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Abstract—Spiking neural networks gain attention due to low
power properties and event-based operation, making them suit-
able for usage in resource constrained embedded devices. Such
edge devices allow physical access opening the door for side-
channel analysis. In this work, we reverse engineer the parame-
ters of a feed-forward spiking neural network implementation
with correlation power analysis. Localized measurements of
electro-magnetic emanations enable our attack, despite inherent
parallelism and the resulting algorithmic noise of the network.
We provide a methodology to extract valuable parameters of
integrate-and-fire neurons in all layers, as well as the layer sizes.

Index Terms—spiking neural networks, side-channel analysis,
integrate-and-fire neuron

I. INTRODUCTION

Implementations of Neural Networks (NNs) on edge devices
become increasingly popular. Compression techniques enable
NNs on resource constraint devices [1], since they improve
both performance and power efficiency.

Parallel to the optimization of NNs, a new type of NN
inspired by the human brain is under development and testing:
Spiking Neural Networks (SNNs). Human neurons interchange
information via synapses in form of electric pulses, so-called
spikes. This behavior is mimicked within SNNs and leads to
an event based processing, where information is encoded as
spikes. A schematic of a layer within such a SNN can be seen
in fig. 1. SNNs are even more power efficient compared to
classical NNs and, thus, ideal for edge devices.

The protection of Intellectual Property (IP) stored in the
trained NN is crucial and possible information leaks about
the internal parameters or structure of the NN should be
avoided. Since classical NNs are more common today, they
are already analyzed from a security point of view. Hardware
attacks like Side-Channel Analysis (SCA) must be considered
for edge devices, since an adversary can gain physical access
to the device. SCA utilizes physical quantities, such as power
consumption, Electro-Magnetic (EM) emanations or execution
time, to extract secret information about the NN.

However, in the domain of SNNs there exists little work in
regard of security analysis. Within this paper, we close this gap
and employ Correlation Power Analysis (CPA) to reverse engi-
neer synchronous feed-forward SNNs implementing Integrate-
and-Fire (IF) neurons and, thereby, stealing the stored IP.
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Fig. 1: Schematic of a simple SNN layer of three neurons
reacting on n inputs.

A. Related Work

Recent publications focus on SCA to reveal information
about NNs. Prominent works exploit the timing behavior [2]
or power side-channel information [3], in order to reverse
engineer the architecture of a NN. In addition to the network
architecture, its parameters, such as weights, are of particular
interest. Batina et al. utilize EM measurements to recover
a complete NN from a microcontroller implementation [4].
Considering hardware implementations of NNs, Hua et al.
extract a Convolutional Neural Network (CNN), executed on
a hardware accelerator [5]. Dubey et al. reverse engineer the
weights of a hardware implementation of a quantized NN
by performing a Differential Power Analysis (DPA) [6]. The
collection of side-channel attacks on NNs indicate the need for
effective countermeasures such as shuffling [7] or masking [8],
[9].

The related work we covered so far, focuses merely on im-
plementations of classical NNs, but not SCA of SNNs. Similar
attacks on implementations of SNNs do not exist to the best of
our knowledge. Nevertheless, Yang et al. propose an algorithm
to effectively reconstruct the neural network topology from
the firing activity of a biological neural network [10]. This
can be transferred to an attack, if an attacker has access to
the communication between neurons. However, such an attack
implies a very skillful and well-equipped attacker.

The closest to our work is a SCA by Garaffa et al. [11].
They recover the weights that preprocessing their associated
input, before it is fed to the first hidden layer, on the basis of
timing information, as well as information depicted in power
traces.



B. Contribution and Organization

In this paper, we employ CPA to reverse engineer syn-
chronous feed-forward SNNs implementing IF neurons. We
purposely choose this particular implementation in order to
introduce side-channel analysis of SNNs and its limitations.
SNNs exhibit high parallelism and, thus, high algorithmic
noise, which can be potentially counterproductive for an
attacker. However, we show that this effect can be avoided
by means of localized EM measurements, since individual
neurons can be resolved. The acquired EM traces build the
base of our CPA, with which we extract both - the weights
and threshold parameters - of IF neurons.

As our results indicate, the attack is possible without any
misclassification with about 2,000 EM-traces for each neuron.
Hence, an attacker can extract a full SNN using IF neurons
with our methods whilst maintaining the accuracy of the
attacked network living the attacker with a white box model.

Our work is structured as follows: First we give an overview
of the theoretical background of SNNs and CPA in section II.
Section III explains the principle of our attack and the results
are analyzed in section IV. Finally, we discuss the results and
their implications in section V and conclude in section VI

II. BACKGROUND

A. Spiking Neural Networks

SNNs are inspired by the biological neural system and how
information is transmitted and processed by the brain [12],
[13]. Such a network can be seen as dynamical system, where
individual neurons interact in an event-driven manner with
each other [14].

The function of neurons within a SNN differs significantly
from neurons in formal NNs. Similar to the classical neuron
model, spiking neurons have weighted inputs to receive infor-
mation from other preceding neurons or from some external
instance. However, these inputs encode the information as so-
called spikes and not as numerical values, as it is the case for
formal NNs. As soon as a neuron recognizes a spike on one
of its inputs, it accumulates the corresponding weight w to its
internal membrane potential v. Depending on the used neuron
model, the internal membrane potential v keeps its value until
a new spike is received (IF), or it is reduced by some time
constant as long as no spikes appear (Leaky Integrate-and-
Fire (LIF)). At some point in time, when enough spikes have
emerged, the membrane potential v of the neuron crosses
a predefined threshold . When exceeding the threshold the
neuron emits a spike at its output o and resets v to the initial
value. A representation of a layer can be found in fig. 1, where
all neurons of this layer react on the inputs and generate as
many outputs as neurons are in the layer. [12]

Due to their simple operation, i.e., multiplications and
accumulations of formal NNs are reduced to accumulations
only, and their event driven sparsity, SNNs are believed to
reduce the energy consumption significantly [12], [15].

Input = Index

Membrane
. . Potential v
‘Weight Memory |—Weight P oo

EN Threshold t

—> Spike o

RST

Fig. 2: Schematic of our IF neuron implementation.

B. Side-Channel Analysis

Side-Channel Analysis (SCA) was introduced in 1996 by
Kocher [16]. It originates from the cryptographic sector and
exploits information leakage about secrets through physical
quantities, such as timing [16], power consumption [17] or
EM [18]. Differential attacks, like DPA, employ statistical
methods to utilize data dependencies within the power con-
sumption for different input data to retrieve secret information.
Pearson’s correlation coefficient is a common statistical metric,
in order to compare the collected traces with hypothetical
values from a power model and distinguish the correct hy-
pothesis from wrong ones. Such a correlation-based DPA is
also referred to as CPA [19]. The advantage of CPA is, that
no detailed knowledge about the implementation is required
and it is robust against noise [20].

III. ATTACK METHODOLOGY

The goal of this work is to show the extraction of the
valuable parameters of IF neurons implemented in SNNs
putting the contained IP at risk. For the theoretical analysis,
as well as the experiments, we focus on a synchronous hard-
ware implementation on a Field Programmable Gate Array
(FPGA).!

A. SNN Under Attack

Our realization of the IF neuron is depicted in fig. 2. Within
a layer of a SNN, multiple of such neurons are implemented
in parallel. Each neuron in one layer reacts on the same input
sequence. Whenever an input arrives in form of a spike, the
corresponding weight w is loaded from the weight memory
and added to the current membrane potential v. The resulting
sum is the new membrane potential v’ a clock cycle later.
The comparator in fig. 2 compares v against a threshold £.
Whenever v exceeds ¢t the neuron generates a spike at the
output o and resets v to zero within the same clock cycle.
While the neurons from the input layer react on the input
provided to the SNN, subsequent layers react on the output of
the previous layers neurons.

To interconnect inputs and neurons, we utilize a version
of the Address Event Representation (AER) protocol [21].
Therefore, each input and neuron broadcasts its address over

INevertheless, our attack principle can be transferred to other platforms
with minor modifications.



the bus. For example, whenever the neuron in fig. 2 generates
a spike, its address is put on the AER bus. For each neuron,
which is reacting on this event, the weight corresponding to
this address is loaded from the weight memory and processed
as described above.

Weights w in our case are 4-bit wide, whereas the membrane
potential register has a width of 13-bit. Please note, that
the small bitwidth of the weights is chosen in order to
keep the computational effort for the CPA low. Nevertheless,
our simulations prove, that the choice of bitwidth has no
influence on our attack, apart from increasing the degree of
computational effort. Furthermore, the attack is independent
of the interconnection protocol, since we do not rely on any
properties of it.

B. Threat Model

For our experiments we assume an attacker, who has phys-
ical access to the device executing the target SNN. Moreover,
the attacker is passive, i.e., can observe the device during
its normal operation, but cannot interfere the computations
by inducing faults, for example. Since we use a decapped
chip, we are in the semi-invasive scenario, where modifications
to the hardware are allowed as long as they do not alter
the functionality of the device. As a result, active attacks,
like fault attacks or control flow hijacking, are out of scope
here. Furthermore, no access to the memory or bus system is
possible for the attacker, meaning that he/she cannot monitor
memory accesses or retrieve data from memory. We assume,
that the network parameters are securely loaded to the neurons.
Thus, this poses no potential attack vector.

However, the attacker has full control over the input2. The
attacker can observe side-channel information, as he/she has
physical access to the targeted device, e.g., by measuring
the power consumption or EM radiation. He/she is interested
in reverse engineering the IP stored within the SNN, since
training a network successfully is depending on a magnitude of
design parameters and requires high computational effort. This
can be of special interest, as well, when effective adversarial
examples to a competitors model should be crafted [22], since
a white box model is necessary there.

C. Weight Retrieval

In order to extract the weights of a neuron w, a point,
where they are processed together with known information
is necessary. A suitable target is the addition of the weights
w to the membrane potential v of a neuron in fig. 2, since an
attacker can influence v by applying spikes to the inputs.

Specifically, an attacker chooses the index ¢ of the secret
weight w; that will be added to the membrane potential v of a
neuron, by applying a spike to the corresponding input. Please
note, the index ¢ is equivalent to the input ¢, where a spike
is applied to. In general, the idea of the attack is to apply
different combinations of spike sequences on the inputs, to
achieve high variance in the membrane potential v.

21f an attacker can only observe, but not control the input, he/she can also
apply the attack by only utilizing input patterns suiting the attack requirements.
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Fig. 3: Attack point for weight retrieval.

For our attack, we apply different sequences to inputs 4o and
11 and guess the associated weight values wg and wy, as shown
in fig. 3. The change in membrane potential v at a targeted
point in time is modeled for all possible weights and all of
those guesses are stored in the hypothesis matrix hy. Those
hypothetical intermediate results for v are then transformed
into theoretical power consumption values by means of a
power model. In order to model the power consumption of the
value transistion, we are using the Hamming Distance (HD)
power model, where the amount of changing bits between two
values defines the power consumption. If the power model
matches the implementation, the correct hypothesis of the
weights should achieve a significantly higher correlation as
all other hypotheses. The correlation is calculated utilizing
Pearson’s correlation coefficient, where the maximum value
of
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will most likely belong to the correct hypothesis. Thereby, N
corresponds to the number of measurements, h,, 4 represents a
theoretical power value for measurement m and the hypothesis
d, and t,, . is the m-th power trace at sample point c.

However, there are a few restrictions for our attack. First,
the number of different input indices must be limited, i.e.,
we cannot attack all weights of a neuron in one step. If we
do not limit the amount of inputs and weights involved in
the hypotheses d, our hypothesis space would be no longer
manageable due to memory size and computation time. For
our targeted implementation, we have 4-bit weights and if
we apply spikes on n different inputs, we have 274 different
hypotheses. The choice of n = 2 results in a manageable hy-
pothesis space of 28, while at the same time the correct weights
can be identified accurately in our experiments. Choosing n
is a trade-off between being able to retrieve more weights at
once more robustly and having a large hypothesis space which
is computational challenging.

Additionally, we have to assume that the neuron does not
emit a spike during our attack, i.e., v crosses the threshold ¢
and the neuron emits a spike at the output after the targeted
attack cycle, as shown in fig. 3. That implies, however, that
a late attack cycle increases the chance that the neuron itself
emits a spike and resets its membrane potential v. Such a
behavior cannot easily be implemented in our hypothesis, since
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we require knowledge about the threshold in addition, which
we can only extract after knowing the weights.

However, a late point in time also means a higher possible
variance of the membrane potential of a neuron, which is bene-
ficial to distinguish the correct hypothesis from incorrect ones.
Therefore, the targeted point in time on that the hypotheses
are build on, fundamentally contributes to the distinctness of
single hypotheses. The choice of attack cycle again is a trade-
off: A later cycle makes the attack more robust, since there
is a higher variance in v that has a positive impact to the
correlation coefficient in eq. (1).

We choose to attack at 20 clock cycles after the reset
of v, since this produces sufficient variance and keeps the
computational overhead low. Nevertheless, the attack works
as well with even less cycles. Furthermore, the neurons in our
network never reach their thresholds at this point.

D. Threshold Retrieval
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Fig. 4: Attack point for threshold retrieval.

Next, we can extract the neuron’s threshold potential as
follows. An attacker applies input combinations to the neuron,
where for each combination he/she knows the corresponding
weights added to the potential v. In fig. 4 wy and w; are
known to the attacker. As a result, he/she can again build
hypotheses on the corresponding intermediate values of wv,
however now, by taking a guessed threshold into account. The
point of interest in this case is later than before in the weight
attack scenario. In contrast to the weight attack, an attacker
does not want to avoid exceeding the threshold, but requires
the neuron to spike at least once. This is indicated in fig. 4,
where the depicted neuron emits two spikes before our chosen
attack cycle. Therefore, a possible attack point is after many
inputs, when the neuron has emitted one or more spikes.

As before, the correlation between the hypotheses and the
measured traces is calculated according to eq. (1). Again the
highest correlating value most likely belongs to the correct
threshold.

Please note that the threshold can only be determined as
granular as the smallest difference of two weights occurring
in the particular neuron. For example, a neuron featuring two
weights with value 20 and 30, the threshold can only be
determined to a precision of ten. If in the example 45 would
be the true threshold value, the attack can only determine that
it is between 40 and 49. Nevertheless, this limitation does not
change the behavior of the reverse engineered neuron.
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Fig. 5: Probability of a guessing entropy H after attacking a
single neuron with the presence of n parallel neurons.

E. Extraction Limitations

SNNs are implemented in a highly parallel manner and,
thus, offer a large degree of algorithmic noise. This can
influence the performance of our attack.

We chose simulations as best case scenario for an attacker,
where no measurement noise is present. Within our simula-
tions, we consider, that all n parallel operating neurons update
their membrane potential at the same point in time. For the
attacker we assume, that he/she can only measure the overall
power consumption during the operation of the device, which
gives us the scenario that he/she acquires power measurements
during the operation of the device. To transfer processed values
to a virtual power consumption we use the HD model, which
also fits the afterwards attacked FPGA implementation.

We performed 100,000 experiments for each number of
parallel neurons. We attack at clock cycle 20, which gives
us 420 distinct input combinations consisting of two inputs
and idle cycles.®> For each run the weights to be attacked, as
well as the weights of all other neurons are chosen randomly.
During each simulation, we try to attack a single neuron. The
simulation results are depicted in fig. 5, where the probability
of a guessing entropy H after applying our attack are plotted
over an increasing amount n of parallel neurons. The proba-
bilities are calculated by counting the occurrences of attacks
with the depicted guessing entropy H and dividing them by
the number of all experiments. The simulated neurons utilize
4-bit weights, and we employ hypotheses of two weights
resulting in an initial guessing entropy of 8-bit. These are
the same parameters, we use in our later attacked FPGA
implementation. Please note, that the depicted trend does not
change with increasing width of weights, i.e., experiments with
using 8-bit weights result in similar behavior.

3The number of input combinations is equal to the maximum amount of
different value transitions from clock cycle 19 to 20, which are possible when
we apply spikes to two inputs.



Results in fig. 5 indicate, that an increase in the number
of parallel neurons decreases the success of an attack. For
example, a guessing entropy of 2-bit or less is only reached in
about 4.4 % of the cases, when 100 neurons are implemented
in parallel after performing the CPA. Consequently, extract-
ing the neuron parameters by observing the overall power
consumption is not possible. In fig. 5 one can identify, that
an attacker must reduce or eliminate the influence of other
neuron(s) while taking measurements. Thus, localized mea-
surements are necessary to extract the valuable information.

F. Layer Size and Subsequent Layers

In addition to the neuron parameters, the network topology
is of interest to an attacker. The layer size of the targeted feed-
forward network can be identified, since an attacker needs
to attack each neuron reacting to the input spikes he/she is
applying. Therefore, he/she needs to take measurements of
each neuron or a few neurons separately, due to the effects
described in section III-E. Hence, an attacker can identify,
how many neurons react to the applied inputs directly and
assign them to the first layer. A reaction to the input pattern is
noticed by performing an attack according section III-C and
analyzing the magnitude of correlation coefficients. In other
words: an attack on the weights of a neuron with hypotheses
hg originating from a wrong assumption of the input will not
yield any distinct correlation coefficients.

After attacking the first layer, an attacker must also recover
subsequent layers to extract the full IP of the implemented
network. According to our methods from section III-C and
section III-D, the attacker completely reverse engineers the
first layer. Knowing the first layer, enables the attacker to
model its behavior. Hence, known input combinations can
be applied to the next hidden layer. As a result, an attacker
can successively reverse engineer the whole network layer by
layer.

IV. EXPERIMENTAL RESULTS

In the following the experimental results of our CPA from
Section III are analyzed. We utilize the NewAE Technology
CW305 FPGA board featuring a Xilinx Artix-7 FPGA, which
is decapped to increase the Signal-to-Noise Ratio (SNR) of
EM radiation. The device runs at a frequency of 1 MHz to
simultaneously obtain exploitable power* and EM traces. We
sample with 625 MHz using a Picoscope 6402D and a near
field EM probe (Langer ICR HH250-75). Both, power and
EM signals are amplified with a Langer PA 303 by 30dB.
Our measurement setup is depicted in fig. 6.

We implement one layer of a SNN with 100 neurons
operating in parallel, where the 4-bit weights are chosen
randomlys, and the threshold is set to 1,000 so we do not reach
it. We acquire EM and power measurements at the same time,

“Due to capacitive effects a lower clock frequency is necessary for power
measurements. However, EM traces can be attacked by higher frequencies, as
well.

5The attack is independent of the chosen weight and threshold parameters,
i.e. any weight and any threshold can be reverse engineered the same way.

Fig. 6: EM near field probe over the decapped FPGA.

meaning that the results of fig. 7a and fig. 7b are from the same
measurement run. The EM measurements from fig. 7b depict
a single neuron operating. The plots are originating from
measurements, where random patterns stimulating two inputs
are applied to the network under attack. The measurements
used to extract the threshold, shown in fig. 7c, are acquired
separately, since we reduced the threshold there to ensure that
it is exceeded several times.

From fig. 7a we can see that an attack is not possible when
the power consumption of 100 parallel neurons is observed,
even with 2 million traces. This goes in hand with our findings
from section III-E. However, we also stated, that one to a few
neurons are attackable. This is confirmed by the results of
the localized EM measurement in fig. 7b, where the correct
weights can be identified with about 2,000 traces. Please note,
due to our probe, we succeeded in resolving a single neuron.
The correct threshold can also be distinguished from wrong
candidates with about 200 traces, which is shown in fig. 7c.
The significantly lower number of traces for attacking the
threshold compared to the weights can be explained due to two
effects. On the one hand, the granularity of weights only allows
a few threshold values. On the other hand, a small change in
threshold influences the membrane potential drastically at a
late attack cycle.

Overall, the theoretical simulations from section III-E are
confirmed by our experimental results. Localized measure-
ments lead to a successful retrieval of weights and thresholds.
Thus, an attacker is able to reverse engineer all neurons by
localizing them and applying our attack methodology from
section III. Please note, that results of neurons in further layers
are not depicted here. Although the attack strategy according to
section III-F is different from first layer neurons, the resulting
plots do not differ.

V. DISCUSSION

Section IV indicates, that reverse engineering SNNs is
successful as long as an attacker is able to avoid the influence
of parallel neurons in his/her measurements. Compared to [4],
where a sequential implementation of a formal NN is attacked,
the algorithmic noise increases due to the parallelism in our
implementation. Thus, several attack coordinates on the chip,
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i.e. positions of the probe, must be measured separately. This
means, that the effort of our SCA scales directly with the
number of positions, and thus, with the size of the imple-
mented SNN. However, parallel hardware implementations of
formal NN also suffer from the problem of algorithmic noise
influencing the attack success. Attacks such as [6], however,
do not go into detail of this effect. This can be due to the
fact, it is less significant in classical NNs compared to SNNs.
Further investigation can be necessary to give more insights
in algorithmic noise due to parallelism, in the context of NN
hardware implementations.

Nevertheless, we performed a successful attack on integrate-
and-fire neurons within a SNN. Our findings highlight the need
for countermeasures against SCA of SNNs such as masking
or shuffling.

VI. CONCLUSION

Due to their low-power properties, as well as their event
based operation, spiking neural networks are suitable for edge
devices. However, edge devices enable side-channel analysis
with aim to reverse engineer the network. In this work, we
outlined the threat of CPA to reverse engineer the parameters
of feed-forward SNNs utilizing IF neurons. High parallelism
and the resulting algorithmic noise within SNNs hinders the
extraction of information from the overall power consumption
of the chip. We circumvented this effect by utilizing localized
EM measurements. Furthermore, this behavior is additionally
confirmed by analyzing virtual results under ideal conditions
by means of simulation.
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