
Efficiency of SIDH-based signatures (yes, SIDH)

Wissam Ghantous1, Federico Pintore2 and Mattia Veroni3

1 Mathematical Institute, University of Oxford, UK,
wissam.ghantous@maths.ox.ac.uk

2 Department of Mathematics, University of Bari, IT,
federico.pintore@uniba.it

3 NTNU - Norwegian University of Science and Technology, Trondheim, NO ,
mattia.veroni@ntnu.no

Abstract. In this note we assess the efficiency of a SIDH-based digital
signature built on a diminished variant of a recent identification pro-
tocol proposed by Basso et al. Despite the devastating attacks against
(the mathematical problem underlying) SIDH, this identification proto-
col remains secure, as its security is backed by a different (and more
standard) isogeny-finding problem. We conduct our analysis by applying
some known cryptographic techniques to decrease the signature size by
about 70% for all parameter sets (obtaining signatures of approximately
21 KB for SIKEp434). Moreover, we propose a minor optimisation to com-
pute many isogenies in parallel from the same starting curve. Our assess-
ment confirms that the problem of designing a practical isogeny-based
signature scheme remains largely open. However, concretely determine
the current state of the art which future optimisations can compare to
appears to be of relevance for a problem which has witnessed only small
steps towards a solution.

Keywords: Post-quantum Cryptography · Isogeny-based Cryptography
· Digital Signature

1 Introduction

Isogenies between supersingular elliptic curves have been used to construct cryp-
tosystems supposed to be secure even in the presence of quantum attackers.
The family of such cryptosystems is named isogeny-based cryptography, and
its most appealing members enjoy short keys and ciphertexts. At the time of
writing, the most prominent example of this attractive feature is the digital sig-
nature SQISign [DFKL+20], which is the most compact post-quantum signature
scheme. On the other hand, isogeny-based cryptosystems incur high execution
times, with SQISign making no exception (despite the recent improvements in
[DFLW22]). The most promising results in terms of computational efficiency
have been obtained for the key-exchange SIDH [DFJP14] and the corresponding
key-encapsulation mechanism SIKE [JAC+17]. However, not all schemes built
on SIDH share the same quality. An example are the SIDH-based digital signa-
tures proposed in [GPS17,YAJ+17], for which no substantial amelioration has

2 W. Ghantous et al.

appeared since their publication. Nevertheless, they represented an alternative
starting point for a practical isogeny-based digital signature building on existing
schemes. However, three major classical attacks [CD22a,MM22,Rob22] were de-
vised in 2022, which make SIDH, SIKE and most of the SIDH-based cryptosys-
tems — including the signature schemes based on SIDH mentioned above —
completely insecure. As a consequence, SQISign and Sea-Sign/CSI-FiSh4 were,
until recently, the only isogeny-based digital signature schemes still secure.

Fortunately, two isogeny-based Σ-protocols that were recently proposed have
restored the family of SIDH-based digital signatures (and non-interactive zero-
knowledge proofs). The first one [DDGZ21, Sec. 5.3] — denoted by ΣwSIDH in the
following — was originally designed for the SIDH setting, while for the second
one [BCC+22, Sec. 4] — which we denote by Σbase

SECUER — the SIDH parame-
ters are (probably the most) favorable in terms of practical efficiency, despite
it being designed for a general scenario. Consequently, their implementations
can take advantage of the optimised implementations for determining and eval-
uating isogenies in the SIDH configuration. Even so, both ΣwSIDH and Σbase

SECUER

are not affected by the attacks in [CD22a,MM22,Rob22] and hence can still be
the base for constructing digital signature schemes as well as non-interactive
zero-knowledge proofs (NIZKPs in short).

Our contribution. In this note we assess the compactness and efficiency that
can be currently reached by digital signatures (and NIZKPs) based on the SIDH
setting. In doing so, we restrict our attention to a digital signature built on
a slightly weaker variant of Σbase

SECUER. We talk about weaker variant because
Σbase

SECUER was designed to satisfy statistical honest-verifier zero-knowledge, which
is not necessary for our case study. The variant we consider — denoted by ΣSEC

— only achieves computational honest-verifier zero-knowledge, but it allows for
shorter isogenies, therefore a better efficiency. The main reasons to work with
ΣSEC instead of other SIDH-based Σ-protocols are three. First of all, a similar
assessment focused on ΣwSIDH was recently conducted in [CD22b]. Even more
importantly, despite the similarities between ΣwSIDH and ΣSEC, the latter has
a more lightweight design, leading to smaller transcripts and faster execution
times. Last but not least, the optimisations we apply to (t parallel executions
of) ΣSEC are applicable also to Σbase

SECUER and are relevant to any application
of these Zero-Knowledge Proof systems. In fact, using the Fiat-Shamir trans-
form to remove interactivity from a Σ-protocol has applications beyond digital
signatures. For example, Σbase

SECUER has been used to prove random generation
of supersingular curves of unknown endomorphism rings in a distributed and
trusted manner [BCC+22].

We conduct our analysis by applying some known signature-shortening tech-
niques. By doing so, we can shorten the signatures produced by means of ΣSEC by

4 Sea-Sign [DG19] is an isogeny-based digital signature scheme which works with iso-
genies and elliptic curves over prime fields. CSI-FiSh [BKV19] is an optimisation of
Sea-Sign for a specific set of parameters, named CSIDH-512. It is worth noticing that
the security provided by CSIDH-512 is still an active area of research [CSCJR22],
and instantiating SeaSign with larger parameters leads to long execution times.

Efficiency of SIDH-based signatures (yes, SIDH) 3

approximately 69%. For example, we obtain signatures of approximately 21 KB
for the parameter set SIKEp434. In addition, we propose minor optimisations
to compute many isogenies in parallel from the same starting curve.

One of the techniques we consider to shorten the signatures is the unbalanced
challenge space technique, firstly proposed in [BKP20] for a Σ-protocol obtained
by running parallel executions of a base Σ-protocol with soundness error 1/2. In
this work, however, we apply it to a base Σ-protocol with soundness error 2/3,
which requires a non-trivial generalisation of the original proposal. In fact, in
order to determine the number of parallel executions which are required in such
case for an unbalanced challenge space, we deduce some combinatorial results.
Our findings can be readily applied to every possible soundness error of the base
Σ-protocol, and therefore are of independent interest.

Our assessment confirms that the problem of designing a practical isogeny-
based signature scheme remains largely open. Nonetheless, the proposed optimi-
sations can be applied to the distributed trusted-setup protocol [BCC+22, Sec.
5] built on top of Σbase

SECUER to collaboratively produce a random supersingular
elliptic curve whose endomorphism ring is hard to compute even for the involved
parties. Moreover, concretely determine the current state of the art of isogeny-
based signatures which future optimisations can compare to appears to be of
relevance for a problem which has witnessed only small steps towards a solution.

Related Work. The SIDH-based digital signature scheme proposed in [GPS17]
produces signatures of approximately 12 KB when targeting 128 bits of classi-
cal security. For the same security target, the signature scheme in [CDMP22]
(deduced from a different SIDH-based Σ-protocol proposed in [DDGZ21, Sec.
6]) outputs signatures of approximately 61 KB. Both these signature schemes
are no longer secure after the cryptanalytic attacks against SIDH. The analysis
conducted in [CD22b] on a still-secure digital signature built on top of ΣwSIDH

achieves signatures of size approximately 74KB for the parameter set SIKEp434.
Note that the protocol in [GPS17] and ΣwSIDH in [DDGZ21, Sec. 5] are 2-special
sound. The protocols in [DDGZ21, Sec. 6] is instead 3-special sound.

Roadmap. The paper is organised as follows. In Section 2 we recall some crypto-
graphic preliminaries and we provide a description of the Σ-protocol ΣSEC, which
is a diminished version of Σbase

SECUER from [BCC+22, Sec. 4]. By applying the Fiat-
Shamir transform [FS86] on ΣSEC, an SIDH-based signature scheme DSSEC is
obtained. In Section 3 we apply some optimisation techniques to reduce the size
of the signatures produced by DSSEC; commitment recoverability (Section 3.1),
response compression (Section 3.2) and seed trees (Section 3.3). In (Section 3.4),
unbalanced challenge spaces are also taken into account. We conclude the sec-
tion highlighting the overall gain in applying these optimisations with respect
to the original scheme. In Section 4 we suggest two optimisations for the com-
putation of several isogenies of the same degree from the same starting curve.
They consists in a pre-computation of repeated initial steps (Section 4.1) and
in the parallelisation of kernel generators computation (Section 4.2). Section 5
contains some closing remarks.

4 W. Ghantous et al.

2 Preliminaries

In this section we list some definitions and results regarding isogenies between
supersingular elliptic curves, Σ-protocols and digital signatures. We then detail
the Σ-protocol ΣSEC, a diminished variant of Σbase

SECUER from [BCC+22, Sec. 4].

Remark 1. In the following, commitment schemes (C) and pseudorandom num-
ber generators (Expand) are instantiated with a hash function modeled as a
random oracle O. We always assume the input domain of the random oracle is
appropriately separated when instantiating different cryptographic primitives.
With an abuse of notation, we will write O(Expand||·) instead of Expand(·) and
O(Com||·) instead of C(·) to make the usage of the random oracle explicit. Here,
we identify Expand and Com with unique strings.

2.1 Supersingular Elliptic Curves, Isogenies, and Hardness
Assumptions

We refer the reader to [Sil09,Gal12] for a more detailed introduction to the topic.
Let q be a power of a prime p ≥ 5, and let Fq be a finite field with q

elements. An isogeny ϕ : E −→ E′ between two elliptic curves E and E′ over
Fq, with points at infinity denoted by 0E and 0E′ respectively, is a non-constant
regular rational map mapping ϕ(0E) into 0E′ . Every isogeny ϕ can be written
in its polynomial form (F1(x)/F2(x), yG1(x)/G2(x)), where F1, F2, G1, G2 are
polynomials over the algebraic closure of F, F1 is coprime with F2, and G1 is
coprime with G2. The isogeny ϕ is said to be defined over Fqk if the coefficients
of the above polynomials are contained in Fqk ; in this case, we say that E,E′

are isogenous over Fqk . Tate’s theorem states that E,E′ are isogenous over Fqk
if and only if #E(Fqk) = #E′(Fqk).

An invertible isogeny is an isomorphism; in addition, if its domain and image
coincide, it is an endomorphism. The set of all endomorphisms of an elliptic curve
E together with the zero map form a ring under pointwise addition and com-
position, called the endomorphism ring of E and denoted by End(E). If End(E)
is not commutative, then E is said to be supersingular. Every supersingular el-
liptic curve defined over Fpk for some k ∈ N is isomorphic to an elliptic curve
defined over Fp2 . The degree deg(ϕ) of an isogeny ϕ is the maximum among
{deg(F1),deg(F2)}; we say that ϕ is a d-isogeny. Two elliptic curves E and E′

are d-isogenous if there exists an isogeny ϕ : E −→ E′ of degree d. Given a
power q of a prime p > 5 and a prime number ` 6= p, we denote by Gq(`) the
graph whose vertices are Fq-isomorphism classes of supersingular elliptic curves
over Fq and whose edges are equivalence classes of `-isogenies (two isogenies are
in the same class if they have the same kernel). The composition of two isogenies
of degrees d1 and d2 is an isogeny of degree d1d2.

The kernel of an isogeny is finite, and its size is equal to the degree of the
isogeny itself if the isogeny is separable. Vice versa, if H is a finite subgroup
of an elliptic curve E, then the elliptic curve E/H and a separable isogeny
ψ : E −→ E′ of kernel ker(ψ) = H are unique (modulo isomorphism). Both

Efficiency of SIDH-based signatures (yes, SIDH) 5

E/H and ψ can be computed with complexity O(#H) using Velu’s formulas.
We say that ϕ is a cyclic isogeny when ker(ϕ) is a cyclic group. Given ` ∈ N, we
denote by E[`] the `-torsion subgroup {P ∈ E | [`]P = 0E} of E. When ` and p
are relatively prime, E[`] ' (Z/`Z)× (Z/`Z).

2.2 Σ-protocols

Let X and Y be two sets whose sizes depend on a security parameter λ. Then
R ⊂ X × Y is a polynomially-computable binary relation over X and Y if, for
any (x,w) ∈ X × Y , whether (x,w) ∈ R can be decided in time poly(|x|). If
(x,w) ∈ R, we call w a witness for the statement x. The language corresponding
to R is LR = {x ∈ X | ∃ w ∈ Y : (x,w) ∈ R}.

A Σ-protocol for a polynomially-computable binary relation R is a public-
coin three-move interactive protocol between a prover and a verifier. Informally,
a prover can demonstrate knowledge of a valid witness for a certain statement
without revealing any information about the witness itself. Below, we define a
relaxed version of sigma protocols where the special-soundness extractor only
extracts a witness for a slightly larger relation R̃, with R ⊆ R̃. Furthermore,
the definition is given in the random oracle model, i.e. prover and verifier have
access to a random oracle O. We may occasionally omit the superscript O when
the meaning is clear from the context.

Definition 2 (Σ-protocols). A Σ-protocol S for polynomially-computable bi-
nary relations R ⊆ R̃ consists of five polynomial-time algorithms (Gen,P =
(P1,P2),V = (V1,V2)) with oracle-access, where V2 is deterministic, Gen, P1,
P2 and V1 are probabilistic, and P1,P2 share states. We denote by ComSet,
ChSet, and ResSet the commitment space, challenge space, and response space
respectively. In the random-oracle model, the protocol goes as follows:

– The key-generation algorithm GenO(1λ) takes the security parameter 1λ as
input, and outputs a statement-witness pair (x,w) ∈ R.

– On input (x,w) ∈ R, the prover computes com ←− PO1 (x,w) and sends the
commitment com to the verifier.

– The verifier runs ch←− VO1 (com) to obtain a random challenge, and sends
ch to the prover.

– Given ch, the prover computes resp ←− PO2 (x,w, com, ch) and returns the
response resp to the verifier.

– The verifier runs VO2 (x, com, ch, resp) and outputs 1 if they accept, 0 other-
wise.

Here O is modelled as a random oracle. Moreover, a transcript (x, com, ch, resp) ∈
X ×ComSet×ChSet×ResSet of the protocol is said to be valid (relative to x) in
case V2(x, com, ch, resp) outputs 1.

6 W. Ghantous et al.

We require the following properties of a Σ-protocol:

1. Correctness: all honestly generated transcripts must be valid. Formally, it
is required that

Pr

VO2 (x, com, ch, resp) = 1

∣∣∣∣∣∣∣∣∣
(x,w)←− KeyGenO(1λ)

com←− PO1 (x,w),

ch←− VO1 (com),

resp←− PO2 (x, com,w, ch)

 = 1.

2. Relaxed κ-Special Soundness: there exists a polynomial-time extraction
algorithm Ex such that, given any κ valid transcripts (x, com, ch1, resp1), . . . ,
(x, com, chκ, respκ) relative to the same statement x ∈ LR, with the same
commitment com and κ distinct challenges ch1,. . . ,chκ, outputs w such that
(x,w) ∈ R̃ (note that Ex is only required to recover a witness in R̃ ⊇ R).

3. Statistical and Computational Honest-Verifier Zero-Knowledge
(HVZK): within this definition, we allow the adversary, the prover and
the simulator to make queries to a common random oracle O. We say the
Σ-protocol is statistically HVZK if there exists a PPT simulator algorithm
SimO such that, for any (x,w) ∈ R, any honestly chosen ch ∈ ChSet and any
computationally unbounded adversary A that makes at most a polynomial
number of queries to O, we have

Pr

[
AO(com, ch, resp) = 1

∣∣∣∣∣ com←− PO1 (x,w);

resp←− PO2 (x, com,w, ch)

]
−

Pr
[
AO(com, ch, resp) = 1

∣∣∣ (com, resp)←− SimO(x, ch)
]

= negl(λ).

If the above relation holds only for computationally bounded adversaries,
the protocol is said to be computationally HVZK.

2.3 Digital signatures

Below we recall the definition of digital signature schemes, correctness and un-
forgeability.

Definition 3 (Digital signature schemes). A digital signature scheme DS
consists of three algorithms (KeyGen,Sign, Vrfy) defined as follows:

– (vk, sk)←− KeyGen(1λ): on input a security parameter λ, the key-generation
algorithm outputs a pair of verification and signing keys (vk, sk).

– σ ←− Sign(sk,M): on input a signing key sk and a message M, the signing
algorithm outputs a signature σ.

– b ∈ {0, 1} ←− Vrfy(vk,M, σ): on input a verification key vk, a message M
and a signature σ, the verification algorithm outputs 1 (accept) or 0 (reject).

Efficiency of SIDH-based signatures (yes, SIDH) 7

Correctness. For every security parameter λ ∈ N and every message M, a signa-
ture scheme is correct if the following holds:

Pr

[
Vrfy(vk,M, σ) = 1

∣∣∣∣∣ (vk, sk)← KeyGen(1λ),

σ ← Sign(sk,M)

]
= 1.

Security. We define existential unforgeability under chosen message attack
(EUF-CMA) with the following game between an adversary A and a challenger.

Setup: The challenger runs (vk, sk) ← KeyGen(1λ) and provides the adversary
A with the verification key vk. It also prepares an empty set S = ∅.

Signing Queries: The adversary A may adaptively submit messages M to the
challenger. The challenger responds with σ ← Sign(sk,M) to A’s query on a
message M and updates the set S ←− S ∪ {(M, σ)}.

Output: Finally, A outputs a forgery (M∗, σ∗). We say that the adversary A
wins if (M∗, ·) 6∈ S and Vrfy(vk,M∗, σ∗) = 1.

We then say that the signature scheme DS is EUF-CMA−secure if, for all
PPT adversaries A, the advantage of A in winning the above game is negligible
in the security parameter λ:

AdvEUF-CMA
A (λ) := Pr[A wins] = negl(λ).

Via the Fiat-Shamir transform [FS86], a Σ-protocol S for a binary relation
R can be turned into a digital signature scheme. The resulting scheme FS(S)
differs from S in the challenge computation, as the challenge is set equal to the
digest H(com,M) - where M is the message to sign and H a hash function -
instead of being randomly produced by the verifier. If the binary relation R is
based on a hard problem, then FS(S) can be proved EUF-CMA secure.

2.4 The ΣSEC protocol

In this section we describe theΣ-protocolΣSEC, a weaker variant ofΣbase
SECUER from

[BCC+22, Sec. 4] (see Remark 6 for the differences between the two protocols).
For every possible value of the security parameter λ, p will denote a prime of

the form p = `e11 `
e2
2 f ± 1 (where `1, `2 are small primes such that `e11 ≈ `e22 and

f ∈ N is a small cofactor), E0 a fixed supersingular elliptic curve over Fp2 such
that #E0(Fp2) = (`e11 `

e2
2 f)2 (when considering SIKE parameters, we will take

E0 : y2 = x3 + 6x2 + x), {P1, Q1} and {P2, Q2} basis for E0[`e11] and E0[`e22],
respectively. Then, the tuple pp = (p, `1, `2, e1, e2, f, E0, P1, Q1, P2, Q2) forms
the public parameter for the protocol.

The Σ-protocol ΣSEC consists of five oracle-calling algorithms (Gen,P =
(P1,P2),V = (V1,V2)), where:

– (E1, ϕ) ←− Gen(1λ): on input a security parameter, the key-generation al-
gorithm uniformly samples s from Z/`e11 Z and computes the cyclic isogeny
ϕ : E0 −→ E1 := E0/〈P1 + [s]Q1〉 having 〈P1 + [s]Q1〉 as kernel. It returns
the statement-witness pair (E1, ϕ).

8 W. Ghantous et al.

– com ←− P1(E1, ϕ): given a statement E1 and a corresponding witness ϕ,
the prover uniformly samples r from Z/`e22 Z and computes the point R =
P2 + [r]Q2 — whose order is `e22 — and the elliptic curves E2 = E0/〈R〉
and E3 = E1/〈ϕ(R)〉. Then, it uniformly samples b2, b3 from {0, 1}λ and
commits to E2 and E3 computing com1 ←− O(Com||E2||b2) and com2 ←−
O(Com||E3||b3) via the random oracle O. The output is com = (com1, com2).

– {−1, 0, 1} ←− V1(com): on input a commitment com, V1 outputs a random
challenge ch ∈ {−1, 0, 1}.

– resp ←− P2(E1, ϕ, com, ch): on input a statement E1, a corresponding wit-
ness ϕ, a commitment com = (com1, com2) and a challenge ch ∈ {−1, 0, 1},
it outputs a response resp defined as follows. If ch = −1, then resp =
(E2, r, b2); if ch = 1, then resp = (E3, ϕ(R), b3); if ch = 0, then resp =
(E2, ψ(Ker(ϕ)), E3, b2, b3), where ψ is the isogeny from E0 having 〈R〉 as
kernel.

– 1/0 ←− V2(E1, com, ch, resp): it takes as input a statement E1, a com-
mitment com = (com1, com2), a challenge ch ∈ {−1, 0, 1} and a response
resp. Depending on ch, the algorithm performs a check. In particular, if
ch = −1 then resp = (E, r, b) and the algorithm checks whether the isogeny
from E0 with kernel equal to 〈P2 + [r]Q2〉 goes to E and whether com1 =
O(Com||E||b). If ch = 1, then resp = (E, T, b) and the algorithm checks
whether the point T is in E1, the order of T is `e22 , the isogeny from E1

with kernel 〈T 〉 goes to E and com2 = O(Com||E||b). Finally, if ch = 0
then resp = (E, T, Ẽ, b, b̃) and the algorithm checks whether the point T is
in E, the order of T is `e11 , the isogeny from E with kernel 〈T 〉 goes to Ẽ,
com1 = O(Com||E||b) and com2 = O(Com||Ẽ||b̃). If the check is successful
then it outputs 1, and 0 otherwise.

Let X be the set of supersingular elliptic curves E1 over Fp2 having the same
number of rational points of E0, and Y be the set of all separable isogenies with
domain E0. Define the relation

RSEC = {(E1, ϕ) | E1 ∈ X,ϕ ∈ Y, ϕ : E0 −→ E1, deg(ϕ) = `e11 }

and the relaxed relation

R̃SEC =

(E1,w)

∣∣∣∣∣∣∣
E1 ∈ X and

w = ϕ : E0 → E1, ϕ ∈ Y, deg(ϕ) = `2i2 `
e1
1 with 0 ≤ i ≤ e2

or w = (x, x′) s.t. x 6= x′,O(Com||x) = O(Com||x′)

 .

It is not difficult to see that the Σ-protocol ΣSEC described above is correct
and has relaxed 3-special soundness for the relations RSEC and R̃SEC. Further-
more, under the assumption that the following problem is hard, we prove in
Proposition 5 that ΣSEC is computationally HVZK.

Problem 4 (Decisional Supersingular Product Problem). Let ϕ : E0 −→ E1 be
an isogeny of degree `e11 . Given (E2, E3, ϕ

′) sampled with probability 1/2 from
one of the following distributions, the decisional supersingular product problem
DSSPpp requires to det ermine which distribution it is from:

Efficiency of SIDH-based signatures (yes, SIDH) 9

– choose a random point R ∈ E0[`e22] of order `e22 . Let ψ : E0 −→ E2 and
ψ′ : E1 −→ E3 be the isogenies with kernels 〈R〉 and 〈ϕ(R)〉, respectively.
Then let ϕ′ : E1 −→ E2 be the isogeny having 〈ψ(Ker(ϕ))〉 as kernel, where
deg(ϕ′) = `e11 .

– choose E2 randomly among all the supersingular elliptic curves defined over
Fp2 having the same number of rational points as E0. Then, choose a random
point U ∈ E2 of order `e11 and compute the isogeny ϕ′ : E2 −→ E3 having
〈U〉 as kernel.

Proposition 5. Let λ be a security parameter and let pp = (p, `1, `2, e1, e2, f,
E0, P1, Q1, P2, Q2) be the public parameters. The Σ-protocol ΣSEC is computa-
tionally HVZK for the relation RSEC under DSSPpp, assuming that the commit-
ment oracle is computationally hiding.

Proof. For ch = −1, the simulator SimO uniformly samples r from Z/`e22 Z,
computes the isogeny ψ of kernel generator R = P2 +[r]Q2 and the elliptic curve

E2 = E0/〈R〉. It then uniformly samples b2, b3
$←− {0, 1}λ and sets com1 ←−

O(Com||E2||b2) and com2 ←− O(Com||1||b3). The isogeny ψ is computed as in
the original protocol, so the transcript is valid. Under the assumption that the
commitment oracle is computationally hiding, an adversary cannot distinguish
between the simulated com2 and a commitment computed following the protocol.

For ch = 1, the simulator uniformly samples r from Z/`e22 Z, computes a basis
{P ′2, Q′2} of E1[`e22] and the isogeny ψ′ of kernel generator R′ = P ′2 + [r]Q′2, with

codomain E3 = E1/〈R′〉. It then uniformly samples b2, b3
$←− {0, 1}λ and sets

com1 ←− O(Com||1||b2) and com2 ←− O(Com||E3||b3). The transcript is valid,
since by construction we have that R′ ∈ E1, that its order is `e22 and that the
resulting ϕ′ has image E3. Without knowing the witness, an adversary cannot
tell R′, of order `e22 , from a point of order `e22 that is an image through ϕ. The
mixing properties of supersingular isogeny graphs ensure that E3 is randomly
distributed, as it would be if it was computed following the protocol. Finally, if
the commitment oracle is computationally hiding, the adversary cannot distin-
guish the simulated com1 from a properly formed one.

For ch = 0, the simulator samples r from Z/`e22 Z, computes the isogeny ψ of
kernel generator R = P2 + [r]Q2 and the elliptic curve E2 = E0/〈R〉. Then it
computes a basis {P ′1, Q′1} of E2[`e11], it samples s from Z/`e11 Z and the isogeny
ϕ′ of kernel generator S′ = P ′1 + [s]Q′1, with codomain E3 = E2/〈S′〉. It then

uniformly samples b2, b3
$←− {0, 1}λ and sets com1 ←− O(Com||E2||b2) and

com2 ←− O(Com||E3||b3). The transcript is valid, since S′ ∈ E2 has order `e11
and the kernel it generates is that of an isogeny from E2 to E3. The adversary
cannot tell the simulated point S′ from a properly formed ψ(ker(ϕ)), otherwise
it would have solved the DSSPpp instance. ut

Remark 6. Within the protocol Σbase
SECUER, the degree of the isogenies from E0 to

E1 and from E2 to E3 is equal to `d11 (with d1 a suitable natural number bigger
than e1), while the degree of the isogenies from E0 to E2 and from E1 to E3

is equal to `d22 (with d2 a suitable natural number bigger than e2). In this way,

10 W. Ghantous et al.

the protocol can be proved to be statistically HVZK [BCC+22, Prop. 17]. The
conditions to satisfy this stronger property heavily affect both the transcript size
and the execution times. Since in our work we are only interested in standard
digital signatures, it is enough to rely on the computational HVZK property of
the Σ-protocol. This allows us to preserve in full the SIDH parameters, including
the degrees of the isogenies.

As the protocol ΣSEC has a soundness error ε = 2/3, it is necessary to repeat
its execution in parallel t times in order to obtain a negligible soundness error.
It is customary to set t as the minimum positive integer such that εt < 2−λ.
Therefore, we obtain

t >
1

log2(3)− 1
λ ≈ 1.7 · λ. (1)

The Σ-protocol that results from repeating ΣSEC in parallel t-times, which
will be denoted by Σt

SEC in the following, is depicted in Figure 1.
Assuming a supersingular elliptic curve over Fp2 is identified by a single

element of Fp2 , the average size (in bits) of a transcript of Σt
SEC (excluding the

statement) is approximated by

|transcript| = 4λt+ dlog(3)et +
t

3

(
(2dlog pe+ dlog `e22 e+ λ) + (2)

+ (4dlog pe+ 1 + λ) + (6dlog pe+ 1 + 2λ)

)

where the terms indicate commitment, challenge and response sizes (the terms
within brackets correspond to the sizes of the responses to challenge -1,1 and 0).

Within an execution of Σt
SEC, the prover computes 2t elliptic-curve scalar

multiplications, 2t isogenies and 2t commitments to produce the commitment.
In addition, to produce the response, the prover evaluates an `e11 -isogeny (on a
point of order `e22) t/3 times, and an `e22 -isogeny (on a point of order `e11) t/3
times, on average.

When Σt
SEC is turned into the digital signature scheme DSSEC via the Fiat-

Shamir transform, the security of DSSEC is guaranteed by the hardness of the
relation R̃SEC, as the problem of finding an isogeny between two given isogenous
elliptic curves is still believed to be hard (and it has not been affected by the
recent cryptanalytic attacks on SIDH). A signature produced by DSSEC is just
a transcript of Σt

SEC without the statement and the challenge (as the latter can
be easily recovered, being it the digest of a hash function on the message m
to sign and the commitment com). Consequently, the signature size is slightly
smaller than the size of a transcript (without the statement) of Σt

SEC, and the
computational cost to sign is that undergone by the prover in an execution
of Σt

SEC, plus one hash-function evaluation. Therefore, the efficiency analysis
presented above applies almost directly to DSSEC (see the last column of Table 1
for the signature sizes of DSSEC for different SIDH/SIKE parameters).

Efficiency of SIDH-based signatures (yes, SIDH) 11

P1(E1, ϕ):

1: (r1, r2, . . . , rt)
$←− (Z/`e22 Z)t

2: (b2,1, . . . , b2,t)
$←− {0, 1}λt

3: (b3,1, . . . , b3,t)
$←− {0, 1}λt

4: for i = 1, 2, . . . , t do
5: E2,i ← E0/〈P2 + [ri]Q2〉
6: E3,i ← E1/〈ϕ(P2 + [ri]Q2)〉
7: comi,1 ← O(Com||E2,i||b2,i)
8: comi,2 ← O(Com||E3,i||b3,i)
9: return com← (comi,1, comi,2)ti=1

P2(E1, ϕ, com, ch):

1: for i = 1, 2, . . . , t do
2: if chi = −1 then
3: respi ← (E2,i, ri, b2,i)
4: else if chi = 1 then
5: respi ← (E3,i, ϕ(P2 + [ri]Q2), b3,i)
6: else
7: ψi ← IsogenyFromKernel(E0,
〈P2 + [ri]Q2〉)

8: respi ← (E2,i, ψi(Ker(ϕ)), E3,i, b2,i, b3,i)

9: return resp← (respi)
t
i=1

V2(E1, com, ch, resp):

1: for i = 1, 2, . . . , t do
2: if chi = −1 then
3: respi ← (E, r, b)
4: if E0/〈P2 + [r]Q2〉 6= E or O(Com||E||b) 6= comi,1 then
5: return 0
6: else if chi = 1 then
7: respi ← (E, T, b)
8: if T /∈ E1[`e22]max or E1/〈T 〉 6= E or O(Com||E||b) 6= comi,2 then
9: return 0

10: else
11: respi ← (E, T, Ẽ, b, b̃)
12: if T /∈ E[`e22]max or E/〈T 〉 6= Ẽ or O(Com||E||b) 6= comi,1

or O(Com||Ẽ||b̃) 6= comi,2 then
13: return 0
14: return 1

Fig. 1. Algorithms in Σt
SEC. Given a supersingular elliptic curve E,

IsogenyFromKernel(E, ·) denotes an algorithm which, on input a subgroup S ⊂ E,
computes an isogeny from E with kernel S. Moreover, E[`e]max denotes the points of
order `e in E[`e], when ` is prime and e ∈ N.

SIKE parameters dlog pe λ t Transcript length Signature length

SIKEp434 434 128 218 543692 543256

SIKEp503 503 128 218 606404 605968

SIKEp610 610 192 326 1163277 1162625

SIKEp751 751 256 435 1956775 1955905

Table 1. Average sizes (in bits) of the transcripts (excluding the statement) produced
by Σt

SEC, and the average length of the signatures produced by DSSEC, working with
different SIDH/SIKE parameters. The signature sizes are obtained from Equation (2)
minus the challenge length dlog(3)et.

12 W. Ghantous et al.

3 Signature-size Optimisations

In this section, we apply some known cryptographic techniques to DSSEC in
order to decrease the size of the signatures it produces. We start with some
optimisations that determine a reduction of the signature size without causing
any increase of the signing computations, and then we discuss those that have an
impact on the signing time. We stress that none of the considered optimisations
affects the security of DSSEC.

3.1 Challenge and commitment recoverability

A Σ-protocol (Gen,P = (P1,P2),V = (V1,V2)) is said to be commitment-
recoverable if, with overwhelming probability over the random choice of a pair
(x,w) ←− Gen(1λ), for any ch ∈ ChSet and resp ∈ ResSet, there exists a unique
commitment com ∈ ComSet that makes (x, com, ch, resp) a valid transcript, and
such a commitment can be publicly computed by means of an algorithm taking
(x, ch, resp) as input. This property allows for shorter signatures by omitting com
from them, and letting the verifier re-compute it. Its correctness is then checked
by means of the challenge ch.

The original version of the Σ-protocol Σt
SEC, described in Figure 1, does

not satisfy commitment recoverability (for example, the response respi when
chi = −1 does not allow to recover comi,2). However, we can modify (ΣSEC and)
Σt

SEC in such a way that the new protocol(s) are commitment-recoverable.
The modification of Σt

SEC which we suggest5 is detailed in Figure 2. In partic-
ular, P1 remains unchanged, while the algorithm P2 outputs the response respi =
(ri, b2,i, comi,2) when chi = −1; the response respi = (ϕ(P2 +[ri]Q2), b3,i, comi,1)
when chi = 1; the response respi = (E2,i, ψi(Ker(ϕ)), b2,i, b3,i) when chi = 0,
where ψi is the isogeny with kernel 〈P2 + [ri]Q2〉 from E0. The verifier then
re-computes part of the commitment, and checks whether it corresponds to that
received by P1.

The expected sizes (in bits) of the elements in a transcript of the modified
Σt

SEC protocol (excluding the statement) are approximated by

|com| = 4λt, |ch| = dlog(3)te,

|resp| = t
3

(
(dlog(`e22)e+ 3λ) + (2dlog pe+ 1 + 3λ) + (4dlog pe+ 1 + 2λ)

) (3)

(the terms within the brackets corresponds to the size of the responses to chal-
lenge -1,1 and 0, respectively).

5 We stress that our modification is analogous to the one proposed in [CD22b, Sec.
3.2] for the protocol ΣwSIDH.

Efficiency of SIDH-based signatures (yes, SIDH) 13

P1(E1, ϕ):

1: (r1, r2, . . . , rt)
$←− (Z/`e22 Z)t

2: (b2,1, . . . , b2,t)
$←− {0, 1}λt

3: (b3,1, . . . , b3,t)
$←− {0, 1}λt

4: for i = 1, 2, . . . , t do
5: E2,i ← E0/〈P2 + [ri]Q2〉
6: E3,i ← E1/〈ϕ(P2 + [ri]Q2)〉
7: comi,1 ← O(Com||E2,i||b2,i)
8: comi,2 ← O(Com||E3,i||b3,i)
9: return com← (comi,1, comi,2)ti=1

P2(E1, ϕ, com, ch):

1: for i = 1, 2, . . . , t do
2: if chi = −1 then
3: respi ← (ri, b2,i, comi,2)
4: else if chi = 1 then
5: respi ← (ϕ(P2 + [ri]Q2), b3,i, comi,1)
6: else
7: ψi ← IsogenyFromKernel(E0,
〈P2 + [ri]Q2〉)

8: respi ← (E2,i, ψi(Ker(ϕ)), b2,i, b3,i)

9: return resp← (respi)
t
i=1

V(E1, com, ch, resp):

1: for i = 1, 2, . . . , t do
2: if chi = −1 then
3: respi ← (r, b, c)
4: E ← E0/〈P2 + [r]Q2〉
5: if O(Com||E||b) 6= comi,1 or c 6= comi,2 then
6: return 0
7: else if chi = 1 then
8: respi ← (T, b, c)
9: if T /∈ E1[`e22]max or O(Com||E1/〈T 〉||b) 6= comi,2 or c 6= comi,1 then

10: return 0
11: else
12: respi ← (E, T, b, b̃)
13: if T /∈ E[`e22]max or O(Com||E||b) 6= comi,1 or O(Com||E/〈T 〉||b̃) 6= comi,2 then
14: return 0
15: return 1

Fig. 2. Modified Σt
SEC protocol which enjoys commitment recoverability. The blue text

marks the differences with the original scheme depicted in Figure 1.

In Table 2 we lists the approximated sizes (in bits) of commitments, chal-
lenges and responses for the four SIKE parameter sets.

SIKE param. dlog pe λ t |com| |ch| |resp| = |signature| gain

SIKEp434 434 128 218 111616 10 279622 48.53%

SIKEp503 503 128 218 111616 10 312249 48.47%

SIKEp610 610 192 326 250368 10 597993 48.57%

SIKEp751 751 256 435 445440 11 1005575 48.59%

Table 2. Sizes (in bits) of the signatures of DSSEC (i.e. the transcripts of Σt
SEC excluding

statements and challenges) produced by the modified Σt
SEC after applying challenge and

commitment recoverability, for different SIDH/SIKE parameters. The ”gain” column
indicates by how much the signature lengths have reduced compared to those in Table 1.

14 W. Ghantous et al.

Remark 7. The gain column in Table 2 indicates how many bits (in percentage)
we save when storing the response computed by the modified Σt

SEC after applying
commitment and challenge recoverability. Each value is computed as (s0−s1)/s0,
where s0 is the average length of the response output by Σt

SEC, and s1 is the
average length of the response output by the modified version. Every time we
will introduce a new optimisation, we will compute the gain it provides as (si −
si−1)/s0, where si is the average response length produced by the version of
Σt

SEC with the current and all previous modifications, and si−1 the response
length with only the previous modifications. Note that in this way the overall
gain provided by our optimisations can be obtained by simply adding together
all the intermediate gains.

Thanks to commitment recoverability, when the modifiedΣ-protocol is turned
into a digital signature, the commitment com does not need to be part of the
corresponding signature. In principle, the challenge ch should now be part of the
signature, as it necessary to recover the commitment com. However, the modified
Σt

SEC protocol is also challenge-recoverable, and then ch can be excluded from the
signature. We recall that a Σ-protocol is challenge-recoverable if the challenge ch
in a transcript (x, com, ch, resp) can be reconstructed from resp. This is the case
for both Σt

SEC and its modification, since the type of each respi in resp uniquely
determines the corresponding challenge bit chi in ch. Thus, one can simply omit
the challenge from a transcript and let it be deduced from the response. Con-
sequently, both challenge and commitment can be reconstructed by the verifier.
Therefore, the signature sizes for different SIDH/SIKE parameters are equal to
the response sizes in Table 2. Moreover, we note that the computational effort
made by the prover in the modified Σt

SEC protocol is exactly the same as in the
original Σt

SEC protocol.

3.2 Compressed responses

In Σt
SEC, when chi = 1 the prover responds with the point ϕ(P2 + [ri]Q2) gener-

ating the kernel of the commitment isogeny ψ′i : E1 −→ E3,i. Being P2 and Q2

over Fp2 by construction, this requires the transmission of 2 · log p+ 1 bits.
Following the algorithmic improvements proposed in [CLN16,AJK+16], we

can deterministically compute a torsion basis {P ′, Q′} of E1[`e22] for any state-
ment/public key E1. Then, the response can be set as the result (αi, βi) of a
double discrete logarithm, with αi, βi such that [αi]P

′+[βi]Q
′ = ϕ(P2 +[ri]Q2).

Since ϕ(P2 + [ri]Q2) is of order `e22 , one of the two coefficients αi, βi must be
invertible modulo `e22 ; if it is αi, we let ιi := 1 and γi := α−1i βi, otherwise we let
γi := 1 and ιi := β−1i αi. The response can then be set as (ιi, γi), and the kernel
generator computed as [ιi]P

′ + [γi]Q
′.

With this method, the size of the response is therefore reduced to dlog(`e22)e+
1 bits, at the cost of computing a deterministic torsion basis both by signer and
verifier, and determining a double discrete logarithm only on the signer’s side.
Note that the basis P ′, Q′ can be computed once for all by adding it to the
statement/public key E1. The new public key would look exactly like an old SIDH

Efficiency of SIDH-based signatures (yes, SIDH) 15

public key, with the crucial difference that the basis is computed independently
of the secret isogeny ϕ, preventing the applicability of the attacks on SIDH to
this context. Moreover, the following pre-computation would allow us to use
the method of compressed responses at no additional computation cost. The
prover needs to determine ϕ(P2) and ϕ(Q2), and then compute their respective
components α, β and γ, ω in the basis {P ′, Q′}. Then, to compute a response,
the prover would only need to calculate one multiplications and two sums in
Z/`e22 Z, since ϕ(P2 + [ri]Q2) = [α+ γ]P ′ + [ri · (β + ω)Q′].

We stress that, since the number of bits of the response on challenge chi = −1
is one bit shorter than the compressed response for the challenge chi = 1, the
challenge recoverability of the protocol is preserved. The new response length is
then computed as

|resp| = t

3

(
(dlog(`e22)e+ 3λ)+(dlog(`e22)e+ 1 + 3λ)+(4dlog pe+ 1 + 2λ)

)
(4)

Remark 8. The above compression method could also be applied for the case
where ch = 0, at the cost of a slow down, since a new canonical basis would
need to be computed. Indeed, unlike for ch ∈ {±1}, the curve E2 varies for each
challenge. We will therefore not consider this compression method for ch = 0 in
Table 3.

SIKE param. dlog pe λ t |resp| = |signature| gain

SIKEp434 434 128 218 232388 8.69%

SIKEp503 503 128 218 257531 9.03%

SIKEp610 610 192 326 498563 8.55%

SIKEp751 751 256 435 842740 8.33%

Table 3. Sizes (in bits) of the responses produced by the modified Σt
SEC with com-

pressed responses for different SIDH/SIKE parameters. Commitment and challenge
lengths remain unchanged w.r.t. Table 2. The “gain” column is computed as the dif-
ference between the new signature lengths and the ones in Table 2 divided by the
signature lengths from Table 1.

3.3 Seed trees

A primitive called seed tree [BKP20] can be used to first generate a number of
pseudorandom values and later efficiently disclose an arbitrary subset of them,
without revealing any information on the values which are not disclosed. More
precisely, a seed tree is a complete binary tree (i.e. a binary tree in which every
level, except possibly the last, is completely filled, and all nodes are as far left as
possible) of λ-bit seed values such that the left (resp. right) child of a λ-bit seed
seed is the left (resp. right) half of the bit string Expand(seed‖h), where h is a
unique identifier for the position of seed in the binary tree. The seed values of a
subset of the set of leaves can be efficiently revealed by sharing the appropriate
set of internal seeds in the tree. As a simple example, if the sender (who created

16 W. Ghantous et al.

the complete binary tree) only provides the seed value associated to the left child
of the root of the tree, then the recipient will only be able to recover the seed
values associated to the leaves in the left half of the tree. Notably, the recipient
will not learn any information about the leaves in the right half of the tree.
A seed tree consists of four oracle-calling algorithms: SeedTree, ReleaseSeeds,
RecoverLeaves, SimulateSeeds. Below, we recall the formal definitions of the first
three algorithms, where Expand : {0, 1}λ+dlog2(t−1)e −→ {0, 1}2λ is a Pseudo-
random Generator (PRG, is short) for any λ, t ∈ N, instantiated by a random
oracle O.

– SeedTreeO(seedroot, t) −→ {leafi}i∈{1,...,t} : on input a root seed seedroot ∈
{0, 1}λ and an integer t ∈ N, the algorithm constructs a complete binary
tree with t leaves by recursively expanding each seed to obtain its children
seeds. Calls to the random oracle are of the form O(Expand‖seed‖h), where
h ∈ {1, . . . , t − 1} identifies the position of seed in the binary tree. The
algorithm finally outputs the list of seeds associated with the t leaves.

– ReleaseSeedsO(seedroot, c, j) −→ seedsinternal : on input a root seed seedroot ∈
{0, 1}λ, a bit string c ∈ {−1, 0, 1}t, and j ∈ {−1, 0, 1}, it outputs the list
of seeds seedsinternal that covers all the leaves with index i such that ci = j.
Here, we say that a set of nodes F covers a set of leaves S if the union of
the leaves of the subtrees rooted at each node v ∈ F is exactly the set S.
Here we note that each seed in seedsinternal is coupled with an index which
identifies its position in the binary tree.

– RecoverLeavesO(seedsinternal, c, j)→ {leafi}i s.t. ci=j : on input a set seedsinternal,
a bit string c ∈ {0, 1}t and a chosen j ∈ {−1, 0, 1}, it computes and outputs
all the leaves of the subtrees rooted at the seeds in seedsinternal.

By construction, the leaves {leafi}i s.t. ci=j output by SeedTree(seedroot, t)
are the same as those output by RecoverLeaves(ReleaseSeeds(seedroot, c, j), c, j)
for any c ∈ {0, 1}t and j ∈ {−1, 0, 1}. We observe that the last algorithm
SimulateSeeds can be used to argue that the seeds associated with all the leaves
with index i such that ci 6= j are indistinguishable from uniformly random values
for a recipient that is only given seedsinternal, c and j.

We now describe how seed trees can be used to optimise the modified Σt
SEC

on two fronts. The optimisation we propose in the following is motivated by the
observation that in the first three lines of P1 (Figure 2), all the elements necessary
to compute the inputs to the commitment oracle are sampled: the t random

coefficients {r1, . . . , rt}
$←− (Z/`e22 Z)t for the commitment curves (E2,i, E3,i)

t
i=1

and two sets of random strings (b2,1, . . . , b2,t), (b3,1, . . . , b3,t)
$←− {0, 1}λt. Of

these inputs, only the coefficients need to be selectively opened, while the entirety
of the random strings can be revealed (as their disclosure does not impact the
computational HVZK property of the protocol).

Therefore, instead of independently choosing t coefficients and 2t random
bit-strings, 3t seeds could be generated using two distinct seed trees, one for
the coefficients which originates from the root seedcoeff

root and one for the random
bit-strings which originates from the root seedstr

root. Then, instead of selectively

Efficiency of SIDH-based signatures (yes, SIDH) 17

revealing a subset of the 2t bit strings according to the response algorithm P2,
the prover could directly sends the initial seed seedstr

root used to generate them,
letting the verifier compute them all. On the other hand, instead of responding
with the random coefficients ri for the challenge bits chi = −1, the prover could
output seedsinternal ← ReleaseSeeds(seedrootcoeff, ch,−1). The verifier would then
use seedsinternal along with ch and j = −1 to recover the required seeds by running
RecoverLeaves.

Let us analyse how generating all random strings from a single root seed
seedstr

root and revealing it to the verifier affects the response length. Each random
string is represented by λ bits, and without the use of seed trees, one of them
is communicated if chi = −1 or chi = 1, and two of them if chi = 0. For t
responses respi on challenges evenly distributed over {−1, 0, 1}, this amounts to
1
3 t(λ + λ + 2λ) = 4

3 tλ bits. If all random strings are generated with a seed tree
from a root seed seedstr

root, releasing just the root seed requires only λ bits.
Such neat analysis cannot be performed on the application of the seed tree

primitive to the generation of the coefficients r1, . . . , rt, since the amount of in-
ternal seeds that need to be revealed depends on how −1, 0 and 1 are distributed
over the challenge string. In the worst-case scenario, i.e. when all the leaf seeds
need to be revealed, instead of log p

2 bits for the coefficient ri, only λ bits for the
generating seed need to be communicated.

The following Equation (5) determines how seed trees affect the lengths of
the responses produced by the modified Σt

SEC of Figure 2 when it also incor-
porates compressed responses (for challenges chi = 1). In parenthesis we add
response lengths for chi = −1, 1, 0 respectively, where the 2λ addends represent
the necessary information for commitment recoverability; the lenghts of random
strings (b2,1, . . . , b2,t), (b3,1, . . . , b3,t) is removed from each response and replaced
by a unique λ addend representing seedstr

root.

|resp| = λ+
t

3

(
(λ+ 2λ) + (dlog(`e22)e+ 1 + 2λ) + (4dlog pe+ 1)

)
(5)

In Table 4 we report the numbers produced by Equation (5) for different
SIKE parameters. Table 4 differs from Table 3 only in the last two columns.

SIKE param. dlog pe λ t |com| |ch| |resp| = |signature| gain

SIKEp434 434 128 218 111616 10 188771 8.03%

SIKEp503 503 128 218 111616 10 211370 7.62%

SIKEp610 610 192 326 250368 10 403020 8.22%

SIKEp751 751 256 435 445440 11 676681 8.49%

Table 4. Sizes (in bits) of the different components of the transcripts (excluding the
statement) produced by the modified Σt

SEC of Figure 2 when it also incorporates com-
pressed responses (for challenges chi = 1) and seed trees. The “gain” indicates by how
much the signature lengths have reduced compared to those in Table 3.

18 W. Ghantous et al.

3.4 Unbalanced challenge space

Equation (5) clearly shows that the response respi when chi = 0 is signifi-
cantly bigger than when chi ∈ {−1, 1}. As a consequence, one might consider
to unbalance the challenge string ch in order to decrease the overall size of
resp = (respi)

t
i=1. Such modification was proposed in [BKP20, Sec. 3.4.1], and

has the extra positive effect of making the transcript/signature size constant.
To be more concrete, the modification consists in choosing a positive integer
K and performing M parallel executions of ΣSEC, exactly K of which use the
unfavourable challenge bit 0. The number of challenges in {−1, 0, 1}M having
exactly K components equal to 0 is

(
M
K

)
· 2M−K . Equation (1) dictates that, for

a given K, M should be selected in such a way that the success probability of a
dishonest prover is bounded above by 2−λ, i.e.(

M

K

)
· 2M−K

n
≥ 2λ. (6)

Therefore, for generic M and K, it is necessary to find the maximal number
n = nM,K of challenges to which a dishonest prover would be able to correctly
reply. Afterwards, we will find the optimal M ∈ N and K ∈ {0, ..., dt/3e} such
that

|resp| = λ+

⌈
M −K

2

⌉(
(λ+ 2λ) + (dlog(`e22)e+ 1 + 2λ)

)
+K (4dlog pe+ 1)

(7)
is minimal. We first start by finding n.

Lemma 9. We can express n as follows

n = max

{(
h

K

)
· 2M−h : h ∈ {K, ...,M}

}
. (8)

Proof. Let S be the set of all subsets U of {−1, 0, 1}M consisting of elements of
Hamming weight M −K (i.e. elements with M −K non-zero components) and
such that, for any index i ∈ {1, . . . ,M}, U does not contain three elements whose
i-th components are all distinct. Then n is the maximum cardinality among the
sets in S. Given a set U ∈ S, let hU denote the number of indices i such that
there exists a sequence in U that has a zero at index i, i.e.

hU := # {i ∈ {1, ...,M} : ∃x ∈ U, xi = 0} .

Hence, for a set U ∈ S, we can have
(
hU

K

)
choices for the entries that are zero.

The remaining M − hU entries can be either 1 or −1, giving us 2M−hU choices.
Therefore, the maximal size of a set U ∈ S is n as in Equation (8). ut

Efficiency of SIDH-based signatures (yes, SIDH) 19

Proposition 10. Let hmax denote a value of h realising the maximum of the
set in Equation (8). Then hmax = 2K and

n =

(
2K

K

)
· 2M−2K

Proof. Let us study the behaviour of the discrete function f(h) :=
(
h
K

)
· 2M−h

taking values in {K, ...,M}, with parametrised integers K < M . We start by
noticing that the left factor

(
h
K

)
is monotonically increasing, while the right

factor 2M−h is monotonically decreasing, with ratio 2M−h/2M−(h+1) = 2 for
any value of h.

The function f(h) is initially increasing, since the left factor grows faster
than how the right factor decreases. In fact, for any h ≥ K,(

h+1
K

)(
h
K

) =
h+ 1

h+ 1−K
> 2⇐⇒ h < 2K − 1.

For h = 2K − 1 the ratio between the binomial coefficients for h and h + 1
is exactly 2, so f(2K − 1) = f(2K).

For any h > 2K − 1 the function f is decreasing, since
(
h+1
K

)
/
(
h
K

)
< 2 for

2K ≤ h < M .
We conclude by arbitrarily choosing hmax = 2K as a value of h maximising

f (one can equivalently set hmax = 2K − 1, obtaining a less neat formula), and
thus n =

(
2K
K

)
· 2M−2K . ut

As an example, when λ = 128 and K is set to 75, it is sufficient to have
M = 247 parallel runs of ΣSEC, since here the value hmax giving us the maximal
size of U is 150. The values of M and K that optimally minimise the length of
the response for different SIDH/SIKE parameters are collected in Table 5.

SIKE parameters dlog pe λ M K hmax |resp| gain

SIKEp434 434 128 250 48 96 154783 6.26%

SIKEp503 503 128 250 48 96 169041 6.99%

SIKEp610 610 192 362 76 152 336095 5.76%

SIKEp751 751 256 478 103 206 571453 5.38%

Table 5. Values of M and K for the unbalanced challenge space that minimise the
response length of the modified ΣM

SEC for different SIDH/SIKE parameters still guaran-
teeing a negligible soundness error. The size of resp is in bits, while the “gain” column
reports by how much the signature lengths have reduced compared to those in Table 4.

In order to obtain the values in Table 5, we simply run through all values of
M , up to a very large upper bound (say twice the value of the corresponding t),
and all values of K ∈ {0, ..., dt/3e} and pick out the values (M,K) minimizing
|resp|. As expected, the values of M obtained end up being very close (just a
little bit bigger) than the corresponding values of t (which can be found, for
example, in Table 4).

20 W. Ghantous et al.

3.5 Summary

We conclude this section highlighting the overall gain in applying challenge and
commitment recoverability, compressed responses, seed trees and unbalanced
challenge space optimisations to the ΣSEC protocol. We phrase the results in
terms of signature sizes:

– for SIKEp434 we shorten the signature from 66.31KB to at most 18.89KB,
corresponding to a reduction of at least 71.51%

– for SIKEp503 we shorten the signature from 73.97KB to at most 20.63KB,
corresponding to a reduction of at least 72.10%

– for SIKEp610 we shorten the signature from 141.92KB to at most 41.03KB,
corresponding to a reduction of at least 71.09%

– for SIKEp751 we shorten the signature from 238.76KB to at most 69.76KB,
corresponding to a reduction of at least 70.78%

We also note that all the optimisations discussed in this section could be ex-
tended to the distributed trusted-setup protocol [BCC+22, Sec. 5] built on top of
Σbase

SECUER to collaboratively produce a random supersingular elliptic curve whose
endomorphism ring is hard to compute even for the parties who did the sampling.

SIKE parameters dlog pe λ |resp| total gain

SIKEp434 434 128 18.89KB 71.51%

SIKEp503 503 128 20.63KB 72.1%

SIKEp610 610 192 41.03KB 71.09%

SIKEp751 751 256 69.76KB 70.78%

Table 6. Overall gains in applying all the proposed optimisations to the ΣSEC protocol.

4 Running-time optimisations

In an execution of the Σ-protocol Σt
SEC, 2t commitment isogenies need to be

computed. The same holds for all the modified protocols introduced in Section 3,
including the one that considers fixed-weight challenges, which we denote by
ΣM

SEC (see Section 3.4). All such isogenies have degree `e22 ; half of them originate
from E0, half from E1.

We now present two optimisations that take advantage of the computation of
several isogenies of the same degree from the same supersingular elliptic curve.
Despite focusing on Σt

SEC (and, implicitly, on ΣM
SEC), both optimisations could

be extended to the distributed trusted-setup protocol [BCC+22, Sec. 5] built on
top of Σbase

SECUER.
In order to better explain such optimisations, we recall the fastest generic

method to compute a cyclic isogeny of degree `e22 from its kernel. For simplicity,
we specialise our presentation to the SIKE parameters, and therefore in the
following we will replace `1 with 2, `2 with 3, e1 with a and e2 with b.

Efficiency of SIDH-based signatures (yes, SIDH) 21

Let ψ be an isogeny of degree 3b from a supersingular elliptic curve E over
Fp2 , with kernel generated by R := P + [r]Q for some basis {P,Q} of E[3b] and

some r ∈ Z/3bZ. The isogeny ψ can be expressed as the composition ψ = ψ(b) ◦
ψ(b−1) ◦ · · · ◦ψ(1) =

∏b−1
j=0 ψ

(b−j) where each ψ(j) has degree 3. The first isogeny

ψ(1) of such decomposition is the isogeny whose kernel is generated by [3b−1]R.
Then ψ(2) is the isogeny with kernel generated by [3b−2]ψ(1)(R), and so on until
ψ(b), the last 3-isogeny with kernel generated by ψ(b−1)(. . . (ψ(1)(R)) . . .).

The strategies described in [ACC+20, Appendix D] speed up the computa-
tion of ψ = ψ(b) ◦ ψ(b−1) ◦ · · · ◦ ψ(1) by minimising the number of operations to
execute. We give a high-level description of these strategies in the following lines.
In order to recursively determine the kernels of and computing the 3-isogenies
in the decomposition ψ =

∏b−1
j=0 ψ

(b−j), the strategies combine two operations:
scalar multiplication and isogeny evaluation. Each of these two operations runs
in a certain time, with the latter slightly faster than the former. The goal of
the strategies is that of minimising the overall computational cost. Referring to
Figure 3, we can graphically describe their goal and how they operate. In partic-
ular, they aim to obtain the points on the hypotenuse of the right-angled triangle
using the least amount of arrows — with blue arrows representing scalar multi-
plications by 3 and red arrows representing 3-isogeny evaluations — under the
condition that the (i+1)-th line from the top cannot be accessed before reaching
the rightmost point on the i-th line from the top, i.e. before the computation of
the 3-isogeny ψ(i). In fact, the elements on the hypotenuse, from the top-right
corner to the bottom-left corner, represent the kernels of ψ(1), ψ(2), . . . , ψ(b), re-
spectively. The naive (standard) approach to compute ψ =

∏b−1
j=0 ψ

(b−j) would
be to start at the first line, go all the way to the right, then move down to
the next line, and go all the way to the right, and so on. However, there exist
alternative strategies which accelerate the computations. In particular, Figure 3
depicts the optimal strategy proposed in [ACC+20, Appendix D] for the case
b = 6 (the general strategy for a generic b is just a generalisation of it).

4.1 Computing several isogenies in parallel

We now go back to the computation of 2t commitment isogenies within an exe-
cution of Σt

SEC (or within one of its variations). To outline the first optimisation
we propose, we restrict our attention to the isogenies ψ1, . . . , ψt which originate
from E0. Analogous considerations hold for the isogenies originating from E1.

As we saw above, for i ∈ {1, . . . , t}, the fastest method to compute ψi from
its kernel 〈P2 + [ri]Q2〉 — where {P2, Q2} is a basis of E0[3b] — is that of

determining the composition ψ
(b)
i ◦ ψ

(b−1)
i ◦ · · · ◦ ψ(1)

i of 3-isogenies. We then

observe that there are 3 possible values for ψ
(1)
i , 32 for ψ

(2)
i , 33 for ψ

(3)
i , and so

on. For example, the three possible values for ψ
(1)
i have 〈[3b−1]P2 + [0 ·3b−1]Q2〉,

〈[3b−1]P2 + [1 · 3b−1]Q2〉 and 〈[3b−1]P2 + [2 · 3b−1]Q2〉 as kernels. Since t = 218
for SIKEp434 and SIKEp503, t = 326 for SIKEp610 and t = 435 for SIKEp751,

22 W. Ghantous et al.

ψ5...ψ1(R)

ψ4...ψ1(R)

ψ3...ψ1(R)

ψ2ψ1(R)

ψ1(R)

R

ψ4...ψ1([3]R)

ψ3...ψ1([3]R)

ψ2ψ1([3]R)

ψ1([3]R)

[3]R

ψ3...ψ1([32]R)

ψ2ψ1([32]R)

ψ1([32]R)

[32]R

ψ2ψ1([33]R)

ψ1([33]R)

[33]R

ψ1([33]R)

[34]R [35]R

ψ1

ψ2

ψ3

ψ4

ψ5

ψ1

ψ2

ψ3

ψ1

Fig. 3. Graphical representation of the optimal strategy proposed in [ACC+20, Ap-
pendix D] for the case b = 6 to compute a 36-isogeny from a kernel generator R. Blue
arrows represent scalar multiplications by 3, red arrows represent 3-isogeny evaluations.

some of the possible 3-isogenies will surely occur multiple times6. In particular,
for j ∈ {1, . . . , b} and two different i, i′ ∈ {1, . . . , t}, it holds that

ψ
(j)
i ◦ · · · ◦ ψ

(1)
i = ψ

(j)
i′ ◦ · · · ◦ ψ

(1)
i′ ⇐⇒ ri ≡ ri′ (mod 3j). (9)

After a few steps, however, repetitions are expected to stop occurring (for the
rapid-mixing property of supersingular isogeny graphs). For example, consider-
ing the SIKEp434 parameters, since there are 35 = 243 possible values for ri
(mod 35) and t = 218, the fourth is the last factor where we can still expect a
good amount7 of repetitions.

Given the above observations, a speed-up in computing the t isogenies of de-
gree 3b from E0 can be obtained by avoiding repeatedly computing 3-isogenies
which occur multiple times. To be more precise, this can be achieved by pre-

6 When using an unbalanced challenge space, as discussed in Section 3.4, ΣSEC is
repeated M times, with M > t for all SIKE parameters.

7 Some repetitions are also expected in the fifth factor. In particular, an average of
28.35 repetitions occur. In other words, if we were to pick 128 items from a set of
35 = 243, then on average (repeating this experiment many times), we would get
around 28 repetitions.

Efficiency of SIDH-based signatures (yes, SIDH) 23

computing all possible values for ψ
(1)
i , . . . , ψ

(α)
i — with α being the biggest posi-

tive integer such that 3α < t — and then, for every i ∈ {1, . . . , t}, calculating the

congruence classes of ri modulo 3, 32, . . . , 3α to determine ψ
(1)
i , . . . , ψ

(α)
i , respec-

tively. Alternatively, for each i ∈ {1, . . . , t} and j ∈ {1, . . . , α}, the congruence

class of ri modulo 3j can be determined before computing the kernel of ψ
(j)
i and

the isogeny itself. If such congruence class matches the one of a coefficient rk
with k ∈ {1, . . . , j−1}, then the kernel of ψ

(j)
i and the isogeny itself do not need

to be re-computed, since ψ
(j)
i = ψ

(j)
h .

Figure 4 shows how the modular-arithmetic checks can be exploited within
the optimal strategies proposed in [ACC+20, Appendix D]. In particular, they
grant the possibility of moving from line 1 to line α+ 1 (where α is equal to 3 in
the toy example depicted in the figure) without the need to reach the rightmost
of the first α lines. In other words, the vertical orange arrows can be simply
determined form the modular-arithmetic checks.

ψ5...ψ1(R)

ψ4...ψ1(R)

ψ3...ψ1(R)

ψ2ψ1(R)

ψ1(R)

R

ψ4...ψ1([3]R)

ψ3...ψ1([3]R)

ψ2ψ1([3]R)

ψ1([3]R)

[3]R

ψ3...ψ1([32]R)

ψ2ψ1([32]R)

ψ1([32]R)

[32]R

ψ2ψ1([33]R)

ψ1([33]R)

[33]R

ψ1([34]R)

[34]R [35]R

ψ1

ψ2

ψ3

ψ4

ψ5

Fig. 4. By doing some pre-computation or avoiding the multiple computation of 3-
isogenies, the optimal strategy from [ACC+20, Appendix D] to compute and evaluate
a 36-isogeny from a kernel generator R is granted the possibility to move from line 1
to line α+ 1 (with α = 3 in the figure) without the need to reach the right most of the
first α lines. In particular, the points in boxes can obtained instantly from modular-
arithmetic checks, and they determine, in turn, the vertical orange arrows.

24 W. Ghantous et al.

In order to evaluate the advantage in applying the described tweak, we first
deduce formulas for the number of horizontal and vertical arrows, respectively,
required in the optimal strategies from [ACC+20, Appendix D] to compute iso-
genies of degree 3b:

Hos(b) =

⌊
3b− 4

2

⌋
, Vos(b) =

⌊
b+ 1

2

⌋2
− (b mod 2). (10)

We borrow from [ACC+20, Appendix D] the costs (in cycles) of a point-tripling
operation, p3, and of computation and evaluation of a 3-isogeny, q3. With them
and Equation (10), we calculate the cost of the optimal strategies from [ACC+20,
Appendix D] to compute t isogenies of degree 3b, and we compare it with the cost
when pre-computation is performed. The results are presented in Table 7. For
example, for SIKEp434, t is equal to 218, b = 137, p3 = 5322 and q3 = 5282, with
the total cost for computing t isogenies of degree 3137 via the optimal strategy
being

218(Vos(137) · q3 +Hos(137) · p3) = 5 716 545 548.

If isogenies are pre-computed and selected using modular arithmetics accord-
ing to Equation (9), we can start each isogeny computation from the fifth line
(as noted above, we expect a good amount of repetitions in the first four factors
when t = 218), thus reducing the amount of arrows to compute. In this case,
H ′os(137) = Hos(137 − 4) horizontal arrows and V ′os(137) = Vos(137 − 4) + 4
vertical arrows are required to computate a single 3137-isogeny. The total cost
of computing 218 isogenies of degree 3137 in parallel is

218(Vos(133) · q3 + 4 · q3 +Hos(133) · p3) = 5 396 382 900

which corresponds to an efficiency increase of 5.60% for SIKEp434 parameters.
We can analogously compute the savings determined by our tweak for the

other SIKE parameter sets, pre-computing the first 5 steps for SIKEp610 and
SIKEp751 (in which cases 35 < t). The results are summarised in Table 7, where
we also indicate the cost of storing the pre-computed kernel generators of all
possible initial steps ψ1, . . . ψ4.

For comparison with the parallel strategy with pre-computation, we now
describe a sequential approach to speed up Σt

SEC by avoiding recomputing the
same steps several times, but without introducing any pre-computations. When
we compute the first isogeny ψ1 from its coefficient r1, we store the kernels of
its first four initial steps. When computing the second isogeny, we first check
whether r2 ≡ r1(mod 3j) for any j = 1, 2, 3, 4: if so, we already have the kernel
for that step, and we can save all horizontal lines that would be required to
compute it; if not, we compute the kernel corresponding to that step and store
it. Repeating this simple procedure would allow us to compute the initial steps
of all t isogenies ψ1, . . . , ψt without repeating the same unnecessary scalar mul-
tiplications, at the cost of evaluating modular equivalences. To analyse the cost
of this strategy, let us start from the one when we considered pre-computations,
and let us increase it by the extra cost of performing scalar multiplications in

Efficiency of SIDH-based signatures (yes, SIDH) 25

Protocol
SIKE

t b old cost (cc) new cost (cc) gain storage (KB)
parameters

Σt
SEC

SIKEp434 218 137 5716545548 5400988804 5.52% 13.035

SIKEp503 218 159 7642101180 7275879492 4.79% 15.105

SIKEp610 326 192 16365527304 15704201096 4.04% 55.41

SIKEp751 435 239 33908315250 32272252410 4.82% 68.2

Σt,U
SEC

SIKEp434 250 137 6555671500 6019478500 8.18% 39.43

SIKEp503 250 159 8763877500 8140531500 7.11% 45.65

SIKEp610 362 192 18172763448 17438407352 4.04% 55.41

SIKEp751 478 239 37260171700 35462383108 4.82% 68.2

Table 7. Costs (in clock cycles and kilobytes of storage) and percentage gains in using
the pre-computation tweak to compute t commitment isogenies in Σt

SEC and in its
unbalanced challenge variant Σt,U

SEC compared to those of using the optimal strategies
from [ACC+20, Appendix D], for different SIKE parameter sets.

the first 4 steps. In particular, we need 3 · (b−1) scalar multiplications to obtain

the 3 possibilities for ψ
(1)
i ; as per the optimal strategy, we need 32 isogeny eval-

uations on the kernels 3b−2Ri to obtain the 9 possibilities for ψ
(2)
i . Then again,

we perform 33 · (b − 3) scalar multiplications to obtain the 27 possibilities for

ψ
(3)
i , and finally 34 isogeny evaluations to get the 81 possibilities for ψ

(4)
i . The

total cost of this strategy is therefore

t · (Vos(b− 4) · q3 + 4 · q3 +Hos(b− 4) · p3) + (30 · b− 84) · p3 + 90 · q3,

for SIKEp434 and SIKEp503 and

t · (Vos(b− 5) · q3 + 5 · q3 +Hos(b− 5) · p3) + (264 · b− 1254) · p3 + 90 · q3,

for SIKEp610 and SIKEp751 (considering the fact that repetitions occur in the
fifth step as well) and it requires the same amount of extra storage as the pre-
computation strategy. The results for all SIKE parameter sets are presented in
Table 8.

4.2 Computing multiple scalar multiplications in parallel

Following the optimisations presented in the previous section, we note that many
points belonging to E0 must be computed. These points are used in the commit-
ment generation of Σt

SEC (or in one of its variants), and are the kernel generators
R1, R2, . . . Rt, where each Ri = P2 + [ri]Q2 is obtained by randomly sampling ri
from Z/`e22 Z (or by using a seed tree, as shown in Section 3.3).

We now discuss how to calculate all Ri’s in parallel and obtain some com-
putational savings. An analogous strategy can be applied to parallelise the com-
putation of the kernel generators of the commitment isogenies which originate
from E1.

26 W. Ghantous et al.

SIKE parameters t b old cost (cc) new cost (cc) gain storage (KB)

SIKEp434 218 137 5716545548 5422890556 5.14% 13.035

SIKEp503 218 159 7642101180 7301293764 4.46% 15.105

SIKEp610 326 192 16365527304 15967764224 2.43% 55.41

SIKEp751 435 239 33908315250 32601850914 3.85% 68.2

Table 8. Costs (in clock cycles and kilobytes of storage) and percentage gains in
computing t commitment isogenies in Σt

SEC following the strategy that avoids pre-
computation but performs modular-arithmetic checks on-the-fly, compared to those of
the optimal strategy from [ACC+20, Appendix D], for different SIKE parameter sets.

For each Ri, the scalar multiplication [ri]Q2 can be performed using the clas-
sical double-and-add strategy, in which the points that get doubled and (possi-
bly) added at each step are multiples of Q2. Hence, we can perform the multiple
doublings of Q2 only once for all Ri’s, as detailed in Figure 5, where m is the
minimum number of bits necessary to represent any coefficient in Z/`e22 Z, and
ri = (r0i , r

1
i , . . . , r

m−1
i)2 is the little-endian binary representation of ri ∈ Z/`e22 Z.

Parallel scalar multiplication(P2, Q2, (r1, r2, . . . , rt)):

1: for i = 1, 2, . . . , t do
2: Ri ← 0E0

3: for j = 0, 1, . . . ,m− 2 do
4: for i = 1, 2, . . . , t do
5: if rji = 1 then
6: Ri ← Ri +Q2

7: Q2 ← [2]Q2

8: for i = 1, 2, . . . , t do
9: if rm−1

i = 1 then
10: Ri ← Ri +Q2

11: Ri ← Ri + P2

12: return (R1, R2, . . . , Rt)

Fig. 5. Algorithm to compute t coefficients Ri = P2 + [ri]Q2 in parallel.

In analysing how much this strategy saves us, let Hw(ri) denote the Hamming
weight (i.e. the number of non-zero components) of the binary representation of
the coefficient ri, and let cADD and cDBL denote the cost (in cycles) of adding
and doubling points over an elliptic curve, respectively. With a naive approach,
we would perform m−1 doublings and Hw(ri)+1 additions (with “+1” counting

Efficiency of SIDH-based signatures (yes, SIDH) 27

for the last addition by P2) for each Ri, at a total cost of

t(m− 1) · cDBL +

t∑
i=1

(Hw(ri) + 1) · cADD.

With our parallelised approach presented in Figure 5, we still perform the
same amount Hw(ri) + 1 of additions for each Ri, but the m − 1 doublings are
performed once for all the Ri’s, which saves us (t−1)(m−1)cDBL (at least 99%
of the doublings for any t ≥ 100, as in our case-study).

5 Conclusions

In this note we have assessed the efficiency of a SIDH-based digital signature
built on a weaker but more efficient variant of the recent identification proto-
col Σbase

SECUER from[BCC+22, Sec. 4]. The Σ-protocol we consider only achieves
computational honest-verifier zero-knowledge instead of the stronger notion of
statistical honest-verifier zero-knowledge, but it allows for shorter isogenies. We
have conducted our analysis by applying some known cryptographic techniques
to decrease the signature size and proposing a minor optimisation to compute
many isogenies in parallel from the same starting curve. In addition, we pro-
vide novel results on unbalanced challenge space with ternary challenges. Our
assessment confirms that the problem of designing a practical isogeny-based sig-
nature scheme remains largely open. Nonetheless, the proposed optimisations
can be applied to the distributed trusted-setup protocol [BCC+22, Sec. 5] built
on top of Σbase

SECUER to collaboratively produce a random supersingular elliptic
curve whose endomorphism ring is hard to compute even for the parties who did
the sampling.

References

ACC+20. Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir
Soukharev, and David Urbanik. Supersingular isogeny key encapsulation
november 30, 2017. Third Round Candidate of the NIST’s post-quantum
cryptography standardization process. Available at: https://sike.org/,
2020.

AJK+16. Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christo-
pher Leonardi. Key compression for isogeny-based cryptosystems. In
Proceedings of the 3rd ACM International Workshop on ASIA Public-Key
Cryptography, pages 1–10, 2016.

BCC+22. Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris
Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Pa-
tranabis, and Benjamin Wesolowski. Supersingular curves you can trust.
Cryptology ePrint Archive, 2022/1469, 2022.

28 W. Ghantous et al.

BKP20. Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
falafl: Logarithmic (linkable) ring signatures from isogenies and lattices.
In International Conference on the Theory and Application of Cryptology
and Information Security, pages 464–492, 2020.

BKV19. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology –
ASIACRYPT 2019, Part I, volume 11921 of Lecture Notes in Computer
Science, pages 227–247, Kobe, Japan, December 8–12, 2019. Springer, Hei-
delberg, Germany.

CD22a. Wouter Castryck and Thomas Decru. An efficient key recovery attack on
sidh (preliminary version). Cryptology ePrint Archive, Paper 2022/975,
2022. https://eprint.iacr.org/2022/975.

CD22b. Jesús-Javier Chi-Domı́nguez. A note on constructing sidh-pok-based sig-
natures after castryck-decru attack. Cryptology ePrint Archive, Paper
2022/1479, 2022. https://eprint.iacr.org/2022/1479.

CDMP22. Jesús-Javier Chi-Domı́nguez, Victor Mateu, and Lucas Pandolfo Perin.
Sidh-sign: an efficient sidh pok-based signature. Cryptology ePrint Archive,
Paper 2022/475, 2022. https://eprint.iacr.org/2022/475.

CLN16. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algo-
rithms for supersingular isogeny Diffie-Hellman. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part I,
volume 9814 of Lecture Notes in Computer Science, pages 572–601, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

CSCJR22. Jorge Chávez-Saab, Jesús-Javier Chi-Domı́nguez, Samuel Jaques, and
Francisco Rodŕıguez-Henŕıquez. The SQALE of CSIDH: sublinear
Vélu quantum-resistant isogeny action with low exponents. Journal of
Cryptographic Engineering, 12(3):349–368, September 2022.

DDGZ21. Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas Zobernig.
SIDH proof of knowledge. Cryptology ePrint Archive, Report 2021/1023,
2021. https://eprint.iacr.org/2021/1023.

DFJP14. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. Journal of
Mathematical Cryptology, 8.3:209–247, 2014.

DFKL+20. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and
Benjamin Wesolowski. Sqisign: compact post-quantum signatures from
quaternions and isogenies. International Conference on the Theory and
Application of Cryptology and Information Security, 8.3:64–93, 2020.

DFLW22. Luca De Feo, Antonin Leroux, , and Benjamin Wesolowski. New algorithms
for the deuring correspondence: Sqisign twice as fast. Cryptology ePrint
Archive, 2022/234, 2022.

DG19. Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signa-
tures from class group actions. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 759–789, Darmstadt, Germany,
May 19–23, 2019. Springer, Heidelberg, Germany.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume
263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/1479
https://eprint.iacr.org/2022/475
https://eprint.iacr.org/2021/1023

Efficiency of SIDH-based signatures (yes, SIDH) 29

Gal12. S.D. Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, 2012.

GPS17. Steven D Galbraith, Christophe Petit, and Javier Silva. Identification pro-
tocols and signature schemes based on supersingular isogeny problems. In
ASIACRYPT, pages 3–33. Springer, 2017.

JAC+17. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello,
Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and
David Urbanik. Sike. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions.
MM22. Luciano Maino and Chloe Martindale. An attack on sidh with arbitrary

starting curve. Cryptology ePrint Archive, Paper 2022/1026, 2022. https:
//eprint.iacr.org/2022/1026.

Rob22. Damien Robert. Breaking sidh in polynomial time. Cryptology ePrint
Archive, Paper 2022/1038, 2022. https://eprint.iacr.org/2022/1038.

Sil09. Joseph H. Silverman. The arithmetic of elliptic curves. New York, Springer,
Vol. 106, 2009.

YAJ+17. Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. A post-quantum digital signature scheme based on supersin-
gular isogenies. In FC, pages 163–181. Springer, 2017.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038

	Efficiency of SIDH-based signatures (yes, SIDH)
	Introduction
	Preliminaries
	Supersingular Elliptic Curves, Isogenies, and Hardness Assumptions
	-protocols
	Digital signatures
	The protocol

	Signature-size Optimisations
	Challenge and commitment recoverability
	Compressed responses
	Seed trees
	Unbalanced challenge space
	Summary

	Running-time optimisations
	Computing several isogenies in parallel
	Computing multiple scalar multiplications in parallel

	Conclusions

