
Fully Adaptive Schnorr Threshold Signatures?

Elizabeth Crites1, Chelsea Komlo2, and Mary Maller3

1 University of Edinburgh, UK
2 University of Waterloo & Zcash Foundation

3 Ethereum Foundation & PQShield, UK
ecrites@ed.ac.uk, ckomlo@uwaterloo.ca, mary.maller@ethereum.org

Abstract. We prove adaptive security of a simple three-round threshold
Schnorr signature scheme, which we call Sparkle. The standard notion of
security for threshold signatures considers a static adversary – one who
must declare which parties are corrupt at the beginning of the protocol.
The stronger adaptive adversary can at any time corrupt parties and
learn their state. This notion is natural and practical, yet not proven to
be met by most schemes in the literature.
In this paper, we demonstrate that Sparkle achieves several levels of
security based on different corruption models and assumptions. To begin
with, Sparkle is statically secure under minimal assumptions: the discrete
logarithm assumption (DL) and the random oracle model (ROM). If an
adaptive adversary corrupts fewer than t/2 out of a threshold of t + 1
signers, then Sparkle is adaptively secure under a weaker variant of the
one-more discrete logarithm assumption (AOMDL) in the ROM. Finally,
we prove that Sparkle achieves full adaptive security, with a corruption
threshold of t, under AOMDL in the algebraic group model (AGM) with
random oracles. Importantly, we show adaptive security without requiring
secure erasures. Ours is the first proof achieving full adaptive security
without exponential tightness loss for any threshold Schnorr signature
scheme; moreover, the reduction is tight.

? A preliminary version of this paper appears in the proceedings of CRYPTO 2023.
This is the full version.

Table of Contents

1 Introduction . 3

2 Related Work . 5

3 Preliminaries . 7

3.1 General Notation . 7

3.2 Definitions and Assumptions . 8

4 Threshold Signature Schemes . 10

4.1 Static Security . 12

4.2 Adaptive Security . 12

5 Schnorr Threshold Signature Scheme Sparkle . 14

6 Static Security Under Standard Assumptions . 15

7 Adaptive Security Against up to t/2 Corruptions 17

8 Adaptive Security Against t Corruptions . 18

9 Static and Adaptive Security Proofs . 19

9.1 Proof of Static Security . 19

9.2 Proof of Adaptive Security for up to t/2 Corruptions 22

9.3 Proof of Adaptive Security for up to t Corruptions 26

A Proof of Static Security in the AGM . 34

1 Introduction

A threshold signature scheme allows a set of n possible signers to jointly produce
a signature over a message and with respect to a single public key, so long as at
least a threshold t+ 1 of signers participate. Importantly, threshold signature
schemes are secure even if t signers are under adversarial control. A recent line
of work has explored multi-party signature schemes whose output is a standard
(single-party) Schnorr signature [39, 33, 35]. Schnorr signatures admit an efficient
and compact representation even in the multi-party setting, which makes them
of particular interest for practical use [17].

Static vs. Adaptive Security. Most threshold signature schemes in the litera-
ture are proven statically secure. In the static setting, an adversary must declare
which parties it wishes to corrupt in advance of any messages being sent. This
model places an artificial restriction on the adversary’s capabilities: in reality,
malicious actors may observe a system before targeting specific parties. Thus,
adaptive security is a strictly stronger notion, and indeed there are schemes that
are statically but not adaptively secure [14]. While there are generic methods
for transforming a statically secure scheme into an adaptively secure one [16],
such as guessing the corrupted parties and aborting if incorrect, these methods
incur undesirable performance overhead and a tightness loss of

(
n
t

)
. This grows

exponentially in the number of parties, and no adaptive guarantees can be made
for larger n. Adaptive security without exponential tightness loss is challenging
to achieve. A number of other techniques for proving adaptive security have
been proposed, but similarly require undesirable tradeoffs. Prior methods include
erasure of secret state [16], which is not easily enforced in practice, or heavyweight
tools, such as non-committing encryption [31].

In this work, we investigate the adaptive security of a simple three-round
threshold Schnorr signature scheme, which we call Sparkle, under different corrup-
tion models and security assumptions. Achieving adaptive security is not just of
theoretical interest: NIST recently published a call for threshold EdDSA/Schnorr
schemes and included adaptive security as a main goal [11, 12], ideally supporting
up to n = 1024 or more parties. Our techniques are likely of independent interest,
as this paper introduces the first proof achieving full adaptive security without
exponential tightness loss for any threshold Schnorr signature scheme; moreover,
the reduction is tight.

Concurrent Security. A concurrent adversary may open an arbitrary number
of signing sessions simultaneously and unforgeability should still hold. Concurrent
security is also a difficult property to achieve, and indeed a host of threshold, blind,
and multi-signature schemes were demonstrated to be broken by concurrent (ROS)
attacks first observed by DEFKLNS19 [19] and exhibited in polynomial time
by BLLOR21 [8]. Our security reductions for Sparkle hold against a concurrent
and adaptive adversary. Combining concurrency and adaptivity in a multi-party,
multi-round signature protocol is the main technical achievement of this work.

Schnorr Threshold Signature Sparkle. In this paper, we prove the adaptive
security of a simple three-round threshold Schnorr signature scheme Sparkle that

3

Static
Scheme Assumptions Sign Combine

Performance Bandwidth Performance

rounds exp H G F exp H

FROST [33] OMDL+ROM 2 t+ 2 t+ 1 2 1 t t
FROST2 [5] OMDL+ROM 2 3 2 2 1 1 1

Lindell22 [35] DL+ROM 3 11t+ 1 18t+ 107 11 25 0 0
Sparkle DL+ROM 3 1 t+ 2 1 2 0 0

Fig. 1. Efficiency of Two- and Three-Round Schnorr Threshold Signature Schemes. All
output a standard Schnorr signature. We only compare schemes that are secure against
ROS attacks [8]. The number of network rounds between participants is given in the
rounds column. exp stands for the number of group exponentiations. The total number
of group and field elements sent by each signer is denoted by G and F, respectively.
H denotes the total number of hashing operations performed. The cost of signature
verification is identical for each scheme, and is simply the cost of verifying a single
Schnorr signature. Estimates for Lindell22 are made with respect to a 128-bit security
level for Fischlin [22], where r = 8 is the number of commitments for a Fischlin proof
and the length of the zero vector is b = 16, such that b · r = 128.

follows a commit-reveal paradigm. To begin with, we prove the static security of
Sparkle from minimal assumptions: that the discrete logarithm assumption (DL)
holds in the random oracle model (ROM). This is the same assumption and model
for which Schnorr signatures themselves are proven secure. Our security reduction
incurs no additional tightness loss compared to the security reduction for plain
Schnorr signatures [41]. We compare the efficiency of Sparkle with existing two-
and three-round threshold Schnorr signatures in Table 1.

Adaptive Security of Sparkle. We next consider an adaptive adversary who
may corrupt up to t/2 out of a threshold of t+ 1 parties over the course of the
protocol. We prove that Sparkle is adaptively secure in the random oracle model
under AOMDL, a weaker variant of the one-more discrete logarithm assumption
formalized in [39]. Importantly, we do so without requiring secure erasure of
secret state. In the t+ 1-aomdl game, the adversary is given as input an AOMDL
challenge that is a vector of group elements of length t + 1. The adversary is
given access to a discrete logarithm oracle, which returns the discrete logarithm
of a group element chosen by the adversary. To win the t+ 1-aomdl game, the
adversary must output all t+1 discrete logarithms of its challenge, having queried
its DL oracle a maximum of t times. The AOMDL assumption is stronger than the
discrete logarithm assumption because of the adversary’s ability to request for up
to t discrete logarithm solutions before returning the t+ 1 discrete logarithms of
its challenge. On the other hand, the AOMDL assumption is strictly weaker than
standard OMDL [7] because the adversary only receives the discrete logarithm
of linear combinations of its challenge elements, which allows the oracle to run in
polynomial time and makes it a falsifiable assumption [4, 29, 32].

4

Fig. 2. Comparison of security models and assumptions for our threshold Schnorr
signature scheme Sparkle. The signing threshold is t+ 1. DL is the Discrete Logarithm
Assumption, and AOMDL is the Algebraic One-More Discrete Logarithm Assumption.
ROM is the Random Oracle Model, and AGM is the Algebraic Group Model.

In the case where the adversary can corrupt up to a full t parties, it is not clear
how to prove the adaptive security of Sparkle under AOMDL+ROM alone. The
reason is that in order to extract an AOMDL solution, the adversary is rewound
once, and there is no guarantee that the adversary will corrupt the same set of
parties after the fork as it did during the first iteration of the protocol. When
the adversary can corrupt only t/2 parties, this causes no issues, as the total
number of corruptions over both iterations does not exceed t. If the adversary
could corrupt more parties, the reduction would query its DL oracle more than t
times and would lose the t+ 1-aomdl game.

We thus look towards the algebraic group model (AGM) [23] for proving
our strongest adaptivity result. The AGM assumes that whenever an adversary
outputs a group element, it also outputs an algebraic representation specifying
how the group element depends on previously seen values. In the AGM, we
are able to prove full adaptive security of Sparkle, with corruption threshold
t, under the AOMDL assumption and random oracles. Our security reduction
is straight-line, i.e., does not rewind the adversary, and so avoids counting the
number of corruptions over different forks of the adversary’s execution.

2 Related Work

Threshold Schnorr Signatures. Closest to the design of Sparkle is the MSDL
scheme presented by Boneh, Drijvers, and Neven [10], the three-round MuSig
scheme by Maxwell, Poelstra, Seurin, and Wuille [38], and the 2Schnorr scheme by
Nicolosi, Krohn, Dodis, and Mazières [40]. However, MSDL and MuSig consider
only the multi-signature setting (n-out-of-n), and 2Schnorr considers only the
2-out-of-2 setting. Concurrent to this work, Makriyannis [37] defines a commit-
reveal threshold Schnorr signature scheme similar to Sparkle and proves security
with respect to an idealized notion of threshold signatures by CGGMP21 [15].

5

They consider adaptive security but employ the guessing argument that incurs
exponential tightness loss relative to the number of parties.

Stinson and Strobl [44] present a threshold Schnorr scheme secure in the
random oracle model under the discrete logarithm assumption. However, their
scheme requires performing a three-round distributed key generation protocol
(DKG) [27] to generate the nonce for each signature, which adds considerable
network overhead: at a minimum, it requires participants to perform four rounds
in total. Further, the proof of security assumes only a static adversary.

Komlo and Goldberg [33] present a two-round threshold Schnorr signature
FROST. Unlike prior threshold Schnorr schemes in the literature [26], FROST is
secure against a concurrent adversary and is not susceptible to ROS attacks [8].
FROST2, introduced in [5], is an optimized version of FROST that reduces the
number of exponentiations required for signing from t+1 to one. (See Table 1 for a
comparison of efficiency.) However, both FROST and FROST2 are proven secure
assuming a static adversary and the one-more discrete logarithm assumption
(OMDL) [5]. While Sparkle adds an additional round of communication, it only
requires a single exponentiation per signer and can be proven secure under
standard assumptions, which are also criteria of interest in [11, 12].

Lindell presents a three-round threshold Schnorr signature [35] with the goal
of defining a threshold scheme that is secure against ROS attacks and proven
secure in the random oracle model under the discrete logarithm assumption only.
Security is modeled in the the universally composable framework (UC) [13] and
therefore captures a concurrent adversary. However, the security proof assumes
the adversary is static, and no claims are made regarding adaptive security. Sparkle
similarly relies on only ROM and DL assumptions, but does not require the use
of online-extractable zero-knowledge proofs [22], and hence is both significantly
more efficient and a simpler design.

Adaptive Security of Threshold Signatures. While adaptive security for threshold
schemes is a well-known topic in the literature, to the best of our knowledge, no
proof of adaptive security without exponential tightness loss exists for a threshold
Schnorr signature scheme that is secure against ROS attacks.

Generalized techniques for transforming statically secure threshold schemes
into adaptively secure schemes have been defined in the literature [16, 31, 36].
However, these techniques introduce prohibitive performance overhead, such
as requiring a robust distributed key generation mechanism (DKG) for nonce
generation.

Almansa, Damg̊ard, and Nielsen [2] present a threshold RSA scheme with
proactive and adaptive security, but these results do not translate to the discrete
logarithm setting. Libert, Joye, and Yung [34] present a variant of the threshold
BLS [9] scheme that is adaptively secure. However, their variant is incompatible
with single-party BLS verification, an often-critical goal for threshold schemes in
practice. Bacho and Loss [3] demonstrate the adaptive security of threshold BLS
directly in the AGM from the t+ 1-omdl assumption. Their reduction is tight.
Interestingly, they demonstrate that the t+ 1-omdl assumption is the minimum
assumption under which threshold BLS can be proven adaptively secure.

6

Definitions. In this work, we employ a game-based approach to defining the
static and adaptive security of a threshold signature, formalizing prior notions
presented in the literature [34]. Alternative definitions of adaptive security in the
UC setting have been proposed by CGGMP21 [15]. They prove their threshold
ECDSA scheme adaptively secure assuming that ECDSA is secure, in addition
to other non-interactive and falsifiable assumptions. However, their construction
focuses on n-out-of-n multi-party signing, and their techniques critically do not
translate to the t-out-of-n setting unless

(
n
t

)
is small. Our fully adaptive t-out-of-n

construction requires the algebraic group model, and incorporating algebraic
adversaries into the UC setting is known to be a hard problem [1].

On the other hand, Lindell [35] shows that their protocol UC-realizes the
Schnorr functionality with aborts, in the presence of an adversary that non-
adaptively corrupts t parties. Secure evaluation of the Schnorr functionality is
stronger than unforgeability. As noted in [15], it is arguably overly strong in
the sense that it necessitates certain design decisions, such as incorporating
online-extractable zero-knowledge proofs. Indeed, [35] elected for Fischlin proofs
(see Table 1). The only method to bias the nonces in both Sparkle and [35] is to
abort; this is not the case in FROST [33]. However, all three works allow aborts,
and therefore the distribution of the secret randomness cannot be considered
uniform [20].

3 Preliminaries

3.1 General Notation

Let κ ∈ N denote the security parameter and 1κ its unary representation. A
function f : N→ R is called negligible if for all c ∈ R, c > 0, there exists k0 ∈ N
such that |f(k)| < 1

kc for all k ∈ N, k ≥ k0. For a non-empty set S, let x←$ S
denote sampling an element of S uniformly at random and assigning it to x. We
use [n] to represent the set {1, . . . , n} and [0..n] to represent the set {0, . . . , n}.
We represent vectors as a = (a1, . . . , an).

Let PPT denote probabilistic polynomial time. Algorithms are randomized
unless explicitly noted otherwise. Let y ← A(x;ω) denote running algorithm A
on input x and randomness ω and assigning its output to y. Let y←$A(x) denote
y ← A(x;ω) for a uniformly random ω. The set of values that have non-zero
probability of being output by A on input x is denoted by [A(x)].

Group Generation. Let GrGen be a polynomial-time algorithm that takes as
input a security parameter 1κ and outputs a group description (G, p, g) consisting
of a group G of order p, where p is a κ-bit prime, and a generator g of G.

Polynomial Interpolation. A polynomial f(x) = a0 + a1x+ a2x
2 + . . .+ atx

t

of degree t over a field F can be interpolated by t+ 1 points. Let η ⊆ [n] be the
list of t+ 1 distinct indices corresponding to the x-coordinates xi ∈ F, i ∈ η of
these points. Then the Lagrange polynomial Li(x) has the form:

7

Li(x) =
∏

j∈η;j 6=i

x− xj
xi − xj

(1)

Given a set of t+1 points (xi, f(xi))i∈[t+1], any point f(x`) on the polynomial
f can be determined by Lagrange interpolation as follows:

f(x`) =
∑
k∈η

f(xk) · Lk(x`)

3.2 Definitions and Assumptions

Assumption 1 (Discrete Logarithm Assumption (DL)) Let the advantage
of an adversary A playing the discrete logarithm game Gamedl, as defined in Fig-
ure 3, be as follows:

AdvdlA(κ) =
∣∣Pr[GamedlA(κ) = 1]

∣∣
The discrete logarithm assumption holds if for all PPT adversaries A, AdvdlA(κ)

is negligible.

Assumption 2 (One-More Discrete Logarithm Assumption (OMDL))
[7] Let the advantage of an adversary A playing the t+ 1-one-more discrete loga-
rithm game Gamet+1-omdl, as defined in Figure 3, be as follows:

Advt+1-omdl
A (κ) =

∣∣Pr[Gamet+1-omdl
A (κ) = 1]

∣∣
The one-more discrete logarithm assumption holds if for all PPT adversaries

A, Advt+1-omdl
A (κ) is negligible.

Algebraic One-More Discrete Logarithm Assumption (AOMDL). The algebraic
one-more discrete logarithm assumption (AOMDL) was formalized by Jonas,
Ruffing, and Seurin [39]. We highlight differences with the OMDL assumption in
Figure 3. Note that while the OMDL assumption is not falsifiable (because the
adversary is allowed to query for the discrete logarithm of any arbitrary group
element), the AOMDL assumption is falsifiable. This is because the input to
the discrete logarithm oracle is a linear combination of all challenges issued to
the adversary, so it is guaranteed that the environment runs in PPT when its
respective adversary runs in PPT. Hence, the AOMDL assumption is a strictly
weaker assumption than standard OMDL.

An adversary in the AOMDL game is initialized in exactly the same manner
as an OMDL adversary, with the same winning condition. The only distinction
between the games is the inputs to and outputs from the discrete logarithm
oracle. In the AOMDL setting, the adversary provides a vector (α, β0 . . . , βt)
of coefficients to the discrete logarithm oracle. The oracle then responds with
the integer linear combination of these coefficients with respect to the discrete

8

main GamedlA(κ)

(G, p, g)←$ GrGen(1κ)

x←$ Zp; X ← gx

x′←$A((G, p, g), X)

if x′ = x

return 1

return 0

main Game
t+1- a omdl

A (κ)

(G, p, g)←$ GrGen(1κ)

Q← ∅
q ← 0

for i ∈ [0..t] do

xi←$ Zp; Xi ← gxi

Q[Xi] = xi

x← (x0, . . . , xt)

X ← (X0, X1, . . . , Xt)

x′ ← AO
dl

((G, p, g),X)

if x′ = x ∧ q < t+ 1

return 1

return 0

Odl(X, α, {βi}ti=0)

// X = g
α

t∏
i=0

X
βi
i

q ← q + 1

x← α+
∑t
i=0 xiβi

return x

x← dlog(X)

return x

Fig. 3. The Discrete Logarithm (DL), One-More Discrete Logarithm (OMDL), and
Algebraic One-More Discrete Logarithm (AOMDL) games. G is a cyclic group with
prime order p and generator g. dlog is an algorithm that finds the discrete logarithm
relation of the input X and g. The differences between the OMDL and AOMDL games
are highlighted in gray; the key distinction is that in the AOMDL game, the adversary
can only query for linear combinations of its challenge group elements; in the OMDL
game, the environment must return the discrete logarithm of an arbitrary group element.

logarithm of the set of challenges (X0, . . . , Xt). It is easy to see that the AOMDL
game can be used to win the OMDL game, by the adversary simply querying Odl

with a bit vector, to return the discrete logarithm of the term whose coefficient
is set to one.

Assumption 3 (Algebraic One-More Discrete Logarithm Assumption)
[39] Let the advantage of an adversary A playing the t+ 1-algebraic one-more
discrete logarithm game Gamet+1-aomdl, as defined in Figure 3, be as follows:

Advt+1-aomdl
A (κ) =

∣∣Pr[Gamet+1-aomdl
A (κ) = 1]

∣∣
The algebraic one-more discrete logarithm assumption holds if for all PPT

adversaries A, Advt+1-aomdl
A (κ) is negligible.

Assumption 4 (Algebraic Group Model (AGM) [23]) An adversary is al-
gebraic if for every group element Z ∈ G = 〈g〉 that it outputs, it is required
to output a representation a = (a0, a1, a2, . . .) such that Z = ga0

∏
Yi
ai , where

Y1, Y2, · · · ∈ G are group elements that the adversary has seen thus far.

9

Definition 1 (Schnorr Signatures [42]). The Schnorr signature scheme
consists of algorithms (Setup,KeyGen,Sign,Verify), defined as follows:

– Setup(1κ)→ par: On input a security parameter, run (G, p, g)←$ GrGen(1κ)
and select a hash function H : {0, 1}∗ → Zp. Output public parameters par←
((G, p, g),H) (which are given implicitly as input to all other algorithms).

– KeyGen(1κ)→ (pk, sk): On input a security parameter, sample a secret key
x←$ Zp and compute a public key X ← gx. Output key pair (pk, sk)← (X,x).

– Sign(sk,m)→ σ: On input the secret key sk = x and a message m, sample
a nonce r←$ Zp and compute a nonce commitment R ← gr, the challenge
c← H(X,m,R), and the response z ← r + cx. Output signature σ ← (R, z).

– Verify(pk,m, σ)→ 0/1: On input the public key pk = X, a message m, and
a purported signature σ = (R, z), compute c ← H(X,m,R) and output 1
(accept) if RXc = gz; else, output 0 (reject).

A Schnorr signature is a Sigma protocol zero-knowledge proof of knowledge of
the discrete logarithm of the public key X, made non-interactive and bound to
the message m by the Fiat-Shamir transform [21]. Schnorr signatures are secure
under the discrete logarithm assumption in the random oracle model [41].

Definition 2 (Shamir Secret Sharing [43]). Shamir secret sharing is an
(n, t+ 1)-threshold secret sharing scheme consisting of algorithms (IssueShares,
Recover), defined as follows:

– IssueShares(x, n, t+ 1)→ {(1, x1), . . . , (n, xn)}: On input a secret x, number
of participants n, and threshold t+ 1, perform the following. First, define a
polynomial f(Z) = x+ a1 + a2Z

2 + · · ·+ atZ
t by sampling t coefficients at

random: a1, . . . , at←$ Zp. Then, set each participant’s share xi, i ∈ [n], to be
the evaluation of f(i):

xi ← x+
∑
j∈[t]

aji
j

Output {(i, xi)}i∈[n].

– Recover(t + 1, {(i, xi)}i∈S) → ⊥/x: On input threshold t + 1 and a set of
shares {(i, xi)}i∈S , output ⊥ if S 6⊆ [n] or if |S| < t+ 1. Otherwise, recover
x as follows:

x←
∑
i∈S

λixi

where the Lagrange coefficient for the set S is defined by

λi =
∏

j∈S,j 6=i

j

i− j

4 Threshold Signature Schemes

We begin with the definition of a threshold signature scheme. We build upon
prior definitions in the literature [25, 28, 24], but define an additional algorithm

10

for combining signatures that is separate from the signing rounds. It may be
performed by one of the signers or some external party. We then provide game-
based definitions of static and adaptive security for threshold signatures. Our
definitions model a three-round signing protocol but can be adapted to schemes
with fewer or more rounds.

Definition 3 (Threshold Signatures). A threshold signature scheme TS is
a tuple of polynomial-time algorithms TS = (Setup,KeyGen, (Sign,Sign′,Sign′′),
Combine,Verify), defined as follows:

– Setup(1κ) → par: Takes as input a security parameter and outputs public
parameters par (which are given implicitly as input to all other algorithms).

– KeyGen(n, t + 1) → (X̃, {X̃i}i∈[n], {xi}i∈[n]): A probabilistic algorithm that
takes as input the number of signers n and the threshold t+ 1 and outputs
the public key X̃ representing the set of n signers, the set {X̃i}i∈[n] of public
keys for each signer, and the set {xi}i∈[n] of secret shares for each signer. It
is assumed that participant i is sent its respective share xi privately.

– (Sign,Sign′,Sign′′)→ {ρi, ρ′i, ρ′′i }i∈S : A set of probabilistic algorithms where
each subsequent algorithm represents a single stage in an interactive signing
protocol, performed by each signing party in a signing set S ⊆ [n], |S| ≥ t+ 1
with respect to a message m, defined as follows:

(ρi, sti)← Sign(m,S)

(ρ′i, sti)← Sign′(sti, xi, {ρj}j∈S)

ρ′′i ← Sign′′(sti, xi, {ρ′j}j∈S)

ρi, ρ
′
i, ρ
′′
i are protocol messages, and sti is the state of signing party i in S.

– Combine({(ρ′i, ρ′′i)}i∈S) → (m,σ): A deterministic algorithm that takes as
input the set of protocol messages (ρ′i, ρ

′′
i) sent by each party during the Sign′

and Sign′′ stages and outputs a signature σ.

– Verify(X̃,m, σ) → 0/1: A deterministic algorithm that takes as input the
public key X̃, a message m, and purported signature σ and outputs 1 (accept)
if the signature verifies; else, it outputs 0 (reject).

Remark 1 (Distributed key generation). Our definition assumes a centralized
key generation algorithm KeyGen to generate the public key X̃ and set of shares
{X̃i, xi}i∈[n]. However, our scheme and proofs can be adapted to use a fully
decentralized distributed key generation protocol (DKG). We refer to [3] for a
discussion on how to achieve adaptively secure DKGs.

Correctness. A threshold signature scheme is correct if for all security parame-
ters κ, all allowable 1 ≤ t+ 1 ≤ n, all S such that t+ 1 ≤ |S| ≤ n, all messages
m ∈ {0, 1}∗, and for (X̃, {X̃i, xi}i∈[n])←$ KeyGen(n, t + 1), if all signers in S
input (xi,m) to the signing protocol (Sign,Sign′,Sign′′), then every signer will
output a signature share that, when combined with all other shares, results in a
signature σ satisfying Verify(X̃,m, σ) = 1.

11

4.1 Static Security

We present a game-based definition of static security for threshold signatures
analogous to existential unforgeability against chosen message attack (EUF-CMA)
for standard signature schemes [30]. The static security game is defined formally
in Figure 4, where it contains all but the dashed boxes. In addition to the security
parameter κ, the game additionally accepts a parameter τ , which specifies the
fraction of t signers that the adversary may corrupt. A static adversary can
corrupt a full t signers out of at least t+ 1 signers in a session, so the fraction is
τ = 1.

In the static unforgeability game, the challenger generates public parameters
par and returns them to the adversary. The adversary must now choose the set
of corrupt participants cor, which are fixed for the duration of the protocol. The
challenger then runs KeyGen to derive the joint public key X̃ representing the
set of n signers, the individual public key shares {X̃i}i∈[n], and the secret key

shares {xi}i∈[n]. It returns X̃, {X̃i}i∈[n], and the set of corrupt shares {xj}j∈cor
to the adversary.

After key generation has concluded, the adversary can query honest signers k ∈
hon at each step in the signing protocol by querying oracles OSign,OSign′ ,OSign′′ ,
and has full power over choosing the set of signers S and the message m to be
signed. The signing session identifier is denoted by ssid.

The adversary wins if it can produce a valid forgery σ∗ = (R∗, z∗) with respect
to the joint public key X̃ on a message m∗ that has not been previously queried.

The adversary may be rushing, meaning it can wait to produce its outputs
after having seen the honest outputs first (represented by protocol messages
ρ, ρ′, ρ′′ in Fig. 4). The adversary may also be concurrent, meaning it can open
simultaneous signing sessions at once, or choose not to complete a signing session
(e.g., the adversary might query OSign,OSign′ , but not OSign′′ , before it starts a
new session). By modeling a concurrent adversary, we ensure that our notion of
security protects against practical attacks that can occur in such a setting [8].

Definition 4 (Static Security). Let the advantage of an adversary A playing
the static security game GameUFA (κ, τ), as defined in Figure 4, be as follows:

Advst-secA,TS (κ, τ) =
∣∣Pr[GameUFA,TS(κ, τ) = 1]

∣∣
A threshold signature scheme TS is statically secure if for all PPT adversaries

A, Advst-secA (κ, τ) is negligible.

4.2 Adaptive Security

We build upon the notion of adaptive security for threshold signature schemes by
Libert, Joye, and Yung [34]. We provide a formal game-based definition, which is
specified in Figure 4. The adaptive unforgeability game contains the same inputs
and algorithms as the static game, but additionally includes a corruption oracle
OCorrupt.

12

main GameUFA,TS(κ, τ) Gameadp-UFA,TS (κ, τ)

par← Setup(1κ)

W ← ∅ // open signing sessions for OSign

W ′ ← ∅ // open signing sessions for OSign′

W ′′ ← ∅ // signing sessions for OSign′′

Q← ∅ // set of queried messages

(n, t+ 1, cor, stA)←$A(par)

hon← [n] \ cor
(X̃, {X̃i, xi}i∈[n])←$ KeyGen(n, t+ 1)

input← (X̃, {X̃i}i∈[n], {xj}j∈cor, stA)

(m∗, σ∗)←$AO
Sign,Sign′,Sign′′,Corrupt

(input)

if |cor| ≤ τ · t // τ is a fraction

if m∗ /∈ Q ∧ Verify(X̃,m∗, σ∗) = 1

return 1

return 0

OCorrupt(k)

if k 6∈ hon return ⊥
cor← cor ∪ {k}
hon← cor \ {k}
return (xk, {stk,`}`∈[ssid])

OSign(k, ssid,m,S)

// k denotes the participant identifier

Q← Q ∪ {m}
W ←W ∪ {(k, ssid)}
(ρk, stk,ssid)← Sign(m,S)

return ρk

OSign′(k, ssid, {ρi}i∈S)

if (k, ssid) /∈W return ⊥
if (k, ssid) ∈W ′ return ⊥
W ′ ←W ′ ∪ {(k, ssid)}
(ρ′k, stk,ssid)← Sign′(stk,ssid, xk, {ρi}i∈S)

return ρ′k

OSign′′(k, ssid, {ρ′i}i∈S)

if (k, ssid) /∈W ′ return ⊥
if (k, ssid) ∈W ′′ return ⊥
W ′′ ←W ′′ ∪ {(k, ssid)}
ρ′′k ← Sign′′(stk,ssid, xk, {ρ′i}i∈S)

return ρ′′k

Fig. 4. Static and adaptive unforgeability games for a threshold signature scheme with
three signing rounds. The public parameters par are implicitly given as input to all
algorithms, and ρ, ρ′, ρ′′ represent protocol messages defined within the construction.
The static game contains all but the dashed boxes, and the adaptive game adds the
dashed boxes. τ specifies the fraction of t signers that the adversary may corrupt. For
example, τ = 1 means the adversary can corrupt a full t signers, and τ = 1/2 means it
can corrupt t/2 signers.

13

In the adaptive setting, the adversary is not restricted to choosing its set of
corrupt participants cor only at the beginning of the game. Instead, the adversary
can at any time choose to corrupt an honest party by querying OCorrupt, receiving
in return the honest party’s secret key and state across all signing sessions.

In addition to producing a valid forgery, the adversary must meet the winning
condition that the set of corrupted participants at the end of the experiment is
within the expected bound, i.e., less than τ · t, with respect to the corruption
ratio τ . An adaptive adversary may, for example, corrupt t/2 (i.e., τ = 1/2) or a
full t (i.e., τ = 1) signers out of at least t+ 1 signers in a session.

Definition 5 (Adaptive Security). Let the advantage of an adversary A
playing the adaptive security game Gameadp-UFA,TS (κ, τ), as defined in Figure 4, be
as follows:

Advadp-secA,TS (κ, τ) =
∣∣Pr[Gameadp-UFA,TS (κ, τ) = 1]

∣∣
A threshold signature scheme TS is adaptively secure if for all PPT adver-

saries A, Advadp-secA (κ, τ) is negligible.

5 Schnorr Threshold Signature Scheme Sparkle

Sparkle is a simple three-round Schnorr threshold signature scheme (Fig. 5). We
employ a centralized key generation algorithm KeyGen to generate the public
key X̃ and set of shares {X̃i, xi}i∈[n]. The public parameters par generated
during setup are provided as input to all other algorithms and protocols. We
assume an external mechanism to choose the set of signers S ⊆ {1, . . . , n}, where
t+ 1 ≤ |S| ≤ n and S is ordered to ensure consistency.

Intuitively, Sparkle follows a commit-reveal paradigm for its three-round
signing protocol. In the first round, each participant in the signing set S commits
to their nonce Ri = gri by publishing cmi ← Hcm(m,S, Ri), where m is the
message. In the second round, each participant reveals Ri in the clear. In the
third round, each participant computes the aggregate nonce R̃ =

∏
i∈S Ri, the

Schnorr challenge c← Hsig(X̃,m, R̃) using R̃, and their signature share zi. The
signature shares are additively combined via the Combine algorithm to produce
the Schnorr signature σ = (R̃, z =

∑
i∈S zi).

This commit-reveal strategy ensures two security properties. First, requiring
each participant to publish a commitment in the first round, before revealing
their Ri, prevents a rushing adversary from adaptively choosing Rj as a function
of other participants’ Ri values. Second, as we will see later in the proofs of
adaptive security, it allows the reduction to effectively handle corruptions at any
point in the signing process, without requiring the erasure of secret state.

Parameter Generation. On input a security parameter 1κ, the setup algo-
rithm runs (G, p, g)←$ GrGen(1κ), and selects two hash functions Hcm,Hsig :
{0, 1}∗ → Zp. It outputs public parameters par← ((G, p, g),Hcm,Hsig).

Key Generation. On input the number of signers n and the threshold t+ 1,
the key generation algorithm first generates the secret key x←$ Zp and

14

Setup(1κ)

(G, p, g)←$ GrGen(1κ)

// select two hash functions

Hcm,Hsig : {0, 1}∗ → Zp
par← ((G, p, g),Hcm,Hsig)

return par

KeyGen(n, t+ 1)

x←$ Zp; X̃ ← gx

{(i, xi)}i∈[n]←$ IssueShares(x, n, t+ 1)

// Shamir secret sharing of x

for i ∈ [n] X̃i ← gxi

return (X̃, {X̃i, xi}i∈[n])

Sign(m,S)

// local signer has index k

rk←$ Zp; Rk ← grk

cmk ← Hcm(m,S, Rk)

ρk ← cmk

stk ← (cmk, Rk, rk,m,S)

return (ρk, stk)

Sign′(stk, xk, {ρi}i∈S)

parse cmi ← ρi for all i ∈ S
parse (cmk, Rk, rk,m,S)← stk

return ⊥ if cmk 6∈ {cmi}i∈S
ρ′k ← Rk

stk ← (cmk, Rk, rk,m,S, {ρi}i∈S)

return (ρ′k, stk)

Sign′′(stk, xk, {ρ′i}i∈S)

// Sign′′ must be called once per stk

parse (cmk, Rk, rk,m,S, {ρi}i∈S)← stk

parse Ri ← ρ′i for all i ∈ S
return ⊥ if Rk 6∈ {Ri}i∈S
for i ∈ S do

return ⊥ if cmi 6= Hcm(m,S, Ri)

R̃←
∏
i∈S

Ri

c← Hsig(X̃,m, R̃)

zk ← rk + cλkxk

// λk is the Lagrange coefficient for k w.r.t. S

ρ′′k ← zk

return ρ′′k

Combine({(ρ′i, ρ′′i)}i∈S)

parse Ri ← ρ′i, zi ← ρ′′i for all i ∈ S

R̃←
∏
i∈S

Ri; z ←
∑
i∈S

zi

σ ← (R̃, z)

return σ

Verify(X̃,m, σ)

parse (R̃, z)← σ

c← Hsig(X̃,m, R̃)

if R̃X̃c = gz

return 1

return 0

Fig. 5. The Sparkle threshold signature scheme. The public parameters par are implicitly
given as input to all algorithms and protocols. We assume an external mechanism to
choose the set of signers S ⊆ {1, . . . , n}, where t + 1 ≤ |S| ≤ n and S is ordered
to ensure consistency. Note that verification is identical to a standard (single-party)
Schnorr signature as in Definition 1.

15

corresponding public key as X̃ ← gx. It then performs a Shamir secret sharing
of x (Def. 2): {(i, xi)}i∈[n]←$ IssueShares(x, n, t+1). Each participant’s public

key is computed as X̃i ← gxi and it outputs (X̃, {X̃i, xi}i∈[n]).
Signing Round 1 (Sign). On input a message m and a signing set S, each par-

ticipant i ∈ S samples ri←$ Zp, computesRi ← gri and cmi ← Hcm(m,S, Ri),
and outputs their commitment cmi.

Signing Round 2 (Sign′). On input commitments {cmj}j∈S , each participant
i ∈ S outputs their nonce Ri.

Signing Round 3 (Sign′′). On input nonces {Rj}j∈S , each participant i ∈ S
first checks that the commitments received in the first round are valid, i.e.,
cmj = Hcm(m,S, Rj) for all j ∈ S. If not, return ⊥. Else, each participant

computes the aggregate nonce R̃ =
∏
j∈S Rj , c← Hsig(X̃,m, R̃), and partial

signature zi ← ri + cλixi, where λi is the Lagrange coefficient for participant
i with respect to signing set S. Each participant outputs zi.

Combining Signatures. On input nonces {Rj}j∈S and partial signatures {zj}j∈S ,

the combiner computes R̃ ←
∏
j∈S Rj and z ←

∑
j∈S zj , and outputs

σ ← (R̃, z).
Verification. On input the joint public key X̃, a message m, and a purported

signature σ = (R̃, z), the verifier computes c← Hsig(X̃,m, R̃) and accepts if

R̃X̃c = gz.

Correctness of Sparkle is straightforward to verify. Note that verification of
the signature σ is identical to verification of a standard (single-party) Schnorr
signature (Def. 1) with respect to the joint public key X̃ and aggregate nonce R̃.

6 Static Security Under Standard Assumptions

In this section, we show that Sparkle is statically secure under the discrete
logarithm assumption (DL) in the random oracle model (ROM). Static security
allows an adversary to control up to t parties, but they must be declared at the
beginning of the protocol (Fig. 4).

Theorem 1. Sparkle is statically secure under DL in the ROM.

We formally prove Theorem 1 in Section 9.

Proof Outline. Let A be a PPT adversary against the static unforgeability
of Sparkle (Fig. 4). We construct a PPT reduction B against the DL assumption
(Fig. 3) that uses A as a subroutine as follows. B takes as input a DL challenge
Ẋ and aims to output ẋ such that Ẋ = gẋ. B sets the joint public key X̃ ← Ẋ
and performs a standard simulation of Shamir secret sharing. B then returns X̃,
public key shares {X̃i}i∈[n], and secret key shares {xj}j∈cor to A.
B simulates signing without knowing the secret keys {xk}k∈hon of the honest

parties as follows. B can simulate Rk for all k ∈ hon as Rk ← gzkX̃−cλkk for
random zk←$ Zp so that the partial signature zk output in Round 3 verifies.

16

However, c must equal Hsig(X̃,m, R̃) for aggregate R̃. Luckily, B can compute

R̃ =
∏
i∈S Ri, where S is the signing set, by extracting Rj for all j ∈ cor from

A’s Hcm(m,S, Rj) queries in Round 1. So, B samples a random value for c←$ Zp,
computes Rk for all k ∈ hon as above, and programs c ← Hsig(X̃,m, R̃) – all
before A sees the honest Rk’s output at the end of Round 2. This leaves just
one problem: B needs to output cmk = Hcm(m,S, Rk) in Round 1 before being
able to carry out the above steps. But B can simply output a random value
cmk←$ Zp in Round 1 and program cmk ← Hcm(m,S, Rk) in Round 2.

B then rewinds A, programming the single point c′←$ Zp; c′ ← Hsig(X̃,m∗, R̃∗)
on the second iteration of A. By the local forking lemma [6], A’s two forgeries
(m∗, (R̃∗, z∗)), (m′, (R̃′, z′)) satisfy (R̃∗,m∗) = (R̃′,m′) with non-negligible prob-

ability. Thus, B can compute ẋ = z∗−z′
c∗−c′ and win the DL game.

7 Adaptive Security Against up to t/2 Corruptions

In this section, we prove the adaptive security of Sparkle against up to t/2 cor-
ruptions under the algebraic one-more discrete logarithm assumption (AOMDL)
(Fig. 3) in the random oracle model (ROM). The reason the allowed corruption
is t/2 is that, in order to extract an AOMDL solution, the reduction needs to
rewind the adversary once, and there is no guarantee that the adversary will
corrupt the same set of parties after the fork as it did during the first iteration of
the adversary. When the adversary can corrupt only t/2 parties, this causes no
issues, as the total number of corruptions over both iterations does not exceed t.
If the adversary could corrupt more parties, then the reduction would query its
discrete logarithm oracle more than t times and would lose the t+ 1-aomdl game.

Theorem 2. Sparkle is adaptively secure against t/2 corruptions under AOMDL
in the ROM.

We formally prove Theorem 2 in Section 9.

Proof Outline. Let A be a PPT adversary against the adaptive unforgeabil-
ity of Sparkle (Fig. 4). We construct a PPT reduction B against the t+ 1-aomdl
assumption (Fig. 3) that uses A as a subroutine as follows. B takes as input a
t+1-aomdl challenge (Y0, Y1, . . . , Yt) and aims to output yi such that Yi = gyi for
all i ∈ [0..t] without querying its DL oracle more than t times. For all i ∈ [n], B
sets each public key share as X̃i ← Y0Y

i
1 · · ·Y i

t

t . The joint public key is X̃ ← Y0.
B queries its DL oracle on X̃j (with representation (1, j, . . . , jt)) to get xj for

the initial corrupted set cor. B then returns (X̃, {X̃i}i∈[n], {xj}j∈cor) to A.
B’s simulation of signing is similar to the proof of static security. In particular,

B again simulates Rk for honest k ∈ hon as Rk ← gzkX̃−cλkk in Round 2. If
A corrupts an honest party k after Round 2 has begun, then B queries its DL
oracle on X̃k (with rep. (1, k, . . . , kt)) to get xk, computes rk ← zk − cλkxk, and
returns xk along with the honest party’s state stk,ssid = {cmk, Rk, rk, ...} across
all signing sessions to A. However, A may choose to corrupt some honest k before

17

Round 2, or even before it outputs its own cmj ’s in Round 1. In this case, B
samples a random rk←$ Zp, sets Rk ← grk , and programs cmk ← Hcm(m,S, Rk)

for the random cmk it output in Round 1. It then queries its DL oracle on X̃k

(with rep. (1, k, . . . , kt)) to get xk and returns it and stk,ssid = {cmk, Rk, rk, ...}
across all signing sessions to A. As in the proof of static security, B rewinds A in
order to extract x = y0 from A’s two forgeries. Assume w.l.o.g. that A corrupts t
parties over the two iterations. (A can corrupt up to t/2 parties in each iteration,
and B can corrupt the remaining itself.) For simplicity, say the corrupt indices

are cor = {1, . . . , t}. Then B has made t DL queries on gxk = Y0Y
k
1 · · ·Y k

t

t . This
forms a system of linear equations:

x
x1

...
xt

 =


1 0 · · · 0
1 1 · · · 1t
...

...
. . .

...
1 t · · · tt



y0

y1

...
yt


This is a Vandermonde matrix and is therefore invertible. B knows (x, x1, . . . , xt),
and so can solve for (y0, y1, . . . , yt) to win the t+ 1-aomdl game.

8 Adaptive Security Against t Corruptions

We now prove our strongest result: that Sparkle is secure against t adaptive
corruptions. In particular, if exactly t+ 1 parties engage in signing, all but one
of them could be malicious and the unforgeability of Sparkle would still hold. We
prove this result under the AOMDL assumption (Fig. 3) in the AGM with random
oracles. We also provide a proof of static security under the DL assumption in the
AGM and ROM, intended as a warm-up for our adaptive proof, in Appendix A.

Theorem 3. Sparkle is adaptively secure against t corruptions under the AOMDL
assumption in the AGM and ROM.

We formally prove Theorem 3 in Section 9.

Proof Outline. Let A be an algebraic adversary against the adaptive unforgeability
of Sparkle (Fig. 4). We construct a PPT reduction B against the t + 1-aomdl
assumption (Fig. 3) that uses A as a subroutine as follows. B takes as input a
t+ 1-aomdl challenge (Y0, Y1, . . . , Yt) and aims to output yi such that Yi = gyi

for all i ∈ [0..t] without querying its DL oracle more than t times. B simulates
key generation, signing, and corruption as in the t/2-adaptive proof, but does
not rewind A, so A may corrupt a full t parties.
A’s forgery (m∗, (R̃∗, z∗)) verifies as R̃∗ = gz

∗
X̃−c

∗
, where A provided a

representation of R̃∗ when querying c∗ = Hsig(X̃,m
∗, R̃∗):

R̃∗ = gγ
∗
X̃ξ∗X̃

ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

R
ρ∗i,1
i,1 · · ·R

ρ∗i,n
i,n

18

where {Ri,k}i∈[qS] are the honest nonces returned by the Sign′ oracle over qS sign-

ing queries. Each Ri,k verifies as Ri,k = gzi,kX̃
−ciλi,k
k , where ci = Hsig(X̃,mi, R̃i).

Equating the two expressions for R̃∗ and rearranging, we have:

gz
∗
g−γ

∗
qS∏
i=1

g−zi,1ρ
∗
i,1 · · · g−zi,nρ

∗
i,n

= X̃c∗X̃ξ∗X̃
ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

(X̃
−ciλi,1
1)ρ

∗
i,1 · · · (X̃−ciλi,nn)ρ

∗
i,n

B queries its DL oracle on X̃j (with representation (1, j, . . . , jt)) to obtain

{xj}j∈cor for the t corrupt parties. For all k ∈ [n], X̃k = X̃Y k1 Y
k2

2 · · ·Y k
t

t , and

for all i ∈ [t], Yi = X̃L′0,i
∏
j∈cor g

xjL
′
j,i , where L′j,i is the ith coefficient of the

Lagrange polynomial L′j(Z) for the set 0∪ cor. Plugging these in and rearranging,
we have:

gη
∗

= X̃c∗+ξ∗
n∏
k=1

X̃µ∗kgν
∗
k

where η∗ = z∗ − γ∗ −
∑qS
i=1(zi,1ρ

∗
i,1 + · · ·+ zi,nρ

∗
i,n), µ∗k = 1 +

∑t
i=1 L

′
0,ik

i, and

ν∗k =
∑t
i=1

(∑
j∈cor xjL

′
j,i

)
ki. Then:

x =
η∗ −

∑n
k=1 ν

∗
k

c∗ + ξ∗ +
∑n
k=1 µ

∗
k

A fixed R̃∗ and thus η∗, {ν∗i }i∈[n], ξ
∗, {µ∗i }i∈[n] as it queried Hsig(X̃,m∗, R̃∗) to re-

ceive random c∗. Thus, the denominator is nonzero with overwhelming probability
and B can solve for x. B can then compute (y0, y1, . . . , yt) as in the t/2-adaptive
proof to win the t+ 1-aomdl game.

9 Static and Adaptive Security Proofs

In this section, we provide formal proofs of static and adaptive security for
Sparkle. In particular, we prove the following: (1) static security (against up to t
corruptions) (Theorem 1) under DL+ROM, (2) adaptive security against up to
t/2 corruptions (Theorem 2) under AOMDL+ROM, and (3) adaptive security
against up to t corruptions (Theorem 3) under AOMDL+AGM+ROM.

9.1 Proof of Static Security

Proof. (of Theorem 1.) Let A be a PPT adversary attempting to break the static
unforgeability of Sparkle (Fig. 4) that makes up to qH queries to Hcm and Hsig,
and qS queries to its signing oracles. Without loss of generality, we assume A

19

queries Hsig on its forgery (X̃,m∗, R̃∗). Then, let q = qH + qS + 1. We construct a
PPT reduction B against the DL assumption (Fig. 3) that uses A as a subroutine
such that

Advst-secA (κ, 1) ≤
√
qAdvdlB(κ) + negl(κ)

Here, τ = 1 to allow A to corrupt a full τ · t = t parties. The reduction B
runs A two times. On the second iteration, B programs Hsig to output a different
random value on a single point so that it can extract a discrete logarithm solution
from A’s two forgeries. B perfectly simulates GameUFA (κ, 1). However, B can only
extract a discrete logarithm if A’s forgery (m∗, (R̃∗, z∗)) at the end of each
iteration verifies and includes the same nonce R̃∗. By the local forking lemma [6],
this occurs with probability less than 1

q (Advst-secA (κ, 1))2.

The Reduction B: We define the reduction B playing game GamedlB(κ) as
follows. B is responsible for simulating key generation and oracle responses for
queries to OSign,OSign′ ,OSign′′ ,Hcm, and Hsig. Let Qcm,Qsig be the set of Hcm,Hsig

queries and their responses, respectively. B initializes them to the empty set
and maintains them across both iterations of the adversary. B may program the
random oracles Hcm,Hsig. Let Q be the set of messages that have been queried in

OSign as in GameUFA (κ, 1). B initializes Q to the empty set. At the beginning of
the second iteration of A, B resets Q to the empty set.

DL Input. B takes as input the group description G = (G, p, g) and a DL
challenge Ẋ. B aims to output ẋ such that Ẋ = gẋ.

Static Corruption. B runs A(). A chooses the total number of potential signers
n, the threshold t + 1 ≤ n, and the set of corrupt parties cor ← {j}, |cor| ≤ t,
which are fixed for the rest of the protocol. B sets hon ← [n] \ cor and must
reveal the secret keys of the corrupt parties to A, which B does in the next step.

Simulating KeyGen. B simulates the key generation algorithm (Fig. 5) using
its DL challenge Ẋ as follows.

1. B sets the joint public key X̃ ← Ẋ.
2. B simulates a Shamir secret sharing of the discrete logarithm of X̃ by

performing the following steps. (See Section 3 for notation.) Assume without
loss of generality that |cor| = t.

(a) B samples t random values xj ←$ Zp for j ∈ cor.
(b) Let f be the polynomial whose constant term is the challenge f(0) = ẋ

and for which f(j) = xj for all j ∈ cor. B computes the t+ 1 Lagrange
polynomials {L′0(Z), {L′j(Z)}j∈cor} relating to the set (of x-coordinates)
0 ∪ cor.

(c) For all 1 ≤ i ≤ t, B computes

Yi = X̃L′0,i
∏
j∈cor

gxjL
′
j,i

where L′j,i is the ith coefficient of L′j(Z) = L′j,0 + L′j,1Z + · · ·+ L′j,tZ
t.

20

(d) For all 1 ≤ i ≤ n, B computes

X̃i = X̃Y i1Y
i2

1 · · ·Y i
t

t

which is implicitly equal to gf(i).

The joint public key is X̃ = gf(0) = Ẋ with corresponding secret key x = ẋ. B
runs AOSign,Sign′,Sign′′

(X̃, {X̃i}i∈[n], {xj}j∈cor).

Simulating Random Oracle Queries. B handles A’s random oracle queries
throughout the protocol by lazy sampling, as follows.

Hcm : When A queries Hcm on (m,S, R), B checks whether (m,S, R, cm) ∈ Qcm

and, if so, returns cm. Else, B samples cm←$ Zp, appends (m,S, R, cm) to Qcm,
and returns cm.

Hsig : When A queries Hsig on (X,m,R), B checks whether (X,m,R, c) ∈ Qsig

and, if so, returns c. Else, B samples c←$ Zp, appends (X,m,R, c) to Qsig, and
returns c.

Simulating Sparkle Signing. B handles A’s signing queries as follows.

Round 1 (OSign): In the first round of signing for session ssid, each party i in the
signing set S sends a commitment cmi. When A queries OSign on (k, ssid,m,S)
for honest k ∈ hon, B samples cmk←$ Zp, appends (m,S, ·, cmk) to Qcm, sets
stk,ssid ← (cmk, ·, ·,m,S), and returns cmk to A.

Round 2 (OSign′): In the second round of signing for session ssid, each party
i in the signing set S takes as input the set of commitments {cmi}i∈S and
reveals its nonce Ri such that cmi = Hcm(m,S, Ri). When A queries OSign′ on
(k, ssid, {cmi}i∈S) for k ∈ hon, then for all j ∈ S ∩ cor, B looks up cmj for a
record (m,S, Rj , cmj) ∈ Qcm.

If there exists j′ ∈ S such that (m′,S ′, ·, cmj′) ∈ Qcm and (m′,S ′) 6= (m,S),
or if there exists some j′ ∈ S for which no record (m,S, ·, cmj′) ∈ Qcm exists, then
B chooses Rk←$ grk randomly, updates stk,ssid ← (cmk, Rk, rk,m,S), programs
cmk ← Hcm(m,S, Rk) and returns Rk.

Else if this is the first query in the signing session, B samples c←$ Zp. For

all k ∈ hon, B samples zk←$ Zp, computes Rk ← gzkX̃−cλkk (λk is the Lagrange
coefficient for party k in the set S), and programs cmk ← Hcm(m,S, Rk) (updating
(m,S, Rk, cmk) ∈ Qcm). Then B computes R̃ =

∏
i∈S Ri and programs c ←

Hsig(X̃,m, R̃). (However, if A has already queried Hsig on (X̃,m, R̃), then B
aborts.)

Finally, B sets stk,ssid ← (cmk, Rk, zk, cλk,m,S, {cmi}i∈S), and returns Rk
to A. If this is not the first query, B looks up stk,ssid ← (cmk, Rk, zk, cλk,m,S,
{cmi}i∈S) and returns Rk.

Round 3 (OSign′′): In the third round of signing for session ssid, each party i in
the signing set S produces a partial signature on the message m. When A queries
OSign′′ on (k, ssid, {Ri}i∈S) for k ∈ hon, B looks up stk,ssid ← (cmk, Rk, zk, cλk,m,

21

S, {cmi}i∈S), checks whether cmi = Hcm(m,S, Ri) for all i ∈ S and returns ⊥
if not. If cmi = Hcm(m,S, Ri) but A never queried Hcm on input (m,S, Ri), B
aborts. Else, B sets stk,ssid ← () and returns zk.

Output. At the end of the game, A produces a forgery (m∗, σ∗) = (m∗, (R̃∗, z∗))
and wins if Verify(X̃,m∗, σ∗) = 1 and m∗ /∈ Q.

Extracting the Discrete Logarithm of Ẋ. B’s simulation of key generation
and signing is perfect, and B aborts with negligible probability. Indeed, B aborts
in Round 3 if A reveals Rj such that cmj = Hcm(m,S, Rj) but A never queried
Hcm on (m,S, Rj). This requires A to have guessed cmj ahead of time, which
occurs with negligible probability 1/p.
B2 also aborts in Round 2 if A had previously queried Hsig on (X̃,m, R̃). In

that case, B had returned a random c ← Hsig(X̃,m, R̃), so the reduction fails.
However, this implies that A guessed Rk before B revealed it, which occurs with
negligible probability 1/p.

It remains to show that B can extract the discrete logarithm of Ẋ from A’s
two valid forgeries. A’s first forgery (m∗, (R̃∗, z∗)) satisfies R̃∗X̃c∗ = gz

∗
, where

c∗ = Hsig(X̃,m
∗, R̃∗). Here, z∗ does not suffice for B to extract the discrete

logarithm of X̃ because it does not necessarily know the discrete logarithm of R̃∗.
Thus, B chooses c′←$ Zp and programs Hsig to output c′ on input (X̃,m∗, R̃∗). B
resets Q to the empty set, but the sets Qcm, Qsig are kept for the second iteration
of the adversary. B then runs A again on the same random coins.

After the second iteration, supposeA terminates with (m′, (R̃′, z′)). If (m′, R̃′) =

(m∗, R̃∗) and A’s forgeries both verify, then B returns ẋ = z∗−z′
c∗−c′ such that X̃ = gẋ

and wins GamedlB(κ). If (m′, R̃′) 6= (m∗, R̃∗) or A’s forgery does not verify, then
B must abort. By the local forking lemma [6], this happens with probability
less than 1

q (Advst-secA (κ, 1))2. If A succeeds having not queried Hcm on (m,S, Rj),
then B aborts. This occurs with probability less than qH

p . Thus,

1

q
(Advst-secA (κ, 1))2 ≤ AdvdlB(κ) + negl(κ)

9.2 Proof of Adaptive Security for up to t/2 Corruptions

Proof. (of Theorem 2.) Let A be a PPT adversary attempting to break the
adaptive unforgeability of Sparkle (Fig. 4) that makes up to qH queries to Hcm

and Hsig, and qS queries to its signing oracles. Without loss of generality, we

assume A queries Hsig on its forgery (X̃,m∗, R̃∗). Then, let q = qH + qS + 1. We
construct a PPT reduction B against the t+ 1-aomdl assumption (Fig. 3) that
uses A as a subroutine such that

Advadp-secA (κ, 1/2) ≤
√
qAdvt+ 1-aomdl

B (κ) + negl(κ)

Here, τ = 1/2 to restrict A to corrupt τ · t = t/2 parties. The reduction B runs
A two times. Over the two iterations, B makes no more than t queries to its

22

discrete logarithm oracle Odl and aims to output t+ 1 discrete logarithms that
constitute a valid solution to the AOMDL challenge. If B makes fewer than
t queries while responding to A’s oracle queries, then it makes the additional
queries necessary to extract an AOMDL solution. On the second iteration of A,
B programs Hsig to output a different random value on a single point so that it
can extract one of the t+ 1 discrete logarithm solutions from A’s two forgeries.
B perfectly simulates Gameadp-UFA (κ, 1/2). However, B can only extract a solution

if A’s forgery (m∗, (R̃∗, z∗)) at the end of each iteration verifies and includes the
same nonce R̃∗. By the local forking lemma [6], this occurs with probability less

than 1
q (Advadp-secA (κ, 1/2))2.

The Reduction B: We define the reduction B playing game Gamet+1-aomdl
B (κ)

as follows. B is responsible for simulating key generation and oracle responses
for queries to OSign,OSign′ ,OSign′′ ,OCorrupt,Hcm, and Hsig. Let Qcm,Qsig be the set
of Hcm,Hsig queries and their responses, respectively. B initializes them to the
empty set and maintains them across both iterations of the adversary. B may
program the random oracles Hcm,Hsig. Let Q be the set of messages that have

been queried in OSign as in Gameadp-UFA (κ, 1/2). B initializes Q to the empty set.
At the beginning of the second iteration of A, B resets Q to the empty set.

AOMDL Input. B takes as input the group description G = (G, p, g) and an
AOMDL challenge of t + 1 values (Y0, . . . , Yt). As in Gamet+1-aomdl

B (κ), B has
access to a discrete logarithm oracle Odl, which it may query up to t times. B
aims to output (y0, . . . , yt) such that Yi = gyi for all 0 ≤ i ≤ t.

Initial Corruption. B runs A(). A chooses the total number of potential signers
n, the threshold t+ 1 ≤ n, and the initial set of corrupt parties cor← {j}, |cor| ≤
t/2. B sets hon← [n] \ cor and must reveal the secret keys of the corrupt parties
to A, which B does in the next step.

Simulating KeyGen. B simulates the key generation algorithm (Fig. 5) using
its AOMDL challenge (Y0, . . . , Yt) as follows. For all 1 ≤ i ≤ n, B sets the public
key share as

X̃i = Y0Y
i
1 · · ·Y i

t

t

which is implicitly equal to gf(i). The joint public key is X̃ = gf(0) = Y0 with
corresponding secret key x = y0. B obtains the initial corrupt secret key shares by
querying xj = f(j)← Odl(X̃j) (with representation (1, j, . . . , jt)) for all j ∈ cor.

B runs AOSign,Sign′,Sign′′,Corrupt
(X̃, {X̃i}i∈[n], {xj}j∈cor).

Simulating Random Oracle Queries. B handles A’s random oracle queries
throughout the protocol by lazy sampling, as follows.

Hcm : When A queries Hcm on (m,S, R), B checks whether (m,S, R, cm) ∈ Qcm

and, if so, returns cm. Else, B samples cm←$ Zp, appends (m,S, R, cm) to Qcm,
and returns cm.

23

Hsig : When A queries Hsig on (X,m,R), B checks whether (X,m,R, c) ∈ Qsig

and, if so, returns c. Else, B samples c←$ Zp, appends (X,m,R, c) to Qsig, and
returns c.

Simulating Sparkle Signing. B handles A’s signing queries as follows.

Round 1 (OSign): In the first round of signing for session ssid, each party i in the
signing set S sends a commitment cmi. When A queries OSign on (k, ssid,m,S)
for honest k ∈ hon, B samples cmk←$ Zp, appends (m,S, ·, cmk) to Qcm, sets
stk,ssid ← (cmk, ·, ·,m,S), and returns cmk to A.

Round 2 (OSign′): In the second round of signing for session ssid, each party
i in the signing set S takes as input the set of commitments {cmi}i∈S and
reveals its nonce Ri such that cmi = Hcm(m,S, Ri). When A queries OSign′ on
(k, ssid, {cmi}i∈S) for k ∈ hon, then for all j ∈ S ∩ cor, B looks up cmj for a
record (m,S, Rj , cmj) ∈ Qcm.

If there exists j′ ∈ S such that (m′,S ′, ·, cmj′) ∈ Qcm and (m′,S ′) 6= (m,S),
or if there exists some j′ ∈ S for which no record (m,S, ·, cmj′) ∈ Qcm exists, then
B chooses Rk ← grk randomly, updates stk,ssid ← (cmk, Rk, rk,m,S), programs
cmk ← Hcm(m,S, Rk) and returns Rk.

Else if this is the first query in the signing session, B samples c←$ Zp. For

all k ∈ hon, B samples zk←$ Zp, computes Rk ← gzkX̃−cλkk (λk is the Lagrange
coefficient for party k in the set S), and programs cmk ← Hcm(m,S, Rk) (updating
(m,S, Rk, cmk) ∈ Qcm). Then B computes R̃ =

∏
i∈S Ri and programs c ←

Hsig(X̃,m, R̃). (However, if A has already queried Hsig on (X̃,m, R̃), then B
aborts.)

Finally, B sets stk,ssid ← (cmk, Rk, zk, cλk,m,S, {cmk}k∈S), and returns Rk
to A. If this is not the first query, B looks up stk,ssid ← (cmk, Rk, zk, cλk,m,S,
{cmk}k∈S) and returns Rk.

Round 3 (OSign′′): In the third round of signing for session ssid, each party i in
the signing set S produces a partial signature on the message m. When A queries
OSign′′ on (k, ssid, {Ri}i∈S) for k ∈ hon, B looks up stk,ssid ← (cmk, Rk, zk, cλk,m,
S, {cmi}i∈S), checks whether cmi = Hcm(m,S, Ri) for all i ∈ S and returns ⊥
if not. If cmi = Hcm(m,S, Ri) but A never queried Hcm on input (m,S, Ri), B
aborts. Else, B sets stk,ssid ← () and returns zk.

Simulating Corruption Queries (OCorrupt): A may at any time corrupt an
honest party k by querying OCorrupt(k). Upon receiving a corruption query, B
first checks that k ∈ hon, returning ⊥ if not. Otherwise, B queries its DL oracle
Odl on X̃k = gf(k) (with representation (1, k, . . . , kt)) to obtain the secret key
xk = f(k). Then, for each stk,ssid, B does the following:

– If stk,ssid = (cmk, ·, ·,m,S), then B chooses rk←$ Zp, sets Rk ← grk , and pro-
grams cmk ← Hcm(m,S, Rk). It then updates stk,ssid ← (cmk, Rk, rk,m,S).

– If stk,ssid = (cmk, Rk, zk, cλk,m,S, {cmi}i∈S), then B computes rk = zk −
cλkxk (now that it knows xk) and updates stk,ssid ← (cmk, Rk, rk,m,S,
{cmi}i∈S).

24

– If stk,ssid = (), then return (). This case occurs if signing session ssid has
already been completed (i.e., a valid signature was issued).

Finally, B sets hon← hon \ {k} and cor← cor ∪ {k} and returns xk, {stk,`}`∈[ssid]

to A.

Output. At the end of the game, A produces a forgery (m∗, σ∗) = (m∗, (R̃∗, z∗))
and wins if Verify(X̃,m∗, σ∗) = 1,m∗ /∈ Q, and |cor| ≤ t/2.

Extracting the Discrete Logarithm of Y0. B’s simulation of key generation
and signing is perfect, and B aborts with negligible probability. Indeed, B aborts
in Round 3 if A reveals Rj such that cmj = Hcm(m,S, Rj) but A never queried
Hcm on (m,S, Rj). This requires A to have guessed cmj ahead of time, which
occurs with negligible probability 1/p.

B2 also aborts in Round 2 if A had previously queried Hsig on (X̃,m, R̃). In

that case, B had returned a random c ← Hsig(X̃,m, R̃), so the reduction fails.
However, this implies that A guessed Rk before B revealed it, which occurs with
negligible probability 1/p.

Next, we show that B can extract the discrete logarithm of Y0 from A’s
two valid forgeries. A’s first forgery (m∗, (R̃∗, z∗)) satisfies R̃∗X̃c∗ = gz

∗
, where

c∗ = Hsig(X̃,m
∗, R̃∗). Here, z∗ does not suffice for B to extract the discrete

logarithm of X̃ = Y0 because it does not necessarily know the discrete logarithm of
R̃∗. Thus, B chooses c′←$ Zp and programs Hsig to output c′ on input (X̃,m∗, R̃∗).
B resets Q to the empty set, but the sets Qcm, Qsig are kept for the second iteration
of the adversary. B then runs A again on the same random coins.

After the second iteration, supposeA terminates with (m′, (R̃′, z′)). If (m′, R̃′) =

(m∗, R̃∗) and A’s forgeries both verify, then B returns y0 = x = z∗−z′
c∗−c′ such that

Y0 = X̃ = gx. If (m′, R̃′) 6= (m∗, R̃∗) or A’s forgery does not verify, then B must
abort. By the local forking lemma [6], this happens with probability less than
1
q (Advadp-secA (κ, 2))2. If A succeeds having not queried Hcm on (m,S, Rj), then B
aborts. This occurs with probability less than qH

p . Thus,

1

q
(Advadp-secA (κ, 2))2 ≤ Pr[B extracts y0] + negl(κ)

If B extracts y0, then we use this to extract a full AOMDL solution as follows.

Extracting an AOMDL Solution. The reduction B must now extract the
remaining y1, . . . , yt such that Yi = gyi .

Assume without loss of generality that A makes t corruptions over the two
iterations. (If not, B can corrupt the remaining number at the end, by querying

its DL oracle until it reaches t secret keys.) Recall that B set X̃i = Y0Y
i
1 · · ·Y i

t

t

25

and made t DL queries gxi1 , . . . , gxit :

gxi1 = Y0Y
i1
1 · · ·Y

i1
t

t

...

gxit = Y0Y
it
1 · · ·Y

it
t

t

Recall also that X̃ = Y0. This forms the following system of linear equations:

x = y0

xi1 = y0 + i1y1 · · ·+ i1
tyt

...

xit = y0 + ity1 · · ·+ it
tyt

Equivalently, 
x
xi1
...
xit

 =


1 0 · · · 0
1 i1 · · · i1t
...

...
. . .

...
1 it · · · itt



y0

y1

...
yt


B knows all of the values on the left-hand side. The matrix

V =


1 0 · · · 0
1 i1 · · · i1t
...

...
. . .

...
1 it · · · itt


is a Vandermonde matrix and is therefore invertible. Thus, B can solve for
(y0, y1, . . . , yt) and win the t+ 1-aomdl game.

9.3 Proof of Adaptive Security for up to t Corruptions

Proof. (of Theorem 3.) Let A be an algebraic adversary attempting to break
the adaptive unforgeability of Sparkle (Fig. 4). We construct a PPT reduction B
against the t+ 1-aomdl assumption (Fig. 3) that uses A as a subroutine such that

Advadp-secA (κ, 1) ≤ Advt+ 1-aomdl
B (κ) + negl(κ)

Here, τ = 1 to allow A to corrupt a full τ · t = t parties.

The Reduction B: We define the reduction B playing game Gamet+1-aomdl
B (κ)

as follows. B is responsible for simulating key generation and oracle responses for
queries to OSign,OSign′ ,OSign′′ ,OCorrupt,Hcm, and Hsig. Let Qcm,Qsig be the set of
Hcm,Hsig queries and their responses, respectively. B may program the random

26

oracles Hcm,Hsig. Let Q be the set of messages that have been queried to OSign

as in game Gameadp-UFA (κ, 1). B initializes Qcm,Qsig, Q to the empty set.

AOMDL Input. B takes as input the group description G = (G, p, g) and an
AOMDL challenge of t + 1 values (Y0, . . . , Yt). As in Gamet+1-aomdl

B (κ),B has
access to a discrete logarithm oracle Odl, which it may query up to t times. B
aims to output (y0, . . . , yt) such that Yi = gyi for all i ∈ [0..t].

Initial Corruption. B runs A(). A chooses the total number of potential signers
n, the threshold t+1 ≤ n, and the initial set of corrupt parties cor← {j}, |cor| ≤ t.
B sets hon← [n] \ cor and must reveal the secret keys of the corrupt parties to
A, which B does in the next step.

Simulating KeyGen. B simulates the key generation algorithm (Fig. 5) using
its AOMDL challenge (Y0, . . . , Yt) as follows. For all i ∈ [n], B sets the public
key share as

X̃i = Y0Y
i
1 · · ·Y i

t

t

which is implicitly equal to gf(i). The joint public key is X̃ = gf(0) = Y0 with
corresponding secret key x = y0. B obtains the initial corrupt secret key shares by
querying xj = f(j)← Odl(X̃j) (with representation (1, j, . . . , jt)) for all j ∈ cor.

B runs AOSign,Sign′,Sign′′,Corrupt
(X̃, {X̃i}i∈[n], {xj}j∈cor).

Simulating Random Oracle Queries. B handles A’s random oracle queries
throughout the protocol by lazy sampling, as follows.

Hcm : When A queries Hcm on (m,S, R), B checks whether (m,S, R, cm) ∈ Qcm

and, if so, returns cm. Else, B samples cm←$ Zp, appends (m,S, R, cm) to Qcm,
and returns cm.

Hsig : When A queries Hsig on (X,m,R), B checks whether (X,m,R, c) ∈ Qsig

and, if so, returns c. Else, B samples c←$ Zp, appends (X,m,R, c) to Qsig, and
returns c.

Simulating Sparkle Signing. B handles A’s signing queries as follows.

Round 1 (OSign): In the first round of signing for session ssid, each party i in the
signing set S sends a commitment cmi. When A queries OSign on (k, ssid,m,S)
for honest k ∈ hon, B samples cmk←$ Zp, appends (m,S, ·, cmk) to Qcm, sets
stk,ssid ← (cmk, ·, ·,m,S), and returns cmk.

Round 2 (OSign′): In the second round of signing for session ssid, each party
i in the signing set S takes as input the set of commitments {cmi}i∈S and
reveals its nonce Ri such that cmi = Hcm(m,S, Ri). When A queries OSign′ on
(k, ssid,m,S, {cmi}i∈S) for k ∈ hon, then for all j ∈ S ∩ cor, B looks up cmj for
a record (m,S, Rj , cmj) ∈ Qcm.

If there exists j′ ∈ S such that (m′,S ′, ·, cmj′) ∈ Qcm and (m′,S ′) 6= (m,S),
or if there exists some j′ ∈ S for which no record (m,S, ·, cmj′) ∈ Qcm exists, then

27

B chooses Rk←$ grk randomly, updates stk,ssid ← (cmk, Rk, rk,m,S), programs
cmk ← Hcm(m,S, Rk), and returns Rk.

Else if this is the first query in the signing session, B samples c←$ Zp. For

all k ∈ hon, B samples zk←$ Zp, computes Rk ← gzkX̃−cλkk (λk is the Lagrange
coefficient for party k in the set S), and programs cmk ← Hcm(m,S, Rk) (updating
(m,S, Rk, cmk) ∈ Qcm). Then B computes R̃ =

∏
i∈S Ri and programs c ←

Hsig(X̃,m, R̃). (However, if A has already queried Hsig on (X̃,m, R̃), then B
aborts.)

Finally, B sets stk,ssid ← (cmk, Rk, zk, cλk,m,S, {cmi}i∈S), and returns Rk
to A. If this is not the first query, B looks up stk,ssid ← (cmk, Rk, zk, cλk,m,S,
{cmi}i∈S) and returns Rk.

Round 3 (OSign′′): In the third round of signing for session ssid, each party i in
the signing set S produces a partial signature on the message m. When A queries
OSign′′ on (k, ssid, {Ri}i∈S) for k ∈ hon, B looks up stk,ssid ← (cmk, Rk, zk, cλk,m,
S, {cmi}i∈S), checks whether cmi = Hcm(m,S, Ri) for all i ∈ S and returns ⊥
if not. If cmi = Hcm(m,S, Ri) but A never queried Hcm on input (m,S, Ri), B
aborts. Else, B sets stk,ssid ← (), and returns zk.

Simulating Corruption Queries (OCorrupt): A may at any time corrupt an
honest party k by querying OCorrupt(k). Upon receiving a corruption query, B
first checks that k ∈ hon, returning ⊥ if not. Otherwise, B queries its DL oracle
Odl on X̃k = gf(k) (with representation (1, k, . . . , kt)) to obtain the secret key
xk = f(k). Then, for each stk,ssid, B does the following:

– If stk,ssid = (cmk, ·, ·,m,S), then B chooses rk←$ Zp, sets Rk ← grk , and pro-
grams cmk ← Hcm(m,S, Rk). It then updates stk,ssid ← (cmk, Rk, rk,m,S).

– If stk,ssid = (cmk, Rk, zk, cλk,m,S, {cmi}i∈S), then B computes rk = zk −
cλkxk (now that it knows xk) and updates stk,ssid ← (cmk, Rk, rk,m,S,
{cmi}i∈S).

– If stk,ssid = (), then return (). This case occurs if signing session ssid has
already been completed (i.e., a valid signature was issued).

Finally, B sets hon← hon \ {k} and cor← cor ∪ {k} and returns xk, {stk,`}`∈[ssid]

to A.

Output. At the end of the game, A produces a forgery (m∗, σ∗) = (m∗, (R̃∗, z∗))
and wins if Verify(X̃,m∗, σ∗) = 1, m∗ /∈ Q, and |cor| ≤ t.

Extracting an AOMDL Solution. B’s simulation of key generation and
signing is perfect, and B aborts with negligible probability. Indeed, B aborts in
Round 3 if A reveals Rj such that cmj = Hcm(m,S, Rj) but A never queried
Hcm on (m,S, Rj). This requires A to have guessed cmj ahead of time, which
occurs with negligible probability 1/p.
B2 also aborts in Round 2 if A had previously queried Hsig on (X̃,m, R̃). In

that case, B had returned a random c ← Hsig(X̃,m, R̃), so the reduction fails.
However, this implies that A guessed Rk before B revealed it, which occurs with
negligible probability 1/p.

28

It remains to show that B can extract an AOMDL solution from A’s output.
Assume without loss of generality that A makes t corruptions over the course of
the protocol. (If not, B can corrupt the remaining number at the end, by querying

its DL oracle until it reaches t secret keys.) Recall that B set X̃i = Y0Y
i
1 · · ·Y i

t

t

and made t DL queries gxi1 , . . . , gxit :

gxi1 = Y0Y
i1
1 · · ·Y

i1
t

t

...

gxit = Y0Y
it
1 · · ·Y

it
t

t

Recall also that X̃ = Y0. This forms the following system of linear equations:

x = y0

xi1 = y0 + i1y1 · · ·+ i1
tyt

...

xit = y0 + ity1 · · ·+ it
tyt

Equivalently, 
x
xi1
...
xit

 =


1 0 · · · 0
1 i1 · · · i1t
...

...
. . .

...
1 it · · · itt



y0

y1

...
yt

 (2)

B knows all of the values {xj}j∈cor = {xi1 , . . . , xit} on the left-hand side, but not
x. However, B can compute x as follows.

Extracting the Discrete Logarithm of X̃ = Y0. A’s forgery verifies as:

R̃∗ = gz
∗
X̃−c

∗
(3)

where c∗ = Hsig(X̃,m∗, R̃∗). On the other hand, whenAmade its query Hsig(X̃,m∗,

R̃∗), it provided a representation of R̃∗ in terms of all of the group elements it had
seen so far, namely (g, X̃, X̃1, . . . , X̃n, {Ri,1, . . . , Ri,n}i∈[qS]), where {Ri,k}i∈[qS]

are the honest nonces returned by the Sign′ oracle over the qS signing queries
that A makes. We assume without loss of generality that A completes every
signing session. (Otherwise, B can perform any unmet Sign′ and Sign′′ queries
itself.) Thus, A provided (γ∗, ξ∗, ξ∗1 , . . . , ξ

∗
n, {ρ∗i,1, . . . , ρ∗i,n}i∈[qS]) such that:

R̃∗ = gγ
∗
X̃ξ∗X̃

ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

R
ρ∗i,1
i,1 · · ·R

ρ∗i,n
i,n

29

Each Ri,k verifies as Ri,k = gzi,kX̃
−ciλi,k
k , where ci = Hsig(X̃,mi, R̃i). Thus,

R̃∗ = gγ
∗
X̃ξ∗X̃

ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

(gzi,1X̃
−ciλi,1
1)ρ

∗
i,1 · · · (gzi,nX̃−ciλi,nn)ρ

∗
i,n

Equating this with Eq. (3), we have:

gz
∗
X̃−c

∗
= gγ

∗
X̃ξ∗X̃

ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

(gzi,1X̃
−ciλi,1
1)ρ

∗
i,1 · · · (gzi,nX̃−ciλi,nn)ρ

∗
i,n

Rearranging, we have:

gz
∗
g−γ

∗
qS∏
i=1

g−zi,1ρ
∗
i,1 · · · g−zi,nρ

∗
i,n

= X̃c∗X̃ξ∗X̃
ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

(X̃
−ciλi,1
1)ρ

∗
i,1 · · · (X̃−ciλi,nn)ρ

∗
i,n (4)

Let η∗ = z∗ − γ∗ −
∑qS
i=1(zi,1ρ

∗
i,1 + · · ·+ zi,nρ

∗
i,n) and ζ∗k = ξ∗k −

∑qS
i=1 ciλi,kρ

∗
i,k

for all k ∈ [n]. Then Eq. (4) can be rewritten as:

gη
∗

= X̃c∗+ξ∗X̃
ζ∗1
1 · · · X̃

ζ∗n
n (5)

Recall that X̃i = X̃Y i1Y
i2

2 · · ·Y i
t

t for all i ∈ [n] and that Yi = X̃L′0,i
∏
j∈cor g

xjL
′
j,i

for all i ∈ [t]. Thus,

X̃k = X̃

t∏
i=1

(
X̃L′0,i

∏
j∈cor

gxjL
′
j,i

)ki

Let µ∗k = 1 +
∑t
i=1 L

′
0,ik

i and ν∗k =
∑t
i=1

(∑
j∈cor xjL

′
j,i

)
ki. Then X̃k can be

rewritten as:

X̃k = X̃µ∗kgν
∗
k

and Eq. (5) can be rewritten as:

gη
∗

= X̃c∗+ξ∗
n∏
k=1

X̃µ∗kgν
∗
k

Rearranging, we have:

gη
∗−

∑n
k=1 ν

∗
k = X̃c∗+ξ∗+

∑n
k=1 µ

∗
k

30

and

ẋ =
η∗ −

∑n
k=1 ν

∗
k

c∗ + ξ∗ +
∑n
k=1 µ

∗
k

A fixed R̃∗ and thus η∗, {ν∗i }i∈[n], ξ
∗, {µ∗i }i∈[n] as it queried Hsig(X̃,m∗, R̃∗) to re-

ceive random c∗. Thus, the denominator is nonzero with overwhelming probability
and B can solve for x.

The matrix

V =


1 0 · · · 0
1 i1 · · · i1t
...

...
. . .

...
1 it · · · itt


in Equation 2 is a Vandermonde matrix and is therefore invertible. Thus, B can
solve for (y0, y1, . . . , yt) and win the t+ 1-aomdl game.

Acknowledgements. Elizabeth Crites was supported by Input Output through
their funding of the Blockchain Technology Lab at the University of Edinburgh.

References

[1] M. Abdalla, M. Barbosa, J. Katz, J. Loss, and J. Xu. “Algebraic Adversaries in the
Universal Composability Framework”. In: Advances in Cryptology - ASIACRYPT
2021 - 27th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 6-10, 2021, Proceedings, Part
III. Ed. by M. Tibouchi and H. Wang. Vol. 13092. Lecture Notes in Computer
Science. Springer, 2021, pp. 311–341.

[2] J. F. Almansa, I. Damg̊ard, and J. B. Nielsen. “Simplified Threshold RSA with
Adaptive and Proactive Security”. In: EUROCRYPT 2006, 25th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006. Ed. by S. Vaudenay. Vol. 4004.
LNCS. Springer, 2006, pp. 593–611.

[3] R. Bacho and J. Loss. “On the Adaptive Security of the Threshold BLS Signature
Scheme”. In: IACR Cryptol. ePrint Arch. (2022), p. 534. url: https://eprint.
iacr.org/2022/534.

[4] B. Bauer, G. Fuchsbauer, and A. Plouviez. “The One-More Discrete Logarithm
Assumption in the Generic Group Model”. In: ASIACRYPT 2021, Singapore,
December 6-10, 2021. Ed. by M. Tibouchi and H. Wang. Vol. 13093. LNCS.
Springer, 2021, pp. 587–617.

[5] M. Bellare, E. C. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. “Better
than Advertised Security for Non-interactive Threshold Signatures”. In: CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022. Ed. by Y. Dodis and T.
Shrimpton. Vol. 13510. LNCS. Springer, 2022, pp. 517–550.

[6] M. Bellare, W. Dai, and L. Li. “The Local Forking Lemma and Its Application
to Deterministic Encryption”. In: ASIACRYPT 2019, Kobe, Japan, December
8-12, 2019. Ed. by S. D. Galbraith and S. Moriai. Vol. 11923. LNCS. Springer,
2019, pp. 607–636.

31

https://eprint.iacr.org/2022/534
https://eprint.iacr.org/2022/534

[7] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. “The One-More-
RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme”.
In: J. Cryptol. 16.3 (2003), pp. 185–215.

[8] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. “On the
(in)security of ROS”. In: EUROCRYPT 2021, Zagreb, Croatia, October 17-21,
2021. Ed. by A. Canteaut and F. Standaert. Vol. 12696. LNCS. Springer, 2021,
pp. 33–53.

[9] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme”. In: PKC 2003, Miami, FL,
USA, January 6-8, 2003. Ed. by Y. Desmedt. Vol. 2567. LNCS. Springer, 2003,
pp. 31–46.

[10] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-signatures for Smaller
Blockchains”. In: ASIACRYPT 2018, Brisbane, QLD, Australia, December 2-6,
2018. Ed. by T. Peyrin and S. D. Galbraith. Vol. 11273. LNCS. Springer, 2018,
pp. 435–464.

[11] L. Brandão and M. Davidson. Notes on Threshold EdDSA/Schnorr Signatures.
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8214B.ipd.pdf.
2022.

[12] L. Brandão and R. Peralta. NIST First Call for Multi-Party Threshold Schemes.
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8214C.ipd.pdf.
2023.

[13] R. Canetti. “Universally Composable Security: A New Paradigm for Cryptographic
Protocols”. In: FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. IEEE
Computer Society, 2001, pp. 136–145.

[14] R. Canetti, U. Feige, O. Goldreich, and M. Naor. “Adaptively Secure Multi-Party
Computation”. In: STOC ’96, Philadelphia, Pennsylvania, USA, May 22-24, 1996.
Ed. by G. L. Miller. ACM, 1996, pp. 639–648.

[15] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. “UC Non-
Interactive, Proactive, Threshold ECDSA with Identifiable Aborts”. In: IACR
Cryptol. ePrint Arch. (2021), p. 60. url: https://eprint.iacr.org/2021/060.

[16] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Adaptive Security
for Threshold Cryptosystems”. In: CRYPTO ’99, Santa Barbara, California, USA,
August 15-19, 1999. Ed. by M. J. Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 98–
115.

[17] D. Connolly, C. Komlo, I. Goldberg, and C. Wood. Two-Round Threshold Schnorr
Signatures with FROST. 2022. url: https://datatracker.ietf.org/doc/draft-
irtf-cfrg-frost/.

[18] E. Crites, C. Komlo, and M. Maller. Fully Adaptive Schnorr Threshold Signatures.
Cryptology ePrint Archive, Paper 2023/445. 2023. url: https://eprint.iacr.
org/2023/445.

[19] M. Drijvers et al. “On the Security of Two-Round Multi-Signatures”. In: SP 2019,
San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 1084–1101.

[20] B. Edgington. Upgrading Ethereum. 2023. url: https : / / eth2book . info /

bellatrix/part2/building_blocks/randomness/.
[21] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to Identifica-

tion and Signature Problems”. In: CRYPTO 1986, Santa Barbara, California,
USA, 1986. Ed. by A. M. Odlyzko. Vol. 263. LNCS. Springer, 1986, pp. 186–194.

[22] M. Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors”. In: CRYPTO 2005, Santa Barbara, California, USA, August
14-18, 2005. Ed. by V. Shoup. Vol. 3621. LNCS. Springer, 2005, pp. 152–168.

32

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8214B.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8214C.ipd.pdf
https://eprint.iacr.org/2021/060
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://eprint.iacr.org/2023/445
https://eprint.iacr.org/2023/445
https://eth2book.info/bellatrix/part2/building_blocks/randomness/
https://eth2book.info/bellatrix/part2/building_blocks/randomness/

[23] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic Group Model and its
Applications”. In: CRYPTO 2018, Santa Barbara, CA, USA, August 19-23, 2018.
Ed. by H. Shacham and A. Boldyreva. Vol. 10992. LNCS. Springer, 2018, pp. 33–
62.

[24] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast
Trustless Setup”. In: CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang. ACM, 2018, pp. 1179–1194.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust Threshold DSS
Signatures”. In: Inf. Comput. 164.1 (2001), pp. 54–84.

[26] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Applications of Ped-
ersen’s Distributed Key Generation Protocol”. In: CT-RSA 2003, San Francisco,
CA, USA, April 13-17, 2003. Ed. by M. Joye. Vol. 2612. LNCS. Springer, 2003,
pp. 373–390.

[27] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems”. In: J. Cryptol. 20.1 (2007),
pp. 51–83.

[28] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. “Robust and Efficient Sharing
of RSA Functions”. In: J. Cryptol. 20.3 (2007), p. 393.

[29] C. Gentry and D. Wichs. “Separating succinct non-interactive arguments from
all falsifiable assumptions”. In: STOC 2011, San Jose, CA, USA, 6-8 June 2011.
Ed. by L. Fortnow and S. P. Vadhan. ACM, 2011, pp. 99–108.

[30] S. Goldwasser, S. Micali, and R. L. Rivest. “A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks”. In: SIAM J. Comput. 17.2 (1988),
pp. 281–308.

[31] S. Jarecki and A. Lysyanskaya. “Adaptively Secure Threshold Cryptography:
Introducing Concurrency, Removing Erasures”. In: EUROCRYPT 2000, Bruges,
Belgium, May 14-18, 2000. Ed. by B. Preneel. Vol. 1807. LNCS. Springer, 2000,
pp. 221–242.

[32] N. Koblitz and A. Menezes. “Another look at non-standard discrete log and
Diffie-Hellman problems”. In: J. Math. Cryptol. 2.4 (2008), pp. 311–326.

[33] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Thresh-
old Signatures”. In: SAC 2020, Halifax, NS, Canada (Virtual Event), October
21-23, 2020. Ed. by O. Dunkelman, M. J. J. Jr., and C. O’Flynn. Vol. 12804.
LNCS. Springer, 2020, pp. 34–65.

[34] B. Libert, M. Joye, and M. Yung. “Born and raised distributively: Fully distributed
non-interactive adaptively-secure threshold signatures with short shares”. In:
Theoretical Computer Science 645 (2016), pp. 1–24.

[35] Y. Lindell. “Simple Three-Round Multiparty Schnorr Signing with Full Simulata-
bility”. In: IACR Cryptol. ePrint Arch. (2022), p. 374. url: https://eprint.
iacr.org/2022/374.

[36] A. Lysyanskaya and C. Peikert. “Adaptive Security in the Threshold Setting:
From Cryptosystems to Signature Schemes”. In: ASIACRYPT 2001, Gold Coast,
Australia, December 9-13, 2001. Ed. by C. Boyd. Vol. 2248. LNCS. Springer, 2001,
pp. 331–350.

[37] N. Makriyannis. On the Classic Protocol for MPC Schnorr Signatures. Cryptology
ePrint Archive, Paper 2022/1332. https://eprint.iacr.org/2022/1332. 2022.
url: https://eprint.iacr.org/2022/1332.

[38] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. “Simple Schnorr multi-
signatures with applications to Bitcoin”. In: Des. Codes Cryptogr. 87.9 (2019),
pp. 2139–2164.

33

https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/1332
https://eprint.iacr.org/2022/1332

[39] J. Nick, T. Ruffing, and Y. Seurin. “MuSig2: Simple Two-Round Schnorr Multi-
signatures”. In: CRYPTO 2021, Virtual Event, August 16-20, 2021. Ed. by T.
Malkin and C. Peikert. Vol. 12825. LNCS. Springer, 2021, pp. 189–221.

[40] A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières. “Proactive Two-Party Signa-
tures for User Authentication”. In: Proceedings of the Network and Distributed Sys-
tem Security Symposium, NDSS 2003, San Diego, California, USA. The Internet
Society, 2003. url: https://www.ndss-symposium.org/ndss2003/proactive-
two-party-signatures-user-authentication/.

[41] D. Pointcheval and J. Stern. “Security Arguments for Digital Signatures and
Blind Signatures”. In: J. Cryptol. 13.3 (2000), pp. 361–396.

[42] C. Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryptol. 4.3
(1991), pp. 161–174.

[43] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–
613.

[44] D. R. Stinson and R. Strobl. “Provably Secure Distributed Schnorr Signatures
and a (t, n) Threshold Scheme for Implicit Certificates”. In: ACISP 2001, Sydney,
Australia, July 11-13, 2001. Ed. by V. Varadharajan and Y. Mu. Vol. 2119. LNCS.
Springer, 2001, pp. 417–434.

A Proof of Static Security in the AGM

We additionally provide a proof of static security for Sparkle under the discrete
logarithm (DL) assumption in the algebraic group model (AGM) and random
oracle model (ROM) without any tightness loss. This security reduction serves
as a warm-up to the proof of full adaptive security in Section 8.

Theorem 4. Sparkle is statically secure under DL in the AGM+ROM.

Proof. Let A be an algebraic adversary attempting to break the static unforge-
ability of Sparkle (Fig. 4) We construct a PPT reduction B against the DL
assumption (Fig. 3) that uses A as a subroutine such that

Advst-secA (κ, 1) ≤ AdvdlB(κ) + negl(κ)

Here, τ = 1 to allow A to corrupt a full t = τ · t parties.

The Reduction B: We define the reduction B playing game GamedlB(κ) as follows.
B is responsible for simulating key generation and oracle responses for queries
to OSign,OSign′ ,OSign′′ ,Hcm, and Hsig. Let Qcm,Qsig be the set of Hcm,Hsig queries
and their responses, respectively. B may program the random oracles Hcm,Hsig.

Let Q be the set of messages that have been queried in OSign as in GameUFA (κ, 1).
B initializes Qcm,Qsig, Q to the empty set.

DL Input. B takes as input the group description G = (G, p, g) and a DL
challenge Ẋ. B aims to output ẋ such that Ẋ = gẋ.

Static Corruption. B runs A(). A chooses the total number of potential signers
n, the threshold t + 1 ≤ n, and the set of corrupt parties cor ← {j}, |cor| ≤ t,

34

https://www.ndss-symposium.org/ndss2003/proactive-two-party-signatures-user-authentication/
https://www.ndss-symposium.org/ndss2003/proactive-two-party-signatures-user-authentication/

which are fixed for the rest of the protocol. B sets hon ← [n] \ cor and must
reveal the secret keys of the corrupt parties to A, which B does in the next step.

Simulating KeyGen. B simulates the key generation algorithm (Fig. 5) using
its DL challenge Ẋ as follows.

1. B sets the joint public key X̃ ← Ẋ.
2. B simulates a Shamir secret sharing of the discrete logarithm of X̃ by

performing the following steps. (See Section 3 for notation.) Assume without
loss of generality that |cor| = t.
(a) B samples t random values xj ←$ Zp for j ∈ cor.
(b) Let f be the polynomial whose constant term is the challenge f(0) = ẋ

and for which f(j) = xj for all j ∈ cor. B computes the t+ 1 Lagrange
polynomials {L′0(Z), {L′j(Z)}j∈cor} relating to the set (of x-coordinates)
0 ∪ cor.

(c) For all 1 ≤ i ≤ t, B computes

Yi = X̃L′0,i
∏
j∈cor

gxjL
′
j,i (6)

where L′j,i is the ith coefficient of L′j(Z) = L′j,0 + L′j,1Z + · · ·+ L′j,tZ
t.

(d) For all 1 ≤ i ≤ n, B computes

X̃i = X̃Y i1Y
i2

2 · · ·Y i
t

t (7)

which is implicitly equal to gf(i).

The joint public key is X̃ = gf(0) = Ẋ with corresponding secret key ẋ. B runs

AOSign,Sign′,Sign′′

(X̃, {X̃i}i∈[n], {xj}j∈cor).
Simulating Random Oracle and Signing Queries. B simulates random
oracle and signing queries as in the static proof under DL+ROM (Section 9.1).

Output. At the end of the game, A produces a forgery (m∗, σ∗) = (m∗, (R̃∗, z∗))
and wins if Verify(X̃,m∗, σ∗) = 1 and m∗ /∈ Q.

Extracting the Discrete Logarithm of Ẋ. A’s forgery verifies as:

R̃∗ = gz
∗
X̃−c

∗
(8)

where c∗ = Hsig(X̃,m∗, R̃∗). On the other hand, whenAmade its query Hsig(X̃,m∗,

R̃∗), it provided a representation of R̃∗ in terms of all of the group elements it had
seen so far, namely (g, X̃, X̃1, . . . , X̃n, {Ri,1, . . . , Ri,n}i∈[qS]), where {Ri,k}i∈[qS]

are the honest nonces returned by the Sign′ oracle over the qS signing queries
that A makes. We assume without loss of generality that A completes every
signing session. (Otherwise, B can perform any unmet Sign′ and Sign′′ queries
itself.) Thus, A provided (γ∗, ξ∗, ξ∗1 , . . . , ξ

∗
n, {ρ∗i,1, . . . , ρ∗i,n}i∈[qS]) such that:

R̃∗ = gγ
∗
X̃ξ∗X̃

ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

R
ρ∗i,1
i,1 · · ·R

ρ∗i,n
i,n

35

Each Ri,k verifies as Ri,k = gzi,kX̃
−ciλi,k
k , where ci = Hsig(X̃,mi, R̃i). Thus,

R̃∗ = gγ
∗
X̃ξ∗X̃

ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

(gzi,1X̃
−ciλi,1
1)ρ

∗
i,1 · · · (gzi,nX̃−ciλi,nn)ρ

∗
i,n

Equating this with Eq. (8), we have:

gz
∗
X̃−c

∗
= gγ

∗
X̃ξ∗X̃

ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

(gzi,1X̃
−ciλi,1
1)ρ

∗
i,1 · · · (gzi,nX̃−ciλi,nn)ρ

∗
i,n

Rearranging, we have:

gz
∗
g−γ

∗
qS∏
i=1

g−zi,1ρ
∗
i,1 · · · g−zi,nρ

∗
i,n

= X̃c∗X̃ξ∗X̃
ξ∗1
1 · · · X̃

ξ∗n
n

qS∏
i=1

(X̃
−ciλi,1
1)ρ

∗
i,1 · · · (X̃−ciλi,nn)ρ

∗
i,n (9)

Let η∗ = z∗ − γ∗ −
∑qS
i=1(zi,1ρ

∗
i,1 + · · ·+ zi,nρ

∗
i,n) and ζ∗k = ξ∗k −

∑qS
i=1 ciλi,kρ

∗
i,k

for all k ∈ [n]. Then Eq. (9) can be rewritten as:

gη
∗

= X̃c∗+ξ∗X̃
ζ∗1
1 · · · X̃

ζ∗n
n (10)

Recall that X̃i = X̃Y i1Y
i2

2 · · ·Y i
t

t for all i ∈ [n] (Eq. (7)) and that Yi =

X̃L′0,i
∏
j∈cor g

xjL
′
j,i for all i ∈ [t] (Eq. (6)). Thus,

X̃k = X̃

t∏
i=1

(
X̃L′0,i

∏
j∈cor

gxjL
′
j,i

)ki

Let µ∗k = 1 +
∑t
i=1 L

′
0,ik

i and ν∗k =
∑t
i=1

(∑
j∈cor xjL

′
j,i

)
ki. Then X̃k can be

rewritten as:

X̃k = X̃µ∗kgν
∗
k

and Eq. (10) can be rewritten as:

gη
∗

= X̃c∗+ξ∗
n∏
k=1

X̃µ∗kgν
∗
k

Rearranging, we have:

gη
∗−

∑n
k=1 ν

∗
k = X̃c∗+ξ∗+

∑n
k=1 µ

∗
k

36

and

ẋ =
η∗ −

∑n
k=1 ν

∗
k

c∗ + ξ∗ +
∑n
k=1 µ

∗
k

A fixed R̃∗ and thus η∗, {ν∗k}k∈[n], ξ
∗, {µ∗k}k∈[n] as it queried Hsig(X̃,m

∗, R̃∗)
to receive random c∗. Thus, the denominator is nonzero with overwhelming
probability and B can solve for ẋ to win the DL game.

37

	Introduction
	Related Work
	Preliminaries
	General Notation
	Definitions and Assumptions

	Threshold Signature Schemes
	Static Security
	Adaptive Security

	Schnorr Threshold Signature Scheme Sparkle
	Static Security Under Standard Assumptions
	Adaptive Security Against up to t/2 Corruptions
	Adaptive Security Against t Corruptions
	Static and Adaptive Security Proofs
	Proof of Static Security
	Proof of Adaptive Security for up to t/2 Corruptions
	Proof of Adaptive Security for up to t Corruptions

	Proof of Static Security in the AGM

