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Abstract. This note describes a polynomial-time key-recovery attack
on the UOV-based signature scheme called MQ-Sign. The scheme is a
first-round candidate in the Korean Post-Quantum Cryptography Com-
petition. Our attack exploits the sparsity of the secret central polynomi-
als in combination with the specific structure of the secret linear map S.
We provide a verification script that recovers the secret key in less than
seven seconds for security level V.

1 Introduction

The lack of diversity of hardness assumptions motivated NIST’s announcement
of reopening the call for post-quantum digital signature proposals, specifying the
need for shorter signatures with fast verification. Multivariate cryptography is
a contender in this ongoing search for post-quantum digital signature schemes.
Since many schemes in multivariate cryptography make use only of quadratic
polynomials, public key cryptosystems in the multivariate family are often re-
ferred to as MQ public key cryptosystems. However, the security of some of
the MQ systems does not rely directly on the hardness of the Multivariate
Quadratic polynomial (M Q) problem, but rather on the (non)possibility of ex-
ploiting a planted trapdoor. The trapdoor usually consists of the knowledge of
a so-called central map F that is easy to invert and a linear or affine transfor-
mation S.

One of the most studied trapdoor-based systems is the Unbalanced Oil and
Vinegar (UOV) signature scheme [2]. The UOV construction results in short
signatures and signing time, but large public and secret keys. Several recent
efforts are focused on developing a UOV-based signature scheme with additional
structure that results in smaller keys, but without compromising the security.
One of those efforts is the MQ-Sign [6] signature scheme submitted to the Korean
Post-Quantum Cryptography Competition®. The main idea behind MQ-Sign is
to have a sparse central map in order to reduce the secret key. In this work, we
show how the property of using sparse polynomials can be exploited to develop a
polynomial time key-recovery attack. Our attack focuses on recovering the linear
transformation S, which allows to subsequently compute the central map F.
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2 Preliminaries

Throughout the text, F, will denote the finite field of ¢ elements, and GL,, (F,)
and AGL,,(F,) will denote respectively the general linear group and the general

affine group of degree n over F,. We will also use the notation x = (z1,...,2z,)7
for the vector (z1,...,x,) € Fy. Similarly, the entries of a matrix A are denoted
by Apijy.

2.1 Multivariate signatures

First, we recall the general principle of MQ public key cryptosystems.

A typical M@ public key cryptosystem relies on the knowledge of a trap-
door for a particular system of polynomials over the field F,. The public key
of the cryptosystem is usually given by a multivariate quadratic map P =

(PW,...,P™) . F} — F.', where PR (2, xn) = 3O Wv(k)xi:cj—&—zzb:l Bi(k)mi-i-

,
1<i<j<n

a®) for some coefficients 'yi(f),ﬂi(k),a(k) € F,. It is obtained by obfuscating a
structured central map

Fi(zn,... ) €Fp = (FY (2, ), ., FU (2, .., 20)) € FY,

using two bijective affine mappings S, 7 € AGL, (q)(F,) that serve as a sort of
mask to hide the structure of F. The public key is defined as

P=ToFoS.

The mappings S and T are part of the private key s. Besides them, the private
key may also contain other secret parameters that allow creation, but also easy
inversion of the transformation F. Without loss of generality, we can assume
that the private key is s = (F,S,T).

Signature Generation. To generate a signature for a message d, the signer uses a
hash function H : {0,1}* — F™ to compute the hash value w = H(d) € F™ and
computes recursively x = 7 1(w) € F™, y = F~!(x) € F*, and z = S~ (y).
The signature of the message d is z € F". Here, 7 !(x) means finding one (of
possibly many) preimages of x under the central map F.

Verification. To check if z € F™ is indeed a valid signature for a message d, one
computes w = H(d) and w' = P(z) € F™. If w = w holds, the signature is
accepted, otherwise it is rejected.

The standard signature generation and verification process of a multivariate
signature scheme works as shown in Figure 1.

2.2 Unbalanced Oil and Vinegar

The Unbalanced Oil and Vinegar signature scheme is one of the oldest multi-
variate signature schemes. It was proposed by Kipnis and Patarin at EURO-
CRYPT’99 [2] as a modification of the oil and vinegar scheme of Patarin [4] that
was broken by Kipnis and Shamir in 1998 [3].
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Fig. 1. General workflow of multivariate signature schemes.

The characteristic of the oil and vinegar construction is in the special struc-
ture of the central map in which the variables are divided in two distinct sets,
vinegar variables and oil variables. The vinegar variables are combined quadrati-
cally with all of the variables, while the oil variables are only combined quadrati-
cally with vinegar variables and not with other oil variables. Formally, the central
map is defined as F : F;y — ", with central polynomials

FO@ )= 3 e+ 3 afew +3 a0 +a (1)
ieV,jev i€V,je0 i=1

where n =v+m, and V ={1,...,v} and O = {v + 1,...,n} denote the index
sets of the vinegar and oil variables, respectively.

It can be shown that if an oil an vinegar central map is used in the standard
MQ construction the affine mapping 7 does not add to the security of the
scheme and is therefore not necessary. Hence the secret key consists of a linear
transformation S and central map F, while the public key is defined as P = FoS.
In order to sign a message, we need to find a preimage of F. This can be done
by simply fixing the vinegar variables to some random values. In this way, we
obtain a system of m linear equations in m variables, which has a solution with
probability around 1 — 1/q. If the obtained system does not have a solution, we
repeat the procedure with different values for the vinegar variables.

Key Generation. It was shown in [5] that for any instance of a UOV secret key
(F,S), there exists an equivalent secret key (S, F) with

_ Iv><v Sl
S o <Om><v Ime) ' (2)
Furthermore, the quadratic polynomials of the central map F : Fy — Fi*

can be represented using upper triangular matrices F(V, ... F(™) ¢ [y " where
each nonzero coefficient (i,j) in F (%) corresponds to the nonzero coefficient of



x;x; in F®)_ Note that the m x m block on the bottom right of these matrices
is empty, since the polynomials of the central map have no quadratic oil terms.
Thus, these matrices contain an upper triangular block F l(k) € Fy*¥ and a block

Fz(k) € Fy™™ on the top right. In other words, the matrices are of the form:

k k
Pk — Y R .
0 0

Thus, in order to obtain a key pair, it suffices to first randomly generate
(S, FD ... F™) and then compute (P™M), ..., P(™) by evaluating P*) =
STF®) S and bringing the resulting matrices to upper triangular form.

2.3 MQ-Sign

MQ-Sign is a signature scheme based on UOV. The scheme uses inhomogenous
polynomials and each polynomial of the central map can be written as

F® = FP 4 75+ FE,

where f\(/k) =D ievijev ng)ﬂcixj and fék‘)/ =2 ievjeo ’yi(;c)xixj. These can al-
ternatively be referred to as the vinegar-vinegar quadratic part and the vinegar-
oil quadratic part. Finally, }“g% refers to the linear and constant part of the
polynomials. In the following, we ignore the linear and constant parts, since our
attack does not use them. The goal of MQ-Sign is to reduce the size of the secret
key compared to traditional UOV. This is achieved by using sparse polynomials
for the quadratic part of the central map. The quadratic homogenous part of
the sparse polynomials is defined as ]:‘(,k) + ]:(Ok‘)/ such that

v
FF = Z QT (i k—1( mod v))+1
i=1 3)

]:(Ok\)/ = Z ﬁzkxi‘r(i%»ku( mod m))+v+1-
i=1
The size of the secret key is thus reduced to 2vm field elements.

The MQ-Sign proposal provides a parameter selection for four variations
of the scheme: MQ-Sign-SS, MQ-Sign-RS, MQ-Sign-SR and MQ-Sign-RR. The
first S/R in the suffix specifies whether Fy is defined with sparse or random
polynomials. The second S/R refers to the same property, but for Foy . Note that
the variation MQ-Sign-RR corresponds to the standard UOV scheme defined
with inhomogenous polynomials.

3 An algebraic attack

The attack described in this section consists in solving the Extended Isomor-
phism of Polynomials (EIP) problem as defined in [6]. We recall here its defini-
tion.



EIP(n,m,P,C):
Input: an m-tuple of multivariate polynomials P = (P, PR plm) ¢
F,lz1,...,z,])™ and a special class of multivariate polynomial systems C C
Foler, ... zn]™
Question: Find — if any — S € GL,(q) and F = (FM, F? .. FM) € C such
that P =F o S.

In the following, we consider C to be the class of polynomials defined by
Fv + Fov where Foy is defined as in (3). Hence, this algebraic attack applies
to MQ-Sign-SS and MQ-Sign-RS.

The computation of the public key for UOV-like signatures schemes can be
written in matrix form as

PPN (1 0\ (R Y (TS
o pM st 1)Vo o )\o I

From this we deduce

PP PN (FY (FP 4+ FPT S 4 Y
0o pP® 0  Upper(STFM s, + ST EM)

From the two upper blocks we obtain the following two equations

P — p®

PR = (F® + FPO g + FF.
From these, we infer that

PP = (P® + PP TS, + . (4)
The matrices F2(k) are part of the secret key, but we know that they are sparse.
From the description of Foy in (3) we can see that the value of FQ(k) is known on
(vm — v) entries. Since FQ(k) appears linearly in (4), we can extract constraints

from the entries where the value of Fék) is zero. Let P, = Pl(k) + Pl(k)T. We
obtain the following system of equations.

S P S — Piby =0, V(,5.k) st By =0, (5)

[ip i3] — [i7]
1<psw

This is a linear system in vm variables. The number of equations that we can
obtain if we use all of the m quadratic maps from the public key is mv(m — 1).
Hence, the system has vm linearly independent equations with overwhelming
probability. As such, it can be solved efficiently through Gaussian Elimination.

Note from (5) that each equation in the system contains variables from only
one column of S;. This observation allows us to further optimize the attack
by solving for one column at a time. Instead of solving one linear system in



vm variables, we solve m linear systems in v variables. The complexity of this
approach is O(mwv*), where w is the linear algebra constant.

Our attack relies on two key properties. Firstly, we exploit the sparseness
property of the vinegar-oil quadratic part. Secondly, we use the specific struc-
ture of the linear transformation S, as per the equivalent keys key generation
technique. This technique is used in most modern UOV-based signature schemes,
including MQ-Sign. As future work, we envision exploring the hardness of the
EIP problem when one of these two conditions is not met. In other words, we
will look at the MQ-Sign-SR variant, or the MQ-Sign-{S/R}S variant with a
random linear transformation S.

3.1 Implementation.

We provide a verification script in MAGMA [1] where we implement the key
generation of MQ-Sign and then run the main algorithm for recovering the secret
key from the public key as input. The running time of the attack on a laptop is 0.6
seconds for the proposed parameters for security level I, 2.3 seconds for security
level IIT and 6.9 seconds for security level V. We also provide an equivalent
SageMath [7] script that is slower. The verification scripts can be found at

https://github.com/mtrimoska/MQ-Sign-attack.
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