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Abstract
The implementation of cryptographic algorithms must be protected

against physical attacks. Side-channel and fault injection analyses are two
prominent such implementation-level attacks. Protections against either
do exist; they are characterized by security orders: the higher the order,
the more difficult the attack.

In this paper, we leverage fast discrete Fourier transform to reduce
the complexity of high-order masking, and extend it to allow for fault
detection and/or correction. The security paradigm is that of code-based
masking. Coding theory is amenable both to mix the information and
masking material at a prescribed order, and to detect and/or correct er-
rors purposely injected by an attacker. For the first time, we show that
quasi-linear masking (pioneered by Goudarzi, Joux and Rivain at ASI-
ACRYPT 2018) can be achieved alongside with cost amortisation. This
technique consists in masking several symbols/bytes with the same mask-
ing material, therefore improving the efficiency of the masking. Similarly,
it allows to optimize the detection capability of codes as linear codes are
all the more efficient as the information to protect is longer.

Namely, we prove mathematically that our scheme features side-channel
security order of d + 1 − t, detects d faults and corrects ⌊(d − 1)/2⌋ faults,
where 2d + 1 is the encoding length and t is the information size (t ≥ 1).
Applied to AES, one can get side-channel protection of order d = 7 when
masking one column/line (t = 4 bytes) at once.

In addition to the theory, that makes use of the Frobenius Additive
Fast Fourier Transform, we show performance results, both in software
and hardware.
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1 Introduction
In this article we are interested in the security of block ciphers, such as the
AES. Such algorithms encrypt and decrypt data using a key, which must remain
secret. Nonetheless, the implementation of cryptographic algorithms is subject
to several attacks, amongst which side-channel and fault injection attacks are
especially powerful. Side-channel attacks consist in correlating guessed (key-
dependent) variables with some information leakage, whereas fault injection
attacks consist in correlating sensitive variables with the fault outcomes. Both
attacks try exhaustively all values of a subkey, and carry out a sufficient amount
of attacks so as to rebuild the complete key with a divide-and-conquer approach.

It is therefore paramount to protect implementations against those attacks.
The protection against side-channel analysis is often based on “masking”: it con-
sists in computing with randomized intermediate variables in order to provably
deter attempts from an attacker to correlate on the randomized leakage. The
protection against fault injection can typically rely on provable mathematical
techniques, such as error detection codes.

Recently, the “code-based masking” (CBM) paradigm has been introduced:
it leverages codes to achieve protection against the two threats at the same time.
A pair of complementary codes allows to linearly combine sensitive information
with digital random numbers in such a way the randomness has maximal decor-
relation power whilst ensuring the demasking remains possible at all times. The
ability to handle faults is based on redundancy kept by codes, ensuring their
length is large enough to enable a detection or correction capability meeting the
requirements in terms of fault injection attacks coverage.

1.1 Background on masking
Masking, from a historical perspective. A consensual protection against
side-channel analyses consists in randomizing data representation and compu-
tations. This method is commonly referred to as masking. Several masking
schemes have been proposed already.

Let us recap briefly the different milestones this technique has passed over
the years. First of all, a proof-of-concept leveraging data randomization has
been introduced by the seminal work of Kocher et al. [KJJ99]. Some early
implementations have been proposed, and it has soon become clear that high-
order attacks could defeat lower order masking schemes. Hence the research
for provable protections against higher-order attacks. Formal definitions have
been put forward by Blömer et al. in [BGK04]. A constructive scheme has been
proposed by Ishai et al. [ISW03] on bits. This scheme has been subsequently
extended to words (e.g., bytes) by Rivain and Prouff [RP10]. Some tools to
perform automatic proofs for such schemes have been developed, for instance
by Barthe et al. [BBD+15].

Minimizing the number of multiplications. The bottleneck in terms of
performance is the number of nonlinear multiplications (that is, multiplications
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of x by an element different from a linear combination of powers of x whose ex-
ponents are of the form 2j−1), since the addition and linear multiplications pose
no problem and all S-boxes over finite fields being polynomial, the global com-
plexity of masking directly depends on the number of nonlinear multiplications
in the unprotected algorithm.

Then, a great deal of research has been devoted to reducing the number of
multiplications in cryptographic operations, as for instance [CPRR15]. Accord-
ing to the state-of-the-art before 2020, it seemed difficult to mask one element
of the field Fqm in a way ensuring a dth-order probing security, with a better
complexity than O(d2) multiplications over Fqm .

Cost amortization and fault detection capability. In order to get the
most from masking schemes, from a performance standpoint, some attempts
have been made. One direction has been the simultaneous masking of several
bytes, referred to as “cost amortization”, as demonstrated constructively by
Wang et al. [WMCS20]. Formerly, the same idea has been applied in the field
of multiparty computation, under the name of “packed secret sharing” [DIK10].
It has required to make a difference between the number of shares (n) and
the masking order (d). Moreover, our masking is compatible with builtin fault
detection capability, tightly intertwined with the CBM design.

Quasi-linear masking complexity. Another direction for reducing the cost
due to multiplications is in reducing the cost of each multiplication by leverag-
ing spectral representations, such as the Number Theoretic Transform (NTT)
as put forward first by Goudarzi, Joux and Rivain (GJR [GJR18]). Unfortu-
nately the NTT works only for prime fields with odd characteristics which is
not convenient in practice. Recently, the authors of [GPRV21] extended the
GJR scheme of [GJR18] to the even characteristic by replacing the NTT by a
Discrete Fourier Transform (abridged “DFT” in the sequel), namely the addi-
tive fast Fourier transform of Gao et al. [GM10]. The novel masking scheme is
dubbed “GJR+”.

The initial proposal of [GJR18] (GJR) and the modification of [GPRV21]
(GJR+) considerably improved upon the state-of-the-art, since they allowed to
reduce the complexity of multiplications from quadratic (O(d2)) to quasi-linear
(O(d log d)). This improvement is significant because the multiplication is the
bottleneck in terms of computational complexity.

But the “DFT” in general (and NTT in particular) have a drawback: the lin-
ear operations are no longer transparent. Instead of being linear in the number
of shares (each share being applied the linear transformation on itself, individ-
ually), a quasi-linear operation shall be applied. Still, the overall complexity
remains quasi-linear.

Code-Based Masking (CBM). Besides, CBM has been introduced as a
new paradigm to capture the security properties of masking. It describes the
masking scheme as the (space-vector) sum of an encoded information taken
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from a code C, with an encoded mask taken from a code D, that is “disjoint”
from C. The main advantage of CBM is that the security order is simple
to determine: namely, the masking order is equal to the dual distance of the
masking code minus the number one [PGS+17]. Computing in CBM, including
multiplications, has been put forward in [WMCS20]. Advantageously, CBM
has been proven relevant to describe the capability to detect faults on top of
a masking scheme: indeed, when the two space-vectors C and D are in direct
sum but such that dim(C) + dim(D) < n where n is the length of C (or D), the
information can be encoded in a redundant manner, enabling detection or even
correction.

1.2 Analysis of the state-of-the-art
We analyze in this subsection the drawbacks of existing quasi-linear masking,
in particular [GPRV21].

No cost amortization nor fault detection capability. Despite the advan-
tages in terms of performance of quasi-linear masking ([GJR18] and [GPRV21]
as well), the technique described in these papers does not unleash the full po-
tential in terms of masking efficiency and fault attack protection. Regarding
the efficiency, these papers do neither address how to encode multiple bytes of
information in one go. Besides, these papers do not show how to correct errors
(it would require to encode redundant information, as for instance put forward
in [CCG+20]).

Non-practical masking order. It is hinted in [GPRV21] that their quasi-
linear masking “improves the efficiency of the masked cipher for a masking order
n ≥ 64 for the MiMC block cipher and n ≥ 512 for the AES” (as they write in at
the end of the introduction, page 602). These masking orders are non-practical.
Indeed, in real life, masking order is rather low, such as 1, 2 or maximum 3.

Complex implementation. Besides, the technique of [GPRV21] involves a
randomized Fourier transform. This is an obvious limitation in terms of effi-
ciency.

Abstract specification. In [GPRV21], the DFT is not instantiated, which
limits the ability to compare with other schemes. As a side-effect, this negatively
impacts the clarity of the security proof (which requires cumbersome hypotheses,
such as leaving the DFT out of the scope of the security analysis).

1.3 Our contributions
In this paper, we introduce a practical masking scheme, with quasi-linear com-
plexity.
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Security proof based on codes properties. Our masking algorithm is
described as a CBM. Therefore, not only side-channel security order is related
to a dual distance, but also the capability to detect & correct faults is also
related to codes minimum distance. Namely, we prove mathematically that our
scheme features side-channel security order of d + 1 − t, detects d faults and
corrects ⌊(d − 1)/2⌋ faults, where 2d + 1 is the encoding length and t is the
information size (t ≥ 1).

Cost amortization. Our masking algorithm allows to mask jointly several
bytes, based on a proof leveraging coding theory (within the CBM paradigm).
Former works involving quasi-linear masking are only concerned by masking
individual bytes. Notice that cost amortization also has an advantage in terms
of the efficiency of fault detection capability.

Practical and efficient DFT. We thoroughly studied several DFT algo-
rithms, and deploy an efficient one. It offers improved efficiency owing to opti-
mization from a numeric standpoint. Namely, it relies on a sparse representa-
tion with small & simple coefficients (e.g., most often, “1”s). This DFT can be
leveraged in the same time for the computation of the masking and the error
detection.

Implementation and performance validation. We show that our quasi-
linear masking is easy implementable, in software and in hardware. Namely, we
provide performance characterization in C and VHDL languages. In particular,
they support the effectiveness of cost amortization.

1.4 Outline
Preliminary notions are given in Sec. 2. They focus on DFT computation as
they are the most complex operation in masking. We propose in Sec. 3 to
consider an original DFT method proposed in [WZ88] which is particularly
adapted to both software and hardware implementation. Indeed, the Gao and
Cantor methods that we mentioned could give similar theoretical complexity but
would require a huge effort of implementation in practice. We show in Sec. 4
how to extend this masking to the case of simultaneous protection of several
symbols. We propose in a second phase, in Sec. 5 to correct or detect errors
and erasures of any codeword present anywhere in the process of the ciphering
algorithm. The security rationale is detailed in Sec. 6, where we provide a value
for the side-channel security order and the fault injection resistance capabilities.
Implementation in C and VHDL are given in Sec. 7, along with performance
results. Conclusions are in Sec. 8.

Examples of quasi-linear DFT constructions adapted to handling bytes are
given in App. A. We show the efficiency of this method on all platforms; our
method definitively complies with hardware and software implementation and
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has a very low complexity. Namely, in App. A.1 (resp. App. A.2), we investigate
the case of d = 2 (resp. d = 7).

2 Preliminaries
2.1 Finite fields
In this article, we are interested in data represented as elements from finite fields.
We denote by Fq the field of q elements. We recall that when q is a power of
two, Fq is said of characteristic two; in this case, subtraction and addition are
the same operation, simply denoted by “+”. A finite field of characteristic two
can be seen as a polynomial extension of degree ℓ of F2, where q = 2ℓ. In this
case, the addition boils down to the ℓ-bit parallel XOR operation. In this article,
we illustrate our results on F256 (i.e., ℓ = 8), which is the natural field within
AES. Let ν be a primitive element of Fq, that is a generator of the multiplicative
group F∗

q . Let n a positive integer. We assume that n divides q − 1, then we
have that the field element ω = ν

q−1
n is a primitive root of the unity. That is,

ωn = 1. By construction, n is odd with q is power of two. We denote n = 2d+1.

2.2 Reed-Solomon codes
We denote by Fn

q the vector space of n field elements. A vector subspace of Fn
q

is also called a linear code of length n. The Reed-Solomon code of length n,
dimension k and minimal distance n − k + 1 is an evaluation code for which
a generator matrix which can be defined as the evaluation of the polynomial
basis 1, X, X2, . . . , Xk−1 over the set 1, ω, ω2, . . . , ωn−1. We denote this code
by RS[n, k, n− k + 1].

The dual C⊥ of a linear code C is the linear code equal to the kernel of the
generator matrix of C. It is well-known that the dual code of RS[n, k, n−k + 1]
is a RS[n, n− k, k + 1] code.

As a consequence, we know that the matrix (ωij)0≤i≤k−1,0≤j≤n−1, known as
the Vandermonde matrix defined over 1, ω, ω2, . . . , ωn−1, is a generator matrix
of the RS[n, n, 1] code. We have also that the inverse of the Vandermonde
matrix corresponds to the generator matrix of the RS[n, n, 1] code defined over
1, ωn−1, ωn−2, . . . , ω1.

2.3 Multiplication of polynomials and DFTs in finite fields
We are interested in the multiplication of two polynomials P and Q on Fq of
degree less or equal to d. The result is PQ, a polynomial of degree less or equal
to 2d.

The naïve computation has complexity O(d2). However, a less complex
method can be implemented.

Every polynomial is evaluated over its support (that is {1, ω, . . . , ωn−1}).
The evaluation of PQ is the pairwise product of the evaluation of P and Q.
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Thus, PQ is given by the interpolation of its truth table.
Now, it is well-known that the evaluation of a polynomial is precisely its Dis-

crete Fourier Transform (DFT). Reciprocally, the interpolation of a polynomial
is given by the inverse DFT (IDFT) [Knu11, Vol 2]. Notice that the definition
of the DFT (and of the IDFT) is relative to the value of ω. Whenever there
can be ambiguity, we shall write DFTω (resp. IDFTω) instead of DFT (resp.
IDFT).

Besides, the evaluation of polynomial P on its support is equivalent to mul-
tiplying the row (p0, p1, . . . , pd−1) made up of coefficients of P =

∑d−1
i=0 piX

i

by the Vandermonde matrix. Reciprocally, the interpolation of a polynomial P
is given by the multiplication by the row (P (1), P (ω), . . . , P (ωn−1)) with the
inverse of the Vandermonde matrix.

Thus, for any vector (p0, . . . , p2d) ∈ F2d+1
q , we can associate the polynomial

P (X) = p0 + p1X + . . . + p2dX2d and the discrete Fourier transform is defined
by:

DFT(p0, . . . , p2d) =
(∑2d

i=0 piω
ij
)

j∈{0,...,2d}
=
(
P (ωj)

)
j∈{0...2d} .

Then the DFT inverse is defined by:

IDFT(P (1), . . . , P (ω2d)) =
(∑2d

i=0 P (ωi)ω−ij
)

j∈{0,...,2d}
= (p0, . . . , p2d).

According to [Gao03], these operations (DFT and IDFT) can be computed
using O(n log(n) log log(n)) operations in Fq operations. The details of these
algorithms can be found in Chapters 8-11 of [vzGG13]. In general, it is known
that computing products with DFT is computationally efficient for large values
of n (e.g., n > 1, 000).

Multiplicative DFT (see [Gao03]). The usual DFT requires that its sup-
port (n points, named ai) form a multiplicative group of order n, concretely,
the polynomial Xn + 1 has n distinct roots in the underlying field. In this case
we say that the field supports DFT, and we call such a DFT multiplicative. A
multiplicative DFT has time complexity O(n log(n)) and can be implemented
in parallel time O(log(n)), where the implicit constants are small. For such
abovementioned fields, we can take n + 1 to be a power of 2 with n|(q − 1) and
a1, . . . , an to be all the roots of Xn + 1. Then a DFT and its inverse at these
points can be computed using O(n log(n)) operations in Fq. By using DFTs,
polynomial multiplication and division can also be computed using O(n log(n))
operations. The implicit constants in all these running times are very small, so
these algorithms are practical for n ≥ 256.

Additive DFT (see [GM10]). Unfortunately multiplicative DFTs are not
supported by many finite fields, especially fields of characteristic two which are
preferred in practical implementation. Cantor [Can89] finds a way to use the
additive structure of the underlying field to perform a DFT over a finite field
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of order pm where m is a power of p. This method is generalized by von zur
Gathen and Gerhard [vzGG96] to arbitrary m. Their additive DFTs (for p = 2)
uses O(n log2 n) additions and O(n log2 n) multiplications in Fq. For fields of
characteristic two and for n = 2m, Gao and Mateer [GM10] recently improved
on Cantor’s method. When m is a power of 2, the above time complexity can
be improved to O(n log(n) log log(n)). For arbitrary m, there is an additive
DFT using O(n log2(n)) additions and O(n log(n)) multiplications in Fq. These
DFTs are highly parallel and can be implemented in parallel time O(log2(n)).

2.4 Quasi-linear DFT in practice
All DFT methods presented and discussed in the previous section 2.3 can be
implemented in a pragmatic manner. Namely, first, a polynomial decomposition
binary tree is computed off-line, once for all. Second, for each invocation of DFT
or IDFT, a butterfly algorithm is executed on the pre-computed tree.

Preparation of a polynomial decomposition tree. We leverage the method
put forward by Wang and Zhu in [WZ88]. Their idea consists in remarking that
P (νi) = P (X) mod (X + νi), then it is shown that the polynomial Xn+1 + X
can be decomposed, as discussed below.

Let us design a binary tree of polynomials qi,j , where i is the depth and j is
an index for the breadth. Let n be the size of the DFT, then 0 ≤ i ≤ ⌈log2(n)⌉,
and 0 ≤ j ≤ 2⌈log2(n)⌉−i. The tree is defined recursively as follows:

• The root is denoted by q⌈log2(n)⌉,0 = Xn+1 + X;

• intermediate nodes are denoted by qi,j and defined as qi,j =
∏1

k=0 qi−1,2j+k,
with degree(qi,j) = 2i;

• Eventually, the leaves are q0,j = X − βj , where βj are elements of Fq.

By convention, the first leaf q0,0 = 0. In fact intermediate divisors are com-
pletely determined once the ordering of the bottom divisors qi,0 is fixed.

Example 1 We illustrate in this example such a binary tree, obtained from the
Frobenius Additive Fast Fourier Transform (FAFFT) put forward in [LCK+18].
We remind that X4 + X = X(X + 1)(X2 + X + 1). The polynomial X2 + X + 1
is the minimal polynomial whose zero is ω (recall that ω is defined throughout
the article as a root of the unity of Xn + 1). Then we have the following binary
tree:

q2,0 = X4 + X

q1,0 = X2 + X q1,1 = X2 + X + 1

q0,0 = X q0,1 = X + 1 q0,2 = X + ω q0,3 = X + ω + 1
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With the construction of [WZ88], it is possible to show that all qi,j are
either linearized or affine polynomials [MS77] (that is: qi,j(X1 + X2) + qi,j(0) =
qi,j(X1)+qi,j(X2)). Consequently, polynomials qi,j are sparse with at most i+1
coefficients.

Computation of an efficient DFT. Based on such a pre-computed binary
tree, we can now introduce an algorithm to efficiently compute the DFT. It is
given in Alg. 1.

Algorithm 1: Quasi-linear (i.e., fast) Discrete Fourier Transform
Data: Pre-computed binary tree qi,j

Input: a = (a0, a1, . . . , an−1)
Output: (b0, b1, . . . , bn−1) the DFT of a

1 P⌈log2(n)⌉,0 ←
∑n−1

i=0 aiX
i

2 for i ∈ {⌈log2(n)⌉ − 1, ⌈log2(n)⌉ − 2, . . . , 0} do
3 for j ∈ {1, . . . , 2⌈log2(n)⌉−i} do
4 Pi,j ← Pi+1,⌊j/2⌋ mod qi,j

5 return (P0,j)0≤j≤n−1) = (b0, b1, . . . , bn−1)

The last step in Alg. 1 (for i = 0) consists in a reduction modulo q0,j , which
are polynomials of degree 1. Thus, the modulo operations yield a value in Fq.

3 Quasi-Linear Masking without Cost Amorti-
zation

In this section, we introduce our high-order CBM algorithm, without cost amor-
tization. That is, we consider only the masking of t = 1 element (byte). The
purpose of this particular case is to explain simply the DFT-based masking with
fault detection capability.

3.1 Masking construction
We define now the Reed-Solomon code RSq[n, n, 1] whose generator matrix is
given by the Vandermonde Matrix M ∈ Fn×n

q where Mi,j = ωij . Let x ∈ Fq

be a sensitive variable. To mask it, we pick randomly r0, . . . , rd−1 in Fq and
encode the vector a⃗ = (x, r0, . . . , rd−1, 0, . . . , 0) ∈ Fn

q with the Vandermonde
matrix. We define:

mask(x) := DFT(⃗a) =
(∑d

i=0 aiω
ij
)

j∈{0,...,2d}
= a⃗ ·M .

Unmasking corresponds to the computation of the inverse DFT. Namely, let
us denote z⃗ = mask(x) (i.e. zj =

∑d
i=0 aiω

ij). We have a⃗ = IDFT(z⃗). The
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sensitive data is x = a0, thus we get:

unmask(z⃗) = IDFT(z⃗)0 =
(
z⃗ ·M−1)

0 .

3.2 Masking addition and scaling
Let us denote: z⃗ = mask(x) and z⃗ ′ = mask(x′). The following properties are
satisfied:

• mask(x + x′) = z⃗ + z⃗ ′,
• mask(λx) = λ · z⃗ for any λ ∈ Fq.

3.3 Masking the multiplication
The multiplication is not a linear operation, so the question is how to compute
mask(xx′) without unmasking x or x′. We denote y⃗ = z⃗ ∗ z⃗ ′ := (zjz′

j)j∈{0,...,2d}
where “∗” is the term-to-term product between two vectors. For j ∈ {1, . . . , 2d},
we have:

yj = zjz′
j =

(
x +

∑d
i=1 riω

ij
)(

x′ +
∑d

i=1 riω
ij
)

= xx′ +
∑2d

i=1 r′′
i ωij

=⇒ y⃗ = DFT(xx′, r′′
1 , . . . , r′′

2d).

The coefficients r′′
i are obtained from the multiplication between Z(X) = x +∑d

i=1 riX
i and Z ′(X) = x′ +

∑d
i=1 r′

iX
i. The multiplication between Z(X)

and Z ′(X) of degree d gives a polynomial Y (X) = xx′ +
∑2d

i=1 r′′Xi of degree
2d. Thus, to get mask(xx′) we need to eliminate the coefficients r′′

i for i ∈
[d + 1 . . . 2d].

3.3.1 Extracting the last coefficients algorithm

We have:

Y (X) = xx′ +
∑2d

i=1 r′′
i Xi = xx′ +

∑d
i=1 r′′

i Xi +
∑2d

i=d+1 r′′
i Xi .

=⇒ y⃗ = DFT(xx′, r′′
1 , . . . , r′′

d , 0, . . . , 0) + DFT(0, . . . , 0, r′′
d+1, . . . , r′′

2d) .
= mask(xx′) + DFT (0, . . . , 0, r′′

d+1, . . . , r′′
2d) .

=⇒ mask(xx′) = y⃗ + DFT (0, . . . , 0, r′′
d+1, . . . , r′′

2d) .

Now to construct DFT(0, . . . , 0, r′′
d+1, . . . , r′′

2d) we must come back to the defini-
tion of IDFT. We remind that:

IDFT(y⃗) =
(∑2d

i=0 yiω
−ij
)

j∈{0,...,2d}
= (xx′, r′′

1 , . . . , r′′
2d).

But in our case we are interested only by the coefficients r′′
j for j ≥ d + 1, thus

we have to evaluate:

r′′
j =

2d∑
i=0

yiω
−ij with d + 1 ≤ j ≤ 2d.
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For 0 ≤ j ≤ d− 1 we have:

r′′
j+d+1 =

∑2d
i=0 yiω

−i(j+d+1)

=
∑2d

i=0

(
yiω

−i(d+1)
)

ω−ij

=
∑d

i=0

(
yiω

−i(d+1)
)

ω−ij +
∑d

i=1

(
yi+dω−(i+d)(d+1)

)
ω−(i+d)j

=
∑d

i=0

(
yiω

−i(d+1)
)

ω−ij + ydω−d(d+1+j) +
∑d

i=0

(
yi+dω−(i+d)(d+1)

)
ω−(i+d)j

=
∑d

i=0

(
yiω

−i(d+1)
)

ω−ij + ydω−d(d+1+j) + ω−dj
∑d

i=0

(
yi+dω−(i+d)(d+1)

)
ω−ij

=
∑d

i=0 µiω
−ij + νj + wj

∑d
i=0 λiω

−ij .

where:

• µ⃗ = (yiω
−i(d+1))0≤i≤d.

• θ⃗ = (ydω−d(d+1+j))0≤j≤d−1.

• λ⃗ = (yi+dω−(i+d)(d+1))0≤i≤d.

• wj = ω−dj .

Then we can calculate:

r⃗ ′′ =
(

r′′
d+1, . . . , r′′

2d

)
=
(

IDFT(µ⃗, 0, . . . , 0) + θ⃗ + w⃗ ∗ IDFT(λ⃗, 0, . . . , 0)
)

. (1)

This computation is formalized as a routine in Alg. 2.

3.3.2 Algorithm for the masked multiplication

Finally we get:
mask(xx′) = y⃗ + DFT(0, . . . , 0, r⃗ ′′) .

This computation is summarized in Alg. 3.
A tedious calculation of the complexity of this algorithm in terms of the

number of multiplications in Fq is given in Tab. 1.
We note that the calculation of IDFT(µ⃗, 0, . . . , 0) and IDFT(λ⃗, 0, . . . , 0) leads

to calculate half of a Discrete Fourier Transform, whose complexity is the same
as a full-domain DFT, but with smaller constant factors.

In conclusion, the complexity of addition is linear, that of multiplication is
quasi-linear. Besides, masking and demasking costs n log(n) multiplications [TL20]
over Fq, hence is quasi-linear as well. As a conclusion, all operations can be com-
puted in quasi-linear complexity.
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Algorithm 2: extractLastCoefficients Complexity:
2n(1 + log(n))

Input: a vector y⃗ ∈ Fn
q

Output: r⃗ ′′ ∈ Fn
q

1 µ⃗← 0⃗ ∈ Fn
q

2 λ⃗← 0⃗ ∈ Fn
q

3 Let θ⃗ ∈ Fd
q

4 for 0 ≤ i ≤ d do
5 µi ← yiM

−1
i,d+1 // M−1 is a pre-calculated matrix where

M−1
i,j = ω−ij

6 λi ← yi+dM−1
(i+d),(d+1)

7 for 0 ≤ i ≤ d− 1 do
8 θi ← ydM−1

d,d+1+i

9 µ⃗ ′ ← IDFT(µ⃗)
10 λ⃗ ′ ← IDFT(λ⃗)
11 r⃗ ′′ = 0⃗ ∈ Fn

q

12 for 0 ≤ i ≤ d− 1 do
13 r”d+1+i ← µ′

i + θi + M−1
d,i ∗ λ′

i

14 return r⃗ ′′ // Result of Eqn. (1)

Table 1: Complexity of operations involved in the masked multiplication

Variable Cost
y⃗ n
µ⃗ d + 1
θ⃗ d

λ⃗ d + 1
r⃗ ′′ 4(d + 1) log(n) + d + d
mask(xx′) 1 + 4d + 4(d + 1) log(n)

Algorithm 3: oneElementMultiplication Complexity:
n(3 + 2 log(n))

Input: two masked elements z⃗ = mask(x), z⃗ ′ = mask(x′) ∈ Fn
q

Output: mask(xx′) ∈ Fn
q

1 y⃗ ∈ Fn
q

2 for 0 ≤ i ≤ n− 1 do
3 yi ← ziz

′
i

4 r⃗ ′′ = extractLastCoefficients(y⃗) // Call to routine of Alg. 2
5 return y⃗ + DFT(0, . . . , 0, r⃗ ′′)

12



4 Quasi-linear Masking with Cost Amortization
Let us now extend our quasi-linear masking to several information elements (e.g.,
bytes) simultaneously. This allows to explore a tradeoff between side-channel
order (namely d+1−t) and the amount of information processed simultaneously
(namely t).

We propose then to translate this procedure in term of error correcting
codes. We consider a free family 1, α, α2, . . . , αd of Fd+1

q where αi ̸= ω for any
0 ≤ i ≤ d. We want now to mask the vector x⃗ = (x0, . . . , xt−1) ∈ Ft

q with
1 ≤ t < d. (the case t = 1 has been addressed in previous section 3.)

4.1 Encoding procedure
First we pick randomly r⃗ = (rt, rt+1, . . . , rd) in Fd+1−t

q . By Lagrange interpo-
lation, there exists a vector a⃗ = (a0, a1, . . . , ad) and the associated polynomial
Px⃗(X) = a0 + a1X + · · ·+ adXd of degree at most d that satisfies Px⃗(αi) = xi

for i ∈ {0, . . . , t− 1} and Px⃗(αi) = ri for i ∈ {t, . . . , d}.
Let us define the matrix A ∈ F(d+1)×(d+1)

q , where Ai,j = αij for any i, j in
{0, . . . , d}. We have:

a⃗ = (x⃗ | r⃗)×A−1 .

The second step of encoding consists in computing DFTω(a0, . . . , ad, 0, . . . , 0).
Thus finally:

mask(x⃗) = DFTω(a0, . . . , ad, 0, . . . , 0) = DFTω

(
(x⃗ | r⃗)×

[
A−1|0

])
.

In this equation, (x⃗ | r⃗) is the row obtained by the concatenation of row vectors
x⃗ and r⃗, and

[
A−1|0

]
is the vertical concatenation of matrices A−1 and 0.

This method is a O((d + 1)2) complexity encoding procedure, but we can
do better with the following one. We can construct P (X) = P ′(X) + P ′′(X)
by first picking randomly the polynomial P ′′(X) = atX

t + · · · + adXd, then
we evaluate P ′(X) = a0 + a1X + · · ·+ at−1Xt−1 over 1, α, . . . , αt−1 which cost
t(d− t) multiplications over Fq.

We want now to construct P ′(X) which allows to solve the following linear
system:[

a0 . . . at−1
]︸ ︷︷ ︸

a⃗ ′

×A′ =
[
x0 + P ′′(1) . . . xi + P ′′(αi) . . . xt−1 + P ′′(αt−1)

]
= x⃗ +

[
P ′′(1) . . . P ′′(αi) . . . P ′′(αt−1)

]
= x⃗ +

[
at . . . ad

]︸ ︷︷ ︸
a⃗ ′′

×A′′ = x⃗ + a⃗ ′′ ×A′′ ,

where:

• A′ ∈ Ft×t
q , and A′

i,j = Ai,j for any 0 ≤ i, j < t;

• A′′ ∈ F(d+1−t)×t
q , A′′

i,j = Ai+t,j for any 0 ≤ i < d + 1− t and 0 ≤ j < t;

13



• a⃗ ′′ ∈ Fd+1−t
q is a random vector.

Thus, the calculation of a⃗ = (⃗a ′ | a⃗ ′′) =
(
(x⃗ + a⃗ ′′ ×A′′)×A′−1 | a⃗ ′′) costs

t(d + 1) multiplications over Fq (we note that A′′ and A′−1 may advantageously
be pre-computed). Again, the second step of encoding consists in computing
DFTω( a⃗ | 0⃗ ) of complexity O(n log(n)).

The overall masking procedure is given in Alg. 4. Decoding procedure follows
the same tracks: we use the inverse discrete Fourier transformation to get a⃗,
then we have: x⃗ = a⃗ ′ ×A′ + a⃗ ′′ ×A′′ which gives has the same complexity as
the masking operation.

Algorithm 4: mask Complexity: t(d + 1) + n log(n)
Input: a sensitive vector x⃗ ∈ Ft

q

Output: mask(x⃗) ∈ Fn
q

1 a⃗ ′′ = (at, at+1, . . . , ad) $← Fd+1−t
q

2 a⃗ ′ ← (x⃗ + a⃗ ′′ ×A′′)×A′−1

3 return DFTω (⃗a ′ | a⃗ ′′ | 0⃗)

The masking refresh allows to update the random part of the masked word,
it consists of adding mask(⃗0), namely refresh(mask(x⃗)) = mask(x⃗)+ mask(⃗0) =
mask(x⃗).

4.2 Masking the multiplication
Let us denote z⃗ = mask(x⃗) and z⃗ ′ = mask(x⃗ ′). Obviously,

z⃗ ∗ z⃗ ′ = DFTω(a0, . . . , ad, 0, . . . , 0) ∗DFTω(a′
0, . . . , a′

d, 0, . . . , 0).1

The polynomial obtained by performing DFT−1
ω (DFTω(Px⃗) × DFTω(Px⃗′)) =

Px⃗(X) × Px⃗′(X) = C(X) is a 2d degree polynomial, which satisfies C(αi) =
Px⃗(αi)× Px⃗′(αi) = xix

′
i for any i in {0, . . . , t− 1}.

Now we have to propose a method that associates a degree d polynomial
D(X) to C(X). This polynomial must satisfy the same properties: D(αi) =
C(αi) for all 0 ≤ i ≤ t− 1.

The authors of [GJR18] proposed the following construction for t = 1:

D(X) = c0 + c1X + . . . + cdXd + αd(cd+1X + . . . + c2dXd)
= c0 + (c1 + αdcd+1)X + · · ·+ (cd + αdc2d)Xd .

Obviously, in this case D(α) = C(α) = x1x′
1. We propose to generalize this

construction. Let:

Uj(X) = αjd (X − α) · · · (X − αj−1)(X − αj+1) · · · (X − αt)
(αj − α) · · · (αj − αj−1)(αj − αj+1) · · · (αj − αt) .

1The ‘∗’ operation means the pairwise product.
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Hence, by construction, Uj(αj) = αjd and Uj(αi) = 0 for any i in {0, . . . , t −
1}\{j} and deg(Uj(X)) = t− 1. Then we set:

D(X) = c0 + c1X + · · ·+ cdXd +
∑t

j=1 Uj(X)(cd+1X + · · ·+ c2d−t+1Xd−t+1)
+

∑t
j=1 Uj(X)

∑t−1
i=1 c2d−t+1+iα

jd−jt+j+ij .

The degree d polynomial D(X) satisfies D(αi) = C(αi) = xix
′
i of i ∈ {0, . . . , t−

1}.
In order to build efficiently DFTω(D(X)), let us write:

D(X) = c0 + c1X + · · ·+ cdXd + (cd+1X + · · ·+ c2d−t+1Xd−t+1)
∑t

j=1 Uj(X)
+

∑t−1
i=1 c2d−t+1+i

∑t
j=1 Uj(X)αjd−jt+j+ij .

Thus:
DFTω(D(X)) = DFTω(C(X))

+ DFTω(cd+1Xd+1 + · · ·+ c2dX2d)
+ DFTω(cd+1X + · · ·+ c2d−t+1Xd−t+1) ∗ u⃗

+
∑t−1

i=1 c2d−t+1+i ·Gi

= mask(x⃗ ∗ x⃗ ′)

where Gi = DFTω(
∑t

j=1 Uj(X)αjd−jt+j+ij) for i ∈ {1, . . . , t − 1} and u⃗ =
DFTω(

∑t
j=1 Uj(X)) are a pre-computed values, and cd+1, . . . , c2d = extractLastCoefficients(z⃗∗

z⃗ ′).

4.3 Matrix product masking
It is necessary to also define the matrix product operation, as this type of
operations is essential to calculate MixColumns or ShiftRows for example, with
t ∈ {4, 8, 16}. Let us denote by L ∈ Kt×t the public matrix, we need to construct
an algorithm MatrixProduct such that:

MatrixProduct(mask(x⃗), L) = mask(x · L) .

Let us recall that the masking operation is a combination between 2 FFTs,
that can be represented as a matrix product as follows:

mask(x⃗) = (x⃗, r⃗, 0⃗) ·N (2)
where:

N =
[
A 0
0 I

]
×M ∈ Fn×n

q .

Thus:
mask(x⃗ · L) = mask(x⃗) · L′ ,

where L′ = N−1 ×
[
L 0
0 I

]
×N is a pre-computed value. i.e:

MatrixProduct(mask(x⃗), L) = mask(x⃗) · L′ .

15



Algorithm 5: severalByteProduct Complexity: n(3 + t + 4 log(n))
Input: two vectors z⃗ = mask(x⃗) ∈ Fn

q and z⃗ ′ = mask(x⃗ ′) ∈ Fn
q

Output: mask(x⃗ ∗ x⃗ ′) ∈ Fn
q

1 y⃗ ∈ Fn
q

2 for i ∈ {0, . . . , n− 1} do
3 yi ← ziz

′
i

4 c⃗ ′′ = extractLastCoefficients(y⃗) = (cd+1, . . . , c2d)
5 c⃗← (0, . . . , 0 | c⃗ ′′) = (0, . . . , 0, cd+1, . . . , c2d) ∈ Fn

q .
6 v⃗ ← 0⃗ ∈ Fn

q

7 for 0 ≤ i < t− 1 do
8 for 0 ≤ j < n do
9 vj ← vj + Gi+1,j · c2d−t+2+i

10 c⃗ ′ ← 0⃗ ∈ Fn
q

11 for i ∈ {1, . . . , d− t + 1} do
12 c′

i ← cd+i

13 w⃗ ′ ← DFT(c⃗ ′) ∈ Fn
q

14 for i ∈ {0, . . . , n− 1} do
15 w′

i ← wiui

16 return y⃗ + DFT(c⃗) + w⃗ ′ + v⃗

4.4 Exponentiation algorithm
Let e be a power of 2, we denote x⃗ e = (xe

0, . . . , xe
t ) ∈ Ft+1

q . In order to calculate
SubBytes transformation efficiently we need to calculate mask(x⃗ e). We have:

mask(x⃗)e = (x⃗, r⃗, 0⃗)e ·Ne (where (Ne)i,j = (Ni,j)e)
=⇒ mask(x⃗)e · ((Ne)−1 ×N) = (x⃗, r⃗, 0⃗)e ·N = mask(x⃗e) .

The operations order in this case is very important, in fact the mask(x⃗)e ·(Ne)−1

can divulge the sensitive data if it has been done like this, that’s why it’s manda-
tory to pre-compute ((Ne)−1×N) first, then calculate mask(x⃗)e · ((Ne)−1×N).
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5 Detecting/correcting fault injections
5.1 Error correcting code interpretation
We note that by construction, there exists an invertible matrix R that satisfies:

a0
...

at−1
at

...
ad


= R×



x0
...

xt−1
P (αt)

...
P (αd)


.

We note that this DFT computation corresponds to the encoding in the
Reed-Solomon code defined by the evaluation of 1, X, . . . , Xd over 1, ω, ω2, . . . , ω2d,
and represented by a matrix V . Hence, we get that mask(y) = yR⊤V . We de-
duce that our masking algorithm corresponds to an encoding procedure with
a generalized Reed-Solomon code of minimal distance d + 1, dimension d and
length 2d + 1.

5.2 Error detection method
We have seen previously that our masking technique corresponds to an encoding
in [n = 2d + 1, k = d + 1, d + 1] Reed-Solomon code. We propose in this section
to describe a known method based on syndrome decoding [Pet60, Mas69, Jr.65,
BHP98] that does not leak sensitive information.

Our information on t words is included inside of d + 1 words which are
then encoded in the Reed-Solomon code of length 2d. Next we assume that a
reasonable number of faults is injected on this codeword c. This codeword is
in correspondence with a degree k − 1 = d polynomials c(X) = IDFTω(c) in
Fq[X].

It corresponds to the classic problem of error correction in a noisy channel.
The error can be interpreted as a vector e = (e0, e1, . . . , en−1) = DFT−1

ω (e(X))
with ϵ the non-zero coefficients (positions) from Fq and e(X) is a degree n− 1
polynomial over Fq. Hence, we study the vector y = c + e = (ej)j∈J0,n−1K.

To detect or correct the errors, we calculate a syndrome from y, which only
depends on the error word e and not on the codeword c. We recall that the dual
code of the RS[n, k] is the RS[n, n−k] code. A basis of this code is given by the
monomials 1, X, . . . , Xn−k−1 which are evaluated over the set 1, ω, . . . , ωn−1.

Proposition 1 (Fast syndrom evaluation) Let S = (S0, S1, . . . , Sn−k−1).
It is a syndrome sequence which satisfies

S = (Sj)j∈J0,n−k−1K =
(

n−1∑
i=0

yjωij

)
j∈J0,n−k−1K

= DFTω(y).
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Since deg(c(X)) < k, S = DFTω(y) = DFTω(e) which does not depend of c.
We deduce that detecting the presence of faults injection (i.e. checking whether
S ̸= 0) can be computed in O(n log(n)) multiplications.

To correct these faults, we need to construct the error locator polynomial.
We introduce the vector λ = (λj)j∈J0,n−k−1K such that λj = 0 whenever the
corresponding coefficient ej of e is non-zero, and λj ̸= 0, whenever ej = 0. In this
way, we have λj ·ej = 0 for all j ∈ {0, . . . , n−1}. If we denote Λ(X) = DFTω(λ)
and E(X) = DFTω(e) = S, then, due to the well-known convolution theorem
of the DFT, we have

E(X)Λ(X) = 0 mod Xn − 1. (3)

The ϵ roots ω−j1 , . . . , ω−jϵ of the polynomial Λ(X) correspond to the locations
j1, . . . , jϵ of the erroneous positions in y. Therefore Λ(X) = Λ0+Λ1X+· · ·+ΛϵX
is called the “error locator polynomial”.

Without losing in generality, Λ(X) can be normalized by setting λ0 = 1.
Equation (3) gives rise to a linear system of n equations. From these equations,
n − k − t equations only depend on the n − k coefficients from E(X), which
coincide with the elements S0, . . . , Sn−k−1 of the syndrome, and the unknown
coefficients of the error locator polynomial λ(X). Hence, we extract a linear
system of n− k − er equations and ϵ unknowns:

S0 S1 . . . Sϵ−1
...

Si Si+1 . . . Sϵ+i−1
...

Sn−k−er−1 Sn−k−ϵ . . . Sn−k−2


︸ ︷︷ ︸

S

×



Λϵ

...
Λi

...
Λ1


︸ ︷︷ ︸

Λ

=



−Sϵ

...
−Si

...
−Sn−k−1


︸ ︷︷ ︸

T

. (4)

Obviously, a unique solution can can exist as long as ϵ ≤ n−k
2 which means than

we can correct not more than n−k
2 = d−1

2 faults.
To avoid a large complexity to solve the system of equations (4), due to

specific form of it, we can use the well-known Berlekamp-Massey algorithm
that solves this system with a linear complexity.

At this point we have located the errors by constructing Λ(X). Reconstruct-
ing the errors can be done by the Forney algorithm. It consists in calculating
the error evaluator polynomial

Ω(X) = Sp(X)Λ(X) mod 2er,

where Sp(X) is the partial syndrome polynomial:

Sp(X) = s0 + s1X + s2X2 + . . . + s2er−1X2er−1.

Finally the error is given by evaluating the quantity for Xj = ωij :

ej =
Ω(X−1

j )
Λ′(X−1

j )
,
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Table 2: Side-channel security order versus fault detection / correction

n d t SCA order (d +
1− t)

Nb. of detected
faults

Nb. of corrected
faults

5 2 1 2 2 02 1

15 7

1 7

7 32 6
...

...
7 1

17 8

1 8

8 32 7
...

...
8 1

where Λ′ is the first derivative of Λ. These quantities can be again evaluated
by using the DFT transform, hence correcting fault injection can be done with
a linear complexity.

Exemplary tradeoffs are given in table 2.

5.3 Positive effect of cost amortization on fault detection
capability

Let us fix a field Fq and a minimal distance d. Then, it is more efficient from the
code length point of view to mask two (resp. 2k) symbols together than each one
(resp. each k) independently. Formally, let BLLC the BestLengthLinearCode
function in Magma [Uni], which yields the minimal length of a code on Fq of a
given dimension and minimum distance. We have that:

BLLC(Fq, 2× k, d) ≤ 2× BLLC(Fq, k, d). (5)

For instance, on F256, RS codes are minimum distance separable (MDS)
and thus BLLC(Fq, k, d) = k + d − 1. Thus Eqn. (5) rewrites 2k + d − 1 ≤
2(k + d− 1) ⇐⇒ d ≥ 1 which is always true.

6 Security proof
The security of our scheme depends of our encoding procedure, our gadget
multiplication and our capacity to detect fault injection during the steps of
computation of the cipher algorithm.
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6.1 The encoding procedure
We remind that our encoding procedure of a vector r⃗ = (x0, . . . , xt−1) has been
defined in subsection 4.1 consists in picking randomly r⃗ = (rt, rt+1, . . . , rd) in
Fd+1−t

q and performing the operation:

mask(x⃗) = DFTω

(
(x⃗ | r⃗)×

[
A−1|0

])
.

We remind also that the matrix A = (αij)i,j∈J0..dK. A first approach is o show
that our masking method corresponds to a special case of DSM scheme, then we
propose to translate this operation in a generic encoder as defined in [WMCS20]
(page 137, definition 13). Applying DFTω corresponds to Vandermonde matrix
multiplication. This matrix corresponds to the generator matrix of the Reed-
Solomon code RS[n, n, 1] defined over Fq. A generator matrix of this code is
defined by the evaluation of the monomials (Xi)i∈{0,n−1} over 1, ω, . . . , ωn−1.
The multiplication by

[
A−1|0

]
leads to cancel the last rows of the generator

matrix of this RS[n, n, 1] code which becomes a Reed Solomon code RS[n, d +
1, n− d]. We denote R a generator matrix of this code. Hence,

mask(x⃗) = (x⃗, r⃗)×A−1 ×R

Remark 1 Our first remark at this point it that A−1 × R is still a RS[n, d +
1, n − d] code that can detects n − d − 1 errors. We propose consequently later
in this section a method to detect errors without revealing information.

We can rewrite our encoding procedure in

mask(x⃗) =
(
(x⃗, 0⃗)×A−1 ×R

)
⊕
(
(⃗0, r⃗)×A−1 ×R

)
= x⃗G⊕ r⃗H,

where G = (Idt, 0)A−1R and H = (0, Idd+1−t)A−1R.

Proposition 2 The masking operation mask(x⃗) is a generic encoder.

Proof 1 We have seen that mask(x⃗) = x⃗G ⊕ r⃗H. By construction rank(G) =
t and rank(H) = d + 1 − t. If we denote CG and CH the codes respectively
generated by the generator matrix G and H, then CG ∩ CH = {0}. If we denote

B =
(

G
H

)
, then we have:

mask(x⃗) = (x⃗, r⃗)×B

and the B satisfies the definition of a generic encoder denoted encB.

If we denote d′ the minimal distance of CH : d′ = d(CH) then a direct con-
sequence is that the encoding procedure encB is d′-private. Our task consists
now in evaluating d′. We denote K the matrix which corresponds to the last
d + 1− t rows of A−1, then

H = (0, Idd+1−t)A−1R = K ×R
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where R = RS[n, d + 1, n − d]. By construction, H is (d + 1 − t) × n matrix
since (0, Idd+1−t)A−1 is a full rank matrix.

It is well known that the parity check matrix of R that we can denote T
is a Reed-Solomon code RS[n, d, n − d + 1] and we have HtT = 0. Hence,
HtT = K × R × tT = 0 and the subspace generated by the rows of T are
included in the kernel of H. In fact we can upperbound d′ by remarking that
K is a full rank matrix, then H = K×R is (d +1− t)×n full rank matrix, thus
ker(H) is a (d+t)×n full rank matrix and due to the Singleton bound, we know
that the code generated by this matrix has a minimal distance upperbound by
d + 2− t. We denote CH⊥ the code generated by ker(H), then d′ is the minimal
distance of CH⊥ .

We can show that this bound can be reached in some cases. For example, if
K = (Idd+1−t|0), then K ×R corresponds to a generator matrix of a RS[n, d +
1− t, d+ t+1] code for which the dual code is the RS[n, d+ t, d+2− t] code. Let
β a primitive element of the field Fq. We assume that α = β15 and ω = β17.

Study of K:

We remind that K = (0, Idd+1−t)A−1. First of all, A−1 is a Reed-Solomon
generator matrix as any invertible squarre matrix because it is equivalent up
invertible matrix to a Reed-Solomon code. Hence K is a generator matrix of a
sub code of a RS[d + 1, d + 1] code. We would like to determine now the dual
code of K and we observe the equation A−1 ×A = Idd+1 which can be written(

K ′
t×(d+1)

K(d+1−t)×(d+1)

)
×
(

B(d+1)×t, B′
(d+1)×(d+1−t)

)
=
(

Idt 0t×(d+1−t)
0(d+1−t)×t Idd+1−t

)
.

We deduce that K(d+1−t)×(d+1) ×B(d+1)×t = 0(d+1−t)×t and we know that

K = K(d+1−t)×(d+1) and B = Kernel(K) = B(d+1)×t = (αij)i∈J0..dK,j∈J0..t−1K.

By construction t(B(d+1)×t) is a generator matrix of a RS[d + 1, t] code. We
know that if C is a linear code, then (C⊥)⊥ = C, thus K is a generator matrix
of a RS[d + 1, d + 1− t] code, in particular its minimal distance is d + 2− t.

We want now to describe the kernel of K × R. We can repeat the same
construction for R. If we denote Vω the Vandermonde matrix associated to
DFTω:

Vω × V −1
ω =

(
R(d+1)×(2d+1)

R′
d×(2d+1)

)
×
(

Ri(2d+1)×(d+1), Ri′
(2d+1)×d

)
, and

Vω × V −1
ω =

(
Idd+1 0(d+1)×d

0d×(d+1) Idd

)
.
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We deduce that R(d+1)×(2d+1)×Ri(2d+1)×(d+1) = Idd+1 with R = R(d+1)×(2d+1).
The matrix V −1

ω is Vandermonde matrix associated to IDFTω, then Ri =
Ri(2d+1)×(d+1) = (ω−ij)i∈J0..2dK,j∈J0..dK. We remark that K × R × tT = 0 and
K×R×Ri×B = K×Id×H = 0. Hence we can build Vector space included in
the kernel of H = K×R with T which is the generator matrix of a RS[2d+1, d]
code and D = tB × tRi.

We note that tRi = (ω(n−i)j)i∈J0..dK,j∈J0..2dK is a generator matrix of a
code generated by d + 1 polynomials of degree more than d + 1. Then tB =
(αij)i∈J0..t−1K,j∈J0..dK. Hence the code generated by D is an evaluation code
generated by t independant polynomials of degree more than d + 1 whereas T
is a generator matrix of a code generated by d polynomials of degree strictely
less than d, then these two codes are linearly independant and we deduce that
we have built the kernel of H. We have now to evaluate the minimal distance
of this code. Thus, we get that

D = tB × tRi =
(

d∑
k=0

αikω(2d+1−k)j

)
i∈J0..t−1K,j∈J0..2dK

.

Let

Di,j =
d∑

k=0
αikω(2d+1−k)j = ω(d+1)j

d∑
k=0

αikω(d−k)j

and

Di,j = ω(d+1)j
d∑

k=0
αi(d−k)ωkj .

Then

Di,j = αidω(d+1)j
d∑

k=0

(
ωj

αi

)k

= αidω(d+1)j
1−

(
ωj

αi

)d+1

1− ωj

αi

.

If i = 0, then

D0,j = ω(d+1)j 1− ω(d+1)j

1− ωj
= ω(d+1)j − ωj

1− ωj
= ωj ωjd − 1

1− ωj
.

Hence
D0,j = ωj + ω2j + . . . + ω(d−1)j + ωjd,

thus (D0,j)j corresponds to the evaluation of the polynomial X + X2 + . . . +
Xd−1 + Xd on ωj . In the same times T is a RS[2d + 1, d] Reed-Solomon code,
thus T ∪ (D0,j)j generates the RS[2d + 1, d + 1] code.

We deduce here that if t = 1, the minimal distance of T ∪ D is d′ = d + 1 =
d + 2− t.
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We showed that Di,j = αidω(d+1)j
1−
(

ωj

αi

)d+1

1− ωj

αi

= αi(d+1)ω(d+1)j+ωj

αi+ωj . It means that
the vector Di corresponds to the evaluation of the fraction

αi(d+1)Xd+1 + X

αi + X

over {1, ω, . . . , ω2d} and we are looking for a degree d polynomial P (X) that
cancels the maximum of positions of Di, i.e. such that Q(X) = (X +αi)P (X)+
X + αi(d+1)Xd+1 admits the maximum of zeros. We remark that degree(Q) ≤
d+1, then the number of zero is less than d+1 which is equivalent to a minimal
distance greater than 2d + 1 − (d + 1) = d. Hence we deduce that for t = 2
d′ = d = d + 2− t.

for t = 3, we know that d′ ≤ d + 2 − 3 = d − 1, our previous proof shows that
taking D1,j or D2,j leads to build a codeword of weigth greater than d, thus
to expect better than d, we must combine these two vectors. Combining D1
and D2 means that for a fixed element θ ∈ Fq we are looking for a degree d
polynomial P (X) such that for a maximum of input we have

P (X) = αd+1Xd+1 + X

α + X
+ θ

α2(d+1)Xd+1 + X

α2 + X
.

This is equivalent of studying the number of zero of the function T (X) = (X +
α)(X + α2)P (X) + (X + α2)(αd+1Xd+1 + X) + θ(X + α)(α2(d+1)Xd+1 + X).
The degree of T (X) is less or equal to d+2 then T (X) has d+2 roots maximum
and we deduce:

If t = 3, the minimal distance of T ∪D is d′ = d− 1 = d + 2− t.

By induction we have that for any t, d′ = d + 2 − t and the masquing order is
d + 1− t.

6.2 The multiplication gadget
The security of the masking representation is immediate owing to the number of
shares. However, to be comprehensive, we have to show now that operations are
also secure. Namely, the masked multiplication procedure offer also the same
level of protection. The weakest side is obtained with the computation of

(cd+1, . . . , c2d) = extractLastCoefficients(z⃗ ∗ z⃗′).

with Px⃗(X) × Px⃗′(X) = C(X) =
∑2d

i=0 ciX
i We can consider here that the

adversary has access to the d + 1 − t values from cd+1, . . . , c2d. Hence the
question is: Does this knowledge provide information on the sensitive variables
x⃗, x⃗′ and x⃗ ∗ x⃗′ according our previous notations?

We remind that z⃗ and z⃗′ correspond respectively to the polynomials Px⃗(X) =∑d
i=0 aiX

i and Px⃗′(X) =
∑d

i=0 a′
iX

i, with (x⃗, r⃗) = (Px⃗(1), Px⃗(α), . . . , Px⃗(2d))
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and (x⃗′, r⃗′) = (Px⃗′(1), Px⃗′(α), . . . , Px⃗′(2d)). Hence, we remark that we have the
following system of equations:

c2d = ada′
d

c2d−1 = ad−1a′
d + ada′

d−1
c2d−2 = ad−2a′

d + a′
d−2ad + a′

d−1ad−1
...

c2d−k =
∑k

i=0 ad−ia
′
d−(k−i)

...
cd+1 =

∑d−1
i=0 ad−ia

′
i+1

The attacker has maximum d + 1 − t equations from this system and we re-
mind that (a0, a1, . . . , ad) = (x⃗, r⃗)× A−1. We have proven previously that this
encoding procedure corresponds to a generic encoder with

(x⃗, r⃗)×A−1 = x⃗× (Idt, 0)A−1 + r⃗ × (0, Idd+1−t)A−1

with K = (0, Idd+1−t)A−1 that has a parity check matrix of minimal distance
d+2− t. This implies that the attacker must get at least d+2− t values of ai or
a′

i to get some sensitive informations. Let’s assume that the attacker has access
to the complete system, then we can evaluate the number of potential solutions
for (ai)i∈Jd,2dK: we can assume that c2d ̸= 0, then the equation c2d = ada′

d

admits 2m − 1 solutions. If c2d = 0, then ada′
d admits 2m solutions. By setting

ad ̸= 0 and a′
d ̸= 0 we get the equation c2d−1 = ad−1a′

d + ada′
d−1 admits 2m

solutions. By induction, we get the same property at any step k ≤ d− 1. Thus
totally this system admits 2m(d−1) solutions. This result must be worst with
less equations, thus this system of equation does not give information on at least
d + 2 − t values of (ai) solutions. We deduce that the gadget multiplication is
d + 1− t secure probbing.

6.3 Fault detection/correction
Fault attacks are very efficient in general [JT12]. Some fault attacks, such
as Statistical Ineffective Fault Attacks (SIFA [DEG+18], inheriting from the
seminal work of [YJ00]) can be applied despite masking against side-channel
analysis and fault detection mechanisms are in place.

We considered two representative fault models, namely one where the at-
tacker has no control over the fault (random model), and one where the attacker
can inject targeted low weight faults. We recall that, in front of uniformly
random faults, the detection capability is only characterized by the minimal
distance. The detection is more subtle in front of low weight faults, as the
minimum distance of code is involved.

We assume that the attacker has the ability to inject a certain number of
simultaneous faults which is less than the correction capacity of the considered
code. We detail bellow the features of our code. We consider also that all
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codewords present in the implementation are corrected/checked. If not, we face
an open problem: the impact of the error propagation in the cipher algorithm
design and this is out of scope of this paper.

By construction, according to Subsection 4.1, each masked element belongs
to the code RS[n, d + 1, n− d]. Intentional or accidental errors can disturb the
symmetric cipher implementation. If an error appears during the first rounds
of the considered cipher, then its propagation shall affect dramatically the rest
of calculation, making the final result wrong and non-correctible due to the
excessive number of errors, or can give information (for fault attacks) that may
compromise the key. Such scenarios appear for example in case of radiation
or in case of intentional fault attacks. We are also aware that such channel
perturbation can lead to the presence of erasures, which means that information
simply disappears. As we consider the problem of decoding Reed-Solomon codes,
erasures can simply be considered as errors. Hence, a decoding algorithm that
works for Reed-Solomon codes can correct erasures. Of course it is essential that
our counter-measure against FIA does not weaken the counter-measure against
SCA, thus we propose to show in this section that syndrome decoding cannot
leak information.

Namely, we offer the possibility of either detecting or even correcting errors
and erasures anywhere in the calculation process where codewords are available.
In general, decoding errors leads to unmask the sensitive information, which is
of course not desired between the first and last round of the algorithm that
we must protect. For example, Sudan [GS99] and Berlekamp-Welch [RR86]
algorithms return directly the sensitive information, while syndrome decoding
does not.

Decoding generalized Reed-Solomon codes is well-known, but we are par-
ticularly interested in syndrome decoding which does not reveal any sensitive
information. The algorithm [Sha07, McE77, KB10] that uses the Euclidean
algorithm is a syndrome decoding algorithm. It consists in building the polyno-
mials that correspond to the error evaluator and error locator as explained in
Theorem 4.3 of [Sha07] and as it is explained in the subsection 6.3. Hence, this
algorithm returns the vector corresponding to the error, that allows to return the
corrected codeword belonging to the Reed-Solomon code. Never the sensitive
information has been exposed during the process of decoding because the first
step consists in cancelling the codeword coming from the encoded information
in order to construct the error as shown below:

In the previous subsection regarding the encoding procedure, we have seen
that masking a vector x⃗ consists in performing

mask(x⃗) = (x⃗, r⃗)×A−1 ×R.

Hence z⃗ = mask(x⃗) is simply a codeword belonging to the RS(n, d+1, d+1) code.
If we denote V the parity check matrix of R, we have by construction R×V = 0
and in particular mask(x⃗)× V = 0. Thus, by a simple syndrome calculation, if
we suppose z⃗ was modified by a fault injection attack or a radiation, then we
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get z⃗ ′ = z⃗ + e⃗, and we have:

ϵ⃗ = z⃗ ′ × V = z⃗ × V + e⃗× V = e⃗× V.

Obviously the syndrome calculation does not bring any information since by
definition a codeword corresponds to information that has been masked and we
have assumed that the potential attacker has not more than d′ probes, thus no
linear transformation can provide any information on the sensitive information.

We note however that determining the efficiency of this method when faults
take place in the decoding algorithm itself remains an open problem. But the
method is efficient when the fault injections are directed on the masked design
of the ciphered algorithm. Then each variable being encoded by our generalized
Reed-Solomon code, we may potentially check all variables (this has of course a
non negligible cost). The attacker may inject faults on the matrices G and H to
disturb the multiplication; then either the number of constructed errors is too
large and the algorithm cannot correct it, but it simply detects and alerts (to
enable key zeroization for instance), or the number of errors is reasonable and
the error correction algorithm can correct the disturbed multiplication.

Eventually, it is up to the security policy to consider the best strategy be-
tween detecting and launching a countermeasure or correcting.

7 Performances
The implementation of a masked AES allowed us to accurately measure the gain
in time and memory space that can be obtained with parallel masking. Indeed,
as we can see in Fig. 1, the computation time decreases linearly according to
the size of the sensitive data (t). This figure shows the computation duration
for the full AES and also the breakdown in its internal functions (SubBytes,
ShiftRows, MixColumns, and XOR operations). This is mainly due to the size of
the masked block which is reduced (n× 16/t) as can be seen in Figure 2. Thus,
reducing the overall size of the masked word made it possible to avoid more
expensive operations such as multiplication and exponentiation.

t = 4 t = 8 t = 16
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e
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SubBytes
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XOR

Figure 1: Computation time for 50 times AES calculation, for (d, n) = (25, 51).
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Figure 2: Masked value length for 16 bytes with parameters (d, n) = (25, 51).

Table 3: Synthesis results for the case d = 7 in F256.

Perf. \ Design Vandermonde DFT involved in our masking
Area (#gates) 2711 1136

Logic depth 11 11

7.1 Hardware
We compare the naïve Vandermonde method with our method based on FAFFT,
for d = 7 (see Tab. 2). The polynomial decomposition tree we use is that given
in appendix A.2.

For the evaluation, both designs are represented in VHDL. We use genus
from Cadence as a Computed Aided Design (CAD) tool, in a simple library
consisting only of two-input gates. The synthesis results are given in Tab. 3.

We notice that both implementations only consist only in exclusive-or (that
is: XOR) gates. Indeed, we pushed the simplification to the maximal effort in the
CAD tool which has yielded to the simplification of bitwise products (AND gates)
with constants. These simplifications consist in constant propagation within the
netlist1.

Our implementation is fully combinational, hence a similar (actually the
same) depth for both implementations. Given the regular structure of the poly-
nomial decomposition tree, a sequential approach is possible, that enables a
trade-off between time with less area. This can be seen from the netlist (see
Fig. 3): our design yields a netlist which has almost constant width throughout
its depth.

1Notice that article [LCK+18] also analyses gate-level complexity but somehow obtains a
non-optimized netlist consisting of both XOR and AND gates.
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(a) (b)

Figure 3: Netlist of (a) Vandermonde and (b) our fast DFT design.

8 Conclusions
Code-based masking (CBM) can implement arbitrary computations based on
additions and multiplications, whist ensuring arbitrary chosen side-channel se-
curity order. Besides, in terms of complexity, it has already been shown that
those operations can be carried out in quasi-linear time.

In this article, we show for the first time that such properties can be ex-
tended to the case of multiple bytes concomitant masking (construction known
as leakage amortization). We also show how such masking is compatible with
error detection and/or correction, that can be nested within the code-based
masking representation.

Furthermore, we detail the computation of the required Discrete Fourier
Transform (DFT) involved in these operations. We show how it can be im-
plemented efficiently for some specific DFT algorithms, which have a small
implementation-level complexity (e.g., in binary gates count).

We show actual implementation complexity results both in software and in
hardware, and detail our gain both in terms of performance and of gate area.

A Case of the Galois field F28

The symmetric encryption algorithm AES is a byte-oriented block cipher. It de-
sign leverages the irreducible polynomial X8+X4+X3+X+1. The Sbox is based
on the inverse function defined over the finite field F28 = F2[X]

(X8+X4+X3+X+1) . The
canonical basis is given by α = X in F28 and 1 + α is a primitive element of this
field. Then X256 −X = X(X255 − 1) and 255 = 3 × 5 × 17. We can consider
DFT with n = 3, 5, 15, 17, 51, 85, 255. The case n = 3 has been described in a
previous section.
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We note that we have not a large choice for n if we keep this method. We
will see in the next section that we can construct a DFT and its associate inverse
by observing the different trees.

The source code of our implementations is provided in a GitHub: https:
//github.com/<anonymized_for_review>/FFT_masking.git.

A.1 AES example with d = 2
The case n = 2d+1 = 5 corresponds to d+1−t = 3−t order masking maximum.
The case n = 5 is not a power of two but we can propose a decomposition that
lead to very fast complexity and we consider ω = (1 + α) 255

5 = (1 + α)51, then

X6−X = X(X−1)(1+X+X2+X3+X4) = X(X−1)(X−ω)(X−ω2)(X−ω3)(X−ω4).

Hence, we can propose the polynomial decomposition tree displayed in Fig. 4.

X + ω2X + ω3X + ω4X + ωX + 1X

X2 + (ω3 + ω2)X + 1X2 + (ω + ω4)X + 1X2 + X

X4 + X3 + X2 + X + 1X4 + X3

X6 + X

Figure 4: Polynomial decomposition tree for X6 + X on F256.

We propose to evaluate precisely here the complexity of the r⃗ ′′ calculation
with

r⃗ ′′ =
(

IDFT(µ⃗, 0, . . . , 0) + θ⃗ + w⃗ ∗ IDFT(λ⃗, 0, . . . , 0)
)

.

Hence this computation leads to consider a maximum degree 3 polynomial P (X)
that we have to evaluate over {1, ω, . . . , ω4}.

The Euclidean division of P (X) by X2 + X costs 2 additions over F28 . The
Euclidean division of P (X) by X2 +(ω +ω4)X +1 costs 2 multiplications and 4
additions over F28 . We obviously get the same number for X2 + (ω + ω4)X + 1.
The last step consists by performing the Euclidean division by all monomials
except X which costs: 5 additions and 4 multiplications. Hence totally the DFT
cost 6 multiplications and 9 additions. For comparison, 11 > 6 ln(6) > 10 and
20 > 6 ln2(6) > 19. We deduce that

A.2 AES example with d = 7
The case n = 2d + 1 = 15 corresponds to d + 1 − t = 8 − t-order masking
maximum. The case n = 15 corresponds to a power of two and we can propose
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X + ω12

X + ω11

X + ω14

X + ω3

X + ω13

X + ω6

X + ω9

X + ω7

X + ω8

X + ω2

X + ω4

X + ω

X + ω10

X + ω5

X + 1

X

X2 + X + ω8

X2 + X + ω2

X2 + X + ω4

X2 + X + ω

X2 + X + ω10

X2 + X + ω5

X2 + X + 1

X2 + X

X4 + X + ω10

X4 + X + ω5

X4 + X + 1

X4 + X

X8 + X4 + X2 + X + 1

X8 + X4 + X2 + X

X16 + X

Figure 5: Polynomial decomposition tree for X16 + X on F256.

a decomposition that lead to very fast complexity. Let ω = (1 + α) 255
15 =

(1 + α)17 = 1 + α5 + α6 + α7. Then we get that

1 + ω2 = ω8;
1 + ω = ω4;
1 + ω7 = ω9;
1 + ω3 = ω14;
1 + ω5 = ω10;
1 + ω11 = ω12;

thus, according to [WZ88], we get the following decomposition tree depicted in
Fig. 5. This tree is rotated so that it fits in the page limits.

Regarding AES, block size is 16 bytes then we can apply three Fourier trans-
forms over respectively 5 bytes, 6 bytes and 5 bytes. It means that we encode
polynomials of degree at most 7. Hence in the diagram, we start from evaluating
the division by a degree 4 polynomials.
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A.2.1 Calculation modulo degree 8 polynomials

Let a(x) = a15x15+a14x14+. . .+a1x+a0, then a(x) = (x8+x4+x2+x)q(x)+r(x)
with
q(x) = a15x7 + a14x6 + a13x5 + a12x4 + (a11 + a15)x3 + (a10 + a14)x2 + (a9 + a13 + a15)x+

(a8 + a12 + a14 + a15);
r(x) = (a7 + a11 + a13 + a14 + a15)x7 + (a6 + a10 + a12 + a13 + a14)x6+

(a5 + a9 + a11 + a12 + a13)x5 + (a4 + a8 + a10 + a11 + a12)x4+
(a3 + a9 + a10 + a13 + a14 + a15)x3 + (a2 + a8 + a9 + a12 + a13 + a14)x2+
(a1 + a8 + a12 + a14 + a15)x + a0.

Let a(x) = a15x15 + a14x14 + . . . + a1x + a0, then a(x) = (x8 + x4 + x2 + x +
1)q(x) + r(x) with

q(x) = (a8 + a12 + a14 + a15) + (a9 + a13 + a15)x+
(a10 + a14)x2 + (a11 + a15)x3 + a12x4 + a13x5 + a14x6 + a15x7.

r(x) = (a7 + a11 + a13 + a14)x7 + (a6 + a10 + a12 + a13)x6 + (a5 + a9 + a11 + a12)x5+
(a4 + a8 + a10 + a11)x4 + (a3 + a9 + a10 + a11 + a13 + a14)x3+
(a2 + a8 + a9 + a10 + a12 + a13)x2 + (a1 + a8 + a9 + a12 + a13 + a14)x+
(a0 + a8 + a12 + a14 + a15)

A.3 Calculation modulo degree 4 polynomials
Let a(x) = a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0, then a(x) =
(x4 + x + λ)q(x) + r(x) with

q(x) = a7x3 + a6x2 + a5x + a7 + a4;
r(x) = (a3 + a6 + λa7)x3 + (a2 + a5 + λa6)x2 + (a1 + a4 + a7 + λa5)x + a0 + λ(a4 + a7).

For λ = 1, then getting r(x) costs 9 additions and we must add 4 multiplications
if λ ̸= 1, 0. If λ = 0, it costs 4 additions.

A.3.1 Calculation modulo degree 2 polynomials

Let a(x) = a3x3 + a2x2 + a1x + a0, then a(x) = (x2 + x + λ)q(x) + r(x) with

q(x) = a3x + a2 + a3;
r(x) = (a1 + a2 + a3 + λa3)x + a0 + λ(a2 + a3).

If λ = 0 or 1, then then getting r(x) costs 2 additions and we must add 2
multiplications if λ ̸= 0, 1.

A.3.2 Calculation modulo degree 1 polynomials

Let a(x) = a1x + a0, then a(x) = (x + λ)q(x) + r(x) with

q(x) = a1;
r(x) = a0 + a1λ.

In average getting r(x) costs 1 multiplication and 1 addition.
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A.3.3 DFT cost for d = 7

Establishing the complexity, at this point depends of the considered material.
For example, for hardware, it will be provided by the worst case at any stage,
but we should not take in account the number of division since it is done in
parallel.

Let A = Addition and B = Multiplication, then at the first stage, despite
costs totally

S1 = 4A + 9A + 2× (9A + 4B) = 31A + 8B.

Expansive division costs 9A + 4B.
The second stage cost totally

S2 = 2A + 2A + 6× (2A + 2B) = 16A + 12B.

Expansive division costs 2A + 2B. The last stage costs totally

S3 = A + 13× (A + B) = 14A + 13B.

Expansive division costs A + B.
Finally the cost of this DFT is 61A + 33B.
On the hardware complexity point of view the cost is 12A + 7B.
The theoretical complexity predicted 15 log(15) ≈ 40.6 multiplications and

15
4 log2(15) ≈ 20.7 additions.

A.4 Building DFT between n = 5 and n = 15
In fact our DFT of a polynomial P consists in evaluating it over a set of points
αi ∈ F28 , i ∈ {1, . . . , n}. The inverse of the DFT is given by the evaluation of
P over the set α−1

i ∈ F28 , i ∈ {1, . . . , n}.
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