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Abstract

Forward security is a fundamental requirement in searchable encryption, where a newly
generated ciphertext is not allowed to be searched by previously generated trapdoors. How-
ever, forward security is somewhat overlooked in the public key encryption with keyword search
(PEKS) context and there are few proposals, whereas forward security has been stated as a
default security notion in the (dynamic) symmetric searchable encryption (SSE) context. In the
PEKS context, forward secure PEKS (FS-PEKS) is essentially the same as public key encryp-
tion with temporary keyword search (PETKS) proposed by Abdalla et al. (JoC 2016) which
can be constructed generically from hierarchical identity-based encryption (HIBE) with level-
1 anonymity. Alternatively, Zeng et al. (IEEE Transactions on Cloud Computing 2022) also
proposed a generic construction of FS-PEKS from attribute-based searchable encryption sup-
porting OR gates. In the public key authenticated encryption with keyword search (PAEKS)
context, a concrete forward secure PAEKS (FS-PAEKS) construction has been proposed by
Jiang et al. (The Computer Journal 2022). As an independent work, thought Xu et al. pro-
posed a generic construction of FS-PAEKS (ePrint 2023), they employed the Liu et al. generic
construction of PAEKS (AsiaCCS 2022) that requires random oracles. Thus, a generic con-
struction of FS-PAEKS without random oracles has not been proposed so far. In this paper,
we propose a generic construction of FS-PAEKS from PAEKS. In addition to PAEKS, we em-
ploy 0/1 encodings proposed by Lin et al. (ACNS 2005). We also show that the Jiang et
al. FS-PAEKS scheme does not provide forward security, and thus our generic construction
yields the first secure FS-PAEKS schemes. Our generic construction is quite simple, and it can
also be applied to construct FS-PEKS. Our generic construction yields a comparably efficient
FS-PEKS scheme compared to the previous scheme. Moreover, it eliminates the hierarchical
structure or attribute-based feature of the previous generic constructions which is meaningful
from a feasibility perspective.

1 Introduction

Searchable encryption is a fundamental tool to provide data confidentiality and data searchability
simultaneously. In searchable encryption, forward security is a fundamental requirement, where a
newly generated ciphertext is not allowed to be searched by previously generated trapdoors. In
the (dynamic) symmetric searchable encryption (SSE) context [46], forward security, which is also
referred to as forward privacy, has been a default security notion since the seminal work by Stefanov
et al. [47]. However, forward security is somewhat overlooked in the public key encryption with
keyword search (PEKS) context [7].
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Figure 1: FS-PAEKS

Currently, three forward secure PEKS (FS-PEKS) schemes have been proposed [30, 51, 52], to
the best of our knowledge. Kim et al. [30] constructed FS-PEKS from hierarchical identity-based
encryption (HIBE). In their construction, a fixed message (indi in their paper) is encrypted by
the underlying HIBE scheme. However, this construction does not provide consistency due to the
observation of Abdalla et al. [1]. Zhang et al. [52] and Yu et al. [50] proposed FS-PEKS schemes from
lattices. Their constructions employ a secret key update algorithm, and an adversary is allowed
to obtain secret keys under some restrictions, which is reminiscent of forward secure public key
encryption [11] that considers other scenario to the trapdoor leakage. Zeng et al. [51] proposed an
FS-PEKS scheme in bilinear groups. They also mentioned that FS-PEKS can be constructed from
attribute-based searchable encryption supporting OR gates, and FS-PEKS is essentially the same
as public key encryption with temporary keyword search (PETKS) [1], which can be constructed
generically from HIBE with level-1 anonymity.

In PEKS, anyone can generate a ciphertext of a keyword. Thus, if one obtains a trapdoor,
then information about which keyword is associated with the trapdoor is leaked by running the
test algorithm with self-made ciphertexts. To prevent this keyword guessing attack, public key
authenticated encryption with keyword search (PAEKS) has been proposed [10, 14–17, 22, 37–39,
41, 42] where a sender secret key is required for encryption. As in PEKS, forward secure PAEKS
(FS-PAEKS) can be defined where the encryption algorithm takes a time period t and the trapdoor
generation algorithm takes a time period t′. In addition to the search condition defined in PAEKS,
a trapdoor works if t < t′, that is, a newly generated ciphertext is not allowed to be searched
by previously generated trapdoors. See Fig. 1. To date, a concrete FS-PAEKS scheme has been
proposed by Jiang et al. [24]. As an independent work, though Xu et al. [48] proposed a generic
construction of FS-PAEKS, they employed the Liu et al. generic construction of PAEKS [37] that
requires random oracles as mentioned in [17]. Thus, a generic construction of FS-PAEKS without
random oracles has not been proposed so far.

Our Contribution. In this paper, we propose a generic construction of FS-PAEKS from PAEKS.
Our generic construction does not employ random oracles. We employ 0/1 encodings, which were
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originally proposed for solving the Millionaires’ problem by Lin et al. [35]. We focus on the fact that
the encodings are effective way to translate an inequality condition t < t′ to an equality condition,
and PAEKS originally supports keyword equality matching. Our generic construction yields FS-
PAEKS schemes under several complexity assumptions. For example, a lattice-based FS-PAEKS
scheme by employing the Cheng-Meng PAEKS scheme [15], a pairing-based FS-PAEKS scheme by
employing the Qin et al. PAEKS scheme [42], or other FS-PAEKS schemes by employing PAEKS
schemes instantiated by a generic construction of PAEKS [17].1

We remark that Jiang et al. [24] employed symmetric pairings which can be seen as a DDH
solver (where DDH stands for decisional Diffie-Hellman), but they assumed that the DDH problem
is hard. Actually, their FS-PAEKS scheme does not provide forward security. We give a concrete
attack in Section 6. As an independent work, though Xu et al. [48] proposed a generic construction
of FS-PAEKS, they employed the Liu et al. generic construction of PAEKS [37] that requires
random oracles as mentioned in [17]. Thus, our generic construction yields the first secure FS-
PAEKS schemes without random oracles.

Our generic construction is quite simple, and it can also be applied to construct FS-PEKS. This
eliminates the hierarchical structure or attribute-based feature of the previous generic constructions
which is meaningful from a feasibility perspective. In addition, since PEKS can be constructed from
anonymous IBE [1], efficient FS-PEKS constructions can be obtained easily. For example, if we
employ the Boneh-Franklin (BF) IBE scheme [8] as the component of the underlying PEKS scheme,
then an efficient paring-based FS-PEKS scheme in the random oracle model can be constructed. If
the Gentry-Peikert-Vaikuntanathan (GPV) IBE scheme [20] is employed, then an efficient lattice-
based FS-PEKS scheme in the quantum random oracle model can be constructed.2 Moreover, FS-
PEKS schemes that are secure in the standard model also can be obtained from the Gentry IBE
scheme [19], the Lewko IBE scheme [34], the Chen-Wei-Ling-Wang-Wee IBE (CLLWW) scheme [13],
the Kurosawa-Phong (KP) IBE scheme [31], the Jutla-Roy (JR) IBE scheme [25], the Yamada IBE
scheme [49], the Katsumata IBE scheme [28], and the Jager-Kurek-Niehues (JKN) IBE scheme [23].

Application: As an application of FS-PEKS, Zeng et al. [51] introduced a secure cloud storage.
A sender encrypts a file and stores the ciphertext in a cloud storage together with a ciphertext of
keywords. A receiver retrieves an encrypted file by sending a search token (trapdoor). If no forward
security is provided, then the cloud server can run the search procedure by using a previously sent
trapdoor, which will lead to leakage-abuse attacks. Due to this motivation, Zeng et al. proposed
FS-PEKS. This scenario matches FS-PAEKS when a receiver considers who stored a ciphertext.
Jiang et al. [24] considered an e-mail routing system as an application of FS-PAEKS. An encrypted
e-mail is sent to a gateway. The gateway forwards an encrypted e-mail owing to the search result,
e.g., the e-mail receiver specifies a keyword “urgent” and send its trapdoor to the gateway. If no
forward security is provided, then the gateway can run the search procedure by using a previously
sent trapdoor. Jiang et al. also introduced a case of electronic medical records where a disease
name such as “cancer” is set as a keyword for searching clinical records. If no forward security
is provided, then a newly added encrypted clinical record could be searched if this patient had a
previously searched disease.

2 Preliminaries

Notation. For a positive integer n ∈ N, we write [1, n] = {1, 2, . . . , n}. x
$←− S denotes choosing

an element x from a finite set S uniformly at random. For a security parameter λ, negl(λ) is a

1A flaw in the security proof of the generic construction [37] is identified in [17].
2The GPV-IBE scheme is secure in the quantum random oracle model [29].
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negligible function where for any c > 0, there exists an integer I such that negl(λ) < 1/λc for all
λ > I. PPT stands for probabilistic polynomial-time.

2.1 PAEKS

In this section, we define PAEKS. We primarily follow the definitions given in [17] because it
considers consistency in a multi-sender setting where a trapdoor associated with a sender does not
work against ciphertexts generated by the secret key of another sender, even if the same keyword
is associated. As a difference from [17], we introduce the setup algorithm PAEKS.Setup because
it captures most of previous PAEKS syntax whereas a designated-receiver setting is considered
in [17] where the PAEKS.KGS algorithm takes a receiver public key pkR as input, and no setup
algorithm is defined. We remark that the following definition can be modified easily to capture the
designated-receiver setting.

Definition 1 (Syntax of PAEKS). A PAEKS scheme PAEKS consists of the following six algo-
rithms (PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PAEKS.Test) defined
as follows.

PAEKS.Setup: The setup algorithm takes a security parameter λ as input, and outputs a common
parameter pp. We assume that pp implicitly contains the keyword space KS.

PAEKS.KGR: The receiver key generation algorithm takes pp as input, and outputs a public key pkR
and secret key skR.

PAEKS.KGS: The sender key generation algorithm takes pp as input, and outputs a public key pkS
and secret key skS.

PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, and a keyword kw ∈ KS as
input, and outputs a ciphertext ctPAEKS.

PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, and a keyword kw′ ∈ KS as input,
and outputs a trapdoor tdS,kw′.

PAEKS.Test: The test algorithm takes ctPAEKS and tdS,kw′ as input, and outputs 1 or 0.

Definition 2 (Correctness). For any security parameter λ, any common parameter pp← PAEKS.Setup(1λ),
any key pairs (pkR, skR) ← PAEKS.KGR(pp) and (pkS, skS) ← PAEKS.KGS(pp), and any keyword
kw ∈ KS, let ctPAEKS ← PAEKS.Enc(pkR, pkS, skS, kw) and tdS,kw ← PAEKS.Trapdoor(pkR, pkS, skR, kw).
Then Pr[PAEKS.Test(ctPAEKS, tdS,kw) = 1] = 1− negl(λ) holds.

Next, we define consistency that defines the condition by which the PAEKS.Test algorithm out-
puts 0. As in PEKS, essentially, 0← PAEKS.Test(ctPAEKS, tdS,kw) when ctPAEKS ← PAEKS.Enc(pkR,
pkS, skS, kw), tdS,kw′ ← PAEKS.Trapdoor(pkR, pkS, skR, kw

′), and kw ̸= kw′. However, due to its
authenticity, a trapdoor associated with a sender should not work against ciphertexts generated by
the secret key of another sender, even if the same keyword is associated. Thus, we introduce the
definition given in [17] that considers this case.
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Definition 3 (Computational Consistency). For all PPT adversaries A, we define the following
experiment.

ExpconsistPAEKS,A(λ) :

pp← PAEKS.Setup(1λ); (pkR, skR)← PAEKS.KGR(pp)

(pkS[0], skS[0])← PAEKS.KGS(pp); (pkS[1], skS[1])← PAEKS.KGS(pp)

(kw, kw′, i, j)← A(pp, pkR, pkS[0], pkS[1])
s.t. kw, kw′ ∈ KS ∧ i, j ∈ {0, 1} ∧ (kw, i) ̸= (kw′, j)

ctPAEKS ← PAEKS.Enc(pkR, pkS[i], skS[i], kw)

tdS[j],kw′ ← PAEKS.Trapdoor(pkR, pkS[j], skR, kw
′)

If PAEKS.Test(ctPAEKS, tdS[j],kw′) = 1, then output 1, and 0 otherwise.

We say that a PAEKS scheme PAEKS is consistent if the advantage

AdvconsistPAEKS,A(λ) := Pr[ExpconsistPAEKS,A(λ) = 1]

is negligible in the security parameter λ.

Next, we define indistinguishability against the chosen keyword attack (IND-CKA) which guar-
antees that no information about the keyword is leaked from ciphertexts. Qin et al. [41] considered
multi-ciphertext indistinguishability (MCI) where in the IND-CKA experiment A declares two key-
word vectors (kw∗

0,1, . . . , kw
∗
0,N ) and (kw∗

1,1, . . . , kw
∗
1,N ) for some N , and the challenger returns the

challenge ciphertexts of kw∗
b,i for i ∈ [1, N ]. As mentioned in [42], if the encryption oracle OC

has no restriction (i.e., any input is allowed), then IND-CKA implies MCI. Thus, the following
definition provides MCI security.

Definition 4 (IND-CKA). For all PPT adversaries A, we define the following experiment.

ExpIND-CKA
PAEKS,A(λ, n) :

pp← PAEKS.Setup(1λ); (pkR, skR)← PAEKS.KGR(pp)

For i ∈ [1, n], (pkS[i], skS[i])← PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, i

∗, state)← AO(pp, pkR, {pkS[i]}i∈[1,n])
s.t. kw∗

0, kw
∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}; ct∗PAEKS ← PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw

∗
b )

b′ ← AO(state, ct∗PAEKS)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(pkR, ·, ·),OT (pkR, ·, skR, ·)}. OC takes kw ∈ KS and i ∈ [1, n] as input, and
returns the result of PAEKS.Enc(pkR, pkS[i], skS[i], kw). Here, there is no restriction. OT takes
kw′ ∈ KS and i ∈ [1, n] as input, and returns the result of PAEKS.Trapdoor(pkR, pkS[i], skR, kw

′).
Here (kw′, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}. We say that a PAEKS scheme PAEKS is IND-CKA secure if

the advantage
AdvIND-CKA

PAEKS,A(λ, n) := |Pr[ExpIND-CKA
PAEKS,A(λ, n) = 1]− 1/2|

is negligible in the security parameter λ.
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Next, we define indistinguishability against the inside keyword guessing attack (IND-IKGA)
which guarantees that no information about the keyword is leaked from trapdoors. Pan and Li [39]
considered multi-trapdoor indistinguishability (MTI) where in the IND-IKGA experiment A de-
clares two keyword vectors (kw∗

0,1, . . . , kw
∗
0,N ) and (kw∗

1,1, . . . , kw
∗
1,N ) for someN , and the challenger

returns the challenge trapdoors of kw∗
b,i for i ∈ [1, N ]. Although the following definition does not

capture MTI, it can be modified to capture MTI if A is allowed to send either (kw∗
0, i

∗) or (kw∗
1, i

∗)
to the trapdoor oracle OT .

Definition 5 (IND-IKGA). For all PPT adversaries A, we define the following experiment.

ExpIND-IKGA
PAEKS,A (λ, n) :

pp← PAEKS.Setup(1λ); (pkR, skR)← PAEKS.KGR(pp)

For i ∈ [1, n], (pkS[i], skS[i])← PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, i

∗, state)← AO(pp, pkR, {pkS[i]}i∈[1,n])
s.t. kw∗

0, kw
∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n]

b
$←− {0, 1}; td∗S[i∗],kw∗

b
← PAEKS.Trapdoor(pkR, pkS[i∗], skR, kw

∗
b )

b′ ← AO(state, td∗S[i∗],kw∗
b
)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(pkR, ·, ·),OT (pkR, ·, skR, ·)}. OC takes kw ∈ KS and i ∈ [1, n] as input, and returns
the result of PAEKS.Enc(pkR, pkS[i], skS[i], kw). Here, (kw, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}. OT takes

kw′ ∈ KS and i ∈ [1, n] as input, and returns the result of PAEKS.Trapdoor(pkR, pkS[i], skR, kw
′).

Here (kw′, i) ̸∈ {(kw∗
0, i

∗), (kw∗
1, i

∗)}. We say that a PAEKS scheme PAEKS is IND-IKGA secure
if the advantage

AdvIND-IKGA
PAEKS,A (λ, n) := |Pr[ExpIND-IKGA

PAEKS,A (λ, n) = 1]− 1/2|

is negligible in the security parameter λ.

2.2 0/1 Encodings

Here, we introduce 0/1 encodings [35]. Let t ∈ N be a ℓ-bit positive integer, and its binary
representation is denoted t = tℓtℓ−1 · · · t1 where ti ∈ {0, 1} for all i ∈ [1, ℓ]. The 0-encoding
algorithm takes ℓ and t as input, and outputs a set of strings S0

t defined as follows.

S0
t = {tℓtℓ−1 · · · ti+11 | ti = 0, i ∈ [1, ℓ]}

We denote S0
t = {s0t,1, s0t,2, . . . , s0t,ℓ0t } where ℓ0t is the number of strings contained in S0

t and is at

most O(log t) = O(ℓ). Similarly, the 1-encoding algorithm takes ℓ and t as input and outputs a set
of strings S1

t defined as follows.

S1
t = {tℓtℓ−1 · · · ti | ti = 1, i ∈ [1, ℓ1t′ ]}

We denote S1
t = {s1t,1, s1t,2, . . . , s1t,ℓ1t } where ℓ

1
t is the number of strings contained in S1

t and is at most

O(log t) = O(n). As an example, ℓ = 4, t = 7 and t = 12 define S0
7 = {1}, S1

7 = {01, 011, 0111},
S0
12 = {111, 1101}, and S1

12 = {1, 11}, since 7(10) = (0111)(2) and 12(10) = (1100)(2). We remark
that “1” and “01” are different strings. The encodings are effective to compare two integer values,
t and t′, because the following holds.

S0
t ∩ S1

t′ ̸= ∅ ⇐⇒ t < t′
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In other word, the encodings are effective to translate an inequality condition t < t′ to an equality
condition, i.e., for all s0t,i ∈ S0

t and s1t′,j ∈ S1
t′ , check whether s0t,i = s1t′,j or not where i ∈ [1, ℓ0t ] and

j ∈ [1, ℓ1t′ ]. The number of equality checks is at most ℓ0t · ℓ1t′ = O(log t · log t′) = O(ℓ2). Previous
FS-PAEKS [24] and FS-PEKS [30, 51] also employed the encodings. Moreover, group signatures
with time-bound keys [36] also employed these encodings.

3 Definition of FS-PAEKS

In this section, we define FS-PAEKS. The encryption algorithm takes a time period t and the
trapdoor generation algorithm takes a time period t′ (in addition to other inputs required in the
syntax of PAEKS). In addition to the search condition defined in PAEKS, a trapdoor works if
t < t′, that is, a newly generated ciphertext is not allowed to be searched by previously generated
trapdoors.

Definition 6 (Syntax of FS-PAEKS). An FS-PAEKS scheme FS-PAEKS consists of the following
six algorithms (FS-PAEKS.Setup,FS-PAEKS.KGR,FS-PAEKS.KGS,FS-PAEKS.Enc,FS-PAEKS.Trapdoor,
FS-PAEKS.Test) defined as follows.

FS-PAEKS.Setup: The setup algorithm takes a security parameter λ as input, and outputs a common
parameter pp. We assume that pp implicitly contains the keyword space KS and the time space
T .

FS-PAEKS.KGR: The receiver key generation algorithm takes pp as input, and outputs a public key
pkR and a secret key skR.

FS-PAEKS.KGS: The sender key generation algorithm takes pp as input, and outputs a public key
pkS and a secret key skS.

FS-PAEKS.Enc: The keyword encryption algorithm takes pkR, pkS, skS, a keyword kw ∈ KS, and
a time period t ∈ T as input, and outputs a ciphertext ctFS-PAEKS.

FS-PAEKS.Trapdoor: The trapdoor algorithm takes pkR, pkS, skR, a keyword kw′ ∈ KS, and a time
period t′ ∈ T as input, and outputs a trapdoor tdS,kw′,t′.

FS-PAEKS.Test: The test algorithm takes ctPAEKS and tdS,kw′,t′ as input, and outputs 1 or 0.

Definition 7 (Correctness). For any security parameter λ, any common parameter pp← FS-PAEKS.Setup(1λ),
any key pairs (pkR, skR)← FS-PAEKS.KGR(pp) and (pkS, skS)← FS-PAEKS.KGS(pp), and any key-
word kw ∈ KS and any time periods t′, t ∈ T where t < t′, let ctFS-PAEKS ← FS-PAEKS.Enc(pkR,
pkS, skS, kw, t) and tdS,kw,t′ ← FS-PAEKS.Trapdoor(pkR, pkS, skR, kw, t

′). Then

Pr[FS-PAEKS.Test(ctFS-PAEKS, tdS,kw,t′) = 1] = 1− negl(λ)

holds.

Next, we define consistency. As in PAEKS, due to its authenticity, a trapdoor associated with
a sender should not work against ciphertexts generated by the secret key of another sender, even
if the same keyword is associated. In addition, due to the forward security, a newly generated
ciphertext should not be searchable by previously generated trapdoors, even if the same keyword
and legitimate sender public key are specified. Thus, we add the condition (kw, i) = (kw′, j)∧t > t′

below.
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Definition 8 (Computational Consistency). For all PPT adversaries A, we define the following
experiment.

ExpconsistFS-PAEKS,A(λ) :

pp← FS-PAEKS.Setup(1λ); (pkR, skR)← FS-PAEKS.KGR(pp)

(pkS[0], skS[0])← FS-PAEKS.KGS(pp); (pkS[1], skS[1])← FS-PAEKS.KGS(pp)

(kw, kw′, t, t′, i, j)← A(pp, pkR, pkS[0], pkS[1])
s.t. kw, kw′ ∈ KS ∧ i, j ∈ {0, 1} ∧ t, t′ ∈ T
∧
(
(kw, i) ̸= (kw′, j) ∨

(
(kw, i) = (kw′, j) ∧ t > t′

))
ctFS-PAEKS ← FS-PAEKS.Enc(pkR, pkS[i], skS[i], kw, t)

tdS[j],kw′,t′ ← FS-PAEKS.Trapdoor(pkR, pkS[j], skR, kw
′, t′)

If FS-PAEKS.Test(ctFS-PAEKS, tdS[j],kw′,t′) = 1 then output 1, and 0 otherwise.

We say that an FS-PAEKS scheme FS-PAEKS is consistent if the advantage

AdvconsistPAEKS,A(λ) := Pr[ExpconsistFS-PAEKS,A(λ) = 1]

is negligible in the security parameter λ.

Next, we define indistinguishability against the chosen keyword attack with forward security
(IND-FS-CKA) which guarantees that no information about the keyword is leaked from ciphertexts.
Due to the forward security, an adversary A is allowed to obtain trapdoors for the challenge keyword
and the challenge sender if the trapdoor is generated at t′ < t∗ where the challenge ciphertext is
generated at t∗. Thus, we add the condition (kw′, i) ∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} ∧ t′ < t∗ to the

OT oracle. We also remark that Jiang et al. [24] introduced selective forward security where an
adversary declares t∗ prior to the setup phase. We consider adaptive security where an adversary
declares t∗ in the challenge phase.3

Definition 9 (IND-FS-CKA). For all PPT adversaries A, we define the following experiment.

ExpIND-FS-CKA
FS-PAEKS,A(λ, n) :

pp← FS-PAEKS.Setup(1λ); (pkR, skR)← FS-PAEKS.KGR(pp)

For i ∈ [1, n], (pkS[i], skS[i])← FS-PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, i

∗, t∗, state)← AO(pp, pkR, {pkS[i]}i∈[1,n])
s.t. kw∗

0, kw
∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n] ∧ t∗ ∈ T

b
$←− {0, 1}; ct∗FS-PAEKS ← FS-PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw

∗
b , t

∗)

b′ ← AO(state, ct∗FS-PAEKS)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(pkR, ·, ·, ·),OT (pkR, ·, skR, ·, ·)}. OC takes kw ∈ KS, t ∈ T , and i ∈ [1, n] as input,
and returns the result of FS-PAEKS.Enc(pkR, pkS[i], skS[i], kw, t). Here, there is no restriction. OT

takes kw′ ∈ KS, t′ ∈ T , and i ∈ [1, n] as input, and returns the result of FS-PAEKS.Trapdoor(pkR,

3They are equivalent to |T | reduction and selective forward security is sufficient if |T | is a polynomial of the
security parameter.
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pkS[i], skR, kw
′, t′). Here (kw′, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} or (kw′, i) ∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} ∧ t′ < t∗.

We say that an FS-PAEKS scheme FS-PAEKS is IND-FS-CKA secure if the advantage

AdvIND-FS-CKA
FS-PAEKS,A(λ, n) := |Pr[ExpIND-FS-CKA

FS-PAEKS,A(λ, n) = 1]− 1/2|

is negligible in the security parameter λ.

Next, we define indistinguishability against the inside keyword guessing attack with forward
security (IND-FS-IKGA) which guarantees that no information about the keyword is leaked from
trapdoors. Due to the forward security, an adversary A is allowed to obtain ciphertexts for the
challenge keyword and the challenge sender if the ciphertext is generated at t > t∗ where the
challenge trapdoor is generated at t∗. Thus, we add the condition (kw, i) ∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} ∧

t > t∗ to the OC oracle. As in IND-FS-CKA, we consider adaptive security where an adversary
declares t∗ in the challenge phase, although Jiang et al. [24] introduced selective forward security.

Definition 10 (IND-FS-IKGA). For all PPT adversaries A, we define the following experiment.

ExpIND-FS-IKGA
FS-PAEKS,A (λ, n) :

pp← FS-PAEKS.Setup(1λ); (pkR, skR)← FS-PAEKS.KGR(pp)

For i ∈ [1, n], (pkS[i], skS[i])← FS-PAEKS.KGS(pp)

(kw∗
0, kw

∗
1, i

∗, t∗, state)← AO(pp, pkR, {pkS[i]}i∈[1,n])
s.t. kw∗

0, kw
∗
1 ∈ KS ∧ kw∗

0 ̸= kw∗
1 ∧ i∗ ∈ [1, n] ∧ t∗ ∈ T

b
$←− {0, 1}; td∗S[i∗],kw∗

b ,t
∗ ← FS-PAEKS.Trapdoor(pkR, pkS[i∗], skR, kw

∗
b , t

∗)

b′ ← AO(state, td∗S[i∗],kw∗
b ,t

∗)

If b = b′ then output 1, and 0 otherwise.

Here, O := {OC(pkR, ·, ·, ·),OT (pkR, ·, skR, ·, ·)}. OC takes kw ∈ KS, t ∈ T , and i ∈ [1, n] as
input, and returns the result of FS-PAEKS.Enc(pkR, pkS[i], skS[i], kw, t). Here, (kw, i) ̸∈ {(kw∗

0, i
∗),

(kw∗
1, i

∗)} or (kw, i) ∈ {(kw∗
0, i

∗), (kw∗
1, i

∗)} ∧ t > t∗. OT takes kw′ ∈ KS, t′ ∈ T , and i ∈ [1, n]
as input, and returns the result of FS-PAEKS.Trapdoor(pkR, pkS[i], skR, kw

′, t′). Here (kw′, i) ̸∈
{(kw∗

0, i
∗), (kw∗

1, i
∗)}. We say that an FS-PAEKS scheme FS-PAEKS is IND-FS-IKGA secure if

the advantage
AdvIND-FS-IKGA

FS-PAEKS,A (λ, n) := |Pr[ExpIND-FS-IKGA
FS-PAEKS,A (λ, n) = 1]− 1/2|

is negligible in the security parameter λ.

4 Our Generic Construction

Trivial and Insecure Construction. One trivial construction is to employ a double encryption
method. That is, a PAEKS ciphertext is encrypted by a public key encryption scheme supporting
time-related functionality, e.g., past time-specific encryption (PTSE) [26,27] which is a special case
of time-specific encryption [40]. In PTSE, the encryption and key extraction algorithms take a
time t and t′ as input, respectively, and the decryption key works when t < t′. Thus, a PAEKS
ciphertext of a keyword kw is encrypted by PTSE with a time period t, and a trapdoor is a PAEKS
trapdoor of a keyword kw′ and a PTSE decryption key associated with time period t′. If t < t′,
then a PTSE ciphertext can be decrypted by the decryption key, and then the test algorithm of
the underlying PAEKS scheme determines whether kw = kw′ or not using a PAEKS trapdoor.
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This construction provides correctness and appears to be secure because no information about
the keyword is revealed from ciphertexts (owing to the IND-CPA security of PTSE) and trapdoors
(owing to the IND-IKGA security of PAEKS). However, this construction does not provide the IND-
FS-CKA security because the keyword-related and time-related parts of a trapdoor are generated
separately. For example, an adversary obtains a trapdoor for the challenge keyword kw∗

0 and a
time period t′ < t∗, and obtains a trapdoor for any keyword kw ̸∈ {kw∗

0, kw
∗
1} and a time period

t∗. Then, the adversary can generate a trapdoor for kw∗
0 at t∗ which works to distinguish whether

the challenge ciphertext is an encryption of kw∗
0 or kw∗

1. This insecure construction suggests that
we connect the keyword-related and time-related parts in an inseparable manner, and this is the
reason behind of our attack works against the Jiang et al. FS-PAEKS scheme.

High-Level Description. A naive way to connect the keyword-related and time-related parts
in an inseparable manner is to consider kw||t for encryption and kw′||t′ for trapdoor as keywords.
However, this construction only provides the equality matching, and does not check the inequality
condition t < t′. Thus, we employ 0/1 encodings to translate the inequality condition t < t′ to an
equality condition. Essentially, a ciphertext of FS-PAEKS for a keyword kw and a time period t
is a set of PAEKS ciphertexts for the keyword kw||s0t,i for all s0t,i ∈ S0

t . Similarly, a trapdoor of
FS-PAEKS for a keyword kw′ and a time period t′ is a set of PAEKS trapdoors for the keyword
kw′||s1t′,j for all s1t′,j ∈ S1

t′ . t < t′ holds if and only if there exists i and j such that s0t,i = s1t′,j since

S0
t ∩ S1

t′ ̸= ∅. For such i and j, kw||s0t,i = kw′||s1t′,j holds if kw = kw′. Thus, by using the test
algorithm of the underlying PAEKS scheme, we can check both t < t′ and kw = kw′ simultaneously.
Thus, obviously correctness holds. For consistency, let i and j be selected by the adversary A in
ExpconsistFS-PAEKS,A. When (kw, i) ̸= (kw′, j), our construction provides consistency since the underlying
PAEKS scheme is consistent. When (kw, i) = (kw′, j)∧t > t′, since S0

t ∩S1
t′ = ∅, this case is reduced

to the case kw||s0t,i ̸= kw′||s1t′,j ∧ i = j but the test algorithm outputs 1. Since this contradicts the
consistency of the underlying PAEKS scheme, our construction provides consistency. Moreover,
intuitively, no information about the keyword is revealed from ciphertexts and trapdoors due to
the IND-CKA security and IND-IKGA security of the underlying PAEKS scheme. The size of
ctFS-PAEKS (resp. tdS,kw′,t′) is ℓ

0
t -times (resp. ℓ1t′-times) greater than that of ctPAEKS (resp. tdS,kw′).

Since ℓ0t and ℓ1t′ are at most the bit length of time period, our construction is scalable. We remark
that information of time period could be leaked unless information of keyword is not leaked. Thus,
the FS-PAEKS.Test algorithm needs to run the PAEKS.Test algorithm only once by finding i and j
such that s0t,i = s1t′,j . This technique is also employed in the FS-PEKS scheme proposed by Zeng
et al. [51].

As a remaining issue, we must consider the following trapdoor/ciphertext re-use cases. For
example, S1

7 = {01, 011, 0111} contains S1
6 = {01, 011}. That is, A can obtain a trapdoor at t′ = 6

when A obtains a trapdoor at t′ = 7. However, this trapdoor derivation for previous time period
does not affect the IND-FS-CKA security because A is allowed to obtain trapdoors for a challenge
keyword and sender (kw′, i) ∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} only when the trapdoors are associated with a

previous time period t′ < t∗. That is, if other trapdoor is derived from the trapdoors for a challenge
keyword and sender, it does not work for distinguishing which keyword is selected for generating
the challenge ciphertext. Towards this direct trapdoor derivation case, we need to guarantee that
any combination of trapdoors obtained via the trapdoor oracle does not affect the IND-FS-CKA
security. This can be shown by the fact that t > t′ if and only if S0

t ∩ S1
t′ = ∅. Similarly, A may

obtain ciphertexts associated to a future time period. For example, S0
8 = {11, 101, 1001} contains

S0
9 = {11, 101}. That is, A can obtain a ciphertext at t = 9 when A obtains a ciphertext at t = 8.

However, this situation also does not affect the IND-FS-IKGA security because A is allowed to
obtain ciphertexts for the challenge keyword and sender (kw, i) ∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)} only when
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the ciphertexts are associated with a future time period t > t∗. That is, if other ciphertext is derived
from the ciphertexts for a challenge keyword and sender, it does not work for distinguishing which
keyword is selected for generating the challenge trapdoor. Towards this direct ciphertext derivation
case, we need to guarantee that any combination of ciphertexts obtained via the encryption oracle
does not affect the IND-FS-IKGA security. This can be shown by the fact that t > t′ if and only
if S0

t ∩ S1
t′ = ∅.4

Let PAEKS = (PAEKS.Setup,PAEKS.KGR,PAEKS.KGS,PAEKS.Enc,PAEKS.Trapdoor,PAEKS.Test)
be a PAEKS scheme. We construct an FS-PAEKS scheme FS-PAEKS = (FS-PAEKS.Setup,FS-PAEKS.KGR,
FS-PAEKS.KGS,FS-PAEKS.Enc,FS-PAEKS.Trapdoor,FS-PAEKS.Test) from PAEKS as follows. We
assume that the underlying PAEKS scheme supports the keyword space {0, 1}2ℓ where ℓ is a poly-
nomial of λ. Then, our construction supports KS = T = {0, 1}ℓ because we consider kw||s0t,i or
kw′||s1t′,j as keyword.

Generic Construction of FS-PAEKS

FS-PAEKS.Setup(1λ): Run pp ← PAEKS.Setup(1λ) and output pp that contains KS = {0, 1}ℓ and
T = {0, 1}ℓ where ℓ is a polynomial of λ.

FS-PAEKS.KGR(pp): Run (pkR, skR)← PAEKS.KGR(pp) and output (pkR, skR).

FS-PAEKS.KGS(pp): Run (pkS, skS)← PAEKS.KGS(pp) and output (pkS, skS).

FS-PAEKS.Enc(pkR, pkS, skS, kw, t): Define S0
t = {s0t,1, s0t,2, . . . , s0t,ℓ0t }. For all i ∈ [1, ℓ0t ], run ctPAEKSi ←

PAEKS.Enc(pkR, pkS, skS, kw||s0t,i). Output ctFS-PAEKS = (t, {ctPAEKSi}i∈[1,ℓ0t ]).

FS-PAEKS.Trapdoor(pkR, pkS, skR, kw
′, t′): Define S1

t′ = {s1t′,1, s1t′,2, . . . , s1t′,ℓ1
t′
}. For all j ∈ [1, ℓ1t′ ],

run tdS,kw′||s1
t′,j
← PAEKS.Trapdoor(pkR, pkS, skR, kw

′||s1t′,j). Output tdS,kw′,t′ = (t′, {tdS,kw′||s1
t′,j
}j∈[1,ℓ1

t′ ]
).

FS-PAEKS.Test(ctFS-PAEKS, tdS,kw′,t′): Parse ctFS-PAEKS = (t, {ctPAEKSi}i∈[1,ℓ0t ]) and tdS,kw,t′ = (t′,

{tdS,kw′||s1
t′,j
}j∈[1,ℓ1

t′ ]
). If t > t′, then output 0. Otherwise, if t < t′, then find i and j such

that s0t,i = s1t′,j . If 1 = PAEKS.Test(ctPAEKSi, tdS,kw′||s1
t′,j

), then output 1, and 0 otherwise.

As mentioned in the high-level description paragraph, our generic construction is correct if the
underlying PAEKS scheme is correct, due to 0/1 encodings.

5 Security Analysis

Theorem 1. Our generic construction is consistent if the underlying PAEKS scheme is consistent.

Proof. Let i and j be chosen by the adversary A in ExpconsistFS-PAEKS,A. If (kw, i) ̸= (kw′, j), then
obviously consistency holds due to the consistency of the underlying PAEKS scheme because the
winning conditions of the both experiments are the same. Thus, we consider the case (kw, i) =
(kw′, j)∧t > t′ as follows. Let A be the adversary of FS-PAEKS consistency and C be the challenger
of PAEKS consistency. We construct an algorithm B that breaks the consistency of the PAEKS

4Although the trapdoor/ciphertext derivation does not affect IND-FS-CKA/IND-FS-IKGA security, the delegata-
bility violates unforgeability of the time period where a trapdoor (resp. ciphertext) associated with a time period
is delegated to a trapdoor (resp. ciphertext) associated to a previous (resp. future) time period. Because such
unforgeability is not required as a security of FS-PAEKS, we do not consider the derivation anymore. We remark
that, in the group signatures with time-bound keys context, such unforgeability is considered [18, 45]. It might be
interesting to consider such unforgeability in the FS-P(A)EKS context.
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scheme as follows. First, C sends (pp, pkR, pkS[0], pkS[1]) to B. B forwards (pp, pkR, pkS[0], pkS[1]) to A.
A declares (kw, kw′, t, t′, i, j) where (kw, i) = (kw′, j) ∧ t > t′. B defines S0

t = {s0t,1, s0t,2, . . . , s0t,ℓ0t }
and S1

t′ = {s1t′,1, s1t′,2, . . . , s1t′,ℓ1
t′
}. Since t > t′, S0

t ∩ S1
t′ = ∅. Now, FS-PAEKS.Test(ctFS-PAEKS,

tdS[j],kw′,t′) = 1 holds where ctFS-PAEKS ← FS-PAEKS.Enc(pkR, pkS[i], skS[i], kw, t) and tdS[j],kw′,t′ ←
FS-PAEKS.Trapdoor(pkR, pkS[j], skR, kw

′, t′) since A breaks the consistency. Thus, there exist i∗ ∈
[1, ℓ0t ] and j∗ ∈ [1, ℓ1t′ ] such that 1 = PAEKS.Test(ctPAEKSi∗ , tdS[j],kw′||s1

t′,j∗
) and kw||s0t,i∗ ̸= kw′||s1t′,j∗

hold. B randomly guesses such i∗ and j∗ and sends (kw||s0t,i∗ , kw′||s1t′,j∗ , i, j) to C. If the guess is

correct (with probability of at least 1/(ℓ0t ℓ
1
t′ which is non-negligible)), B breaks the consistency of

the underlying PAEKS scheme. This concludes the proof.

Theorem 2. Our generic construction is IND-FS-CKA secure if the underlying PAEKS scheme
is IND-CKA secure.

Proof. Let A be the adversary of IND-FS-CKA and C be the challenger of IND-CKA. We construct
an algorithm B that breaks the IND-CKA security of the PAEKS scheme as follows. First, C sends
(pp, pkR, {pkS[i]}i∈[1,n]) to B. B forwards (pp, pkR, {pkS[i]}i∈[1,n]) to A.

When A sends kw ∈ KS, t ∈ T , and i ∈ [1, n] to OC , B defines S0
t = {s0t,1, s0t,2, . . . , s0t,ℓ0t }.

Then, for all k ∈ [1, ℓ0t ], B sends kw||s0t,k and i to C and obtains ctPAEKSk. B returns ctFS-PAEKS =
(t, {ctPAEKSi}i∈[1,ℓ0t ]) to A. Since there is no restriction, the simulation of OC is perfect.

Similarly, whenA sends kw′ ∈ KS, t′ ∈ T , and i ∈ [1, n] toOT , B defines S1
t′ = {s1t′,1, s1t′,2, . . . , s1t′,ℓ1

t′
}.

Then, for all j ∈ [1, ℓ1t′ ], B sends kw′||s1t′,j and i to C and obtains tdS,kw′||s1
t′,j

. B returns tdS,kw′,t′ =

(t′, {tdS,kw′||s1
t′,j
}j∈[1,ℓ1

t′ ]
) to A. Here, we need to guarantee that B’s queries do not violate the con-

dition of the OT oracle in ExpIND-CKA
PAEKS,A(λ, n). In the case of (kw′, i) ̸∈ {(kw∗

0, i
∗), (kw∗

1, i
∗)}, the

simulation is perfect because it does not violate the condition of the OT oracle in ExpIND-CKA
PAEKS,A(λ, n).

In the case of (kw′, i) ∈ {(kw∗
0, i

∗), (kw∗
1, i

∗)} ∧ t′ < t∗, S0
t∗ ∩ S1

t′ = ∅. Thus, for all i ∈ [1, ℓ0t∗ ]
and j ∈ [1, ℓ1t′ ], kw

′||s1t′,j ̸∈ {kw∗
0||s0t∗,i, kw∗

1||s0t∗,i} holds. Thus, this case also does not violate the

condition of the OT oracle in ExpIND-CKA
PAEKS,A(λ, n). To sum up, the simulation of OT is perfect.

In the challenge phase, A declares (kw∗
0, kw

∗
1, i

∗, t∗). B defines S0
t∗ = {s0t∗,1, s0t∗,2, . . . , s0t,ℓ0t }. We

define sequential of games Game0, . . . ,Gameℓ0
t∗

as follows. In Game0, the challenge ciphertext is gen-

erated by PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw
∗
0||s0t∗,i) for all i = 1, . . . , ℓ0t∗ . In Gameℓ0

t∗
, the challenge

ciphertext is generated by PAEKS.Enc(pkR, pkS[i∗], skS[i∗], kw
∗
1||s0t∗,i) for all i = 1, . . . , ℓ0t∗ . In Gamei

where i ∈ [1, ℓ0t∗ − 1], the j-th challenge ciphertext is generated by PAEKS.Enc(pkR, pkS[i∗], skS[i∗],

kw∗
0||s0t∗,j) for all j = i + 1, . . . , ℓ0t∗ and the k-th challenge ciphertext is generated by PAEKS.Enc

(pkR, pkS[i∗], skS[i∗], kw
∗
1||s0t∗,k) for all k = 1, . . . , i. Thus, the difference of the success probability

between two neighbor games Gamei and Gamei+1 are bound by AdvIND-CKA
PAEKS,A(λ, n). That is, the ci-

phertext generated by (kw∗
0, i

∗, t∗) and the ciphertext generated by (kw∗
1, i

∗, t∗) are indistinguishable
with the advantage ℓ0t∗ · AdvIND-CKA

PAEKS,A(λ, n). This concludes the proof.

Theorem 3. Our generic construction is IND-FS-IKGA secure if the underlying PAEKS scheme
is IND-IKGA secure.

The proof of Theorem 3 is very similar to that of Theorem 2. The main difference is: the chal-
lenge trapdoor is generated by the PAEKS.Trapdoor algorithm, and the trapdoor generated by
(kw∗

0, i
∗, t∗) and the trapdoor generated by (kw∗

1, i
∗, t∗) are indistinguishable with the advantage

ℓ1t∗ · AdvIND-IKGA
PAEKS,A (λ, n). Thus, we omit the proof.
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Remark. Due to our security proofs above, our construction inherits the security of the underlying
PAEKS scheme. For example, several PAEKS schemes do not consider the case that a trapdoor
associated with a sender does not work against ciphertexts generated by the secret key of another
sender, even if the same keyword is associated. They just consider keywords, i.e., if kw ̸= kw′

then the test algorithm outputs 0. Even this weaker notion is employed, our generic construction
provides the same security level that the underlying PAEKS schemes provide. Similarly, if the
underlying PAEKS scheme provides MCI/MTI security, then the FS-PAEKS scheme obtained via
our generic construction also provides MCI/MTI security. In this sense, our generic construction
can be instantiated by any previous PAEKS scheme.

6 Vulnerability of the Jiang et al. FS-PAEKS scheme

In this section, we show that the Jiang et al. FS-PAEKS scheme [24] does not provide forward
security. As mentioned in the introduction section, the main problem is their pairing selection
where a symmetric paring is employed but the DDH problem is assumed to be held (Theorem 4.2
in [24]). Let e : G×G → GT be a paring where G and GT have the prime order p, and let g ∈ G
be a generator. For a DDH tuple (g, ga, gb, gc), one can check whether c = ab or not by checking
e(ga, gb) = e(gc, g) holds or not. Thus, e can be seen as a DDH solver.

Although the Jiang et al. FS-PAEKS scheme provides conjunctive keyword search, for the sake
of simplicity, we consider the single keyword case as follows (but our attack works for conjunctive
keyword search). In their scheme, pkR = gα, skR = α, pkS = gβ , and skS = β where α, β ∈ Zp.
Briefly, a ciphertext contains X = gr1 and CT = hr1f r2 where r1, r2 ∈ Zp. Here, h and f are related
to the keyword kw to be encrypted and are defined as h = H(kw, pkR

skS) and f = H ′(kw, pkR
skS)

for some hash functions H and H ′. That is, a Diffie-Hellman key pkR
skS = pkS

skR = gαβ is regarded
as a key for deriving h and f . Moreover, the ciphertext contains (R0, . . . , Rℓ) where Ri = pkR

ai and
ai is a coefficient of a Lagrange polynomial for all i ∈ [0, ℓ] (here ℓ is the bit-length of a time period
t) which is defined by points (H ′′(s0t,k, pkR

skS), r2) for some hash function H ′′ and s0t,k ∈ S0
t . That

is,
∏

0≤i≤ℓR
πi
(k)

i = pkR
r2 holds where π(k) := H ′′(s0t,k, pkR

skS) for any s0t,k ∈ S0
t . A trapdoor contains

π1 = gs, π2 = h′s, and π3 = f ′s/α. Here, h′ and f ′ are related to the keyword kw′ to be searched and
are defined as h′ = H(kw′, pkS

skR) and f ′ = H ′(kw′, pkS
skR). If kw = kw′, then h = h′ and f = f ′.

Let a ciphertext be generated at t and a trapdoor be generated at t′, and assume t < t′. Since
S0
t ∩ S1

t′ ̸= ∅, there exist i and j such that s0t,i = s1t′,j . Because the Lagrange polynomial is defined

by points (H ′′(s0t,k, pkR
skS), r2), µ :=

∏
0≤i≤ℓR

πi
(j)

i = pkR
r2 holds where π(j) = H ′′(s1t′,j , pkR

skS) since
(π(j), r2) is a point on the polynomial. The trapdoor contains π(j).

Our attack is described as follows. We distinguish whether the challenge trapdoor generated
at t∗ is for kw∗

0 or kw∗
1. One observation here is that the value CT is related to a keyword, and

is independent to a time period, and the values (R0, . . . , Rℓ) are related to a time period, and are
independent to a keyword. Thus, there is room for combining CT for the challenge keyword and
(R0, . . . , Rℓ) for the challenge time period, and our attack below instantiates this observation.

1. An adversary A issues an encryption query kw∗
0 and t∗ < t where kw∗

0 is a challenge keyword.
Since a newly generated ciphertext is not allowed to be searched by previously generated
trapdoors, this query is not prohibited in the security model. The ciphertext contains X = gr1 ,
CT = h∗0

r1f∗
0
r2 , and (R0, . . . , Rℓ) where h∗0 = H(kw∗

0, pkR
skS) and f∗

0 = H ′(kw∗
0, pkR

skS).

2. A issues a trapdoor query kw′ ̸∈ {kw∗
0, kw

∗
1} and t′ where t < t′. Since kw′ ̸∈ {kw∗

0, kw
∗
1},

this query is also not prohibited in the security model. Of course, the test algorithm with
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the ciphertext and the trapdoor outputs 0. However, the trapdoor contains π such that
µ :=

∏
0≤i≤ℓR

πi

i = pkR
r2 holds since t < t′.

Through the procedure, A can obtain X, CT, and µ which are used later.
When A declares kw∗

0 and kw∗
1, the challenger generates the challenge trapdoor at t∗ for kw∗

b

where b ∈ {0, 1}, and it contains π∗
1 = gs, π∗

2 = h∗b
s, and π∗

3 = f∗
b
s/α where h∗b = H(kw∗

b , pkR
skS)

and f∗
b = H ′(kw∗

b , pkR
skS). Now

e(π∗
1,CT) = e(gs, h∗0

r1f∗
0
r2)

= e(gs, h∗0
r1)e(gs, f∗

0
r2)

= e(gr1 , h∗0
s)e(gr2 , f∗

0
s)

= e(X,h∗0
s)e(gαr2 , f∗

0
s/α)

= e(X,h∗0
s)e(pkR

r2 , f∗
0
s/α)

= e(X,h∗0
s)e(µ, f∗

0
s/α)

holds. Thus, if b = 0, then e(π∗
1,CT) = e(X,π∗

2)e(µ, π
∗
3) holds, and b = 1, otherwise. So A can

distinguish b correctly. We remark that the equation e(π1,CT) = e(X,π2)e(µ, π3) is employed in
their test algorithm. Thus, it seems not trivial to fix the vulnerability even if DDH-hard asymmetric
parings, such as [4, 5], are employed.

7 FS-PEKS

Our technique can also be employed to construct FS-PEKS. The definition of FS-PEKS can be
trivially derived from those of FS-PAEKS by eliminating sender key related parts. As in our
generic construction of FS-PAEKS, a ciphertext at t is a set of PEKS ciphertexts generated by
kw||s0t,i for all s0t,i ∈ S0

t and a trapdoor at t′ is a set of PEKS trapdoors generated by kw′||s1t′,i for
all s1t′,i ∈ S1

t′ . We remark that anyone can generate a ciphertext unlike to (FS-)PAEKS, and thus
an encryptor may not follow to employ the 0 encoding and can encrypt any keyword. However,
this situation does not affect the security (i.e., still no information about the keyword is revealed
from ciphertexts due to the security of the underlying PEKS scheme).

As mentioned by Zeng et al. [51], FS-PEKS is basically the same as PETKS proposed by Abdalla
et al. [1]. In PETKS, a trapdoor works in a specific time interval [s, e] (s stands for start and e stands
for end). PETKS can be constructed generically from HIBE with level-1 anonymity. Alternatively,
Zeng et al. [51] also proposed a generic construction of FS-PEKS from attribute-based searchable
encryption supporting OR gates.5 Since PEKS can be constructed from anonymous IBE [1],6 our
FS-PEKS construction eliminates the hierarchical structure or the attribute-based feature of the
previous generic constructions, and is meaningful in the viewpoint of feasibility.

5Zeng et al. mentioned that their FS-PEKS scheme is the instantiation of the generic construction from [53].
6Briefly, a receiver setups the underlying IBE scheme, generates a master public key and a master secret key, and

generates a trapdoor using the master secret key. A trapdoor for a keyword kw′ is a decryption key for the identity
kw′. A sender encrypts a random plaintext R by the underlying anonymous IBE scheme with the identity kw, and a
PEKS ciphertext is the IBE ciphertext and R. The test algorithm outputs 1 if the decryption result of a ciphertext
by using a trapdoor is R. Obviously, correctness holds. For consistency, let an adversary produce kw and kw′ where
kw ̸= kw′ but the test algorithm for a ciphertext of kw and a trapdoor for kw′ outputs 1. Then, an IBE ciphertext
encrypted by the identity kw is decryptable by the decryption key for the identity kw′, and the IND-CPA security is
broken. Thus, this construction provides computational consistency under the IND-CPA security of the underlying
anonymous IBE scheme.
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Table 1: Comparison among the Zeng et al. FS-PEKS scheme, the Abdalla et al. PETKS scheme, and
our two pairing-based instantiations. Frist we construct PEKS schemes from the BF-IBE scheme [8] (over
symmetric bilinear groups (G,GT )) and the CLLWW IBE scheme [13] (over asymmetric bilinear groups
(G1,G2,GT )) via the Abdalla et al. transformation [1], and next we construct FS-PEKS schemes from
these PEKS schemes. We denote “Ours + BF-IBE” or “Ours + CLLWW-IBE” as these FS-PEKS schemes.
Let ℓ be the bit length of time period specified in the encryption and trapdoor generation algorithms, i.e.,
ℓ = O(log t). We employ the security parameter λ to indicate the output size of the hash function (from
GT to {0, 1}λ) used in the BF-IBE scheme. ROM stands for random oracle model, STD stands for standard
model, GGM stands for generic group model, BDH stands for bilinear Diffie-Hellman, and SXDH stands for
symmetric external Diffie-Hellman.

FS-PEKS Scheme Ciphertext Trapdoor Assump. STD
Size Size /ROM

Zeng et al. [51] (4 + ℓ)|G| (3 + ℓ)|G| GGM ROM
Abdalla et al. [1] (PETKS) ℓ|G|+ λ ℓ((ℓ+ 1)|G|+ |Zp|) BDH ROM

Ours + BF-IBE ℓ(|G|+ 2λ) ℓ|G| BDH ROM
Ours + CLLWW-IBE ℓ(2|GT |+ 4|G1|) 4ℓ|G2| SXDH STD

As mentioned in the introduction section, if we employ the BF-IBE scheme [8] as the component
of the underlying PEKS scheme, then an efficient paring-based FS-PEKS scheme in the random
oracle model can be constructed. If the GPV-IBE scheme [20] is employed, then an efficient lattice-
based FS-PEKS scheme in the quantum random oracle model can be constructed. Moreover,
FS-PEKS schemes that are secure in the standard model also can be obtained from pairings (by
PEKS schemes constructed from the Gentry IBE scheme [19], the Lewko IBE scheme [34], the
CLLWW IBE scheme [13], the KP IBE scheme [31], or the JR IBE scheme [25]) or lattices (by
PEKS schemes constructed from the Yamada IBE scheme [49], the Katsumata IBE scheme [28], or
the JKN-IBE scheme [23]).

In the Zeng et al. FS-PEKS scheme [51], the ciphertext size and the trapdoor size depend on the
bit length of the time period. Thus, our generic construction yields a comparably efficient FS-PEKS
scheme, in terms of ciphertext/trapdoor size and search complexity. In Table 1, we give comparisons
among the Zeng et al. FS-PEKS scheme, the Abdalla et al. PETKS scheme instantiated by the
Gentry-Silverberg HIBE scheme [21] with a slight modification to provide level-1 anonymity, and
our two pairing-based instantiations from PEKS schemes which are instantiations of the Abdalla
et al. transformation from the BF-IBE scheme [8] and the CLLWW IBE scheme [13]. We remark
that other PETKS schemes can be obtained from other HIBE schemes via the Abdalla et al.
generic construction, e.g., anonymous HIBE from parings [6,32,33,43,44] or from lattices [2,3,9,12].
Especially, these pairing-based instantiations provide PETKS schemes secure in the standard model.
Nevertheless, our construction is more efficient in terms of the trapdoor size.

8 Conclusion

In this paper, we proposed a generic construction of FS-PAEKS from PAEKS and 0/1 encodings.
Since the Jiang et al. FS-PAEKS scheme does not provide forward security, our generic construction
yields the first secure FS-PAEKS schemes. Our generic construction is quite simple, and it can
be used to construct FS-PEKS. It would be interesting to investigate a generic construction of
FS-P(A)EKS without O(log t)-size ciphertext/trapdoor blowup.
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