ≥ L

]
= Pr [Hs > 0] Pr

[
A(s,t] ≥ H(s,t] ∧ A(s,t] ≥ L

]
≥ Pr [Hs > 0] Pr

[
H(s,t] ≤ L ∧ A(s,t] ≥ L

]
(a)
≥ Pr [Hs > 0] Pr

[
H(s,t] ≤ L ∧ B(s,t] ≥ 2L

]
≥ pH Pr

[
H(s,t] ≤ L ∧ 2L ≤ B(s,t] ≤ 2L(1 + 2ε)

]
≥ pH Pr

[
2L ≤ B(s,t] ≤ 2L(1 + 2ε)

]
Pr
[
H(s,t] ≤ L | B(s,t] = 2L(1 + 2ε)

]
(135)

where (a) is because H(s,t] + A(s,t] ≥ B(s,t]. By Chernoff
bounds for δ ∈ (0, 1),

Pr
[
B(s,t] < p(t− s)(1− δ)

]
≤ exp

(
−p(t− s)δ

2

2

)
, (136)

Pr
[
B(s,t] > p(t− s)(1 + δ)

]
≤ exp

(
−p(t− s)δ

2

3

)
. (137)

where p , Pr [Ht +At > 0] = 1−e−ρ. With t−s = 2L
p (1+ε)

and δ = ε
1+ε ,

Pr
[
B(s,t] < 2L

]
≤ exp

(
−2Lε2

2(1 + ε)

)
,

Pr
[
B(s,t] > 2L(1 + 2ε)

]
≤ exp

(
−2Lε2

3(1 + ε)

)
Pr
[
2L ≤ B(s,t] ≤ 2L(1 + 2ε)

]
≥ 1− 2 exp

(
−2Lε2

3(1 + ε)

)
. (138)

Each non-empty time slot (Ht + At > 0) is an honest
slot (Ht > 0) independently with probability pH

p . Therefore
conditional on B(s,t] = 2L(1 + 2ε), H(s,t] has a binomial
distribution. Then we can use tail bounds for the binomial
distribution to show that

Pr
[
H(s,t] ≤ L | B(s,t] = 2L(1 + ε)

]
≥ 1√

4L(1 + 2ε)
exp (−2α4L(1 + 2ε)) (139)

where α4 = D
(

1
2(1+2ε) ||

pH
p

)
and

D(x||y) = x ln

(
x

y

)
+ (1− x) ln

(
1− x
1− y

)
. (140)

Putting these together,

Pr [Ft] ≥ pH

(
1− 2e

−2Lε2

3(1+ε)

)
1√

4L(1 + 2ε)
e−2α4L(1+2ε). (141)

Since ε is arbitrary, we may choose ε = 1
2 to get a lower

bound on the required probability.

Corollary 1. For large κ, if L = Θ(log κ) and ρ = Ω
(

1
n

)
,

then Pr [Ft] ≥ 1
poly(κ) .

Recall that the attack goes on forever if the attacker gets
one block production opportunity before the honest nodes
download a longer chain. We have seen that honest nodes
download a longer chain if and only if a non-empty slot is
followed by at least L/C empty time slots.

Definition 7. A successful time slot t is called a T -loner
if no blocks are produced in the T slots following t, i.e.,
B(t+1,t+T ] = 0. The predicate LonerT (t) is true iff slot t
is a T -loner.

We observe that

Pr [LonerT (t) | Ht +At > 0] = (1− p)T . (142)

Lemma 14. If (1 − β)e−ρT < β, then the probability that
the adversary gets one block production opportunity before a
T -loner occurs is at least 1− (1−β)e−ρT

β > 0.

Proof. We begin by calculating the probability there is at least
one attacking slot before there is an T -loner. This ensures that
the final step of the attack in App. H-C is successful and that
the adversary can updates it state and continue the attack. Let
t1, t2, ... be the sequence of successful slots since the start of
the attack. Let tN be the first T -loner in this sequence (note
that N is a random variable).

Pr [∃i ≤ N : Ati > 0]

=

∞∑
k=1

Pr [N = k] Pr [∃i ≤ k : Ati > 0 | N = k] . (143)
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Here,

Pr [N = k] =

k−1∏
i=1

Pr [¬LonerT (ti) | Hti +Ati > 0]

Pr [¬LonerT (tk) | Htk +Atk > 0]

=
(
1− (1− p)T

)k−1
(1− p)T . (144)

Moreover, conditioned on t being a successful slot, the events
LonerT (t) and At > 0 are independent. Therefore,

Pr [∃i ≤ k : Ati > 0 | N = k]

= 1−
k∏
i=1

Pr [Ati = 0 | Ati +Hti > 0]

= 1−
(
e−βρ(1− e−(1−β)ρ)

(1− e−ρ)

)k
= 1−

(
1− 1− e−βρ

1− e−ρ

)k
≥ 1− (1− β)k (145)

Putting them together,

Pr [∃i ≤ N : Ati > 0] (146)

≥
∞∑
k=1

(
1− (1− p)T

)k−1
(1− p)T

(
1− (1− β)k

)
= 1− (1− p)T (1− β)

1− (1− (1− p)T )(1− β)

≥ 1− (1− p)T (1− β)

β
. (147)

Finally, we substitute p = 1− e−ρT .

Lemma 15. If the protocol parameters ρ, τ satisfy ρ
τ >

C
L log 1−β

β , then with probability non-negligible in κ, the
attack never terminates.

Proof. From Cor. 1, for L = log(κ) and large enough ρ, the
attack setup occurs with non-negligible probability.

If the adversary gets one block production opportunity
before an L/(Cτ)-loner, then the adversary can continue the
attack by upgrading L to L + 1. This means that in the
next iteration of the attack, the adversary needs one block
production opportunity before an (L + 1)/(Cτ)-loner. Since
an (L+ 1)/(Cτ)-loner is rarer than an L/(Cτ)-loner, the ad-
versary has increased chances of getting one block production
before an (L + 1)/(Cτ)-loner, and therefore upgrading the
attack to L+ 2. This process repeats whereby if the adversary
upgrades the attack to the next phase, it increases the chance
that the attacker can further upgrade the attack to the next
phase, and so forth.

The probability that the attack continues forever is therefore

Pr [attack continues forever] ≥
∞∏
l=L

(
1− (1− β)e−

ρl
Cτ

β

)

≥
∞∏
l=L

(
1− e−

ρ(l−L)
Cτ

)

=

∞∏
l=1

(
1− e−

ρl
Cτ

)
=
(
e−

ρ
Cτ ; e−

ρ
Cτ

)
∞
. (148)

Here, (x;x)∞ is called the q-Pochhammer symbol and
(x;x)∞ ∈ (0, 1) for all x ∈ (0, 1) [43]. The condition
ρ
τ > C

L log 1−β
β is derived from the condition in Lem. 14

with T = L
Cτ .

Corollary 2. For the protocol Πρ,τ,kconf to satisfy safety and
liveness, the throughput of the protocol must be O

(
1

log κ

)
.

This is seen by noting that the throughput is 1−e−ρ
τ ≤

ρ
τ ≤

C
log κ log 1−β

β . If this is not true, then the attacker never
terminates, hence there is a safety violation as per Lem. 12.
The maximum block production rate λ = ρ

τ calculated from
Lem. 15 is plotted in Fig. 1(b).
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