
Security analysis of the Classic McEliece, HQC and
BIKE schemes in low memory

Yu Lia,b, Li-Ping Wanga,b,∗

aState Key Laboratory of Information Security, Institute of Information Engineering,
CAS, Beijing, China

bSchool of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract
With the advancement of NIST PQC standardization, three of the four can-
didates in Round 4 are code-based schemes, namely Classic McEliece, HQC
and BIKE. Currently, one of the most important tasks is to further analyze
their security levels for the suggested parameter sets. At PKC 2022 Esser
and Bellini restated the major information set decoding (ISD) algorithms
by using nearest neighbor search and then applied these ISD algorithms to
estimate the bit security of Classic McEliece, HQC and BIKE under the sug-
gested parameter sets. However, all major ISD algorithms consume a large
amount of memory, which in turn affects their time complexities. In this
paper, we reestimate the bit-security levels of the parameter sets suggested
by these three schemes in low memory by applying K-list sum algorithms to
ISD algorithms. Compared with Esser-Bellini’s results, our results achieve
the best gains for Classic McEliece, HQC, and BIKE, with reductions in
bit-security levels of 11.09, 12.64, and 12.19 bits, respectively.
Keywords: Information Set Decoding, Syndrome Decoding, Code-based
Cryptography, K-list.

1. Introduction

Coding-based cryptosystems have gained significant attention due to their
ability to resist attacks from quantum computers and their success in the
NIST PQC standardization process. Among the four candidates advancing

∗Corresponding author. E-mail address: wangliping@iie.ac.cn

Preprint submitted to Journal of Information Security and Applications March 24, 2023

to the 4th round of the process, three are code-based schemes, namely Classic
McEliece, HQC, and BIKE [1]. Currently, a crucial task is to further analyze
their bit-security levels of these three schemes under the suggested parameter
sets.

It is widely acknowledged that the security of most code-based crypto-
graphic schemes relies primarily on the hardness of the syndrome decoding
(SD) problem, which is known to be NP-hard [2, 3]. The best solvers of
the SD problem are information set decoding (ISD) algorithms, which can
be used to estimate the bit-security levels of the suggested parameter sets
for these schemes. In 1962, Prange proposed the first ISD algorithm, which
involved finding an error vector with a fixed weight by guessing an informa-
tion set such that the coordinates of an error vector indexed by the set are
error-free [4]. Over the next 50 years, Prange’s algorithm was significantly
improved by allowing a few entries of an error vector indexed by the infor-
mation set to be error-affected and by introducing advanced techniques such
as meet-in-the-middle, representation technology, nearest neighbor search,
and others [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], in which the
major ISD algorithms are Stern-1988 [18], MMT-2011 [15], BJMM-2012 [6],
MO-2015 [16] and BM-2018 [8]. All these improved ISD algorithms have a
common iterative structure, where each iteration attempts to retrieve an er-
ror vector with fixed weight distribution corresponding to a given syndrome,
and the number of iterations required is determined by the average proba-
bility of success for one iteration.

Due to the introduction of additional parameters requiring optimization,
ISD algorithms can be quite complex. In 2016, Torres and Sendrier developed
a concise and asymptotic mathematical formula to determine the time com-
plexity of the main ISD algorithms [19]. Since then, this formula has been
widely used by almost all code-based cryptographic schemes to roughly esti-
mate the security levels of their parameter sets. Accurately estimating the bit
security of current code-based schemes is an important task. Recently, Esser
and Bellini introduced a new approach to restate the major ISD algorithms by
utilizing nearest neighbor search. They then applied these redescribed ISD
algorithms to estimate the concrete security levels of parameter sets sug-
gested by Classic McEliece, HQC, and BIKE [20]. Additionally, Esser, May,
and Zweydinger achieved two new computing records for McEliece-1223 and
McEliece-1284 by implementing MMT’s or BJMM’s ISD algorithms. Based
on these records, they estimated the hardness of breaking these three schemes
under the round-3 suggested parameter sets [21]. However, advanced ISD al-

2

gorithms require a large amount of memory, which in turn affects their time
complexities. Recently, Esser and Zweydinger extrapolated the bit-security
levels of the NIST round-4 parameter sets for Classic McEliece, HQC, and
BIKE by proposing a time-memory trade-off for MMT algorithm [22]. Guo
et al. also obtained the bit-security levels for these schemes by proposing a
new ISD algorithm [23]. Therefore, our goal is to reestimate the bit-security
levels of the parameter sets suggested by these three schemes in low memory
by applying K-list sum algorithms proposed in [24] to ISD algorithms.

The solving algorithm for a K-list sum problem is essentially a general
birthday algorithm first proposed by Wagner in 2002 [25], where K is a
power of 2. Howgrave-Graham and Joux then developed a class of exhaustive
memory-efficient list sum algorithms for K = 4 in order to solve knapsacks
[26], while Becker et al. focused on the scenario of K = 16 [27]. In 2012,
Dinur et al. proposed an improvement to the general birthday algorithm by
demonstrating ideal asymmetric partitions for ”magic numbers” of K such as
7 and 11, known as the K-dissection algorithm [28]. In 2019, Dinur unified
all previous improvements and analyses of the general birthday algorithms
into an algebraic framework [24]. The original general birthday algorithms
are concerned with finding just one solution, but when multiple (exhaustive)
solutions are needed in specific settings such as ISD algorithms, they are
referred to as K-list sum algorithms by Dinur. K-list sum algorithms have
shown good performance and have been applied to many search problems,
including knapsacks [29] and the learning parity with noise (LPN) problem
[30]. By using K-list sum algorithms in the ISD framework, Bricout et
al. [31] reselected the parameter sets of the Wave scheme, a code-based
digital signature scheme on a ternary field [32], to meet given security levels.
Karpman-Lefevre [33] derived a time-memory trade-off for the parameter sets
in the Wave scheme. Furthermore, Chailloux et al. used the ISD framework
and Wagner’s general birthday algorithm to solve the SD problem endowed
with the Lee metric [34]. Additionally, Wang and Liu improved the ISD
algorithm under restricted memory by utilizing the K-dissection algorithms
proposed in [28] [35]. Thus, the recent advancements in the K-dissection
algorithms have motivated us to conduct this study.

Our Contributions. We firstly extend the 4-list sum algorithms proposed in
[24] and then apply them to the ISD framework under three memory models,
namely constant memory, logarithmic memory penalty, and cube-root mem-
ory penalty, to derive new bit-security levels for the Classic McEliece, HQC,

3

and BIKE schemes. Finally, we compare our results with the latest findings
in [20]. Our best results for the bit-security levels of Classic McEliece, HQC,
and BIKE schemes, under a 260-bit limitation for memory, are 11.09, 12.64,
and 12.19 bits lower than those in [20], respectively. Furthermore, our algo-
rithms reveal that, for the case of constant memory, the parameter sets for
n = 4608, n = 6688, and n = 6960 of the Classic McEliece scheme do not
achieve the claimed security levels, whereas the results in [20] show that only
the parameter set for n = 4608 fails to achieve the claimed security level.

The paper is structured as follows: Section 2 provides definitions, nota-
tions, and lemmas that will be used throughout the paper. In Section 3, we
analyze the memory consumption and time complexity of different versions
of 4-list sum algorithms applied to the ISD framework. In Section 4, we cal-
culate the new bit-security levels for the Classic McEliece, HQC, and BIKE
schemes and compare them to the latest results in [22]. Finally, Section 5
concludes the paper.

2. Preliminaries
2.1. Notations

A finite field with two elements is denoted as F2. If not specified explicitly,
the vectors and matrices are represented by the bold lowercase and uppercase
letters, respectively. The concatenation of two row vectors v1 and v2 is
denoted as (v1|v2). For simplicity, let the set {1, 2, · · · , n} be [n]. Ik is used
to denote the identity matrix with size k. The Hamming weight of a vector
v is written as wt(v). Given a length-n vector v and a matrix M with n
columns, vS denotes the vector composed of the terms of v indexed by S,
and MS denotes the matrix composed of the columns of M indexed by S,
where S is a subset of [n]. If C is a set consisting of vectors of length n, then
define CS = {vS : v ∈ C}. The size of the set S ⊆ [n] is denoted as |S|, and
so we give a mapping δS,[n]: F|S|

2 → Fn
2 by δS,[n](u) = v such that vS = u and

v[n]\S = 0, where u ∈ F|S|
2 ,v ∈ Fn

2 .

2.2. Syndrome decoding problems
In this subsection, we introduce the syndrome decoding problem, ISD

framework and some needed definitions of in coding theory.
Definition 1. A subspace of Fn

2 with dimensional k is called as a binary
linear code C with length n and dimension k, which is generally denote as an
[n, k] code.

4

Definition 2. If the rows of a matrix G ∈ Fk×n
2 form a basis of an [n, k] code

C, then the matrix G is called as a generator matrix of code C. Meanwhile,
a matrix H ∈ F(n−k)×n

2 is a parity-check matrix of C if its kernel corresponds
to an [n, k] code C.
Definition 3. A syndrome s of a random vector v ∈ Fn

2 is obtained as
s = vH⊤, where H is a parity-check matrix of an [n, k] code, and one has
v ∈ C if and only if vH⊤ = 0.

Problem 1 ((n, k, t)-SD problem). Input a parity-check matrix H ∈ F(n−k)×n
2

of an [n, k] linear code C, a syndrome s ∈ Fn−k
2 and a given positive integer

t, output an error vector e ∈ Fn
2 such that He⊤ = s⊤ and wtH(e) = t.

The SD problem plays an important role in coding theory, and also many
variants of this problem were proposed in some cryptography scenarios. In
order to describe a general framework of ISD algorithms more clearly, we
introduce another problem, i.e. the multiple-solution syndrome decoding
(MSSD) problem, which is equivalent to the subset sum problem in [31] and
the checkable multiple syndrome decoding problem in [34].
Problem 2 ((n, k, t,m)-MSSD problem). Input a parity-check matrix H ∈
F(n−k)×n
2 of an [n, k] code C, a syndrome s ∈ Fn−k

2 , and a given positive integer
t, output a set {e ∈ Fn

2 : He⊤ = s⊤, wt(e) = t} with size 2m.

2.3. The general framework of ISD algorithms
Before stating the general framework of ISD algorithms, we firstly give

the definition of the information set of a binary linear code as follows.
Definition 4. An information set of an [n, k] code C is a size-k subset I ⊆ [n]
is called if |CI | = |C|.

All of the advanced ISD algorithms of solving Problem 1, such as MMT’s
and BJMM’s, intrinsically consist of the following framework with four steps:

1) Permutation step. Choose a random permutation matrix P ∈ Fn×n
2

such that (HP)[n]\[k+ℓ] is partially reversible.

2) Partial Gaussian elimination step. Choose an invertible transfor-
mation matrix U ∈ F(n−k)×(n−k)

2 satisfying

UHP =

(
Ĥ 0

H̃ In−k−ℓ

)
, Us⊤ =

(
ŝ
s̃

)
,

5

where Ĥ ∈ Fℓ×(k+ℓ)
2 , H̃ ∈ F(n−k−ℓ)×(k+ℓ)

2 , ŝ ∈ Fℓ
2 and s̃ ∈ Fn−k−ℓ

2 .
Meanwhile, the error vector e is split into two vectors ê ∈ Fk+ℓ

2 and
ẽ ∈ Fn−k−ℓ

2 , i.e., eP = (ê⊤|ẽ⊤). Thus, we have

Ĥê = ŝ, (1)
H̃ê+ ẽ = s̃. (2)

3) MSSD step. Solve a (k+ ℓ, ℓ, p,m)-MSSD problem, i.e., find 2m error
vectors ê with wt(ê) = p satisfying Equation (1).

4) Test step. For all of the solutions of MSSD step, compute ẽ = H̃ê+ s̃
according to Equation (2). If there exists wt(ẽ) = t − p, then output
e = (ê⊤|ẽ⊤)P−1. Else, go back to step 1).

The above framework is an iterative structure where each iteration is to
size k an error vector with a fixed weight distribution and the number of the
iteration depends on the success probability of Test step. According to the
result in [34], the probability of success in step 4) is

P−1
succ = max

{
1,

max
{
1,min

{(
n
t

)
· 2−ℓ, 2n−k−ℓ

}}
2m ·

(
n−k−ℓ
t−p

) }
.

Thus, the running time and memory of the above framework are derived in
the following lemma.

Lemma 1 ([34]). For positive integer parameters n, k, t, ℓ, p,m, if the time
complexities of the partial Gaussian elimination and solving a (k+ ℓ, ℓ, p,m)-
MSSD problem are TG and TMSSD, respectively, then an (n, k, t)-SD problem
is solved in time complexity

TISD = O
(
P−1
succ ·max{TG, TMSSD}

)
,

where P−1
succ is defined as above.

2.4. K-list sum algorithms
Firstly we introduce the K-list sum problem as follows and then describe

the solving algorithms.

6

Problem 3 (K-list sum problem). Input K sorted lists L1, . . . , LK, where
each set Li contains 2m uniform random vectors of length n, output a set{
(y1, . . . ,yK) ∈ L1 × · · · × LK : y1 + · · ·+ yK = 0

}
.

In this paper, we consider a solving algorithm of a 4-list sum problem over
F2. In [24], author proposed a 4-list sum algorithm, where the underlying
lists has the equal sizes, i.e., |L1| = |L2| = |L3| = |L4|. Here, we general the
algorithm by setting

|L1| = |L3| = 2m1 ≥ |L2| = |L4| = 2m2 .

In the following, we describe the 4-list sum algorithm in Algorithm 1 in
pseudo-code form.

Algorithm 1 (4-list sum algorithm)
Input: three integers m1,m2 and 0 ≤ v ≤ m2 and 4 sorted lists L1, L2, L3, L4

with |L1| = |L3| = 2m1 ≥ |L2| = |L4| = 2m2 , where each set Li is composed of
uniformly random vectors of length n = m1 +m2 + v.

Output: a size-2m1 set L1234 = {(x1, . . . ,x4) ∈ L1× · · · ×L4 : x1+ · · ·+x4 = 0}.

1: Initialize L12, L34, L1234 ← ∅.
2: for all (0|x) ∈ 0m2−v × Fv

2 do
3: for all x1 ∈ L1 do
4: L12 ← L12 ∪ {x1 + x2 : (x1 + x2)[m2] = (0|x),x2 ∈ L2}
5: end for
6: for all x3 ∈ L3 do
7: L34 ← L34 ∪ {x3 + x4 : (x3 + x4)[m2] = (0|x),x4 ∈ L4}
8: end for
9: for all x12 ∈ L12 do

10: L1234 ← L1234 ∪ {x12 + x34 : (x12 + x34)[n]\[m2] = 0,x34 ∈ L34}
11: end for
12: end for

For a 4-list sum algorithm, the four given lists are randomly combined
in pairs to generate two intermediate sets such that m2 − v entries are zero
and the other v entries are randomly selected from F2 for each element of
the intermediate sets, and then the final solution set is generated by finding
collisions between the elements of the two intermediate sets on the remaining
entries and traversing all choices on the v entries. Note that the intermediate

7

L1 (2m1) L2 (2m2) L3 (2m1) L4 (2m2)

0
xv

m2

L12 (2m1)

0
x

m2 v

L34 (2m1)

0 n
L1234 (2m1)

Figure 1: 4-list sum algorithm with memory 2m1 and length n with m1 ≥ m2.

and final sets constructed by the meet-in-the-middle technology have the
equal size 2m1 . Next, we illustrate this process in the following Figure.

Then, the running time and memory cost of Algorithm 1 are given as
follows.

Lemma 2. The running time and memory of Algorithm 1 are T4 and M4,
respectively, i.e.,

T4 = O(2m1+v), M4 = O(2m1).

Proof. Since the elements in the sets L1 and L2 are randomly uniform and
|L1| = 2m1 ≥ |L2| = 2m2 , then we have

|L12| =
|L1| · |L2|

2m2
=

2m1 · 2m2

2m2
= 2m1 .

Thus, Lines 3-5 in Algorithm 1 use the meet-in-the-middle to construct the
set L12 from L1 and L2 with the time complexity

T12 = max{|L1|, |L2|, |L12|} = 2m1 .

Similarly, the time complexities of constructing the sets L34 and L1234 are

T34 = T1234 = 2m1

where the sets L34 and L1234 have the equal size 2m1 .

8

The above process was repeated 2v times and so the total time complexity
is

T4 = 2v ·max{T12, T34, T1234} = 2m1+v,

and the total memory consumption is

M4 = max{|L1|, |L2|, |L3|, |L4|, |L12|, |L1234|} = 2m1 ,

3. Our ISD algorithms

In this section, we firstly sketch a general ISD framework by 4-list sum
algorithm, and then analyze the time complexities of the ISD algorithms by
applying four different versions of the 4-list sum algorithm, respectively.

According to Section 2.3, almost all ISD algorithms can be represented
as a framework with 4 steps, i.e., 1) Permutation step, 2) Partial Gaussian
elimination step, 3) MSSD step and 4) Test step. Here, we adopt the 4-list
sum algorithm in the step 3).

3.1. Applying 4-list sum algorithm to the ISD framework
For an (n, k, t)-SD problem, after the steps 1) and 2) of the general ISD

algorithm, two equations are yielded as follows:

Ĥê = ŝ, (3)
H̃ê+ ẽ = s̃. (4)

where ℓ < n − k is a positive integer, Ĥ ∈ Fℓ×(k+ℓ)
2 , H̃ ∈ F(n−k−ℓ)×(k+ℓ)

2 ,
ŝ ∈ Fℓ

2, s̃ ∈ Fn−k−ℓ
2 , ê ∈ Fk+ℓ

2 , ẽ ∈ Fn−k−ℓ
2 and wt(ê) = p. Next, we use the

4-list sum algorithm to find ê satisfying Equation (3).
Firstly,we need to divide Ĥ and ê into four disjoint parts, respectively,

i.e.,

Ĥê =
(
H1 H2 H3 H4

)
e1
e2
e3
e4

= H1e1 +H2e2 +H3e3 +H4e4 = ŝ,

9

and then construct the four sets as follows:

Li =
{
(ei,Hiei) : Hi ∈ Fℓ×ni

2 , ei ∈ Fni
2 , wt(ei) = pi

}
for i = 1, 2, 3 and

L4 =
{
(e4,H4e4 + ŝ) : Hi ∈ Fℓ×n4

2 , e4 ∈ Fn4
2 , wt(e4) = p4

}
,

where n1 + n2 + n3 + n4 = k + ℓ, p1 + p2 + p3 + p3 + p4 = p and the sizes of
the sets are

|Li| =
(
ni

pi

)
= 2mi , i = 1, 2, 3, 4.

For the second components of the sets L1, L2, L3, L4, whenever a 4-tuple
(H1e1,H2e2,H3e3,H4e4) satisfying the condition H1e1 + H2e2 + H3e3 +
H4e4+ŝ = 0 is found, record and store the corresponding 4-tuple (e1, e2, e3, e4).
If we set

|L1| = |L3| = 2m1 ≥ |L2| = |L4| = 2m2 ,

by using the 4-list sum algorithm of Algorithm 1, we obtain 2m1 solutions
ê = (e⊤1 |e⊤2 |e⊤3 |e⊤4) satisfying Equation (3).

Next, run the step 4) of the general ISD framework to obtain the fi-
nal solution to the (n, k, t)-SD problem. The above process is described in
Algorithm 2 in pseudo-code form.

10

Algorithm 2 (ISD by 4-list sum algorithm)
Input: a parity-check matrix H ∈ F(n−k)×n

2 , a syndrome s ∈ Fn−k
2 and the pa-

rameters t,m1, ℓ, v, pi, ni for i = 1, 2, 3, 4, which satisfy m1 =
(
n1

p1

)
=
(
n3

p3

)
≥(

n2

p2

)
=
(
n4

p4

)
:= m2 and ℓ = m1 +m2 + v.

Output: an error vector e ∈ Fn−k
2 satisfying He⊤ = s⊤ and wt(e) = t.

1: Choose a set I ∈ [n] of size k + ℓ containing an information set.
2: Partition I into four disjoint sets I1, I2, I3, I4 with |Ii| = ni for i = 1, 2, 3, 4.
3: Choose an binary invertible matrix U ∈ F(n−k)×(n−k)

2 , which satisfies

UHI =

(
Ĥ

H̃

)
, UH[n]\I =

(
0

In−K−ℓ

)
,Us⊤ =

(
ŝ
s̃

)
,

where Ĥ ∈ Fℓ×(k+ℓ)
2 , H̃ ∈ F(n−k−ℓ)×(k+ℓ)

2 , ŝ ∈ Fℓ
2, s̃ ∈ Fn−k−ℓ

2 .
4: Let Hi = (Ĥ)Ii for i = 1, 2, 3, 4. Build four sets

Li =
{
(ei,Hiei) : Hi ∈ Fℓ×ni

2 , ei ∈ Fni
2 , wt(e1) = pi

}
, i = 1, 2, 3,

L4 =
{
(e4,H4e4 + ŝ) : H4 ∈ Fℓ×n4

2 , e4 ∈ Fn4
2 , wt(e1) = p4

}
.

5: Initialize L12, L34, L1234 ← ∅.
6: for all (0|y) ∈ 0m2−v × Fv

2 do
7: for all (e1,y1) ∈ L1 do
8: L12 ← L12 ∪ {(e12,H12e12) : I12 = I1 ∪ I2, e12 = δI1,I12(e1) +

δI2,I12(e2), H12 = ĤI12 , (y1 + y2)[m2] = (0|y), (e2,y2) ∈ L2}.
9: end for

10: for all (e3,y3) ∈ L3 do
11: L34 ← L34 ∪ {(e34,H34e34 + ŝ) : I34 = I3 ∪ I4, H34 = ĤI34 , e34 =

δI3,I34(e1) + δI4,I34(e4), (y3 + y4)[ℓ1] = (0|y), (e4,y4) ∈ L4}.
12: end for
13: for all (e12,y12) ∈ L12 do
14: L1234 ← L1234 ∪ {ê = δI12,I(e12) + δI34,I(e34) : (y12 + y34)[ℓ]\[m2] =

0, (e34,y34) ∈ L34}.
15: end for
16: end for
17: for all ê ∈ L1234 do
18: if wt(s̃− H̃ê)) = t− (p1 + p2 + p3 + p4) then
19: Output: e = δI,[n](ê) + δ[n]\I,[n]

(
s̃− H̃ê

)
.

20: else
21: Return to Step 1.
22: end if
23: end for 11

3.2. Analyzing the complexities
In this section, we firstly derive the details of the time and memory com-

plexities for Algorithm 2, and then give four instantiations of the parameters.

Theorem 1. Let |L1| = |L3| = 2m1 ≥ |L2| = |L4| = 2m2 in Algorithm 2. The
ISD by a 4-list sum algorithm solves an (n, k, t)-SD problem with the time
complexity TISD = and memory consumption MISD, where

TISD = O

(
max{n(n− k)2, 2m1+v}

·max

{
1,

max
{
1,min

{(
n
t

)
· 2−ℓ, 2n−k−ℓ

}}(
n−k−ℓ
t−p

)
· 2m1

})
,

MISD = O
(
max{n(n− k), 2m1}

)
,

with 0 ≤ p ≤ min{(k + ℓ), t}, 0 ≤ v ≤ m2, ℓ = m1 +m2 + v.

Proof. Lines 1-3 in Algorithm 2 represent the partial Gaussian elimination
step in the general ISD algorithm, which has the time complexity

TG = (n− k)2(n+ 1).

Note that the sets L1, L2, L3, L4 have the sizes

|L1| = |L3| = 2m1 ≥ |L2| = |L4| = 2m2 ,

and then lines 4-16 solve a (k+ ℓ, ℓ, p,m1)-MSSD problem by using the 4-list
sum algorithm described in Algorithm 1. According to Lemma 2, the time
complexity and memory are

TMSSD = 2m1+v,MMSSD = 2m1 .

In addition, the memory of the parity-check matrix is n(n−k) and hence
the result is obtained according to Lemma 1.

Next, we give four instantiations of Theorem 1 by choosing different pa-
rameters m1 and m2 as follows:

– Version 1 (V1):
(⌊(k+ℓ)/4⌉

p/4

)
= 2m1 = 2m2 ,

– Version 2 (V2):
(⌊(k+ℓ)/3⌉

p/3

)
= 2m1 ,

(⌊(k+ℓ)/6⌉
p/6

)
= 2m2 ,

12

– Version 3 (V3):
(⌊(k+ℓ)/5⌉

p/5

)
= 2m1 ,

(⌊(k+ℓ)/10⌉
p/10

)
= 2m2 ,

– Version 4 (V4):
(⌊(k+ℓ)/7⌉

p/7

)
= 2m1 ,

(⌊(k+ℓ)/14⌉
p/14

)
= 2m2 ,

where ℓ needs to satisfy ℓ = m1 +m2 + v according to Theorem 1.

4. Numerical Results

4.1. Bit-security levels
In this section, we used four instantiations of Algorithm 2 to reestimate

the bit securities of the parameters suggested by the Classic McEliece, HQC
and BIKE schemes.

Since all advanced ISD algorithms consume an exponential amount of
memory while improving the time complexity, and the large memories actu-
ally affect the time complexity during the implementation of ISD algorithms.
Therefore, both McEliece team [36] and [21] suggested that one should pe-
nalize the time complexity with memory appropriately when considering the
specific security level of the scheme, i.e., multiplying the running time by
some type of penalty factor. In order to compare with the experimental re-
sults in [20], we use three memory models, i.e., constant memory, logarithmic
memory penalty and cube-root memory penalty, and so the corresponding
results are given as TISD, TISD · logMISD and TISD · 3

√
MISD in the following

tables.
In addition, for the HQC and BIKE schemes with the cyclic structures,

[20] and [22] used the Decoding-One-Out-of-Many (DOOM) technique to
obtain a speedup by a factor of roughly

√
k in the running time of the ISD

algorithm. In this paper, we still adopt the DOOM technique to obtain
bit-security levels for HQC and BIKE.

In the above tables, “V1”, “V2”, “V3” and “V4” denote four instantiations
of 4-list sum algorithms in Section 3.2, respectively, and “M < 60” indicates
that the finial time complexities of the ISD algorithms are computed with the
constant memory no more than 60 bits. Meanwhile, “logarithmic” and “cube-
root” represent the time complexities of ISD algorithms under logarithmic
memory penalty and cube-root memory penalty, respectively.

In order to compare with the results in [20], the values in parentheses
refer to the gain of the bit-security levels obtained by our algorithms relative
to that in [20], i.e., T[20] − Tours.

13

Ta
bl

e
1:

Bi
t-

se
cu

rit
y

le
ve

ls
of

C
la

ss
ic

M
cE

lie
ce

.
C

at
eg

or
y

1
C

at
eg

or
y

3
C

at
eg

or
y

5a
C

at
eg

or
y

5b
C

at
eg

or
y

5c
M

T
M

T
M

T
M

T
M

T

co
ns

ta
nt

:
[2

0]
60

14
5

60
18

7
58

26
2

60
26

3
59

29
8

M
≤

6
0

[2
2]

–
14

5.
47

–
18

8.
16

–
26

3.
16

–
26

3.
64

–
29

8.
65

[2
3]

46
14

3.
4

53
18

4.
4

57
25

7.
7

58
25

8.
1

54
29

3.
8

V
1

26
14

0.
04

(4
.9

6)
27

18
1.

22
(5

.7
8)

29
25

5.
02

(6
.9

8)
38

25
4.

21
(8

.7
9)

39
28

9.
07

(8
.9

3)
V

2
35

13
9.

49
(5

.5
1)

37
17

9.
70

(7
.3

0)
39

25
4.

37
(7

.6
3)

39
25

5.
48

(7
.5

2)
58

28
9.

36
(8

.6
4)

V
3

36
13

8.
44

(6
.5

6)
38

17
9.

44
(7

.5
6)

40
25

5.
06

(6
.9

4)
40

25
5.

27
(7

.7
3)

41
29

1.
06

(6
.9

4)
V

4
52

13
9.

71
(5

.2
9)

54
18

0.
88

(6
.1

2)
58

25
3.

71
(8

.2
9)

58
25

4.
83

(8
.1

7)
60

28
9.

71
(8

.2
9)

lo
ga

rit
hm

ic
:

[2
0]

89
14

7
11

3
18

7
16

5
25

3
16

0
25

3
19

4
28

3
M
≤

6
0

[2
2]

–
15

1.
06

–
19

3.
59

–
26

8.
66

–
26

9.
17

–
30

4.
19

V
1

26
14

4.
74

(2
.2

6)
27

18
5.

97
(1

.0
3)

29
25

9.
88

(-
6.

88
)

38
25

9.
46

(-
6.

46
)

39
29

4.
36

(-
11

.3
6)

V
2

35
14

4.
62

(2
.3

8)
37

18
4.

90
(2

.1
0)

39
25

9.
66

(-
6.

66
)

39
26

0.
77

(-
7.

77
)

58
29

5.
21

(-
12

.2
1)

V
3

36
14

3.
61

(3
.3

9)
38

18
4.

69
(2

.3
1)

40
26

0.
38

(-
7.

38
)

40
26

0.
59

(-
7.

59
)

41
29

6.
42

(-
13

.4
3)

V
4

52
14

5.
41

(1
.5

9)
54

18
6.

64
(0

.3
6)

58
25

9.
57

(-
6.

57
)

58
16

0.
69

(-
7.

69
)

60
29

5.
62

(-
12

.6
2)

cu
be

-r
oo

t:
[2

0]
25

15
6

26
19

9
36

27
5

36
27

6
47

31
2

[2
2]

–
15

7.
25

–
19

9.
69

–
27

6.
13

–
27

6.
97

–
31

3.
12

V
1

18
14

8.
05

(7
.9

5)
23

18
9.

32
(9

.6
8)

29
26

4.
69

(1
0.

31
)

29
26

5.
69

(1
0.

31
)

30
30

0.
91

(1
1.

09
)

V
2

35
15

1.
16

(4
.8

4)
37

19
2.

03
(6

.9
7)

39
26

7.
37

(7
.6

3)
39

26
8.

48
(7

.5
2)

40
30

3.
71

(8
.2

9)
V

3
36

15
0.

44
(5

.5
6)

38
19

2.
11

(6
.8

9)
40

26
8.

39
(6

.6
1)

40
26

8.
60

(7
.5

0)
41

30
4.

73
(7

.2
7)

V
4

52
15

7.
05

(-
1.

05
)

54
19

8.
88

(0
.1

2)
58

27
3.

05
(1

.9
5)

58
27

4.
17

(1
.8

3)
60

30
9.

71
(2

.2
9)

14

Table 2: Bit-security levels of HQC and BIKE.
Category 1 Category 3 Category 5

M T M T M T

constant: M ≤ 61
BIKE-message [20] 40 146 43 211 61 276
BIKE-message [22] – 142.35 – 206.41 – 272.26
BIKE-message [23] 31 139.9 34 204.1 36 268.6
BIKE-message V1 29 135.07 (10.93) 31 198.81 (12.19) 32 263.92 (12.08)

BIKE-key [20] 40 147 57 210 61 278
BIKE-key [22] – 143.73 – 205.93 – 274.13
BIKE-key [23] 31 140.7 34 203.6 36 270.6
BIKE-key V1 29 142.50 (4.50) 31 205.47 (4.53) 32 273.55 (4.45)

HQC [20] 39 145 44 213 39 276
HQC [22] – 141.16 – 208.19 – 271.14
HQC [23] 32 139.1 36 206.2 38 267.6
HQC V1 30 134.74 (10.26) 32 201.43 (11.57) 27 263.36 (12.64)

logarithmic:
BIKE-message [20] 31 150 33 215 34 281
BIKE-message [22] – 142.64 – 206.79 – 272.84
BIKE-message V1 29 139.93 (10.07) 31 203.76 (11.24) 32 268.92 (12.08)

BIKE-key [20] 31 151 33 215 34 283
BIKE-key [22] – 144.24 – 206.90 – 275.50
BIKE-key V1 29 147.36 (3.64) 31 210.42 (4.58) 32 278.55 (4.45)

HQC [20] 32 150 34 218 36 280
HQC [22] – 141.49 – 208.61 – 271.62
HQC V1 30 139.65 (10.35) 32 206.43 (11.57) 27 268.40 (11.60)

cube-root:
BIKE-message [20] 30 152 32 217 33 283
BIKE-message [22] – 143.37 – 207.77 – 273.99
BIKE-message V1 29 144.74 (7.26) 31 209.14 (7.86) 32 274.59 (8.41)

BIKE-key [20] 30 153 32 217 33 285
BIKE-key [22] – 144.89 – 207.79 – 276.60
BIKE-key V1 29 152.17 (0.83) 31 215.80 (1.2) 32 284.22 (0.78)

HQC [20] 31 151 33 220 35 282
HQC [22] – 142.33 – 209.71 – 272.90
HQC V1 30 144.74 (6.26) 32 212.10 (7.90) 27 274.36 (7.64)

15

Table 3: The parameters in Table 1.
Category 1 Category 3 Category 5a Category 5b Category 5c
(ℓ, p, v) (ℓ, p, v) (ℓ, p, v) (ℓ, p, v) (ℓ, p, v)

constant:
V1 (57, 12, 5) (60, 12, 6) (63, 12, 5) (76, 16, 0) (78, 16, 0)
V2 (52, 12, 0) (55, 12, 0) (58, 12, 0) (58, 12, 0) (86, 18, 0)
V3 (45, 10, 0) (47, 10, 0) (49, 10, 0) (50, 10, 0) (51, 10, 0)
V4 (60, 14, 0) (62, 14, 0) (67, 14, 0) (67, 14, 0) (69, 14, 0)

logarithmic:
V1 (57, 12, 5) (60, 12, 6) (63, 12, 5) (76, 16, 0) (78, 16, 0)
V2 (52, 12, 0) (55, 12, 0) (58, 12, 0) (58, 12, 0) (86, 18, 0)
V3 (45, 10, 0) (47, 10, 0) (49, 10, 0) (50, 10, 0) (51, 10, 0)
V4 (60, 14, 0) (62, 14, 0) (67, 14, 0) (67, 14, 0) (69, 14, 0)

cube-root:
V1 (49, 8, 13) (52, 8, 14) (63, 12, 5) (63, 12, 5) (65, 12, 5)
V2 (52, 12, 0) (55, 12, 0) (58, 12, 0) (58, 12, 0) (60, 12, 0)
V3 (45, 10, 0) (47, 10, 0) (49, 10, 0) (50, 10, 0) (51, 10, 0)
V4 (60, 14, 0) (62, 14, 0) (67, 14, 0) (67, 14, 0) (69, 14, 0)

Table 4: The parameters in Table 2.
Category 1 Category 3 Category 5
(ℓ, p, v) (ℓ, p, v) (ℓ, p, v)

constant:
BIKE-message V1 (68, 8, 19) (70, 8, 20) (73, 8, 21)

BIKE-key V1 (65, 8, 19) (70, 8, 20) (73, 8, 21)
HQC V1 (68, 8, 20) (73, 8, 21) (76, 8, 22)

logarithmic:
BIKE-message V1 (68, 8, 19) (70, 8, 20) (73, 8, 21)

BIKE-key V1 (65, 8, 19) (70, 8, 20) (73, 8, 21)
HQC V1 (68, 8, 20) (73, 8, 21) (76, 8, 22)

cube-root:
BIKE-message V1 (68, 8, 19) (70, 8, 20) (73, 8, 21)

BIKE-key V1 (65, 8, 19) (70, 8, 20) (73, 8, 21)
HQC V1 (68, 8, 20) (73, 8, 21) (76, 8, 22)

16

Table 5: Security parameters of Classic McEliece, HQC and BIKE.
Category 1 3 5(a) 5b 5c

Classic McEliece n 3488 4608 6688 6960 8192
k 2720 3360 5024 5413 6528
t 64 96 128 119 128

BIKE n 24646 49318 81946
k 12323 24659 40973

-message t 134 199 264
-key t 142 206 274

HQC n 35338 71702 115274
k 17669 35851 57637
t 132 200 262

Remark 1. Table 1 compares the bit-security levels between our algorithms
and [20] for Classic McEliece in 260-bit limitation for memory and we provide
the following observations.

a) In constant memory and cube-root memory penalty, for all parameters,
our algorithms always have lower bit-security levels than all results in
[20, 22, 23], and in particular, the best result is 11.09 bits lower than
that of [20] for n = 8192 in cube-root memory penalty model.

b) For the scenario of logarithmic memory penalty, our algorithms only
have the improvements of the bit-security levels for the parameter sets
of the categories 1 and 3 in [20].

c) In constant memory, for parameters n = 4608, n = 6688 and n = 6960,
the bit complexity of [20] are 187, 262, and 263, respectively, but our
results are 179.44, 253.71, and 254.21, respectively. Obviously, our
bit-complexity for these three parameters do not achieve the claimed
security levels, while [20] show that only n = 4608 does not achieve the
claimed security levels.

Remark 2. Table 2 compares the bit-security levels between our algorithms
and [20] for HQC and BIKE in 260-bit limitation for memory and we give
some considerations as follows.

17

a) For the parameters of HQC and BIKE, V1 of the four algorithm in-
stantiations in this paper always performs the best, and so we only list
the bit-security levels for the instantiation V1.

b) In three memory models, our bit-security levels are always lower than
those of [20] for all parameters of both HQC and BIKE.

5. Conclusion

In this paper, we apply four types of 4-list sum algorithms to the ISD
framework to derive lower time complexity in low memory. Furthermore,
the new bit-security levels of the Classic McEliece, HQC and BIKE schemes
are determined by using our improved ISD algorithms under three memory
models, i.e., constant memory, logarithmic memory penalty and cube-root
memory penalty, respectively, and we compare these bit-security levels with
the latest results in [20]. The numerical results show that for the param-
eter sets of the Classic McEliece, HQC and BIKE schemes, our algorithms
always have lower bit-security levels than [20] in 260-bit limitation for mem-
ory. Therefore, our results provide more possibilities for security estimation
of the code-based cryptographic schemes and are indicative in the design and
implementation of the schemes in the future.

References

[1] L. Chen, D. Moody, Y.-K. Liu, Post-quantum cryptog-
raphy, NIST (2022). URL: https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions.

[2] S. Barg, Some new np-complete coding problems, Problemy
Peredachi Informatsii 30 (1994) 23–28. URL: http://www.mathnet.ru/
links/0d9ea50bc1746a48c28b580b628bbaf1/ppi241.pdf.

[3] E. R. Berlekamp, R. J. McEliece, H. C. A. van Tilborg, On the inherent
intractability of certain coding problems (corresp.), IEEE Trans. Inf.
Theory 24 (1978) 384–386. URL: https://doi.org/10.1109/TIT.1978.
1055873.

[4] E. Prange, The use of information sets in decoding cyclic codes, IRE
Trans. Inf. Theory 8 (1962) 5–9. URL: https://doi.org/10.1109/TIT.
1962.1057777.

18

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
http://www.mathnet.ru/links/0d9ea50bc1746a48c28b580b628bbaf1/ppi241.pdf
http://www.mathnet.ru/links/0d9ea50bc1746a48c28b580b628bbaf1/ppi241.pdf
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1109/TIT.1962.1057777

[5] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini, A finite
regime analysis of information set decoding algorithms, Algorithms 12
(2019) 209. URL: https://doi.org/10.3390/a12100209.

[6] A. Becker, A. Joux, A. May, A. Meurer, Decoding random binary linear
codes in 2n/20: How 1+1=0 improves information set decoding, in:
D. Pointcheval, T. Johansson (Eds.), EUROCRYPT 2012, volume 7237
of LNCS, Springer, 2012, pp. 520–536. URL: https://doi.org/10.1007/
978-3-642-29011-4_31.

[7] D. J. Bernstein, T. Lange, C. Peters, Smaller decoding exponents: Ball-
collision decoding, in: P. Rogaway (Ed.), CRYPTO 2011, volume 6841
of LNCS, Springer, 2011, pp. 743–760. URL: https://doi.org/10.1007/
978-3-642-22792-9_42.

[8] L. Both, A. May, Decoding linear codes with high error rate and its
impact for LPN security, in: T. Lange, R. Steinwandt (Eds.), PQCrypto
2018, volume 10786 of LNCS, Springer, 2018, pp. 25–46. URL: https:
//doi.org/10.1007/978-3-319-79063-3_2.

[9] A. Canteaut, F. Chabaud, A new algorithm for finding minimum-weight
words in a linear code: Application to mceliece’s cryptosystem and to
narrow-sense BCH codes of length 511, IEEE Trans. Inf. Theory 44
(1998) 367–378. URL: https://doi.org/10.1109/18.651067.

[10] A. Canteaut, N. Sendrier, Cryptanalysis of the original mceliece cryp-
tosystem, in: K. Ohta, D. Pei (Eds.), ASIACRYPT 1998, volume 1514
of LNCS, Springer, 1998, pp. 187–199. URL: https://doi.org/10.1007/
3-540-49649-1_16.

[11] I. I. Dumer, Two decoding algorithms for linear codes, Probl. Peredachi
Inf. 25 (1989) 24–32. URL: http://www.mathnet.ru/php/archive.
phtml?wshow=paper&jrnid=ppi&paperid=635&option_lang=eng.

[12] M. Finiasz, N. Sendrier, Security bounds for the design of code-based
cryptosystems, in: M. Matsui (Ed.), ASIACRYPT 2009, volume 5912
of LNCS, Springer, 2009, pp. 88–105. URL: https://doi.org/10.1007/
978-3-642-10366-7_6.

19

https://doi.org/10.3390/a12100209
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1109/18.651067
https://doi.org/10.1007/3-540-49649-1_16
https://doi.org/10.1007/3-540-49649-1_16
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=635&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=635&option_lang=eng
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/978-3-642-10366-7_6

[13] P. J. Lee, E. F. Brickell, An observation on the security of mceliece’s
public-key cryptosystem, in: C. G. Günther (Ed.), EUROCRYPT 1988,
volume 330 of LNCS, Springer, 1988, pp. 275–280. URL: https://doi.
org/10.1007/3-540-45961-8_25.

[14] J. S. Leon, A probabilistic algorithm for computing minimum weights of
large error-correcting codes, IEEE Trans. Inf. Theory 34 (1988) 1354–
1359. URL: https://doi.org/10.1109/18.21270.

[15] A. May, A. Meurer, E. Thomae, Decoding random linear codes in
o(20.054n), in: D. H. Lee, X. Wang (Eds.), ASIACRYPT 2011, vol-
ume 7073 of LNCS, Springer, 2011, pp. 107–124. URL: https://doi.org/
10.1007/978-3-642-25385-0_6.

[16] A. May, I. Ozerov, On computing nearest neighbors with applications
to decoding of binary linear codes, in: E. Oswald, M. Fischlin (Eds.),
EUROCRYPT 2015, Part I, volume 9056 of LNCS, Springer, 2015, pp.
203–228. URL: https://doi.org/10.1007/978-3-662-46800-5_9.

[17] N. Sendrier, Decoding one out of many, in: B. Yang (Ed.),
PQCrypto 2011, volume 7071 of LNCS, Springer, 2011, pp. 51–
67. URL: https://doi.org/10.1007/978-3-642-25405-5_4. doi:10.1007/
978-3-642-25405-5_4.

[18] J. Stern, A method for finding codewords of small weight, in: G. D.
Cohen, J. Wolfmann (Eds.), Coding Theory and Applications, 3rd Inter-
national Colloquium, 1988, volume 388 of Lecture Notes in Computer
Science, Springer, 1988, pp. 106–113. URL: https://doi.org/10.1007/
BFb0019850.

[19] R. C. Torres, N. Sendrier, Analysis of information set decoding for a
sub-linear error weight, in: T. Takagi (Ed.), PQCrypto 2016, volume
9606 of LNCS, Springer, 2016, pp. 144–161. URL: https://doi.org/10.
1007/978-3-319-29360-8_10.

[20] A. Esser, E. Bellini, Syndrome decoding estimator, in: G. Hanaoka,
J. Shikata, Y. Watanabe (Eds.), PKC 2022, Part I, volume 13177
of LNCS, Springer, 2022, pp. 112–141. URL: https://doi.org/10.1007/
978-3-030-97121-2_5.

20

https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1109/18.21270
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-642-25405-5_4
http://dx.doi.org/10.1007/978-3-642-25405-5_4
http://dx.doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/978-3-319-29360-8_10
https://doi.org/10.1007/978-3-319-29360-8_10
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-030-97121-2_5

[21] A. Esser, A. May, F. Zweydinger, Mceliece needs a break - solving
mceliece-1284 and quasi-cyclic-2918 with modern ISD, in: O. Dunkel-
man, S. Dziembowski (Eds.), EUROCRYPT 2022, Part III, volume
13277 of LNCS, Springer, 2022, pp. 433–457. URL: https://doi.org/10.
1007/978-3-031-07082-2_16.

[22] A. Esser, F. Zweydinger, New time-memory trade-offs for subset sum
- improving ISD in theory and practice, IACR Cryptol. ePrint Arch.
(2022) 1329. URL: https://eprint.iacr.org/2022/1329.

[23] Q. Guo, T. Johansson, V. Nguyen, A new sieving-style information-
set decoding algorithm, IACR Cryptol. ePrint Arch. (2023) 247. URL:
https://eprint.iacr.org/2023/247.

[24] I. Dinur, An algorithmic framework for the generalized birthday prob-
lem, Des. Codes Cryptogr. 87 (2019) 1897–1926. URL: https://doi.org/
10.1007/s10623-018-00594-6.

[25] D. A. Wagner, A generalized birthday problem, in: M. Yung (Ed.),
CRYPTO 2002, volume 2442 of LNCS, Springer, 2002, pp. 288–303.
URL: https://doi.org/10.1007/3-540-45708-9_19.

[26] A. Horlemann, S. Puchinger, J. Renner, T. Schamberger, A. Wachter-
Zeh, Information-set decoding with hints, in: A. Wachter-Zeh, H. Bartz,
G. Liva (Eds.), CBCrypto 2021, volume 13150 of LNCS, Springer, 2021,
pp. 60–83. URL: https://doi.org/10.1007/978-3-030-98365-9_4.

[27] A. Becker, J. Coron, A. Joux, Improved generic algorithms for hard
knapsacks, in: K. G. Paterson (Ed.), EUROCRYPT 2011, volume 6632
of LNCS, Springer, 2011, pp. 364–385. URL: https://doi.org/10.1007/
978-3-642-20465-4_21.

[28] I. Dinur, O. Dunkelman, N. Keller, A. Shamir, Efficient dissection of
composite problems, with applications to cryptanalysis, knapsacks, and
combinatorial search problems, in: R. Safavi-Naini, R. Canetti (Eds.),
CRYPTO 2012, volume 7417 of LNCS, Springer, 2012, pp. 719–740.
URL: https://doi.org/10.1007/978-3-642-32009-5_42.

[29] N. Howgrave-Graham, A. Joux, New generic algorithms for hard
knapsacks, in: H. Gilbert (Ed.), EUROCRYPT 2010, volume 6110

21

https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-031-07082-2_16
https://eprint.iacr.org/2022/1329
https://eprint.iacr.org/2023/247
https://doi.org/10.1007/s10623-018-00594-6
https://doi.org/10.1007/s10623-018-00594-6
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/978-3-030-98365-9_4
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1007/978-3-642-32009-5_42

of LNCS, Springer, 2010, pp. 235–256. URL: https://doi.org/10.1007/
978-3-642-13190-5_12.

[30] A. Esser, F. Heuer, R. Kübler, A. May, C. Sohler, Dissection-bkw,
in: H. Shacham, A. Boldyreva (Eds.), CRYPTO 2018, Part II, volume
10992 of Lecture Notes in Computer Science, Springer, 2018, pp. 638–
666. URL: https://doi.org/10.1007/978-3-319-96881-0_22.

[31] R. Bricout, A. Chailloux, T. Debris-Alazard, M. Lequesne, Ternary
syndrome decoding with large weight, in: K. G. Paterson, D. Stebila
(Eds.), SAC 2019, volume 11959 of LNCS, Springer, 2019, pp. 437–466.
URL: https://doi.org/10.1007/978-3-030-38471-5_18.

[32] T. Debris-Alazard, N. Sendrier, J. Tillich, Wave: A new family of
trapdoor one-way preimage sampleable functions based on codes, in:
S. D. Galbraith, S. Moriai (Eds.), ASIACRYPT 2019, Part I, volume
11921 of LNCS, Springer, 2019, pp. 21–51. URL: https://doi.org/10.
1007/978-3-030-34578-5_2.

[33] P. Karpman, C. Lefevre, Time-memory tradeoffs for large-weight syn-
drome decoding in ternary codes, in: G. Hanaoka, J. Shikata, Y. Watan-
abe (Eds.), PKC 2022, Part I, volume 13177 of LNCS, Springer, 2022,
pp. 82–111. URL: https://doi.org/10.1007/978-3-030-97121-2_4.

[34] A. Chailloux, T. Debris-Alazard, S. Etinski, Classical and quantum
algorithms for generic syndrome decoding problems and applications to
the lee metric, in: J. H. Cheon, J. Tillich (Eds.), PQCrypto 2021,
volume 12841 of LNCS, Springer, 2021, pp. 44–62. URL: https://doi.
org/10.1007/978-3-030-81293-5_3.

[35] M. Wang, M. Liu, Improved information set decoding for code-based
cryptosystems with constrained memory, in: J. Wang, C. Yap (Eds.),
Frontiers in Algorithmics - 9th International Workshop, FAW 2015, vol-
ume 9130 of LNCS, Springer, 2015, pp. 241–258. URL: https://doi.org/
10.1007/978-3-319-19647-3_23.

[36] T. Chou, et al., Classic mceliece: conservative code-based cryptography,
10 October 2020 (2020).

22

https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-030-97121-2_4
https://doi.org/10.1007/978-3-030-81293-5_3
https://doi.org/10.1007/978-3-030-81293-5_3
https://doi.org/10.1007/978-3-319-19647-3_23
https://doi.org/10.1007/978-3-319-19647-3_23

	Introduction
	Preliminaries
	Notations
	Syndrome decoding problems
	The general framework of ISD algorithms
	K-list sum algorithms

	Our ISD algorithms
	Applying 4-list sum algorithm to the ISD framework
	Analyzing the complexities

	Numerical Results
	Bit-security levels

	Conclusion

