
Maximally-Fluid MPC with Guaranteed Output Delivery∗

Giovanni Deligios
ETH Zurich

gdeligios@ethz.ch

Aarushi Goel
NTT Research

aarushi.goel@ntt-research.com

Chen-Da Liu-Zhang
NTT Research

chen-da.liuzhang@ntt-research.com

Abstract

To overcome the limitations of traditional secure multi-party computation (MPC) protocols that
consider a static set of participants, in a recent work, Choudhuri et al. [CRYPTO 2021] introduced a new
model called Fluid MPC, which supports dynamic participants. Protocols in this model allow parties
to join and leave the computation as they wish. Unfortunately, known fluid MPC protocols (even with
strong honest-majority), either only achieve security with abort, or require strong computational and
trusted setup assumptions.

In this work, we also consider the “hardest” setting — called the maximally-fluid model — where
each party can leave the computation after participating in a single round. We study the problem of
designing maximally-fluid MPC protocols that achieve security with guaranteed output delivery, and
obtain the following main results:

• We design a perfectly secure maximally-fluid MPC protocol, that achieves guaranteed output de-
livery against unbounded adversaries who are allowed to corrupt less than a third of the parties
in every round/committee.

• For the case where the adversary is allowed to corrupt up to half of the parties in each committee,
we present a new computationally secure maximally-fluid MPC protocol with guaranteed output
delivery. Unlike prior works that require correlated setup and NIZKs, our construction only uses
a common random string setup and is based on linearly-homomorphic equivocal commitments.

∗A merged version of this paper with [DKI+23] appears in CRYPTO 2023.

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Related Work . 5

2 Technical Overview 6
2.1 Maximally-Fluid MPC with Perfect Security . 6

2.1.1 Our Approach and General Challenges . 6
2.1.2 Perfectly Secure Verifiable Secret Sharing . 7
2.1.3 2-Level Verifiable Secret Sharing . 11
2.1.4 Circuit Evaluation . 11

2.2 Maximally-Fluid MPC with Computational Security . 12

3 Preliminaries 14
3.1 Fluid MPC: Model and Security . 15
3.2 Linearly-Homomorphic Equivocal Commitments . 18

4 Perfectly-Secure Maximally-Fluid MPC with Guaranteed Output Delivery 19
4.1 Secure Channels to Future Committees . 19
4.2 Shamir Sharing to Future Committees . 20
4.3 Verifiable Secret Sharing . 21
4.4 Same Value, Many Sharings . 25
4.5 2-Level Verifiable Secret Sharing . 26
4.6 Perfectly Secure BGW-Style Maximally-Fluid Multiplication Proof 28
4.7 Perfectly Secure Maximally-Fluid MPC . 29

5 Computationally Secure Maximally-Fluid MPC with Guaranteed Output Delivery 32
5.1 (Computationally Secure) Channels To Future Committees 32
5.2 (Computationally Secure) Shamir Sharing to Future Committees 34
5.3 (Computationally Secure) Verifiable Secret Sharing . 36
5.4 (Computationally Secure) 2-Level Verifiable Secret Sharing 39
5.5 (Computationally Secure) Maximally-Fluid Multiplication Proof 41
5.6 Maximally-Fluid Computationally Secure MPC . 43

2

1 Introduction

Secure multi-party computation (MPC) [Yao86, GMW87, BGW88, CCD88, RB89] is a fundamental notion
in cryptography. It allows a set of mutually distrusting parties to jointly compute a function over their
private data, in a manner which ensures that nothing about their private data beyond the output of the
function is leaked. Traditionally, MPC protocols were designed assuming a static set of participants, that
are required to stay online throughout the entire duration of the protocol execution. As such, this limits
their use in modern large-scale applications that are long-lived, such as federated learning algorithms.

To address this, a recent line of works consider more flexible models of computation called Fluid MPC
[CGG+21, GHK+21] (see additional related work in Section 1.2), which support dynamic participation of
parties. Protocols in this model allow parties to join and leave as they wish, without disrupting the execu-
tion. As a result, parties can volunteer to participate in only a few rounds, thereby eliminating the need for
them to commit to their resources for very long durations. In the extreme case, called the maximally-fluid1

setting, parties who wish to participate can sign up for as few as a single round of communication in the
protocol. Needless to say, this gives parties the most amount of flexibility.

Unfortunately, known protocols with maximal-fluidity (even in the strong honest-majority setting),
either require strong computational assumptions and trusted correlated setup [GHK+21, BGG+20] or only
achieve so-called security with abort [CGG+21, RS22]. Security with abort essentially gives the adversary
the power to launch denial-of-service attacks — which is far from ideal in any MPC protocol — but in the
fluid setting, this could be even more frustrating. Firstly, it limits the use of the fluid model of computation
in MPC-as-a-service type applications [BHKL18]. Moreover, having large-scale distributed computations
end in failure, is also a waste of time and resources of all the parties who volunteer to participate, and can
potentially deter them from volunteering in the future.

To remedy this, in this work, we investigate the possibility of designing more robust maximally-fluid
MPC protocols with information-theoretic (IT) security. We ask:

Do there exist information-theoretic maximally-fluid MPC protocols, that achieve security with
guaranteed output delivery?

Before stating our results, it is instructive to discuss the communication model in fluid MPC in more
detail. Similar to the work of Choudhuri et al. [CGG+21], we consider fluid MPC protocols in the client-
server model, where a group of “static” clients holding private inputs, delegate the task of computing a joint
function on their inputs to a group of “dynamically evolving” volunteer servers. The servers participating
in a given round constitute the committee for that round and in the maximally-fluid setting, these servers
can exit the computation after receiving and sending messages in one round. In the maximally-fluid setting,
the committee for any round r, is only revealed in round r − 1, when the committee for round r − 1 is
ready to send messages to this committee. We assume an honest majority of servers in each committee.2
Finally, as in all prior works [CGG+21, GHK+21, BGG+20, RS22], we assume that the servers have access
to a broadcast channel (even in the plain model) and servers in two consecutive committees can also
communicate with each other via private point-to-point channels.

1For readers familiar with the framework of YOSO MPC [GHK+21], this setting is equivalent to YOSO MPC with static
triggering and future horizon = 1.

2We allow corruption of any number of clients.

3

1.1 Our Results

We answer the above question in the affirmative. We first show that in the information-theoretic (IT)
setting without assuming trusted setup, one can simultaneously achieve maximal-fluidity and guaranteed
output delivery, if the adversary is allowed to corrupt up to 1/3rd of the servers in every committee. Next,
we show that if we allow up to 1/2-fraction of corruptions in each committee, it is possible to design
such a protocol with computational security and assuming a common random string (CRS) setup. We now
discuss our results in more detail.

Result 1: Maximally-Fluid MPC with Perfect Security. We present the first3 perfectly secure
maximally-fluid MPC that achieves guaranteed output delivery in the plain model.

Theorem (Informal) 1. There exists amaximally-fluidMPC protocol in the plainmodel, that achieves perfect
security with guaranteed output delivery against an unbounded adversary who is allowed to corrupt up to
1/3rd of the servers in every committee.

Previously, in the information-theoretic setting, Choudhuri et al. [CGG+21] presented a satistically
secure, maximally-fluid MPC that only achieves security with abort. Gentry et al. [GHK+21] gave a con-
struction of statistically secure YOSO MPC with guaranteed output delivery (allowing up to 1/2-fraction
of random corruptions in each committee). However, it is unclear how to adapt their protocol to the
fluid-setting for two reasons — (1) first, their construction is only secure if the adversary gets to corrupt
a “random” subset of parties in each committee; (2) moreover, their protocol requires committees to send
messages not just to the immediate next committee, but also to other committees that are expected to
participate (and appear online) a lot later in the future. For this they assume the existence of “secure
channels to the future”. As discussed in [GHK+21], it is unclear how one could instantiate such channels
information-theoretically with up to 1/2-fraction of corruptions, especially when the identities of parties
in future committees is unknown at the time of sending these messages.

Additionally, since both these prior works only achieve statistical security, another attractive feature
of our protocol is that it is the first fluid MPC that has perfect security, for any corruption-threshold. In
our protocol, we assume that each committee comprises of the same number of servers. This is similar
to the guaranteed output delivery protocols in [GHK+21], but unlike the security with abort protocol in
[CGG+21] that allows for variable number of parties in each committee. We leave designing a guaranteed
output delivery protocol with a similar property as an interesting open problem.

Finally, we remark that given the close connections between Fluid and YOSO MPC models, our pro-
tocol also yields the first information-theoretic YOSO MPC (achieving guaranteed output delivery) with
future horizon = 1, i.e., where each committee is only required to communicate with the immediate next
committee. Previously, Gentry et al. [GHK+21] presented a statistically secure YOSO MPC assuming se-
cure channels to the future. However, as discussed above, it is unclear how to instantiate such channels
information-theoretically. A YOSO MPC with future horizon = 1, eliminates the need for such channels
and hence is more desirable.

Result 2: Maximally-Fluid MPC with Computational Security. Next, we ask whether it is possible
to design a maximally-fluid MPC using common random string setup, while achieving guaranteed output
delivery and increased resilience by relying on computational assumptions.

3In a concurrent work, [DKI+23] also gave a construction of a perfectly secure maximally-fluid MPC with guaranteed output
delivery for t < n/3.

4

Theorem (Informal) 2. Assuming linearly-homomorphic equivocal commitments and a common random
string setup, there exists a maximally-fluid MPC that achieves guaranteed output delivery and can tolerate up
to 1/2-fraction of corruptions in each committee.

Our construction relies on linearly-homomorphic equivocal commitments, which can be instanti-
ated using a variety of assumptions such as discrete-log (e.g., Pedersen commitments [Ped92]) or lattice
based assumptions (e.g., LWE or SIS [GVW15]). As discussed earlier, Gentry et al. [GHK+21] show a
computationally-secure, guaranteed output delivery YOSO MPC with future horizon = 1 and a similar
corruption threshold. Their protocol can also be adapted as a maximally-fluid MPC. However, their con-
struction was a simple adaptation of the CDN protocol [CDN01] and makes use of NIZKs and linearly
homomorphic threshold encryption, which requires trusted correlated setup. We present a protocol using
a weaker cryptographic assumption, while only relying on common random string setup. We leave the
problem of designing a similar protocol without setup and based on the minimal assumption of one-way
functions for future work.

Overall, our results help resolve some of the questions pertaining to guaranteed output delivery that
were left open in [CGG+21] and [GHK+21].4 Choudhuri et al. [CGG+21] had envisioned a volunteer-
enabled, weighted, privacy-preserving distributed computing system as one of the motivations behind the
fluid model. Having a robust protocol for such a system has many advantages. It also helps dissuade notori-
ous entities, who might otherwise simply participate to launch a denial of service attack, from volunteering
in the system.

1.2 Related Work

Recently, in a concurrent work, [DKI+23] also proposed a construction of a perfectly secure maximally-
fluid MPC (referred to as layered MPC in their work) with guaranteed output delivery for t < n/3. Similar
to ours, their protocol also follows the BGW paradigm [BGW88] and demonstrates how to adapt it to the
maximally-fluid/layered model.

We discuss further relevant related work. As discussed in the introduction, the fluid model of compu-
tation with dynamic participants was proposed in [CGG+21]. They gave a construction of an information-
theoretic maximally-fluid MPC in the honest majority setting that achieves security with abort. Recently,
[RS22] designed a fluid MPC in the dishonest majority setting.

The most closely related model to fluid MPC was suggested in [GHK+21], and is called YOSO MPC. This
model also considers the notion of dynamic participants. However, the motivations in the two models are
quite different. Unlike fluid MPC, where the main goal is to try and minimize the commitment required
from each participant, the main motivation behind YOSO MPC is a stronger adversarial model. Some
follow-up works in this line of research include [KRY22] which focuses on improving the round complexity
of YOSO MPC, and [CDGK22, CDK+23] that focus on designing efficient ways for encrypting to/sharing
messages with future committees. The work [NRO22] deals with YOSO coin-flipping in a setting where a
bounded number of committees can have dishonest majority.

Some recent works such as [AHKP22, DEP21] consider other models of dynamic participation. Prior to
Fluid and YOSO MPC, the idea of dynamic participants in secret sharing schemes was explored in [BGG+20,
GKM+20]. The notion of player replaceability (where the set of parties get replaced in every round) has
previously been studied in the context of consensus primitives [Mic17, CM19, PS17, BKLZL20]. The well-
studied notion of proactive security [OY91, BELO14] also considers a closely related model, where the

4Our results also present concrete resolutions to some of the conjectures presented by Nielsen in a recent talk https://www.
youtube.com/watch?v=PfC1lf1nuw8.

5

https://www.youtube.com/watch?v=PfC1lf1nuw8
https://www.youtube.com/watch?v=PfC1lf1nuw8

parties remain static, but the adversary is allowed to corrupt different sets of parties at different times in
the protocol.

2 Technical Overview

In this section, we give discuss the main technical ideas underlying our results. We start by recalling the
fluid MPC model introduced in [CGG+21].

Fluid Model. A fluid MPC is a protocol with m-clients C and N -parties S (the servers). The clients have
input and receive output, and computation is carried out by the parties in a sequence of E epochs, where
in each epoch ℓ, a committee Sℓ = {P ℓ

1 , . . . , P ℓ
n} of n parties (with Sℓ ⊆ S) participate as senders in a

single round of communication consisting of broadcast channels whose content is accessible towards all
future committees, and secure channels towards the parties in the next committee.5 In each committee,
the adversary can choose to corrupt up to any t out of n parties. We give a more detailed description in
Section 3.1.

The rest of this section is organised as follows. In Section 2.1 we discuss the techniques used in our per-
fectly secure protocol. Finally, in Section 2.2, we give an overview of our computationally secure protocol
with increased resilience threshold.

2.1 Maximally-Fluid MPC with Perfect Security

Our first main technical contribution is a maximally-fluid MPC protocol with perfect security and guar-
anteed output delivery, secure up to t < n/3 corruptions in each committee.

2.1.1 Our Approach and General Challenges

Our protocol follows the well-known BGW paradigm [BGW88], where parties evaluate a function by
emulating the computation of an arithmetic circuit over a finite field. In this paradigm, the clients first
distribute their inputs using a secret sharing scheme towards the parties (or servers) who then emulate the
computation in a gate-by-gate manner — computing shares of the output wire of every gate using shares
of the input wires of that gate. In the end, they reconstruct the values of the output wires of the circuit
towards the clients.

Previously, [CGG+21] showed how to adapt the semi-honest version of BGW to the maximally-fluid
setting, however they were only able to show how to upgrade the security of this protocol to security with
abort in the presence of an active adversary. Adapting the BGW-paradigm to achieve a robust protocol
with maximal-fluidity imposes several challenges. First, note that popular (and efficient) techniques based
on player elimination or dispute control [HMP00, BTH06] that enable leveraging non-robust protocols
into robust protocols are not applicable in our setting. Indeed, they are based on the idea of detecting
and kicking out cheating parties so that they can no longer harm the computation, and rely on the fact
that the number of remaining parties decreases (while keeping the required corruption ratio). In our case,
detecting a cheating party in a committee Sc does not help, because each party only participates in a single
round of communication, and future committees can be composed of entirely different parties. As such, it
seems unlikely that leveraging such techniques could help lift prior non-robust fluid protocols [CGG+21]
to achieve active security with guaranteed output delivery.

5In the original model, each epoch consists of k rounds of communication with the same committee – denoted fluidity k. In this
work we only consider protocols with maximal fluidity, or fluidity 1, where each epoch contains a single round of communication.

6

As a result, we turn our attention to designing a robust maximally-fluid protocol in the BGW-paradigm
from scratch. The robust variant of BGW [BGW88, AL17] crucially makes use of a verifiable secret sharing
(VSS) scheme (cf. [CGMA85, GMW87]), instead of regular secret sharing. Therefore, our first step is to
design a VSS protocol with maximal fluidity. Unfortunately, it is well known that sharing a value with
VSS in 1-round is impossible [PCRR09] (in fact, we need at least 3 rounds of communication to achieve
perfect security [GIKR01]). Moreover, current VSS protocols are not stateless and crucially require parties
to maintain their private state across different rounds. However, in our setting, since at each round r only
one committee Sr speaks (and parties in this committee may no longer participate), we need a mechanism
that allows different committees participating in different rounds to maintain state on their behalf. On
the other hand, maintaining the same state across different committees clearly violates secrecy, since the
adversary can corrupt any set of t parties in each committee, potentially learning the state of too many
parties.

2.1.2 Perfectly Secure Verifiable Secret Sharing

Before describing our ideas for resolving the above conundrum, let us first explain what we mean
by a (maximally-fluid) VSS protocol. This is a protocol that consists of two phases. The first phase,
VSS.ShareFuture, allows any dealer P c

d ∈ Sc to secret share a value s to some future committee Sc′ ,
provided that c′ ≥ c + 1, in a verifiable manner. In the second phase called VSS.RecFuture, committee Sc′

should be able to reconstruct a value s′ towards another committee Sc′′ for some c′′ > c′.
We want this protocol to achieve the following security guarantees — (1) correctness, ensures that if

the dealer P c
d is honest, then the output of VSS.RecFuture is s′ = s. (2) moreover, before VSS.RecFuture

starts, the scheme must satisfy secrecy, which means that the adversary learns no information about an
honest dealer’s secret s. (3) Finally, the scheme should satisfy a commitment property, meaning that if
the phase VSS.ShareFuture succeeds, then there exists a unique value s′ that will be reconstructed after
VSS.RecFuture.

We now describe our ideas for designing a maximally-fluid VSS, which is secure as long as up to
t < n/3 parties are corrupted in committees from c to c′′.

Background. Our starting point is the (non-fluid) protocol due to Gennaro, Ishai, Kushilevitz, and Rabin
[GIKR01], which follows the traditional approach for verifiable secret sharing based on bivariate polyno-
mials over a finite field [BGW88]. The sharing phase of the protocol proceeds as follows:

• Round 1. First, the dealer Pd chooses a bivariate polynomial F (x, y) of degree at most t in each variable,
such that F (0, 0) = s and sends to each party Pi the i-th projections fi(x) = F (x, i) and gi(y) =
F (i, y). Moreover, each party Pi sends to each Pj a uniform random pad rij .

• Round 2. Each party Pi broadcasts the blinded values aij = fi(j) + rij and bij = gi(j) + rji
6.

• Round 3. For each conflicting pair (aij ̸= bji), the involved parties broadcast their local points: Pi

broadcasts fi(j), Pj broadcasts gj(i) and Pd broadcasts F (j, i). A party is then considered unhappy
if his value does not match the dealer’s value. If there are more than t unhappy parties, the dealer is
disqualified.

6Here rji denotes the pad that Pi receives from Pj .

7

• Round 4. For each unhappy party, the dealer broadcasts the polynomial fi(x), and each party Pj who is
happy broadcasts gj(i).

• Local Computation. A party Pj who was happy at the beginning of round 4, becomes unhappy if the
dealer broadcasted fi(x) in round 4 such that gj(i) ̸= fi(j). If the number of unhappy parties is now
more than t, the dealer is disqualified.

To reconstruct, every party Pi that was happy at the beginning of round 4 of the sharing phase broad-
casts si = fi(0). Then, for every unhappy party at the beginning of round 4, take si = fi(0) where fi(x)
is the polynomial broadcasted by the dealer in round 4. Let g(y) be the t-degree polynomial resulting from
the Reed-Solomon error-correction interpolation procedure on the shares s1, . . . , sn, and output g(0).

If the dealer D is honest, all honest parties will be happy, since their broadcasted points will always
match the dealer’s broadcasted points. As a consequence, there are at most t unhappy parties and the
dealer is not disqualified. The shares of the honest parties then allow for the correct reconstruction of
the dealer’s secret s. On the other hand, if the dealer Pd is corrupted and was not disqualified during the
sharing phase, the shares from happy parties completely determine the value that can be reconstructed.
This is because there are at least n − t happy parties, out of which at least n − 2t ≥ t + 1 are honest, so
their polynomials gi(y) uniquely determine a degree-t bivariate polynomial F ′(x, y). Furthermore, it is
not hard to see that the share si distributed during the reconstruction for each honest party Pi (including
unhappy honest parties), will satisfy si = F ′(0, i).

Additional Challenges. As mentioned above, current perfectly-secure VSS protocols (such as the one de-
scribed above) require parties to maintain their private state across different rounds (for example, the
parties need to know their projected polynomials fi(x) and gi(y) throughout all rounds). Since this is not
an option in the maximally-fluid setting, our VSS protocol must instead somehow keep the states of all
parties in a distributed manner — shared across all future committees that might need these states. More-
over, to avoid privacy violations, the sharings of these states must be created independently for different
committees. This however, introduces new challenges. Notice that in the above protocol, all operations
are performed on whole states and transmitted values. We instead need to operate over shared states. Fur-
thermore, these operations need to be performed locally and in a single round of communication, since the
information will be lost after this round is executed. For the same reason, any consistency checks (such as
checking that a polynomial has degree-t or checking crosspoints) must be performed in a public manner
by all parties.

We note that these types of challenges were partially addressed in the paper by Gentry et al. [GHK+21]
for their statistically secure YOSO MPC protocol, for which they also need to adapt a VSS to their model.
However, as discussed in the introduction, they work in an abstract model where they assume that parties
can communicate with committees in the future, and that the adversary can only perform random corrup-
tions chosen independently in each committee. Moreover, their protocol only achieves statistical security,
while we seek to design a perfectly secure protocol. As such, it is unclear how their protocol (including
their VSS protocol) can be directly adapted to our maximally-fluid setting, and hence we must design our
perfectly secure VSS from scratch.

To address the challenges in our setting, we start by designing two subprotocols that will be useful in
the design of our maximally-fluid VSS protocol.

1. Secure Channels to the Future. We first introduce a simple mechanism called SendFuture that allows
a sender P c

s ∈ Sc to send a message m to a recipient P c′
r ∈ Sc′ , with c′ > c in a private manner, as

long as the corruption threshold t < n/3 is maintained in each intermediate committee.

8

If c′ = c + 1, P c
s can directly send the message to P c′

r . Otherwise, the protocol simply lets P c
s

distribute m towards the next committee using a t-out-of-n Shamir’s secret sharing, i.e. sample a
random degree-t polynomial f with constant coefficient m, and sends to each party P c+1

i in the
next committee a share f(i). Each intermediate committee before Sc′−1 obtains a share and re-
shares all the received values towards the next committee. The last committee Sc′−1 simply sends
all the received shares to P c′

r , who will run standard Reed-Solomon decoding to recover a message.
It is easy to see that if P c

s and P c′
r are honest, the decoded message is m, and the adversary learns

no information about it.
Note that since each committee re-shares all the received values, the total incurred communication
is O(nc′−c−1) messages. Recall that an important feature of fluid MPC is that the work done by each
committee must be independent of the depth of the circuit. Therefore, looking ahead, to avoid depth
proportional overhead on any individual committee in our main protocol, we want to make sure to
only use SendFuture with a constant number of intermediate committees. Fortunately, to instantiate
our VSS protocol we will only need to send messages to committees that are a constant number of
epochs ahead.

2. Sharing to the Future. The previous primitive also allows us to implement a sub-protocol ShareFuture
that allows an honest dealer P c

d ∈ Sc to secret-share a value s towards committee Sc′ , in such a
way that the adversary does not obtain any information about the secret s, and the secret can be
further reconstructed towards another committee Sc′′ . This is achieved by simply letting P c

d sample
a uniform random degree-t polynomial f with f(0) = s, and use SendFuture to distribute each
share f(j) to party P c′

j . Reconstruction simply lets each party P c′
j broadcast their share, and parties

in Sc′′ will use Reed-Solomon decoding to recover the secret.

Achieving Maximal Fluidity. With the above sub-protocols, we are ready to describe our maximally-fluid
perfect VSS protocol, which substantially differs from the protocol in [GIKR01] at several points. To begin
with, the dealer samples a bivariate polynomial F with degree-t in both variables and F (0, 0) = s. Instead
of sending projected polynomials to each party in the next committee, and letting this single party (who
may no longer participate after a round) check that the projection has degree-t, we change the distribution
step so that the check becomes verifiable by all parties in future committees.

To achieve this, the dealer distributes each of the (t + 1)2 coefficients of F towards all future com-
mittees (in the VSS protocol) using independent instances of ShareFuture. Moreover, each party P c

i sam-
ples a blinding degree-t polynomial f i(x) and distributes its coefficients using independent instances of
ShareFuture to all future committees.7 Parties in committee Sc+1 can now broadcast blinded shares of
auv = F (u, v) + fu(v) and buv = F (u, v) + fv(u).

The general idea is to use the broadcasted blinded horizontal and vertical polynomials as base
polynomials defined by the points {auv}v∈[1,n] and {bvu}v∈[1,n] to later reconstruct the secret.8 If we
make sure that these polynomials are of degree-t and each points auv and buv are consistent, i.e. blind
the same point F (u, v), then a future committee Sc′ can later reconstruct the secret by reconstructing the
blindings (which they have, since each party P c

i in the first committee used ShareFuture to distribute a
7This step differs from the protocol in [GIKR01], which lets each party send a random pad for each point. This is because in

their protocol each party Pi gets (without loss of generality) a projected polynomial from the dealer which is guaranteed to have
degree-t. If it is not, Pi can assume a default one. However, in our case the projected polynomials (or rather, the coefficients) are
shared and care needs to be taken to check that the sharing has degree-t.

8Crucially, note that we cannot use the re-randomized sharings of F (x, y) that the dealer distributed in the first step, since
we did not check that they are of degree t. Instead, we will use those to fix any inconsistencies that we find on the broadcasted
blinded horizontal and vertical polynomials.

9

sharing of the blinding to parties in Sc′). Of course, blindings distributed by corrupted parties in Sc can
be arbitrary, but those coming from honest parties will lie on a degree-t polynomial. These n− t blindings
will be correctly reconstructed and will allow all honest parties to correctly unblind a unique degree-t
bivariate polynomial F .

Checking the degree of the blinded polynomials. In order to check the degree of the blinded horizontal and
vertical polynomials, parties in committee Sc+2 simply use the shares broadcasted by committee Sc+1 to
reconstruct the points {auv}v∈[1,n] and check that they lie on a degree-t polynomial (and the same for the
points {bvu}v∈[1,n]).9 If any of these sets do not define a degree-t polynomial, we know that either party P c

u

or the dealer P c
d is corrupted. In this case, we tentatively mark the index u as unhappy. Note that all parties

from any future committees mark the same set of indices, since this check is done with broadcasted values.

Checking that the blinded polynomials are consistent. In order to verify that the points auv and buv are
consistent, i.e. blinding the same point F (u, v), the parties in committee Sc+1 also broadcast shares of the
difference of the blinding polynomials cuv = fu(v)−fv(u). Note that we cannot broadcast shares of fu(v)
and fv(u), since this would immediately violate secrecy. Committee Sc+2 reconstructs these values cuv as
well, and checks that auv − buv = cuv . If this is not true, the parties publicly reconstruct using broadcast
the (re-randomized) values fu(v), fv(u) and F (u, v) that they hold (received from committee Sc). Parties
in the next committee Sc+3 can then check whether auv−fu(v) = F (u, v) (resp. buv−fv(u) = F (u, v)),
and if the check fails, mark index u (resp. index v) as unhappy, and broadcast shares of the horizontal and
vertical non-blinded polynomials at index u (resp. index v), i.e. shares of F (u, j), F (j, u) (resp. shares
of F (v, j), F (j, v)) for all j. Similar to [GIKR01], the idea here is then to take these new horizontal and
vertical polynomials as the valid projections at index u, as long as they are consistent with enough of
the other blinded polynomials defined by the public points {auv} and {buv}. For this, we actually also
need to let Sc+3 to broadcast shares of f j(u) when index u is marked (resp. shares of f j(v) when index
v is marked) for all j, so that Sc+4 can check if these new reconstructed non-blinded polynomials are
consistent with enough points of the blinded polynomials (and the broadcasted blindings), where for each
inconsistent point satisfying aju−f j(u) ̸= F (j, u) or bvj−f j(v) ̸= F (v, j), we mark index j as unhappy.

The dealer is then disqualified if the set of unhappy indices is (strictly) larger than t. We defer more details
to Section 4.3.

Given this maximally-fluid VSS protocol, we can now begin to describe our approach towards design-
ing a maximally-fluid MPC with guaranteed output delivery and perfect security. For this, we first need
two “augmented” variants of our VSS protocol which we be helpful in the design of our perfectly secure
maximally-fluid MPC with guaranteed output delivery. The idea of these “augmented” variants is bor-
rowed from Gentry et al. [GHK+21]. However, looking ahead, the way we use them to obtain our final
construction, will necessarily have to be different. As discussed before, this is because, the protocol in
[GHK+21] is only statistically secure and assumes random corruptions of parties in each committee.
Duplicating VSS. In our MPC protocol it will be crucial that a dealer P c

d can produce sharings of the same
value s towards two distinct committees Sc′ , Sc′′ , in such a way that even if the dealer is corrupted, then
committees Sc′ and Sc′′ agree on whether both sharings succeeded, and if so, when any of the committees
executes the reconstruction procedure, they obtain the same value. This can be achieved with a minor mod-
ification of protocol VSS.ShareFuture: each P c

i simply invokes ShareFuture for their blinding polynomial
f (i)(x) towards committees Sk for k ∈ {c + 1, c + 2, c + 3, c′} (same as in the previous section) but also

9If any point cannot be reconstructed, parties set it to a default value.

10

towards committee Sc′′ . Since P c
d can only get disqualified based on broadcast information, committees

Sc′ and Sc′′ agree on whether the protocol succeeded or not.

2.1.3 2-Level Verifiable Secret Sharing

We now describe how to enhance our VSS protocol, to achieve 1) A simplified sharing state, where com-
mittee Sc′ holds an actual Shamir-sharing of s, meaning that each honest party P c′

i holds value si := fs(i)
where fs(x) is a polynomial of degree chosen by the dealer such that fs(0) = s; 2) Commitment to shares:
parties will in addition hold shares, in the sense of the state after protocol VSS.ShareFuture, of each coef-
ficient of the polynomial fs(x). Since the VSS is linear, each P c′

i can compute a share of each other parties
points sj = fs(j) for j ∈ [1, n]. These states will be important for our multiplication protocol, and are not
hard to achieve, given a VSS protocol.

The idea, adapted from the Augmented VSS of [GHK+21], works as follows. The dealer P c
d chooses a

polynomial of some degree t such that f(0) = s, and uses (the duplicate version of) VSS.ShareFuture(fk)
to distribute towards committees Sc1 , Sc′ for each coefficient fk of f(x) for k ∈ [0, t]10. Then, each P c1

locally computes a share of [f(i)] as
∑t

k=0[fk]ik, and participates in protocol VSS.RecFuture(f(i)) pri-
vately towards party P c′

i . More details in Section 4.5, where we also describe a simple method to duplicate
sharings of our 2-level VSS.

Given these variants of the VSS protocol, we are now ready to describe how to securely evaluate a
circuit in the maximally-fluid model whilst achieving guaranteed output delivery.

2.1.4 Circuit Evaluation

Clients use our 2-level VSS protocol to distribute their inputs towards a future committee of servers. For
the computation, we now want to maintain the following invariant for each computation gate g with input
wire values x, y and output wire value z: there is some committee Sc holding states corresponding to a
2-level VSS of x and y. Our goal is that a future committee Sc′ for c′ ≥ c holds a 2-level VSS state of z.

If g is an addition gate, then parties in Sc can non-interactively compute the state for z = x + y by
simply adding their local states, exploiting the linear properties of the 2-level VSS.

For multiplication gates, we adapt the well-known perfectly-secure BGW multiplication approach to
the fluid setting. Due to the interactive nature of this protocol, this does not come free of challenges.
Recall that each party in Sc holds as part of their 2-level VSS states corresponding to x and y, evaluations
xi = fx(i) and yi = fy(i) for some polynomials fx and fy such that fx(0) = x and fy(0) = y. We ask that
each party executes a 2-level VSS for the product zi = xi · yi towards a future committee. The basic idea,
is that, because one can write z = L(z1, . . . , zn)11, each party in a future committee can then (locally)
compute a 2-level VSS state for z, by applying L to the 2-level VSS states for all values zi. However, it is
clear that a dishonest party might share a value different from xi · yi. Therefore, we need a mechanism
to reassure the recipient committee that the 2-level VSS state received from party P c

i is indeed a state of
zi = xi · yi.

To carry out such a multiplication proof, each party P c
i provides the recipient committee with 2-level

VSS states of xi, yi, and zi, but with a few tweaks 1) the polynomials chosen for the sharings of xi and
yi must be consistent with the original 2-level VSS states for x and y,12 and 2) party P c

i provides two
10Here, it must hold that at least c1 ≥ c + 4.
11The explicit coefficients wi can be derived via Lagrange interpolation.
12The type of consistency required between these polynomials and the known 2-level VSS states are provided in Section 4.6.

11

consistent 2-level VSS states for zi: one using a degree t polynomial, and one using the degree-2t product
of the polynomials used to share xi and yi respectively.

In the non-fluid setting (where committee Sc can stay online for many rounds), each recipient P c
j

locally checks, for all parties P c
i , that xij · yij = zij , where xij denotes the share of xi held by P c

j .
Intuitively, if these checks succeed, this means that the degree 2t polynomial used to share zi evaluates
to xi · yi in 0 (because n − t ≥ 2t + 1 values completely determine the polynomial). The consistency
guarantees on the different polynomials (the one with degree t and the one with degree 2t) used to share
zi then implies that the degree t 2-level VSS state for zi is also a correct state for xi · yi. However, if the
check xij ·yij ̸= zij fails, then party P c

j raises a complaint towards P c
i , who, in order to not fail their proof,

must answer the complaint by broadcasting Pj ’s shares of all values xi, yi, and zi.
These last steps constitutes a challenge in the fluid model, since at this point P c

j is no longer online. To
overcome this, their state must be held in a distributed fashion among an auxiliary committee Sc1 to enable
this committee to answer the complaints on P c

j ’s behalf. However, once a complaint has been answered by
committee Sc1 (by reconstructing the values xi and yi of a party P c

i that failed their multiplication proof),
committee Sc1 themselves are not online anymore, and all the progress made so far is lost. To overcome
this, we must make sure that all relevant information held by committee Sc is duplicated towards two
additional committees Sc1 and Sc2 , one to broadcast complaints and one to answer them. With the help of
these two auxiliary committees, the recipient committeeSc′ is finally able to agree on a set of multiplication
proofs that succeeded.

To complete the evaluation of the gate, in the non-fluid setting parties reconstruct the shares xi and yi

of parties P c
i that failed in their multiplication proofs. By now, it should be clear that executing this last step

in the fluid-model means that, once again, the state achieved is lost. Fixing this last issue results in the need
for one last auxiliary committee, agreeing on what multiplication proofs succeeded and reconstructing the
values of cheaters to the committee that will finally hold the output state of the multiplication gate. More
details can be found in Section 4.6 and Section 4.7.

Finally, for output gates, parties in committee Sc can simply run the reconstruction procedure for the
2-level VSS to reconstruct the output value towards the appropriate clients.

2.2 Maximally-Fluid MPC with Computational Security

As a second contribution, we also provide a maximally-fluid MPC cryptographic protocol with guaranteed
output delivery based on (non-interactive) equivocal linearly homomorphic commitments (c.f. Definition
4), secure up to t < n/2 corruptions in each committee.

OurApproach. This protocol also follows the BGW-paradigm of emulating the computation on a gate-by-
gate basis, where clients use a VSS scheme to distribute their inputs to the parties, who will compute shares
of each of the wires, and finally reconstruct the output to the clients. We design similar sub-protocols as
in our protocol with perfect security, and many of these will use homomorphic commitments as a crucial
building block.

Comparison with YOSO. The basic blueprint of this protocol is inspired from the information-theoretic
YOSO MPC by Gentry et al. [GHK+21], that achieves security with guaranteed output delivery against
random corruptions of t < n/2 parties in every committee. As discussed previously, their construction
crucially relies on parties having access to secure channels to the future, which they are unable to in-
stantiate information-theoretically for t < n/2 corruptions. Our first step is to design a mechanism that
emulates these channels using homomorphic commitments. However, we note that simply combining this

12

with the rest of their construction does not give us our maximally-fluid MPC. This is because, their con-
struction works when the adversary is only allowed to make random corruptions in each committee. As
such, we must devise new techniques using homomorphic commitments that allow us to achieve security
even under arbitrary adversarial strategies. We now discuss our techniques in more detail.

Secure Channels to the Future. We implement secure channels to future committees similarly as in
the case with perfect security. However, since we consider a higher corruption threshold, t < n/2, we
cannot simply rely on plain error correction. Instead, parties will broadcast commitments to (coefficients
of) the polynomials used to share their values. Even more, every time a party wishes to re-share an
intermediate value, it will be crucial to re-use the commitment to the constant coefficient, thereby ensuring
that the proper value is being re-shared. In more detail, consider a sender P c

s ∈ Sc who wants to send a
message to a recipient in a future committee P c′

r ∈ Sc′ , with c′ > c + 2 (sending to nearer committees
is straightforward). The idea is that the sender P c

s first samples a degree-t polynomial f(x) such that
f(0) = m, broadcast commitments to all its coefficients, and send to P c+1

i message mi = f(i) along with
its opening information. Then, each party P c+1

i acts as the sender in the described protocol, with input
mi but using instead the publicly known commitment to mi as the commitment to the constant term of
the polynomial used to share mi. This is repeated until committee Sc′−1, who will send all the respective
values and opening information to P c′

r , who can perform reconstruction step-by-step.

Distributed Commitments. This primitive allows a dealer P c
d to commit to a value s towards a future

committee Sc′ , and later open the original value towards another further committee Sc′′ . If the dealer P c
d is

honest, the opened value is s, and no information about s is revealed before the opening phase. Moreover,
even if the dealer P c

d is corrupted, the commit phase determines a unique value s′, such that the opening
phase can only output s′ or ⊥. This primitive is also refered to as weak secret sharing in the literature
[GIKR01].

The idea is as follows. The sender P c
s ∈ Sc samples random degree-t polynomials f(x) and r(x),

such that f(0) = s, and broadcast public commitments com0, . . . , comt, where comk = Commit(fk, rk),
is a commitment to the k-th coefficient fk of the polynomial f(x), using randomness rk which is k-th
coefficient of the polynomial r(x). The sender then sends the evaluation points (s(i), r(i)) using send
future to party P c′

i . In order to reconstruct, the parties in committee Sc′ will broadcast these pairs, and
each party P c′′

i ∈ Sc′′ checks for each received pair whether it is consistent with the corresponding
commitment. If there are more than t pairs, interpolate a degree-t polynomial f ′(x) and output f ′(0).
Otherwise, output ⊥.

Remark 1. We can achieve a distributed commitment that allows to commit to the same value towards
separate committees Sc′

and Sc′′
, such that even if P c

d is corrupted, there exists a unique value s′ such that the
value that is opened by either committee is s′ or⊥. This is achieved by letting the dealer P c

d execute the above
protocol towards committees Sc′

and Sc′′
with polynomials f(x) and f ′(x) such that f(0) = s = f ′(0), but

using the same commitment com0 := Commit(f0, r0) for the constant coefficient.

Verifiable Secret Sharing. In order to achieve verifiable secret sharing, we design a protocol
VSS.ShareFuture that works as follows: the dealer P c

d , who holds input s, samples a uniform random
degree-t polynomial f(x) with f(0) = s, and (duplicate) commits to each coefficient fk, k ∈ [0, t], to-
wards committees Sc1 ,Sc′ .

This results in a matrix D = [comi,j]0≤i,j≤t of public commitments, where comi,j is a commitment to
the j-th coefficient of the polynomial used to share fi. Note that by linearity of the commitment scheme,
all parties implicitly hold commitments to each point f(i).

13

The dealer P c
d sends si = f(i) and the opening information for this value (which can also be computed

by linearity) to P c1
i , using the send to the future protocol. Each party P c1

i can check that the received
information is consistent with the published commitments, and broadcast a complaint if the check does
not succeed. If the check succeeds, P c1

i commits to si towards committee Sc′ . And to ensure that party
P c1

i commits to the value they received from P d
c , the party uses the commitment to the constant term that

is implicit from the published commitments in D. If a complaint was raised by P c1
i , parties in committee

Sc′ publicly open si (and if the opened value is ⊥, the dealer is disqualified).
The reconstruction is as follows: for each index i corresponding to a party that did not complain, parties

jointly reconstruct si. The final committee Sc′′ then uses any t + 1 reconstructed shares to interpolate the
secret.

Remark 2. Observe that by having both P c
d and parties in committee Sc1 duplicate distribute commitments

of si for all i ∈ [1, n] towards committees Sc′
and S c̃ for some c̃ ≥ c′, one guarantees that if P c

d is not
disqualified, then both Sc′

and S c̃ hold sharings of the same value.

2-Level Verifiable Secret Sharing. To simplify the description of the MPC protocol, it will be helpful
that each party holds as part of their state a Shamir share of each wire value. For that, we modify the VSS
as follows. The dealer P c

d uses the above duplicate VSS to distribute shares of fk for all k ∈ [0, t] towards
committees Sc1 and Sc′ , where f(x) is a uniform random degree-t polynomial with f(0) = s. Then, each
party in Sc1 (privately) reconstructs towards party P c′

i the value si = f(i). Notice that committee Sc′ also
holds sharings of all values f(j) for j ∈ [1, n] thanks to linearity of our VSS. This version of VSS can also
be duplicated similarly to the previous one.

Circuit Evaluation. Similarly to the protocol with perfect security, clients use our committing (cryp-
tographic) VSS protocol to distribute their inputs towards a future committee, and for each computation
gate, there is an initial committee Sc holding states resulting from a 2-level VSS of the input wire values
x and y, and in the end another future Sc′ for c′ ≥ c holds a 2-level VSS state of the value z for the output
wire. Addition gates are processed locally.

For multiplication gates, we adapt the well-known protocol of Cramer et al. [CDD+99]. Each party in
Sc holds, as part of their 2-level VSS states to x and y, actual Shamir-shares xi and yi of each value, and
computes a 2-level VSS for xi, yi (but using the known state as a sharing to the constant coefficient of the
used polynomial) and a fresh 2-level VSS for zi = xi · yi towards a future committee.

As before, parties carry out a multiplication proof. For this, each party P c
i ∈ Sc samples a random

value β and computes γ = xiβ, and uses duplicate 2-level VSS to share both values towards the next 3
committees Sc1 , Sc2 , Sc3 . In addition, each party also uses 2-level VSS to share a random value ri towards
Sc1 .

Parties in Sc1 compute r =
∑

j rj (for the indices j that were had a successful sharing) and publicly
reconstruct r. Committee Sc2 then reconstructs r′ = ry + β. And Sc3 reconstructs r′′ = r′x − rz −
γ. Finally, Sc′ simply declares the proof successful if and only if r′′ = 0. As shown in [CDD+99], the
probability that zi ̸= xi · yi when r′′ = 0 is 1/F (this only happens for one possible value of r, which is
chosen uniformly at random).

3 Preliminaries

In this section, we recall the model of Fluid MPC and the definition of linearly-homomorphic equivocal
commitements.

14

3.1 Fluid MPC: Model and Security

We start by recalling the security model of Fluid MPC. Some of the text in this section is taken verbatim
from [CGG+21].

Client-Server Model. We consider a network of m-clients and N -servers S and denote by (n⃗ =
(n1, . . . , nE), E) the partitioning of servers13 into E tuples (corresponding to epochs) where we assume
that each tuple has n parties (corresponding to the committee in that epoch), i.e. Sℓ ⊂ S such that ∀ℓ ∈ [E],
|Sℓ| = n.

Similar to the client-server setting in standard MPC, only the m clients have an input (and receive
output), computing a function f : X1 × · · · × Xm → Y1 × · · · × Ym, where for each i ∈ [m], Xi and
Yi are the input and output domains of the i-th client. We assume that a protocol in this model proceeds
in three stages: (1) in the input stage, the clients hand their inputs to the first committee of servers (2) in
the execution stage, only the servers participate in the computation of the function and (3) finally in the
output stage, the clients to participate to reconstruct and learn the outputs. Progression of the execution
stage takes place in epochs. We work in the maximally-fluid setting, where each epoch ℓ only comprises
of a single round of communication from committee Sℓ to Sℓ+1.14

Layered Circuits. For simplicity, in this work, we will work with a layered arithmetic circuit representation
of the function f . By layered circuits, we mean circuits that can be decomposed into well-defined layers
such that the output of gates on a layer ℓ are only used as input to the gates on layer ℓ + 1. As discussed
in [CGG+21], all arithmetic circuits can be transformed into such a circuit with polynomial overhead.

Corruption Model. The environment E can determine to corrupt a party, and on doing so, hands the
local state of the corrupted party to the adversary A. We consider the honest-majority setting, where we
restrict (A, E) to the setting where the adversaryA controls a minority of the clients as well as a minority
of servers in every committee in an epoch. For clients, we assume that the environment E specifies the list
of corrupted clients at the start of the protocol, i.e. we assume static corruption for the clients.

The servers perform the bulk of the computation, and their participation is dynamic. Following the
terminology from [CGG+21], we consider two types of corruption strategies: R-adaptive and NR-adaptive.
Here R and NR denote whether or not the servers are corrupted with retroactive effect or not. In particular,
if the corrupts take place with retroactive effect, the adversary is allowed limited information from prior
epochs. Specifically, when corrupting a server S ∈ Sℓ in epoch ℓ, the adversary learns private states of
the server in all prior epochs (if the server has been in a committee before). Therefore, the server S is
then assumed to have been (passively) corrupt in every epoch j < ℓ. In order to prevent the adversary
from arbitrarily learning information about prior epochs, the adversary is limited to corrupting servers in
epoch ℓ as long as corrupting a server S and its retroactive effect of considering S to be corrupted in all
prior epochs does not cross the designated corruption threshold in any epoch. We now formally define
R-adaptive and NR-adaptive.

Definition 1 (R-adaptive Adversary). We say that the (A, E) results in an R-adaptive adversary A if the
environment E can statically corrupt a set T of the clients (at the start of the protocol) and corrupt the servers
in an adaptive manner. Specifically, in epoch ℓ, the environment E can adaptively choose to corrupt a set of
servers T ℓ ⊂ [nℓ] from the set Sℓ, where T ℓ corresponds to a canonical mapping based on the ordering of
servers in Sℓ. On E corrupting the server, A learns its entire past state and can send messages on its behalf in

13We use servers and parties interchangeably throughout the paper.
14Therefore, we use the terms epoch and round interchangeably throughout this paper.

15

epoch ℓ. The set of servers that E can corrupt, and its corresponding retroactive effect, will be determined by
the corruption threshold τ specifying that ∀ℓ, |T ℓ| < τ · nℓ.

Definition 2 (NR-adaptive Adversary). We say that the (A, E) results in an NR-adaptive adversary A
if the environment E can statically corrupt a set T of the clients (at the start of the protocol) and corrupt
the servers in an adaptive manner with no retroactive effect. The corruption process is similar to the case of
R-adaptive adversaries, except that the environment E can corrupt any server in epoch ℓ as long as the number
of corrupted servers in epoch ℓ are within the corruption threshold. Any protocol that achieves security against
such an adversary necessarily requires either (a) erasure of state, or (b) disjoint committees.

Committee Selection. As discussed before, we assume that the committees are determined dynamically
such that committee for epoch ℓ + 1 is determined and known to everyone before Sℓ wants to send a
message to Sℓ+1 in epoch ℓ. We consider the functionality fcommittee to capture this setting. In an epoch
ℓ, if the environment E provides input nominate to a party at the start of the round, it relays this message
to fcommittee to indicate that it wants to be considered in the committee for epoch ℓ + 1. The functionality
computes the committee using the sampling function Sample, from the set of parties P that have been
“nominated.” The environment E is also allowed a separate input elect that specifies the cut-off point for
the functionality to compute the committee. The cut-off point corresponds to the start of round ℓ where the
parties in Sℓ are made aware of the committee Sℓ+1 via a broadcast from fcommittee. Similar to [CGG+21],
our protocol design is agnostic to this choice and only requires that the committee Sℓ knows committee
Sℓ+1 before they start sending them messages.

Hardcoded: Sampling function Sample : P 7→ P .

1. Set P := ∅

2. When party Pi sends input nominate, P := P ∪ {Pi}.

3. When the environment E sends input elect, compute P ′ ← Sample(P) and broadcast P ′ as the selected
committee.

Functionality fcommittee

Security Definition. We provide a definition of fluid MPC that corresponds to security with guaranteed
output delivery. The security of a protocol (with respect to a functionality f) is defined by comparing
the real-world execution of the protocol with an ideal-world evaluation of f by a trusted party. More
concretely, it is required that for every adversaryA, which attacks the real execution of the protocol, there
exist an adversary Sim, also referred to as a simulator in the ideal-world such that no environment E can
tell whether it is interacting with A and parties running the protocol or with Sim and parties interacting
with f . As mentioned earlier, the environment E (i) determines the inputs to the parties running the
protocol in each round; (ii) sees the outputs to the protocol; and (iii) interacts in an arbitrary manner with
the adversary A. In this context, one can view the environment E as an interactive distinguisher.

In the real execution of the (n⃗, E)-party protocol Π for computing f in the presence of fcommittee

proceeds first with the environment passing the inputs to all the clients, who then pre-process their inputs
and hand it off to the servers in S1. The protocol then proceeds in epochs as described earlier in the
presence of an adversary A and environment E . The environment E at the start of the protocol chooses a
subset of clients T ⊂ [m] to corrupt and hands their local states to A . As discussed, the corruption of the

16

clients is static, and thus fixed for the duration of the protocol. The honest parties follow the instructions of
π. Depending on whetherA is R-adaptive or NR-adaptive, E proceeds with corrupting servers accordingly
and handing over their states to A who then sends messages on their behalf.

The execution of the above protocol defines REALΠ,A,T,E,fcommittee(z), a random variable whose value
is determined by the coin tosses of the adversary and the honest parties. This random variable contains
(a) the output of the adversary (which may be an arbitrary function of its view); (b) the outputs of the
uncorrupted clients; and (c) list of all the corrupted servers {T ℓ}ℓ∈[E].

The ideal world execution is defined similarly to prior works. We formally define the ideal execu-
tion for the case of retroactive adaptive security, and the analogous definition for non-retroactive adaptive
security can be obtained by appropriate modifications. Roughly, in the ideal world execution, the partici-
pants have access to a trusted party who computes the desired functionality f . The participants send their
inputs to this trusted party who computes the function and returns the output to the participants.

More formally, an ideal world execution for a function f in the presence of fcommittee with adversary
Sim proceeds as follows:

• Clients send inputs to the trusted party: The clients send their inputs to the trusted party, and we let
x′

i denote the value sent by client Ci. The adversary Sim sends inputs on behalf of the corrupted clients.

• Corruption Phase of servers: The trusted party initializes ℓ = 1. Until Sim indicates the end of the
current phase (see below), the following steps are executed:

1. Trusted party sends ℓ to Sim and initializes an append-only list Corruptℓ to be ∅.
2. Sim then sends pairs of the form (j, i) where j denotes epoch number and i denotes the index of

the corrupted server in epoch j ≤ ℓ. Upon receiving this, the trusted party appends i to the list
Corruptj . This step can be repeated multiple times.

3. Sim sends continue to the trusted party, and the trusted party increments ℓ by 1.

• Trusted party sends output to all clients: The trusted party computes f(x′
1, . . . , x′

m) = (y1, . . . , ym)
and sends {yi}i∈T to the adversary Sim and all uncorrupted clients.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values obtained
from the trusted party.

Sim also interacts with the environment E in an identical manner to the real execution interaction
between E and A. In particular this means, Sim cannot rewind E or look at its internal state. The above
ideal execution defines a random variable IDEALΠ,Sim,T,E,fcommittee(z) whose value is determined by the coin
tosses of the adversary and the honest players. This random variable containing the (a) output of the ideal
adversary Sim; (b) output of the honest parties after an ideal execution with the trusted party computing
f where Sim has control over the adversary’s input to f ; and (c) the lists {Corruptℓ}ℓ of corrupted servers
output by the trusted party. If Sim sends abort in the corruption phase of the server, the trusted party
outputs the lists that have been updated until the point the abort message was received from Sim.

Having described the real and the ideal worlds, we now define security.

Definition 3. Let f : X1 × · · · × Xm → Y1 × · · · × Ym be a functionality and let Π be a fluid
MPC protocol for computing f with m clients, N servers and E epochs. We say that Π achieves τ -
perfect/statistical/computational retroactive adaptive security (resp. non-retroactive adaptive security) with
guaranteed output delivery, if for every probabilistic adversaryA corrupting up to τ -fraction of parties in ev-
ery committee in the real world, there exists a probabilistic simulator Sim in the ideal world such that for every

17

probabilistic environment E if A is R-adaptive (resp. NR-adaptive) controlling a subset of servers T ℓ ⊆ Sℓ,
∀ℓ ∈ [E] s.t. |T ℓ| < τ · nℓ and less than τ ·m clients, it holds that for all auxiliary input z ∈ {0, 1}∗

IDEALf,Sim,T,E,fcommittee(z) ≈ REALΠ,A,T,E,fcommittee(z)

where ≈ denotes identically distributed/statistically close/computationally close.

3.2 Linearly-Homomorphic Equivocal Commitments

We state the definition of non-interactive linearly-homomorphic equivocal commitments.

Definition 4. We define a non-interactive commitment scheme with message spaceM, randomness
space R, and commitment space C to be a 4-tuple of PPT algorithms (Setup, Commit, Open, Equiv) such
that:

- (pp, τ) ← Setup(1κ): The setup algorithm takes as input the security parameter κ and produces a set of
public parameters pp and a trapdoor τ .

- com ← Commit(pp, m, r): The commit algorithm takes as input the public parameters pp, a message
m ∈M, and randomness r ∈ R and produces a commitment com ∈ C;

- b ← Open(pp, com, m, r): The open algorithm takes as input the public parameters pp, a commitment
com ∈ C, a message m ∈M, and randomness r ∈ R and outputs a bit b ∈ {0, 1};

- r ← Equiv(pp, τ, com, m): The equivocation algorithm takes as input the public parameters pp, a trapdoor
τ , a commitment com ∈ C, and a message m ∈M and outputs randomness r ∈ R;

We say that such a commitment scheme is:

• Perfectly Hiding if for all m′ ̸= m and for (pp, τ)← Setup(1κ) the distributions (Commit(pp, m, r), τ)
and (Commit(pp, m′, r), τ) are equal, where the distribution is over the randomness r;

• Computationally Binding if any PPT adversary A that does not know τ has a negligible probability (in
the security parameter κ) of outputting (m, r) and (m′, r′) such that m ̸= m′ and Commit(pp, m, r) =
Commit(pp, m′, r′);

• Linearly Homomorphic if there exist a binary function + : C2 → C and an element 0 ∈ C such that
(C, +, 0) is an abelian group, a binary function + :M2 →M and an element 0 ∈M such that (M, +, 0)
is an abelian group, and a binary function + : R2 → R and an element 0 ∈ R such (R, +, 0) is an
abelian group, and for all m, m′ ∈ M and all r, r′ ∈ R it holds that Commit(pp, m + m′, r + r′) =
Commit(pp, m, r) + Commit(pp, m′, r′) for all (pp, τ)← Setup(1κ);

• Equivocal if Open(pp, com, m, Equiv(pp, τ, com, m)) = 1 for all com ∈ C, m ∈ M, and (pp, κ) ←
Setup(1κ).

In our setting we will considerM = R = F with the group structure induced by the addition operation. We
exploit the Z-module structure induced by the addition on C throughout the paper and employ the notation
com · n for some n ∈ N to mean the addition com + · · ·+ com with itself n-many times.

Commitments with these property can be instantiated using a variety of assumptions such as discrete-
log (like Pedersen commitments [Ped92]) or lattice based assumptions (like LWE or SIS [GVW15]). For
simplicity of notation, we make the public parameters pp implicit in the Commit function.

18

4 Perfectly-Secure Maximally-Fluid MPC with Guaranteed Output De-
livery

In this section, we present our first and main protocol which is a perfectly secure maximally-fluid MPC
that achieves guaranteed output delivery against an unbounded adversary who corrupts up to 1/3rd of the
parties in each committee. We assume that each committee in this protocol consists of n-servers. We use
the terms server and party interchangeably throughout this section. As discussed in Section 2.1, towards
designing our main protocol, we first need to design several other subprotocols.

For simplicity, in each of the lemmas and theorems in this section we simply use the term “adversary”,
without specifying if the adversary is R-adaptive or NR-adaptive (c.f. Definitions 1 and 2). All of our
formal proofs for these lemmas and theorems implicitly assumes an NR-adaptive adversary — this is only
simplicity of presentation. At the end of this section, we briefly discuss how all of these subprotocols and
our main protocol are also secure against an R-adaptive adversary.

4.1 Secure Channels to Future Committees

We begin by presenting a maximally-fluid subprotocol called SendFuture, that allows a party P c
s ∈ Sc

(called the sender party) in committee Sc to securely send a message m to another party P c′
r ∈ Sc′ (called

the recipient party) in some future committee Sc′ . In the fluid model, since the identity of the parties in
future committees are not known in advance, intermediate committees must help to pass this message on.
However, this must be done in a manner which ensures that that an adversary controlling at most t < n/3
servers in each intermediate committee, can neither tamper with, nor learn any information about, the
message m. One can think of this protocol as constructing a one-directional secure channel between
parties in two non-consecutive committees using one-directional secure channels between all parties in
consecutive committees. We formalize the properties of this protocol in Lemmas 1 and 2.

Party P c
s is the sender, with input m, and party P c′

r , for some c′ > c is the receiver. For all i ∈ [1, n], i ̸= s party
P c

i initializes mi := ⊥, while party P c
s initializes mi := ma.

For all committees k ∈ [c, c′], each party P k
i does the following:

– If k ≥ c + 1, let mi := (m1i, . . . , mni), where mji denotes the message received from P k−1
j ;

– If k = c′ − 1, send mi to P c′

r ;

– If k ̸= c′− 1, for each entry y of mi, sample a uniform random polynomial fy(x) such that deg fy(x) = t and
fy(0) = y. Send (fy(j))y∈mi

to P k+1
j for all j ∈ [1, n];

Upon receiving messages mi from P c′−1
i for all i ∈ [1, n], party P c′

r performs Reed-Solomon decoding layer-by-
layer to recover a value m′, where m′ = ⊥ if the last reconstruction fails.b

aFor each party P c+ℓ
i then mi ∈ Fℓ+1.

bTo illustrate this, assume c′ = c + 3. Party P c′
r receives matrices mir = (yijk)j,k∈[1,n]. For all i ∈ [1, n], they first

perform, for all j ∈ [1, n] Reed-Solomon decoding on vector (yij1, . . . , yijn) to recover value yij . Then, they repeat the
operation on vector (yi1, . . . , yin) to recover value yi, and finally, they use Reed-Solomon decoding one last time on vector
(y1, . . . , yn) to recover a value m′ (possibly ⊥).

Protocol SendFuture(m)

Lemma 1 (Robustness in SendFuture). Let P c
s be an honest party with input m. For any unbounded adver-

19

saryA, who corrupts t < n/3 parties in each committee Sk for k ∈ [c + 1, c′ − 1] in SendFuture, the output
of P c′

r is m′ = m.

Proof. Assuming the adversary corrupts t < n/3 parties in each committee, there are at least 2t+1 honest
parties in each committee. P c

s uses a degree t polynomial to secret share m towards committee Sc+1. It
is easy to see that as long as at least 2t + 1 honest parties in committee Sc+1, honestly secret share the
shares received from P c

s , it is possible to use Reed-Solomon decoding on their shares of shares to correctly
decode the m. Similarly, the parties in committee Sc+1 further secret share the share that they received
from P c

s towards the parties in committee Sc+2. Now, given these “shares of shares” received by the honest
parties in Sc+2, it is possible to reconstruct the shares of the honest parties in Sc+1 using Reed-Solomon
decoding. And as argued earlier, given these 2t + 1 shares, it is possible to recover m.

This same recursive argument can be extended to any number of intermediate committees. Therefore,
as long as 2t+1 honest parties in each committee compute the shares of their shares honestly, the recipient
can always reconstruct the output using Reed-Solomon decoding.

Lemma 2 (Privacy in SendFuture). Let P c
s and P c′

r be honest parties. Then the view of an unbounded
adversary who corrupts t < n/3 parties in each committee Sk for k ∈ [c + 1, c′− 1] is identically distributed
in executions SendFuture(m) and SendFuture(m′), for any m ̸= m′.

Proof. For all polynomials sampled by all the honest parties (including the sender P c
s and honest parties

in the intermediate committees) in SendFuture, the adversary only receives t evaluations of these polyno-
mials. However, since each of these are degree-t polynomials, t evaluations do not reveal anything about
the secret and hence it is easy to see that the view of the adversary is independent of the message.

4.2 Shamir Sharing to Future Committees

Building on our subprotocol SendFuture from the previous section, we now present a maximally-fluid
protocol called ShareFuture that allows a party P c

d ∈ Sc (called the dealer) in committee c to secret share a
value s towards the parties in committee Sc′ . Similar to SendFuture, we will take the help of intermediate
committees to accomplish this task. However, for security this must be done in such a way that, if the
dealer is honest, an adversary controlling at most t < n/3 parties in each committee Sk for k ∈ [c, c′]
does not learn any information about the secret s and they should not be able to tamper with the shares
of honest parties in Sc′ . Moreover, we want that if the dealer was honest, then the shares received by the
parties in Sc′ must be linearly homomorphic. We formalize these properties in Lemmas 3, 4, 5.

The dealer P c
d ∈ Sc, who holds input s, wants to secret share s with servers in committee Sc′ , and does the

following:

– Sample a uniform random polynomial f(x) of degree at most t such that f(0) = s;

– For all j ∈ [1, n] do SendFuture(f(j)) towards party P c′

j .

Protocol ShareFuture(s)→ (s1, . . . , sn)

– Committee c′: Each party P c′

i broadcast their share si
a;

Protocol RecFuture(s1, . . . , sn)→ s

20

– Committee c′′: Each party P c′′

i performs Reed-Solomon decoding on the vector (s1, . . . , sn) to recover s. If
this fails, output ⊥.
aBy replacing broadcast with an execution of SendFuture(si) towards party P c′′

j we can obtain a private version of
RecFuture.

Lemma 3 (Robustness of ShareFuture). Let P c
d be an honest party with input s. For any unbounded adver-

saryA, who corrupts t < n/3 parties in each committee Sk for k ∈ [c+1, c′] in ShareFuture, then the output
of RecFuture is s.

Proof. The dealer in ShareFuture simply uses an invocation of SendFuture for each share. From Lemma
1 (i.e., robustness of SendFuture), we know that the each party in committee Sc′ will receive the correct
share. Now as long as all the honest parties in this committee (i.e. ≥ 2t + 1 parties) broadcast their correct
shares, it is possible to reconstruct the correct secret s.

Lemma 4 (Linearity of ShareFuture). Assume that committee Sc′
hold states ShareFuture(x) and

ShareFuture(y) relative to honest (possibly distinct) dealers P c1
d and P c2

d′ . For all linear functions L : F2 → F
it holds that15 RecFuture

(
L(x1, y1), . . . ,L(xn, yn)

)
= L(x, y).

Proof. Since P c1
d and P c2

d′ are honest, there exist polynomials fx(x) and fy(x) of degree at most t and
such that fx(0) = x and fy(0) = y. From Lemma 1 we know that, for each honest P c′

i , it holds that
xi = fx(i) and yi = fy(i). Therefore, at least n − t ≥ 2t + 1 shares L(xi, yi) will lie on polynomial
fL(x,y) := L(fx(x), fy(x)) and the output of RecFuture will be L(x, y) = fL(x,y)(0).

Lemma 5 (Privacy of ShareFuture). Let P c
d be an honest party. Then the view of an unbounded adversary

who corrupts t < n/3 parties in each committee Sk for k ∈ [c + 1, c′] is identically distributed until the end
of executions ShareFuture(s) and ShareFuture(s′), for any s ̸= s′.

Proof. Privacy of the shares sent by the dealer P c
d to the honest parties in committee c′ follows from Lemma

2 (i.e., privacy of SendFuture). As a result, the adversary only sees t evaluations of the polynomial f used
by the dealer P c

d to secret share s. Since f is a degree t polynomial, these t evaluations keep s hidden and
the view of the adversary remains independent of s.

4.3 Verifiable Secret Sharing

Our subprotocol ShareFuture from the previous section does not provide any guarantee when the dealer
is dishonest. To remedy this, in this section, we design a maximally-fluid verifiable secret sharing protocol
VSS := (VSS.ShareFuture, VSS.RecFuture). It guarantees that even if the dealer P c

d ∈ Sc is corrupted,
after the sharing phase of the protocol terminates, a designated committee Sc′ for some c′ ≥ c + 4 holds
a state that uniquely determines a value that can be reconstructed during the reconstruction phase. We
formalize the main properties of this protocol in Lemmas 8, 9, 10,11. This is the main technical tool in our
maximally-fluid MPC protocol.

15This generalizes easily to the case of n-sharings and linear functions Fn → F.

21

– Commitee c:

- The dealer P c
d ∈ Sc with input s samples a uniform random bivariate polynomial F (x, y) =∑t

k,ℓ=0 fkℓx
kyℓ of degree at most t in each variable such that F (0, 0) = s, and for each k, ℓ ∈ [0, t] it

invokes ShareFuture(fkℓ) (independently) towards committees Sq for q ∈ {c1, c2, c3}.

- For all i ∈ [1, n] party P c
i samples a uniform random polynomial f (i)(y) =

∑t
k=0 f

(i)
k yk of degree at

most t, and for all k ∈ [0, t] invokes ShareFuture(f (i)
k) (independently) towards committees Sq for q ∈

{c1, c2, c3, c′}a.

• Commitee c1: Let aij := F (i, j) + f (i)(j); bij := F (i, j) + f (j)(i); cij := f (i)(j) − f (j)(i). For each
i, j ∈ [1, n] each party computes shares of aij , bij , and cij as follows:

– [aij] =
∑t

k,ℓ=0 [fkℓ] ikjℓ +
∑t

k=0

[
f

(i)
k

]
jk

– [bij] =
∑t

k,ℓ=0 [fkℓ] ikjℓ +
∑t

k=0

[
f

(j)
k

]
ik

– [cij] =
∑t

k=0

[
f

(i)
k

]
jk −

∑t
k=0

[
f

(j)
k

]
ik

and inputs them to respective 3n2 instances of RecFuture.

• Commitee c2: Each party does the following:

- Obtain as output of RecFuture values aij , bij , cij . If any instance outputs ⊥, set the output to a default
valueb;

- If for some fixed i ∈ [1, n] the values {aij}j∈[1,n] ({bji}j∈[1,n]) do not lie on a polynomial of degree at most
t, mark Pi as unhappyc;

- If aij − bij ̸= cij for some i, j, input the following shares[
f (i)(j)

]
=

t∑
k=0

[
f

(i)
k

]
jk;

[
f (j)(i)

]
=

t∑
k=0

[
f

(j)
k

]
ik; [F (i, j)] =

t∑
k,ℓ=0

[fkℓ] ikjℓ

to respective instances of RecFuture. Let InconsPairs denote the set of such (i, j) pairs.

– Committee c3: For each (i, j) ∈ InconsPairs, each party does the following:

- Obtain value f (i)(j) (respectively f (j)(i)) as output of RecFuture, and if the output is ⊥, mark Pi (respec-
tively Pj) as unhappy and set the output to a default value;

- Obtain value F (i, j) as output of RecFuture, and if the output is ⊥ disqualify the dealer;
- Check if aij − f (i)(j) = F (i, j) (respectively bij − f (j)(i) = F (i, j)). If not, mark Pi (respectively Pj) as
unhappy;

- Let EarlyUnhappy denote the set of indices of parties marked as unhappy so far. For all i ∈ EarlyUnhappy
input shares of [F (i, j)], [F (j, i)], and [f (j)(i)] for all j ∈ [1, n] (respectively shares of [F (j, i)], [F (i, j)],
and [f (i)(j)] for all i ∈ [1, n]) to respective instances of RecFuture;

- If |EarlyUnhappy| > t disqualify the dealer.

– Committee c′: For each i ∈ EarlyUnhappy, each party does the following:

Protocol VSS.ShareFuture(s)→ (s1, . . . , sn)

22

- Obtain values F (i, j), F (j, i) for all j ∈ [1, n] as outputs of respective instances of RecFuture. If any output
is ⊥, or if the values do not define polynomials of degree at most t, disqualify the dealer.

- Obtain values f (j)(i) for all j ∈ [1, n] as outputs from respective instances of RecFuture. If any output is
⊥, mark Pj as unhappy.

- Check that aji − f (j)(i) = F (j, i), and bij − f (j)(i) = F (i, j). If not, mark Pj as unhappy.
- Let Happy denote the set of indices of happy (not unhappy) parties. If |Happy| < n−t disqualify the dealer.

aWe denote independent sharings of the same value a resulting from different invocations of ShareFuture (a) by [a] to
ease notation. As long as c1 < c2 < c3 < c′ the committees need not be consecutive.

bAs all information used for reconstruction is public, parties are in agreement on which reconstructions fail.
cThis should be understood as party P c

i ∈ Sc having misbehaved, or the dealer being corrupted.

• Committee c′: For each i /∈ EarlyUnhappy, each party inputs shares
[
f

(i)
k

]
for all k ∈ [0, t] to respective

instances of RecFuturea.

• Committee c′′ ≥ c′: Each party does the following:

- For all i /∈ EarlyUnhappy, obtain the coefficients of f (i)(x) from respective instances of RecFuture. If no
output is ⊥, compute F ′(i, j) = aij − f (i)(j) and F ′(j, i) = bji − f (i)(j) for all j ∈ [1, n]. Check that
these unblinded values define polynomials h(i)(y) and g(i)(x) of degree at most t.b. Let Consistent denote
the set of indices of parties for which all these checks succeed;

- For all i ∈ EarlyUnhappy, consider the polynomials g(i)(x), h(i)(y) identified by the values broadcast by
committee c3;

- Construct an undirected graph G: vertices are all indices in Consistent ∪ EarlyUnhappy, and there is an
edge between i and j if and only if g(i)(j) = h(j)(i) and g(j)(i) = h(i)(j). Let G′ be a (n− t)-clique in G.

- Use any t + 1 polynomials corresponding to indices in G′ to interpolate a bivariate polynomial F ′(x, y) of
degree at most t in each variable. Output F ′(0, 0).

aIf we replace RecFuture with its private version, we obtain a private version of VSS.RecFuture protocol.
bIf both the dealer and Pi are honest, then g(i)(x) = F (x, i) and h(i)(y) = F (i, y).

Protocol VSS.RecFuture(s1, . . . , sn)→ s′

We start by proving some useful lemmas for our perfectly secure VSS protocol.

Lemma 6. Assume that at most t < n/3 parties are corrupted in each committee Sk for k ∈ [c, c′]. If both
the dealer P c

d and party P c
i are honest, at the end of protocol VSS.ShareFuture, then i ∈ Happy so that

|Happy| ≥ n− t.

Proof. Assume that P c
d is honest. Then, they compute valid sharings of each coefficient of F and execute

protocols ShareFuture correctly. This means honest party’s shares (n − t ≥ 2t + 1) of each coefficient
of F lie on a polynomial of degree at most t (in each Sk for k{c′, c1, c2, c3}). Since P c

i is honest, they
compute valid sharings of each coefficient of f (i)(x) and execute protocols ShareFuture correctly. This
means honest party’s shares of each coefficient of f (i)(x) lie on a polynomial of degree at most t in each
Sk for k ∈ {c1, c2, c3, c′}. Therefore, each honest party’s shares of aij and bij lie on polynomials of degree
at most t, and also the values aij and bij for j ∈ [1, n] lie on the sum of polynomials of degree at most
t, so that party Pi is not marked as unhappy by committee c2. If aij − bij = cij , then Pi is not marked

23

as unhappy by committee c3. Assume that aij − bij ̸= cij . Then, since both P c
d and P c

i are honest, all
executions of ShareFuture have been executed with the same input and correctly, and it holds that in
committee c3 shares of f (i)(j) broadcast by honest parties lie on polynomial of degree at most t, and also
aij−f (i)(j) = F (i, j) and bji−f (j)(i) = F (j, i), so that party Pi is not marked as unhappy by committee
c3. To conclude the proof, notice that, since both P c

d and P c
i are honest, by the same argument about the

correctness of the ShareFuture protocols used above, in committee c′ for all j ∈ EarlyUnhappy it holds
that aij − f (i)(j) = F (i, j) and bij − f (j)(i) = F (j, i) so that at the end of the VSS.ShareFuture protocol
party Pi is not marked as unhappy.

Lemma 7. Assume that at most t < n/3 parties are corrupted in each committee Sk for k ∈ [c, c′]. If the
dealer P c

d is honest, then they are not disqualified at the end of protocol VSS.ShareFuture.

Proof. Because P c
d is honest, Lemma 6 guarantees that in committee c′ it holds that |Happy| ≥ n − t.

By inspection of the protocol, the cardinality of Happy can only decrease during the execution, so that
at all points in the protocol |Happy| ≥ n − t, and the dealer is not disqualified because of the checks on
the number of unhappy parties by committees c3 and c′. Again, by inspection of the protocol, the only
other possibility for the dealer to be disqualified is if reconstruction of values F (i, j) for some i, j ∈ [1, n]
fails in committees c3, c′. However, since P c

d is honest, they compute valid sharings of the coefficients of
F and execute protocols ShareFuture correctly, which results in each honest party in committees c2, c3
holding shares on polynomials of degree at most t. Therefore, at least n − t of the braodcast shares for
each value F (i, j) by committees c2, c3 lie on a linear combination of polynomials of degree at most t, and
reconstructions by committees c3, c′ succeeds. This concludes the proof.

Lemma 8 (Commitment of VSS). Assume that at most t < n/3 parties are corrupted in each committee Sk

for k ∈ [c, c′]. If the dealer P c
d is not disqualified and P c

i and P c
j are honest, the polynomials associated with

them at the end of protocol VSS.RecFuture are consistent. In particular, After VSS.ShareFuture terminates,
the state of honest parties uniquely determines the output of VSS.RecFuture.

Proof. At the end of protocol VSS.ShareFuture, for each honest P c
i the index i is in one of the three disjoint

sets Happy, EarlyUnhappy, or LateUnhappy := [1, n]\(Happy∪EarlyUnhappy). We distinguish two cases:

1. If i ∈ EarlyUnhappy and j ∈ Happy, then this means that

h(j)(i) := aji − f (j)(i) = F (j, i) =: h(i)(j)

g(j)(i) := bij − f (j)(i) = F (i, j) =: h(i)(j),

so that they will be associated to consistent polynomial at the end of protocol VSS.RecFuture.

2. If i, j ∈ Happy ∪ LateUnhappy, then

g(i)(j) := aij − f (i)(j) = cij + bij − f (i)(j) = bij − f (j)(i) =: h(j)(i)

g(j)(i) := aji − f (j)(i) = cji + bji − f (j)(i) = bji − f (i)(j) =: h(i)(j)

because the consistency checks carried out by committee c3 succeeded, so that they will be associated
to consistent polynomials at the end of protocol VSS.RecFuture.

24

There are at least |Happy| − t ≥ t + 1 indices in Happy at the end of the sharing phase. The associated
consistent polynomials define a unique polynomial F ′(x, y) of degree at most t in each variable. This
proves that the polynomials associated to the indices of honest parties in Sc all lie on the polynomial
F ′(x, y). At reconstruction time, G′ contains at least n − 2t ≥ t + 1 indices corresponding to honest
parties in Sc, and the associated polynomials uniquely determine F ′(x, y), so that the output will be
F ′(0, 0) = s′.

Lemma 9 (Robustness of VSS). Assume that at most t < n/3 parties are corrupted in each committee Sk

for k ∈ [c, c′] in VSS.ShareFuture. If the dealer P c
d is honest and has input s, then the output of protocol

VSS.RecFuture is s.

Proof. Follows easily from Lemma 8.

Lemma 10 (Linearity of VSS). Assume that the dealer P c
d is not disqualified in two executions

VSS.ShareFuture(x) and VSS.ShareFuture(y) towards committee Sc′
. Then, committee Sc′

holds sharings
of L(x, y) for all linear functions L : F2 → F, i.e. for all L there exists function L̄ (that can be computed
efficiently from L) such that VSS.RecFuture

(
L̄(x1, y1), . . . , L̄(xn, yn)

)
= L(x, y).

Proof. Each P c′
i simply applies L individually to all public values and all private shares resulting from

executions VSS.ShareFuture(x) and VSS.ShareFuture(y). The claim easily follows.

Lemma 11 (Privacy of VSS.ShareFuture). If P c
d is honest, then the view of an unbounded adversary who

corrupts up to t < n/3 parties in each committee Sk for k ∈ [c, c′] is identically distributed until the end of
executions VSS.ShareFuture(s) and VSS.ShareFuture(s′), for any s ̸= s′.

Proof. From committeeSc the adversary learns up to t polynomials f (i) corresponding to corrupted parties.
From committee Sc1 , thanks to Lemma 5, the adversary only learns t shares of each coefficient of f (i)(x)
for all honest parties P c

i , as well as up to t shares of each coefficient of the polynomial F (x, y). Since
these polynomials are of degree at most t, the view of the adversary is independent of s so far. From
committee Sc2 the adversary learns fresh shares of all the coefficients of the same polynomials (which are
still statistically independent from s by the same argument as above), and also, thanks to the information
collected from committee Sc, evaluations F (i, j) for all couples of indices (i, j) such that P c

i and P c
j are

corrupted, as well as, for all i ∈ [1, n], evaluations f (i)(j) for all j such that P c
j is corrupted. Since there

are at most t corrupted parties in Sc, the adversary view is still independent of s. All values learned from
the adversary from this point on, thanks to Lemma 5, are of two types 1) values already known to the
adversary, or 2) fresh sharings of coefficients to polynomials F and f (i) for all i ∈ [1, n]. Indeed, because
the dealer is honest, apart from the outputs of protocols ShareFuture, from committee Sc3 the adversary
only learns f (i)(j), f (j)(i), and F (i, j) if aij−bij ̸= cij if either P c

i or P c
j are dishonest. Assume that P c

i is
honest in this scenario. Then the adversary can compute f (i)(j) from already known values as cij−f (j)(i),
and F (i, j) as bji − f (j)(i). An identical argument applies to values learned by committee Sc4 . The claim
follows.

4.4 Same Value, Many Sharings

Our protocol VSS.ShareFuture from the previous section can be used by a dealer P c
d ∈ Sc to VSS a secret

towards any committee Sc′ , as long as c′ ≥ c + 4. However, for our main MPC protocol, we need that the
dealer P c

d should be able to produce different sharings of the same value s towards two distinct committees

25

Sc′ , Sc′′ . If P c
d is honest, this can be achieved easily using two independent executions of VSS.ShareFuture

towards Sc′ and Sc′′ . However, we want to enforce that even if P c
d is corrupted, committees Sc′ and Sc′′

agree on whether the sharing succeeded, and the output of the protocol VSS.RecFuture will be the same
regardless of which of the two committees run it.

This can be achieved by a minor modification to protocol VSS.ShareFuture. Suppose P c
d ∈ Sc wants

to produce such duplicated sharings of s towards committees Sc′ and Sc′′ (we can assume that c′′ > c′).
They invoke a single instance of protocol VSS.ShareFuture with a small modification:

• In the first step when each party P c
i in committee c samples a blinding polynomial f (i)(x) and

uses ShareFuture
(
f (i)(x)

)
to share it towards committees Sk for k ∈ {c1, c2, c3, c′}, it now also

additionally shares it towards committee Sc′′ .

• The rest of the protocol proceeds as described in the previous section. Except that in the last step,
when committee c′ uses the shares of blinding polynomials received from committee c and the pub-
licly broadcast information to locally determine their final shares, committee c′′ also does the same.
Since P c

d can only get disqualified based on broadcast information, committees Sc′ and Sc′′ agree on
whether the protocol succeeded or not. And since both these committees received different sharings
of the same blinding polynomials, the resulting sharings of the secret will be different. All other
properties follow identically to the analysis in Section 4.3.

4.5 2-Level Verifiable Secret Sharing

The sharing state of each party P c′
i after protocol VSS.ShareFuture consists of many values as well as

public information. In this section, we describe protocol 2VSS, that has two main goals:

1. Simplify the sharing state for a value s: each party P c′
i ∈ Sk will hold value si := fs(i) where fs(x)

is a polynomial of degree at most t such that fs(0) = s (this is essentially to get a simplified sharing
from a somewhat ugly and long sharing state at the end of VSS.ShareFuture);

2. Strengthen the sharing state for a value s: parties will hold sharings (meaning the state after protocol
VSS.ShareFuture) of each coefficient of the polynomial fs(x). By the homomorphic properties of
VSS.ShareFuture, this results in each P c′

i knowing a share of fs(j) for all j ∈ [1, n].

We formalize these properties in Lemmas 12, 13, 14, 15.

Protocol Overview. The dealer P c
d chooses a polynomial (the degree can be arbitrary, this is important for

our use in Section 4.6) such that f(0) = s, and duplicates VSS.ShareFuture(fi) towards committees Sc1 ,
Sc′ for each coefficient fi of f(x) for i ∈ [0, t]16. Then, each party in committee c1 locally computes a
share of [f(i)]17 as

∑t
k=0[fk]ik, and participates in protocol VSS.RecFuture(f(i)) privately towards party

P c′
i . We will refer to the state achieved by this protocol as (t)-2VSS.ShareFuture(s), where t = deg f(x).

Similar to the previous section, we need duplicate sharings 2VSS.ShareFuture of the same value s
towards distinct committees Sc′

,Sc′′ , such that that even if the dealer P c
d is dishonest, both committees

agree on whether the sharing procedure succeeded. To achieve this, the dealer P c
d chooses polynomials

f(x) and g(x) of the same degree such that f(0) = s = f ′(0). Then, they duplicate VSS.ShareFuture(f0 =
16It must holds that at least c1 ≥ c + 4.
17We overload the notation [a] to also denote the state resulting from protocol VSS.ShareFuture(a) and 2VSS.ShareFuture(a).

The meaning is always clear from the context.

26

g0) towards committees Sc1 ,Sc′ , and Sc′′ as described in Section 4.4. They duplicate sharings of all non-
constant coefficients of f(x) towards committees Sc1 and Sc′ and duplicate sharings of each non-constant
coefficient of g(x) towards committees Sc1 and Sc′′ . We formally describe the (non-duplicated version of
the) protocol below.

– Committee c: The dealer P c
d holding input s chooses a polynomial f(x) =

∑ℓ
k=0 fkxk such that f(0) = s.

For all k ∈ [0, ℓ] they duplicate VSS.ShareFuture(fk) towards committees Sc1 and Sc′ .

• Committee c1: If the dealer is disqualified in any invocation of VSS.ShareFuture, disqualify the dealer.
Otherwise, each P c1

i computes the following for all j ∈ [1, n]: [f(j)] =
∑ℓ

k=0[fk]jk and participates in
VSS.RecFuture(f(j)) towards party P c′

j .

– Committee c′: If the dealer is disqualified in any invocation of VSS.ShareFuture, disqualify the dealer.

Protocol 2VSS.ShareFuture(s)→ (s1, . . . , sn)

Each Party P c′

i participates in VSS.RecFuture(f0) towards committee Sc′′ .

Protocol 2VSS.RecFuture(s1, . . . , sn)→ s

Lemma 12 (Linearity of 2VSS). Assume that the dealer P c
d is not disqualified in two executions

2VSS.ShareFuture(x) and 2VSS.ShareFuture(y) towards committee Sc′
. Then, committee Sc′

holds shar-
ings of L(x, y) for all linear functions L : F2 → F, i.e. for all L there exists function L̄ (that can be computed
efficiently from L) such that 2VSS.RecFuture

(
L̄(x1, y1), . . . , L̄(xn, yn)

)
= L(x, y).

Proof. Follows easily from Lemma 8.

Lemma 13 (Commitment of 2VSS). Assume that up to t < n/3 parties are corrupted in each committee
Sk for k ∈ [c, c′]. If the dealer P c

d is not disqualified, then after 2VSS.ShareFuture terminates there exists a
degree-t polynomial fs(x), such that each honest party P c′

i knows value fs(i) and also an honest VSS sharing
(in the sense of the state resulting from protocol VSS.ShareFuture) of each coefficient of the polynomial fs(x).

Proof. The dealer simply uses duplicate VSS.ShareFuture to duplicate (see Section 4.4) shares of each
of the t + 1 coefficients of polynomial fs(x) to committees c1 and c′. From commitment property of
VSS.ShareFuture (see Lemma 8), it follows that if the dealer is not disqualified then committees c1 and c′

have consistent shares of the same set of t + 1 coefficients. Now as long as the honest parties in commit-
tee c1 computes shares of evaluations of the polynomial fs(x) using these shares of the coefficients, then
committee c′ will also have Shamir shares of the secret associated with fs(x).

Lemma 14 (Robustness of 2VSS). Assume that up to t < n/3 parties are corrupted in each committee in
2VSS.ShareFuture. If the dealer P c

d is honest and has input s, then the output of protocol 2VSS.RecFuture
is s.

Proof. Follows easily from Lemma 13.

Lemma 15 (Privacy of 2VSS.ShareFuture). Let P c
d be an honest party. If the degree of the polynomial

f(x) chosen is at most ℓ, for some ℓ ≥ t, then the view of an unbounded adversary who corrupts t < n/3
parties in each committee, is identically distributed until the end of executions 2VSS.ShareFuture(s) and
2VSS.ShareFuture(s′), for any s ̸= s′.

27

Proof. Privacy follows from privacy of VSS.ShareFuture (see Lemma 11) for each coefficient of the polyno-
mial f(x), and because the adversary, from committee Sc′ learns at most t shares of f(x), that has degree
at most k ≥ t.

4.6 Perfectly Secure BGW-Style Maximally-Fluid Multiplication Proof

In this section, we describe a protocol between a (prover) party P c
p ∈ Sc, who knows values x, y, z, and

committees Sc1 ,Sc2 ,Sc′ .

– Committees Sc1 and Sc2 hold duplicated states (t)-2VSS.ShareFuture(x) and (t)-
2VSS.ShareFuture(y);

– Committee Sc′ holds state (t)-2VSS.ShareFuture(z).

Let fx(x), fy(x), fz(x) denote the polynomials associated to these states.

– For each polynomial, committees Sc1 , Sc2 , and Sc′ hold duplicated VSS.ShareFuture sharings of
each coefficient;

– Party P c
p knows fx(x), fy(x) and fz(x).

The goal of the protocol is for party P c
p is to prove to parties in Sc′ that z = x · y. We describe the

distributed proof below and formalize its properties in Lemmas 16 and 17.

• Committee c:

- Player P c
p computes polynomiala fw(x) := fx(x) · fy(x) =

∑2t
k=0 fw,kxk.

- Player P c
p invokes (2t)-2VSS.ShareFuture(z) towards Sc1 using polynomial fw(x) and duplicates

VSS.ShareFuture(fw,k) for all k ∈ [0, 2t] towards committee Sc2 but because Sc1 and Sc2 already hold
state VSS(fz,0 = z) this is taken as state VSS(fw,0 = fz,0 = z). This results in parties in Sc1 and Sc2

knowing shares [fw,k] for all k ∈ [1, 2t], as well as each P c1
i knowing wi := fw(i).

• Committee c1: If party P c
p is disqualified in any invocation of VSS.ShareFuture, the proof fails. Otherwise,

each player P c1
i checks if xi · yi = zi. If not, they broadcast Complain.

• Committee c2: If more than t distinct parties in Sc1 broadcast Complain, the proof fails. Otherwise, for
each party P c1

i who broadcast Complain, each party in Sc2 inputs [xi], [yi], [wi] to respective instances of
VSS.RecFuture.

• Committee c′: For each party P c1
i who broadcast Complain, obtain values xi, yi, wi as outputs of respective

instances of VSS.RecFuture. If xi · yi ̸= wi for any i the proof fails. Otherwise, committee Sc′ accepts the
proof.
aIt holds that deg fw(x) ≤ 2t and fw,0 = fw(0) = x · y

Protocol MultProof(x, y, z; fx(x), fy(x), fz(x))

Lemma 16 (Soundness and Completeness of MultProof). Assume that at most t < n/3 parties in each
committee Sk for k ∈ {c1, c2, c′} are corrupted. If Sc′

accepts the proof, they indeed hold state (t)-
2VSS.ShareFuture(z), for z = x · y. Furthermore, if the dealer is honest, the proof succeeds.

28

Proof. Each party P c′
i holds value zi = fz′(i) for some polynomial fz′(x) such that fz′(0) = fw(0). This

is because state VSS.ShareFuture(fz′,0) is the same as state VSS.ShareFuture(fw,0). We must show that
indeed fw(x) = fx(x) · fy(x); from this it follows that fz′(0) = fw(0) = fx(0) · fy(0) = x · y. Since
the proof succeeds, committee Sc1 broadcasts at most k ≤ t times Complain. This means that, for at least
n − k − t honest parties P c1

i that did not complain it holds that xi · yi = wi. If the proof succeeds, this
means that for each Complaint raised by some P c1

i , parties in Sc2 verify that xi · yi = wi. Hence for
(n−k− t) + k = n− t ≥ 2t + 1 indices i, it holds that fw(i) = wi = xi ·yi = fx(i) ·fw(i). Therefore, the
polynomials fw(x) and fx(x) ·fy(x) coincide in at least 2t+1 points, but their degree is at most 2t, which
means they are identical. It is straightforward to check that if the dealer is honest, the proof succeeds.

Lemma 17 (Privacy of MultProof). Assume that the prover P c
p is honest and the 2VSS.ShareFuture states

for x, y and z were generated by to honest dealers. Then, the view of any adversary who corrupts t < n/3
parties in each committee Sk for all k ∈ [c, c′] is identically distributed in executions of MultProof with
inputs (x, y, z; fx(x), fy(x), fz(x)) and (x′, y′, z′; fx′(x), fy′(x), fz′(x)) for (x, y, z) ̸= (x′, y′, z′).

Proof. The only values the adversary learns are in committee Sc2 the values xi, yi, and zi for i ∈ [1, n] such
that party P c1

i broadcasts Complain. However, since the dealer is honest, no honest player P c1
i complains,

so that these values are already known to the adversary. The claim then follows from this together with
Lemma 11 and Lemma 15.

4.7 Perfectly Secure Maximally-Fluid MPC

With the tools developed in the previous sections, we now present our maximally fluid and perfectly-
secure MPC protocol with guaranteed output delivery. Without loss of generality, we can assume that the
function to be computed is encoded as a layered arithmetic circuit Circ over a finite field F with fan-in
2. There are 4 types of gates: input, addition, multiplication, and output gates. For each layer L of Circ,
the following invariant is preserved: there is a committee Sc holding states (t)-2VSS.ShareFuture(x) and
(t)-2VSS.ShareFuture(y) for input-wire values x and y of each gate g ∈ L, and a committee Sc′ holding
state (t)-2VSS.ShareFuture(z) for each output-wire value z of each g ∈ L. This allows for a layer-by-layer
computation of the whole circuit. We describe the protocol below.

Input.
This gate has 1 input wire with value x and 1 output wire with value x, and a client associated to it. A client
holds input x, and invokes 2VSS.ShareFuture(x) towards a future committee Sc′ (all clients towards the same
committee);

Output.

This gate has 1 input wire and 1 output wire, and a client associated to it. Let y denote the input wire value. Each
honest party P c

i knows yi = fy(i) for some polynomial fy(x) of degree at most t such that fy(0) = y. Each P c
i

participates in 2VSS.RecFuture(y) towards the client.

Addition.

This gate has 2 input wires with values x, y and 1 output wire with value z. Without loss of generality, we can as-
sume that committee Sc′ already holds duplicated states (t)-2VSS.ShareFuture(x) and (t)-2VSS.ShareFuture(y).
Committee Sc′ computes (t)-2VSS.ShareFuture(z) locally by exploiting the linearity of 2VSS.ShareFuture.

Protocol CircEval

29

Multiplication.

This gate has 2 input wires with values x, y and 1 output wire with value z. Committee Sc holds states (t)-
2VSS.ShareFuture(x) and (t)-2VSS.ShareFuture(y)a. Each party P c

i does the following:

- Compute zi = xi · yi;

- Invoke (t)-2VSS.ShareFuture(xi) and (t)-2VSS.ShareFuture(yi) towards committee Sc1 , but taking the al-
ready known states VSS.ShareFuture(xi) and VSS.ShareFuture(yi) as sharings of the constant coefficients of
the polynomials used, which we denote by fxi

(x), fyi
(x) respectively.

- Duplicate 2VSS.ShareFuture(zi) towards committees Sc1 and Sc′ . Let fzi
(x) denote the polynomial associ-

ated to the state of committee Sc1 .

- Run protocol MultProof(xi, yi, zi; fxi
(x), fyi

(x), fzi
(x)) towards committee Sc1 .b

Let Succeed := {i ∈ [1, n] |MultProof(xi, yi, zi) succeeds}. Parties in committee Sc1 do the following: for all
i /∈ Succeed, participate in VSS.RecFuture(xi) and VSS.RecFuture(yi).
Each party P c′

j ∈ Sc′ does: for all i /∈ Succeed compute a standard (for example, with t = 0) state (t)-
2VSS.ShareFuture(zi) and then compute state (t)-2VSS.ShareFuture(z) as

L
(

(t)-2VSS.ShareFuture(z1), . . . , (t)-2VSS.ShareFuture(zn)
)

by exploiting the linearity of 2VSS.ShareFuture.
aWe can assume that these states are duplicated towards committee Sc1 as well without loss of generality
bFor the sake of clarity of exposition, we abstract away the duplicated states for the auxiliary committees of the proof.

Theorem 1. Protocol CircEval is a maximally-fluid MPC for all polynomial functions, that achieves 1/3-
perfect security and guaranteed output delivery against unbounded adversaries.

Proof. We describe a simulator Sim for protocol CircEval. Recall that the protocol execution proceeds layer
by layer, where at each layer of (computing) gates g1, . . . , gw, there will be a designated committee S in

(that becomes known only when the immediate previous committee is active), holding the share state of an
instance of VSS.ShareFuture on each of the input wires to each gate gi, 1 ≤ i ≤ w, and after the gates are
processed, there will be another future designated committee Sout (also known only when the immediate
previous committee is active) holding the share state of an instance of VSS.ShareFuture on each of the
corresponding output wires. For an input gate, there will be a designated client C with an input wire
value associated to it and a committee Sout will hold the share state of VSS.ShareFuture on this value. For
an output gate, a S in holds the share state of VSS.ShareFuture on a value y, and a designated client obtains
the output y.

We describe the simulator Sim as being processed layer by layer. Let S in and Sout be the corresponding
committees holding states of the input wires and that will hold the states of the output wires. We process
each gate of the layer independently as follows.

- Input Gates. Let C denote the client associated to the input gate.
The simulator does the following. If C is corrupted, the simulator participates in the protocol
VSS.ShareFuture on behalf of all honest parties in the committees that are involved for this protocol. If
C is not disqualified at the end of the protocol, by Lemma 13, each honest party P out

i holds a share of
a degree-t polynomial f(·). Given that there are at least t + 1 honest parties in Sout, the simulator can
compute x = f(0), which is assigned to be the input of C , and sends it to the trusted party.

30

If C is honest, the simulator participates in an instance of 2VSS.ShareFuture towards committee Sout,
emulating all honest parties in the respective participating committees, and where C has input 0.

- Addition Gates. Let x and y be the values of the input wires. We note that addition gates are processed
locally in the protocol by committee Sout (using linearity of VSS.ShareFuture), since we can assume
without loss of generality that Sout is the one holding (t)-2VSS(x) and (t)-2VSS(y). In the simulation,
therefore, we also let Sout perform this locally.

- Multiplication Gates. Let x and y be the values of the input wires. The simulator holds, for each honest
party P in

i the corresponding share state of (t)-2VSS(x) and (t)-2VSS(y), and can execute exactly the
same steps as in the protocol on behalf of the honest parties in this committee and the intermediate
committees up to Sout.

- Output Gates. Let C denote the client associated to the output gate. Let x denote the value of the input
wire. If C is honest, the simulator emulates an instance of the protocol 2VSS.RecFuture, internally
emulating C and all honest parties (from S in and other auxiliary committees) involved in the protocol.
Otherwise, if C is corrupted, the simulator computes the share state of (t)-2VSS(x) that belongs to the
corrupted parties in S in, obtains the corresponding output value y from the trusted party, and computes
updated states of the honest parties consistent with (t)-2VSS(y). Note that this is possible because
of secrecy of VSS.ShareFuture, so the state of corrupted parties is statistically independent of x. And
participates in an instance of 2VSS.RecFuture with this newly computed state on behalf of the honest
parties in S in and other auxiliary committees.

First, note that by the commitment property of 2VSS, (see Lemma 13), the extracted inputs from cor-
rupted clients correspond to the values that are processed in the real world. Moreover, by robustness and
linearity of 2VSS (see Lemmas 12 and 14), and correctness and soundness of multiplication proofs (see
Lemma 16), the values of the output wires are correct in the real world, and the final outputs of honest
parties correspond to the outputs computed by the trusted party.

In addition, we argue that the view of the adversary is indistinguishable in both worlds. By secrecy of
2VSS and MultProof (see Lemmas 15 and 17), the states of dishonest parties are completely independent
of the inputs from honest clients. Moreover, since each honest party succeeds in the multiplication proof
(see Lemma 16), up to processing the output gates, the view of the adversary is indistinguishable in both
worlds.

Finally, we argue that the view of the adversary is also distributed identically in both worlds when
executing each output gate. Let x be the value of the input wire of the output gate in the ideal world, and
let y be the value in the real world. In the case of an honest client C , the view of the adversary contains
only contains t shares, which are independent of any honest value. Moreover, if the client C is corrupted,
the computed states of honest parties are made in such a way that the state (t)-2VSS(y) encodes the value
y (in the real world). Therefore, both worlds are distributed identically.

Extending to Security against R-adaptive Adversaries. While in the above proof, for simplicity, we
implicitly assume that the adversary is NR-adaptive, we now briefly discuss why we expect our protocol
to also be secure against R-adaptive adversaries. Recall that an adversary is allowed to adaptively corrupt
a party in any given committee Sℓ with retroactive effect, only if for each committee Sℓ′ , (where ℓ′ < ℓ) in
which this party participated in the past, the adversary had not already exhausted its corruption budget,
thereby ensuring that the number of corrupt parties in every committee never exceeds t < n/3.

31

Such adversaries can easily be handled by our simulation. For each committee assigned to handle a
computation gate (addition or multiplication), we can do as follows: Whenever a party P c

i ∈ Sc from a past
committee is corrupted, the simulator can simply reveal to the adversary the emulated state on behalf of
P c

i that it has so far, in an execution where the honest clients have input 0. Since the adversary holds only
up to t states from each committee, secrecy of our VSS scheme and MultProof (see Lemmas 15 and 17),
ensures that the view of the adversary is independent of any values from honest parties. If the committee
is executing an output gate, the simulator needs to instead output the stated that was patched consistently
with the output of that gate.

5 Computationally SecureMaximally-FluidMPCwithGuaranteedOut-
put Delivery

In this section we present our computationally-secure maximally fluid MPC with guaranteed output de-
livery, secure up to t < n/2 corruptions in each committee. The protocol makes use of non-interactive
equivocal linearly-homomorphic commitments 4 (see Definition 4).

5.1 (Computationally Secure) Channels To Future Committees

We present a maximally fluid protocol CompSendFuture that allows a sender party P c
s ∈ Sc to send a

message to a recipient party P c′
r ∈ Sc′ , in such a way that a (computationally bounded) adversary A con-

trolling at most t < n/2 servers in each committee Sk, for k ∈ [c, c′] cannot tamper with, or learn any
information about the message m. One can think of this protocol as constructing a one-directional se-
cure channel between P c

s and P c′
r from one-directional secure channels between all parties in consecutive

committees.
The intuition is as follows: if c′ = c + 1, then P c

s can simply send the message to P c′
r . If instead the

sender wants to send a message further into the future, i.e. if c′ > c+1, then P c
r samples a polynomial f(x)

such that deg f(x) ≤ t and f(0) = m, they broadcast commitments to the coefficients of f(x), and they
send mi = f(i) together with the respective opening information to party P c+1

i . This results in publicly
known commitments to each mi. If c′ = c + 2, now each party P c+1

i opens the commitment to value mi

to P c′
r . If the dealer is honest, P c′

r receives at least n− t ≥ t + 1 valid openings and reconstruct m using
Lagrange interpolation. If c′ > c + 2, each party P c+1

i acts as the sender in the protocol we just described,
with input mi but using the already publicly known commitment to mi as the commitment to the constant
term of the polynomial they use to share mi. In the end, party P c′−1

i holds a (c′−c−1)-dimensional tensor
of values and the respective opening information; they open all these values to P c′

r . Then, P c′
r reconstructs

valid openings using Lagrange interpolation layer-by-layer. If P c
s is honest, in each reconstruction layer

there will be at least t + 1 valid openings and the last step of this process outputs m. We summarize and
prove the properties of this protocol in Lemmas 18 and 19 below.

Party P c
s is the sender, with input m, and party P c′

r , for some c′ > c is the receiver. For all i ∈ [1, n] party P c
i

initializes mi := ⊥ and ri := ⊥a.

• Committee c: The sender P c
s samples a uniform random polynomial fm(x) =

∑t
k=0 fm,kxk such that

fm(0) = fm,0 = m and uniform random rm,0, . . . , rm,t, and compute comm,k := Commit(fm,k, rm,k) for all

Protocol CompSendFuture(m)

32

k ∈ [0, t]. Broadcast comm,k for all k ∈ [0, t] and send(
fm(i),

t∑
k=0

rm,k · ik

)

to party P c+1
i .

• Committees k ∈ [c + 1, c′ − 1]: Each party P k
j sets mi := (m1i, . . . , mni) and ri := (r1i, . . . , rni), where

mji and rji denote the first and second component of message received from P k−1
j . Then

– If k = c′ − 1, send (mi, ri) to P c′

r ;
– If k ̸= c′ − 1, let Index denote the set of indices of mi. For each ℓ ∈ Index do:

- Sample a uniform random polynomial fℓ(x) such that deg fℓ(x) ≤ t and fℓ(0) = (mi)ℓ;
- Sample uniform random values rℓ,1, . . . , rℓ,t and compute commitments comℓ,k := Commit(fℓ,k, rℓ,k)

for all k ∈ [1, t];
- Broadcast comℓ,k for k ∈ [1, t] and send(

fℓ(j), (ri)ℓ +
t∑

k=1
rℓ,k

)
ℓ∈Index

to P k+1
j for all j ∈ [1, n].

• Committee c′: Upon receiving message (mi, ri) from P c′−1
i for all i ∈ [1, n] party P c′

r does:

- Let Index denote the set of indices of the tensor mi. For all ℓ ∈ Index check against the (appropriate linear
combination of the) broadcast commitments that (ri)ℓ is a valid opening for (mi)ℓ. Denote by Valid the
subset of Index for which this check succeeds;

- Use Lagrange interpolation layer-by-layer on values in (mi)ℓ∈Valid to reconstruct a value mi, where mi =
⊥ if the last interpolation fails.

Repeat the procedure on vector (m1, . . . , mn) to recover a value m′, where m′ = ⊥ if the last interpolation
fails.
aIntuitively, mi contains values, and ri the respective opening information.

Lemma 18 (Robustness of CompSendFuture). Assume P c
s is honest with input m. For any PPT adversary

who corrupts t < n/2 parties in each committee Sk for k ∈ [c + 1, c′ − 1] in CompSendFuture the output of
P c′

r is m′ = m.

Proof. We prove in the statement for c′ = c + 2. It is easy to generalize the argument to the case of more
intermediate committees via a simple recursive argument. Since the sender P c

s is honest, they use a degree
t polynomial f(x) such that f(0) = m to secret share m towards committee Sc+1. Furthermore, they
publish valid commitments to each coefficient fk of f(x), and send the relative opening information to
each party in committeeSc+1. Consider now the receiver P c′

r , and assume that P c′
r adds index i to set Valid.

If (mi, ri) denotes the message they received from party P c+1
i , then Open(

∑t
k=0 comkik, mi, ri) = 1. For

each set of t + 1 indices in Valid, by linearity of the commitments, by using Lagrange interpolation it is
possible to compute a valid opening to com0. Furthermore, notice that for each honest P c+1

i , we have
i ∈ Valid, so that |Valid| ≥ n− t ≥ t + 1, since t < n/2. Therefore, for i ∈ Valid values mi lie on the same
polynomial f ′(x) of degree at most t. Since the values mi sent by honest parties lie on f(x), no matter

33

what subset of Valid the receiver uses to interpolate f ′(x), it holds that f ′(x) = f(x) so that the output
of P c′

r is m.

Lemma 19 (Privacy of CompSendFuture). Let P c
s be an honest party. Then the view of a PPT adversary who

corrupts t < n/2 parties in each committee Sk for k ∈ [c + 1, c′] is identically distributed during executions
CompSendFuture(s) and CompSendFuture(s′) for any s ̸= s′.

Proof. All commitments are perfectly hiding. The polynomial f(x) sampled by the sender is of degree at
most t, and A only receives t evaluations of this polynomial, so that their view after committee Sc+1 is
independent of m. Moreover, their view in each subsequent committee is independent of the joint state of
honest parties in each committee. The claim easily follows.

5.2 (Computationally Secure) Shamir Sharing to Future Committees

Building on CompSendFuture we describe protocols CompShareFuture and CompRecFuture, that allow a
dealer P c

d to commit to a value s towards a committee Sc′ for c′ > c. It is guaranteed that even if P c
d is

corrupted, after protocol CompShareFuture terminates there is a unique s′ ∈ F∪{⊥} such that the output
of CompRecFuture is either s′ or ⊥ (this is determined by A at opening time).

The idea is as follows: the dealer P c
d samples a uniform random polynomial f(x) with deg(f) ≤ t and

f(0) = s. For i ∈ [0, t] let comi := Commit(fi, ri), where fi denotes the i-th coefficient of f(x). By the ho-
momorphic properties of the commitment scheme, this results in commitments to any linear combination
of the coefficients. Then P c

d broadcasts comi for all i ∈ [0, t] and invokes CompSendFuture (si := f(i))
and CompSendFuture (r(i)) towards party P c′

i , where r(i) :=
∑t

k=0 ri · ik

Protocol CompRecFuture then works as follows: each P c′
i in committee Sc′ broadcasts

(
f(i), r(i)

)
.

Let

Valid :=
{

i ∈ [1, n]
∣∣∣∣∣ Open

(
t∑

k=0
comkik, f(i), r(i)

)
= 1

}
denote the set of indices of parties that broadcast valid openings of their shares. If |Valid| ≥ t + 1, each
party P c′′

i interpolates f(x) and r(x) using any t + 1 shares f(i) and r(i) with i ∈ Valid and outputs(
f(0), r(0)

)
. Otherwise, the output is ⊥.

It will be useful that P c
d can commit to the same value towards separate committees Sc′ and Sc′′ , so that

even if P c
d is corrupted there exists a unique value s′ ∈ F∪{⊥} such that CompRecFuture produces output

s′ or ⊥ (determined by A at reconstruction time) regardless of which committee executes it. To achieve
this, we require that P c

d executes CompShareFuture towards committees Sc′ and Sc′′ with polynomials
f(x), r(x) and f ′(x), r′(x) respectively, such that f(0) = s = f ′(0) and r(0) = r′(0), but with respect to
the same commitment com0 := Commit(f0, r0). We provide a formal description of the (non-duplicated
version of the) protocol below. The properties of the protocol are summarized and proven in Lemmas 20,
21, and 22.

• Committee c: The dealer P c
d does:

Protocol CompShareFuture(s)→ (s1, . . . , sn; com0, . . . , comt)

34

- Sample a uniform random polynomials

f(x) :=
t∑

k=0
fkxk, r(x) :=

t∑
k=0

rkxk

such that f(0) = s.
- For i ∈ [0, t] let comi := Commit(fi, ri);
- Broadcast comi for all i ∈ [0, t];
- Invoke CompSendFuture (si := f(i)), CompSendFuture (r(i)) towards party P c′

i for all i ∈ [1, n].

• Committee c′: Party P c′

i sets their output si to the outputs f ′(i) and r′(i) of the respective invocations of
CompSendFuture. The public outputs are comk for k ∈ [0, t].

• Committee c′: Each party P c′

i broadcastsa si.

• Committee c′′: Each P c′

i does

- Let

Valid :=
{

i ∈ [1, n]

∣∣∣∣∣ Open
(

t∑
k=0

comkik, f ′(i), r′(i)
)

= 1
}

.

- If |Valid| > t interpolate a polynomial f ′(x) of degree at most t using any t + 1 shares f ′(i) with i ∈ Valid
and output f ′(0);

- If |Valid| ≤ t output ⊥.
aBy replacing broadcast with CompSendFuture we obtain a private version of protocol CompRecFuture towards any

committee Sk for k ≥ c′′.

Protocol CompRecFuture(s1, . . . , sn; com0, . . . , comt)→ (s)

Lemma 20 (Privacy of CompShareFuture). If P c
d is an honest party, then the view of an adversary who

corrupts t < n/2 parties in each committee Sk for k ∈ [c + 1, c′] is identically distributed during executions
CompShareFuture(s) and CompShareFuture(s′), for any s ̸= s′.

Proof. All commitments broadcast from P c
d are perfectly hiding. Since the adversary corrupts at most

t < n/2 in each committee Sk for all k ∈ [c + 1, c′ − 1], by Lemma 19, the view of the adversary in
each execution of CompSendFuture is independent of the input by P c

d . From committee Sc′ , the adversary
learns t evaluations on the polynomial f(x) of degree at most t, so that their view remains independent
of m = f(0).

Lemma 21 (Honest Extractability/Robustness of CompShareFuture). Assume that at most t < n/2 par-
ties are corrupted in each committee Sk for k ∈ {c, c1, c′}. If P c

d is honest with input s, then after
CompShareFuture terminates, it is possible to efficiently compute values s and r from public information
and the states of honest parties. Furthermore Open (com0, s, r) = 1 and

s := CompRecFuture
(
s1, . . . , sn; com0, . . . , comt).

35

Proof. Let L denote the linear Lagrange interpolation function corresponding to a subset J ⊆ Valid s.t.
|J | = t + 1. Notice that we have have L((comj)j∈J) = com0. Then by linearity of commitments and
their binding property we have com0 = Commit(s′, r′). This means that any subset of size t + 1 of values
corresponding to indices Valid lie on the same polynomial. If the dealer P c

d is honest, then obviously s′ = s,
and for all i ∈ [1, n] such that P c′

i is honest, we have i ∈ Valid so that |Valid| ≥ n− t ≥ t + 1.

Lemma 22 (Linearity of CompShareFuture). Consider states

(x1, . . . , xn; comx,0, . . . , comx,t)

(y1, . . . , yn; comy,0, . . . , comy,t).

For any linear function L, if ⊥ ≠ (z, ρ) is

CompRecFuture
(
L(x1, y1), . . . ,L(xn, yn);L(comx,0, comy,0), . . . ,L(comx,t, comy,t)

)
it holds that18 Open(L(comx,0, comy,0), z, ρ) = 119.

Proof. Follows from the linearity of the commitments, their binding property, and Lemma 21.

5.3 (Computationally Secure) Verifiable Secret Sharing

If the dealer P c
d is corrupted, protocol CompShareFuture does not guarantee that an output will

be produced during CompRecFuture. To overcome this, we design maximally fluid protocols
CompVSS.ShareFuture and CompVSS.RecFuture that allow a dealer P c

d ∈ Sc to secret share a value
towards a committee Sc′ for some c′ ≥ c + 2 and ensure that, if the dealer is not disqualified after protocol
CompVSS.ShareFuture terminates, reconstruction towards committee Sc′′ will produce an output s′ ̸= ⊥.
All the properties that one expects from a verifiable secret sharing scheme hold: the value is fixed after the
sharing phase, and if the dealer is honest this value is the dealer’s input.

Protocol VSS− Share works as follows: the dealer P c
d , who holds input s, samples a uniform random

polynomial f(x) such that deg f(x) ≤ t and f(0) = s. Let fk denote the k-the coefficient of f(x). The
dealer duplicates CompShareFuture(fk) for all k ∈ [0, t] towards committees Sc1 ,Sc′ ; the public outputs
of these t + 1 invocations of CompShareFuture result in a matrix D of public commitments

D :=

com0,0 . . . com0,t
...

comt,0 . . . comt,t


where the k-th column denotes the commitments to the polynomial used to share fk, as well as a matrix D′

containing the commitments for the duplicate executions towards committee Sc′ . Notice that the matrices
D and D′ share the first row, as the dealer broacasts these commitments only once.

Furthermore, by linearity of CompShareFuture, committees Sc1 and Sc′ hold states
CompShareFutured(si = f(i))20 for all i ∈ [1, n]. Then P c

d sends value si and the corresponding opening
information21 ρi =

∑t
k=0 rkik to P c1

i by invoking CompSendFuture. If player P c1
i does not receive satis-

factory information from the dealer, that is, if they receive si = ⊥ or Open
((∑t

k=0 com0,kik
)

, si, ρi

)
= 0,

18The expression L(xi, yi) is to be understood as the function applied component-wise.
19This statement can be generalized to functions L with n inputs with a purely notional overhead.
20The subscript d denotes states resulting from an execution of CompShareFuture where P c

d acted as the dealer.
21We denote by rk the randomness from com0,k = Commit(fk, rk)

36

they broadcast a complaint, otherwise, they run protocol CompShareFuturei(si) towards committee Sc′ .
To ensure that party P c′

i commits to the value they received from P d
c , the commitment to the constant

term of the polynomial used for CompShareFuturei is taken as
∑t

k=0 com0,kik. This results in another
(t + 1)× n matrix of public commitments

P :=


(∑t

k=0 com0,k1k
)

. . .
(∑t

k=0 com0,knk
)

...
com1

t . . . comn
t


where the j-th column denotes the commitments output by CompShareFuturej . If a complaint is raised
by player P c1

i , players in committee Sc′ reconstruct si by running protocol

CompRecFutured

(
si1, . . . , sin;

t∑
k=0

com0,k1k, . . . ,
t∑

k=0
com0,knk

)
.

If the output is ⊥, the dealer is disqualified.
In CompVSS.RecFuture, to reconstruct si players in committee Sc′ run protocol

CompRecFuturei

(
si1, . . . , sin;

(
t∑

k=0
com0,kik

)
, comi

1, . . . , comi
t

)

for all indices i ∈ [1, n] corresponding to parties of committee Sc1 that did not complain. Then, com-
mittee Sc′′ uses any t + 1 values si (either broadcast during CompVSS.ShareFuture or valid outputs of
CompRecFuturei) to reconstruct s′.

As a last remark, observe that by having both P c
d and players in committee Sc1 duplicate

CompShareFutured(si) and CompShareFuturei(si) for all i ∈ [1, n] towards committees Sc′ and S c̃ for
some c̃ ≥ c′, one guarantees that if P c

d is not disqualified, then both Sc′ and S c̃ hold sharings of the same
value.

In the following protocol description, we use the notation developed above, with the addition of the
symbol ∗, denoting (an appropriate linear combination of) publicly known commitments, where the in-
clusion of the explicit expression would be excessively cumbersome. The properties of the protocol are
summaried and proven in Lemmas 23, 24, and 25 below.

• Committee c: The dealer P c
d who holds input s does:

- Sample a uniform random polynomial

f(x) =
t∑

k=0
fkxk

such that f(0) = s;
- Duplicate CompShareFutured(fk) for all k ∈ [0, t] towards committees Sc1 and Sc′ ;
- Let rk denote the constant term of the random polynomial used in the execution CompShareFuture(fk).

Let si := f(i) and ρi :=
∑t

k=0 rkik . Do CompSendFuture(si) and CompSendFuture(ρi) towards P c1
i .

• Committee c1: For all i ∈ [1, n] party P c1
i does:

Protocol CompVSS.ShareFuture(s)→ (s1, . . . , sn; D, P)

37

- If the output of CompSendFuture is s′
i = ⊥ or if Open(∗, s′

i, ρ′
i) = 0 broadcast Complain;

- Invoke CompShareFuturei(si) towards committee Sc′ , but with
∑t

k=0 com0,kik as commitment to the
constant term of the polynomial used;

• Committee c′: Each party does:

- For all i ∈ [1, n] such that P c1
i has broadcast Complain, participate in protocol

CompRecFutured(si1, . . . , sin; ∗);
- If any output is ⊥ disqualify the dealer.
- Otherwise, party Pi’s output is the vector of the outputs of each execution of CompShareFuture(fk) and

the values si and ρi.

• Committee c′: If P c1
i did not broadcast Complain, each party participates in

CompRecFuturei(si1, . . . , sin; ∗).a

• Committee c′′
1 : Each party does:

- Let Valid := {i ∈ [1, n] | CompRecFuturei(si1, . . . , sin; ∗) ̸= ⊥}.
- Use t + 1 values si such that either i ∈ Valid or P c1

i broadcast Complain to interpolate a polynomial f ′(x)
of degree at most t. Output f ′(0).

aBy invoking here the private version of CompRecFuture we obtain a private version of CompVSS.RecFuture.

Protocol CompVSS.RecFuture(s1, . . . , sn; D, P)→ s

Lemma 23 (Privacy of CompVSS.ShareFuture). Assume thatP c
d is honest. Then the view of a PPT adversary

who corrupts t < n/2 parties in each committee Sk for k ∈ [c + 1, c′] is identically distributed during
executions CompVSS.ShareFuture(s) and CompVSS.ShareFuture(s′), for any s ̸= s′.

Proof. By assumption, all commitments broadcast by the dealer are perfectly hiding. By Lemma 20, from
committees Sk for k ∈ [c + 1, c1] the adversary only obtains t evaluations on the polynomial f(x) of
degree (at most) t, as well as t shares of each coefficient fk of f(x) as output from CompShareFuture, so
that until this point their view remains independent from s. From committees Sk for k ∈ [c1 + 1, c′] the
adversary only obtains t (independent form the previous) shares of each coefficient fk of f(x), as well as
evaluation f(i) = si for all i ∈ [1, n] such that party P c1

i broadcasts Complain. However, since P c
d is

honest, only parties that are corrupted in Sc′ broadcast complaints, so that overall the adversary does not
learn more than t evaluations of f(x), and their view remains independent of s until the of the protocol
CompVSS.ShareFuture.

Lemma 24 (Extractability/Robustness of CompVSS.ShareFuture). Assume that at most t < n/2 parties
are corrupted in each committee Sk for k ∈ [c + 1, c′]. If P c

d is not disqualified after CompVSS.ShareFuture,
then it is possible to efficiently compute values s′ as well as randomness r′ from public information and the
states of honest parties such that Open (com0,0, s′, r′) = 1 and

s′ := CompVSS.RecFuture
(
s1, . . . , sn; D, P

)
.

Furthermore, if the dealer is honest s′ = s.

38

Proof. To compute s′, consider all values si relative to honest parties (either extracted via Lemma 21,
or reconstructed via CompRecFuture if P c1

i complains). Since P c
d is not disqualified, there are at least

n− t ≥ t + 1 of such values, and by Lemma 22 together with the binding property the commitments we
conclude that any subset of size t + 1 of them must lie on the same polynomial f ′(x) of degree at most t.
Let s′ := f ′(0). It is easy to show that s′ computed in this way has all the required properties. If the dealer
is honest, the shares of honest parties lie on f(x), so that s′ = s.

Lemma 25 (Linearity of CompVSS.ShareFuture). Consider the following states resulting from executions of
CompVSS.ShareFuture in which at most t < n/2 parties are corrupted by a PPT adversary in each commit-
tee:22

(x1, . . . , xn; Dx, Px),

(y1, . . . , yn; Dy, Py).

For all linear functions L it is possible to efficiently compute values z′ and ρ′ from the honest parties states of

StateL :=
(
L(x1, y1), . . . ,L(xn, yn);L(Dx, Dy),L(Px, Py)

)
such that

1. z′ := CompVSS.RecFuture
(
StateL

)
2. Open(L(Dx

00, Dy
00), z, ρ) = 1.

Proof. Follows from the linearity of commitments, their computational binding property, and Lemmas 22
and 24.

5.4 (Computationally Secure) 2-Level Verifiable Secret Sharing
To perform the multiplication proof in our MPC protocol, we need a simpler sharing state than that
achieved by CompVSS.ShareFuture. In particular, we want each party in the committee Sc tasked
with evaluating a certain arithmetic gate to hold consistent degree t-Shamir sharings of the input val-
ues to the gates. Building on CompVSS.ShareFuture, we explain how to achieve this in a simple way:
the dealer P c

d duplicates CompVSS.ShareFuture(fk) for all k ∈ [0, t] towards committees Sc1 and Sc′ ,
where f(x) is a uniform random polynomial of degree at most t such that f(0) = s. Then, each party
in Sc1 participates in protocol CompVSS.RecFuture (privately) towards player P c′

i , to deliver to them
the value si = f(i). Notice that committee Sc′ also holds sharings of all values f(j) for j ∈ [1, n]
thanks to linearity of CompVSS.ShareFuture. We denote the state achieved by this 2-level sharing as
Comp2VSS.ShareFuture(s). Observe that we do not describe a corresponding reconstruction procedure,
as protocol CompVSS.RecFuture can be invoked for the secret s as well as for each share si individually.

To duplicate a state Comp2VSS.ShareFuture(s) towards many committees, the dealer P c
d can sample 2

polynomials f(x) and f ′(x) of degree at most t such that f(0) = s = f ′(0) and run respective executions
of Comp2VSS.ShareFuture towards the the different committees, but duplicating the sharing of the con-
stant coefficient CompVSS.ShareFuture(f0 = s = f ′

0) to all committees instead of running independent
instances. This ensures that all committees hold (independent) Shamir-sharings of the same value with-
out violating privacy. Observe that simply duplicating all states CompVSS.ShareFuture(fk) for k ∈ [0, t]
for a single polynomial f(x) would indeed violate privacy, as A learns t evaluations of f(x) from each
committee.

22We will often denote such a state as CompVSS.ShareFuture(s)

39

We describe the non-duplicated version of the protocol below. We denote by ∆ and Π the vectors of
matrices of public commitments (D0, . . . , Dt) and (P0, . . . , Pk) respectively, resulting from t + 1 states
CompVSS.ShareFuture(fk) for all fk with k ∈ [0, t]. The properties of the protocol are formalized and
proven in Lemmas 27, 26, and 28 below.

• Committee c: The dealer P c
d who holds input s does:

- Sample a uniform random polynomial

f(x) =
t∑

k=0
fkxk

such that f(0) = s;
- Duplicate CompVSS.ShareFuture(fk) for all k ∈ [0, t] towards committees Sc1 and Sc′ ;

• Committee c1: Disqualify the dealer if the dealer is disqualified in any execution of CompVSS.ShareFuture.
Otherwise, each player participates in protocol CompVSS.RecFuture to reconstruct (privately) value si = f(i)
towards party P c′

i .

• Committee c′: Disqualify the dealer if the dealer is disqualified in any execution of CompVSS.ShareFuture.

Protocol Comp2VSS.ShareFuture(s)→ (S1, . . . , Sn; ∆, Π)

Lemma 26 (Privacy of Comp2VSS.ShareFuture). Assume that P c
d is honest. Then the view of a PPT adver-

sary who corrupts t < n/2 parties in each committee Sk for k ∈ [c + 1, c′] is identically distributed during
executions Comp2VSS.ShareFuture(s) and Comp2VSS.ShareFuture(s′), for any s ̸= s′.

Proof. By assumption, all commitments broadcast by the dealer are perfectly hiding. From committees Sk

for k ∈ [c + 1, c1], by Lemma 23, the adversary only learns t shares of each coefficient fk of f(x), for
k ∈ [0, t]. Furthermore, from committees Sk for k ∈ [c1 + 1, c′], again by Lemma 23 and because the
dealer duplicates CompVSS.ShareFuture honestly, the adversary learns only 1) t (fresh) sharings of each
coefficient fk for k ∈ [0, t] and 2) t evaluations of the polynomial f(x) (one from each corrupted party in
committee Sc′). Therefore, their view is statistically independent from m.

Lemma 27 (Extractability/Robustness of Comp2VSS.ShareFuture). Assume that at most t < n/2 parties
are corrupted in each committee Sk for k ∈ [c, c′]. If P c

d is not disqualified after Comp2VSS.ShareFuture,
then it is possible to efficiently compute values s′ as well as randomness ρ′ from public information and the
states of honest parties such that Open (∆000, s′, r′) = 1 and23

s′ := CompVSS.RecFuture
(
s1, . . . , sn; ∆, Π

)
.

Furthermore, if the dealer is honest s′ = s.

Proof. If the dealer P c
d does not get disqualified after protocol Comp2VSS.ShareFuture terminates, then

the dealer is not disqualified in any execution of CompVSS.ShareFuture. Let s′
i and r′

i denote the val-
ues extracted from each state of CompVSS.ShareFuture(si) for all i ∈ [1, n] using Lemma 24. Then
Open(

∑t
k=0∆00kik, s′

i, ρ′) = 1, and from any t + 1 such openings, via Lagrange interpolation and lin-
earity of the commitments, one can efficiently compute an opening for ∆000. By the binding property of

23The commitment ∆000 denotes (D0)00.

40

the commitments, all these openings must be equal, so that any subset of t + 1 values s′
i lies on the same

polynomial f ′(x) of degree at most t. Since there are at least n− t ≥ t+1 honest parties in Sc′ , from their
states one can efficiently compute s′ := f(0), and ρ′ := r′(0), where r(x) denotes the polynomial inter-
polated from values r′

i of honest parties. It is easy to verify that these values have the required properties.
Robustness follows easily from that of protocol CompVSS.ShareFuture (see Lemma 24).

Lemma 28 (Linearity of Comp2VSS.ShareFuture). Consider the following states resulting from executions
of Comp2VSS.ShareFuture in which at most t < n/2 parties are corrupted by a PPT adversary in each
committee:

(X1, . . . , Xn; ∆x, Πx),

(Y1, . . . , Yn; ∆y, Πy).

For all linear functions L it is possible to efficiently compute values z′ and ρ′ from the honest parties states of

StateL := (L(X1, Y1), . . . ,L(Xn, Yn);L(∆x, ∆y),L(Πx, Πy)
)
.

such that

1. Open(L(∆x
000, ∆y

000), z′, ρ′) = 1;

2. z′ = Comp2VSS.ShareFuture(StateL).

Proof. Follows from the linearity of commitments, their computational binding property, and Lemmas 25
and 24.

5.5 (Computationally Secure) Maximally-Fluid Multiplication Proof

In this section, we present a protocol that allows a prover knowing openings for some appropriate states
CompVSS.ShareFuture to prove towards a future committee, holding duplicates of these states, that a
certain non linear relation between them holds. We follow the idea of [CDD+99].

Originally designed in the statistical security setting, this approach requires the prover and the parties
holding the states in question to engage in a distributed zero-knowledge proof. To generate the ran-
dom challenge for the prover, we ask each party in one committee to execute CompVSS.ShareFuture(ri)
for a uniform random value, and reconstruct the sum of all executions that succeed. The privacy prop-
erties of protocol CompVSS.ShareFuture (see Lemma 23) guarantee that the challenge is unpredictable.
Adapting this approach to the fluid model comes with the usual challenges of dealing with the number
of interaction rounds required, while maintaining the necessary state across committees but without vi-
olating secrecy. The full protocol works as follows: committees Sc1 ,Sc2 ,Sc3 ,Sc′ hold duplicate states
CompVSS.ShareFuture of values x, y, z. Intuitively, a prover P c

p ∈ Sc, who knows values x, y, z and the
corresponding opening information, must convince parties in Sc′ that x · y = z. To this end, the prover
P c

p samples a uniform random value β, computes γ = xβ, and duplicates CompVSS.ShareFuture(β)
and CompVSS.ShareFuture(γ) towards committees Sc1 ,Sc2 , and Sc3 . In the meantime, each player P c

i

samples a uniform random value ri and invokes protocol CompVSS.ShareFuture(ri) towards Sc1 (these
sharings will be added and reconstructed to produce a random challenge for the prover). If any execution
of CompVSS.ShareFuture where the prover acts as the dealer fails, the proof fails. Otherwise, committee
Sc1 runs the CompVSS.RecFuture protocol for value r =

∑
i∈Alive ri for the set Alive of parties that were

not disqualified as dealers of CompVSS.ShareFuture(ri). Then, in succession, committees Sc2 and Sc3 run
the CompVSS.RecFuture protocol for values r′ = ry + β and r′′ = r′x − rz − γ respectively. If r′′ ̸= 0,

41

the proof fails, otherwise the proof is accepted. Intuitively, if xy ̸= z, once β and γ are fixed, the equations
hold for a unique r, and because the prover does not know r when committing to β and γ, they can only
cheat with probability 1/|F|. The properties of this protocol are summarized and proven in Lemmas 29
and 30 below.

• Committee c: The prover P c
p does:

- Sample uniform random β, and compute γ := xβ;
- Duplicate CompVSS.ShareFuture(β) and CompVSS.ShareFuture(γ) towards committees Sc1 ,Sc2 , and
Sc3 .

Each party P c
i does:

- Sample a uniform random ri;
- Invoke CompVSS.ShareFuture(ri) towards committee Sc1 .

• Committee c1: Each party does:

- If P c
p is disqualified during either execution of CompVSS.ShareFuture the proof fails;

- Let
Alive := {i ∈ [1, n] | P c

i not disqualified in CompVSS.ShareFuture(ri)} ;

- Let r :=
∑

i∈Alive ri;
- Participate in CompVSS.RecFuture for r;

• Committee c2: Each party does:

- Participate in CompVSS.RecFuture for value r′ = ry + β;

• Committee c3: Each party does:

- Participate in CompVSS.RecFuture for value r′′ = r′x− rz − γ;

• Committee c′: If the output of CompVSS.RecFuture(r′′) is not 0, the proof fails. Otherwise, the proof is
accepted.

Protocol CompMultProof(x, y, z)

Lemma 29 (Soundness and Completeness of CompMultProof). Consider an execution of protocol
CompMultProof(x, y, z)24 in which a PPT adversary corrupts at most t < n/2 parties in each commit-
tee Sk for k ∈ [c, c′]. If the proof is accepted, and x′, y′, z′ denote values extracted from the corresponding
states VSSCrypto− ShareFuture(x), VSSCrypto− ShareFuture(y), and VSSCrypto− ShareFuture(z) via
Lemma 24, then with probability 1 − 1/|F| it holds that x′y′ = z′. Furthermore, if the prover is honest, the
proof succeeds.

Proof. Follows by Lemma 25 and the observation that since r′′ = r′x′ − rz′ − γ = 0 then r(x′y′ − z′) +
βx′ − γ = 0. Assuming x′y′ ̸= z′, then for any fixed β and γ, there is a unique r such that the equation
holds. Since β and γ are chosen independently from r (this is guaranteed by Lemma 23), and r is uniform

24A full notation should include, as inputs to the protocol, three states resulting from CompVSS.ShareFuture as well as private
inputs for the prover P c

d . We adopt this more compact informal notation to improve readability.

42

random (for each honest party P c
i , i ∈ Alive), then the probability that x′y′ ̸= z′ and the proof succeeds is

1/F. It is straightforward to check that, if the dealer is honest, the proof succeeds.

Lemma 30 (Privacy of CompMultProof). Assume that P c
d is honest. Then the view of an adversary who

corrupts t < n/2 parties in each committee Sk for k ∈ [c, c′] is identically distributed during executions of
CompMultProof(x, y, x) and CompMultProof(x′, y′, z′) for (x, y, z) ̸= (x′, y′, z′).

Proof. Follows immediately from Lemma 23 and the observation that all reconstructed values in commit-
tees Sc2 , Sc3 , and Sc′ are uniform random.

5.6 Maximally-Fluid Computationally Secure MPC

We are ready to present our full MPC protocol. The function to be computed is encoded as a layered arith-
metic circuit over F with fan-in 2, denoted by Circ.25 For all gates g in layer L of Circ there is a committee
Sc that holds states Comp2VSS.ShareFuture of the input values x, y to g, as well as one committee Sc′

that holds the state Comp2VSS.ShareFuture for the output value z. This invariant allows to carry out the
full computation.26

Input Gates. Each client invokes protocol Comp2VSS.ShareFuture(x) towards committee Sc′ .

Addition Gates. The computation can be performed locally exploiting the linearity of
Comp2VSS.ShareFuture. The only problem that arises in the fluid model lies in transferring the
state to committee Sc′ . However, since c′ ≥ c we can assume without loss of generality that committee
Sc′ already holds duplicated states Comp2VSS.ShareFuture of values x and y (by simply requiring that
whoever it responsible for producing these states duplicates them to Sc′ at sharing time).

Multiplication Gates. We can assume that states Comp2VSS.ShareFuture of x and y are duplicated
onto all necessary committees (by the same reasoning as above). Then each party P c

i , who knows shares
xi and yi, locally computes zi := xi · yi and invokes Comp2VSS.ShareFuture(zi) towards an auxiliary
committee Sc1 . Furthermore, they prove to Sc1 that indeed zi = xi · yi. If the proof fails, parties in
Sc1 (who hold sharings of xi and yi for all i ∈ [1, n]) reconstruct these values and take zi to be xi · yi

towards Sc′ . Using the values xi for which the multiplication proofs succeeded, each party computes state
CompVSS.ShareFuture(zi) exploiting the linear properties of CompVSS.ShareFuture.

Output Gates. Parties in Sc participate in protocol CompVSS.RecFuture to (privately) reconstruct y
towards the client.

We provide a formal description of the protocol and prove its security in Theorem 2 be-
low.

Input.
This gate has 1 input wire with value x and 1 output wire with value x, and a client associated to it. A client holds
input x, and invokes

Comp2VSS.ShareFuture(x)

Protocol CryptoCircEval

25This is without loss of generality, see for example [CGG+21]
26This is only to make the exposition more clear. Indeed, the committees holding sharing states to the inputs of each gate need

not be the same.

43

towards a future committee Sc′ (all clients towards the same committee); If the client is disqualified, take 0 as
input.

Output.

This gate has 1 input wire and 1 output wire, and a client associated to it. Let y denote the input wire value. Each
party P c

i participates in protocol

CompVSS.RecFuture(y1, . . . , yn; Dy, Py)

towards the client.

Addition.

This gate has 2 input wires with values x, y and 1 output wire with value z. As c′ > c without loss of general-
ity we can assume that Sc′ holds duplicated states Comp2VSS.ShareFuture(x) and Comp2VSS.ShareFuture(y).
Committee Sc′ computes Comp2VSS.ShareFuture(z) locally as

Comp2VSS.ShareFuture(x) + Comp2VSS.ShareFuture(y)

by exploiting the linearity of Comp2VSS.ShareFuture.

Multiplication.

This gate has 2 input wires with values x, y and 1 output wire with value z. Committee Sc holds states
Comp2VSS.ShareFuture(x) and Comp2VSS.ShareFuture(y)a.

• Committee c : Each party P c
i does:

- Compute zi = xi · yi;
- Invoke Comp2VSS.ShareFuture(xi) towards committee Sc1 , but using the already known state

CompVSS.ShareFuture(xi) as a sharing to the constant coefficient of the polynomial used;
- Invoke Comp2VSS.ShareFuture(yi) towards committee Sc1 , but using the already known state

CompVSS.ShareFuture(yi) as a sharing to the constant coefficient of the polynomial used;
- Invoke Comp2VSS.ShareFuture(zi) towards committees Sc1 and Sc′ ;
- Run protocol CompMultProof(xi, yi, zi) towards committee Sc1 .

• Committee c1 : Each party does:

- Let Succeed := {i ∈ [1, n] |CompMultProof(xi, yi, zi) succeeds};
- For all i /∈ Succeed, participate in

CompVSS.RecFuture(x1, . . . , xn; Dx, Px)

CompVSS.RecFuture(y1, . . . , yn; Dy, Py).

• Committee c′ : Each party P c′

j ∈ Sc′ does:

44

- For all i /∈ Succeed take a standard state CompVSS.ShareFuture(zi) and then compute
Comp2VSS.ShareFuture(z) locally as

L
(

Comp2VSS.ShareFuture(z1), . . . , Comp2VSS.ShareFuture(zn)
)

by exploiting the linearity of Comp2VSS.ShareFuture.
aWe can assume that these states are duplicated towards committee Sc1 without loss of generality

Theorem 2. Assuming non-interactive linearly-homomorphic equivocal commitments, protocol
CryptoCircEval is a maximally-fluid MPC for all polynomial functions, that achieves 1/2-computational
security and guaranteed output delivery.

Proof. First, we describe a simulator Sim for protocol CryptoCircEval.

- Input Gates. For each dishonest client C , the simulator Sim executes Comp2VSS.ShareFuture on be-
half of all the honest parties in committees Sk for k ∈ [c, c′]. If at the end of Comp2VSS.ShareFuture
the client C is not disqualified, then Sim uses the exctractability of protocol Comp2VSS.ShareFuture
(see Lemma 27) to obtain the client’s input x, and inputs this to the TTP. Otherwise, input 0 to the
TTP.
For each honest client, the simulator executes an instance of Comp2VSS.ShareFuture with input 0.

- Addition/Multiplication Gates. The simulator Sim executes all steps as in the real world on behalf of
all honest parties in all committees Sk for k ∈ [c, c′].

- Output Gates. For each output gate associated with a corrupted client client C , the simulator ob-
tains the output y of the gate from the TTP. The simulator computes states for all honest party
in Sc consistent with the state of honest parties in Sc and the value y, by exploiting the equiv-
ocal property of the commitments. Then Sim emulates instances of the corresponding instance of
CompVSS.RecFuture(y) towards C on behalf of all honest parties in committeesSk for k ∈ [c, c′−1]
based on these computed states.

We prove the claim by a hybrid argument. Consider the following hybrid worlds.

- Hybrid 0. This is the real world, where Sim has access to all inputs of honest clients and simply executes
CryptoCircEval on behalf of all of honest parties in each committee.

- Hybrid 1. This world is identical to Hybrid 0, until the last message sent from honest parties to the clients
when processing output gates. These messages are computed by Sim as in the ideal world (see above).

- Hybrid 2. This world is identical to Hybrid 1, except that in each multiplication gate, the simulator does
the following on behalf of each honest party in each invocation of CompMultProof by an honest parties
acting as the prover:

- Sample r′ uniform at random, and based on r′ and the state of the dishonest parties use the equiv-
ocal property of the commitments to compute valid openings for CompVSS.RecFuture(r′).

- Set r′′ = 0, and based on the states of dishonest parties, use the equivocal property of the commit-
ments to compute valid openings for CompVSS.RecFuture(r′′).

45

- Hybrid 3. This is the ideal world: the simulator does not have access to any of the inputs of the honest
clients, but instead sim emulates each execution of Comp2VSS.ShareFuture with input 0 on behalf of
honest clients, and then proceeds as explained above.

Claim 1. Hybrids 0 and 1 are indistinguishable.

Proof: All messages are the same up to the output gates. In the output gate, the simulator outputs honest
parties messages that are consistent with the output given by the trusted party y and the states from
corrupted parties.

In the real world, the honest messages are computed according to the protocol CompVSS.RecFuture.
First note that the output obtained in the real world is the same output as in Hybrid 1, since
Comp2VSS.ShareFuture is robust and linear (see Lemmas 27 and 28).

Furthermore, by privacy of Comp2VSS.ShareFuture and the multiplication proof (see Lemma 26 and
30), the states of corrupted parties are completely independent of the inputs from honest clients and dis-
tributed identically in both worlds. By linearity of CompVSS.ShareFuture (see Lemma 25) and equivoca-
tion of commitments (see Definition 4), the computed states from honest parties (along with the states of
corrupted parties) are consistent with the correct output y in Hybrid 1, which is the same as in the real
world. Both hybrids are therefore identically distributed.

■

Claim 2. Hybrids 1 and 2 are indistinguishable.

Proof: Consider an honest prover P c that attempts to perform a multiplication proof CompMultProof
prove that z = x · y (each corrupted prover is handled the same way in both worlds.) First, note that
in Hybrid 1, the reconstructed value r′ is blinded by β, which is uniformly random and unknown to the
adversary. Moreover, since the prover is honest, Lemma 16 guarantees that the proof succeeds (which
means that r′′ = 0).

In Hybrid 2, the simulator computes r′ (directly) as a uniform random value, and computes opening
information (as in the proof of the previous claim), so that the value r′ is reconstructed. The same is done
so that the value reconstructed r′′ is 0.

Since the values r′ and r′′ are distributed identically in both hybrids (and also the messages sent during
CompVSS.RecFuture on behalf of the honest parties follow the same distribution in both worlds), the
hybrids are indistinguishable. ■

Claim 3. Hybrids 2 and 3 are indistinguishable.

Proof: The only difference is that in Hybrid 2, the sharing state of protocol Comp2VSS.ShareFuture
with respect to the internal wire values of Circ are computed based on the real inputs from honest
clients, while in Hybrid 3, they are computed based on the honest clients inputs set to 0. By secrecy
of Comp2VSS.ShareFuture (see Lemma 26), and the fact that the multiplication proofs from honest parties
do not fail (see Lemma 29), the view of the adversary is the same in both hybrids. In addition, by Lemma 27
and the binding property of the commitments (see Definition 4), the extracted input value from each cor-
rupted client in Hybrid 3 is consistent with the shared state held by the corresponding committee after the
input gate is processed in Hybrid 2. ■

Extending to Security against R-adaptive Adversaries. Similar to our perfectly secure protocol, for
simplicity, we implicitly assume that the adversary is NR-adaptive in the above proof as well. We now
briefly discuss why we expect our protocol to also be secure against R-adaptive adversaries.

46

Such adversaries can be handled by our simulation roughly as follows. For each committee assigned to
handle a computation gate (addition or multiplication), whenever a party P c

i ∈ Sc from a past committee
is corrupted, the simulator can simply reveal to the adversary the emulated state on behalf of P c

i that it
has so far, in an execution where the honest clients have input 0. Since the adversary holds only up to t
states from each committee, secrecy of our sub-protocols (see Lemmas 26 and 30), ensures that the view
of the adversary is independent of any values from honest parties. If the committee is executing an output
gate, the simulator needs to instead output the state that was patched consistently with the output of that
gate according to the simulation of the output gate.

Acknowledgements

We would like to thank Martin Hirt for helpful discussions on perfectly secure MPC.

References

[AHKP22] Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov, and Manoj Prabhakaran. SCALES:
MPC with small clients and larger ephemeral servers. Cryptology ePrint Archive, Report
2022/751, 2022. https://eprint.iacr.org/2022/751.

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly secure
multiparty computation. Journal of Cryptology, 30(1):58–151, January 2017.

[BELO14] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. How to withstand
mobile virus attacks, revisited. In Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd
ACM PODC, pages 293–302. ACM, July 2014.

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu
Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 260–290. Springer,
Heidelberg, November 2020.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system for large
scale P2P MPC-as-a-service and low-bandwidth MPC for weak participants. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages
695–712. ACM Press, October 2018.

[BKLZL20] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part I, volume 12550 of LNCS, pages 353–380. Springer, Heidelberg, November 2020.

[BTH06] Zuzana Beerliová-Trubı́niová and Martin Hirt. Efficient multi-party computation with dispute
control. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 305–328.
Springer, Heidelberg, March 2006.

47

https://eprint.iacr.org/2022/751

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293 of
LNCS, page 462. Springer, Heidelberg, August 1988.

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient
multiparty computations secure against an adaptive adversary. In Jacques Stern, editor, EU-
ROCRYPT’99, volume 1592 of LNCS, pages 311–326. Springer, Heidelberg, May 1999.

[CDGK22] Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. YOLO YOSO: Fast and
simple encryption and secret sharing in the YOSO model. Cryptology ePrint Archive, Report
2022/242, 2022. https://eprint.iacr.org/2022/242.

[CDK+23] Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring, and Jes-
per Buus Nielsen. Encryption to the future: a paradigm for sending secret messages to future
(anonymous) committees. InAdvances in Cryptology–ASIACRYPT 2022: 28th International Con-
ference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan,
December 5–9, 2022, Proceedings, Part III, pages 151–180. Springer, 2023.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 280–299. Springer, Heidelberg, May 2001.

[CGG+21] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel Kaptchuk.
Fluid MPC: Secure multiparty computation with dynamic participants. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 94–123, Virtual
Event, August 2021. Springer, Heidelberg.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In 26th FOCS, pages
383–395. IEEE Computer Society Press, October 1985.

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777:155–183, 2019.

[DEP21] Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou. Phoenix: Secure computation
in an unstable network with dropouts and comebacks. Cryptology ePrint Archive, Report
2021/1376, 2021. https://eprint.iacr.org/2021/1376.

[DKI+23] Bernardo David, Anders Konring, Yuval Ishai, Eyal Kushilevitz, and Varun Narayanan. Perfect
mpc over layered graphs. Cryptology ePrint Archive, Paper 2023/330, 2023. https://eprint.
iacr.org/2023/330.

[GHK+21] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin,
and Sophia Yakoubov. YOSO: You only speak once - secure MPC with stateless ephemeral
roles. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 64–93, Virtual Event, August 2021. Springer, Heidelberg.

[GIKR01] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of verifi-
able secret sharing and secure multicast. In 33rd ACM STOC, pages 580–589. ACM Press, July
2001.

48

https://eprint.iacr.org/2022/242
https://eprint.iacr.org/2021/1376
https://eprint.iacr.org/2023/330
https://eprint.iacr.org/2023/330

[GKM+20] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song. Storing
and retrieving secrets on a blockchain. Cryptology ePrint Archive, Report 2020/504, 2020.
https://eprint.iacr.org/2020/504.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic
signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
ACM STOC, pages 469–477. ACM Press, June 2015.

[HMP00] Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-party computation.
In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 143–161. Springer,
Heidelberg, December 2000.

[KRY22] Sebastian Kolby, Divya Ravi, and Sophia Yakoubov. Towards efficient YOSO MPC without
setup. Cryptology ePrint Archive, Report 2022/187, 2022. https://eprint.iacr.org/2022/
187.

[Mic17] Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Papadimitriou,
editor, ITCS 2017, volume 4266, pages 6:1–6:1, 67, January 2017. LIPIcs.

[NRO22] Jesper Buus Nielsen, João L. Ribeiro, and Maciej Obremski. Public randomness extraction
with ephemeral roles and worst-case corruptions. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 127–147. Springer, Heidelberg,
August 2022.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract).
In Luigi Logrippo, editor, 10th ACM PODC, pages 51–59. ACM, August 1991.

[PCRR09] Arpita Patra, Ashish Choudhary, Tal Rabin, and C. Pandu Rangan. The round complexity of
verifiable secret sharing revisited. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 487–504. Springer, Heidelberg, August 2009.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992.

[PS17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer,
Heidelberg, December 2017.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[RS22] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for dishonest majority. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS,
pages 719–749. Springer, Heidelberg, August 2022.

49

https://eprint.iacr.org/2020/504
https://eprint.iacr.org/2022/187
https://eprint.iacr.org/2022/187

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

50

	Introduction
	Our Results
	Related Work

	Technical Overview
	Maximally-Fluid MPC with Perfect Security
	Our Approach and General Challenges
	Perfectly Secure Verifiable Secret Sharing
	2-Level Verifiable Secret Sharing
	Circuit Evaluation

	Maximally-Fluid MPC with Computational Security

	Preliminaries
	Fluid MPC: Model and Security
	Linearly-Homomorphic Equivocal Commitments

	Perfectly-Secure Maximally-Fluid MPC with Guaranteed Output Delivery
	Secure Channels to Future Committees
	Shamir Sharing to Future Committees
	Verifiable Secret Sharing
	Same Value, Many Sharings
	2-Level Verifiable Secret Sharing
	Perfectly Secure BGW-Style Maximally-Fluid Multiplication Proof
	Perfectly Secure Maximally-Fluid MPC

	Computationally Secure Maximally-Fluid MPC with Guaranteed Output Delivery
	(Computationally Secure) Channels To Future Committees
	(Computationally Secure) Shamir Sharing to Future Committees
	(Computationally Secure) Verifiable Secret Sharing
	(Computationally Secure) 2-Level Verifiable Secret Sharing
	(Computationally Secure) Maximally-Fluid Multiplication Proof
	Maximally-Fluid Computationally Secure MPC

