
A Generic Construction of an
Anonymous Reputation System and

Instantiations from Lattices

Johannes Blömer1, Jan Bobolz2, and Laurens Porzenheim1

1Paderborn University
{bloemer,laurens.porzenheim}@upb.de

2University of Edinburgh (work done while at Paderborn University)
jan.bobolz@ed.ac.uk

Abstract. With an anonymous reputation system one can realize the pro-
cess of rating sellers anonymously in an online shop. While raters can stay
anonymous, sellers still have the guarantee that they can be only be reviewed
by raters who bought their product.
We present the first generic construction of a reputation system from

basic building blocks, namely digital signatures, encryption schemes, non-
interactive zero-knowledge proofs, and linking indistinguishable tags. We
then show the security of the reputation system in a strong security model.
Among others, we instantiate the generic construction with building blocks
based on lattice problems, leading to the first module lattice-based reputa-
tion system.

1. Introduction

Reputation systems are crucial for markets to function properly. They are usually a
user’s only indicator regarding the trustworthiness of a seller, or the quality of a product.
Right now, in real-world reputation systems, ratings are centrally controlled (see, for
example, Amazon or Yelp ratings) by the reputation system provider (Amazon/Yelp).

This work was partially supported by the German Research Foundation (DFG) within the Collabora-
tive Research Centre “On-The-Fly Computing” under the project number 160364472 – SFB 901/3.
Additionally, this work was partially funded by the Ministry of Culture and Science of the State of
North Rhine-Westphalia.

1

This means that the reputation system provider has the ability to admit or deny users
from the system, censor ratings, inject fake ratings, and trace all raters’ identities. Of
course, this allows a malicious provider to unilaterally undermine the reputation system,
e.g. by censoring inconvenient ratings or by using knowledge of user identities to retaliate
against bad ratings.

Cryptographic reputation systems. A cryptographic reputation system is a decentral-
ized system in which the roles and abilities of the reputation system provider are either
fully replaced by cryptographic mechanisms or at least distributed among multiple par-
ties, with strong anonymity guarantees for users. First, a user registers (once) with the
group manager, who is tasked with admitting users to the system (essentially to prevent
Sybil attacks). Then, when the user buys a product, he receives a rating token from an
issuer (e.g., the seller), certifying that the user is indeed allowed to rate the issuer (to
prevent users from rating issuers they have never interacted with). Given the member-
ship certificate from the group manager and the rating token from the issuer, the user
can create a rating signature. We imagine that the user posts this signatures to a public
reputation board, enabling other users to view and verify the rating. The rating signa-
ture is anonymous, meaning that it does not reveal who, of all users who are allowed to
rate that issuer, issued this particular rating (preventing retaliation against negatively
ratings). However, the opener possesses a special key to inspect signatures and reveal
the user’s identity in case of misuse. Finally, even though rating signatures are otherwise
anonymous to the public, anyone can efficiently check whether any two rating signatures
have been created by the same user (to prevent the same user from submitting multiple
ratings for the same issuer). In this setting, the role of the incentive system provider
has been distributed among group manager, issuers, reputation boards. User anonymity
is cryptographically guaranteed, but can be revoked by the opener. What we describe
here can be seen as (a special case of) the ticket-based approach identified by [GG21].

Desirable construction types. There exists a wealth of constructions of such system in
the literature (as surveyed in [GG21]), but they all work in the discrete logarithm setting.
With the looming threat of quantum computers, there is a need for constructions that
do not rely on the hardness of discrete logarithms and instead rely on some hardness
assumption not likely broken by quantum computers, such as lattice-based assumptions.
We are aware of only a single lattice-based reputation system in the literature, designed
by El Kaafarani, Katsumata, and Solomon [EKKS18].
We can generally distinguish generic constructions from non-generic constructions.

A generic construction is a prescription how to plug together (almost) arbitrary in-
stantiations of several basic schemes (e.g., signature schemes, encryption schemes, and
non-interactive zero-knowledge proofs (NIZKs)) into a secure reputation system. So far,
reputation system constructions have been non-generic, i.e. there is no formally proven
way to construct reputation systems from arbitrarily instantiated basic building blocks.
Even beyond the lack of an explicit generic construction, existing constructions are also
quite specific to their (discrete logarithm / lattice) setting. For example, a natural

2

choice for rating tokens would be for the issuer to sign the buying user’s public key
(thereby giving that user the right to rate). However, in the discrete logarithm setting
(e.g., [BJK15, BEJ18]), rating tokens are typically (blind) signatures on the user’s se-
cret key, instead, because traditionally, it is easier to sign secret keys (which live in Zp)
than public keys (which live in the group G). In the lattice setting, the only known
construction [EKKS18] accumulates all buyers’ public keys in a Merkle hash tree, which
is (relatively) efficient in the lattice setting, but would be absurdly inefficient and bor-
derline impossible to implement in the discrete logarithm setting (considering the need
to prove statements in zero-knowledge about the hashes).

1.1. Our contribution

In this paper, we give the first provably secure generic construction of a reputation sys-
tem from digital signatures, public-key encryption, linking indistinguishable tags (LITs),
and NIZKs. We formally define security properties and prove that the generic construc-
tion (and hence any concrete constructions built from it) fulfills them. Furthermore, we
show that this generic construction can be reasonably instantiated in both the lattice
setting and the discrete logarithm setting, unifying and drawing parallels between the
two settings. In particular, this results in the first reputation system based on module
lattices. Our construction compares favorably in its privacy properties to the only other
lattice-based construction [EKKS18], as discussed later.

Generic construction. The generic construction roughly follows a paradigm similar to
the sign-encrypt-prove paradigm [CS97] for group signatures, similar to [BJK15, BEJ18]
(but modified to apply to both the lattice and the discrete logarithm setting). The user
generates some secret key usk; his public key is upk = f(usk) for some one-way function
f . To join the system, the user obtains a signature ρ on his public key from the group
manager. To enable rating an issuer, the user also obtains a signature τ on his public key
from the issuer. Given those two signatures, the user composes a rating text rtng and
encrypts his public key upk for the opener (who holds the secret key to reveal upk in case
of misuse). For technical reasons, the user also encrypts usk under a key that nobody
knows the secret key for (a trick comparable to the Naor-Yung paradigm). The user
then computes a linking indistinguishable tag (LIT) using his secret key usk. The LIT
is the gadget that will allow anyone to check whether the user has rated the same issuer
twice. We then use the NIZK essentially as a signature of knowledge [CL06] to create a
non-interactive proof authenticating the rating text rtng by proving, in zero-knowledge,
that the ciphertexts and LIT have been computed correctly, and that his public key has
been signed by the group manager and the issuer.

Instantiation in the discrete logarithm setting. In the discrete logarithm setting, we
can use LIT tags in the random oracle model of the form RO(µ)usk (note that this is
a deterministic tag and hence enables detection of a user rating ipk twice). Because
the generic construction signs public keys, we use a structure-preserving signature as

3

the signature scheme. Unsurprisingly, encryption can be accomplished with ElGamal
and the NIZKs can be instantiated with Schnorr-style protocols together with the Fiat-
Shamir heuristic. More details can be found in Section 6.2.

Instantiation with lattices. The instantiation with lattices is more difficult given that
the ecosystem for privacy constructions is less mature than in the discrete logarithm
setting. We need to instantiate the encryption scheme, the signature scheme, the NIZK,
and the linking indistinguishable tag. For more efficiency and flexibility when setting
parameters, we generally consider the module lattice setting.
For the encryption scheme, the typical choice is between primal and dual Regev en-

cryption (i.e. between putting the LWE error into the public key or into ciphertexts). Pri-
mal Regev is more suitable for proving statements about encryptions in zero-knowledge,
which is why we choose it for the instantiation. Section 4.2 shows a module version
of Regev encryption, optimized for use in zero-knowledge proofs with long plaintexts,
putting up with a large public key for the benefit of small-dimension randomness vectors
(since public data is cheap, but randomness of part of the proof witness and increases
the proof size).
There are several signature schemes based on lattice assumptions. However, we require

one that plays nicely with zero-knowledge proofs, for example the signature should not
rely on random oracles. Thus, a first idea would be to use the signatures of [LLM+16]
or [JRLS22], as they are designed to be compatible with current lattice-based proof
systems. However, [LLM+16] present a construction based on unstructured lattices,
which is too inefficient compared to a construction from structured lattices. Furthermore,
their construction inherently uses a chameleon hash to achieve adaptive security, which
increases the complexity of a proof of possession of a signature. On the other hand, the
construction of [JRLS22] is a stateful signature that can only sign a limited number of
signatures, which does not fit our generic construction. Instead, we look at the stateless
signatures of [DM14]. As the other two signatures, it is a tag-based signature scheme
and a variant of signatures by [Boy10], but is based on ideal lattices. [DM14] show
their signature to be non-adaptively secure and transform it to adaptive security by
employing chameleon hashes. We instead show in Section 4.1 that the signature of
[DM14] is already adaptively secure by using a proof technique as in [LSS14].
For the NIZK, we chose [LNP22a], which has the advantage of supporting efficient

vector shortness proofs without slack. We use this feature to efficiently prove knowledge
of, for example, a valid [DM14] signature.
Finally, we require a linking indistinguishable tag. We use a tag similar to those of

[EBEK17, EKKS18], which can be seen as the lattice equivalent of DLOG-based tags
mentioned above. To build a LIT tag t in the lattice setting, [EKKS18] use an LWE
secret as the secret key, hash the message µ with the random oracle, and choose an
error e to build an LWE sample from it, i.e. tt = st · RO(µ) + et. Linking then works
because if one tags the same message for the same secret key, the difference of the two
tags is the difference of the two errors. Thus, the difference of two tags is short, iff they
should link. [EKKS18] then show the security of their tag under the first-are-errorless

4

LWE assumption, a variant of LWE where the first few samples of an LWE oracle do
not contain any error. Wen instanting the LIT, this costs them some efficiency, so we
modify their construction to show our tag secure under the Module LWE assumption.
We also introduce some new security notions for LITs in order to interface better with
our generic construction.

Stateful reputation system. We also present a stateful variant of our generic construc-
tion of a reputation system in Section 6.1. The stateful variant works the same way as
the stateless construction except for using stateful signatures as building blocks instead
and having a fixed maximum number of users. The security proofs of the stateless con-
struction can then easily be adapted to apply to the stateful variant. We then instantiate
the stateful reputation system with two variants of the stateful signatures of [JRLS22],
where the latter are described in Appendix C. Since the signatures of [JRLS22] are de-
signed to be compatible with lattice-based proof systems and are more efficient than the
signatures of [DM14], our signature constructions inherit this improved efficiency, which
we then in turn improve the efficiency of our stateful reputation systems.

1.2. Related work

Reputation system constructions. Building reputation systems in the discrete loga-
rithm setting is well-understood, with a wealth of papers with a variety of construction
strategies and features. A good discussion can be found in the survey of Gurtler and
Goldberg [GG21]. Closest to our generic construction are [BJK15, BEJ18], they are
not quite instantiations of our generic construction, but they follow a similar paradigm
(changes are mostly due to the fixed discrete logarithm setting in those papers, such
as the usage of blind signatures to avoid signing public keys). Other papers, such as
[LM19, BSS10], offer some form of privacy for issuers. In our construction, the issuer is
known to all parties. We leave extensions, which offer some privacy to issuers, to future
work and note that the techniques used here carry over to more complex scenarios. An-
other line of research considers reputation systems in a blockchain context, as surveyed
by Hasan, Brunie, and Bertino [HBB23]. Those systems usually aim for trustlessness,
i.e. ideally no party has to be trusted, but trust is distributed and backed by incentives
throughout the blockchain network. Our system makes some trust assumptions, e.g., if
group manager and issuer collude, we cannot prevent Sybil attacks. We do not model
any reputation board party mentioned by [HBB23], which stores the rating signatures,
but note that it can be realized by a public ledger, ensuring that ratings are not censored
or deleted.

Lattice-based group signatures. One way to construct a reputation system is to take
some group signature as base and then modify it such that linking is possible [EKKS18,
BJK15, BEJ18]. This works because the notion of group signatures is closely related to
anonymous reputation systems; one can view reputation systems as a group of group
signatures. Both want to protect the anonymity of users inside a group or system, where

5

the users authenticate messages, while a privileged opener is able to de-anonymize users.
Therefore, we can explore existing lattice-based group signatures as potential bases for
a lattice-based reputation system. One example is the group signature of [LNWX17],
which [EKKS18] used to construct their reputation system, as explained later in more
detail.
Another potential group signature to build a reputation system from is the one

of [BCOS20], which uses the sign-encrypt-proof paradigm. They employ the Aurora
SNARK [BSCR+19] for their proofs, which has the advantage of no slack and very small
proofs. However, the computation time for the proofs required by the group signature
seems to be too high, as [BCOS20] explain.
In their paper on very efficient NIZKs with no slack, [LNPS21] also present a group

signature scheme, which is based on the constructions of [DPLS18, LNPS21]. While
this scheme promises very short signatures, their group signature is static, i.e. the group
does not change. This does not match our dynamic model of a reputation system.
Furthermore, [LNPS21] model their user identities as single ring elements of a special
set, which they then sign to let the user join the group. However, in our construction
we need to be able to sign the public keys of the LIT scheme, which generally do not
fall into this special set.
Another group signature on which one could base a reputation system is the one by

[LNWX18]. They also follow the sign-encrypt-proof paradigm, and concretely use the
signatures of [DM14], an encryption scheme by [LPR13a] transformed to CCA security
similar to the Naor-Yung paradigm and some Stern-like proof system. This group signa-
ture uses the same signature scheme and a similar encryption scheme as building blocks
as we do in our first instantiation of the reputation system (note that we use different
NIZKs).

Lattice-based reputation systems. To the best of our knowledge, the only other con-
struction of a reputation system that is based on lattices is the construction of [EKKS18].
The idea for their construction is to start with the group signature from [LNWX17] and
then view the reputation system as a group of group signatures. For each item that
can be rated, the group manager sets up a separate group signature via a hash-based
accumulator that is a Merkle-tree of all public keys of users who may rate the item. To
create a rating a user then encrypts his identity, creates a tag with a LIT and then proves
in zero-knowledge that he encrypted and tagged correctly as well as that his public key,
for which he knows the secret key, is contained in the Merkle-tree.
A drawback of their model is that there are no issuers, instead there is a single group

manager who manages everything. This gives the single group manager more power in a
setting where there are different people to be rated, where these people need to trust the
single group manager to work honestly. By separating the group manager from issuers,
we can also split up their power, allowing for a more fine-grained approach of modelling
trust. This is reflected in our security model. Additionally our security model offers
a slightly stronger corruption model, except for requiring the opener to be honest (cf.
Section 5.1).

6

Another drawback of the construction of [EKKS18] is that due to it relying on public
Merkle-trees, there exists a public record of all users who can rate an item. While this
does not contradict any formal security notion, in practice it is undesirable that the whole
purchase history of all users is publicly available and a construction not exhibiting this
issue is preferable. Our construction prevents this drawback by using signatures instead
of a Merkle-tree to add users to the group. Obviously, even in our setting malicious
issuers can always share the purchase history of users who bought from them with other
people, but this is unpreventable. However, [EKKS18] requires their group manager to
publish this information in order for the system to work. Furthermore, due to their usage
of first-are-errorless LWE for the LIT as mentioned before and their usage of Stern-like
proofs, the construction of [EKKS18] is less efficient than ours.
The advantage that the construction of [EKKS18] has over our construction is that

they can assume the opener to be corrupt in every security notion but anonymity, while
our construction needs the opener to be honest-but-curious. [EKKS18] achieve this
requirement by introducing a Judge algorithm with which one can publicly verify that
the opener worked correctly. We note that it is straight-forward to add Judge to our
generic construction and our instantiations, but we omit it for better readability.

2. Preliminaries

We denote drawing some x uniformly from a set S by x← S. We overload notation and
denote by x← D sampling x from a distributionD. If A(y) is a (probabilistic polynomial
time (ppt)) algorithm, x← A(y) denotes sampling x from the output distribution of A
on input y. We denote the random oracle as RO.
We denote scalars as lowercase letters a, column vectors as bold lowercase letters a and

matrices as bold uppercase letters A. By Ic we denote the identity matrix of dimension
c × c. If the dimensions are clear from the context, we may only write I. The same
holds for 0, by which we denote the vector or matrix consisting of only zeroes. For the
norm ∥a∥ of a vector we use the euclidian norm unless specified otherwise. We denote
the infinity norm of a vector by ∥a∥∞.
Unless otherwise specified, let R = Z[X]/(Xn + 1) with n ≥ 16 being a power of two

and let q > 16 and q = 3, 5 mod 8. Let Rq = R/qR. We require such a q, because
then Rq splits into Rq

∼= Fqn/2 × Fqn/2 , where Fqn/2 denotes the field with qn/2 elements,
which we use for some results, e.g. Lemmas 2.4 and 2.7. We represent elements of Rq

as vectors over Zn
q . In general, we use the coefficent embedding θ : Rq → Zn

q , since for
the R we use the canonical embedding is the same as the coefficent embedding up to a
factor of

√
n [JRLS22]. Define R2 = θ−1({0, 1}n) and R±1 = θ−1({−1, 0, 1}n). By x̃ we

refer to the constant coefficient of some polynomial x ∈ R.

2.1. Lattices, Discrete Gaussians and Lattice Problems

Definition 2.1. A (full-rank) n-dimensional lattice Λ is a discrete, additive subset of Rn.
It can be represented by a basis B ∈ Rn×n. We then write Λ = Λ(B) = {z : z = Bx, x ∈

7

Zn}. For a matrix A ∈ Zn×m
q , define the q-ary lattice Λ⊥(A) = {x ∈ Zm

q : Ax = 0
mod q}.

Definition 2.2. Define the Gaussian function ρs,c(x) = exp(−π ∥x− c∥ /s2). Define
the discrete Gaussian distribution DΛ+t,s,c on a lattice coset Λ + t with center c and
parameter s as

DΛ+t,s,c(x) =

{
ρs,c(x)

ρs,c(Λ+t)
if x ∈ Λ + t

0 else

For a ring R, define the discrete Gaussian distribution DR,s,c = θ−1(Dθ(R),s,θ(c)). For
both distributions we sometimes omit the center in the case c = 0.
The first lattice problem we base our security on is module learning with errors

(MLWE).

Definition 2.3 (MLWE). Let q > 2 and k > 0. Let R be a ring and Rq = R/qR. Let
χ be a distribution over Rq. For a secret s ∈ Rk

q , the MLWE distribution is defined as
choosing a← Rk

q and e← χ, computing b = sta+ e mod q, and outputting (a, b).
The MLWE problem MLWEq,R,k,χ is then defined as distinguishing between the MLWE

distribution for a secret s ← Rk
q and the uniform distribution over Rk+1

q . For k = 1,
this is equivalent to ring learning with errors (RLWE).

It can be useful to group the ai from m samples together as the column vectors of
a matrix A ∈ Rk×m

q and the bi as the entries of a vector b ∈ Rm
q , such that we have

stA+ et = bt for some error vector e ∈ Rm
q .

There exists an alternative version of the MLWE problem, where the secret is not
sampled uniformly from Rq, but instead sampled as s ← χk. This is called the normal
form of MLWE.
The MLWE problems as described above are decisional problems. There exist com-

putational variants, where the goal is to compute the secret s, given samples from
the MLWE distribution. This is called the (normal form) search MLWE problem
sMLWEq,R,k,χ.
In some cases, we need to set the parameters of the normal form MLWE problem in

such a way that the secret used to create a set ofm samples is unique, meaning that with
overwhelming probability there is no other secret and error vector that could produce
the samples. We show for what parameters this is the case.

Lemma 2.4 (Short MLWE secrets are unique). Let q ̸= 2 be a prime with q = 3, 5
mod 8 (or q = 1 mod 2n), k > 0, n > 16 be a power of 2, Rq = Zq[X]/(Xn + 1). Let
Bβ = {e ∈ Rq : ∥e∥∞ ≤ β}. Let ∆ ≥ 0 such that 2β + ∆ < q1/4. Then there exists an
m and a negligible function negl such that

Pr

[
∃(s, s′, e, e′) ∈ (Bk

β)
2 × (Bm

β)2

with s ̸= s′ ∧ ∥b∥∞ ≤ ∆
:
A← Rk×m

q

bt = (s− s′)tA+ (e− e′)t

]
≤ negl(n).

8

The proof for this can be found in Appendix A.
The next two lattice problems we need are the ring and module variants of the short

integer solution problem (SIS).

Definition 2.5 (RSIS). Let q > 2 and m,β > 0. Let R be a ring and Rq = R/qR. The
RSIS problem RSISq,R,m,β is given a uniform vector a← Rm

q to find a non-trivial vector
x ∈ Rm

q \{0} such that atx = 0 and ∥x∥ ≤ β.

Definition 2.6 (MSIS). Let q > 2 and d,m, β > 0. Let R be a ring and Rq = R/qR.
The MSIS problem MSISq,R,d,m,β is given a uniform matrix A ← Rd×m

q to find a non-
trivial vector x ∈ Rm

q \{0} such that Ax = 0 and ∥x∥ ≤ β.

For the MSIS problem there exists a so-called normal-form variant, where if m > d the
first d columns of A form the identity matrix. The probability that we can transform
an A into its normal form can be analysed through the probability that a single uniform
element in Rq is invertible.

Lemma 2.7. Let n be a power of 2 and q ≥ 16 a prime with q = 3, 5 mod 8. For the
ring Rq = R/qR with R := Z[X]/(Xn + 1) we have

η := Pr[a not invertible : a← Rq] ≤
2

qn/2
.

The proof for this can be found in Appendix B. Then, we can combine this lemma
together with Lemma B.3 to get the following corollary, which tells us with what prob-
ability we can transform A into its normal form.

Corollary 2.8. Let n, q and ring Rq be as in the previous lemma. If matrix A =

[A1|A2],A1 ∈ Rk×k
q ,A2 ∈ Rk×(n−k)

q , is chosen uniformly at random from Rk×n
q , n ≥ k,

then with probability at least 1−4k ·q−n/2, there is a matrix A′
2 such that for A′ = [Ik|A′

2]

Λ⊥(A) = Λ⊥(A′).

2.2. Encryption Schemes

To construct our reputation system, we later need a CPA secure encryption scheme as
a building block. For this, we consider a standard syntax definition.

Definition 2.9. An encryption scheme Π consists of the following three ppt algorithms.

• KeyGen(1n): The key generation algorithm on input a security parameter n outputs
a tuple of a secret key and a public key (sk, pk).

• Enc(pk,m): The encryption algorithm on input a public key pk and a message m
outputs a ciphertext c.

• Dec(sk, c): The decryption algorithm on input a secret key sk and a ciphertext c
outputs a message m.

9

We say that Π is correct, if for all security parameters n, all (sk, pk) output by KeyGen(1n),
and all messages m, it holds that Pr[Dec(sk,Enc(pk,m)) = m] is overwhelming in n.

We define CPA security with a standard definition as well.

IND-CPAΠ,A,b(n)

1 : (sk, pk)← KeyGen(1n)

2 : (m0,m1)← A(pk)
3 : c← Enc(pk,mb)

4 : b′ ← A(c)

Definition 2.10. We define the advantage of an adversary A against an encryption
scheme Π as

AdvCPA
Π,A (n) = |Pr[IND-CPAΠ,A,0(n) = 1]− Pr[IND-CPAΠ,A,1](n) = 1| .

We say that the scheme Π is IND-CPA secure if for all ppt adversaries AdvCPA
Π,A (n) is

negligible.

2.3. Signature Schemes

Another building block we need for the reputation system is an EUF-CMA secure sig-
nature scheme.

Definition 2.11 (Signature scheme). A signature scheme Σ consists of the following
ppt algorithms:

• KeyGen(1n) outputs secret key and public key pair (sk, pk).

• Sign(sk,m) outputs signature σ.

• Vrfy(pk,m, σ) is deterministic and outputs a bit.

We say that Σ is correct if for all n ∈ N, all (sk, pk) output by KeyGen(1n), all messages
m in the message space (which is implicitly defined by the pk), and all σ output by
Sign(sk,m), we have Vrfy(pk,m, σ) = 1.

The standard EUF-CMA security notion is then defined as follows.

Definition 2.12 (EUF-CMA). A signature scheme Σ is existentially unforgeable under
chosen-message attacks (EUF-CMA) if for all ppt A,

AdvEUFCMA
Π,A (n) = Pr[Vrfy(pk,m∗, σ∗) = 1 ∧ A has not queried m∗ :

(sk, pk)← KeyGen(1n), (m∗, σ∗)← ASign(sk,·)(pk)] ≤ negl(n).

10

2.4. NIZKs

We use non-interactive zero-knowledge proof systems in the random oracle model in this
paper.

Definition 2.13 (NIZK). A non-interactive proof system (NIZK) for a relation R in
the random oracle model is defined as a triple ΠNIZK = (Setup,P ,V) of ppt algorithms:

• Setup(1n) outputs a common reference string crs.

• PRO(·)(crs, x, w,m) given instance x, witness w, and a message m, outputs a proof
π.

• VRO(·)(crs, x,m, π) outputs a bit b.

To simplify notation, we sometimes omit the random oracle RO(·), but assume implicitly
that the prover and verifier have access to it. We say that the NIZK is correct, if for all
(x,w) ∈ R and m ∈ {0, 1}∗, we have that

Pr[V(crs, x,m,P(crs, x, w,m)) : crs← Setup(1n)] = 1.

For a relation R, LR = {x | ∃w : (x,w) ∈ R} is the language associated with R. The
message m is additional data bound to the proof (e.g., including m in a Fiat-Shamir
hash). Its role can be observed in Definition 2.17.
In order to display the relation R that is proven, we will use the following notation

for proofs.

Definition 2.14. We denote the generation of a proof π ← P(crs, x, w,m) by

π ← NIZK{x;w;R(x,w)}(m),

where P is from a non-interactive proof system ΠNIZK for the relation R. We say “Verify
π” to mean checking that V(crs, x,m, π) = 1 and we say “π verifies” or “π is valid” if
V(crs, x,m, π) = 1 holds.

With respect to security, we require the NIZK to be zero-knowledge (i.e. proofs can be
simulated without a witness), sound (i.e. one cannot prove false statements), simulation-
sound (i.e. one cannot prove false statements, even in the presence of simulated proofs),
and straight-line extractable (i.e. there exists an extractor that can efficiently compute
a witness from a valid proof without rewinding). These definitions are standard, we list
them below, starting with zero-knowledge.

Definition 2.15 (Zero-Knowledge). A NIZK Π is zero-knowledge if there exists a sim-
ulator S consisting of three ppt algorithms S = (S.Setup,S.RO,S.Sim) such that for all
ppt A there exists a negligible function negl such that,

AdvZK
Π,A(n) =

∣∣∣∣ Pr[AP(crs,·,·,·),RO(·)(1n, crs) = 1 : crs← Setup(1n)]
− Pr[ASim(·,·,·),S.RO(·)(1n, crs) = 1 : crs← S.Setup(1n)]

∣∣∣∣ ≤ negl(n)

where RO denotes a random oracle. The oracle Sim(x,w,m) checks if (x,w) ∈ R and if
so, runs S.Sim(x,m). We assume that S is stateful, i.e. it implicitly keeps state between
invocations of S.Setup, S.RO, and S.Sim.

11

We give the simulator two advantages beyond a regular prover that should allow it to
efficiently simulate proofs without a witness: (1) S.Setup generates crs and that process
can yield a trapdoor that S stores in its state. (2) S answers the random oracle queries
of A with S.RO(·), so S can program random oracle answers.
The second requirement we have is soundness, which states it is hard for an adversary

to prove a false statement.

Definition 2.16 (Soundness). We say that a NIZK Π is sound if for all ppt A, there
is a negligible function negl such that

AdvSndΠ,A(n) = Pr

[
VRO(·)(crs, x,m, π) = 1 ∧ x /∈ LR :
crs← Setup(1n), (x,m, π)← ARO(·)(1n, crs)

]
≤ negl(n)

Next, we require simulation soundness, i.e. even given access to an oracle creating
simulated proofs (potentially for false statements), it is hard to compute an accepting
proof for a wrong (not-queried) statement x.

Definition 2.17 (Simulation soundness). Let Π = (Setup,P ,V) be a zero-knowledge
NIZK, with simulator S as in Definition 2.15. We say that Π is simulation-sound if for
all ppt A, there exists a negligible function negl such that

AdvSSΠ,A(n) =

Pr

 VS.RO(·)(crs, x,m, π) = 1
∧ x /∈ LR

∧ A has not queried S.Sim(x,m)
:
crs← S.Setup(1n),
(x,m, π)← AS.Sim(·,·),S.RO(·)(1n, crs)

≤ negl(n)

Note that, as usual, A may even query S.Sim(x,m) for x /∈ L. The simulation
soundness property is sometimes understood to imply non-malleability of the proof
π, i.e. defined with the condition “π has not been output by S.Sim(x,m)” instead of
“A has not queried S.Sim(x,m)”. We use the weaker condition here, which corresponds
to the fact that we do not consider immaterial changes to rating signatures (e.g., re-
randomization with no change to the rating text or the rated party) an attack (see, for
example, Definition 5.4).
Finally, we require straight-line extractability.

Definition 2.18 (Straight-line extractability). Let Π = (Setup,P ,V) be a NIZK. We
say that Π is a straight-line extractable proof of knowledge if there are ppt algorithms
E0, E1 such that for all ppt A0,A1, there exist negligible functions negl0, negl1 such that

AdvPoK0
Π,A0

(n) =

∣∣∣∣ Pr[A0(1
n, crs) = 1 : crs← Setup(1n)]

− Pr[A0(1
n, crs) = 1 : (crs, td)← E0(1n)]

∣∣∣∣ ≤ negl0(n)

and

AdvPoK1
Π,A1

(n) = Pr

 VRO(crs, x,m, π) = 1
∧ (x,w) /∈ R

:
(crs, td)← E0(1n),
(x,m, π)← A1(1

n, crs),
w ← E1(td, x,m, π)

 ≤ negl1(n)

12

In the random oracle model, E1 gets the list of random oracle queries that A made as
additional input.

We give the extractor the advantage of setting up crs (allowing it to embed a trapdoor
td) and, in the random oracle model, of observing the random oracle queries of A (as in
[Fis05a]). The extractor does not have any ability to rewind A, so extraction through
rewinding is not an option. Note that in this security definition, we do not give A access
to simulated proofs.

3. Linking Indistinguishable Tags

A building block we need are linking indistinguishable tags (LIT). The idea of such
a scheme is that one can compute a tag for a given message with a secret key. An
adversary should not able to tell which secret key was used to create the tag. However,
if one tags the same message twice, i.e. with the same secret key, anyone can discover
this by linking the tags. There also exists a function f from which we can compute a
public key pk = f(sk). We typically require f to be a one-way function implicitly. This
public key is not used in the scheme itself, but can be used in conjunction with other
primitives. The formal model looks as follows.

Definition 3.1. A linking indistinguishable tags scheme consists of a function f and
the following ppt algorithms:

• KeyGen(1n): On input a security parameter n, it outputs a secret sk.

• Tag(sk, µ): On input a secret key sk and a message µ, it outputs a tag t.

• Vrfy(sk, µ, t): On input a secret key sk, a message µ and a tag t, it outputs a bit b.

• Link(µ, t0, t1): On input a message µ and two tags t0, t1, it outputs a bit b.

We require that a LIT is correct. This is the case if for all security parameters n,
all sk output by KeyGen(1n), all messages µ, all tags t0, t1 output by Tag(sk, µ), we have
that Vrfy(sk, µ, t0) = 1 and Link(µ, t0, t1) = 1.

The first security requirement is tag-indistinguishability. In this standard indistin-
guishability game an adversary has to decide which of two secrets was used to create
the challenge, while having access to tag oracle for these secrets. We define the oracle
Tg(c, µ) to return t if there exists some (c, µ, t) ∈ Q. Else, we return t ← Tag(skc, µ)
and add (c, µ, t) to Q.

13

AnonLITΠ,A,b(n)

1 : sk0, sk1 ← KeyGen(1n)

2 : pki = f(ski), i ∈ {0, 1}
3 : µ∗ ← ATg(·,·)(pk0, pk1)

4 : t∗ ← Tag(skb, µ
∗)

5 : b′ ← ATg(·,·)(t∗)

6 : If µ∗ was queried, output 0, else output b′.

Definition 3.2. A LIT Π has tag-indistinguishability, if there exists a negligible function
negl such that for all ppt adversaries A it holds that

AdvLITAnon
Π,A (n) :=

∣∣Pr[AnonLITΠ,A,0(n) = 1]− Pr[AnonLITπ,A,1(n) = 1]
∣∣ ≤ negl(n).

The second security requirement is linkability. This asks that no adversary can pro-
duce two secret key tag pairs and a message, such that the secret key tag pairs are valid
for the message, while the tags do not link. In comparison to the security model of
[EKKS18], we generalize our security model for linkability and allow the adversary to
output two different secret keys, but they must map to the same public key.

LinkableLITΠ,A(n)

1 : (sk0, sk1, µ, t0, t1)← A(1n)
2 : If f(sk0) ̸= f(sk1) or ∃i ∈ {0, 1} : Vrfy(ski, µ, ti) = 0, return 0.

3 : If Link(µ, t0, t1) = 0, output 1.

Definition 3.3. A LIT Π has linkability if there exists a negligible function negl such
that for all ppt adversaries A it holds that

Pr[LinkableLITΠ,A(n) = 1] ≤ negl(n).

Another security requirement, unforgeability, is similar to the requirement for a one-
way function. It requires that no adversary is able to produce a secret key, message
and valid tag, such that the tag links to another valid tag. For that, we need a tag
oracle QTg, that on input (sk, µ) returns t if there exists (µ, t) ∈ Q. Else it computes
t← Tag(sk, µ), adds (µ, t) to Q and returns t.

ForgeLITΠ,A(n)

1 : Q = ∅
2 : sk← KeyGen(1n), pk = f(sk)

3 : (sk∗, µ, t∗)← AQTg(sk,·)(pk)

4 : If Vrfy(sk∗, µ, t∗) = 0, output 0.

5 : If ∃ (µ, t) ∈ Q such that Link(µ, t, t∗) = 1, output 1.

14

Definition 3.4. A LIT Π is unforgeable, if there exists a negligible function negl such
that for all ppt adversaries A it holds that

Pr[ForgeLITΠ,A(n) = 1] ≤ negl(n).

The last requirement for LIT schemes is non-invertability. This asks that an adversary
is not able to find a secret key to given public key, while having access to a tag oracle.

InvertΠ,A(n)

1 : sk← KeyGen(1n)

2 : pk = f(sk)

3 : sk′ ← AQTg(sk,·)(pk)

4 : If pk = f(sk′), output 1.

Here QTg is defined as before.

Definition 3.5. A LIT Π has non-invertability, if there exists a negligible function negl
such that for all ppt adversaries A it holds that

Pr[InvertΠ,A(n) = 1] ≤ negl(n).

3.1. Construction Based on Module Lattices

Given the formal model of a LIT, we now want to construct a LIT based on module
lattice problems. One can also construct a similar LIT based on unstructured lattice
problems, but we focus on the module case with module rank k. When we later use the
LIT in our reputation system, we only need k = 1, in which case the security assumption
for the LIT reduces to ideal lattices. We think the LIT may be of independent interest,
so we construct it with general rank k.
The idea for the construction is that a public key is simply a batch of MLWE samples

for some secret s. A tag on a message µ then is the second component of another batch
of MLWE samples, i.e. tt = stAµ + e′t, for the same secret s and some different error
e′, where we define Aµ = RO(µ). This way, if we tag the same message twice, the Aµ

is the same for both tags, and the difference of the two tags is equal to the difference
of the two errors. Since this is short, we can detect that the tags were created for the
same message.

Construction 3.6. Let m, k > 0. Let β < 2−
n

mk
+ n

2k
log(q)−3. Let χ be a distribution over

Rq. Construct the LIT ΠLIT consisting of the following algorithms:

• KeyGen(1n): Choose s← χk, e← χm. Set sk = (s, e).

• Tag(sk, µ): Compute Aµ = RO(µ) ∈ Rk×m
q and e′ ← χm. Output tt = stAµ + e′t.

• Vrfy(sk, µ, t): Compute Aµ = RO(µ) ∈ Rk×m
q . If ∥t− (stAµ)

t∥∞ < β and ∥s∥∞ ≤
β, output 1.

15

• Link(µ, t0, t1): If ∥t0 − t1∥∞ < 2β, output 1.

• f = fA for A← Rk×m
q , fA(sk) = (stA+ et)t

Lemma 3.7. The LIT ΠLIT has tag-indistinguishability (Definition 3.2) in the random
oracle model, if normal form MLWEq,R,k,χ is hard.

This can be proven by proving that AnonLITΠLIT,A,0(n) is indistinguishable from a game
where the challenge tag t∗ is generated uniformly at random, which is possible using
the indistinguishability of the MLWE distribution from the uniform distribution. Then,
one does the same for AnonLITΠLIT,A,1(n), from which we can see that the two games are
indistinguishable if normal form MLWE is hard.

Lemma 3.8. The LIT ΠLIT has non-invertability (Definition 3.5) in the random oracle
model if normal form sMLWEq,R,k,χ is hard.

Proof. Let A be an adversary against the invertability of the LIT. We construct an
adversary B against normal form search-MLWE from it. B simulatesA by using batching
m samples from his MLWE oracle into a public key pk. By the definition of the MLWE
oracle, there is some secret s that was used to generated these samples. When A asks
for a tag on a previously unqueried message µ, B uses its MLWE oracle to get a batch
of m samples (A,b), defines RO(µ) := A and answers with b. If A asks for a tag on a
previously queried µ, B answers with the b it generated before. When A outputs some
sk′ = (s′, e′), B returns s′ to its challenger.
Due to Lemma 2.4 we know that the secret s behind the tags is unique, therefore we

know s = s′ if A wins and thus s′ is a valid solution for normal form search-MLWE.

Lemma 3.9. The LIT ΠLIT is linkable (Definition 3.3) in the random oracle model.

Proof. The adversary can only win, if f(sk0) = f(sk1). This means, that st0A + et0 =
st1A+et1, where ski = (si, ei). Due to Lemma 2.4 we know that the short MLWE secrets
are unique, meaning s0 = s1. Therefore we know that t0−t1 = st0Aµ+e′t0 −st1Aµ−e′t1 =
e′t0 − e′t1 for some e′i, i ∈ {0, 1} with ∥e′i∥∞ ≤ β. Thus we have ∥t0 − t1∥∞ ≤ 2β which is
why the Link algorithm always outputs 1, meaning an adversary cannot win the linking
game.

Lemma 3.10. The LIT ΠLIT is unforgeable (Definition 3.4) in the random oracle model
if normal form sMLWEq,R,k,χ is hard.

Proof. Let A be an adversary against the unforgeability of the LIT and let Q be the
number of oracle queries of A. Construct an adversary B against normal form search-
MLWE. B uses the first m samples of its oracle as the pk and gives that to A. Then, on
tag-query µ, B asks its oracle for m samples batched as (A,b), programs the random
oracle as RO(µ) := A and returns b. This way, there is a consistent s behind the pk
and tags A sees, although B does not know it. A then outputs some sk∗, µ and t∗. If
the tag is valid and links to some tag t, B outputs s∗, where sk∗ = (s∗, ·).
Now, due to Lemma 2.4 and the choice of β we know that the probability that s ̸= s∗

is negligible. Therefore, if A finds a forgery, B outputs a solution for normal form
search-MWLE with overwhelming probability.

16

4. Building Blocks

4.1. Lattice-Based Signatures

One way to construct (lattice) signatures is with the help of some trapdoors, for example
the signature of [DM14]. Thus, we first define what a G-trapdoor for lattices is and how
we generate one.

Definition 4.1 (G-trapdoor [MP12]). For a matrix at ∈ R1×m
q , a G-trapdoor is a matrix

R ∈ Rm×ζ
q such that atR = gt for a gadget matrix gt ∈ R1×ζ

q .

We can generate such trapdoors with an algorithm called GenTrap and use them to
sample preimages of some function for a given image with PreSample.

Theorem 4.2 ([MP12]). Let ζ ∈ N and m = O(n log q) large enough. Let g = ⌈q1/ζ⌋ ∈
Rq and gt = [1 | g | . . . | gζ−1]. There exist ppt algorithms GenTrap,PreSample such that

• GenTrap(1n, 1m, q) outputs at ∈ R1×2m
q and R ∈ R2m×ζ

q such that atR = gt and
R ∈ R2m×ζ

q and the distribution of at is statistically indistinguishable from uniform;

• PreSample(at,R, u, s) on input a matrix at ∈ R1×m
q , a matrix R ∈ R2m×ζ

q output by

GenTrap, a syndrome u ∈ Rq and a standard deviation s ≥ ηϵ(Z)
√
g2 + 1

√
∥R∥2

outputs v that is statistically close to DR2m
q ,s conditioned on atv = u mod q.

We now state the signature of [DM14] that we later to use to instantiate our reputation
system. We claim that it is (adaptively) EUF-CMA secure without any changes, while
the original theorem by [DM14] only claims security for non-adaptive queries. [DM14]
achieve adaptive security by a standard transformation of first hashing the message
with a chameleon hash before signing it. However, one can adapt their security proof
to directly show adaptive security by applying a technique similar to [LSS14] using the
Rényi divergence.
The idea of the construction of [DM14] is that the public key contains some uniformly

generated at, while the secret key is a trapdoor for that a. To sign a message m, we
first choose a random tag κ. Based on κ, at and some public matrices at

i we then define
some at

κ in such a way that we can adapt the trapdoor for at to a trapdoor for at
κ. We

then hash the message using some dt and add some public u to get v = u+dtm. Then,
we use PreSample to sample a short preimage σ of v under at

κ. Signature verification is
then simply checking whether σ is indeed a short preimage of v and whether κ is in the
tag space.

Construction 4.3. Let the message space be Rm2
2 . Let g = ⌈q

1
ζ ⌋ and gt = [1 | g | . . . |

gζ−1] ∈ R1×ζ
q . Let the tag space be T = {0, 1}d. Let s = n3/2 · ω(log n)3/2 such that

s2 ≥ (
√
nm1 +

√
nm2 + t)

√
nm2 for some t. Let β = s

√
n(m1 + ζ).

• KeyGen(1n): Choose (at,R) ← GenTrap(1n, 1m1 , q) such that at ∈ R1×m1
q ,R ∈

Rm1×ζ
q and atR = gt. Choose at

i ← R1×m1
q for i ∈ {0, . . . , d}. Choose dt ← R1×m2

q ,
u← Rq. Set pk = (at, at

0, . . . , a
t
d,d

t, u) and sk = R.

17

• Sign(sk,m): Choose κ ← T . Set at
κ = [at | at

0 +
∑d

i=1 κia
t
i], where κi denotes the

ith bit of κ. Compute σ ← PreSample(at
κ, (R

t,0)t, u+ dtm, s). Output (κ, σ).

• Vrfy(pk,m, (κ, σ)): If at
κσ = u+ dtm and ∥σ∥ ≤ β and κ ∈ T , output 1.

We claim security of the signature scheme as follows.

Theorem 4.4. For every ppt adversary A that makes at most Q ≤ 2o(n) signature queries
and has EUF-CMA advantage ϵ, there exists an adversary B against RSISRq ,m,q,β′ with

advantage
(

ϵ
4Q2

)c

(ϵ(n)/2− negl(n))α/(α−1) · exp(−πα)− 2−Ω(n), where β′ = n7/2 · log n ·
ω(log n)5/2, for any α > 1.

We now describe how one can change the proof of [DM14] in order to get adaptive
security directly. In their proof, [DM14] can already answer all signature queries adap-
tively, except for at most one, since they know a trapdoor for the corresponding at

κ.

Only if there exists a query j such that κ
(j)
≤i∗ = κ∗≤i∗ , i.e. if there exists a query j where

the i∗ bit long prefix of the jth tag κ(j) is the same as the guessed prefix κ∗≤i∗ , there is
no trapdoor. Thus [DM14] generate the signature answer σ∗ not with a trapdoor but
through other means, for which they need the non-adaptiveness. We change how we gen-
erate σ∗ in this case and some other public values and then analyse the changes. In the
beginning, when given an RSIS instance at ∈ R1×m1

q , we choose the tags κ(1), . . . , κ(Q) to

be used in the signature queries. Then, we generate dt by choosing U ← Rm1×m2
±1 and

setting dt = atU. We define an index i∗ and guess a prefix κ∗≤i∗ ← Ti∗ as in [DM14].

Furthermore, if a j exists such that κ
(j)
≤i∗ = κ∗≤i∗ , we generate u by choosing e← Dm1+ζ

R,s

and setting u = at
κ(j)e. Then, in the jth query, if κ

(j)
≤i∗ = κ∗≤i∗ holds, we answer with

e′ = e+ d, where d =

[
Um
0

]
. If no such j exists, we proceed as in [DM14], so we only

look at the case where such a j exists.
We now want to argue that these changes are indistinguishable to a ppt adversary.

From [BJRLW23, Lemma 2.8] we know that the distribution of (at, atU) is statistically
close to uniform. Due to Corollary 2.8 we know that there exists a transformation of at to
its normal form with probability 1−4qn/2. Then with Corollary 7.4 of [LPR13a, LPR13b]
we know that (at, ate) is statistically close to uniform since s > 2nq1/m1+2/(nm1). Thus,
we lastly have to argue about the distribution of e′. We will argue that the distribution
of e′ is statistically indistinguishable from the signature in the real game, when both are
conditioned on the respective values of at,dt, u. Then we know that the joint distribution
of pk together with e′ is statistically indistinguishable. Let z be some solution to at

κ(j)z =
u. Then, we know that in the original game the distribution of the jth signature σj
conditioned on pk is DΛ⊥(at

κ(j)
)+z+d,s = DΛ⊥(at

κ(j)
),s,−z−d + z + d. If we look at the

distribution of e conditioned on the pk generated by B, we see that its distribution is
DΛ⊥(at

κ(j)
)+z,s. Thus, the distribution of e′ is DΛ⊥(at

κ(j)
)+z,s + d = DΛ⊥(at

κ(j)
),s,−z + z + d

and the distributions of σj and e′ only differ in their center. Therefore, from [LSS14,
Lemma 4.2] we know that the Rényi difference of the two distributions is smaller than

18

exp(απ ∥d∥22 /s2) ≤ exp(απ) for any α > 0, where the latter holds by construction. Then
it holds that Pr[Wi∗]

α/(α−1) ≤ exp(απ ∥d∥2 /s2) Pr[We′] by [LSS14, Lemma 4.1], where
Wi∗ is the event that the signature adversary outputs a valid forgery when given σi∗
in the simulation (with changed public keys) and We′ is the event that the signature
adversary outputs a valid forgery when given e′. The rest of the proof works as in
[DM14]. Thus, together with the analysis from [DM14] we know that the probability
γ(n) that the RSIS adversary outputs a valid solution is

γ(n) ≥ 1

|Ti∗ |
(ϵ(n)/2− negl(n))α/(α−1) · exp(−πα)− 2−Ω(n)

≥
(

ϵ

4Q2

)c

(ϵ(n)/2− negl(n))α/(α−1) · exp(−πα)− 2−Ω(n),

where negl is a negligible function and c is defined as in [DM14]. Thus, we get adaptive
security without having to use chameleon hashes at the cost of some reduction loss
introduced by the Rényi divergence.

4.2. Lattice Encryption

We describe a module variant of the encryption scheme presented in [Reg09]. To encrypt
more than one ring element, we increase the size of the secret key instead of encrypting
each ring element separately, thus we keep the size of the ciphertext smaller than in the
other case. This is beneficial if we later want to prove that we encrypted a ciphertext
honestly.

Construction 4.5. Let k,m′ > 0 and m ≥ k + m′. Let s > 0 and s′ > 2n ·
q(k+m′)/m+2/(nm). Let χ = DR,s and χ

′ = DR,s′ .

• KeyGen(1n): Choose Ā ← Rk×m
q . Choose S ← χm′×k and E ← χm′×m and set

sk = S. Set B = SĀ+ E. Set pk = A =

[
Ā
B

]
.

• Enc(pk, µ ∈ {0, 1}nm′
): Interpret µ as a vector m ∈ Rm′

q . Choose r ← χ′m. Set

c = Ar+

[
0

⌊q/2⌉ ·m

]
. Output c.

• Dec(sk,C): Compute m′ =
[
−S | I

]
c, interpret m′ as a vector of Zq elements and

check entrywise whether the entry is closer to 0 or q/2 to get back µ.

The CPA security of this scheme can be shown if s′ is large enough such that Ar
is statistically indistinguishable from uniform and if one assumes that MLWEq,R,k,m,χ is
hard. This is done by first game-hopping to a game, where the public key is chosen uni-
formly at random instead, which is indistinguishable by the aforementioned assumption.
Then, one can argue with Corollary 2.8 that one can transform A into its normal form
with overwhelming probability, so that one can use Corollary 7.4 of [LPR13a, LPR13b]
to show that the challenge ciphertext is indistinguishable from uniformly random, if s′ is
large enough. Thus, the adversary gets no information about the challenge bit anymore.

19

4.3. Non-Interactive Zero-Knowledge Proofs of Knowledge

To instantiate the reputation system, we use the NIZK from [LNP22a]. The relation
this NIZK can prove is the following.

Definition 4.6. Let q > 0, R a ring, Rq = R/qR. Let ϕ, ϕeval, d, e, vd, ve,m1, ℓ, kbin > 0.
Let ψ : R → R, x 7→ x(X−1) be an automorphism. Let

• fi : R2(m1+ℓ)
q → Rq be a quadratic function for i ∈ [ϕ],

• Fi : R2(m1+ℓ)
q → Rq be an evaluation function for i ∈ [ϕeval],

• Di ∈ Rki×2(m1+ℓ)
q ,ui ∈ Rki

q for i ∈ [vd],

• Ei ∈ Rpi×2(m1+ℓ)
q ,vi ∈ Rpi

q for i ∈ [ve],

• (β
(d)
i)i∈[vd], (β

(e)
i)i∈[ve] be some bounds,

• Ebin ∈ Rkbin×2(m1+ℓ)
q and vbin ∈ Rkbin

q .

Call the combination of these parameters pp. Define the relation RR to consist of pairs
(pp, s) with s = (s1, ψ(s1),m, ψ(m)) ∈ R2m1

q × R2ℓ
q , such that the following conditions

hold:

∀1 ≤ i ≤ ϕ, fi(s) = 0

∀1 ≤ i ≤ ϕeval, F̃i(s) = 0

∀1 ≤ i ≤ vd, ∥Dis− ui∥∞ ≤ β
(d)
i

∀1 ≤ i ≤ ve, ∥Eis− vi∥ ≤ β
(e)
i

Ebins− vbin ∈ {0, 1}dkbin

Recall that the notation F̃i(s) denotes the constant coefficient of polynomial Fi(s).

Lemma 4.7 ([LNP22a]). There exists a NIZK for relation RR that is zero-knowledge
and simulation-sound.

While [LNP22a] only claim soundness instead of simulation-soundness, their analysis
([LNP22b, Appendix B], based on [AFK23]) applies verbatim to simulation-soundness.
This is because to argue soundness for a proof π for statement x and message m, one
considers only random oracle queries of the form H(pp, x,m, · · ·). Simulated proofs for
(x′,m′) ̸= (x,m), in contrast, are only concerned with random oracle queries of the
form H(pp, x′,m′, · · ·). Hence programming the random oracle for pp, x′,m′, · · · does
not interfere with the soundness analysis at all. We can effectively imagine that the
simulator and the soundness proof use two independent random oracles.

20

5. Reputation System

The first step to our reputation system is a syntax model. We base our model on [BJK15],
but add some changes. In our model, we define four different (types of) parties: the group
manager, the opener, an issuer and a user. In contrast to [BJK15], we identify a user
by some user public key upk, which he can generate himself and for which he possesses
some user secret key usk. He then can join the reputation system by interacting with the
group manager, who knows some group manager key pair (gmsk, gmpk), with which he
generates a registration token ρ to give to the user. Note that the joining of new users is
dynamic and the number of users is not limited. The user then interacts with the issuer.
The latter is identified by some issuer public key ipk, for which he knows some issuer
secret isk. The issuer may then give the user some rating token τ enabling the user to
rate the issuer. Note that in contrast to [BJK15], the party to be rated is the issuer and
not a product of an issuer. The user can then rate the issuer by using his usk, ρ and τ ,
where the latter was issued by the issuer to be rated, to create a signature for the rating.
Anybody can then verify the signature to check that the rating is valid, while not being
able to see which user created the signature. Should the user rate the same issuer twice,
anybody can use the linking algorithm to detect that two ratings were created by the
same user. The last party is the opener, which in contrast to [BJK15] is a separate party
from the group manager. The opener knows some opener secret key osk for some opener
public key opk. In the case that a user misbehaves, the opener open a signature to break
anonymity of the user, i.e. identify the user who created the signature. Note that the
group manager and opener generate their secret keys separately, which is why our model
offers a stronger security model than [BJK15]. We now give the formal definition of a
reputation system.

Definition 5.1. A reputation system consists of the following algorithms:

• Setup(1n): The ppt algorithm outputs some public parameters pp. We implicitly
assume that all algorithms have pp as additional input.

• KeyGenM(1n): The ppt algorithm outputs a pair of group manager secret and public
key (gmsk, gmpk).

• KeyGenO(1
n): The ppt algorithm outputs a pair of opening secret and public key

(osk, opk).

• KeyGenI(1
n): The ppt algorithm outputs a pair of issuer secret and public key

(isk, ipk).

• KeyGenU(1
n): The ppt algorithm outputs a pair of user secret and public key

(usk, upk).

• Join(gmpk, usk),Register(gmsk, upk): At the end of their interaction of these inter-
active ppt algorithms, Join outputs a registration token ρ.

21

• Request(gmpk, ipk, usk, ρ), Issue(gmpk, isk, upk): At the end of the interaction of
these interactive ppt algorithms, Request outputs a rating token τ .

• Sign(gmpk, opk, ipk, usk, ρ, τ, rtng): The ppt algorithm outputs a signature σ.

• Vrfy(gmpk, opk, ipk, rtng, σ). The ppt algorithm outputs a bit b.

• Open(gmpk, osk, ipk, rtng, σ): The ppt algorithm outputs some upk.

• Link(gmpk, opk, ipk, (rtng′, σ′), (rtng′′, σ′′)): The ppt algorithm outputs a bit b.

The correctness of a reputation system is defined as follows.

Definition 5.2. A reputation system is correct if for all security parameters n,
all pp ∈ [Setup(1n)],
all (gmsk, gmpk) ∈ [KeyGenM(1n)],
all (osk, opk) ∈ [KeyGenO(1

n)],
all (isk, ipk) ∈ [KeyGenI(1

n)],
all (usk, upki) ∈ [KeyGenU(1

n)],
all ρ ∈ [Join(gmpk, uski)↔ Register(gmsk, upk)],
all τ ∈ [Request(gmpk, ipk, uski, ρi)↔ Issue(gmpk, isk, upk)],
all ratings rtng,
all σ ∈ [Sign(gmpk, opk, ipk, uski, ρ, τ, rtng)],
all ratings rtng′,
all σ′ ∈ [Sign(gmpk, opk, ipk, usk, ρ, τ, rtng′)] it holds that

• Vrfy(gmpk, opk, ipk, rtng, σi) = 1

• Open(gmpk, opk, ipk, rtng, σi) = upki

• Link(gmpk, opk, ipk, (rtng, σ), (rtng′, σ′)) = 1.

5.1. Security Model

Next we define the security model of a reputation system. We consider five different
notions called anonymity, non-frameability, traceability, public-linkability and joining
security. These notions are inspired [BJK15], except for non-frameability, which replaces
strong-exculpability, and joining security, which is new since we split the group manager
and opener into two parties.
In our security games, we model corruption differently than [BJK15] and [EKKS18].

Instead of giving the adversary oracles to corrupt parties, we assume that every par-
ticipant is corrupted, except for the minimal set that is needed so that the security
experiment is not trivially solvable. We note that this model of corruption does not
change the security level, it simply makes it easier to argue in proofs. Then, since we
differentiate between the group manager and issuers, we can corrupt only one of them if
needed. More importantly, this allows us model full corruption, meaning the adversary
can choose the public keys freely for corrupted parties,where in [EKKS18] the adversary

22

also has to output a valid secret key for the public key he outputs. We also assume that
the adversary carries a state in between its calls.
Before we define the security experiments, we define some oracles that an adversary
A may have access to.

Rg(gmsk, upk): Run A ↔ Register(gmsk, upk). Add upk to U .

Req(gmpk, ipk, u): If the input was queried before, output ⊥. Else, run
τu,ipk ← Request(gmpk, ipk, usku, ρu)↔ A and store the rating token τu,ipk.

SigO(gmpk, opk, ipk, u, rtng): If τu,ipk is undefined or the input was queried before, output
⊥. Else, output σu,ipk ← Sign(gmpk, opk, ipk, usku, τu,ipk, rtng). Add (ipk, rtng, σu,ipk)
to Q.

Iss(gmpk, isk, upk): Add upk to I. Run A ↔ Issue(gmpk, isk, upk).

Note that in the security games, some of these parameters are fixed and cannot be
chosen by the adversary. For the Rg oracle, for example, we fix the gmsk, but leave the
upk argument open and thus write Rg(gmsk, ·) in the JoinSecurity game.
The first security requirement for users is that they stay anonymous. In the anonymity

experiment, we have two honest users that we try to protect. Except for these two users
and the opener, we assume that every other party is corrupted, i.e. controlled by the
adversary. In contrast to the notion of full-anonymity of group signature we only have
selfless anonymity, meaning it is possible for a user to identify his own signatures. Thus,
the usks of the honest users should stay hidden to the adversary.

AnonΠ,A,b(n)

1 : pp← Setup(1n)

2 : (osk, opk)← KeyGenO(1
n)

3 : gmpk← A(opk)
4 : For u ∈ {0, 1}
5 : (usku, upku)← KeyGenU (1

n)

6 : ρu ← Join(gmpk, usku)↔ A(upku)
7 : If ρu =⊥, return 0.

8 : ipk∗ ← A()
9 : τu ← Request(gmpk, ipk∗, usku, ρu)↔ A for u ∈ {0, 1}

10 : If τu =⊥ for any u ∈ {0, 1}, return 0.

11 : rtng← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,osk,·,·,·)

12 : σ ← Sign(gmpk, opk, ipk∗, uskb, ρb, τb, rtng)

13 : b′ ← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,isk,·,·,·)(σ)

14 : If there was a query to Open with (gmpk, osk, ·, ·, σ) as argument, return 0.

15 : If there was a query to SigO with (gmpk, opk, ·, ipk∗, ·) as argument, return 0.

16 : Return b′.

23

Definition 5.3. A reputation system Π is anonymous, if there exists a negligible func-
tion, such that for all ppt adversaries A it holds that

AdvanonΠ,A (n) := |Pr[AnonΠ,A,0(n) = 1]− Pr[AnonΠ,A,1(n) = 1]| ≤ negl(n).

Another security requirement for users is non-frameability. This expresses that any
adversary can neither create a signature that opens to an honest user nor create a
signature that links to one of an honest user, where the latter security requirement was
added by [EKKS18]. In the security experiment, we have one user to be protected. In
contrast to [EKKS18], here and in all further security games, we require that the keys
of the opener are generated honestly. This is due to the fact that we do not include a
Judge algorithm as [EKKS18] do.

NFrameΠ,A(n)

1 : pp← Setup(1n)

2 : Q = ∅
3 : (osk, opk)← KeyGenO(1

n)

4 : gmpk← A(osk)
5 : (usk0, upk0)← KeyGenU (1

n)

6 : ρ0 ← Join(gmpk, usk0)↔ A(upk0)
7 : (ipk, rtng, σ)← AReq(gmpk,·,0),SigO(gmpk,opk,·,0,·)()

8 : upk← Open(gmpk, osk, ipk, rtng, σ)

9 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0

10 : If (ipk, rtng, ·) ∈ Q, return 0

11 : If upk = upk0, return 1

12 : If ∃(ipk, rtng′, σ′) ∈ Q : Link(gmpk, opk, ipk, (rtng, σ), (rtng′, σ′)) = 1, return 1

Definition 5.4. A reputation system Π has non-frameability, if there exists a negligible
function negl, such that for all ppt adversaries A it holds that

Pr[NFrameΠ,A(n) = 1] ≤ negl(n).

An issuers requires traceability from the reputation system, which means that it is
not possible to create a signature that does not open to some user or that opens to a
user that was not given a rating token by an honest issuer. Here, we create one honest
issuer that we want to protect.

24

TraceΠ,A(n)

1 : pp← Setup(1n)

2 : I = ∅
3 : (osk, opk)← KeyGenO(1

n)

4 : (isk, ipk)← KeyGenI(1
n)

5 : gmpk← A(osk, ipk)
6 : (σ, rtng)← AIss(gmpk,isk,·)()

7 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0

8 : upk← Open(gmpk, osk, ipk, rtng, σ)

9 : If upk =⊥ ∨ upk /∈ I, return 1

Definition 5.5. A reputation system Π has traceability, if there exists a negligible func-
tion negl, such that for all ppt adversaries A it holds that

Pr[TraceΠ,A(n) = 1] ≤ negl(n).

A security guarantee for the whole system is public-linkability. This requires that the
outputs of Open and Link are consistent to each other, meaning it is not possible for an
adversary to create two ratings for the same issuer that open to the same user, but do
not link.

PLinkableΠ,A(n)

1 : pp← Setup(1n)

2 : (osk, opk)← KeyGenO(1
n)

3 : (gmpk, ipk, (σj , rtngj)j∈{0,1})← A(osk)
4 : If ∃j ∈ {0, 1} : Vrfy(gmpk, opk, ipk, rtngj , σj) = 0, return 0.

5 : If Open(gmpk, osk, ipk, rtng0, σ0) ̸= Open(gmpk, osk, ipk, rtng1, σ1), return 0.

6 : If Link(gmpk, opk, ipk, (rtng0, σ0), (rtng1, σ1)) = 0, return 1.

Definition 5.6. A reputation system Π has public-linkability, if there exists a negligible
function negl, such that for all ppt adversaries A it holds that

Pr[PLinkableΠ,A(n) = 1] ≤ negl(n).

The group manager also has a security requirement. He wants that every user who
wants to join the system must register with him and does not circumvent him. Else,
issuers can invent non-existent users to rate themselves or their products.

25

JoinSecurityΠ,A(n)

1 : pp← Setup(1n)

2 : U = ∅
3 : (gmsk, gmpk)← KeyGenM (1n)

4 : (osk, opk)← KeyGenO(1
n)

5 : (ipk, rtng, σ)← ARg(gmsk,·)(gmpk, osk)

6 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0.

7 : upk← Open(gmpk, osk, ipk, rtng, σ)

8 : If upk /∈ U , output 1.

Definition 5.7. A reputation system Π has join-security, if there exists a negligible
function negl, such that for all ppt adversaries A it holds that

Pr[JoinSecurityΠ,A(n) = 1] ≤ negl(n).

5.2. Generic Construction

We construct a reputation system from a signature scheme, an encryption scheme, a
LIT and a NIZK.

Construction 5.8. Let Σ = (KeyGenΣ, SignΣ,VrfyΣ) be a signature scheme. Let ΠEnc =
(KeyGenEnc,Enc,Dec) be an encryption scheme. Let ΠLIT = (KeyGenLIT,Tag,VrfyLIT,
LinkLIT, f) be a LIT scheme. Let ΠNIZK be a non-interactive proof system for the relation
listed in the “NIZK” expression below.

• Setup(1n): Run pp← ΠNIZK.Setup(1
n).

• KeyGenM(1n): Run (gmsk, gmpk)← KeyGenΣ(1
n).

• KeyGenO(1
n): Run (skEnc, pkEnc)← KeyGenEnc(1

n) and (sk′Enc, pk
′
Enc)← KeyGenEnc(1

n).
Set (osk, opk) = (skEnc, (pkEnc, pk

′
Enc)) and forget sk′Enc.

• KeyGenI(1
n): Run (isk, ipk)← KeyGenΣ(1

n).

• KeyGenU(1
n): Choose usk← KeyGenLIT(1

n) and compute upk = f(usk).

• Join(gmpk, usk),Register(gmsk, upk): The group manager signs ρ← SignΣ(gmsk, upk)
and sends ρ to the user. If VrfyΣ(gmpk, upk, ρ), the user outputs it.

• Request(gmpk, ipk, usk, ρ), Issue(gmpk, isk, upk): The issuer signs τ = SignΣ(isk, upk)
and sends τ to the user. If VrfyΣ(ipk, upk, τ), the user outputs it.

26

• Sign(gmpk, opk, ipk, usk, ρ, τ, rtng): Compute c = Enc(pkEnc, upk; r). Compute c′ =
Enc(pk′Enc, usk; r

′). Compute l = Tag(usk, ipk; rt). Output σ = (c, c′, l, π), where

π = NIZK{gmpk, opk, ipk, pkEnc, pk
′
Enc, c, c

′, l;

upk, usk, ρ, τ, r, r′ ;upk = f(usk)∧
VrfyΣ(gmpk, upk, ρ) = 1∧
VrfyΣ(ipk, upk, τ) = 1∧
c = Enc(pkEnc, upk; r)∧
c′ = Enc(pk′Enc, usk; r

′)∧
VrfyLIT(usk, ipk, l) = 1}(rtng)

• Vrfy(gmpk, opk, ipk, rtng, σ): Verify π for the corresponding statement.

• Open(gmpk, osk, ipk, rtng, σ): Verify π for the corresponding statement. If π is
valid, output upk = Dec(osk, c).

• Link(gmpk, opk, ipk, (rtng′, σ′), (rtng′′, σ′′)): Verify π′, π′′ for the corresponding state-
ments. If π′, π′′ are valid, output LinkLIT(ipk, l

′, l′′).

The correctness of the construction follows directly from the correctness of its building
blocks.

5.3. Security of the Generic Construction

The encryption of usk with pk′Enc in a rating is not necessary for functionality, but a
crucial component for the security proof. This is similar to the Naor-Yung paradigm to
get CCA security of an encryption scheme from CPA security. Without the encryption of
usk we would have to assume simulation-extractability – that it is hard for an adversary
to create a valid proof from which an extractor cannot extract, even if the adversary
sees simulated proofs for possibly wrong statements not in the language – instead of
simulation soundness from the NIZK. This is a significantly stronger assumption on the
proof system, so we choose to encrypt the usk and to require simulation-soundness.

Theorem 5.9. If ΠEnc is CPA secure (Definition 2.10), the LIT has indistinguishable
tags (Definition 3.2) and ΠNIZK has zero-knowledgeness and simulation-soundness (Def-
initions 2.15 and 2.17), the reputation system is anonymous (Definition 5.3).

Proof. We prove this by a series of games. An overview can be found in Table 1.
Define ϵD,a,b(n) to be the advantage of some ppt D distinguishing Gamea(n) from

Gameb(n). Let Game0 be the Anon0 game. Define Game1 to be the same game as Game0,
except that the challenger uses the simulator S of ΠNIZK (Definition 2.15) to generate all
proofs, including the challenge. We immediately see that an adversary cannot distinguish
between these games, as the difference of the distribution of the proofs is negligible due

27

π Challenge Query Tag Opening

Game0 P c ≡ upk0
c′ ≡ usk0

c ≡ upku
c′ ≡ usku

usk0 Dec(skEnc, c)

Game1 S c ≡ upk0
c′ ≡ usk0

c ≡ upku
c′ ≡ usku

usk0 Dec(skEnc, c)

Game2 S
c ≡ upk0

c′ ≡ 1|usk0|
c ≡ upku

c′ ≡ 1|usku|
usk0 Dec(skEnc, c)

Game3 S c ≡ upk0
c′ ≡ 1|usk0|

c ≡ upku
c′ ≡ 1|usku|

usk1 Dec(skEnc, c)

Game4 S
c ≡ upk0
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 Dec(skEnc, c)

Game5 S c ≡ upk0
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 f(Dec(sk′Enc, c
′))

Game6 S c ≡ upk1
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 f(Dec(sk′Enc, c
′))

Game7 S c ≡ upk1
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 Dec(skEnc, c)

Game8 P c ≡ upk1
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 Dec(skEnc, c)

Table 1: An overview of the sequence of games for the anonymity proof. The column
π states whether proofs are done honestly (P) or simulated (S). The columns
Challenge and Query state what messages are encrypted in the ciphertexts c, c′

during the generation of the challenge or the signature query answer. Tag states
which secret is used to generate a tag. Opening states how opening is done.

28

to the zero-knowledge property of the proof system. Thus, we have that for all ppt
distinguishers D, there exists a ppt A0 such that

AdvZK
ΠNIZK,A0

(n) = ϵD,0,1(n).

Define Game2 to be the same game as Game1 except that c′ in the signature queries
is generated as c′ ← Enc(pk′Enc, 1

|usku|), i.e. we encrypt a string of ones instead of usku.
Furthermore, c′ in the challenge is generated as c′ ← Enc(pk′Enc, 1

|usk0|), i.e. we encrypt
a string of ones instead of usk0. This is indistinguishable by the CPA security of the
encryption scheme (Definition 2.10). By a standard hybrid argument we can construct
a ppt A against the CPA security of ΠEnc from a distinguisher D such that

AdvCPA
ΠEnc,A1

(n) =
1

Q+ 1
ϵD,1,2(n).

Define Game3 to be the same game as Game2 except that tags l in the signature queries
and the challenge are computed as l← Tag(usk1, ipk; rt), i.e. we use usk1 instead of usk0.
This is indistinguishable by the tag-indistinguishability of ΠLIT (Definition 3.2). Let D
be distinguisher distinguishing Game2 and Game3. Construct an adversary A2 against
the tag-indistinguishability of the LIT.

• On input (pk0, pk1) set up the reputation system as in Game2, except for setting
upk0 := pk0, upk1 := pk1.

• Simulate D.

• Whenever D asks for a signature, query the oracle for a tag l and use that to create
the signature. Do the same for the challenge.

• If D returns a bit b, return b.

We can easily see that if A2’s challenger is in experiment b = 0, then the view of
D is the same as in Game2, else the view is the same as in Game3. Thus, we have the
following.

AdvLITAnon
ΠLIT,A2

(n) = ϵD,2,3(n)

Define Game4 to be the same game as Game3 except that c
′ in the signature queries is

generated as c′ ← Enc(pk′Enc, usku; r
′), i.e. we again encrypt usku instead of 1|usku|, and c′

in the challenge is generated as c′ ← Enc(pk′Enc, upk1; r
′), i.e. we encrypt usk1 instead of

1|usk0|. By the CPA security of the encryption scheme we immediately have the following
for an adversary A3 that simulates a distinguisher D as in Game3, by a similar argument
as above:

AdvCPA
ΠEnc,A3

(n) =
1

Q+ 1
ϵD,3,4(n)

Define Game5 to be the same game as Game4 except that opening is done by remem-
bering sk′Enc during key generation, decrypting c′ to some usk and outputting f(usk)

29

instead of outputting the decryption of c. An adversary can only distinguish between
these games if he can submit an opening query (ipk, rtng, σ) containing ciphertexts c, c′

such that the proof is valid but Dec(skEnc, c) ̸= f(Dec(sk′Enc, c
′)) and such that σ is

not an answer he received from the signature oracle. Call the event that an adversary
outputs such a query Fake. However, if an adversary could submit such a query, this
would break the simulation-soundness of ΠNIZK (Definition 2.17). To show this, from a
distinguisher D between Game4 and Game5 we construct an adversary A4 against the
simulation-soundness of ΠNIZK.

• On input some ppNIZK, set up Game4 while remembering skEnc, sk
′
Enc and setting

pp = ppNIZK.

• Simulate D. To simulate proofs, A uses its simulator oracle.

• Whenever D makes an opening query on (ipk, rtng, σ), answer as in Game4. Ad-
ditionally, if σ = (c, c′, l, π) is not an answer from a previous signing query and
upk ̸= upk′, where upk ← Dec(skEnc, c) and upk′ ← f(Dec(sk′Enc, c

′)), stop and
output the statement from σ together with π.

• If D stops, output a faliure symbol ⊥.

If A4 finds a query such that upk ̸= upk′ and the σ is not from a signature query, we
know that, while π is valid and is not a response from the simulator oracle, the statement
is not in the language. Therefore, this σ together with the corresponding statement is a
proof that breaks the simulation-soundness. Thus, we have that

AdvSSΠNIZK,A4
(n) = Pr[Fake] ≥ ϵD,4,5(n).

Define Game6 to be the same game as Game5 except that c in the challenge σ is
generated as c← Enc(pkEnc, upk1; r), i.e. we encrypt upk1 instead of upk0. This is again
indistinguishable by the CPA security of the encryption scheme, thus for a distinguisher
D and an adversary A5 constructed similarly to above we have

AdvCPA
ΠEnc,A5

(n) = ϵD,5,6(n)

Define Game7 to be the same game as Game6 except that opening is done honestly
again, i.e. by decrypting c. Again, from a distinguisher D we can construct an adversary
A6 against the simulation-soundness of ΠNIZK similar to above and we get

AdvSSΠNIZK,A6
(n) ≥ ϵD,6,7(n)

Define Game8 to be the same game as Game7 except that the proofs are generated
honestly again, thus we have that Game8 is the same as Anon1. This is again indis-
tinguishable due to the zero-knowledge property of ΠNIZK. Thus, we have that for all
distinguishers D, there exists an A7 such that

AdvZK
ΠNIZK,A7

(n) = ϵD,7,8(n).

30

Therefore, in total for any ppt distinguishers Di for i ∈ {0, . . . , 7} we have that

AdvanonΠ,A (n) ≤
7∑

i=0

ϵDi,i,i+1(n)

≤ 2AdvZK
ΠNIZK,A0

(n) + AdvLITAnon
ΠLIT,A2

(n)

+ (2Q+ 3)AdvCPA
ΠEnc,A1

(n)

+ 2AdvSSΠNIZK,A4,S(n) = 1]

Theorem 5.10. If ΠLIT is non-invertible and unforgeable (Definitions 3.4 and 3.5) and
ΠNIZK has zero-knowledgeness and simulation-soundness (Definitions 2.15 and 2.17), the
reputation system has non-frameability (Definition 5.4).

Proof. When an adversary against non-frameability wins, we have that the forgery either
opens to an honest user or it opens to a user that was not authorized. From these cases,
we construct an adversary that targets either the non-invertability or the unforgeability
of ΠLIT. We also need to analyze the probability of some failure event, for which we use
the simulation-soundness of ΠNIZK.
Let A be an adversary against the non-frameability (Definition 5.4) of the reputation

scheme that does at most q queries to the signing oracle. Let Fail be the event that in
the non-frameability game the statement of the proof contained in the forgery of A is
wrong, i.e. it is not in the language of the relation. Construct an adversary B against
the non-invertability (Definition 3.5) of ΠLIT as follows:

• On input pk, set up the environment for A as in the non-frameability game, except
for setting upk0 = pk and remembering sk′Enc.

• Simulate A. When it queries the request oracle, use the simulator of ΠNIZK (cf.
Definition 2.15) to answer the query. If it queries the signature oracle, use the tag
oracle to generate a tag, generate c, c′ honestly, then use the simulator of ΠNIZK to
generate the proof.

• Eventually, A outputs some forgery (ipk, rtng, σ) with σ = (c, c′, l, π). If we have
that Vrfy(gmpk, opk, ipk, rtng, σ) = 1 and u := Open(gmpk, osk, ipk, rtng, σ) = upk0,
decrypt usk← Dec(sk′Enc, c

′).

• Output usk.

We can easily see that the view of A is perfectly simulated, except for negligible error
from simulating the proofs. If A could distinguish the views, we could immediately
construct C that breaks the zero-knowledgeness of ΠNIZK. Then, we know that if A
manages to output a valid signature that opens to upk0, and Fail does not happen, it
holds that pk = f(usk). Thus, we have the following.

Pr[InvertΠLIT,B = 1] ≥ Pr[NFrameΠ,A = 1 ∧ u = upk0 ∧ ¬Fail] + AdvZK
ΠNIZK,C(n)

We also construct a C against the unforgeability of ΠLIT (Definition 3.4).

31

• Set up the environment for A as in the non-frameability game, except for setting
f to the function provided by the LIT and setting upk0 = pk. Also save sk′Enc.

• Simulate A. When it queries the request oracle, use ΠNIZK simulator to answer the
query. If A queries the signature oracle, use the tag oracle to generate a tag, then
use the simulator of ΠNIZK to answer the query with the corresponding statement.

• A outputs some (ipk, rtng, σ) with σ = (c, c′, π, l). If Vrfy(gmpk, opk, ipk, rtng, σ) =
1 and u := Open(gmpk, osk, ipk, rtng, σ) ̸= upk0 and ∃(ipk, ˆrtng, σ̂) ∈ Q with σ̂ =
(ĉ, ĉ′, π̂, l̂) such that Link(gmpk, opk, ipk, (rtng, σ), (ˆrtng, σ̂)) = 1 and rtng ̸= ˆrtng,
then decrypt usk← Dec(sk′Enc, c

′) and output (usk, ipk, l).

Again, we can easily see that the view of A is perfectly simulated. If A outputs a
forgery (ipk, rtng, σ) such that

Vrfy(gmpk, opk, ipk, rtng, σ) = 1

and u := Open(gmpk, osk, ipk, rtng, σ) ̸= upk0
and ∃(ipk, ˆrtng) ∈ Q : Link(gmpk, opk, ipk, (rtng, σ), (ˆrtng, σ̂)) = 1

and Fail does not happen,

we know that by definition we have VrfyLIT(usk, ipk, l) = 1 and LinkLIT(ipk, l, l̂) = 1.
Therefore we have the following.

Pr[NFrameΠ,A = 1|¬Fail ∧ u ̸= upk0] = Pr[ForgeLITΠLIT,C
= 1]

Lastly, we want to analyze the probability Pr[Fail]. For this, we construct an adversary
D against the simulation-soundness of ΠNIZK (Definition 2.17) that works as follows:

• On input crs, set up the environment for A as in the non-frameability game except
for using the provided crs.

• Simulate A. Whenever A makes an oracle query such that the answer would
contain a NIZK, use the simulator oracle to generate the proof.

• A outputs some forgery (ipk, rtng, σ). If Vrfy(gmpk, opk, ipk, rtng, σ) = 1, return σ
and the corresponding statement.

We can easily see that A is perfectly simulated and that if Fail happens, D wins.
We can then combine the winning conditions of these three adversaries to bound the

non-frameability advantage.

Pr[NFrameΠ,A] ≤Pr[NFrameΠ,A ∧ ¬Fail] + Pr[Fail]

=Pr[NFrameΠ,A = 1 ∧ ¬Fail ∧ u = upk0]

+ Pr[NFrameΠ,A = 1 ∧ ¬Fail ∧ u ̸= upk0] + Pr[Fail]

≤Pr[NFrameΠ,A = 1|¬Fail ∧ u = upk0]

+ Pr[NFrameΠ,A = 1|¬Fail ∧ u ̸= upk0] + Pr[Fail]

=Pr[InvertΠLIT,B = 1] + Pr[ForgeLITΠLIT,C = 1] + Pr[SimSoundΠNIZK,D,S = 1]

32

Theorem 5.11. If Σ is EUF-CMA (Definition 2.12) and ΠNIZK is straight-line ex-
tractable (Definition 2.18), then the reputation system is traceable (Definition 5.5).

Proof. Let E0, E1 be the extractor for ΠNIZK (cf. Definition 2.18). Let A be a ppt adver-
sary against traceability.
First, we define Trace′ΠNIZK,A(n) to work like TraceΠNIZK,A(n), except that the public

parameters pp are generated by the extractor, i.e. (pp, td) ← E0(1n). From the guar-
antees of the extractor and (Definition 2.18) a straight-forward reduction, we get that
|Pr[Trace′ΠNIZK,A(n) = 1]− Pr[TraceΠNIZK,A(n) = 1]| ≤ negl0(n) for some negligible func-
tion negl0.
We now construct an adversary B against the unforgeability of Σ. BSign(sk,·)(pk)

runs Trace′ΠNIZK,A(n), except that it sets ipk = pk (from its input) and whenever A
makes a Iss(gmpk, isk, upk) query, B answers by querying its own oracle Sign(sk, upk)
for the signature. Eventually, A outputs (σ, rtng), where σ = (c, c′, l, π). B runs
E1(td, x, rtng, π) (where x is set appropriately to the proven statement) to receive a
witness w = (upk, usk, ρ, τ, r, r′). B outputs (upk, τ) as a candidate forgery.
Let failE be the event that Trace′ΠNIZK,A(n) = 1, but E1 outputs an invalid witness (i.e.

(x,w) /∈ R). With a straight-forward reduction to straight-line extractability, we can
show that Pr[failE] ≤ negl1(n) for some negligible function negl1.
If Trace′ΠNIZK,A(n) = 1 and ¬failE , B outputs a valid forgery. This is because the Trace′

winning condition “upk /∈ I” (together with (x,w) ∈ R and correctness of the encryption
scheme, cf. Definition 2.9) guarantees that B has not queried its signing oracle for upk
with overwhelming probability. Hence there exists a negligible function negl2 such that

AdvEUFCMA
Σ,A (n)

≥Pr[Trace′ΠNIZK,A(n) = 1 ∧ ¬failE]− negl2(n)

=Pr[Trace′ΠNIZK,A(n) = 1]− Pr[Trace′ΠNIZK,A(n) = 1 ∧ failE]− negl2(n)

≥Pr[Trace′ΠNIZK,A(n) = 1]− negl1(n)− negl2(n)

Because AdvEUFCMA
Σ,A (n) is negligible (given that Σ is EUF-CMA), Pr[Trace′ΠNIZK,A(n) = 1]

must also be negligible. It follows that Pr[Trace′ΠNIZK,A(n) = 1] must be negligible,
too.

Theorem 5.12. If Σ is EUF-CMA (Definition 2.12) and ΠNIZK is straight-line ex-
tractable (Definition 2.18), then the reputation system has joining security (Defini-
tion 5.7).

The proof is analogous to the proof of Theorem 5.11.

Theorem 5.13. If ΠLIT is linkable (Definition 3.3) and ΠNIZK has soundness, the rep-
utation system is publicly linkable (Definition 5.6).

Proof. Let A be an adversary against the public linkability of the reputation system.
We construct an adversary B against the linkability of ΠLIT from it. B works as follows:

33

• Simulate PLinkableΠ,A(n).

• A outputs some gmpk and ipk and forgery-rating pairs (σj, rtngj)j∈{0,1}, where
σj = (cj, c

′
j, lj, πj).

• If both σj are valid signatures in the simulated public-linkability game and do not
link, decrypt both c′j to get usk0, usk1 from them and output (usk0, usk1, ipk, l0, l1).

If A outputs gmpk, ipk with two forgeries σ0, σ1 that are valid for these keys and the
opk, due to soundness of ΠNIZK we have that VrfyLIT(uskj, ipk, lj) = 1 for j ∈ {0, 1}.
Then, again due to the soundness of ΠNIZK, we have that f(usk0) = f(usk1). Call Sound
the event that A outputs such tags or such ciphertexts that the above conditions do not
hold. Then, we can construct an adversary C against the soundness of ΠNIZK, by simply
outputting the proof that A outputs. Thus, we know that Pr[Sound] ≤ AdvSndΠ,A(n). If
the σj do not link, it follows that (usk0, usk1, ipk, l0, l1) is a tuple of two valid tags for
the same message created with usk0, usk1 respectively, which do not link. Therefore, we
have that

Pr[LinkableLITΠLIT,C(n) = 1] = Pr[PLinkableΠ,A(n) = 1] + AdvSndΠ,A(n).

5.3.1. The Role of Straight-Line Extraction

For the proof of traceability (Theorem 5.11) and joining security (Theorem 5.12), we
require ΠNIZK to be straight-line extractable, i.e. the proof system must not rely on
rewinding for extraction (which, for example, Fiat-Shamir-based proofs usually do). In
our security proofs for Theorems 5.11 and 5.12, the reduction algorithm has access to
a signature oracle. Similarly to what was noted in [FN16], this represents an issue for
an extractor: when rewinding the reduction algorithm B, the extractor needs to answer
B’s signing oracle queries. However, in standard definitions, the extractor does not
have access to the signing oracle. Even if we grant access, the extractor querying the
signing oracle may actually cause an extracted forgery to become invalid. This happens
in case a signature on the forgery message is being requested by B during rewinding.
There are potential ways to circumvent this issue for specific proof systems, but standard
definitions of (rewinding-based) soundness are incompatible with signing oracle access in
security proofs. Straight-line extraction does not suffer from this issue, as the extractor
can be used without rewinding.
One can always implement straight-line extractable proofs by encrypting the witness

for some honestly generated publicly known public key and proving, with a sound zero-
knowledge proof, that the encrypted witness is valid. Note that in our security proofs
for Theorems 5.11 and 5.12, the only value we need to extract from the proof is the
membership certificate τ or ρ (upk is also used, but can be computed by decrypting c).
For this reason, when implementing straight-line extractability, it suffices to additionally
encrypt τ and ρ, there is no need to encrypt the full witness of the rating NIZK.

34

Alternatively, one can use a NIZK that is inherently straight-line extractable (e.g.,
using Fischlin’s transform [Fis05a]). In practice, one can arguably even use a standard
Fiat-Shamir-based construction, for which one cannot prove straight-line extractability
(cf. [BNW17]). However, to the best of our knowledge, there is no attack against Fiat-
Shamir in practice that targets schemes using it in place of a straight-line extractable
proof.

6. A Reputation System from Module Lattices

To instantiate the generic construction based on module lattices, we use the following
constructions for the building blocks:

• The LIT is Construction 3.6.

• The signature scheme is Construction 4.3, which is a variant of the signature from
[DM14].

• The encryption scheme is the primal Regev-like Construction 4.5.

• The NIZK is the proof system from [LNP22a], described in Lemma 4.7. Note that
this NIZK does not offer straight-line extractability as required by the generic
construction from Section 5.2, thus we additionally encrypt ρ, τ as mentioned in
Section 5.3.1.

We also use a hash function H : {0, 1}∗ → RnT×mT
q , which will be modeled as a random

oracle. Define BitD : Zq → {0, 1}log q, x 7→ y such that y is the bit representation of x.
If the argument of BitD is a vector, we apply it component-wise and we interpret Rq

inputs as Zq vectors.

Construction 6.1. Let the parameters be as described in Table 2. Note that when
choosing concrete parameters, one has to make sure that the bounds from Table 2 are
fulfilled and that the building blocks are secure. We omit the parameters for the NIZK
for readability. The construction then looks as follows.

• Setup(1n): Choose AT ← RnT×mT
q . Then, choose ĀSE ← RnEnc×mEnc

q , SSE ←
χ
(4mΣ+2d)×nEnc
e , ESE ← χ

(4mΣ+2d)×mEnc
e and set BSE = SSEASE + ESE. Set ASE =

[Āt
SE | Bt

SE]
t. Set pp = (AT ,ASE,BSE).

• KeyGenM(1n): Choose (at
M ,RM) ← GenTrap(1n, 1mΣ , q). Choose at

M,i ← R1×mΣ
q

for i ∈ {0, . . . , d}. Choose dt
M ← R1×mµ

q , uM ← Rq. Set gmsk = RM and
gmpk = (at

M , a
t
M,0, . . . , a

t
M,d,d

t
M , uM).

• KeyGenO(1
n): Choose ĀO ← RnEnc×mEnc

q ,SO ← χ
(mT log q)×nEnc
e ,EO ← χ

(mT log q)×mEnc
e

and set BO = SOAO + EO. Set AO = [Āt
O | Bt

O]
t. Choose DO ← R(nT log q)×mEnc

q .
Set opk = (AO,BO,DO) and osk = SO.

35

variable description bound

nt,mT dimensions for ΠLIT

β bound for ΠLIT β < 2
− n

nT ·mT
+ n

2nT
log(q)−3

nΣ,mΣ dimensions for ΠΣ mΣ = O(nΣ log q)

mµ message space dim. of ΠΣ mµ = mT · log q
d number of mixing lattices of ΠΣ

sΣ parameter for PreSample
sΣ = n3/2 · ω(log n)3/2, such that
s2Σ ≥ (

√
nmΣ +

√
nmµ + t)

√
nmµ

nEnc dimension for ΠEnc

mEnc dimension for ΠEnc mEnc ≥ max{4mΣ + 2d, nU log q}
se parameter for Gaussian error se <

√
q/4/ log2(n)

sr parameter regularity
sr > 2n · qp/mEnc+2/(nmEnc),

where p = max{4mΣ + 2d, nU log q}

Table 2: Parameters for Construction 6.1.

• KeyGenI(1
n): Choose (at

I ,R) ← GenTrap(1n, 1mΣ , q). Choose at
I,i ← R1×mΣ

q for

i ∈ {0, . . . , d}. Choose dt
I ← R

1×mµ
q , uI ← Rq. Set ipk = (at

I , a
t
I,0, . . . , a

t
I,d,d

t
I , uI)

and isk = RI .

• KeyGenU(1
n): Sample t← χnT

e , e← χmT
e . Set usk = (t, e) and upkt = ttAT + et.

• Join(gmpk, usk),Register(gmsk, upk): The group manager chooses κ ← T and sets
at
M,κ = [at

M | at
M,0 +

∑d
i=1 κia

t
M,i]. The group manager then computes σ′ ←

PreSample(at
M,κ, (R

t
M ,0)

t, uM + dt
Mm, sΣ) and sends ρ = (κ, σ) to the user. If

VrfyΣ(gmpk,BitD(upk), ρ), the user outputs it.

• Request(gmpk, ipk, usk, ρ), Issue(gmpk, isk, upk): The issuer chooses κ← T and sets
at
I,κ = [at

I | at
I,0+

∑d
i=1 κia

t
I,i]. He then computes σ′ ← PreSample(at

I,κ, (R
t
I ,0)

t, uI+
dt
Im, sΣ) and sends τ = (κ, σ) to the user. If VrfyΣ(ipk,BitD(upk), τ), the user out-

puts it.

• Sign(gmpk, opk, ipk, usk, ρ, τ, rtng): Choose r ← χmEnc
r , r′ ← χmEnc

r , rSE ← χmEnc
r

and compute c = AOr+

[
0

⌊q/2⌉ · BitD(upk)

]
and c′ = DOr

′ +

[
0

⌊q/2⌉ · BitD(usk)

]
.

Compute cSE = ASErSE +

[
0

⌊q/2⌉ · BitD((ρt | τ t)t)

]
. Compute Aipk = H(ipk),

36

choose el ← χm
e , set l

t = ttAipk + etl and output σ = (c, c′, l, π), where

π = NIZK{AT ,AM ,BM ,uM ,

AI ,BI ,uI ,AO,BO,DO, l;

t, e, ρ, τ, r, r′, el ; t
tAT + et = upkt

VrfyΣ((AM ,BM ,uM),BitD(upk), ρ) = 1∧
VrfyΣ((AI ,BI ,uI),BitD(upk), τ) = 1∧
c = Enc([At

O | Bt
O]

t,BitD(upk); r)∧
c′ = Enc([At

O | Dt
O]

t,BitD(usk); r′)∧
cSE = Enc([At

SE | Bt
SE]

t,BitD((ρt | τ t)t); rSE)∧
lt = ttAipk + etl∧
∥t∥∞ , ∥e∥∞ , ∥el∥∞ ≤ β}(rtng).

• Vrfy(gmpk, opk, ipk, rtng, σ): Verify π.

• Open(gmpk, osk, ipk, rtng, σ): Verify σ. If Vrfy(gmpk, opk, ipk, rtng, σ) = 1, output
Dec(osk, c).

• Link(gmpk, opk, ipk, (rtng, σ), (rtng′, σ′)): If Vrfy(gmpk, opk, ipk, rtng, σ) = 1 and
Vrfy(gmpk, opk, ipk, rtng′, σ′) = 1 and ∥l− l′∥∞ < 2β, output 1.

The last part is to argue why we can use the NIZK from [LNP22a]. For this, we
have to argue how the statement to prove fits into their framework. We can see that the
statement in our signature has to prove four different kinds of sub-statements: possession
of a usk for a secret upk, possession of a secret message-signature pair, correctness of
an encryption and the possession of an MLWE secret for a public MLWE sample. In
the full version of their paper, [LNP22b] already describe how to realize the last two
statements (Chapter 6.2 and 6.3).
Proving the possession of a usk for a secret upk in the framework of [LNP22a] is proving

that one knows an MLWE secret for an MLWE sample (A,b), where the b is secret, i.e.
we need to prove possession of s1 = (t, e,BitD(upk)) such that At

T t + e = GBitD(upk)
and ∥t∥∞ , ∥e∥∞ ≤ β and BitD(upk) is a bit-vector. We can rewrite the equation as
[At

T | I | −G]s1 = 0, thus we can instantiate the NIZK as shown in Table 3. Technically,
we also need to prove that one knows upk,BitD(upk) such that upk = G ·BitD(upk) and
BitD(upk) is a bit vector, but this can also be realized.
To prove the possession of a secret message-signature pair, we first rewrite the equation

from the signature verification to

[
at | at

0 +
d∑

i=1

κia
t
i

]
σ = u+ dtm⇔

[
at | at

0 | at
1 | . . . | at

d | −dt
]

σ1
σ2
κ1σ2
...

κdσ2
m

= u,

37

variable description instantiation

ϕ # of equations to prove 1
ϕeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 0
υd # of non-exact norm proofs 2
kbin length of the binary vector to prove mU log q
s1 committed message in the Ajtai part (tt, et,BitD(upk)t)t

m committed message in the BDLOP part ∅ (no message)
f1 equation to prove A′s1 = 0

D1 public matrix for proving ∥D1s− u1∥∞ ≤ β
(d)
1

[
I 0 0

]
u1 public vector for proving ∥D1s− u1∥∞ ≤ β

(d)
1 0

β
(d)
1 upper bound on ∥D1s− u1∥∞ ≤ β

(d)
1 β

D2 public matrix for proving ∥D2s− u2∥∞ ≤ β
(d)
2

[
0 I 0

]
u2 public vector for proving ∥D2s− u2∥∞ ≤ β

(d)
2 0

β
(d)
2 upper bound on ∥D2s− u2∥∞ ≤ β

(d)
2 β

Ebin matrix for proving binary
[
0 0 I

]
vbin vector for proving binary 0

Table 3: Proving possession of a usk for secret upk. Define A′ = [At
T | I | −G].

where σ = (σt
1, σ

t
2)

t. Therefore, we have an equation that is quadratic in the secret
and can thus be proven in the framework of [LNP22a]. To finish proving possession of
a secret message-signature pair we additionally need to prove that σ is short and that
κ,m are bit vectors, which is also possible in the framework, thus we can instantiate the
proof as shown in Table 4.
Since we now have sub-protocols for each component of the proof in the signature of

the reputation system, we can combine them into a proof for the whole statement.

6.1. Improved Efficiency via Stateful ℓ-time Signatures

If one wants to deploy the instantiation of the reputation as presented in Section 6 in
practice, the size of the ratings may be prohibitively large. This is partly due to the
instantiation of the signature scheme with the signatures of [DM14] and the requirement
of straight-line extractability of the NIZK: the signatures have security loss depending
on the success probability of an adversary, while to realize the straight-line extractability
we have to encrypt two signatures, which is costly. Thus, we have two ways to improve
the efficiency of our instantiation of the reputation system. One way is to open the
black-box and prove that in the instantiation it suffices to have NIZKs that have the
weaker notion of extraction“of knowledge”, where the extractor gets oracle access to the
proving adversary, such that the extractor can rewind the adversary. The reason that
this works is that by opening the black-box one can circumvent the problem of having
to extraction in the presence of oracles (cf. Section 5.3.1).

38

variable description instantiation

ϕ # of equations to prove 1
ϕeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 1
υd # of non-exact norm proofs 0
kbin length of the binary vector to prove d+mµ

s1 committed message in the Ajtai part (κ, σ,m)
m committed message in the BDLOP part ∅ (no message)
f1 equation to prove at

κσ = u+ dtm

E1 public matrix for proving ∥E1s− v1∥ ≤ β
(e)
1

[
0 I 0

]
v1 public vector for proving ∥E1s− v1∥ ≤ β

(e)
1 0

β
(e)
1 upper bound on ∥E1s− v1∥ ≤ β

(e)
1 β

Ebin matrix for proving binary diag(I,0, I)
vbin vector for proving binary 0

Table 4: Proving possession of a Ducas-Micciancio signature (κ, σ) of a message m.

Another way to improve the efficiency of the instantiation of the reputation system is
to introduce statefulness and to only allow a limited number of ℓ users. One can change
the model of the reputation system such that the group manager and issuers are stateful,
i.e. the Join and Issue algorithms get some state as input. The correctness and security
model then have to be changed accordingly. Both are is not unreasonable assumptions
to make in practice, as group managers have to keep track anyways how many members
there are in the system and issuers have to store information about their sales, making
both inherently stateful. Furthermore, if ℓ is large enough, e.g. 240 then one can argue
that this number of users will not be reached in practice. The security proofs for the
reputation system then basically work as before, except that the signatures we use as a
building block can be stateful and ℓ-time instead of stateless. However, the straight-line
extractability then is a necessary requirement as stateful ℓ-time signatures and extraction
via rewinding may not fit together: As explained in Section 5.3.1, extraction during a
reduction, where the reduction has access to a signature oracle, can be problematic. If the
oracle produces signatures of a stateful signature scheme, the problem worsens. In the
first run of the simulated adversary, the reduction will ask the oracle for some signature,
while the oracle is in some state st . Assume wlog. that when rewinding the simulated
adversary, we rewind the oracle to the state st . Then, the rewound adversary may
obviously ask for signatures for different messages than before. However this means the
reduction needs to ask the signature oracle for a second signature that was produced from
state st , which the signature oracle cannot do, thus we cannot simulate the adversary a
second time. Therefore, we need straight-line extraction when using stateful signatures
in our construction.
The change to a stateful reputation system allows us to choose different, more effi-

cient signatures than the ones of [DM14]. One example are the signatures described in
Appendix C.1, which are a variant of the signatures of [JRLS22] and which are based

39

on MSIS.
Another example are the signatures described in Appendix C.2, which are also a vari-

ant of the signatures from [JRLS22] together with a technique from [CEKLL19] and
which are based on RSIS, RLWE and NTRU. Depending on whether it is advantageous
to be based on MSIS instead of RSIS (i.e. depending on the required degree n of the
underlying ring), the latter achieve greater efficiency. This is because the former signa-
tures use a regularity lemma for hiding, while the latter signatures use RLWE to hide,
which comes at the cost of also needing the NTRU assumption. Details can be found
in the Appendix. [JRLS22] showed that for their signature, one can prove they possess
a message-signature pair with the NIZK of [LNP22a]. Since the signatures presented in
Appendices C.1 and C.2 are variants of the [JRLS22] signature, it can be shown that
proving possession of a message-signature pair of our signatures is also possible with
these NIZKs. Thus, we can instantiate the stateful ℓ-time reputation system with these
signatures.

6.2. Instantiation with Pairing-Based Cryptography

To instantiate the generic construction based on pairing-based cryptography, we use the
following constructions for the building blocks:

• The linking indistinguishable tags are t = H(µ)usk with f(usk) = gusk, where
H : {0, 1}∗ → G1 is modeled as a random oracle. Two tags t0, t1 link if t0 = t1.

• The signature scheme to sign the user’s public key gusk is a simplified version of the
structure-preserving signature [Gro15], namely σ = (R̃, S, T) = (g̃r, (y ·gw)1/r, (yw ·
M)1/r) (as in [BEK+21]), where signatures are valid iff they are of that form (can
be checked using the pairing).

• The encryption scheme for the user’s public key is ElGamal, the encryption scheme
for usk ∈ Zp is bitwise raised Elgamal.1

• The NIZK is a simple Schnorr-like protocol made straight-line extractable with
Fischlin’s transform [Fis05b, KS22].

We leave the details of the instantiation to the reader.

References

[AFK23] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transforma-
tion of multi-round interactive proofs. In Theory of Cryptography: 20th
International Conference, TCC 2022, Chicago, IL, USA, November 7–10,
2022, Proceedings, Part I, pages 113–142. Springer, 2023.

1One can also omit the encryption of usk and instead rely on the simulation-straight-line-extractability
of Fischlin’s transform to obtain usk in the security proofs that would obtain it via decryption.

40

[BCOS20] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner.
Efficient post-quantum snarks for rsis and rlwe and their applications to
privacy. In Post-Quantum Cryptography: 11th International Conference,
PQCrypto 2020, Paris, France, April 15–17, 2020, Proceedings 11, pages
247–267. Springer, 2020.

[BEJ18] Johannes Blömer, Fabian Eidens, and Jakob Juhnke. Practical, anonymous,
and publicly linkable universally-composable reputation systems. In Nigel P.
Smart, editor, Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, San Francisco, CA, USA, April 16-20,
2018, Proceedings, volume 10808 of Lecture Notes in Computer Science,
pages 470–490. Springer, 2018.

[BEK+21] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai
Samelin. Issuer-hiding attribute-based credentials. In CANS, volume 13099
of Lecture Notes in Computer Science, pages 158–178. Springer, 2021.

[BJK15] Johannes Blömer, Jakob Juhnke, and Christina Kolb. Anonymous and
publicly linkable reputation systems. In Financial Cryptography and Data
Security: 19th International Conference, FC 2015, San Juan, Puerto Rico,
January 26-30, 2015, Revised Selected Papers, pages 478–488. Springer,
2015.

[BJRLW23] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and
Weiqiang Wen. On the hardness of module learning with errors with short
distributions. Journal of Cryptology, 36(1):1–70, 2023.

[BNW17] David Bernhard, Ngoc Khanh Nguyen, and Bogdan Warinschi. Adaptive
proofs have straightline extractors (in the random oracle model). In Ap-
plied Cryptography and Network Security: 15th International Conference,
ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, pages 336–
353. Springer, 2017.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for
fully secure short signatures and more. In Public Key Cryptography–PKC
2010: 13th International Conference on Practice and Theory in Public Key
Cryptography, Paris, France, May 26-28, 2010. Proceedings 13, pages 499–
517. Springer, 2010.

[BSCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P Ward. Aurora: Transparent succinct ar-
guments for r1cs. In Advances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings,
Part I 38, pages 103–128. Springer, 2019.

41

[BSS10] John Bethencourt, Elaine Shi, and Dawn Song. Signatures of reputation. In
Radu Sion, editor, Financial Cryptography and Data Security, 14th Inter-
national Conference, FC 2010, Tenerife, Canary Islands, Spain, January
25-28, 2010, Revised Selected Papers, volume 6052 of Lecture Notes in Com-
puter Science, pages 400–407. Springer, 2010.

[CEKLL19] Liqun Chen, Nada El Kassem, Anja Lehmann, and Vadim Lyubashevsky.
A framework for efficient lattice-based daa. In Proceedings of the 1st ACM
Workshop on Workshop on Cyber-Security Arms Race, pages 23–34, 2019.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
Advances in Cryptology-CRYPTO 2006: 26th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2006.
Proceedings 26, pages 78–96. Springer, 2006.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups (extended abstract). In Burton S. Kaliski Jr., editor, Ad-
vances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceed-
ings, volume 1294 of Lecture Notes in Computer Science, pages 410–424.
Springer, 1997.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-
based encryption over ntru lattices. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 22–
41. Springer, 2014.

[DM14] Léo Ducas and Daniele Micciancio. Improved short lattice signatures in
the standard model. In Advances in Cryptology–CRYPTO 2014: 34th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I 34, pages 335–352. Springer, 2014.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy
data. SIAM journal on computing, 38(1):97–139, 2008.

[DPLS18] Rafaël Del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based
group signatures and zero-knowledge proofs of automorphism stability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 574–591, 2018.

[EBEK17] Rachid El Bansarkhani and Ali El Kaafarani. Direct anonymous attestation
from lattices. Cryptology ePrint Archive, 2017.

[EKKS18] Ali El Kaafarani, Shuichi Katsumata, and Ravital Solomon. Anonymous
reputation systems achieving full dynamicity from lattices. In International

42

Conference on Financial Cryptography and Data Security, pages 388–406.
Springer, 2018.

[Fis05a] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Annual International Cryptology Conference,
pages 152–168. Springer, 2005.

[Fis05b] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Victor Shoup, editor, Advances in Cryptology -
CRYPTO 2005: 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621
of Lecture Notes in Computer Science, pages 152–168. Springer, 2005.

[FN16] Dario Fiore and Anca Nitulescu. On the (in) security of snarks in the pres-
ence of oracles. In Theory of Cryptography: 14th International Conference,
TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings,
Part I 14, pages 108–138. Springer, 2016.

[GG21] Stan Gurtler and Ian Goldberg. Sok: Privacy-preserving reputation sys-
tems. Proc. Priv. Enhancing Technol., 2021(1):107–127, 2021.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 197–206,
2008.

[Gro15] Jens Groth. Efficient fully structure-preserving signatures for large mes-
sages. In ASIACRYPT (1), volume 9452 of Lecture Notes in Computer
Science, pages 239–259. Springer, 2015.

[HBB23] Omar Hasan, Lionel Brunie, and Elisa Bertino. Privacy-preserving reputa-
tion systems based on blockchain and other cryptographic building blocks:
A survey. ACM Comput. Surv., 55(2):32:1–32:37, 2023.

[JRLS22] Corentin Jeudy, Adeline Roux-Langlois, and Olivier Sanders. Lattice-based
signature with efficient protocols, revisited. Cryptology ePrint Archive,
2022.

[KS22] Yashvanth Kondi and Abhi Shelat. Improved straight-line extraction in the
random oracle model with applications to signature aggregation. In Shweta
Agrawal and Dongdai Lin, editors, Advances in Cryptology - ASIACRYPT
2022 - 28th International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022,
Proceedings, Part II, volume 13792 of Lecture Notes in Computer Science,
pages 279–309. Springer, 2022.

43

[LLM+16] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang. Signature schemes with efficient protocols and dynamic group sig-
natures from lattice assumptions. In Advances in Cryptology–ASIACRYPT
2016: 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part II, pages 373–403. Springer, 2016.

[LM19] Jia Liu and Mark Manulis. prate: Anonymous star rating with rating se-
crecy. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and
Moti Yung, editors, Applied Cryptography and Network Security - 17th In-
ternational Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019,
Proceedings, volume 11464 of Lecture Notes in Computer Science, pages
550–570. Springer, 2019.

[LNP22a] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: shorter, simpler, and more
general. In Advances in Cryptology–CRYPTO 2022: 42nd Annual Interna-
tional Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15–18, 2022, Proceedings, Part II, pages 71–101. Springer, 2022.

[LNP22b] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. Cryptology ePrint Archive, 2022.

[LNPS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plancon, and Gregor
Seiler. Shorter lattice-based group signatures via “almost free” encryption
and other optimizations. In Advances in Cryptology–ASIACRYPT 2021:
27th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 6–10, 2021, Proceedings,
Part IV 27, pages 218–248. Springer, 2021.

[LNWX17] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-
based group signatures: achieving full dynamicity with ease. In Applied
Cryptography and Network Security: 15th International Conference, ACNS
2017, Kanazawa, Japan, July 10-12, 2017, Proceedings 15, pages 293–312.
Springer, 2017.

[LNWX18] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Constant-size
group signatures from lattices. In Public-Key Cryptography–PKC 2018:
21st IACR International Conference on Practice and Theory of Public-Key
Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part
II 21, pages 58–88. Springer, 2018.

[LPR13a] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
lwe cryptography. In Annual international conference on the theory and
applications of cryptographic techniques, pages 35–54. Springer, 2013.

44

[LPR13b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe
cryptography. Cryptology ePrint Archive, Paper 2013/293, 2013. https:

//eprint.iacr.org/2013/293.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. Gghlite: More efficient
multilinear maps from ideal lattices. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 239–256.
Springer, 2014.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 700–718. Springer,
2012.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

A. Uniqueness of (M)LWE Secrets

Definition A.1. Let R be a finite ring. For s ∈ R \ {0} set

Zs := {a ∈ R \ {0} : a · s = 0}

and define
zmax := max{|Zs∥ : s ∈ R \ {0}}.

Equivalently, 1+zmax is the maximal number of solutions in R of an equation x ·s = c,
for s, c ∈ R.

Theorem A.2. Let m, k ∈ N, D ⊆ Rk, B ⊆ Rm. Then

Pr
[
∃(s, e) ∈ D ×B : s ̸= 0 ∧A · s = e;A← Rm×k

]
≤

(
1 + zmax

|R|

)m

· |D| · |B|.

Proof. Fix (s, e), e = (e1, . . . , em) as in the theorem. By definition of zmax

Pr
[
Ai · s = ei;Ai ← R1×k

]
≤ 1 + zmax

|R|
.

Hence for fixed (s, e)

Pr
[
A · s = e;A← Rm×k

]
≤

(
1 + zmax

|R|

)m

.

By the union bound the theorem follows.

We now restate Lemma 2.4 with a bit more detail in order to prove it.

45

https://eprint.iacr.org/2013/293
https://eprint.iacr.org/2013/293

Lemma A.3 (Short MLWE secrets are unique). Let q ̸= 2 be a prime with q = 3, 5
mod 8 (or q = 1 mod 2n), k > 0, n > 16 be a power of 2, Rq = Zq[X]/(Xn + 1). Let
Bβ = {e ∈ Rq : ∥e∥∞ ≤ β}. Let ∆ ≥ 0 such that 2β+∆ < q1/4. Then there exists some
d < n such that

ϵ(n) := Pr

[
∃(s, s′, e, e′) ∈ (Bk

β)
2 × (Bm

β)2

with s ̸= s′ ∧ ∥b∥∞ ≤ ∆
:
A← Rk×m

q

bt = (s− s′)tA+ (e− e′)t

]
≤ (4β + 2∆+ 1)n(m+k)

qmd
.

Furthermore, there exists an m and a negligible function negl such that ϵ(n) ≤ negl(n).

Proof. Due to the choice of s, s′, e, e′, we know that ∥s∥∞ , ∥s′∥∞ , ∥e∥∞ , ∥e′∥∞ ≤ β with
overwhelming probability. We define ŝ = s− s′ ̸= 0 with ∥ŝ∥∞ ≤ 2β and ê = e−e′ with
∥ê∥∞ ≤ 2β. Then, if ∥Aŝ+ ê∥∞ ≤ ∆ holds, there exists some ẽ with ∥ẽ∥∞ ≤ ∆ such
that Aŝ+ ê− ẽ = 0. Thus we can use Theorem A.2 to show that

ϵ(n) :=Pr[∃(s′, e′) ∈ Bk
β ×Bm

β : s ̸= s′, ∥A(s− s′) + e− e′∥∞ ≤ ∆;A← Rm×k
q , e← χm]

=Pr[∃(ŝ, ê− ẽ) ∈ Bk
2β ×Bm

2β+∆ : ŝ ̸= 0,Aŝ+ ê− ẽ = 0;A← Rm×k
q]

≤
(
1 + zmax

|Rq|

)m ∣∣Bk
2β

∣∣ · ∣∣Bm
2β+∆

∣∣
By the choice of q and n we know the polynomial Xn+1 is irreducible over Q[X] and

splits over Zq[X] into factors of equal degree. Let this degree be d and, accordingly, the
number of factors is n/d. Then it holds that

Rq
∼= Fqd × · · · × Fqd︸ ︷︷ ︸

n/d

,

where Fqd denotes the field with qd elements. From this one sees that an element s
maximizing |Zs| is (1, 0, . . . , 0) with

zmax = |Zs| = (qd)n/d−1 − 1 = qn−d − 1.

This together with the fact that |Rq| = qn, results in

ϵ(n) ≤(4β + 1)nk · (4β + 2∆+ 1)nm

qmd
≤ (4β + 2∆+ 1)n(m+k)

qmd

If n ≥ 16, q = 3, 5 mod 8, then one can show that d = n/2. In this case, the
probability above can be made negligibly small in n for q polynomially large in n and
β = qγ, γ < 1/4, even with m = 1. If q = 1 mod 2n, then d = 1. In this case, for q
polynomially in n, one has to pick m > 1 to make the probability above negligibly small
in n.

46

One can also show that uniform secrets of the standard LWE problem are unique, if
one chooses m correctly depending on n, q, β.

Corollary A.4 (LWE secrets are unique). Let q be a prime and β > 0. Set B := {e ∈
Zm

q : ∥e∥∞ ≤ β}. Then

Pr
[
∃(s, e) ∈ Zn

q ×Bm : s ̸= 0 ∧A · s = e;A← Zm×n
q

]
≤

(
2β + 1

q

)m

· qn.

B. Normal-Form Module SIS

Lemma B.1. Let R be a finite ring. We denote by

η := Pr[a not invertible : a← R]

the probability that an element chosen uniformly at random from R is not invertible.
Then

Pr[A has a right-inverse : A← Rk×k] ≥ 1− k · η.

Proof. We prove the lemma by induction on k. For k = 1 the lemma is immediate from
the definition of η. For the induction step, assume

A = (aij)1≤i,j≤k, where aij ← R for all i, j.

By A′ denote the (k − 1) × (k − 1) submatrix of A consisting of the last k − 1 rows
and columns of A. By induction hypothesis applied to A′ with probability at least
1− (k − 1)η there exists a matrix T′ such that

A ·T′ =

a11 ∗ · · · ∗
a21
...

ak1

Ik−1

 .
By further column operations, i.e. another matrix T′′, we can further modify A to obtain

A ·T′ ·T′′ =

a11 + γ(A \ {a11}) ∗ · · · ∗

0
...

0

Ik−1

 ,
where γ(A \ {a11}) is a term that depends on the entries in A except a11. Since a11 is
chosen uniformly and independently (from entries in A \ {a11}) at random,

Pr[a11 + γ(A \ {a11}) is not invertible : a11 ← R] ≤ η.

47

If a11 + γ(A \ {a11}) is invertible, then there exists a matrix T′′′ with

A ·T′ ·T′′ ·T′′′ =

1 0 · · · 0
0
...

0

Ik−1

 ,
i.e. T = T′ ·T′′ ·T′′′ is a right-inverse for A. Summarizing,

Pr[A does not have a right-inverse : A← Rk×k] ≤
Pr[A′ does not have a right-inverse : A′ ← R(k−1)×(k−1)]+

Pr[a11 + γ(A \ {a11}) is not invertible : a11 ← R] ≤ k · η,

which proves the lemma.

The same arguments as in the previous proof can be applied to left-inverses and row
operations, we obtain

Corollary B.2. With the assumptions and notation as in the previous lemma,

Pr[A has a right- and a left-inverse : A← Rk×k] ≥ 1− 2k · η.

Lemma B.3. Let R and η be as above. Assume matrix A = [A1 | A2],A1 ∈ Rk×k,A2 ∈
Rk×(n−k), is chosen uniformly at random from Rk×n, n ≥ k. Then with probability at
least 1− 2k · η, there is a matrix A′

2 such that for A′ = [Ik | A′
2]

Λ⊥(A) = Λ⊥(A′).

Proof. By the previous corollary, over the choice of A with probability 1 − 2kη matrix
A1 has a left- and a right-inverse. As is well-known, if left- and right-inverses exist, then
they are identical. Denote this inverse of A1 by A−1

1 and set

A′ = A−1
1 ·A = [A−1

1 ·A1 | A−1
1 ·A2] = [Ik | A−1

1 ·A2].

We claim that Λ⊥(A) = Λ⊥(A′). Since A · v = 0 implies A′ · v = 0, the inclusion
Λ⊥(A) ⊆ Λ⊥(A′) follows. The other inclusion follows analogously by observing that

A−1
1 ·A′ = A1 ·A−1

1 ·A = A.

Next we apply this result to rings Zq[X]/(Xn + 1) for relevant choices of n and q. To
do so we use the following lemma.

Lemma B.4. Let n be a power of 2 and q ≥ 16 a prime with q = 3, 5 mod 8. For the
ring Rq = R/qR with R := Z[X]/(Xn + 1) we have

η := Pr[a not invertible : a← Rq] ≤
2

qn/2
.

48

Proof. For n, q as in the lemma, the polynomial Xn + 1 is irreducible over Q and splits
into two irreducible polynomials of degree n/2 modulo q. Hence

Rq
∼= Fqn/2 × Fqn/2 ,

where Fqn/2 denotes the field with qn/2 elements. Therefore non-invertible elements (zero-
divisors and 0) in Rq are of the form (0, z) or (z, 0) for z ∈ Fqn/2 . Hence the number of

non-invertible elements is 2qn/2 − 1 and the lemma follows.

C. Stateful Lattice Signatures

To present our construction of a stateful ℓ-time reputation system, we need stateful ℓ-
time signatures, as we use them as a building block. We first define the formal model of
such a signature.

Definition C.1 (Stateful Signature Scheme). A stateful ℓ-time signature scheme Σ
consists of the following ppt algorithms:

• KeyGen(1n) outputs secret key and public key pair (sk, pk) and a state st.

• Sign(sk,m, st) outputs signature σ and state st ′.

• Vrfy(pk,m, σ) is deterministic and outputs a bit.

We say that Σ is correct if for all n ∈ N, all (sk, pk, st1) output by KeyGen(1n), all
messages m1, . . . ,mℓ, all 1 ≤ i ≤ ℓ, and all (st i+1, σi) output by Sign(sk,mi, st i), we
have Vrfy(pk,mi, σi) = 1. We additionally require that for all 1 ≤ i ≤ ℓ we have that
|st i| ≤ p(n) for some polynomial p.

To define the EUF-CMA security of a stateful scheme in comparison to a standard
stateless EUF-CMA definition, we simply define the signature oracle to remember the
(updated) state in between its calls.

Definition C.2 (Stateful EUF-CMA). A stateful ℓ-time signature scheme Σ is existen-
tially unforgeable under chosen-message attacks (stateful-EUF-CMA) if for all ppt A
that make at most ℓ oracle queries,

AdvsEUFCMA
Π,A (n) = Pr[Vrfy(pk,m∗, σ∗) = 1 ∧ A has not queried m :

(sk, pk, st1)← KeyGen(1n), (m∗, σ∗)← ASigO(sk,·)(pk)] ≤ negl(n),

where SigO(sk,mi) is an oracle that computes (σi, st i+1) ← Sign(sk,mi, st i) on the ith
query, and returns σi.

49

C.1. Stateful Signatures Based on Module SIS

The first construction of a stateful ℓ-time signature scheme is based on Module SIS and
works similar to the construction of [JRLS22]. In comparison to their construction,
we do not commit to the message before signing it, which allows us to simplify the
construction and the security proof.

Construction C.3. Let q ≥ 2 with q = 5 mod 8 be an odd prime and let ζ,m3 > 0.
Let m1 = k log q + ω(log n) and m2 = kζ. Let R = Z[X]/(Xn + 1) and Rq = R/qR.
Let the message space be Rm3

2 \{0}. Let g = ⌈q
1
ζ ⌋ and g = [1 | g | . . . | gζ−1] and G =

Id ⊗ g ∈ Rk×m2
q . Let s = ηϵ(Z)

√
1 + g2

√
1 + (

√
nm1 +

√
nm2 + t)2 > 2nqk/m1+2/(nm1)

large enough and β = s
√
n(m1 +m2) such that s2 ≥ (

√
nm1 +

√
nm3 + t)

√
nm3. Let

β = s
√
n(m1 +m2). Let w > 0 and Tw = {e ∈ R2 : ∥e∥ =

√
w}. Assume there is some

order on the elements of Tw. Call κi the ith element of Tw in this order.

• KeyGen(1n): Choose A ← Rk×m1
q . Choose R ← Rm1×m2

±1 . Choose D ← Rk×m3
q ,

u← Rn
q . Set pk = (A,B = AR,D,u) and sk = R. Set st = κ1.

• Sign(sk, st ,m): SetAκi
= [A | B+κiG] and compute σ ← PreSample(Aκi

,−R,u+
Dm, s). Set st ′ = κi+1. Output ((κ, σ), st ′).

• Vrfy(pk,m, (κ, σ)): If Aκσ = u+Dm and ∥σ∥ ≤ β and κ ∈ Tw, output 1.

Lemma C.4. For every ppt adversary that makes at most |Tw| signature queries and
wins the stateful-EUF-CMA game with advantage γ(n) against Construction C.3, there
exists a ppt adversary against MSISRq ,k,m1,q,β′, where

β′ =
√

1 + (
√
nm1 +

√
nm2 + t)2 · (β + s

√
n(m1 +m2)) + (

√
nm1 +

√
nm3 + t)

√
nm3,

with advantage 1
|Tw|γ(n)− negl(n).

Proof. Since the construction is similar to the one of [JRLS22], the proof is similar as
well. However, our proof differs in some details.
Let A be an adversary against the stateful-EUF-CMA security of the signature. From

this we construct an adversary B against MSIS as follows:

• On input A ∈ Rk×m1
q , B chooses i∗ ← |Tw|. It then chooses R ← Rm1×m2

±1 and

U← Dm1×m3
R±1

and e← Dm1+m2
R,s . It then sets u = Aκ∗e and B = AR− κi∗G and

D = AU and pk = (A,B,D,u).

• B simulates A on input pk. On the ith signature query with message m, B does
the following:

– If i ̸= i∗, answer with (κi, Sign(−R, κi,m)).

– If i = i∗, answer with (κi∗ , e
′ = e+

[
Um
0

]
).

50

• A outputs some forgery (m∗, κ∗, σ∗). If κ∗ ̸= κi∗ , abort.

• B returns w = [I | R] (σ∗ − e)−Um∗.

First, we want to argue that the view of A is correct. For that, we see that A
and the oracle answers in the case i ̸= i∗ have the same distribution as in the orig-
inal game. For B,D,u and the oracle answer in the case i = i∗ we see that they
are computed differently. From [BJRLW23, Lemma 2.8] we know that the distribu-
tion of (A,AR,AU) is statistically close to uniform. Due to Corollary 2.8 we know
that there exists a transformation of A to its normal form with probability 1− 4kqn/2.
Then with Corollary 7.4 of [LPR13a, LPR13b] we know that (A,Ae) is statistically
close to uniform since s > 2nqk/m1+2/(nm1). Thus, we lastly have to argue about the
distribution of the i∗th query answer. We will argue that the distribution of e′ is sta-
tistically indistinguishable from the signature in the real game, when both are condi-
tioned on the respective values of A,B,D,u. Then we know that the joint distribu-
tion of pk together with e′ is statistically indistinguishable. Let z be some solution to

Aκi∗z = u. Let c be some solution to Aκi∗c = Dm. Let d =

[
Um
0

]
. Then, we know

that in the original game the distribution of the i∗th signature σi∗ conditioned on pk is
DΛ⊥(Aκi∗)+z+d,s = DΛ⊥(Aκi∗),s,−z−d + z + d. If we look at the distribution of e condi-
tioned on the pk generated by B, we see that its distribution is DΛ⊥(Aκi∗)+z,s. Thus, the

distribution of e′ is DΛ⊥(Aκi∗)+z,s+d = DΛ⊥(Aκi∗),s,−z+z+d and the distributions of σi∗

and e′ only differ in their center. Therefore, from [LSS14, Lemma 4.2] we know that the
Rényi difference of the two distributions is smaller than exp(απ ∥d∥22 /s2). Then it holds
that Pr[Wi∗]

α/(α−1) ≤ exp(απ ∥d∥2 /s2) Pr[We′] by [JRLS22, Lemma B.1], where Wi∗ is
the event that A outputs a valid forgery when given σi∗ in the simulation (with changed
public keys) andWe′ is the event that A outputs a valid forgery when given e′. Thus, we
know that the probability γ(n) that A outputs a valid forgery in the stateful-EUF-CMA

game is smaller than γ(n) ≤
(
exp(απ ∥d∥2 /s2) Pr[W ′

e]
)(α−1)/α

+ negl(n).
What is left to argue is that w is a valid MSIS solution if A outputs a valid forgery.

From the following equation we can see that w is indeed a vector that maps to 0 for the
MSIS challenge.

Aκ∗σ∗ = u+Dm∗ ∧Aκ∗

(
e+

[
Umi∗

0

])
= u+Dmi∗

⇒Aκ∗σ∗ −Dm∗ = Aκ∗

(
e+

[
Umi∗

0

])
−Dmi∗

⇔[A | AR]σ∗ −AUm∗ = [A | AR]

(
e+

[
Umi∗

0

])
−AUmi∗

⇔A · ([I | R](σ∗ − e)−Um∗) = 0

Now, for w to be a valid MSIS solution, it also must be non-zero and short. We
follow the heuristic of [JRLS22] for the spectral norms of R and U and bound them by

51

s1(R) ≤ √nm1+
√
nm2+t and s1(U) ≤ √nm1+

√
nm3+t for some small t. If one wants

to use provable bounds, see [JRLS22, Section 6.2] for details. For the norm of e one
can show that using [MP12, Lemma 2.9] that ∥e∥ ≤ s

√
n(m1 +m2) with overwhelming

probability. Therefore, we know that

∥[I | R](σ∗ − e)−Um∥ ≤s1([I | R]) (∥σ∗∥+ ∥e∥) + s1(U) ∥m∥

≤
√

1 + (
√
nm1 +

√
nm2 + t)2 ·

(
β + s

√
n(m1 +m2)

)
+ (
√
nm1 +

√
nm3 + t)

√
nm3

To show that w is non-zero, we rewrite w = y−Um for some y. Since we restricted
the message space to Rm3

q \{0}, we know that there is at least one column of U that
influencesw. Therefore, the adversary has to predict at least one column u′ ofU in order
to somehow produce y,m such that w = 0. The only places where the adversary might

get information about U from are D = AU and e′ = e+

(
Um
0

)
= e+d. However, in a

hypothetical game where an unbounded adversary C tries to predict u′ from information
obtained in the stateful-EUF-CMA game, we can gamehop the information about U in
e′ away by replacing e′ by a Gaussian sampled vector and then analyze the probability
of predicting a column u′ of U given D = AU. Let V denote the view of C in the
stateful-EUF-CMA game without D, e′.

Pr [u∗ = u′ : u∗ ← C(V,D, e′), e′ = e+ d]

≤
(
Pr[u∗ = u′ : u∗ ← C(V,D, e′′), e′′ ← DRq ,s] · exp(απ ∥d∥

2 /s2)
)α−1

α · 1 + ϵ

1− ϵ

≤
(
negl′(n) · exp(απ ∥d∥2 /s2)

)α−1
α · 1 + ϵ

1− ϵ
≤negl(n)

Here, the first inequality follows from [LSS14, Lemma 4.2]. Note that we need the
other direction than before, since here we go from a shifted Gaussian to a non-shifted
Gaussian. The second inequality follows from [DORS08, Lemma 2.2]: Since there is
one column in D influenced by u′, which has qkn = 2kn log q possible values, and u′ has
Shannon entropy H∞(u′) = log(3m1) = m1 log2(3), we have

H̃∞(u′ | D) ≥ H∞(u′)− kn log q
= (kn log q + ω(log n)) log2(3)− kn log q
= (log2(3)− 1)kn log q + log2(3)ω(log n).

Therefore, the probability of guessing a column of U and thus the probability of w = 0
are negligible. Thus, together with the analysis about the view of A, we know that the
probability that B outputs a valid MSIS solution is greater than

Pr[B wins] ≥ (γ(n)− negl(n))α/(α−1) · exp(−απ ∥d∥ /s2)− negl(n)

≥ (γ(n)− negl(n))α/(α−1) · exp(−απ)− negl(n)

where the last equation follows since ∥d∥ ≤ (
√
nm1 +

√
nm3 + t)

√
nm3 < s2.

52

C.2. Stateful Signatures Based on RSIS, RLWE and NTRU

Our second construction of a stateful ℓ-time signature works similar to Construction C.3
and thus to the construction of [JRLS22], but is instead based on RSIS, RLWE and
NTRU. As explained in Section 6.1, this signature achieves better efficiency under the
right conditions. We start with defining the NTRU problem.

Definition C.5 (NTRU). Let q > 2 and s > 0 and n be a power of two. Let R =
Z[X]/(Xn + 1) and Rq = R/qR. The NTRU problem NTRUq,R,s is to distinguish
between a uniform h← Rq and h = gf−1, where f, g ← DR,s such that f is invertible.

We now construct the signature. Note that apart from some parameters and dimen-
sions, the scheme is the same as Construction C.3.

Construction C.6. Let q ≥ 2 be odd with q = 5 mod 8 and ζ,m3 > 0. Let R =

Z[X]/(Xn+1) and Rq = R/qR. Let the message space be Rm3
2 \{0}. Let g = ⌈q

1
ζ ⌋ and

g = [1 | g | . . . | gζ−1]. Let s = ηϵ(Z)
√
1 + g2

√
1 + (

√
2n+

√
ζn+ t)2 > 2nq1/2+n large

enough such that s2 ≥ (
√
2n +

√
nm3 + t)

√
nm3. Let β = s

√
n(2 + ζ). Let w > 0 and

Tw = {e ∈ R2 : ∥e∥ =
√
w}. Assume there is some order on the elements of Tw. Call κi

the ith element of Tw in this order.

• KeyGen(1n): Choose a′ ← Rq. Choose R ← R2×ζ
±1 . Choose d ← R1×m3

q , u ← Rq.
Set a = [1 | a′] ∈ R1×2

q . Set pk = (a,b = aR,d, u) and sk = R. Set st = κ1.

• Sign(sk, st ,m): Set aκi
= [a | b + κig] and compute σ ← PreSample(aκi

,−R, u +
dm, s). Set st ′ = κi+1. Output (κ, σ, st ′).

• Vrfy(pk,m, (κ, σ)): If aκσ = u+ dm and ∥σ∥ ≤ β and κ ∈ Tw, output 1.
Lemma C.7. For every ppt adversary that makes at most |Tw| signature queries and
wins the stateful-EUF-CMA game with advantage γ(n) against Construction C.6, there
exists a ppt adversary against RSISq,R,2,β′, where

β′ =

√
1 + (

√
2n+

√
ζn+ t)2 ·

(
β + s

√
n(2 + ζ)

)
+ s

(√
2n+

√
nm3 + t

)√
nm3,

with advantage greater than 1
|Tw| exp(−απ) (γ(n)− negl(n))α/(α−1)−negl(n), if RLWEq,R,s

and NTRUq,R,s′ are hard.

Proof. The proof works similarly to the one in the construction based on Module SIS by
first puncturing the public key at a random tag τ ∗, generating d and u differently with
secret information, such that the secret information helps with answering the signature
query for τ ∗. However, similar to the proof in [CEKLL19], we show that puncturing
the key is indistinguishable to the adversary not by some regularity lemma, but by the
RLWE assumption. To show this, we temporarily lose the R, with which we generate
the signature query answers. Instead we temporarily introduce an NTRU trapdoor to
generate the answers.
We prove this formally with the following game hops. Let Game0 be the original

stateful-EUF-CMA game. Let γ(n) be the probability that A wins in this game. Let
γ̂i(n) be the probability that A wins in Gamei.

53

Game1 is the same game as Game0, except that a′ is instead set to a′ = gf−1, where
g, f ← DRq ,s′ . This is indistinguishable by the NTRUq,R,s′ assumption. Let γNTRU(n)
be the advantage of some ppt adversary against NTRUq,R,s′ . Then, we have that
|γ̂0(n)− γ̂1(n)| = γNTRU(n).

Game2 is the same game as Game1, except that the signature query answers are gen-
erated with the NTRU trapdoor instead of R. In particular, by knowing f, g we can
construct a basis of the lattice defined by a′ such that the norm of its orthogonalization
is 1.17

√
q [DLP14]. Since s ≥ 1.17

√
q ·ω(
√
log n), we can use the GPV preimage sampler

[GPV08] to generate the signature query answers with a distribution that is statistically
close to the distribution of the scheme. Therefore, we have that |γ̂1(n)− γ̂2(n)| = negl(n)

Game3 is the same game as Game2, except that b← Rζ
q . Immediately, this is indistin-

guishable by the hardness of normal form RLWEq,R,s. Let γRLWE(n) be the advantage
of some ppt adversary against RLWEq,R,s Then, we have |γ̂2(n)− γ̂3(n)| = γRLWE(n).

Game4 is the same game as Game3, except that b = b′ − κi∗g, where b′ ← Rζ
q and

i∗ ← |Tw|. This is indistinguishable since adding a constant to a uniform value does not
change the distribution. Thus, we have |γ̂3(n)− γ̂4(n)| = 0.

Game5 is the same game as Game4, except that b = b′ − κi∗g, where b′ = aR ∈ Rζ
q

and R ← R2×ζ
±1 . This is again indistinguishable due to the hardness of normal form

RLWEq,R,s and we have |γ̂4(n)− γ̂5(n)| = γRLWE(n).

Game6 is the same game as Game5, except that u = [a | b]e and d = aR′, where e←
D2+ζ

R,s and R′ ← Dm3×m3
R,s . Since s > 2nq1/2+n we know from Corollary 7.4 of [LPR13a,

LPR13b] that this is statistically indistinguishable. Thus, we have that |γ̂5(n)− γ̂6(n)| =
negl(n).

Game7 is the same game as Game6, except the i
∗th signature query is instead answered

with (κi∗ , e
′), where e′ = e +

(
Rm
0

)
. With a similar argument as in the proof for

Lemma C.4, we have γ̂6(n) ≤ (exp(απ ∥d∥ /s2)γ̂7(n))(α−1)/α ≤ (exp(απ)γ̂7(n))
(α−1)/α,

since s2 ≥ (
√
2n+

√
nm3 + t)

√
nm3.

Game8 is the same game as Game7, except that on the ith signature query, if i ̸= i∗, the
answer is generated as in the original stateful-EUF-CMA game. With a similar argument
as before, this is statistically indistinguishable. Thus, we have that |γ̂7(n)− γ̂8(n)| =
negl(n).

54

Game9 is the same game as Game8, except that a
′ ← Rq is chosen uniformly random

instead. This is again indistinguishable by the NTRUq,R,s′ assumption and we have
|γ̂8(n)− γ̂9(n)| = γNTRU(n).
Therefore, we know that we can simulate A while having a public key punctured at

κi∗ . In total, we have the following.

γ(n) =γ̂0(n) = γ̂0(n)
6∑

i=1

−γ̂i(n) + γ̂i(n)

≤γNTRU(n) + 2γRLWE(n) + negl(n) + γ̂6(n)

≤γNTRU(n) + 2γRLWE(n) + negl(n) + (exp(απ)γ̂7(n))
(α−1)/α

≤γNTRU(n) + 2γRLWE(n) + negl(n)+

(exp(απ) (γNTRU(n) + γ̂9(n) + negl(n)))(α−1)/α

Now we can construct an adversary B against RSIS that simulates A in Game9: On
input â = [â1 | â2] ∈ R2

q, it computes a = â−1
1 â, which is possible with probability

1 − qn/2 due to Corollary 2.8. It then simulates A in Game9 with that a. When A
outputs a forgery (m∗, κ∗, σ∗), B outputs w = [I2 | R](σ∗ − e)−R′m∗.
Having defined this, we can show that with the same arguments as in the proof of

Lemma 2.8, but with k = 1, that if A outputs a valid forgery and the guess of i∗

was correct, w is an RSIS solution that is indeed valid, short and non-zero for a with
overwhelming probability. Then we know that w is also a valid, short, non-zero RSIS
solution for â, since âw = â1aw = 0. Thus we have Pr[B wins] = 1

|Tw| γ̂9 − negl(n),
where the negligible part is influenced by the probability that â1 is invertible and w
being non-zero and short.
In total this means B solves RSISR,q,2,β′ with probability greater than

Pr[B wins] ≥ 1

|Tw|
exp(−απ) (γ(n)− γNTRU(n)− 2γRLWE(n)− negl(n))α/(α−1)

− γNTRU(n)− negl(n)

55

	Introduction
	Our contribution
	Related work

	Preliminaries
	Lattices, Discrete Gaussians and Lattice Problems
	Encryption Schemes
	Signature Schemes
	NIZKs

	Linking Indistinguishable Tags
	Construction Based on Module Lattices

	Building Blocks
	Lattice-Based Signatures
	Lattice Encryption
	Non-Interactive Zero-Knowledge Proofs of Knowledge

	Reputation System
	Security Model
	Generic Construction
	Security of the Generic Construction
	The Role of Straight-Line Extraction

	A Reputation System from Module Lattices
	Improved Efficiency via Stateful -time Signatures
	Instantiation with Pairing-Based Cryptography

	Uniqueness of (M)LWE Secrets
	Normal-Form Module SIS
	Stateful Lattice Signatures
	Stateful Signatures Based on Module SIS
	Stateful Signatures Based on RSIS, RLWE and NTRU

