
Computing Quotient Groups of Smooth Order
with Applications to Isogenies over

Higher-Dimensional Abelian Varieties

Jesús-Javier Chi-Domínguez1 , Amalia Pizarro-Madariaga2 , and Edgardo
Riquelme3

1 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
2 Instituto de Matemáticas, Universidad de Valparaíso, Chile

3 Departamento de Ciencias Básicas, Universidad del Bío Bío, Chile
jesus.dominguez@tii.ae,amalia.pizarro@uv.cl,edriquelme@ubiobio.cl

Abstract. There is an increasing interest in efficiently computing isoge-
nies with a kernel of large-smooth size, for instance, as a building block
for building secure Proof-of-Knowledge (PoK) with isogenies of degree
equals a power of a small prime number. Another example corresponds
to the attacks started by Castryck and Decru and followed up by Maino-
Martindale and Robert, which require calculating isogenies over super-
special principally polarized abelian surfaces (superspecial PPAS). On
the opposite side of cryptanalysis, some of the current state-of-the-art
on safe isogeny-based PoK constructions extend to the case of superspe-
cial PPAS, with the property that one could use smaller fields (e.g., 128,
192, and 256 bits).
This work presents a general framework that generalizes the situation of
computing isogenies of the large-smooth degree to the context of quotient
groups. More precisely, we abstract and propose a generalization of the
strategy technique by Jao, De Feo, and Plût. Such a framework provides
an efficient generic algorithm that easily applies to computing isogenies
over superspecial PPAS when given the isogeny kernel. Additionally, our
algorithm induces an efficient algorithm to perform the KernelToIsogeny
procedure required in SQISignHD.
To illustrate the impact of optimal strategies, we draft our experiments
on the isogenies over superspecial PPAS required in the Castryck-Decru
attack (powers of two and three). Our experiments illustrate a decent
speed up of 1.25x faster than the state-of-the-art (about 20% of savings).
Our results should be viewed as proof-of-concept implementation and
considered for optimized C-language implementations.

Keywords: Elliptic Curves · Isogenies · Quotient Groups · Strategies · super-
special PPAS

1 Introduction

Isogenies of elliptic curves have played an important role in post-quantum cryp-
tography. Informally speaking, isogenies are peculiar objects being surjective

https://orcid.org/0000-0002-9753-7263
https://orcid.org/0000-0001-9244-4300
https://orcid.org/0009-0000-6243-980X

morphism (over the algebraic closure) between abelian varieties that fix the point
at infinity (the neutral element). Mainly, isogenies act as group homomorphism.

The most known isogeny-based protocols based on Diffie-Hellman-like con-
structions are

– The Supersingular Isogeny Diffie-Hellman [17],
– The Supersingular Isogeny Key Encapsulation SIKE [2],
– The Commutative SIDH (CSIDH) suggests working over prime fields [8],
– The B-SIDH proposal from [12] suggests using twist-quadratic curves, and
– The genus-two variant of SIDH (G2SIDH) from [23] suggests using isogenies

over higher-dimensional abelian varieties.

The SIKE protocol was the only proposal participating in the Post-Quantum
NIST competition based on isogenies. Nevertheless, the recent attacks in [6,28,30]
break SIDH/SIKE (and theoretically B-SIDH) in minutes. The most demanded
calculations in these attacks are the computation of isogenies over higher-
dimensional abelian varieties. That is primarily because the attacks translate
the initial isogeny problem into higher-dimensional abelian varieties.

However, beyond the key-exchange protocols proposed in [17,8], isogenies
have become a powerful tool in building practical post-quantum secure [Sig-
nature/PoK] schemes proposed in [18,16,19,3,9,25,15]. Aside from those works,
there is interest in using such isogenies for building protocols on top of Jacobian
of genus-two curves and the product of elliptic curves [9,15]. In particular, all the
constructions from [17,16,9,3,25] can be extended to the Jacobian of genus-two
curves and the product of elliptic curves, allowing them to work with smaller
fields [14].

In the elliptic curve scenario, the most efficient approach to computing iso-
genies of smooth large-degree 4 is splitting the computation into small-degree
isogenies. Such an approach was initially described in [17], where the authors in-
troduced the concept of strategies and followed up in [26,10,1,21]. The strategy
approach reduces the computational cost of computing a ℓn-isogeny from O(n2)
to O(n log n) scalar points multiplications by ℓ and ℓ-isogeny evaluations, where
ℓ is a prime number.

Considering that obtaining the codomain curve of an isogeny is computing
(as a group) the quotient between the domain curve and the isogeny kernel, we
can generalize the strategies concept to a more general setting. In the present
work, we generalize this construction, focusing on the mathematical abstraction
of computing the quotient group G/H for a pair of smooth-order groups G and
H ≤ G. We apply this abstraction to obtain optimized computation of (ℓn, ℓn)-
isogenies over higher-dimensional varieties.

4 The term smooth-order kernel refers to a kernel of order that equals N = ℓ1 · · · ℓn for
some small prime primes ℓi’s. No restriction on the ℓi’s, and there can be repeated
ℓi’s in the factors of N . We assume N has hundreds of bits. Similarly, we refer to a
large-smooth integer as an integer like N = ℓ1 · · · ℓn.

2

1.1 Contributions

For simplicity, in this section, we use a multiplicative group notation. That is,
G denotes the group (G, ∗) and gh means g ∗h for any pair of elements g, h ∈ G.

As the main contribution, we abstract and generalize the strategy technique
used to compute isogenies (between elliptic curves) with a given smooth-order 4

kernel [17,26,10,1,21], this time to calculate the quotient group. We define two
new objects required to decompose the quotient group computation into a chain
of small prime-order quotient subgroups.

Definition 1.1 (Informal definition of a QAB). Given a prime number ℓ
and an integer k ≥ 1. A QABℓ

k for a group G and order-ℓk subgroup H ≤ G
is a 3-tuple composed by three algorithms Multiplyℓ : g ∈ G 7→ gℓ ∈ G,
Evaluateℓ : (g,H) 7→ gH ∈ G/H and Construct : H 7→ G/H.

Definition 1.2 (Informal definition of a CAB). Given a composite integer
L = ℓ1 · · · ℓn with small primes factors ℓi’s and an integer k ≥ 1. A CABL

k for
a group G and an order-Lk subgroup H ≤ G is a collection of all the QABℓi

k ’s
along with an extra algorithm ComposeL : H 7→ G/H.

One can compute G/H using Construct with the large integer L instead of a
small prime ℓ. Nevertheless, the procedure Construct usually runs in polynomial
time concerning the input order. Therefore, computing G/H may not be feasible
for large values of L ≈ 2λ. For smooth-order subgroups H, one can calculate
G/H in polynomial time concerning each small prime factor of L, considerably
improving the naive approach. We informally describe the strategy technique on
group quotients in the following definition.

Definition 1.3 (Informal definition of a strategy for a CAB). Given a
composite integer L = ℓ1 · · · ℓn with small primes factors ℓi’s and an integer
k ≥ 1, and a CABL

k for an order-Lk subgroup H. An strategy StLn for CABL
k

is a technique to perform ComposeL in polynomial time concerning the variable
(ℓ1, . . . , ℓn).

Remark 1.1 (Informal codification of the strategies). Any strategy for a CABL
k

can be expressed as a list of (n − 1) positive integers. We provide an efficient
algorithm for computing and evaluating any optimal strategy.

Our generalization is not limited to L-isogenies between elliptic curves but
also applies to compute (L,L)-isogenies between superspecial principally polar-
ized abelian surface (superspecial PPAS). In the following two informal lemmas,
we characterize the isogeny computations over elliptic curves and superspecial
PPAS as CABs.

Lemma 1.1 (Informal first lemma). Given a supersingular curve E and
a kernel subgroup H of order L on E. The task of computing the L-isogeny
ϕ : E → E/H with kernel H is a special case of a CABL

1 .

3

Lemma 1.2 (Informal second lemma). Given a superspecial PPAS A and
a kernel subgroup H of order L2, generated by two elements, on A. The task of
computing the (L,L)-isogeny ϕ : A → A/H with kernel H is a special case of a
CABL

2 .

Consequently, our main new results center on an efficient technique to con-
struct (L,L)-isogenies over PPAS, particularly for computing (2n, 2n)-isogenies
and (3n, 3n)-isogenies. Our strategy technique theoretically improves the (L,L)-
isogeny constructions required in the attacks presented in [6,28,30]. We addi-
tionally provide a proof-of-concept implementation using the Magma Computer
Algebra System and the SageMath library. Our local experiments draw a decent
speed up of about 1.25x compared with state-of-the-art techniques 5.

1.2 Organization of the Paper

The paper organizes as follows. Section 2 lists the required group theory, elliptic
curve, and superspecial PPAS background.

Section 3 presents the generic framework to compute quotient groups effi-
ciently. In particular, Section 3.1 discusses the (optimal) strategies when the
group sizes are large-smooth integers (not necessarily a power of a prime num-
ber). In contrast, Section 3.2 describes the particular case of a power of a small
prime integer (i.e., the straightforward extension of strategy by Jao, De Feo,
and Plut). Both sections provide algorithms to compute and evaluate the op-
timal strategies. By “evaluate a strategy”, we mean a procedure that calculates
quotient groups efficiently by employing such a strategy.

Section 4 lands the results from Section 3 to the case of superspecial PPAS
when the kernel has a size that equals a power of a small prime. Moreover, Sec-
tion 4.1 gives the state-of-the-art concerning (3, 3)-isogenies over superspecial
PPAS (the CAB3n

3 ’s built-in functions) and compares against the state-of-the-art
for computing (3n, 3n)-isogenies. Analousgly, Section 4.2 illustrates the state-of-
the-art concerning (2, 2)-isogenies (the CAB2n

2 ’s built-in functions) and compares
against the state-the-art for computing (2n, 2n)-isogenies.

Finally, Section 5 summarizes the concluding remarks and discusses the po-
tential applications of our results.

2 Preliminaries

This section introduces the basics of group theory needed to describe the ex-
tension of strategies to quotient groups. Additionally, it presents the required
definitions to land our results into the case of supersingular elliptic curves and
principally polarized abelian surfaces.

Let n be a positive integer. We use the notation JnK to refer the list (in
increasing order) [1, . . . , n−1, n], while KnJ denotes the list (in decreasing order)

5 Our code is freely available in this GitHub repository.

4

https://github.com/JJChiDguez/code-strategies.git

[n, n − 1, . . . , 1]. The list of n ones is denoted as J1Kn. We represent vectors by
bold letters (e.g., v) and sub-indexes label each entry of such vectors (e.g., vi).

An abelian group (G, ∗) is a 2-tuple composed of a non-empty set G and a
closed binary operation ∗ : G×G → G such that the following four group axioms
hold:

– Identity element: There is a unique element e ∈ G such that for any g ∈ G
we have e ∗ g = g = g ∗ e.

– Inverse element: For any element g ∈ G there exists g ∈ G such that
g ∗ g = e = g ∗ g.

– Associativity: For any g, h, i ∈ G, we have (g ∗ h) ∗ i = g ∗ (h ∗ i).
– Commutativity: For any g, h ∈ G, we have g ∗ h = h ∗ g.

The order of a group (G, ∗) is the size of G, denoted by #G. The order of an
element g ∈ G is the smallest integer n ≥ 1 such that

g ∗ · · · ∗ g
n times

= e.

A subgroup (H, ∗) of a group (G, ∗), denoted by H ≤ G, is a group such that
H ⊆ G. A group homomorphism f : G → H is a function between two groups,
(G, ∗) and (H, ⋆), such that for all g1, g2 ∈ G it holds that

f(g1 ∗ g2) = f(g1) ⋆ f(g2).

In particular, we have that f(eG) = eH and f(g) = f(g) for all g ∈ G.
The kenerl of f is defined as ker f := {g ∈ G : f(g) = eH}, while its image is
{f(g) : g ∈ G}. Given a subgroup H ≤ G of the abelian group G, the quotient
group G/H correspond with the set {g∗H : g ∈ G} where g∗H := {g∗h : h ∈ H},
and the closed binary operation is ⋆ : (g1 ∗H, g2 ∗H) 7→ (g1 ∗ g2) ∗H. This time
the identity element is H, and the inverse of g ∗H ∈ G/H is g ∗H.

Theorem 2.1 (The First Isomorphism Theorem). If f : G → G′ is a group
homomorphism between two groups G and G′, then G/ ker f is isomorphic to the
image of f .

Direct products. The direct product (G×H, •) of two groups (G, ∗) and (H, ⋆)
is defined as follows:

– The underlying set is the cartesian product G×H.
– The closed binary operation on G×H is defined component-wise:

• : (x,y) 7→ (x1 ∗ y1,x2 ⋆ y2).

5

The identity element in G×H is e := (eG, eH), and we say that v ∈ G×H
is an order-(n,m) element if v1 and v2 have order n and m. More generally,
one can define the direct product concerning the cartesian product of k groups
Gi’s, and the above definition and properties easily extend to k-dimensional
vector elements. In particular, we define that an element g = (g1, . . . ,gi) in g ∈∏k

i=1 Gi has order-(n, . . . , n) if each gi has order n. If Gi = G, with i = 1, . . . , k
for some fixed group (G, ∗), we write its direct product as (Gk, •).

Remark 2.1. By group law, we mean the closed binary operation that satisfies
the four above properties. For short, we write G instead of (G, ∗) when there is
no ambiguity in the group law.

Supersingular Elliptic Curves. Let p be a prime number such that p ≡ 3
mod 4. We denote by Fp the prime field with p elements, and its quadratic
extension as Fp2 := Fp[i]/(i

2 + 1). Let E be a supersingular Montgomery curves
given by Equation 1

E : y2 = x3 +Ax2 + x, A ∈ Fp2 \ {±2}. (1)

Every supersingular elliptic curve can be defined over Fp2 and they have
exactly #E(Fp2) = (p± 1)

2 points. We restrict our analysis to the case
#E(Fp2) = (p+ 1)

2. We use O to denote the point at infinity of E (the neu-
tral element). For any field extension Fq of Fp, the set of Fq-rational points
E(Fq) := {(x, y) ∈ Fq × Fq : y

2 = x3 + Ax2 + x} forms an additive group un-
der the chord-and-tangent rule. We write E[ℓ] to refer the ℓ-torsion subgroup
{P ∈ E

(
Fp2

)
| [ℓ]P = O} of E, where

[ℓ]P = P + · · ·+ P
ℓ times

.

An isogeny ϕ : E → E′ is a morphism satisfying, ϕ(OE) = OE′ . Isogenies are
rational functions and if their coefficient belongs to a field Fq, we say that the
isogeny is defined over Fq. If such isogeny exists, we say E and E′ are isogenous
over Fq which happens if and only if #E(Fq) = #E′(Fq). In particular, ϕ is a
homomorphism of groups. We say that a (separable) isogeny ϕ is an ℓ-isogeny
when #kerϕ = ℓ holds.

Principally Polarized Abelian Surface (PPAS). Let C be a genus two
hyperelliptic curves given by Equation 2. There is no restriction on the leading
coefficient of f(x), so must of the time we assume f(x) is not monic.

C : y2 = f(x), f(x) ∈ Fp2 [x] with deg f = 6. (2)

The Jacobian group JC of C is an abelian variety of dimension 2 (i.e., abelian
surface). We next summarize what the Jacobian elements look like (for a deeper

6

understanding of Jacobian groups, we recommend reading [24]). There are two
points at infinity ∞+ and ∞− on C. The negative of a point P = (x, y) on C is
−P = (x,−y). A divisor is a formal sum of points on C. Every nonzero rational
function on C has an associated divisor labeled as principal. Two divisors are
equivalent if their difference is a principal divisor. The canonical equivalence
class of divisors of the form O = (P) + (−P) determines the identity element in
JC . Any other divisor in JC is of form (P)+(Q)+(O), where P and Q are points
on C (including the points at infinity ∞+ and ∞−). For simplicity, we denote
(P)+ (Q)+ (O) by [P +Q]. Additionally, the group law on JC can be efficiently
computed using Cantor’s algorithm under the Mumford representation (pair of
polynomials) [11, Chapter 14].

A principally polarized abelian surface (PPAS) A is either the product of
two elliptic curves E × E′ or the Jacobian JC of a genus two curve C. Analo-
gously to elliptic curves, an isogeny ϕ : A → A′ over Fq is a morphism satisfying,
ϕ(OA) = OA′ . Moreover, ϕ is also a homomorphism of groups. A (ℓ, ℓ)-isogeny
is an isogeny ϕ : A → A′ between two PPAS A and A′ whose kernel is a max-
imal ℓ-Weil isotropic subgroup of the ℓ-torsion subgroup A[ℓ]. The kernel of a
(ℓ, ℓ)-isogeny will called a (ℓ, ℓ)-subgroup. In particular, kerϕ ∼= Zℓ ×Zℓ holds 6.
An abelian surface A over Fq is a principally polarized superspecial abelian sur-
face if A is a PPAS isomorphic over Fq (as an unpolarized abelian variety) to
a product of supersingular elliptic curves. In particular, every principally polar-
ized superspecial abelian surface can be defined over Fp2 . If we consider A being
(m,m)-isogenous, for some m ∤ p, over Fp2 to a product of supersingular elliptic
curves with (p + 1)2 points, then we can assume that #A(Fp2) = (p + 1)4. We
focus on the principally polarized superspecial abelian surfaces, but our results
easily extend to any PPAS. In the rest of the work, we write superspecial PPAS
to refer to principally polarized superspecial abelian surfaces.

3 Computing Quotient Groups

This section describes the main results and extends the definition of “strategies”
in the context of computing group quotients. It generalizes the situation of com-
puting smooth degree isogenies as in [26,10,1] when given the kernel generator.
Additionally, it presents the extension to the case of a power of a small prime as
in [17,2,21].

Definition 3.1 (Quotient Atomic Block: QABℓ
k). Let N = ℓ1 · · · ℓn be an

integer with n small primes ℓi’s, and let (G, ∗) be a finite abelian group of smooth
order Nm for some positive integer m. Let us fix a positive integer k ∈ JmK, and
let (Gk, •) be the direct product of k copies of G with the binary operation

• : (g,g′) 7→ (g1 ∗ g′
1, . . . ,gk ∗ g′

k).

6 We recommend reading [22,27,20] for the cases ℓ = 2, 3.

7

Let ℓ be a prime integer number in {ℓ1, . . . , ℓn}, and h := (h1, . . . ,hk) ∈ Gk

of order (ℓ, . . . , ℓ) such that Hℓ := ⟨h1, . . . ,hk⟩ ≤ G has order ℓk. A Quotient
Atomic Block, QABℓ

k for short, is composed of three main algorithms:

– Multiplyℓ(g): takes as input an element g ∈ Gk and returns g′ = •ℓg where
•ℓ denotes the scalar multiplication by ℓ, i.e.,

•ℓ : g 7→ g • · · · • g
ℓ times

.

– Constructℓ(h): takes as input an order-(ℓ, . . . , ℓ) element h ∈ Gk as defined
above, and returns the quotient subgroup G′ = G/Hℓ.

– Evaluateℓ(g,h): takes as input two group elements g,h ∈ Gk, with h of order
(ℓ, . . . , ℓ) as defined above, and returns g′ := g • Hℓ, the image of g under
the canonical projection π of G onto G′ = G/Hℓ.

Definition 3.2 (Chained Atomic Block (CABL
k)). Let N = ℓ1 · · · ℓn be a

integer with n small primes ℓi’s, and let (G, ∗) be a finite abelian group of smooth
order Nm for some positive integer m. Let L = ℓσ(1) · · · ℓσ(n′) be a smooth factor
of N for some integer 1 ≤ n′ ≤ n and permutation σ : JnK → JnK, and let
h := (h1, . . . ,hk) ∈ Gk of order (L, . . . , L) such that HL := ⟨h1, . . . ,hk⟩ ≤ G
has order Lk. A Chained Atomic Block, CABL

k for short, is a collection of n′

QABs along with an algorithm ComposeL,

CABL
k :=

({
QAB

ℓσ(i)

k

}n′

i=1
,ComposeL

)
, (3)

such that

– ComposeL(h): takes as input an order-(L, . . . , L) element h ∈ Gk as defined
above, and returns the quotient subgroup G′ = G/HL.

Lemma 3.1 (Supersingular Elliptic Curves). Given a supersingular curve
E defined over Fp2 and H a subgroup of order L on E(Fp2). The task of com-
puting the L-isogeny ϕ : E → E/H with kernel H is a special case of a CABL

1 .

Proof. Let E/Fp2 be a supersingular elliptic curve satisfying #E(Fp2) = (p+1)2.
If L | (p + 1)2, then E[L] ≤ E(Fp2), so every subgroup H of order L of E is
defined over Fp2 . There is a unique (up to isomorphism) elliptic curve E′ and
isogeny ϕ : E → E′ such that ker ϕ = H. Combining the First Isomorphism
Theorem with the fact that ϕ : E(Fp2) → E′(Fp2) is surjective, we have that

E(Fp2)/ kerϕ ∼= E′(Fp2).

In this case, the isogeny is defined over Fp2 , so the curve E′ is also defined over
Fp2 . The algorithm Multiplyℓ(P) corresponds with the scalar multiplication by
ℓ in elliptic curves, i.e., Multiplyℓ(P) = [ℓ]P , where P ∈ E(Fp2). The algorithm

8

Constructℓ(H) returns the codomain curve E′ of the isogeny ϕ with kernel H and
the algorithm Evaluateℓ(P,H), returns the point ϕ(P) ∈ E′(Fp2). Notice that
although the group G should be E(Fp2), in practice, we only consider curves
and points over Fp2 ; therefore, the curves are also defined over Fp2 . ⊓⊔

Lemma 3.2 (Superspecial PPAS). Given a superspecial PPAS A defined
over Fp2 and a (L,L)-subgroup H of order L2, generated by two order-L el-
ements, on A. The task of computing the (L,L)-isogeny ϕ : A → A/H with
kernel H is a special case of a CABL

2 .

Proof. Let C be a hyperelliptic genus 2 curve over Fp2 such that JC is a super-
special PPAS defined over Fp2 with #JC(Fp2) = (p+1)4. Then if L | (p+1), then
JC [L] ≤ JC(Fp2) and every subgroup H of order L2 of JC is defined over Fp2 .
Let H be a (L,L)-subgroup H of order L2. Then, there is a unique superspecial
PPAS JC′ and (L,L)-isogeny ϕ : JC → JC′ such that ker ϕ = H. Analogously to
the elliptic curve’s case, we have that

JC(Fp2)/ kerϕ ∼= JC′(Fp2),

and the three algorithms Multiplyℓ(P), Constructℓ(H) and Evaluateℓ(P,H), are
considered in the superspecial PPAS’s setting. More precisely, the algorithm
Multiplyℓ(P) corresponds with the scalar multiplication by ℓ in the Jacobian
of the curve C, i.e., Multiplyℓ(P) = [ℓ]P , where P ∈ JC(Fp2). The algorithm
Constructℓ(H) returns the codomain curve C ′ of the isogeny ϕ with kernel H and
the algorithm Evaluateℓ(P,H), returns the point ϕ(Q) ∈ JC′(Fp2). Analogously
to the elliptic-curve case, all the points and curves are defined over Fp2 . ⊓⊔

Definition 3.3 (Strategies for a two order-L elements CABL
k). Let

N = ℓ1 · · · ℓn be an integer with n small odd primes ℓi’s, and let (G, ∗) be
a finite abelian group of smooth order Nm for some positive integer m. Let
L = ℓσ(1) · · · ℓσ(n′) be a smooth factor of N for some integer 1 ≤ n′ ≤ n and
permutation σ : JnK → JnK. Let CABL

k be a chained atomic block for a finite
abelian group G as defined in Definition 3.2 and given by Equation (3). Let
h := (h1, . . . ,hk) ∈ Gk of order (L, . . . , L) such that HL := ⟨h1, . . . ,hk⟩ ≤ G
has order Lk. Let ∆L

n′ be a discrete rectangular triangular with the point at the
right angle h0 = h, opposite cathetus be composed by

h0 = h,

h1 = Multiplyℓσ(1)
h0,

h2 = Multiplyℓσ(2)
h1,

...
hn′−1 = Multiplyℓσ(n′−1)

hn′−2,

the hypotenuse determined by following order-(ℓσ(i), . . . , ℓσ(i)) elements

9

h(1) = hn′−1,

h(2) = Evaluateℓσ(n′)

(
hn′−2,h

(1)
)
,

h(3) = Evaluateℓσ(n′−1)

(
Evaluateℓσ(n′)

(
hn′−3,h

(1)
)
,h(2)

)
,

...

h(n′) = Evaluateℓσ(2)

(
. . .Evaluateℓσ(n′)

(
h0,h

(1)
)
. . . ,h(n′−1)

)
.

and the adjacent cathetus given by

h′
0 = h0,

h′
1 = Evaluateℓσ(n′)

(
h′
0,h

(1)
)
,

h′
2 = Evaluateℓσ(n′−1)

(
Evaluateℓσ(n′)

(
h′
2,h

(1)
)
,h(2)

)
,

...

h′
n′−1 = Evaluateℓσ(2)

(
. . .Evaluateℓσ(n′)

(
h′
0,h

(1)
)
. . . ,h(n′−1)

)
.

Any other point in ∆L
n′ corresponds with scalar multiplications and evalua-

tions of the cathetus. Notice that h′
n′−1 and hn′ are equal, and the hypotenuse

implicitly describes a path between subgroups to compute Gn′ = G/HL,

G0 = G → G1 = G0/h
(1) → G2 = G1/h

(2) → · · · → Gn′ ∼= Gn′−1/h
(n′).

A strategy for a CABL
k is an extra attribute described by a weighted binary

tree StLn′ inside ∆L
n′ with root h0 and leaves h(1), . . . ,h(n′). Implicitly, a strategy

StLn′ provides an efficient technique to perform ComposeL(h).

3.1 Different kinds of strategies

One crucial remark is that any strategy, as defined in Definition 3.3, can be
recursively decomposed into two binary sub-trees, one contained in ∆

Ln′−h

n′−h and
another in ∆Lh

h , where Lh = [ℓσ(1), . . . , ℓσ(h)] and Ln′−h = [ℓσ(h+1), . . . , ℓσ(n′)].
Such decomposition permits representing any strategy as a positive integer list
of n′ − 1 elements, where each entry determines the height n′ − h (resp. h) of
the left-side (resp. right-side) sub-tree. One computes h multiplications (resp.
n′−h evaluations) to move into the left-side (resp. right-side) sub-tree. Figure 1
illustrates a strategy’s shape and general idea. On that basis, any strategy costs
smaller than or equal to the cost of constructing the whole triangle ∆L

n′ . Since

10

Evaluateℓ

M
u
lt
ip
ly

ℓ

∆
Ln′−h

n′−h

h

∆Lh

h

n′ − h

Fig. 1: Strategy technique: reduce the computations from ∆L
n′ into two bi-

nary sub-trees, one contained in ∆
Ln′−h

n′−h and another in ∆Lh

h , where Lh =
[ℓσ(1), . . . , ℓσ(h)] and Ln′−h = [ℓσ(h+1), . . . , ℓσ(n′)] and h ∈ Jn′ − 1K.

∆L
n′ has

∑n′−1
j=1 j = (n′−1)n′

2 points, the maximum number of multiplications and

evaluations is (n′−1)n′

2 .
Therefore, if the three algorithms, Multiplyℓ, Constructℓ, and Evaluateℓ, run

in polynomial time for each ℓ ∈ {ℓσ(1), . . . , ℓσ(n′)}, then a polynomial time al-
gorithm exists concerning the variable (ℓσ(1), . . . , ℓσ(n′)) to perform ComposeL.
We summarize the above observations in Algorithm 1. The associated cost of a
strategy StLn′ is

C
(
StLn′

)
= C

(
St

Ln′−h

n′−h

)
+ C

(
StLh

h

)
+

h∑
j=1

µσ(j) +

n′−h∑
j=1

ησ(h+j) (4)

where µσ(j) and ησ(j) denote the costs concerning Multiplyℓσ(j)
and

Evaluateℓσ(j)
, respectively. The related cost κσ(j) of Constructℓσ(j)

only impacts
the cost for the chained computation required to get the output of ComposeL,
which gives a total cost equals to

τL = C
(
StLn′

)
+

n′∑
j=1

κσ(j).

Definition 3.4 (Multiplicative strategy). A strategy StLn′ of the form Kn′−
1J is called a multiplicative strategy.

Definition 3.5 (Evaluative strategy). A strategy StLn′ of the form J1Kn−1 is
called an evaluative strategy.

11

Algorithm 1 Strategy for a CABL
k : Technique to perform ComposeL

Inputs: A finite abelian group G of order Nm with N = ℓ1 · · · ℓn and m ≥ 1, an
smooth factor L = ℓσ(1) · · · ℓσ(n′) of N for some integer 1 ≤ n′ ≤ n and permutation
σ : JnK → JnK, an element h := (h1, . . . ,hk) ∈ Gk of order (L, . . . , L) such that
HL := ⟨h1, . . . ,hk⟩ ≤ G has order Lk, a Chained Atomic Block CABL

k for G, and
a strategy StLn′ coded as a list of n′ − 1 positive integers.

Output: Quotient subgroup G′ := G/HL.
1: k ← 1
2: G′ ← G
3: h′ ← h
4: K ← [h′]
5: steps← [1]
6: for i = 1 to n′ − 1 do
7: level← sum of all elements in steps
8: h′ ← last element of K
9: while h′ does not have order (ℓσ(n′+1−i), . . . , ℓσ(n′+1−i)) do

10: sk ← k-th element of StLn′

11: Append sk to the last element of steps
12: for j = level to level+ sk do
13: h′ ← Multiplyℓσ(j)

(h′)

14: end for
15: Append h′ to the last element of K
16: level← level+ sk
17: k ← k + 1
18: end while
19: assert level = n′ − i
20: Remove the last element h′ of K
21: Remove the last element of steps
22: G′ ← Constructℓσ(n′+1−i)

(h′)
23: for k in K do
24: k← Evaluateℓσ(n′+1−i)

(k,h′)
25: end for
26: end for
27: Extract and remove the last element h′ of K
28: assert h′ has order (ℓσ(1), . . . , ℓσ(1))
29: G′ ← Constructℓσ(1)

(h′)

30: return G′

Definition 3.6 (Balanced strategy). A strategy StLn′ that recursively splits
∆L

n′ into two sub-triangles of the same size is called a balanced strategy.

A multiplicative strategy performs a n′ constructions, n′−1 evaluations, and
a quadratic number of multiplications (n′−1)n′

2 . While an evaluative strategy per-
forms a n′ constructions, n′−1 multiplications, and a quadratic number of eval-
uations (n′−1)n′

2 . Conversely, a balanced strategy still performs n′ constructions
but n′ log2(n

′) multiplications and evaluations. Therefore, a balanced strategy
requires fewer operations than any multiplicative (and evaluative) strategy.

12

Definition 3.7 (Optimal strategy). A strategy StLn′ with minimal associated
cost C

(
StLn′

)
is called an optimal strategy. That is, any other different strategy

has an associated cost greater than C
(
StLn′

)
.

As initially pointed out in [17] and extended in [26,10], the recursive nature
of the strategies allows applying well-known dynamic-programming algorithms
for computing optimal strategies. Similar to in [26,10], different orderings on the
list L impact the cost C

(
StLn′

)
, implying a different optimal strategy per per-

mutation. By assumption, we have that µσ(i) ≥ µσ(j) and ησ(i) > ησ(j) whenever
ℓσ(i) > ℓσ(j) since the costs are polynomials concerning ℓσ(i) and ℓσ(j) (respec-

tively). Consequently, the associated cost C
(
StLn′

)
to the optimal ordering should

be close to when ℓσ(1) > ℓσ(2) > · · · > ℓσ(n′) (i.e. when the strategy processes
from the smallest to the largest ℓσ(i)). The authors in [10] provided an algorithm
that finds an optimal strategy in time O(n′3), which essentially extends to our
case study. In a nutshell, the algorithm computes an optimal strategy StLn′ by
iteratively solving

argmin
h∈Ji−1K

C
(
St

Li−h

i−h

)
+ C

(
StLh

h

)
+

h∑
j=1

µσ(j) +

i−h∑
j=1

ησ(h+j)

for each i := 1, . . . , n′ and k := 1, . . . (n′+1−i), where L = ℓσ(k)ℓσ(k+1) · · · ℓσ(k+i).
We formalize and land the strategy-search procedure from [10] in Algorithm 2.

3.2 Optimal strategies: when L is a power of a small prime number

This section centers on the case when the subgroup order L = ℓn
′
is a power of

a small prime ℓ; this case is much simpler than the general case from above. For
instance, a CABℓn

′

n′ corresponds with the following tuple

CABℓn
′

k :=
(
QABℓ

k,ComposeL

)
.

The search for optimal strategies relies on the simplified Algorithm 3, and
the associated cost of a strategy Stℓ

n′

n′ reduces to

C
(
Stℓ

n′

n′

)
= C

(
Stℓ

n′−h

n′−h

)
+ C

(
Stℓ

h

h

)
+ hµ+ (n′ − h)η,

where µ and η denote the cost concerning Multiplyℓ and Evaluateℓ, respec-
tively. Algorithm 4 present the strategy-based procedure to perform Composeℓn′ .

13

Algorithm 2 Procedure to compute an optimal strategy for a CABL
k

Inputs: An integer N = ℓ1 · · · ℓn and m ≥ 1, an smooth factor L = ℓσ(1) · · · ℓσ(n′) of
N for some integer 1 ≤ n′ ≤ n and permutation σ : JnK→ JnK, and the associated
costs µσ(i) and ησ(i) of a CABL

k for each i := 1, . . . , n′.
Output: Optimal strategy StLn′ .
1: for j = 1 to n′ do
2: Set as optimal strategy StL

(j,1)

1 = [] for L(j,1) = ℓσ(j)

3: end for
4: for i = 2 to n′ do
5: for j = 1 to n′ + 1− i do
6: Set L(j,i) ← ℓσ(j) · · · ℓσ(j+i)

7: Solve

s = argmin
h∈Ji−1K

C
(
StL

(j+h,i−h)

i−h

)
+ C

(
StL

(j,h)

h

)
+

j+h∑
l=j

µσ(l) +

j+i−h∑
l=j

ησ(h+l)

8: Compute as optimal strategy StL

(j,i)

i = [s] ∪ StL
(j+s,i−s)

i−s ∪ StL
(j,s)

s

9: end for
10: end for
11: return StL

(1,n′)
n′

Algorithm 3 Procedure to compute an optimal strategy for a CABℓn
′

k

Inputs: An integer N = ℓz · ℓ1 · · · ℓn and m ≥ 1, an integer 1 ≤ n′ ≤ z, and the
associated costs µ and η of a CABL

k .
Output: Optimal strategy Stℓ

n′

n′ .
1: Set as optimal strategy Stℓ1 = []
2: for i = 2 to n′ do
3: Solve

s = argmin
h∈Ji−1K

{
C
(
Stℓ

(i−h)

i−h

)
+ C

(
Stℓ

h

h

)
+ hµ+ (i− h)η

}

4: Compute as optimal strategy Stℓ
i

i = [s] ∪ StL
(j+s,i−s)

i−s ∪ StL
(j,s)

s

5: end for
6: return Stℓ

n′

n′

4 Applications

This section simplifies the strategy technique through Algorithm 5 for comput-
ing (ℓn, ℓn)-isogenies over superspecial PPAS. Corollary 4.1 describes the case
study in terms of a CAB. In particular, to illustrate the practical implications,
we next give an overview of the state-of-the-art for computing (2, 2)-isogenies
and (3, 3)-isogenies over superspecial PPAS (the built-in functions concerning a

14

Algorithm 4 Strategy for a CABℓn
′

k : Technique to perform Composeℓn′

Inputs: A finite abelian group G of order Nm with N = ℓz · ℓ1 · · · ℓn and m ≥ 1, an
integer 1 ≤ n′ ≤ z, an element h := (h1, . . . ,hk) ∈ Gk of order (ℓn

′
, . . . , ℓn

′
) such

that Hℓn
′ := ⟨h1, . . . ,hk⟩ ≤ G has order ℓn

′
, a Chained Atomic Block CABℓn

′

k for

G, and a strategy Stℓ
n′

n′ coded as a list of n′ − 1 positive integers.
Output: Quotient subgroup G′ := G/Hℓn

′ .
1: k ← 1
2: G′ ← G
3: h′ ← h
4: K ← [h′]
5: for i = 1 to n′ − 1 do
6: level← sum of all elements in steps
7: h′ ← last element of K
8: while h′ does not have order (ℓ, . . . , ℓ) do
9: sk ← k-th element of StLn′

10: h′ ← Multiplyℓ(. . . (h
′) . . .)

sk multiplications

11: Append h′ to the last element of K
12: k ← k + 1
13: end while
14: assert h′ has order (ℓ, . . . , ℓ)
15: Remove the last element h′ of K
16: G′ ← Constructℓ(h

′)
17: for k in K do
18: k← Evaluateℓ(k,h

′)
19: end for
20: end for
21: Extract and remove the last element h′ of K
22: assert h′ has order (ℓ, . . . , ℓ)
23: G′ ← Constructℓ(h

′)
24: return G′

CABℓn

2) and present experiments according to our [SageMath/Magma]-language
implementation of Algorithm 5.

Corollary 4.1 (Superspecial PPAS). Given a superspecial PPAS A defined
over Fp2 and a (ℓn, ℓn)-subgroup H of order ℓ2n, generated by two order-ℓn el-
ements, on A. The task of computing the (ℓn, ℓn)-isogeny ϕ : A → A/H with
kernel H is a special case of a CABℓn

2 .

4.1 Computing (3n, 3n)-isogenies

This section summarizes the (3, 3)-isogenies formulas by Bruin, Flynn and
Testa [4]. Consider a maximal isotropic group ⟨T1, T2⟩ ⊂ JC [3] of a genus-two
curve C given by Equation (2). In [4], the authors provide a parametrization

15

Algorithm 5 Strategy for a CABℓn

2 : Technique to construct (ℓn, ℓn)-isogenies
Inputs: A superspecial PPAS A, a kernel ⟨h1,h2⟩ ∼= Zℓn × Zℓn on A, and a strategy

Stℓ
n

n coded as a list of n− 1 positive integers.
Output: Codomain A′ := A/⟨h1,h2⟩ of the (ℓn, ℓn)-isogeny with kernel ⟨h1,h2⟩.
1: k ← 1
2: A′ ← A
3: h′ ← (h1,h2)
4: K ← [h′]
5: for i = 1 to n− 1 do
6: level← sum of all elements in steps
7: h′ ← last element of K
8: while h′ does not have order (ℓ, ℓ) do
9: sk ← k-th element of StLn′

10: h′ ← ([ℓsk]h′
1, [ℓ

sk]h′
2)

11: Append h′ to the last element of K
12: k ← k + 1
13: end while
14: assert h′ has order (ℓ, ℓ)
15: Remove the last element h′ of K
16: A′ ← codomain of the (ℓ, ℓ)-isogeny ϕ with kernel ⟨h′

1,h
′
2⟩

17: for k in K do
18: k← (ϕ(k1), ϕ(k2))
19: end for
20: end for
21: Extract and remove the last element h′ of K
22: assert h′ has order (ℓ, ℓ)
23: A′ ← codomain of the (ℓ, ℓ)-isogeny ϕ with kernel ⟨h′

1,h
′
2⟩

24: return A′

of the genus-two curve C determined by the 3-tuple (C, T1, T2), namely (r, s, t)-
parametrization. In particular, they show that the curve C is isomorphic to

Crst : y
2 = Frst(x) = G1(x)

2 + λ1H1(x)
3 = G2(x)

2 + λ2H2(x)
3,

where

H1 = x2 + rx+ t,

λ1 = 4s,

G1 = (s− st− 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 + t,

H2 = x2 + x+ r,

λ2 = 4st, and
G2 = (s− st+ 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 − t.

Additionally, the order-3 element Ti coincides with (Hi(x), Gi(x)) for each i ∈
{1, 2}. The authors in [4] suggest working with the associated Kummer surface

16

K := JC/⟨−1⟩ instead of the Jacobian JC . They propose mapping divisor from
JC to K by some relation ξ : D 7→ (ξ0 : ξ1, : ξ2, : ξ3). More precisely, if f = f6x

6+
f5x

5+ f4x
4+ f3x

3+ f2x
2+ f1x+ f0, and D ∈ JC is equal to [(x1, y1)+ (x2, y2)],

then

ξ0 = 1, ξ1 = x1 + x2, ξ2 = x1x2, ξ3 =
Φ(ξ0, ξ1, ξ2)− 2y1y2

ξ21 − 4ξ0ξ2

where

Φ(ξ0, ξ1, ξ2) = 2f0ξ
3
0 + f1ξ

2
0ξ1 + 2f2ξ

2
0ξ2 + f3ξ0ξ1ξ2 + 2f4ξ0ξ

2
2 + f5ξ

2
2ξ1 + 2f6ξ

3
2 .

The Kummer surface K admits the following quartic equation model

K : (ξ21 − 4ξ0ξ2)ξ
2
3 + Φ(ξ0, ξ1, ξ2)ξ3 + Ψ(ξ0, ξ1, ξ2) = 0,

where Ψ(ξ0, ξ1, ξ2) is a homogeneous degree-4 polynomial. The isogeny
ϕ : JCrst → JCr′s′t′ := JCrst/⟨T1, T2⟩ induces an isogeny between the Kummer
surfaces KCrst

and KCr′s′t′ . The authors provide explicit formulas for comput-
ing the codomain curve and the induced map.

The authors in [20] recently improved formulas for (3, 3)-isogenies. They sim-
plify formulas and reduce the number of required multiplications in [4]. The
authors use a Gröbner basis approach [20,5], to compute the coordinate trans-
formation to a given (r, s, t)-parametrization that allows us to apply the isogeny
formulas. They also provide explicit formulas for the induced transformation on
the Kummer surface.

Strategies for computing (3n, 3n)-isogenies. In the recent work [20], the
authors mention the “impossibility” of reusing the optimal strategies from [17].
Additionally, [20] provides a public code and claims to use a balanced strategy
technique as in [17]. We use their code and implement Algorithm 5 in the context
of (3, 3)-isogenies. Our implementation allows us to test different kinds of strate-
gies. In particular, we compare our strategy technique with the given in [20].
First, we compute the balanced strategy as suggested in [17], and we notice such
a strategy differs from the approach in [20]. Then to identify the main difference,
we include counters for the number of multiplications by three and (3, 3)-isogeny
evaluations. Table 1 lists those operation numbers concerning different strategy
techniques (balanced and optimal balanced) and compares them against the al-
gorithm from [20]. It is worth highlighting that optimal strategies also depend
on the cost µ (multiplication by 3) and η ((3, 3)-isogeny evaluation). Indeed,
regarding asymptotical runtime, the best option is determined by µ and η as
the number of field operations (commonly, the number of field multiplications
and excluding additions). However, in practice and for dedicated [optimized]
C-language implementations, such values as µ and η determine clock cycles or
milliseconds [2]. Anyhow, our experiments compares [20] against the following
two different strategies:

17

1. Balanced strategy just as suggested in [20] but employing Algorithm 5; and
2. Optimal balanced strategy calculated as in Algorithm 3 with µ = η and

using Algorithm 5.

Technique #[Multiplications by 3] #[(3, 3)-isogeny evaluations] Runtime

Balanced strategy from [20] 2884 2380 5264
Balanced strategy 1936 2290 4226
Optimal balanced strategy 1818 2408 4226

Table 1: Number of multiplications by three and (3, 3)-isogeny evaluations re-
quired to compute a (3236, 3236)-isogeny, the runtime column corresponds with
the sum of both numbers. The field characteristic is p751 as defined in [2]. All
the experiments assume the same number of extra points to be evaluated under
each (3, 3)-isogeny (just as required for attacking SIKEp751).

From Table 1, we expect our implementation of Algorithm 5 to be 1.25x faster
than [20], which is about 20% of savings. We discuss and analyze the impact in
seconds of our strategy technique below.

Experimental results. To illustrate the impact of our results, we point out
that our results directly apply to the attacks in [6,28,30]. For example, the most
demanded computations in the Castryck-Decru attack are the (3i, 3i)-isogenies
for some integer i ∈ JnK close to n. We additionally plug our Algorithm 5 into the
public Magma language code of [20] and draw our results in Figure 2. Our exper-
iments focus on the quadratic field extensions of Fp2 with prime characteristic
p751 as defined in [2]. Our implementation isolates the calls to Points(J, h)[1],
which corresponds with the map sending points h from the Kummer Surface into
the Jacobian. Consequently, Points(J, h)[1] only plays a role when computing the
codomain of the isogeny. Therefore, such a cost is not required for computing
the optimal strategy.

We notice from the experiments that the bottleneck in the current imple-
mentations in [20] and ours is the calculation of the codomain curve along with
the data required for evaluating the (3, 3)-isogeny 7, which takes on average 0.04
seconds 8. Both methods perform exactly 236 use of Points(J, h)[1], which gives
9.44 seconds (about 89.06% of the total running time [in average] of 10.6). For
instance, according to the discussion in Section 4.1, we expect a 1.25x speedup in
the (3n, 3n)-isogeny computation, giving a runtime of 1.15964/1.25 = 0.927712
seconds instead of 1.15964 seconds (the 1.15964% of 10.6). Overall, the expected
running time would be (0.927712 + 9.44) = 10.367712 seconds on average, and
our experiments from Figure 2 illustrate such savings.
7 We highlight that the data required for evaluating the (3, 3)-isogenies are only com-

puted once and, thus we can view such computations as part of the calculation of
the codomain curve.

8 We include the cost concerning Points(J, h)[1].

18

Baseline vs.
Balanced

Baseline
vs. Optimal

10

10.5

11

11.5

Techniques

T
im

e
(s
ec
o
n
d
s)

Fig. 2: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9 machine
with 16GB of RAM. The measures correspond with the average of 100 random
instances and determine seconds. The data in blue ink correspond with this
work, while the gray ink is the baseline code from [20]. The field characteristic
is p751 as defined in [2].

Consequently, any improvement in computing the codomain curve along with
the calculation of the data required for evaluating the (3, 3)-isogeny 78 should
speed up the (3n, 3n)-isogeny computation and make the optimal strategies the
most efficient technique (about 1.25x faster).

4.2 Computing (2n, 2n)-isogenies

This section summarizes how to compute codomains of (2, 2)-isogenies and push
points through (2, 2)-isogenies. For simplicity, we swap (when needed) between
Mumford’s representation and formal sums representations to land the general
idea behind (2, 2)-isogenies. We suggest reading [7,27] for a better understanding.

Consider a genus two curve C determined Equation (2), and let us assume
f(x) = F1(x)F2(x)F3(x), where Ft(x) = gt2x

2 + gt1x + gt0 for each i := 1, 2, 3,
such that G = ⟨(F1(x), 0), (F2(x), 0)⟩ = {O, (F1(x), 0), (F2(x), 0), (F3(x), 0)} is
a maximal isotropic group. Let

δ := det

g10 g11 g12
g20 g21 g22
g30 g31 g32

 .

Then, the codomain curve C/G of the (2, 2)-isogeny ϕ : JC → JC/G is iso-
morphic to

19

C ′ : y2 = H1(x)H2(x)H3(x)

where

Hi(x) = δ−1
(
F ′
j(x)Fk(x)− F ′

k(x)Fj(x)
)

with (ijk) a cyclic permutation of 1,2,3. On the other hand, evaluating element
D ∈ JC through ϕ summarize as follows.

1. Decompose D ∈ JC as D = [P +Q] where P = (xP , yP) and Q = (xQ, yQ)
are points on the curve C. The goal is to find point P ′, Q′, P ′′, Q′′ such that
ϕ(D) = [P ′ + P ′′] + [Q′ +Q′′].

2. The abscissas of P ′ and P ′′ are obtained by solving the quadratic equation
in x2:

F1(xP)H1(x2) + F2(xP)G2(x2) = 0,

and the ordinate by solving in y2

ypy2 = F1(xP)H1(xP ′)(xP − xP ′).

3. Repeat the same for Q′, Q′′.
4. Calculate ϕ(D) = [P ′ + P ′′] + [Q′ +Q′′].

The author in [27] presents explicit formulas for pushing points through (2, 2)-
isogenies with a kernel of the form G = ⟨(x, 0), (x2 − Ax + 1, 0)⟩. The author
characterizes the family of curves determined by

C : y2 = Ex(x2 −Ax+ 1)(x2 −Bx+ C)

and proves that any genus-two curves can be transformed into such a shape 9.
In particular, any order-(2, 2) subgroup over JC maps into a suitable G.

Strategies for computing (2n, 2n)-isogenies. The technique from [27] 10

suggests splitting the isogeny computation into m isogeny chunks of (2ki , 2ki)-
isogenies ϕi’s with

∑m
i=1 ki = n. The author in [27] manages to reduce the

running time in their approach from O(n2) to O(n
√
n). Indeed, the technique

from [27] falls into our strategy definition and relies on a multiplicative-like
nature. However, the latest code version from [27] includes the same balanced
strategy technique as in [20]. Therefore, we compare our implementation of Al-
gorithm 5 against [27] regarding the number of multiplications by two and (2, 2)-
isogeny evaluations, along with the running time in seconds (we add counters in
both codes). All our experiments use the balanced strategy and the parameters
with a 171-bit prime proposed in [27]. Our code implementation is about 1.3x
faster than [27] (see Tables 2 and 3).
9 The isomorphism could be defined over a quartic field extension of Fp.

10 For more details, we recommend reading [27, Section 5.3].

20

Technique #[Multiplications by 2] #[(2, 2)-isogeny evaluations] Runtime

(2n, 2n)-isogeny with 4 evaluations of extra points
Balanced strategy from [27] 1033 874 1907
Balanced strategy 768 874 1642

(2n, 2n)-isogeny (only codomain curve calculation)
Balanced strategy from [27] 1033 526 1559
Balanced strategy 768 526 1294

Table 2: Number of multiplications by three and (2, 2)-isogeny evaluations re-
quired to compute a (287, 287)-isogeny, the runtime column correspond with the
sum of both numbers. The field characteristic is p171 as defined in [27].

Procedure Baseline [27] This work Speedup

(2n, 2n)-isogeny with 4 evaluations of extra points 0.1779 0.1336 1.332x
(2n, 2n)-isogeny (only codomain curve calculation) 0.1659 0.1229 1.335x

Table 3: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9
machine with 16GB of RAM. The measures correspond with the average of 100
random instances and determine seconds. Number of multiplications by three
and (2, 2)-isogeny evaluations required to compute a (287, 287)-isogeny. The field
characteristic is p171 as defined in [27].

Experimental results. To illustrate the impact of our results, we point out
that our results directly apply to the attacks in [6,28,30]. For example, the most
demanded computations in the Castryck-Decru attack are the (2i, 2i)-isogenies
for each i ∈ JnK. However, [29] shows that it is enough to compute a few (2i, 2i)-
isogenies for some integer i ∈ JnK close to n; such a shortcut splits the com-
putations into two parts: the (2i, 2i)-isogeny computation and some discrete
logarithm computations. In any case, the isogenies still play an essential role in
the Castryck-Decru attack, and at most, we expect a speedup of 1.3x when using
the strategy technique.

We plug our Algorithm 5 into the public SageMath language code from [29]
and draw our results in Figure 3. Our experiments focus on the quadratic field ex-
tensions of Fp2 with prime characteristic pXXX for each XXX ∈ {182, 217, 434}
as defined in [13,2]. In particular, our experiments show a speedup of 1.19x—
1.26x in the Castryck-Decru attack (see Table 4).

5 Forthcoming research

In summary, strategies give a modest speed-up of about 1.25x compared to the
state-of-the-art for computing (2n, 2n)-isogenies (resp. (3n, 3n)-isogenies). We
highlight that the weights M and N should correspond with clock cycle measures
for optimized C-language implementations to ensure the best performance.

21

p182 p217 p434
0

20

40

Field characteristic

T
im

e
(s
ec
on

d
s)

Fig. 3: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9 machine
with 16GB of RAM. The measures correspond with the average of 100 random
instances and determine seconds. The data in blue ink correspond with this
work, while the gray ink is the baseline code from [29].

Field characteristic Baseline [29] This work Speedup

p182 7.90 6.30 1.25x
p217 10.41 8.25 1.26x
p434 26.90 22.67 1.19x

Table 4: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9 ma-
chine with 16GB of RAM. The measures correspond with 100 random instances
and determine seconds.

The Castryck-Decru attack falls to a similar case to [21]. For instance, in [21],
one computes 22k+1-isogenies by calculating at first a 2-isogeny, and the remain-
ing corresponds with 4-isogenies (with a different weight than 2-isogenies). This
time, in the Castryck-Decru attack, one first computes a (2, 2)-isogeny over a
product of elliptic curves, while the remaining over Jacobian of genus two curves.
However, further analysis is required, as in [21].

Even after the wave of attacks in [6,28,30], the analyzed strategy tech-
nique can help to build “secure” Proof-of-Knowledge (PoK) protocols as
in [17,16,3,9,25] efficiently but extended to isogenies over superspecial PPAS.
The reason for moving to superspecial PPAS is that the best algorithm to find
isogenies has a running time equal to Õ(p) [14], and therefore one can use prime
fields of [128/192/256]-bits instead of [434/610/751]-bits. However, further anal-
ysis is required to decide the efficiency of superspecial PPAS-based PoK.

22

Another cryptanalytic application of the strategies technique is still on the
attacks from [6,28,30], but when computing (L,L)-isogenies (i.e. for attacking
the construction from [12]). This time, L is a product of small primes and differs
from a power of a small prime number. Therefore, Algorithm 1 should perform
better than the naive multiplicative-based strategy.

Lastly, the presented strategy techniques also apply to the recent work [15]
that discusses strategies for computing higher dimensional isogeny. More pre-
cisely, Algorithm 4 induces an efficient algorithm to perform the KernelToIsogeny
procedure from [15].

Acknowledgements. We thank Sabrina Kunzweiler and Thomas Decru for
their comments about an early version of this manuscript and regarding the
Magma code from [20]. We additionally thank Giacomo Pope for his comments
about the SageMath code (concerning the gluing step in the Castryck-Decru
attack).

A. Pizarro-Madariaga has been partially supported by Proyecto PUENTE
UVA20993. Research of the third author was supported in part by grants 2020433
IF/R (Universidad del Bío-Bío, Chile) and CyTeD (“Programa Iberoamericano
de Ciencia y Tecnología para el Desarrollo”) project 522RT0131.

References

1. Adj, G., Chi-Domínguez, J., Rodríguez-Henríquez, F.: Karatsuba-based square-
root Vélu’s formulas applied to two isogeny-based protocols. J. Cryptogr. Eng.
(2022). https://doi.org/10.1007/s13389-022-00293-y

2. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Pereira, G., Renes,
J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key Encapsulation. Third
Round Candidate of the NIST’s post-quantum cryptography standardization pro-
cess (2020), available at: https://sike.org/

3. Basso, A., Codogni, G., Connolly, D., De Feo, L., Fouotsa, T.B., Lido, G.M., Mor-
rison, T., Panny, L., Patranabis, S., Wesolowski, B.: Supersingular Curves You Can
Trust. IACR Cryptol. ePrint Arch. p. 1469 (2022), https://eprint.iacr.org/2022/
1469, to Appear in EUROCRYPT 2023

4. Bruin, N., Flynn, E., Testa, D.: Descent via (3,3)-isogeny on jacobians of genus 2
curves. Acta Arithmetica 165 (01 2014). https://doi.org/10.4064/aa165-3-1

5. Castryck, W., Decru, T.: Multiradical isogenies. IACR Cryptology ePrint Archive
2021, 1133 (2021), https://eprint.iacr.org/2021/1133

6. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. IACR Cryptol.
ePrint Arch. p. 975 (2022), https://eprint.iacr.org/2022/975, to Appear in EURO-
CRYPT 2023

7. Castryck, W., Decru, T., Smith, B.: Hash functions from superspecial genus-2
curves using Richelot isogenies. J. Math. Cryptol. 14(1), 268–292 (2020). https:
//doi.org/10.1515/jmc-2019-0021

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: Csidh: An efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) Ad-
vances in Cryptology – ASIACRYPT 2018. pp. 395–427. Springer International
Publishing, Cham (2018)

23

https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/s13389-022-00293-y
https://eprint.iacr.org/2022/1469
https://eprint.iacr.org/2022/1469
https://doi.org/10.4064/aa165-3-1
https://doi.org/10.4064/aa165-3-1
https://eprint.iacr.org/2021/1133
https://eprint.iacr.org/2022/975
https://doi.org/10.1515/jmc-2019-0021
https://doi.org/10.1515/jmc-2019-0021
https://doi.org/10.1515/jmc-2019-0021
https://doi.org/10.1515/jmc-2019-0021

9. Chi-Domínguez, J.: A Note on Constructing SIDH-PoK-based Signatures after
Castryck-Decru Attack. IACR Cryptol. ePrint Arch. p. 1479 (2022), https://eprint.
iacr.org/2022/1479

10. Chi-Domínguez, J., Rodríguez-Henríquez, F.: Optimal strategies for CSIDH. Adv.
Math. Commun. 16(2), 383–411 (2022). https://doi.org/10.3934/amc.2020116

11. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second Edition.
Chapman & Hall/CRC, 2nd edn. (2012)

12. Costello, C.: B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion.
In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2020 -
26th International Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12492, pp. 440–463. Springer
(2020). https://doi.org/10.1007/978-3-030-64834-3_15

13. Costello, C.: The Case for SIKE: A Decade of the Supersingular Isogeny Problem.
IACR Cryptol. ePrint Arch. p. 543 (2021), https://eprint.iacr.org/2021/543

14. Costello, C., Smith, B.: The Supersingular Isogeny Problem in Genus 2 and Be-
yond. In: Ding, J., Tillich, J. (eds.) Post-Quantum Cryptography - 11th Inter-
national Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12100, pp. 151–168. Springer (2020).
https://doi.org/10.1007/978-3-030-44223-1_9

15. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQISignHD: New Dimensions
in Cryptography. IACR Cryptol. ePrint Arch. p. 436 (2023), https://eprint.iacr.
org/2023/436

16. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH Proof of Knowl-
edge. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT
2022 - 28th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 13792, pp. 310–339. Springer
(2022). https://doi.org/10.1007/978-3-031-22966-4_11, https://doi.org/10.1007/
978-3-031-22966-4_11

17. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014).
https://doi.org/10.1515/jmc-2012-0015

18. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Com-
pact Post-quantum Signatures from Quaternions and Isogenies. In: Moriai, S.,
Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2020 - 26th Interna-
tional Conference on the Theory and Application of Cryptology and Informa-
tion Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 12491, pp. 64–93. Springer (2020).
https://doi.org/10.1007/978-3-030-64837-4_3

19. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the Deuring
correspondence: SQISign twice as fast. IACR Cryptol. ePrint Arch. p. 234 (2022),
https://eprint.iacr.org/2022/234, to Appear in EUROCRYPT 2023

20. Decru, T., Kunzweiler, S.: Efficient Computation of (3n, 3n)-isogenies. IACR Cryp-
tol. ePrint Arch. p. 376 (2023), https://eprint.iacr.org/2023/376

21. Elkhatib, R., Koziel, B., Azarderakhsh, R.: Faster Isogenies for Post-quantum
Cryptography: SIKE. In: Galbraith, S.D. (ed.) Topics in Cryptology - CT-RSA
2022 - Cryptographers’ Track at the RSA Conference 2022, Virtual Event, March
1-2, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13161, pp. 49–72.
Springer (2022). https://doi.org/10.1007/978-3-030-95312-6_3

24

https://eprint.iacr.org/2022/1479
https://eprint.iacr.org/2022/1479
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://eprint.iacr.org/2021/543
https://doi.org/10.1007/978-3-030-44223-1_9
https://doi.org/10.1007/978-3-030-44223-1_9
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://eprint.iacr.org/2022/234
https://eprint.iacr.org/2023/376
https://doi.org/10.1007/978-3-030-95312-6_3
https://doi.org/10.1007/978-3-030-95312-6_3

22. Florit, E., Smith, B.: An atlas of the Richelot isogeny graph. IACR Cryptol. ePrint
Arch. p. 13 (2021), https://eprint.iacr.org/2021/013

23. Flynn, E.V., Ti, Y.B.: Genus two isogeny cryptography. In: Ding, J., Steinwandt,
R. (eds.) Post-Quantum Cryptography. pp. 286–306. Springer International Pub-
lishing, Cham (2019)

24. Flynn, E.V.: The jacobian and formal group of a curve of genus 2 over an arbitrary
ground field. Mathematical Proceedings of the Cambridge Philosophical Society
107(3), 425–441 (1990). https://doi.org/10.1017/S0305004100068729

25. Ghantous, W., Pintore, F., Veroni, M.: Efficiency of SIDH-based signatures (yes,
SIDH). IACR Cryptol. ePrint Arch. p. 433 (2023), https://eprint.iacr.org/2023/
433

26. Hutchinson, A., LeGrow, J.T., Koziel, B., Azarderakhsh, R.: Further Optimiza-
tions of CSIDH: A Systematic Approach to Efficient Strategies, Permutations,
and Bound Vectors. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A.
(eds.) Applied Cryptography and Network Security - 18th International Con-
ference, ACNS 2020, Rome, Italy, October 19-22, 2020, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12146, pp. 481–501. Springer (2020).
https://doi.org/10.1007/978-3-030-57808-4_24

27. Kunzweiler, S.: Efficient Computation of (2n, 2n)-Isogenies. IACR Cryptol. ePrint
Arch. p. 990 (2022), https://eprint.iacr.org/2022/990

28. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. IACR
Cryptol. ePrint Arch. p. 1026 (2022), https://eprint.iacr.org/2022/1026, to Appear
in EUROCRYPT 2023

29. Oudompheng, R., Pope, G.: A Note on Reimplementing the Castryck-Decru Attack
and Lessons Learned for SageMath. IACR Cryptol. ePrint Arch. p. 1283 (2022),
https://eprint.iacr.org/2022/1283

30. Robert, D.: Breaking SIDH in polynomial time. IACR Cryptol. ePrint Arch. p. 1038
(2022), https://eprint.iacr.org/2022/1038, to Appear in EUROCRYPT 2023

25

https://eprint.iacr.org/2021/013
https://doi.org/10.1017/S0305004100068729
https://doi.org/10.1017/S0305004100068729
https://eprint.iacr.org/2023/433
https://eprint.iacr.org/2023/433
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/978-3-030-57808-4_24
https://eprint.iacr.org/2022/990
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1283
https://eprint.iacr.org/2022/1038

	 Computing Quotient Groups of Smooth Order with Applications to Isogenies over Higher-Dimensional Abelian Varieties

