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Abstract. We present a tightly secure identity-based signature (IBS) scheme based on the supersingu-
lar isogeny problems. Although Shaw and Dutta proposed an isogeny-based IBS scheme with provable
security, the security reduction is non-tight. For an IBS scheme with concrete security, the tightness of
its security reduction affects the key size and signature size. Hence, it is reasonable to focus on a tight
security proof for an isogeny-based IBS scheme.
In this paper, we propose an isogeny-based IBS scheme based on the lossy CSI-FiSh signature scheme
and give a tight security reduction for this scheme. While the existing isogeny-based IBS has the square-
root advantage loss in the security proof, the security proof for our IBS scheme avoids such advantage
loss, due to the properties of lossy CSI-FiSh.

1 Introduction

Post-Quantum Cryptography (PQC, for short) is a next-generation cryptographic system that differs from
widely used cryptographic systems based on the hardness of integer factorization problems, and is globally
popularized and used. It is based on various mathematically hard problems that are resistant to attacks
by Shor’s quantum algorithm [28] and has been actively researched by many researchers. Isogeny-based
cryptography is one of the promising candidates for PQC, along with lattice-based cryptography, code-
based cryptography, multivariate-based cryptography, and hash-based cryptography. National Institute of
Standards and Technology (NIST) is currently in the process of standardizing practical post-quantum cryp-
tography with sufficient security and practicality to promote and use these next-generation cryptographic
systems in the near future. According to the results [21] announced in the third round released in July 2022,
CRYSTALS-Kyber was selected for the KEM category and CRYSTALS-Dilithium, Falcon, and SPHINCS+
were selected for the signature category in the process of standardizing post-quantum cryptography. In par-
ticular, in the KEM category, BIKE, Classic McEliece, and HQC, as well as SIKE based on the hardness of
supersingular isogeny problem, entered the fourth round. However, SIKE was unfortunately excluded from
the candidates due to several attacks [7,20,24] known in September 2022. Since the fundamental computa-
tional hardness problem in isogeny-based cryptographic systems has not been solved yet, so cryptographic
systems like CSIDH [8] and SQI-Sign [13] that do not rely on auxiliary point information in their basic struc-
ture, or have a different cryptographic construction than SIDH, continue to be considered secure. Recently,
primeSIDH [19] and M(D)-SIDH [15] have also been introduced as isogeny-based cryptographic systems that
are assumed to resistant to attacks on SIDH, so the legacy of isogeny-based cryptographic systems continues
to evolve.

Meanwhile, isogeny-based cryptographic system is often considered less practical compared to other
cryptographic systems, which has led to a limited number of proposals [5,22,27] for advanced functional
isogeny-based encryption schemes. Nevertheless, from the essential perspective of identity-based cryptogra-
phy, isogeny-based cryptographic systems can be advantageous in constructing identity-based schemes due
to their compact key size compared to other PQC candidates. When a user joins a network, it can be par-
ticularly advantageous for identity-based cryptosystems, as the Key Generation Center (KGC) issues the
master key and user key based on the user’s identity (e-mail, social security number, credit card number,
smart card, MAC address, IO/EO etc.) and then is not involved in the subsequent process.

Identity-Based Signatures from the CSIDH setting Shamir [26] suggested the first identity-based
signature schemes, which are signature schemes with the public key of a user as his/her identity. Instead of
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conducting the role of Public Key Infrastructures (PKI), a trusted KGC issues the corresponding secret key.
CSIibs, proposed by Peng et al. [22], is the first identity-based signature scheme based on the supersingular
isogeny assumption. However, Shaw and Dutta [27] pointed out a flaw in the main structure of CSIibs and
proposed a new identity-based signature scheme based on supersingular isogeny assumption that includes the
forward secrecy feature to address the issue. Both Peng et al. and Shaw and Dutta’s identity-based signature
schemes are based on CSIDH and use SeaSign [12] and CSI-FiSh [6] as their ID protocols.

CSI-FiSh and Lossy CSI-FiSh Isogeny-based cryptography was initially proposed by Couveignes [10]
and by Rostovtsev and Stolbunov [25]. These proposals are known to be weakened by the quantum attack
of Childs, Jao and Soukarev [9] against their based hardness assumptions on isogeny between ordinary
elliptic curves. Instead of ordinary ellitic curves, Jao and De Feo [18] and Castryck et al. [8] proposed the
Diffie-Hellman key exchanges using supersingular elliptic curves. As mentioned above, SIDH was broken by
mainly Castryck and Decru [7] and subsequently Robert [20], Maino and Martindale [24]. These attacks
do not apply to CSIDH-based schemes as SeaSign [12], CSI-FiSh [6], CSI-RAShi [4], Sashimi [11] and CSI-
SharK [2]. Kaafarani et al. [14] proposed the lossy version of CSI-FiSh to achieve the tight reduction.

Our contributions We suggest the identity-based signature (IBS) scheme from isogenies with tight security.
The existing isogeny-based IBS scheme with provable security is the CSI-FiSh-based scheme proposed

by Shaw and Dutta [27]. However, their scheme does not achieve tight security. This one is constructed by
applying their proposed identity-based identification scheme to the Fiat-Shamir transformation. In order to
prove the security of this IBS, it is necessary to employ the forking lemma and adaptive re-programming of
random oracles [23,3]. Because of this, the security reduction for the existing one is not tight.

In order to construct an isogeny-based IBS scheme with tight security, our proposed scheme is based on
lossy CSI-FiSh [14] which is a lossy identification scheme based on CSI-FiSh. Due to the result of [1], it is
known that we can construct a signature scheme with tight security by applying a lossy identification scheme
to the Fiat-Shamir transformation. Hence, it is reasonable to utilize lossy CSI-FiSh in order to construct a
tightly secure IBS scheme.

Technical Overview . Although the construction of our proposed IBS is similar to that of the existing IBS [27],
the security proof for ours is not obvious. To prove the security for a signature scheme constructed from
a lossy identification scheme, we employ the following properties required to that identification scheme:
Indistinguishability of keys and lossy soundness. A lossy identification scheme has two key generation algo-
rithms: The ordinary (public-secret) key generation and lossy key generation which produces a (public) lossy
key which is impossible to distinguish from a real public key. When a generated public key is lossy (called
lossy mode), lossy soundness ensures that generating a valid response to a random challenge is statistically
impossible after producing a commitment. When proving the security for a signature scheme from a lossy
identification scheme, we replace a real public key with a lossy key by utilizing the standard hybrid argument
(i.e., the sequence-of-games approach). However, we cannot employ lossy soundness in the straightforward
way, when proving the security for our IBS scheme. This is because regarding IBSs, there is no notion cor-
responding to the lossy mode. Since an IBS scheme does not generate any public-secret key pair, we cannot
employ the proof approach of [1].

In order to resolve this, we utilize the proof technique similar to the technique used for a tight security
reduction of a DDH-based IBS scheme [16]. Regarding our proposed scheme, the key derivation algorithm
produces a signature on an identity as a user secret key, and the signing algorithm generates a signature
on an identity-message pair. These signatures are generated by using (a variant of) a lossy CSI-FiSh-based
signature scheme. Informally, to prove the security, we simulate those signatures (i.e., those user secret key
and signature on an identity and a message) without using a secret key of lossy CSI-FiSh. This is possible
by utilizing a property of lossy CSI-FiSh and the sequence-of-games proof approach. Namely, we can replace
real signatures with signatures generated in a lossy mode-like way, via tight security reductions. Hence, it is
possible to give a tight security proof for our IBS scheme, by employing properties of lossy CSI-FiSh.

Comparison. We give a comparison of isogeny-based IBS schemes, in terms of key-size, signature-size, and
security bound. Table 1 shows this comparison. From this table, we see that our security proof for the
proposed scheme is significantly tighter compared to that for the existing one. Furthermore, the asymptotic
MPK-size, USK-size, and signature-size of ours are equivalent to those of the existing scheme. This indicates
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Table 1. Comparison of Isogeny-based IBS schemes

Scheme MPK-Size USK-Size Signature-Size Security Bound

[27] S0⌈log p⌉ T1S1(⌈logS0⌉+ ⌈logN⌉) T1S1⌈log p⌉+ T1T2(⌈logS1⌉+ ⌈logN⌉) √
q · ϵ+ negl

Our Scheme S0⌈log p⌉ T1S1(⌈log p⌉+ ⌈logN⌉) T1S1⌈log p⌉+ T1T2(⌈logS1⌉+ ⌈logN⌉) S0 · ϵ+ negl

We assume that the above IBS schemes use supersingular curves over Fp. N is an odd order of an ideal cyclic group.
ϵ is the maximum probability of breaking the underlying computational problem, and q is the maximum number of
queries issued to (random) oracles. negl is a negligible function in a security parameter. S0, S1 are parameters of the
corresponding computational assumptions. T1, T2 are the numbers of parallel executions of the underlying (lossy)
identification scheme.

that these sizes of ours are also improved under a concrete security such as bit-security, since the security
bound of our scheme is tighter. Hence, our goal is achieved, and we can claim that the key-size and signature-
size of our scheme are better than those of the existing one, under concrete bit-security.

This paper is organized as follows. In section 2, we give the preliminaries for the CSIDH setting, lossy
identification schemes, identity-based signatures and hardness assumptions. In section 3, we describe the
construction of the lossy CSI-FiSh by [14]. In section 4, we suggest the tightly secure identity-based signature
from the lossy CSI-FiSh.

2 Preliminaries

2.1 Elliptic curve and Ideal class group

We give some notations and preliminaries for using the CSIDH setting, which is based on [29,8,14]. Let E
be an elliptic curve over a finite field Fp with a prime p ≥ 5, and OE denote the point at infinity on E. Let
E and E′ be the two elliptic curves over Fp. It is called an isogeny φ between E and E′ if φ : E → E′ is
a non-constant morphism satisfying φ(0E) = 0E′ . A separable isogeny (it induces a separable extension of
function fields) having {0E} as kernel is an isomorphism; an isogeny having the same domain and range is
an endomorphism.

Ideal class group The set of all endomorphisms of an elliptic curve E, together with the zero map, form
a ring under pointwise addition and composition. Such a ring is called the endomorphism ring of E and it
is denoted by End(E). If End(E) is an order in a quaternion algebra, the curve is said to be supersingular,
if otherwise it is said to be ordinary. The restriction Endp(E) to the endomorphisms defined over Fp forms
a subring, which is isomorphic to an order in the quadratic field K = Q(

√
−p). An order is a subring of

Q(
√
−p) which is also a finitely-generated Z-module containing a basis of K as a Q-vector space. The set

Z[
√
−p] = {m+ n

√
−p | m,n ∈ Z} satisfies the above three conditions, and we will denote it by O. We then

consider the set Eℓℓp(O, π) containing all supersingular curves E defined over Fp - modulo isomorphisms
defined over Fp - such that there exists an isomorphism between O and Endp(E) mapping

√
−p ∈ O into the

Frobenius endomorphism (x, y) 7→ (xp, yp). Each isomorphism class in Eℓℓp(O, π) can be uniquely represented
by a single element of Fp if p ≥ 5 is a prime such that p ≡ 3 (mod 8).

A fractional ideal a of O is a finitely generated O-submodule of K. When a is contained in O, it is said
to be integral ; when a = αO for some α ∈ K, it is said to be principal ; when there exists a fractional ideal b
such that ab = O, it is called invertible. The set of invertible fractional ideals of O forms an abelian group
under ideal multiplication. Its quotient by the subgroup composed by principal fractional ideals is a finite
group called ideal class group of O, usually denoted by Cℓ(O), which cardinality is the class number of O.

The ideal class group Cℓ(O) acts freely and transitively on the set Eℓℓp(O, π) via a group action, which
denote by ⋆.

⋆ : Cℓ(O)× Eℓℓp(O, π)→ Eℓℓp(O, π)
(a, E) 7→ a ⋆ E.
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For convenience, we use representatives instead of equivalence classes to denote elements of Cℓ(O) and
Eℓℓp(O, π). When p is of the form 4ℓ1ℓ2 · · · ℓs − 1, where ℓ1, . . . , ℓs are small odd primes, a special integral
ideal Jℓi ⊂ O corresponds to each prime ℓi. These ideals allow an efficient computation of the group action.
In particular, the action of Jℓi on a curve E ∈ Eℓℓp(O, π) is determined by an isogeny having as kernel the
unique rational ℓi-torsion subgroup of E.

The CSIDH setting [8] The general variant of the CSIDH key-exchange scheme relies on the heuristic that
the equivalence classes of the ideals Jℓ1 , . . . , Jℓs , together with their inverses, generate the entire ideal class
group Cℓ(O). Castryck et al. proposed a non-interactive key exchange with using of supersingular elliptic
curves over Fp with p ≡ 3 (mod 3). It starts from the curve E0 : y2 = x3+x with Fp-rational endomorphism
ring O. As known, all Montgomery curves EA : y2 = x3 +Ax2 + x over Fp that are supersingular appear in
the Cℓ(O)-orbit of E0, and even their Fp-isomorphism class is uniquely determined by A. It gives the small
public key size by a single Fp-element A for checking its supersingularity.

Throughout this paper, we use the following notation: For a positive integer n, let [n] = {1, 2, . . . , n}. For n
values x1, . . . , xn, let (xi)i∈[n] = (x1, . . . , xn). For a function f : N→ R, f is negligible in λ if f(λ) = o(λ−c)
for any constant c > 0 and sufficiently large λ ∈ N. Then, we write f(λ) = negl(λ). A probability is an
overwhelming probability if it is 1− negl(λ). “Probabilistic polynomial-time” is abbreviated as PPT. For a
positive integer λ, let poly(λ) be a universal polynomial of λ.

2.2 Lossy Identification Schemes

Following [1,14], we describe the definition of lossy identification schemes.

Definition 1 (Lossy Identification Scheme). A lossy identification scheme for a relation R ⊆ X × Y
consists of five polynomial-time algorithms (IGen, LossyIGen,P = (P1,P2),V): Let ComSet, ChSet, and ResSet
be the commitment space, the challenge space, and the response space, respectively.

Key Generation. The randomized algorithm IGen takes as input a security parameter 1λ and outputs a
statement-witness pair (X,W ) ∈ R.

Lossy Key Generation. The randomized algorithm LossyIGen takes as input a security parameter 1λ and
outputs a statement Xlos ∈ X .

Prover. The prover protocol P is split into two randomized algorithms (P1,P2):

– The randomized algorithm P1 takes as input a statement-witness pair (X,W ) and outputs a commit-
ment com ∈ ComSet.

– The randomized or deterministic algorithm P2 takes as input a statement-witness pair (X,W ) ∈ R,
a commitment com ∈ ComSet, and a challenge ch ∈ ChSet, and it outputs a response resp ∈ ResSet.

Verifier. The deterministic algorithm V takes as input a statement X, a commitment com ∈ ComSet, a
challenge ch ∈ ChSet, and a response resp ∈ ResSet, and it outputs 1 (accept) or 0 (reject).

In addition, following [1], we describe the transcript generation protocol TransLossyIDX,W for a lossy identi-

fication scheme (IGen, LossyIGen,P = (P1,P2),V). For every (X,W ) ← IGen(λ), TransLossyIDX,W () generates a
transcript (com, ch, resp) ∈ ComSet× ChSet× ResSet ∪ {(⊥,⊥,⊥)}, in the following way:

1. Compute com← P1(X,W ).

2. Choose ch
$← ChSet.

3. Compute resp← P2((X,W ), com, ch).
4. If resp = ⊥, set (com, ch)← (⊥,⊥).
5. Output (com, ch, resp).

The required properties for a lossy identification scheme are as follows:

Definition 2. A lossy identification scheme LossyID = (IGen, LossyIGen,P = (P1,P2),V) is required to satisfy
the following properties:
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Completeness. For every (X,W )← IGen(1λ), it holds that

Pr

[
V(X, com, ch, resp) = 1

∣∣∣∣ com← P1(X,W ); ch
$← ChSet;

resp← P2(X,W, com, ch)

]
= 1.

Honest-Verifier Zero-Knowledge. For every (X,W ) ← IGen(1λ), there exists a PPT simulator Sim
which, on input a statement X, outputs transcripts {(com, ch, resp)} whose distributions are statistically

indistinguishable from those of the transcripts generated by TransLossyIDX,W,λ .
Indistinguishability of Lossy Statements. For any PPT adversary A against IDS, its advantage

Advind-stmt
IDS,A (λ) :=

∣∣Pr[A(X) = 1 | (X,W )← IGen(1λ)]− Pr[A(Xlos) = 1 | Xlos ← LossyIGen(1λ)]
∣∣

is negligible in λ.
Lossy Soundness. LossyID satisfies ϵlos-lossy soundness if for any unbounded adversary A against LossyID,

its advantage Advlos-imp-pa
LossyID,A (λ) = Pr[Exptlos-imp-pa

LossyID,A (λ) = 1] is less than ϵlos, where Exptlos-imp-pa
LossyID,A (λ) is the

following experiment:

1. A challenger generates Xlos ← LossyIGen(1λ) and gives Xlos to the adversary A.
2. A submits a commitment com ∈ ComSet to the challenger. The challenger returns a challenge ch

$←
ChSet.

3. A outputs a response resp ∈ ResSet. The challenger returns b← V(Xlos, com, ch, resp).

2.3 Identity-based Signatures

Following [17,30], we describe the syntax and a security definition for identity-based signatures (IBSs), as
follows:

Definition 3 (IBS). An IBS scheme consists of polynomial-time algorithms (Setup,KeyDer,Sign,Vrfy): For
a security parameter λ, let ID = ID(λ) be the identity space, let M =M(λ) be the message space, and let
USK = USK(λ) be the user secret key space.

Setup. The randomized algorithm Setup takes as input a security parameter 1λ and outputs a master public
key mpk and a master secret key msk.

Key Derivation. The randomized algorithm KeyDer takes as input a master public key mpk, a master secret
key msk, and an identity id, and it outputs a user secret key uskid ∈ USK.

Signing. The randomized or deterministic algorithm Sign takes as input a master public key mpk, a user
secret key uskid ∈ USK, and a message m ∈M, and it outputs a signature σ.

Verification. The deterministic algorithm Vrfy takes as input a master public key mpk, an identity id ∈ ID,
a message m ∈M, and a signature σ, and it outputs 1 (accept) or 0 (reject).

We require an IBS scheme to be correct, as follows:

Definition 4 (Correctness). An IBI scheme (Setup,KeyDer,Sign,Vrfy) is correct, if for every (mpk,msk)←
Setup(1λ), every id ∈ ID, and every m ∈M, it holds that Vrfy(mpk, id,m, σ) = 1, where uskid ← KeyDer(mpk,msk, id)
and σ ← Sign(mpk, usk[id],m).

As a security notion of IBSs, we describe the definition of existential unforgeability against chosen identity
and chosen message attacks (called EUF-ID-CMA security) [30].

Definition 5 (EUF-ID-CMA security). An IBS scheme IBS = (Setup,KeyDer,Sign,Vrfy) is EUF-ID-CMA
secure, if for any PPT adversary A against IBS, its advantage Adveuf-id-cma

IBS,A (λ) := Pr[Expteuf-id-cma
IBS,A (λ) = 1]

is negligible in λ, where the experiment Expteuf-id-cma
IBS,A (λ) is defined as follows:

Setup. The challenger generates (mpk,msk)← Setup(1λ) and sets the four lists Lid ← ∅, L̂id ← ∅, Luskid ←
∅, and Lm ← ∅. It gives mpk to the adversary A.

Queries. A is given access to the following oracles:
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– Key derivation oracle OKeyDer: On input a key derivation query id ∈ ID, OKeyDer outputs ⊥ if id ∈ L̂id.
Then, it checks whether (id, ·) ∈ Luskid . If (id, uskid) ∈ Luskid for some uskid ∈ USK, it returns uskid.
Otherwise, it returns uskid ← KeyDer(mpk,msk, id) and sets the two lists Luskid ← Luskid ∪{(id, uskid)},
Lid ← Lid ∪ {id}.

– Signing oracle OSign: On input a signing-query (id,m) ∈ ID ×M, OSign sets Lm ← Lm ∪ {(id,m)}
and checks whether (id, uskid) ∈ Luskid :

• If (id, uskid) ∈ Luskid for some uskid ∈ USK, it returns σ ← Sign(mpk, uskid,m).
• If there does not exist (id, uskid) ∈ Luskid such that uskid ∈ USK, it computes uskid ← KeyDer(mpk,msk, id),

sets Luskid ← Luskid ∪ {(id, uskid)}, L̂id ← L̂id ∪ {id}, and returns σ ← Sign(mpk, uskid,m).

Output. A outputs a forgery (id∗,m∗, σ∗). The challenger outputs 1 if id∗ /∈ Lid ∧ (id∗,m∗) /∈ Lm ∧
Vrfy(mpk, id∗,m∗, σ∗) = 1, and 0 otherwise.

2.4 Hardness Assumptions

We describe the definitions of the computational assumptions related to our IBS scheme’s security: The
decisional CSIDH and fixed-curve multi-decisional CSIDH assumptions.

Following [14], we describe the decisional CSIDH (D-CSIDH) and fixed-curve multi-decisional CSIDH
(FCMD-CSIDH) assumptions, as follows:

Definition 6 (Decisional CSIDH Assumption). Given the set Eℓℓp(O, π) and the ideal class group
Cℓ(O), the decisional CSIDH (D-CSIDH) problem is to distinguish between the following distributions:

– (E,H, a ⋆ E, a ⋆ H), where the supersingular elliptic curves E and H are sampled uniformly from
Eℓℓp(O, π), and a is sampled uniformly from Cℓ(O),

– (E,H,E′, H ′), where E,H,E′, H ′ are supersingular elliptic curves sampled uniformly from Eℓℓp(O, π).

We say that the D-CSIDH assumption holds if for any PPT algorithm A, its advantage AdvD-CSIDH
A (λ) is

negligible in λ, where AdvD-CSIDH
A (λ) is the advantage of A distinguishing the above two distributions.

Definition 7 (Fixed-Curve Multi-Decisional CSIDH Assumption). Let S be a positive integer. Given
the ideal class group Cℓ(O) and the set Eℓℓp(O, π), the fixed-curve multi-decisional CSIDH (FCMD-CSIDH)
problem with S is to distinguish the following distributions:

– (E,H, (ai ⋆E, ai ⋆H)i∈[S]), where the supersingular elliptic curves E and H are sampled uniformly from
Eℓℓp(O, π), and for i ∈ [S], ai are sampled uniformly from Cℓ(O),

– (E,H, (E′
i, H

′
i)i∈[S]), where E,H,E′

i, H
′
i for i ∈ [S] are supersingular elliptic curves sampled from Eℓℓp(O, π)

uniformly at random.

We say that the FCMD-CSIDH assumption with parameter S holds if for any PPT algorithm A, its
advantage AdvFCMD-CSIDH

A,S (λ) is negligible in λ, where AdvFCMD-CSIDH
A,S (λ) is the advantage of A distinguishing

the above two distributions.

From a result of [14], the following relationship between the above two assumptions was shown:

Lemma 1 (D-CSIDH to FCMD-CSIDH ([14])). Let S be a positive integer. If there exists any PPT
algorithm A solving the FCMD-CSIDH problem with parameter S, then there exists a PPT algorithm B solving
the D-CSIDH problem such that

AdvFCMD-CSIDH
A,S (λ) ≤ S · AdvD-CSIDH

B (λ).

3 The Lossy CFI-FiSh scheme

In this section, we first recall the construction of the lossy CFI-FiSh identification scheme [14].
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3.1 The lossy CFI-FiSh

The lossy CFI-FiSh identification scheme (IGen, LossyIGen,P1,P2,V) is constructed as follows:
The following system parameter of the lossy CSI-FiSh is set: Assume the ideal class group Cℓ(O) is cyclic

with a known order N and generator g. Let E0 be the base curve defined by y2 = x3+x. Let X be a finite set

of pairs ((E
(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 )) where E

(0)
1 , E

(0)
2 , E

(1)
1 , E

(1)
2 are being run over Eℓℓp(O, π). Here, Y = ZN

is the set of witnesses. Consider the relation

R := {(((E(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 )), a) ∈ X × Y | E(1)

1 = ga ⋆ E
(0)
1 , E

(1)
2 = ga ⋆ E

(0)
2 },

where ((E
(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 )) ∈ X is a statement, and a ∈ Y is a witness.

– The IGen algorithm samples a, b, c ∈ ZN uniformly at random and outputs a pair (X,W ) ∈ R where

X = ((E
(0)
1 = gb ⋆ E0, E

(0)
2 = gc ⋆ E0), (E

(1)
1 = ga ⋆ E

(0)
1 , E

(1)
2 = ga ⋆ E

(0)
2 )) and W = a

– The LossyIGen algorithm chooses a, a′, b, c ∈ ZN uniformly at random and outputs a lossy statement

Xls = ((E
(0)
1 = gb ⋆ E0, E

(0)
2 = gc ⋆ E0), (E

(1)
1 = ga ⋆ E

(0)
1 , E

(1)
2 = ga

′
⋆ E

(0)
2 ))

– The P1 algorithm takes (X,W ) as input and generates a uniformly random r ∈ ZN . This algorithm

outputs the commitment com = (F1 = gr ⋆ E
(0)
1 , F2 = gr ⋆ E

(0)
2 ).

– The P2 algorithm, on input ((X,W ), com, ch) where ch ∈ {0, 1}, outputs the response resp = r if ch = 0,
else resp = r − a.

– The V algorithm given (X, com, ch, resp) accepts if the following equations hold:{
gresp ⋆ E

(0)
1 = F1, g

resp ⋆ E
(0)
2 = F2, if ch = 0

gresp ⋆ E
(1)
1 = F1, g

resp ⋆ E
(1)
2 = F2, if ch = 1

E0

E
(1)
1 E

(0)
1 E

(0)
2 E

(1)
2

F1 F2

b c

a a

r − a r r r − a

Fig. 1. The base lossy CFI-FiSh identification scheme in[14]

From results of [14], the following proposition was proved:

Proposition 1 ([14]). The lossy identification scheme LossyIDbase satisfies completeness and honest-verifier
zero-knowledge property.

– LossyIDbase satisfies indistinguishability of lossy statements if the D-CSIDH assumption holds. In particular,
we have Advind-stmt

A,LossyIDbase(λ) = AdvD-CSIDH
B (λ), where A is a PPT algorithm against LossyIDbase, and B is a

PPT algorithm against the D-CSIDH problem.
– LossyIDbase satisfies ϵlos-lossy soundness for ϵlos = 1/(2N), where N = |Cℓ(O)|.

The above lossy identification scheme has only one-bit challenge. To improve the security, we need to exe-
cute the base lossy identification scheme in parallel rounds. To decrease the signature size of the resulting Fiat-
Shamir signature scheme, a method in [12] is applied which need to satisfy the size of public key. The concrete

construction is as follows: As the security parameter, let X = {(E(0)
1 , E

(0)
2 ), (E

(1)
1 , E

(1)
2 ), · · · , (E(S)

1 , E
(S)
2 ) |

E
(j)
i ∈ Eℓℓp(O)}, Y = {a1, a2, · · · , aS |ai ∈ ZN}. E0 is defined the same as the base lossy CFI-FiSh.
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– The algorithm IGen takes {ai}i∈[S], b, c ∈ ZN and outputs a pair (X,W ) ∈ R where X = ((E
(0)
1 =

gb ⋆E0, E
(0)
2 = gc ⋆E0), (E

(1)
1 = ga1 ⋆E

(0)
1 , E

(i)
2 = ga1 ⋆E

(0)
2 ), · · · , (E(S)

1 = gaS ⋆E
(0)
1 , E

(S)
2 = gaS ∗E(0)

2 ))
and W = {a}i

– The algorithm LossyIGen takes a1, a2, · · · , aS , a′1, a′2, · · · , a′S , b, c ∈ ZN and outputs a lossy statement

Xls = ((E
(0)
1 = gb⋆E0, E

(0)
2 = gc⋆E0), (E

(1)
1 = ga1⋆E

(0)
1 , E

(1)
2 = ga

′
1⋆E

(0)
2 ), · · · , (E(S)

1 = gaS⋆E
(0)
1 , E

(S)
2 =

ga
′
S ⋆ E

(0)
2 ))

– P1 takes the output (X,W ) of the algorithm IGen and then generates t random ri ∈ ZN . The output of

P1 is the commitment com = (F
(i)
1 = gr ⋆ E

(0)
1 , F

(i)
2 = gr ⋆ E

(0)
2 )

– P2 takes ((X,W ), com, ch) where ch = b1||b2|| · · · ||bt, each bi ∈ {0, 1, · · · , S} and outputs the response
resp = resp1||resp2|| · · · ||respt, respi = ri if bi = 0, else respi = ri − ai.

– The algorithm V takes (X, com, ch, resp) and accepts if the following equations hold{
grespi ⋆ E

(0)
1 = F1, g

respi ⋆ E
(0)
2 = F2, if bi = 0

gresp ⋆ E
(1)
1 = F1, g

resp ⋆ E
(1)
2 = F2, if bi ̸= 0

4 Tightly Secure IBS from Lossy CSI-FiSh

4.1 Construction

In this section, we describe our proposed IBS scheme with tight security. This scheme is based on the lossy
CSI-FiSh scheme and IBS scheme in [27]. Informally, our IBS is described as follows:

– The master public key mpk and the master secret key msk are a public key (E
(i)
1 , E

(i)
2 )i∈{0,...,S0} and a

secret key (ai)i∈[S0] of the lossy CSI-FiSh scheme, respectively.

– When generating a user’s secret key uskid, a lossy CSI-FiSh’s signature (F
(i,j)
1 , F

(i,j)
2 , respi,j)i∈[T1],j∈[S1]

on id is generated by using msk. Then, this signature corresponds to uskid in our scheme.
– The Sign algorithm on input uskid and a message m generates a signature on (id,m), which consists of

the commitment (F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] and a new lossy CSI-FiSh’s signature (ĉhi,j , r̂espi,j)i∈[T1],j∈[T2]

computed by using uskid.
– The Vrfy algorithm checks the validity-check of the given signature on (id,m), by following the verification

algorithm of the lossy CSI-FiSh scheme.

Concretely, our proposed IBS scheme IBSLCSI-FiSh = (Setup,KeyDer,Sign,Vrfy) is constructed as follows:
As the system parameter of IBSLCSI-FiSh, let E0 be the base curve, let T1, T2, S0 = 2η0 − 1, S1 = 2η1 − 1 be
positive integers, where η0, η1 are positive integers, and T1 < S0, T2 < S1. Let H : {0, 1}∗ → {0, . . . , S0}T1S1

and Ĥ : {0, 1}∗ → {0, . . . , S1}T1T2 be random oracles. ID = {0, 1}∗ andM = {0, 1}∗ are the identity space
and the message space, respectively.

– (mpk,msk)← Setup(1λ):

1. Choose b
$← ZN and c

$← ZN .
2. Compute E

(0)
1 = gb ⋆ E0 and E

(0)
2 = gc ⋆ E0.

3. For i ∈ {1, . . . , S0}, choose ai
$← ZN and compute E

(i)
1 = gai ⋆ E

(0)
1 , E

(i)
2 = gai ⋆ E

(0)
2 .

4. Output mpk = ((E
(0)
1 , E

(0)
2 ), (E

(i)
1 , E

(i)
2 )i∈[S0]) and msk = (a1, . . . , aS0

).
– uskid ← KeyDer(mpk,msk, id):

1. Parse ((E
(0)
1 , E

(0)
2 ), (E

(i)
1 , E

(i)
2 )i∈[S0]) and msk = (a1, . . . , aS0

).

2. For i ∈ [T1] and j ∈ [S1], choose ri,j
$← ZN and compute F

(i,j)
1 = gri,j ⋆ E

(0)
1 , F

(i,j)
2 = gri,j ⋆ E

(0)
2 .

3. Compute (chi)i∈[T1S1] = H((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥ id).

4. For i ∈ [T1] and j ∈ [S1], compute respi,j = ri,j − achi
.
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5. Output uskid = (id, (F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).

– σ ← Sign(mpk, uskid,m):

1. Parsempk = ((E
(0)
1 , E

(0)
2 ), (E

(i)
1 , E

(i)
2 )i∈[S0]) and uskid = (id, (F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).

2. For i ∈ [T1], set respi,0 = 0.

3. Compute (chi)i∈[T1S1] = H((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥ id).

4. For i ∈ [T1] and j ∈ [T2], choose r̂i,j
$← ZN and compute F̂

(i,j)
1 = gr̂i,j ⋆E

(chi)
1 , F̂

(i,j)
2 = gr̂i,j ⋆E

(chi)
2 .

5. Compute (ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂
(i,j)
1 , F̂

(i,j)
2 )i∈[T1],j∈[T2] ∥ id ∥ m).

6. For i ∈ [T1] and j ∈ [T2], compute r̂espi,j = r̂i,j − resp
i,ĉhi,j

.

7. Output σ = ((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2], (r̂espi,j)i∈[T1],j∈[T2]).

– 1/0← Vrfy(mpk, id,m, σ):

1. Parse mpk = ((E
(0)
1 , E

(0)
2 ), (E

(i)
1 , E

(i)
2 )i∈[S0]) and σ = ((F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2],

(r̂espi,j)i∈[T1],j∈[T2]).

2. Compute (chi)i∈[T1S1] = H((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥ id).

3. For i ∈ [T1] and j ∈ [T2], compute

• F̂
(i,j)′
1 = gr̂espi,j ⋆ E

(chi)
1 and F̂

(i,j)′
2 = gr̂espi,j ⋆ E

(chi)
2 if ĉhi,j = 0, and

• F̂
(i,j)′
1 = gr̂espi,j ⋆ F

(i,ĉhi,j)
1 and F̂

(i,j)′
2 = gr̂espi,j ⋆ F

(i,ĉhi,j)
2 if ĉhi,j > 0.

4. Output 1 if (ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂
(i,j)′
1 , F̂

(i,j)′
2 )i∈[T1],j∈[T2] ∥ id ∥ m), and 0 otherwise.

We show the correctness of our scheme IBSLCSI-FiSh, as follows:

Proposition 2. The IBS scheme IBSLCSI-FiSh is correct.

Proof. Let mpk = ((E
(0)
1 , E

(0)
2 ), (E

(i)
1 , E

(i)
2 )i∈[S0]) and msk = (a1, . . . , aS0

), where (mpk,msk) ← Setup(1λ).

For an identity id ∈ ID and a messagem ∈M, let uskid = (id, (F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1])←

KeyDer(mpk,msk, id) and let σ = ((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2], (r̂espi,j)i∈[T1],j∈[T2])← Sign(mpk,

uskid,m).
Then, we show that the verification algorithm Vrfy accepts the valid message-signature pair (m, σ) on id.

In the case ĉhi,j = 0, for (i, j) ∈ [T1]× [T2] and k ∈ {1, 2}, we have

F̂
(i,j)′
k = gr̂espi,j ⋆ E

(chi)
k

= g
r̂i,j−resp

i,ĉhi,j ⋆ E
(chi)
k

= gr̂i,j−respi,0 ⋆ E
(chi)
k

= gr̂i,j ⋆ E
(chi)
k = F̂

(i,j)
k .

In the case ĉhi,j > 0, we have the following for (i, j) ∈ [T1]× [T2] and k ∈ {1, 2}:

F̂
(i,j)′
k = gr̂espi,j ⋆ F

(i,ĉhi,j)
k

= g
r̂i,j−resp

i,ĉhi,j ⋆ (g
r
i,ĉhi,j ⋆ E

(0)
k )

= g
r̂i,j−(r

i,ĉhi,j
−achi

)
⋆ (g

r
i,ĉhi,j ⋆ E

(0)
k )

= gr̂i,j ⋆ (gachi ⋆ E
(0)
k )

= gr̂i,j ⋆ E
(chi)
k = F̂

(i,j)
k .

From the above, we obtain the following equation:

(ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂
(i,j)
1 , F̂

(i,j)
2 )i∈[T1],j∈[T2] ∥ id ∥ m)

= Ĥ((F̂
(i,j)′
1 , F̂

(i,j)′
2 )i∈[T1],j∈[T2] ∥ id ∥ m).

Therefore, if a signature σ on an identity-message pair (id,m) is generated correctly, the Vrfy algorithm
accepts this signature. The proof is completed. ⊓⊔
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4.2 Security Analysis

The following theorem shows the security of our proposed IBS scheme IBSLCSI-FiSh:

Theorem 1. If the FCMD-CSIDH assumption with parameter S0 holds, then the IBS scheme IBSLCSI-FiSh is
EUF-ID-CMA secure in the random oracle model.

Proof. Let A be a PPT adversary against the EUF-ID-CMA security of IBSLCSI-FiSh. Let qs, qk, qh, and qĥ be

the maximum numbers of queries issued to the oracles OSign, OKeyDer, H, and Ĥ, respectively.
In order to prove Theorem 1, we consider a sequence of the security games Game0,Game1,Game2,Game3.

For i ∈ {0, 1, 2, 3}, let Wi be the event that the experiment outputs 1 in Gamei.

Game0: This game is the same as the ordinary EUF-ID-CMA security game. Then, we have Adveuf-id-cma
IBSLCSI-FiSh,A(λ) =

Pr[W0].

Game1: This game is the same as Game0 except that the key-derivation oracle OKeyDer generates a user secret
key uskid for id ∈ ID, as follows:

1. For i ∈ [T1S1], choose chi
$← {0, . . . , S0}.

2. For i ∈ [T1], set respi,0 = 0.

3. For i ∈ [T1] and j ∈ [S1], choose respi,j
$← ZN .

4. For i ∈ [T1] and j ∈ [S1], compute F
(i,j)
1 = grespi,j ⋆ E

(chi)
1 and F

(i,j)
2 = grespi,j ⋆ E

(chi)
2 .

5. Program (chi)i∈[T1S1] = H((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥ id) if the hash value of ((F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥

id) is not defined. Otherwise abort.

6. Let uskid = (id, (F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).

First, we show that the OKeyDer oracle is correctly simulated in Game1 unless the aborting event occurs. Let

σ = ((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2], (r̂espi,j)i∈[T1],j∈[T2]) ← Sign(mpk, uskid,m) be a signature

generated in Game1. We analyze the output of the Vrfy algorithm. In the case ĉhi,j = 0, Vrfy computes the
following for (i, j) ∈ [T1]× [T2] and k ∈ {1, 2}:

F̂
(i,j)′
k = gr̂espi,j ⋆ E

(chi)
k = g

r̂i,j−resp
i,ĉhi,j ⋆ E

(chi)
k

= gr̂i,j−respi,0 ⋆ E
(chi)
k = gr̂i,j ⋆ E

(chi)
k = F̂

(i,j)
k .

In the case ĉhi,j > 0, for (i, j) ∈ [T1]× [T2] and k ∈ {1, 2}, Vrfy computes the following for a valid signature:

F̂
(i,j)′
k = gr̂espi,j ⋆ F

(i,ĉhi,j)
k

= g
r̂i,j−resp

i,ĉhi,j ⋆ (g
resp

i,ĉhi,j ⋆ E
(chi)
k )

= gr̂i,j ⋆ E
(chi)
k = F̂

(i,j)
k .

The second equation holds because for any ĉhi,j = j̃ > 0, the OKeyDer oracle sets F
(i,j̃)
k = grespi,j̃ ⋆ E

(chi)
k .

We next estimate the upper bound of the probability that the OKeyDer oracle aborts, that is, the probability

that ((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥ id) has been queried to H when defining H((F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥ id).

As the worst-case scenario, qh + 1 queries are issued to H at the beginning of the experiment. Then, the
probability that OKeyDer aborts for the i-th query is at most (i + qh)/N . In addition, the total number of
queries issued to H is at most qs + qk, since OSign and OKeyDer call H at most qs and qh times, respectively.
The probability of guessing a collision of H each time is at most (qs+ qk + qh+1)/N . Hence, the probability
of aborting Game1 is at most (qs + qk)(qs + qk + qh +1)/N over all (qs + qk) extraction queries, and we have
|Pr[W0]− Pr[W1]| ≤ (qs + qk)(qs + qk + qh + 1)/N .

Game2: This game is the same as Game1 except that the signing oracle OSign generates a signature σ on
(id,m), as follows:

1. Parse uskid = (id, (F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (respi,j)i∈[T1],j∈[S1]).
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2. Compute

(chi)i∈[T1S1] = H((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] ∥ id).

3. For i ∈ [T1] and j ∈ [T2], choose ĉhi,j
$← {0, . . . , S1} and r̂espi,j

$← ZN .
4. For i ∈ [T1] and j ∈ [T2], compute

– F̂
(i,j)
1 = gr̂espi,j ⋆ E

(chi)
1 and F̂

(i,j)
2 = gr̂espi,j ⋆ E

(chi)
2 if ĉhi,j = 0, and

– F̂
(i,j)
1 = gr̂espi,j ⋆ F

(i,ĉhi,j)
1 and F̂

(i,j)
2 = gr̂espi,j ⋆ F

(i,ĉhi,j)
2 if ĉhi,j > 0.

5. Program (ĉhi,j)i∈[T1],j∈[T2] = Ĥ((F̂
(i,j)
1 , F̂

(i,j)
2 )i∈[T1],j∈[T2] ∥ id ∥ m) if the hash value of ((F̂

(i,j)
1 , F̂

(i,j)
2 )i∈[T1],j∈[T2] ∥

id ∥ m). Otherwise abort.

6. Let σ = ((F
(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1], (ĉhi,j)i∈[T1],j∈[T2], (r̂espi,j)i∈[T1],j∈[T2]).

We show that Game1 and Game2 are identical unless the aborting event occurs. All signatures generated
by OSign in Game2 are valid, because OSign computes

– F̂
(i,j)
1 = gr̂espi,j ⋆ E

(chi)
1 and F̂

(i,j)
2 = gr̂espi,j ⋆ E

(chi)
2 if ĉhi,j = 0, and

– F̂
(i,j)
1 = gr̂espi,j ⋆ F

(i,ĉhi,j)
1 and F̂

(i,j)
2 = gr̂espi,j ⋆ F

(i,ĉhi,j)
2 if ĉhi,j > 0.

That is, the Vrfy algorithm always accepts a signature generated by OSign since Vrfy computes the values

above in the same way as OSign. Then, the distributions of F̂
(i,j)
1 and F̂

(i,j)
2 are uniform, since r̂espi,j and

ĉhi are uniformly random (where i ∈ [T1] and j ∈ [T2]). Hence, as long as the aborting event does not occur,
Game2 is identical to Game1.

In the same way as the proof of the indistinguishability between Game0 and Game1, the probability of
aborting is at most (qs + qk)(qs + qk + qĥ + 1)/N . Therefore, we obtain |Pr[W1]− Pr[W2]| ≤ (qs + qk)(qs +
qk + qĥ + 1)/N .

Game3: This game is the same as Game2 except that the challenger generates E
(i)
1 = gai ⋆ E

(0)
1 and E

(i)
2 =

ga
′
i ⋆E

(0)
2 for i ∈ [S0] instead of E

(i)
1 = gai ⋆E

(0)
1 and E

(i)
2 = gai ⋆E

(0)
2 , when generating a master public key

and a master secret key.
It is possible to show the indistinguishability between Game2 and Game3, by constructing a PPT reduction

algorithm solving the FCMD-CSIDH problem. In both Game2 and Game3, the OKeyDer and OSign oracles can be
simulated without msk. Thus, it is possible to set the given FCMD-CSIDH instance as mpk. Then, if the given
values are valid FCMD-CSIDH instances, Game2 can be simulated. If those values are random FCMD-CSIDH
instances, Game3 is also simulated. Hence, by using A, we can construct a PPT algorithm B solving the
FCMD-CSIDH problem such that |Pr[W2]− Pr[W3]| ≤ AdvFCMD-CSIDH

B,S0
(λ), in the straightforward way.

We show that the winning probability in Game3 is negligible. In order to do this, we consider the following
two events:

– [Reuse]:A generates a valid forgery (id∗,m∗, σ∗) (where σ∗ = ((F
(i,j)∗
1 , F

(i,j)∗
2 )i∈[T1],j∈[S1], (ĉh

∗
i,j)i∈[T1],j∈[T2],

(r̂esp
∗
i,j)i∈[T1],j∈[T2])), by reusing some commitment (F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] generated by OSign. Namely,

(F
(i,j)∗
1 , F

(i,j)∗
2 )i∈[T1],j∈[S1] = (F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1].

– [¬Reuse]:A generates a valid forgery (id∗,m∗, σ∗) (where σ∗ = ((F
(i,j)∗
1 , F

(i,j)∗
2 )i∈[T1],j∈[S1], (ĉh

∗
i,j)i∈[T1],j∈[T2],

(r̂esp
∗
i,j)i∈[T1],j∈[T2])), without reusing any (F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1] obtained by OSign given (id∗,m∗).

Namely, (F
(i,j)∗
1 , F

(i,j)∗
2 )i∈[T1],j∈[S1] ̸= (F

(i,j)
1 , F

(i,j)
2 )i∈[T1],j∈[S1].

We first estimate the upper bound of the probability Pr[W3 ∧ ¬Reuse]. In order to do this, for the

generated public key mpk = ((E
(0)
1 , E

(0)
2 ), (E

(i)
1 = gai ⋆ E

(0)
1 , E

(i)
2 = ga

′
i ⋆ E

(0)
2 )i∈[S0]), we define Xbad as the

subset of X (the statement set of lossy CSI-FiSh) which satisfies the following condition for all distinct
i, j ∈ [S0]: ai ̸= a′i ∧ aj − ai ̸= a′j − a′i. Then, for each (ai, a

′
i) ∈ (ZN )2 (i ∈ [S0]), there are at most

N(N − i) pairs satisfying this condition. Hence, |Xbad| = NS0+2(N − 1) · · · (N − S0) holds, and we have
Pr[mpk ∈ Xbad] = (N − 1) · · · (N − S0)/N

S0 .
We estimate the upper bound of the winning probability in the case where the event [¬Reuse∧mpk ∈ Xbad]

occurs. Let σ∗ = ((F
(i,j)∗
1 , F

(i,j)∗
2 )i∈[T1],j∈[S1], (ĉh

∗
i,j)i∈[T1],j∈[T2], (r̂esp

∗
i,j)i∈[T1],j∈[T2]) be the signature gener-

ated by A. Note that H((F
(i,j)∗
1 , F

(i,j)∗
2 )i∈[T1],j∈[S1] ∥ id

∗) = (ch∗
i )i∈[T1S1] and Ĥ((F̂

(i,j)∗
1 , F̂

(i,j)∗
2 )i∈[T1],j∈[T2] ∥
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id∗ ∥ m∗) = (ĉh
∗
i,j)i∈[T1],j∈[T2] are defined, due to the definition of Game3. We consider the case ĉhi,j = 0 and

assume that there exist two hash values (ch∗
i )i∈[T1S1] and (chi)i∈[T1S1] such that the corresponding values

(r̂esp
∗
i,j)i∈[T1],j∈[T2] and (r̂espi,j)i∈[T1],j∈[T2] satisfy the condition of Vrfy. Then, we have{

F̂
(i,j)∗
1 = gr̂esp

∗
i,j ⋆ E

(ch∗
i )

1 , F̂
(i,j)∗
2 = gr̂esp

∗
i,j ⋆ E

(ch∗
i )

2 ,

F̂
(i,j)∗
1 = gr̂espi,j ⋆ E

(chi)
1 , F̂

(i,j)∗
2 = gr̂espi,j ⋆ E

(chi)
2 ,

⇔ E
(ch∗

i )
1 = gr̂espi,j−r̂esp∗

i,j ⋆ E
(chi)
1 , E

(ch∗
i )

2 = gr̂espi,j−r̂esp∗
i,j ⋆ E

(chi)
2 .

This contradicts the condition of Xbad. We consider the case ĉh
∗
i,j > 0 and assume that there exist the two hash

values (ch∗
i )i∈[T1S1] and (chi)i∈[T1S1] such that the corresponding values ((resp∗i,j)i∈[T1].j∈[S1], (r̂esp

∗
i,j)i∈[T1],j∈[T2])

and ((respi,j)i∈[T1].j∈[S1], (r̂espi,j)i∈[T1],j∈[T2]) satisfy the acceptance condition of Vrfy. Due to the change of
Game1, we have{

F̂
(i,j)∗
1 = gr̂esp

∗
i,j ⋆ F

(i,ĉh
∗
i,j)∗

1 , F̂
(i,j)∗
2 = gr̂esp

∗
i,j ⋆ F

(i,ĉh
∗
i,j)∗

2 ,

F̂
(i,j)∗
1 = gr̂espi,j ⋆ F

(i,ĉhi,j)
1 , F̂

(i,j)∗
2 = gr̂espi,j ⋆ F

(i,ĉhi,j)
2 .

⇔

{
F̂

(i,j)∗
1 = gr̂esp

∗
i,j+resp∗

i,j ⋆ E
(ch∗

i )
1 , F̂

(i,j)∗
2 = gr̂esp

∗
i,j+resp∗

i,j ⋆ E
(ch∗

i )
2 ,

F̂
(i,j)∗
1 = gr̂espi,j+respi,j ⋆ E

(chi)
1 , F̂

(i,j)∗
2 = gr̂espi,j+respi,j ⋆ E

(chi)
2 .

⇔ E
(ch∗

i )
1 = g(r̂espi,j+respi,j)−(r̂esp∗

i,j+resp∗
i,j) ⋆ E

(chi)
1 , E

(ch∗
i )

2 = g(r̂espi,j+respi,j)−(r̂esp∗
i,j+resp∗

i,j) ⋆ E
(chi)
2 .

This also contradicts the condition of Xbad. Hence, there exists at most one (ch∗
i )i∈[T1S1] that satisfies the

condition of Vrfy, and we have Pr[W3 | ¬Reuse ∧mpk ∈ Xbad] ≤ 1/(S0 + 1)T1S1 . Therefore, we obtain

Pr[W3 ∧ ¬Reuse] = Pr[W3 ∧ ¬Reuse ∧mpk ∈ Xbad] + Pr[W3 ∧ ¬Reuse ∧mpk /∈ Xbad]

≤ Pr[W3 | ¬Reuse ∧mpk ∈ Xbad] · Pr[mpk ∈ Xbad] + Pr[mpk /∈ Xbad]

≤ 1

(S0 + 1)T1S1
· (N − 1) · · · (N − S0)

NS0
+

(
1− (N − 1) · · · (N − S0)

NS0

)
.

Next, we estimate the upper bound of the probability Pr[W3∧Reuse]. Let σ∗ = ((F
(i,j)∗
1 , F

(i,j)∗
2 )i∈[T1],j∈[S1],

(ĉh
∗
i,j)i∈[T1],j∈[T2], (r̂esp

∗
i,j)i∈[T1],j∈[T2]) be the signature on (id∗,m∗), which is generated by A. If ĉh

∗
i,j = 0,

we have

F̂
(i,j)∗
1 = gr̂esp

∗
i,j ⋆ E

(ch∗
i )

1 , F̂
(i,j)∗
2 = gr̂esp

∗
i,j ⋆ E

(ch∗
i )

2 .

Thus, mpk ∈ Xbad always holds since ach∗
i
̸= a′ch∗

i
in Game3.

If ĉh
∗
i,j > 0, it is shown that there exists at most one (ch∗

i )i∈[T1S1] which satisfies the winning condition,
in the same way as the case [W3 ∧ ¬Reuse].

Hence, it holds that

Pr[W3 ∧ Reuse] = Pr[W3 ∧ Reuse ∧mpk ∈ Xbad] + Pr[W3 ∧ Reuse ∧mpk /∈ Xbad]

≤ Pr[W3 | Reuse ∧mpk ∈ Xbad] · Pr[mpk ∈ Xbad]

≤ 1

(S0 + 1)T1S1
· (N − 1) · · · (N − S0)

NS0
.

Therefore, we have

Pr[W3] = Pr[W3 ∧ Reuse] + Pr[W3 ∧ ¬Reuse]

≤ 2

(S0 + 1)T1S1
· (N − 1) · · · (N − S0)

NS0
+

(
1− (N − 1) · · · (N − S0)

NS0

)
.
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From the discussion above, the inequality

Adveuf-id-cma
IBSLCSI-FiSh,A(λ) ≤

2∑
i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W3]

≤ AdvFCMD-CSIDH
B,S0

(λ) +
(qs + qk)(2qs + 2qk + qh + qĥ + 2)

N

+
2

(S0 + 1)T1S1
· (N − 1) · · · (N − S0)

NS0
+

(
1− (N − 1) · · · (N − S0)

NS0

)
is obtained. ⊓⊔

Finally, we have the following result due to Lemma 1 and Theorem 1:

Corollary 1. If the D-CSIDH assumption holds, then the IBS scheme IBSLCSI-FiSh is EUF-ID-CMA secure in
the random oracle model.
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