
stoRNA: Stateless Transparent Proofs of
Storage-time

Reyhaneh Rabaninejad1, Behzad Abdolmaleki2, Giulio Malavolta3, Antonis
Michalas1,4, and Amir Nabizadeh

1 Tampere University, Finland
{reyhaneh.rabbaninejad, antonios.michalas}@tuni.fi

2 University of Sheffield, United Kingdom
behzad.abdolmaleki@sheffield.ac.uk

3 Max Planck Institute for Security and Privacy, Germany
giulio.malavolta@mpi-sp.org

4 RISE Research Institutes of Sweden

Abstract. Proof of Storage-time (PoSt) is a cryptographic primitive
that enables a server to demonstrate non-interactive continuous avail-
ability of outsourced data in a publicly verifiable way. This notion was
first introduced by Filecoin to secure their Blockchain-based decentral-
ized storage marketplace, using expensive SNARKs to compact proofs.
Recent work [2] employs the notion of trapdoor delay function to address
the problem of compact PoSt without SNARKs. This approach however
entails statefulness and non-transparency, while it requires an expensive
pre-processing phase by the client. All of the above renders their solution
impractical for decentralized storage marketplaces, leaving the stateless
trapdoor-free PoSt with reduced setup costs as an open problem. In
this work, we present stateless and transparent PoSt constructions using
probabilistic sampling and a new Merkle variant commitment. In the
process of enabling adjustable prover difficulty, we then propose a multi-
prover construction to diminish the CPU work each prover is required to
do. Both schemes feature a fast setup phase and logarithmic verification
time and bandwidth with the end-to-end setup, prove, and verification
costs lower than the existing solutions.

1 Introduction

Storage-as-a-Service, including cloud storage services and, more recently, Decen-
tralized Storage Networks (DSNs) [22, 16], has attracted extensive interest and
caused big data migration from local storage systems to storage servers, as it
offers efficient and scalable services at a lower cost. However, after outsourcing,
the data owner has no physical control over the data. Hence, continuous data
availability is an important trait that highly-reliable service providers [5] should
guarantee to protect users against downtime, whatever its cause, and ensure that
data owners can retrieve their data files at any time. Continuous data availability
is becoming increasingly critical as it provides global ceaseless access to online

business data and business-to-business applications. The existing notion of Proof
of Storage (PoS) [1, 11] ensures data integrity and availability at a specific time
point (i.e., the time the challenge is issued). A naive approach to certify con-
tinuous data availability consists of using PoS and performing frequent checks
over time. However, this requires that clients be online when sending sequential
challenges to the storage server. Moreover, in DSNs such as Filecoin [16], where
proofs are verified by the blockchain network, this method causes communication
complexities and, eventually, leads to network bottlenecks.

1.1 Proof of Storage-time

Ateniese et al. [2] formalized the notion of Proof of Storage-time (PoSt) to ad-
dress the issue of continuous availability guarantees for outsourced data, and pro-
posed two constructions in the random oracle model. Informally, a PoSt protocol
enables storage servers to efficiently convince a verifier that data is continuously
available and retrievable via generating chained sequential challenge-responses
over a specified time interval. Consider D as the time period during which a
specific data file is deposited in the server. D is divided into time slots of length
T , where T is the audit frequency parameter – the prover is challenged once
in every time slot T , while the verifier is not required to remain online. This
helps approximating continuous data availability throughout a D time range
with discretized frequent auditing, where a smaller T provides a superior avail-
ability guarantee. The measure of time here is the number of unit steps of the
Turing machine. Let timer be a global (verification) timer initiated by the data
owner, but public (with the timer the verification algorithm can check whether
the final proof is received on time). A PoSt consists of a tuple of four algorithms
PoSt = (Setup,Store,Prove,Verify), as defined below.

- Setup(1λ, T,D) → (par, sk): Inputs security parameter λ, audit frequency
parameter T , D and outputs the public parameters par and secret key sk.

- Store(F ∗, sk, par, T,D) → (F, tg): Takes as input an original data file F ∗, a
secret key sk, an audit frequency parameter T , and a deposit time D and
generates an encoded file F . It also outputs tag tg as necessary information
to run PoSt.Prove and PoSt.Verify algorithms.

- Prove(par, chal, tg, F)→ π: Inputs encoded file F , tag tg, public parameters
par, and challenge seed chal issued by a verifier at the outset of the deposit
period, and outputs proof π promptly after the deposit period ends.

- Verify(par, sk, tg, chal, π, timer)→ {accept, reject}: Inputs par, secret key sk,
tag tg, challenge chal, proof π, and timer to check timely reception of the
final proof. It outputs a bit b to designate accept or reject.

PoSt schemes may present the following core features:

Public Verifiability. A smart contract or any third party (not just the clients)
are able to audit continuous data availability by verifying the output from
PoSt.Prove algorithm. To this end, the verification algorithm PoSt.Verify should
not take any secret sk as input.

2

Statelessness. An unbounded (polynomial) number of verifications are sup-
ported without requiring the verifier to maintain the protocol state. If a PoSt
protocol is stateful, when the number of verifications reaches a pre-determined
fixed bound, the protocol stops and no further audits are possible, unless the
data owner retrieves outsourced files and relaunches the PoSt.Store algorithm.

Dynamic. Efficient updates on outsourced data are enabled at any time without
the need for an expensive setup.

Transparency. A PoSt scheme may import a one-time trusted setup run by
an honest client with a publicly published setup output to all entities. However,
a PoSt scheme is transparent if its setup does not involve any secret sk. This
property is necessary in DSNs where provers may also be clients and prevents
generation attack– that is, a malicious client-prover output a valid proof at
the time a challenge is issued by generating data on-the-fly to collect network
rewards, without really reserving storage.

Compactness. Low verification cost is enabled independent of the file size and
deposit length.

Additionally, a PoSt scheme must present the following security properties:

Completeness. For all files F ∗ ∈ {0, 1}∗, all (par, sk) values output by Setup(1λ,
T,D), and all (F, tg) output by Store(F ∗, sk, T,D), a proof π generated by honest
prover in Prove(par, chal, tg, F) on the challenge chal will cause Verify(par, sk, tg,
chal, π, timer) to always output accept.

Soundness. This property guarantees that if a prover is able to convince an
honest verifier that it has stored a file throughout the specified deposit time
then there is an extractor Ext, that given a subset of prover configurations and
the code of the transition function (i.e the random-coin r of the prover) can
extract data via interacting with the prover5. Formally, a PoSt scheme is sound,
if for any PPT adversary A for a file F , there is an extractor ExtA s.t for all λ
and all files F ∗ ∈ {0, 1}∗,

Pr


(par, sk)← Setup(1λ, T,D); (F, tg)← Store(F ∗, sk, T,D);

(π||F̂)← (A||ExtA)(par, chal, tg, F ; r) :

Verify(par, sk, tg, chal, π, timer) ∧ F̂ ̸= F

 ≈λ 0

Here, chal is the verifier challenge and tg is a tag corresponding to file F .

Ateniese’s et al. Construction in a Nutshell: The work in [2] presents two
different constructions of PoSt. The first warm-up protocol is based on the in-
tuition proposed in the Filecoin whitepaper [16]: the prover generates sequential
Proofs of Retrievability (PoRs), where each PoR proof is computed based on a
challenge derived from the PoR proof in a previous iteration. As a result, the
verifier merely provides the first challenge and can then go offline. The scheme

5 The data should be extracted from the configuration corresponding to any specific
time and the transition function.

3

leverages the notion of Verifiable Delay Function (VDF) [6] to guarantee a spe-
cific amount of delay between two successive PoR proofs, even if the prover uses
parallel processors. In every time slice, the prover evaluates VDF by feeding a
priori PoR proof as its input and generates a challenge by hashing the VDF
output. The prover returns all sequential challenge-proof pairs along with the
respective VDF proofs, to be inspected all at once by the verifier. The verifica-
tion procedure of this warm-up construction however is very expensive since the
verifier must audit all proofs one-by-one, and the communication cost is high.

The second protocol follows a different approach based on the Trapdoor
Delay Function (TDF). The client executes a pre-processing phase to generate
a tag, producing the same sequence of challenge-proof pairs as the prover, but
with faster TDF evaluations due to the trapdoor. Nevertheless, in this compact
scheme the client relies on a trapdoor to run the setup phase and generate
challenges, thus it does not provide public verifiability. Moreover, this protocol
is stateful and static. Besides, the soundness of the compact scheme assumes the
holder of the trapdoor is honest. This signifies that contrary to what is stated by
the authors, the construction cannot be directly used in the DSNs as is the case
with Filecoin. Authors have pointed several aspects that remain unresolved such
as: (i) support for dynamic data updates, (ii) stateless and transparent PoSt
constructions (without trapdoors), and (iii) setup cost reduction.

In light of these issues we ask the following question: Can we have a Proof of
Storage-time for continuous availability monitoring of dynamic data at storage
providers in a transparent, stateless, yet efficient manner?

1.2 Our Contributions

This work makes significant progress in answering the above question. We pro-
pose stoRNA, a new stateless PoSt protocol with a fast setup for light clients,
aiming to outsource their data to a storage network for a deposit period. A public
verifier can verify continuous data availability with computation and communica-
tion overheads logarithmic in the length of the deposit period. The construction
can be instantiated from any stateless publicly verifiable PoR and invokes Proof
of Elapsed-time (PoEt) proposed in [8] as a trust-less proxy for time.

Commitment and Random Sampling.We present a new commitment graph
inspired by the Directed Acyclic Graph (DAG) introduced in [8], where every
single graph node is efficiently updated in sequential time slots, based on the no-
tion of the Merkle Mountain Range, and takes external inputs from the proofs
generated at said time slot. The constant-size root of this graph plays as a
commitment over the whole PoSt sequence generated by the prover. This com-
mitment mechanism enables the verifier to randomly sample and verify only a
logarithmic number of proofs from the PoSt sequence. Inclusion proofs of the
commitment graph aid the verifier to check if the proofs returned by the prover
are bound to challenged positions of the PoSt sequence.

Stateless-Transparent-Dynamic Construction. Since the client does not
rely on any trapdoor, stoRNA is transparent and copes with malicious clients.

4

Moreover, it provides unbounded use: when number of verifications reaches an a
priori bound (deposit period ends), the client can extend it with no computation
(deposit-extendability). This is possible due to the incremental nature of the proof
chain: the prover can keep up the chain from the last state to append further
PoRs at agreed frequency. stoRNA also enables dynamic updates on outsourced
files at marginal costs (file-extendability).

Multi-Prover Setting. stoRNA is in single-prover setting: the prover hosting
the data and providing storage proofs also proves the passage of time between
successive storage proofs. We next extend stoRNA to a multi-prover PoSt con-
struction, mstoRNA, which differs as regards prover resources. Any arbitrary
number of provers can join the decentralized market by providing their pre-
ferred resources: (i) Time Nodes, who mainly spend CPU work by continuously
running PoEt and periodically publishing the publicly verifiable state, and (ii)
Storage Nodes who provide storage-time by renting out disk-space over time to
the clients. A PoSt sequence generated by a prover in this construction is like
a public storage-ledger that any one in public can verify, while it can migrate
to any other prover, who may continue the ledger where previous prover left
off. This aspect is particularly important when considering the rapid-changing
distributed nature of DSNs with real nodes susceptible to failure.

1.3 Technical Overview

Consider a data owner wishing to outsource its data to the storage provider(s)
and verify continuous data availability without remaining online. Additionally, at
a later time, the data owner may extend the deposit time or update its outsourced
files without relaunching the entire setup or adding much cost to the verification
algorithm. stoRNA enables any light client to do so: the client only requires to
perform an efficient Store algorithm to generate necessary information for the
prover and public verifier. Each storage provider, participating in the stoRNA
protocol, stores the data file for a specific deposit period. To prove “storage-time”
i.e., continuous availability of the specified storage over the specified deposit
time, the storage provider sequentially generates PoRs during the entire storage
period. To compel a specific amount of delay between successive PoRs generated
by the prover, the protocol leverages the concept of publicly verifiable PoEt.

In order to enable efficient verification procedure with low communication,
the verifier randomly samples and verifies a logarithmic number of proofs from
the chain. However, with this probabilistic sampling approach, a dishonest prover
can fool the verifier by sending correctly-generated proofs from arbitrary time
slots in response to the verifier’s challenge. Hence, sampling fails to catch con-
tinuous data availability with high probability.

One way to enforce the prover to send storage proofs at the precise chal-
lenged time slots on the chain, is to have him commit to the entire chain before
random slots are sampled. As a result, the verifier can use the commitment to
check whether the returned responses belong to the challenged slots. To commit
to the whole chain of sequential proofs, the prover updates a graph GCom

n based

5

𝑃𝑜𝐸𝑡1 ...
𝐺1
Com

𝑟𝑜𝑜𝑡
Prev.
State

𝐺𝑛
Com

𝑃𝑜𝐸𝑡𝑛

Prev.
State

𝐺𝑛−1
Com

𝑟𝑜𝑜𝑡

𝑃𝑜𝑅1 𝑃𝑜𝑅𝑛

Fig. 1: Structure of stoRNA.

on a variation of the Merkle commitment with some extra edges as illustrated
in Figure 2, across all PoRs generated up to the current time. This commitment
graph GCom

n is inspired by the elegant DAG proposed in [8], but with subtle
modifications to be discussed in section 4. At each time slot i, the prover effi-
ciently updates the GCom

n by appending the hash of the most recent PoR and
PoEt proofs to the labels of the parents of node i and uses the new tree root
as a statement to run the next PoEt (Figure 1). Consequently, the tree root at
each time slot i, plays as a commitment over the whole chain up to that slot.

At the end of deposit period, the prover returns the root label of latest
GCom

n as a commitment to the entire series of proofs generated within the whole
period. Upon receiving the commitment, the verifier challenges a randomly sam-
pled subset of time slots (this can be made non-interactive using the Fiat-Shamir
heuristic [10] – i.e., the prover can generate challenge slots himself by hashing
the commitment). For every sampled time slot, the prover provides the corre-
sponding PoR, PoEt proofs together with the logarithmic size Merkle opening.
The verifier, first checks whether returned proofs are located at the challenged
positions of the chain previously committed by, which is made possible via the
position-binding guarantee in the Merkle proofs. Next, it checks the correctness
of the PoR, PoEt proofs. If the PoR, PoEt proofs or the Merkle opening of
any sampled slot is invalid, the verifier will reject. Else, the verifier is conviced
that the commitment is computed mostly correct. Figure 1 depicts a schematic
overview of our construction, named stoRNA since the single strand built by
the prover can be viewed as a storage RNA6 that carries information about
client data: the extractor algorithm of the underlying PoR scheme can use PoRs
appended over time to the chain, to extract the client file with high probability.

Multi-Prover PoSt construction. The above construction, seems to provide
all desirable features at once:

6 RNA is a single strand biological molecule essential in coding, decoding, and expres-
sion of genes.

6

- Fast setup and transparency. The client only requires to perform the Store
algorithm of the underlying PoR scheme on the data files before outsourcing
without relying on any trapdoors. Hence, the scheme is transparent.

- Logarithmic verification time and bandwidth. The verifier algorithm can audit
continuous data availability with high probability in time and communica-
tion logarithmic in the length of the deposit period.

- Statelessness and unbounded use. When the number of verifications reaches
the a priori bound (deposit period ends), the client can easily extend the
deposit period without relaunching the Store algorithm. The prover can keep
up the PoSt sequence from the last state to append further PoRs at the
agreed frequency.

- Dynamic. Assuming the underlying PoR scheme supports dynamic databases,
the client can update its outsourced files at any time without a re-computation
of the entire initialization algorithm. The client only requires to perform fast
setup on the modified data blocks and outsources them to be updated at the
storage server. The verifier needs to use the new PoR tags for auditing the
chain from the point update takes place.

However, there is still a challenge to be addressed: Even the honest prover algo-
rithm requires heavy inherently sequential CPU computations. More precisely,
the prover participating in the network, needs to spend two distinct resources:
(i) storage-time (storage resources over time) and (ii) CPU work (CPU power
over time). The first one is natural in PoSt mechanisms as the prover has to
dedicate a specified amount of disk-space over time. But the CPU work is due to
the use of PoEt in the protocol to guarantee a delay between storage proofs and
prevent the prover from generating all required proofs at once and discarding
the data. This CPU work is a major deterrent to renting out storage by storage
providers or leads to increased storage fees in decentralized storage markets.

Our second construction, mstoRNA (shown in appendix B for space constraint),
is based on division of CPU work and storage-time resources between “Time
Nodes”and “Storage Nodes”. Time Nodes participate in the decentralized market
by continuously running PoEt algorithm. At each time slot, the Time Node
advertises the PoEt state and waits for Storage Nodes to submit PoR proofs
generated based on the challenge derived from the freshly advertised PoEt state
and the signature of each individual Storage Node. The wait time is specified
based on the network roundtrip time (RTT). Next, the Time Node (i) creates a
Merkle tree with the PoRs collected from Storage Nodes, (ii) inputs the Merkle
root together with PoEt proof to update GCom

n , and (iii) timestamps the updated
commitment into the PoEt sequence by appending the most recent GCom

n root
into the shared PoEt state. At the end of the deposit period, the Time Node,
acting as the main prover interacting with the verifier in this network, returns
the root-label of the latest commitment graph as a commitment to all proofs
from all Storage Nodes sequentially generated during the deposit period. Upon
receiving the commitment, the verifier simply opens some of the committed labels
to verify both storage and time proofs included in those labels. In Table 1, we
give a high-level comparison of our constructions over compact PoSt [2].

7

Table 1: Comparison of our constructions over compact PoSt [2].
N = D

T denotes number of iterations during the deposit period

D, t = log T
2 , n = log N

2 , and m denotes the number of Storage
Nodes connected to a Time Node in mstoRNA construction.

Features Overhead
stateless transparent dynamic setup verification proof size

cPoSt [2] ✗ ✗ ✗ O(N) O(1) O(1)
stoRNA ✓ ✓ ✓ O(1) O(tn) O(tn)

mstoRNA ✓ ✓ ✓ O(1) O(tn)
m

‡ O(tn)
m

‡

‡ These are with respect to a single Storage Node.

1.4 Application Domain

Here, we exemplify applications our stoRNA construction could be beneficial to.

Blockchain History Expiry. Hard disk storage is one of the biggest bottlenecks in
L1 blockchain scalability. For example, the Ethereum chain will become gigantic
in the coming years, making storage infeasible for individuals. The idea of History
expiry is to obviate the need for all, full nodes to download the entire chain from
genesis. Instead, only the most recent historical blocks would be held and served
by the core blockchain protocol. Older blocks would be stored by external storage
providers, which can minimize requirements for node hard drive space, paving
the way for further decentralization. Many Decentralized Applications (DApps)
are already removing data from blockchains for efficiency. However, since being
an immutable trustless record is one of the principal features of blockchain, long
term availability of older blocks should be guaranteed. Using our method one
can publicly verify long term continuous availability of large historical blocks.

Decentralized Storage Networks.DSN is a decentralized algorithmic market based
on blockchain made up of various nodes rewarded for storing and maintaining
data availability. The network controls the accessible disk space, disperses client
data across nodes, audits the integrity and retrievability of data, restores possi-
ble failures and rewards honest nodes. The stateless and transparent nature of
stoRNA makes it suitable for audit purposes in DSNs.

2 Related Work

Proofs of Storage (PoS) schemes enable clients to outsource files to a server,
and later in an interactive audit phase, verify the integrity of the stored data.
A verifier, repeatedly challenges the server and checks the returned proof that
the server is still storing the client’s file intact. The term verifier refers to the
client, who originally outsourced the file (privately verifiable PoS), or any third
party (publicly verifiable PoS).These protocols are also known as Provable Data
Possession (PDP) [3]. Proofs of Retrievability (PoR) schemes [11] are similar to
PDP, but they additionally guarantee data retrievability, achieved by an extrac-
tor that reconstructs the client file from the proofs returned by the prover. The

8

extensive research on PDP/PoR schemes covers various advanced features in-
cluding dynamic data updates [7], shared data files [17], and proof of replicated
storage [18].

Proofs of Space (PoSpace) schemes enable a prover to convince a verifier
certain disk space is dedicated. PoSpace schemes can be used as an alternative
to the blockchain Proof of Work (PoW) consensus mechanism, where instead of
the CPU computation, disk-space is expended [9]. PoSpace can also be viewed
as a PoS scheme, where the prover shows that it is storing incompressible data
demonstrating the allocation of a lower-bound amount of resources.

Proofs of Space-time (PoSt) proposed by Moran and Orlov [15], is in a sense
PoSpace over time. However, [15] only guarantees the dedication of space re-
sources, not the stored data retrievability. In other words, the server only stores
a randomly-generated string with no external utility to guarantee space ded-
ication. The Filecoin project [16] introduced a PoSt scheme, where the server
stores real data that can be used outside the protocol. Due to this important shift
resource-wasting PoW schemes were replaced by a useful storage service. In [16],
the prover executes sequential auditings, where each challenge is deterministi-
cally derived from the proof at a previous iteration and an input from a trusted
randomness beacon. The prover chains the sequential challenges and proofs and
compresses this chain using zk-SNARK, to be publicly inspected by the verifier.
However, zk-SNARK is a heavy cryptographic machinery [4] entailing expensive
computational/memory costs on the prover side, thus detering storage providers
from renting storage to clients. Ateniese et al. [2] constructed a compact PoSt
scheme based on TDF to obviate the need for zk-SNARKs.

3 Preliminaries

3.1 Merkle Tree and Merkle Mountain Range

A Merkle tree MT is a balanced binary tree with n = 2i leaves, such that every
leaf holds the hash of a data block and every inner node is labelled with a hash
of its children [14]. The inclusion of any data block in the tree can be proved
only with a number of hashes logarithmic in the number of leaf nodes. A Merkle
Mountain Range MMR [20], is a variant of Merkle tree that can be seen either
as a list of perfectly balanced binary trees or a single binary tree truncated from
the top right. Specifically, a MMR with root r is defined as a tree with n = 2i+j
leaves, such that i = ⌊log2(n− 1)⌋. The left sub-tree r.left can be seen as a MT
with 2i leaves, and the right sub-tree r.right as a MMR with j leaves.

3.2 Proofs of Sequential Work

Proofs of Sequential Work (PoSW) first introduced by Mahmoody et al.[13] is
a protocol between a prover P and a verifier V , where P can generate a proof
convincing V that some computation took place for N time steps, since some

9

statement χ was received. The protocol is defined by algorithms PoSW, Open,
and Verify as described below. P and V commonly input security parameters
w, c ∈ N and a time parameter N ∈ N. All parties have access to a random
oracle H : {0, 1}∗ → {0, 1}w.

- PoSW: V samples a random statement χ ← {0, 1}w and sends it to P . P
makes N sequential queries to H and computes a proof (ϕ, ϕP) := PoSWH(χ,
N), where ϕ is sent to V and ϕP is stored locally.

- Open: P computes τ := OpenH(χ,N, ϕP , γ) in response to random challenge
γ ← {0, 1}c·w sampled by V . τ is then forwarded to V . The challenge can
be generated non-interactively by the prover using the Fiat-Shamir [10].

- Verify: V outputs VerifyH(N,ϕ, γ, τ) ∈ {accept, reject}.

For a prover P and a verifier V honestly following the protocol’s specifications,
a complete PoSW protocol will output accept with probability 1. Soundness
requires that even in the case of resourceful adversaries with parallel processing
ability, a malicious prover cannot output a valid proof in time less than N . Cohen
and Pietrzak [8] propose a simple PoSW construction based on a Merkle tree
variant with added edges that connect the left siblings of a leaf’s path to the
root with the leaf itself in order to compute a leaf label. This graph is used for
both sequential work enforcement and commitment purposes. In this paper, we
use the terms PoET and PoSW interchangeably, since a PoSW protocol proves
that N time has elapsed after χ was received.

3.3 Proof of Retrievability

Proof of Retrievability (PoR) schemes [11, 19] are a Proof of Storage category of
protocols where a prover simultaneously ensures both possession and retrievabil-
ity of a data file. PoR schemes consist of four algorithms (KeyGen,Store,Prove,Verify):

- KeyGen(1λ)→ (sk, pk): Inputs λ and outputs secret/public key pair (sk, pk).
- Store(F ∗, sk) → (F, tg): Takes original data file F ∗, secret key sk, and gen-
erates encoded file F . It also outputs tag tg as necessary information to run
PoR.Prove and PoR.Verify algorithms.

- Prove(pk, chal, tg, F)→ π: Inputs file F , tag tg, public key pk, and challenge
chal issued by a verifier, and outputs proof π corresponding to the chal.

- Verify(sk, pk, tg, chal, π) → {accept, reject}: Inputs secret/public key pair
(sk, pk), tag tg, chal, proof π. Outputs a bit b to designate accept or reject.

The completeness property of a PoR scheme ensures that the protocol outputs
accept with a probability of 1 for a prover and verifier honestly following the
protocol’s specifications. Loosely speaking, soundness requires an extractor al-
gorithm that will recover the data through interaction with any prover that can
pass the verification with overwhelming probability [19]. In other words, for any
adversary A generating a valid proof π in the PoR protocol, there is an extrac-
tor algorithm PoR.ExtA(pk, sk, tg; r) having as input pk, sk, the file tag tg, and

10

the description r of A (the random coin of A), outputs the file F . PoR schemes
also satisfy the unpredictability property ensuring that the prover cannot guess
a valid response before it sees the corresponding challenge.

4 stoRNA Design

Now, we present our stoRNA, a stateless transparent PoSt protocol.

Ingredients and notation. stoRNA uses the following primitives:

–Collision-resistant hash function H with the output range of size w.
–Publicly verifiable PoEt = (Prove,Verify) in [8] as a proxy for time (non-
interactive version).
–Publicly verifiable stateless PoR = (KeyGen,Store,Prove,Verify) scheme.

We denote concatenation of bit-strings by ∥. For x ∈ {0, 1}∗, x[i . . . j] and |x|
denote concatenation of all bits from ith bit to jth, and bit-length of x, respec-
tively.

Given PoR.Store algorithm outputs (processed file F and tag tg), a random
seed rs, deposit time D, and audit frequency parameter T , stoRNA output is
proof π that ensures a public verifier: (i) F is continuously available over time
D, (ii) the prover did not learn the stoRNA output until D time after receiving
F . The measure of time here is the number of sequential CPU hash invocations.
We prove the following theorem.

Theorem 1. Let PoR be a stateless PoR scheme with ϵ-soundness and unpre-
dictability. Let PoEt be a PoEt scheme with δ-evaluation time. The time cost of
PoR and hash function evaluation are negligible w.r.t. T . The time cost of s0
sequential steps on the server processor is T ′. If T ′ + 2δD < T , the proposed
PoSt scheme (Algorithm 1) is stateless, complete, and ϵ-sound.

4.1 Construction

The stoRNA scheme described in Algorithm 1 formally consists of three algo-
rithms: stoRNA.Store, stoRNA.Prove, and stoRNA.Verify. In stoRNA.Store algo-
rithm, the client only performs PoR.Store on an erasure encoded file F ∗ and
outputs processed file F and tag tg to a prover. In the stoRNA.Prove algorithm,
for every T time unit, the PoEt.Prove state will serve as the PoR challenge to
generate a fresh PoR in PoR.Prove. Next, in order to commit to the whole chain
of sequential (PoEt,PoR) proofs, the prover efficiently updates a graph as illus-
trated in Figure 2 and Algorithm 2.

This graph is based on the special DAG introduced in [8] with a number of
modifications. Let GCom

n = (V,E) be the commitment DAG, where each node
in V is indexed by a bit string with a length at most n, while the root node is
indexed by the empty string ϵ. Also, let E = E′∪E′′, where sub-graph (V,E′) is
a complete Merkle tree of depth n, with edges directed from the leaves coming
up to the root. Index of each node in depth i < n of the tree is made up of

11

the common bits of its parents. E.g., two parents indexed by u = v ∥ 0 and
u = v ∥1 form a child indexed by v (Algorithm 2, line 5). Moreover, for all leaves
v ∈ {0, 1}n, E′′ consists of an edge (u, v) for any u that is a left node sibling on
the path from v to the root ϵ (Algorithm 2, line 6).

Algorithm 1 stoRNA Construction

1: stoRNA.Store
2: input data file F ∗ and (PoR.sk,PoR.pk)
3: (F, tg)← PoR.Store(PoR.sk,PoR.pk, F ∗)
4: sample random seed rs←$ {0, 1}w
5: output (rs, F, tg)
6: stoRNA.Prove
7: input processed file F , tag tg, random seed rs, deposit time D, and audit frequency

T
8: set i← 0 and et← 0 ▷ i:number of audit iterations, et: elapsed time

9: set st← rs
10: while et ≤ D do
11: st← PoEt.Prove(T, st)
12: i← i+ 1
13: hi ← st
14: ci ← H(hi)
15: πi ← PoR.Prove(PoR.pk, F, tg, ci)
16: lϵ ← GCom

n .Update(v = i,V = hi ∥ πi) ▷ Algorithm 2

17: st← H(st ∥ lϵ) ▷ update the state by appending the new GCom
n root

18: et← et+ T

19: N ← i
20: HFNL ← st
21: output Com = (HFNL, lϵ)
22: stoRNA.Verify
23: input commitment Com, tag tg, seed rs, public key PoR.pk
24: generate random c−element subset I∗ ⊂ [1, N] and send it to the prover.
25: wait to receive π = {hi, πi, {lk}k∈∆i}i∈I∗ , where ∆i = {i[1, j − 1] ∥ 1− i[j]}j∈[1,n]

▷ ∆i contains the index of all siblings of the nodes on the path from

leaf i to the root as in Merkle tree commitment opening

26: for all i ∈ I∗ do
27: ci ← H(hi)
28: if PoR.Verify(PoR.pk, tg, πi, ci) = false then return false

29: if PoEt.Verify(T, hi) = false then return false

30: if li ̸= H(i, πi, lp1 , . . . , lpd), where (p1, . . . , pd) = Parents(i) then return false

31: if ∃j ∈ ∆i : lj ̸= H(j, lj∥0, lj∥1) then return false ▷ verify GCom
n opening

32: return true

At iteration i, the prover updates the graph GCom
n similarly to a Merkle mountain

range described in subsection 3.1, also including additional E′′ edges as described
above. Besides, the label of node i is updated by appending the hash of the most

12

Algorithm 2 GCom
n .Update

1: input index v ∈ {0, 1}n and value V, and DAG GCom
n = (V,E), where E = E′∪E′′,

sub-graph (V,E′) is a Merkle tree, and E′′ contains, for all leaves v ∈ {0, 1}n an
edge (u, v) for any u that is a left sibling of node on the path from v to the root ϵ.

2: nodecount ← GCom
n .GetNodeCount ▷ get total number of graph nodes

3: if v > nodecount then
4: V ← V ∪ v ▷ add leaf v to the tree

5: E′ ← E′ ∪ {(x ∥ b, x) : b ∈ 0, 1, |x| < n} ▷ update Merkle tree edges

starting from new leaf v = x ∥ b to the root

6: E′′ ← E′′ ∪ {(i, v) : v = a ∥ 1 ∥ a′, i = a ∥ 0}
7: lv = H(V) ∥ H(v, lp1 , . . . , lpd), where (p1, . . . , pd) = Parents(v)
8: ∀i ∈ V, |i| < n : li = H(i, lp1 , lp2), where (p1, p2) = Parents(i) ▷ recursively

update all labels up to root

9: else
10: go to lines 7-8 to update labels

11: output lϵ

recent (PoEt,PoR) proofs to the labels of parents of node i. After an update
to the commitment graph, the new root label lϵ is mixed into the state for the
next PoEt execution. At the end of the deposit period, stoRNA.Prove algorithm
outputs the latest root label lϵ together with the final PoEt state as a commitment
to the chain of proofs sequentially generated during the entire period.

Upon receiving the commitment, in stoRNA.Verify algorithm, (i) the verifier chal-
lenges a randomly sampled subset of time slots, (ii) for every challenged time
slot, the prover provides a Merkle opening together with all the (PoEt,PoR)
proofs on the path from this challenged node to the root, (iii) the verifier, uses
the commitment to check whether the returned proofs are located at the cor-
rect positions of the chain, and (iv) runs PoEt.Verify,PoR.Verify algorithms to
respectively verify the returned PoEt,PoR proofs.

High level of security proof. For the soundness property, we need to prove
that the largest time between two PoRs is less than T . Thus, for an honest prover
P , any successive configurations of any time slot with a T length must contain at
least a PoR proof. Then, following the soundness definition of PoR in 3.3, one can
use the PoR extractor to recover the data from the partial configurations and the
transition function. To recover the sequence of each computation epoch and feed
it to an extractor, we use programability of random oracle. To this aim, we force
PoSt provers inevitably query the random oracle, the challenge (except the first
one) and response (except the last one) for each PoR via querying the random
oracle H. Thus, the extractor can invoke a PoR extractor to extract the data by
controlling H. We note that, our soundness proof exploits unpredictability of the
random oracle7. Finally, we argue about the sequenciality of the scheme that
follows the proof of sequentiality of Cohen and Pietrzak [8]. A malicious prover

7 The unpredictability of the random oracle is important in the malicious prover case,
as it is hard to let the extractor access each PoR’s challenge and response

13

1 2

3

7

4 5

6

8 9

1
0

1
4

1
1

1
2

1
3

1
5

𝓥𝟏

𝓥𝟑

𝓥𝟏𝟒

𝓥𝟏𝟓

𝓥𝟕

𝓥𝟐 𝓥𝟒 𝓥𝟓 𝓥𝟖 𝓥𝟗 𝓥𝟏𝟏 𝓥𝟏𝟐

𝓥𝟔 𝓥𝟏𝟎 𝓥𝟏𝟑

Fig. 2: A complete GCom
3 achieved after N = 15 iterations. Red lines show the traversing

order of the tree with node numbers from 1 to N = 2n+1 − 1 for a tree of depth n and
node i updated at iteration i. Also, Vi = (PoEt,PoR) (Algorithm 1, line 16) shown in
blue is input to GCom

n .Update algorithm at iteration i. (Color figure online)

PoSt.P′, making the verifier accept (in relation to GCom
n in Algorithm 2) with

high probability must have queried H “almost” N times sequentially. We use the
outputs of PoR.Prove as the input nodes of the specified tree construction of [8].
We defer the proof of Theorem 1 to appendix A.

5 Efficiency Analysis and Experimental Results

Implementation and experimental setup. We implement a prototype of
the prover and the verifier in Golang8. Our testbed consisted of a MacBook Pro
with 16 GB 3.22 GHz memory and a 2.06 GHz Intel Core i10 CPU with M1
(ARM based) chipset and Mac OS monterey as operating system. We imple-
mented the scheme of [19] as our underlying stateless publicly verifiable PoR for
randomly generated files of different sizes and relied on SHA-256 for all hash
implementations. Following what presented in [8], here T and D are measured
as the amount of sequential CPU steps. We refer to [21] for discussions on how
it translates to real-world time. The results were averaged over 10 runs.

Setup Cost. stoRNA computation for the client solely includes running the
PoR.Store algorithm once, no matter how long the deposit length D is. This cost
is ignorable as compared with the setup cost of [2] which equals 1 · PoR.Store+
N ·(TDF.TrapEval+PoR.Prove), and N = D

T denotes number of iterations during
the deposit period D. As an example, the setup algorithm of [2] for a file of size
256 MB, stored for 5 months and checked on a 1-hour basis, takes about 200
minutes on a client machine. This time is prolonged for larger files or longer

8 Code will be open-sourced soon and is available upon request.

14

deposit lengths. Our stoRNA.Store algorithm can be accomplished in a constant
time 1 · PoR.Store, independent of the deposit length.

Prover Cost. stoRNA.Prove algorithm makes a total of N sequential queries to
PoEt, which is an intrinsically sequential process with overall steps proportional
to the deposit length D. In mstoRNA.Prove, the average computational complex-
ity per prover algorithm regarding PoEt computations is divided by m, assuming
m as the number of Storage Nodes connected to a Time Node. Therefore, as m
increases, the overall computational complexity of prover algorithm diminishes.

Verifier Cost. We now evaluate how our scheme verification time changes as
the deposit period D grows. We fix the audit frequency parameter T to 240 and
vary the deposit period from 250 to 270 CPU steps. Since the results on various
file sizes was roughly the same, we report the mean over all data files of sizes 64
MB, 128 MB, and 256 MB, with 10 experiments each. Figure 3a shows the re-
sults. As deposit length increases by 220×, the verification time grows from 1.64
minutes to 5.29 minutes, an increase of only 3×. This is because the number of
nodes in each of c openings that the verifier algorithm checks their consistency is
equal to the depth of the commitment graph, which grows logarithmically with
the deposit length. We also explore how the change in audit frequency param-
eter T affects the verification time. For this experiment, we fix the the deposit
period D to 260 vary T from 230 to 250 CPU steps. For each configuration, we
run 10 tournaments and measure the average of the verification time. Figure 3b
shows the results. When T = 250, the verification time reaches the lowest, at
2.07 minutes. We also note that the verification algorithm is parallelizable, where
nodes can be checked concurrently using verifier CUDA cores. In this prototype
we have not implemented such parallelism and the results reflect the whole ver-
ification time without parallelism. mstoRNA construction shown in appendix B
further optimizes the overall verification cost in the sense that PoEt sequence is
inspected once for all m Storage Nodes connected to a Time Node.

Proof Size. The proof consists of the Com = (HFNL, lϵ) and c openings, each
including n tuples of the form {hk,PoEtk, πk, lk}k∈∆i , where ∆i = {i[1, j − 1] ∥
1 − i[j]}j∈[1,n]. Table 2 report the results on proof sizes when varying deposit
period D and audit frequency parameter T . With w = 256 bits, c = 150, which
guarantees 2−50 security, t = 39 (i.e., over 1012 steps), and n = 9 (1024 total
iterations), the proof size is approximately 1.7MB.

Discussion. Our construction is slower to verify and has larger proofs than
the compact solution in [2]. This is the cost we pay for stateless and trans-
parent features. Nonetheless, our end-to-end setup, proof, and verification costs
are smaller than [2]. In Table 1, we give a high-level comparison with compact
PoSt [2]. On top of potential parallelism possible in the verification mentioned
earlier, there are potential ways of further optimizing performance: In addition
to full-node verifiers inspecting the entire PoSt sequence, light client verification
approaches like [12] are possible in stoRNA. Concretely, by adding intermediate
“checkpoints” during the PoSt sequence computation, where each checkpoint
includes the hash of the previous, a light client can verify directly through con-

15

D t, n Proof Size (MB)

29, 19 2.7930
250 34,14 2.3940

39,9 1.7550

29,29 4.2630
34,24 4.1040

260 39,19 3.7050
44,14 3.0660
49,9 2.1870

29,39 5.7330
34,34 5.8140

270 39,29 5.6550
44,24 5.2560
49,19 4.6170

Table 2: Proof sizes at various t = log T
2 and n = log N

2 , with N = D
T . We assume w = 256 bits and

c = 150, which guarantees 2−50 security.

1.1259e+15 3.60288e+16 1.15292e+18 3.68935e+19 1.18059e+21

Data deposit period (in CPU steps)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

V
e
ri
fi
c
a
ti
o
n
 t
im

e
 (

m
in

)

(a)

1.07374e+09 3.43597e+10 1.09951e+12 3.51844e+13 1.1259e+15

Checking frequency (in CPU steps)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

V
e
ri
fi
c
a
ti
o
n
 t
im

e
 (

m
in

)

(b)

Fig. 3: stoRNA.Verify algorithm time cost for c = 150. Solid lines show the trend. (a) Verification time
when varying the deposit period D and audit frequency parameter T = 240. The overall verification
cost is the same for all file sizes and logarithmic in the deposit length. (b) Verification time when
varying audit frequency parameter T and deposit period D = 260.

secutive checkpoints and skip the validation of every time slot in PoSt sequence.
Therefore, it is possible to audit data availability only for a specific time and
not for the whole chain (point verification).

Acknowledgments. This work was funded by the HARPOCRATES EU re-
search project (No. 101069535) and the Technology Innovation Institute (TII),
UAE, for the project ARROWSMITH. Giulio Malavolta was partially funded by
the German Federal Ministry of Education and Research (BMBF) in the course
of the 6GEM research hub under grant number 16KISK038 and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA – 390781972.

6 Conclusion

This work contributes towards building stateless transparent proofs of storage-
time systems, whose design guarantees continuous availability of outsourced

16

data, and eventually have a tangible impact on building highly reliable storage
services. The stateless, trapdoor-free, and dynamic nature of our construction
together with the ignorable setup cost and adjustable prover difficulty properties
render it applicable to modern real-world applications like decentralized storage
networks and Blockchain history expiry where one can safely prune some of the
on-chain data and have strong guarantees that the data will still be continuously
available somewhere.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM
conference on Computer and communications security. pp. 598–609. ACM (2007)

2. Ateniese, G., Chen, L., Etemad, M., Tang, Q.: Proof of storage-time: Efficiently
checking continuous data availability. In: NDSS (2020)

3. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proceedings of the 4th international conference on Security
and privacy in communication netowrks. ACM (2008)

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: 23rd USENIX Security (2014)

5. Bertrand Portier: Always on: Business considerations for continuous availability.
http://www.redbooks.ibm.com/redpapers/pdfs/redp5090.pdf, 2014

6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Annual
international cryptology conference. pp. 757–788. Springer (2018)

7. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious ram.
Journal of Cryptology 30(1), 22–57 (2017)

8. Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 451–
467. Springer (2018)

9. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
Annual Cryptology Conference. Springer (2015)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Conference on the theory and application of cryptographic
techniques. pp. 186–194. Springer (1986)

11. Juels, A., Kaliski Jr, B.S.: Pors: Proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM conference on Computer and communications security. pp.
584–597. ACM (2007)

12. Light Clients and Proof of Stake: https://blog.ethereum.org/2015/01/10/light-
clients-proof-stake/

13. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential
work. In: Proceedings of the 4th conference on Innovations in Theoretical Computer
Science. pp. 373–388 (2013)

14. Merkle, R.C.: Protocols for public key cryptosystems. In: Security and Privacy,
1980 IEEE Symposium on. pp. 122–122. IEEE (1980)

15. Moran, T., Orlov, I.: Simple proofs of space-time and rational proofs of storage.
In: Annual International Cryptology Conference. pp. 381–409. Springer (2019)

16. Protocol Labs: Filecoin: A decentralized storage network (2018)

17

17. Rabaninejad, R., Attari, M.A., Asaar, M.R., Aref, M.R.: A lightweight auditing
service for shared data with secure user revocation in cloud storage. IEEE Trans-
actions on Services Computing 15(1), 1–15 (2019)

18. Rabaninejad, R., Liu, B., Michalas, A.: Port: Non-interactive continuous availabil-
ity proof of replicated storage. Cryptology ePrint Archive (2022)

19. Shacham, H., Waters, B.: Compact proofs of retrievability. In: International Con-
ference on the Theory and Application of Cryptology and Information Security.
pp. 90–107. Springer (2008)

20. Todd, P.: Merkle mountain range. https://github.com/opentimestamps/
opentimestamps-server/blob/master/doc/merkle-mountain-range.md

21. Wesolowski, B.: Efficient verifiable delay functions. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques (2019)

22. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

A Theorem 1 Proof

(i: Completeness): Directly follows from the completeness of the PoR and PoEt schemes.

(ii: Soundness): Let an adversary A be against the soundness of the stoRNA scheme.
Let the extractor PoSt.Ext = (ExtPoSt,1,ExtPoSt,2) recover the data F from the prover.
Where ExtPoSt,1 on input the description of the prover, outputs the configurations, the
epoch (a randomly chosen time slot) and the transition function, and ExtPoSt,2 is a PoR
extractor that recovers the data from the configurations, the epoch and the transition
function. Intuitively, we first show that the prover executes “one PoR” in a randomly
chosen epoch and then by invoking the PoR extractor, we recover the data from the
configurations the epoch and the transition function (extraction phase).

We first argue about the sequenciality in Algorithm 1. A potentially malicious
prover PoSt.P′, making the verifier accept (in relation to GCom

n in Algorithm 2) with
high probability must have queried H “almost” N times sequentially. The proof of
sequentiality follows Cohen and Pietrzak [8]. We use the outputs of PoR.Prove as the
input nodes of the specified tree construction of [8]. Thus, the sequentiality proof of
Algorithm 1 follows the sequentiality proof of [8]. Formally we have that,

Lemma 1. [Theorem 1 of [8]]. Consider the scheme in Algorithm 1, with parameters c,
w,N and a “soundness gap” α > 0. If PoSt.P′ makes at most (1−α)N sequential queries
to H, and at most q queries in total, then PoSt.V will output reject with probability
1− (1− α)c − (2 · n · w · q2)/2w.
Where N is assumed to be number of sequential steps of the form N = 2n+1 − 1 for
an integer n ∈ N, and c is a statistical security parameter (the size of the subset I∗

in which the larger the c the better the soundness), and w is the output range of H,
which we need to be collision-resistant and sequential. w = 256 is a typical value. The
proof follows the proof of Theorem 1 in [8].

In general, the verification algorithm of the stoRNA requires the prover to compute
all PoR challenges and responses and evaluate the PoEts. Thus the PoR responses are
valid and the PoEt are evaluated as expected with probability (1−α)c−(2 ·n ·w ·q2)/2w
based on Lemma 1. Because of the unpredictability of PoR and the sequentiality of PoEt,
the PoR proofs must be generated sequentially.

Let D0 and Dk be the start and end time points for running A. For i from 1 to
k − 1, we set each time point Di+1 to be the first time when A queries the random

18

oracle H on (st ∥ lϵ) (Alg.1 step 17). Similarly, we set each time point D̂i as the start
when A queries the H on st (Alg.1 step 13). Then we prove that the random time
epoch with length T > T ′ + 2δD chosen by ExtPoSt,1 must contain at least one interval
[Di, D̂i) for some i. To this aim, we prove the following lemmas 2, 3, 4, and 5:

Lemma 2. The time point Di must precede Di+1.

Proof. we show that each PoEt’s output sti−1 must be firstly queried to the random
oracle H before sti. To prove it we use the contradiction in a way that, if not, then A
must be able to either generate the PoEt output sti before sti−1, which violates the
sequentiality of PoEt; or generate the PoEt input sti−1 before the output of H (step 17,
Algorithm 1), which violates the unpredictability of the random oracle H; or generate
the PoR challenge ci before sti−1, which violates the unpredictability of the random
oracle H (step 13, Algorithm 1); or generate the PoR response πi before ci, which
violates the unpredictability of PoR;

Lemma 3. T ′ is shorter than the length of each time slot [Di, Di+1).

Proof. By the unpredictability of the random oracle, the output of the PoEt, sti must
be generated before the time point Di+1. On the other hand, the PoR response πi must
be generated via the PoR on the challenge sti after the time point Di. Thus, a PoEt
function must be evaluated within the time slot [Di, Di+1). By the sequentiality of
PoEt, the length of [Di, Di+1) must be longer than T ′.

Lemma 4. T ′ + δD is bigger than the length of each time slot [Di, Di+1).

Proof. Let D′ be the execution time of PoSt.P′. By the correctness of the verification
algorithm, D′ < (1 + δ)D. Based on the result of Lemma 3 , we have that the length
of each time slot [Di, Di+1) is longer than T ′, thus, the longest slot should be shorter
than (1 + δ)D − (k − 1)T ′ = δD + T ′.

Lemma 5. Each D̂i ∈ [Di, Di+1) and the time slot [Di, D̂i) is shorter than δD.

Proof. Finally, we show the PoEt response sti must be queried to the random oracle
H (Alg.1 step 13) within this time slot [Di, Di+1) and that the time slot [Di, D̂i) is
shorter than δT . The output of the PoR πi is queried at the time point Di+1, hence
the input of the PoR, ci must be generated by PoSt.P′ before the time Di+1 according
to the sequentiality of PoR. Due to the unpredictability of the random oracle, H must
be queried on input sti before the time Di+1. On the other hand, according to the
unpredictability of PoEt, PoSt.P′ can not figure out the PoEt proof sti before the time
point Di, when the PoEt input is generated. Given this, sti must be queried to the
random oracle H in time slot [Di, Di+1). Furthermore, since the maximum length of
[Di, Di+1) and the evaluation time of PoEt is longer than T ′, the slot [Di, D̂i) < δD.

Extraction phase. In this phase, we show that given the bunch of configurations for
PoSt.P′ for time slot [Di, D̂i) (or [Di−1, D̂i−1)) and the code of the transition func-
tion, ci and sti can be accessed by the PoSt.Ext. Indeed, since both random oracles H
are maintained by the extractor, a cheating prover of PoR.P′ can be constructed by
manipulating the output of the random oracle H (step 13, Algorithm 1) as the PoR
challenge, rewinding the part of the PoSt.P′ corresponding to time segment [Di, D̂i)
and collecting the queries of the random oracle H (step 17, Algorithm 1) as the PoR
response. Since there is a PoR extractor to recover the storage data from PoR.P′, the
soundness proof of PoSt is complete.

19

𝑃𝑜𝐸𝑡1 ...
𝐺0
𝑃𝑜𝑅

𝑟𝑜𝑜𝑡
Prev.
State

𝐺𝑛
𝑃𝑜𝑅

𝑃𝑜𝐸𝑡𝑛

Prev.
State

𝐺𝑛−1
𝑃𝑜𝑅

𝑟𝑜𝑜𝑡

𝑃𝑜𝑅1
Merkle tree

𝑃𝑜𝑅𝑛
Merkle tree

Fig. 4: Structure of the multi-prover stoRNA.

B Stateless Multi-Prover PoSt construction

In this section we show improvement options to the concrete efficiency of prover algo-
rithm by proposing an extended multi-prover PoSt constructionmstoRNA = (Store,Prove
,Verify) (see Algorithm 3 for details). More precisely, we assume any arbitrary num-
ber of “Time Nodes” and “Storage Nodes” can freely join the DSN by respectively
providing “CPU work” and “storage-time” resources to the network.

mstoRNA.Store algorithm is executed to output file Fj and tag tgj which are outsourced
to Storage Node j. In stoRNA.Prove algorithm, (i) Time Node, every T time units,
shares the PoEt state and waits for a time gap determined by network latency. (ii)
Storage Node j hosting file Fj , generates a challenge based on the freshly advertised
PoEt state, serving as the PoR challenge, and submits πij ← PoR.Prove. (iii) Time Node
collects all PoR proofs from all Storage Nodes and creates a Merkle tree MTi with root
ri. (iv) Time Node inputs ri together with PoEt proof to update the commitment graph
GCom

n , and (v) Time Node timestamps the updated GCom
n root, lϵ, into the shared PoEt

state for the next PoEt execution. At the end of the deposit period D, the Time Node
returns lϵ together with the final PoEt state as a commitment to all proofs sequentially
generated during D.

Upon receiving the commitment, in mstoRNA.Verify algorithm, (i) the verifier chal-
lenges a randomly sampled subset of time slots (ii) for every challenged time slot, the
Time Node provides openings for both GCom

n and Merkle tree MTi together with all the
(PoEt,PoR) proofs on the path from this challenged node to the root, (iii) the verifier,
verifies commitment openings of bothMTi andGCom

n , and (iv) runs PoEt.Verify,PoR.Verify
algorithms to respectively verify the returned PoEt,PoR proofs. As the number of Stor-
age Nodes connected to a Time Node increases, the overall computational complexity
of the prover algorithm diminishes. This enables even personal resource-constrained
devices to partake in DSNs by dedicating some amount of disk-space, resulting in more
decentralization. Besides, a PoSt sequence generated by a Time Node in mstoRNA can
migrate to any other Time Node, who can continue where the previous prover left off.
This is particularly important considering real nodes susceptible to Failure.

20

Algorithm 3 mstoRNA Construction

1: mstoRNA.Store
2: input data file F ∗ and (PoR.sk,PoR.pk)
3: (F, tg)← PoR.Store(PoR.sk,PoR.pk, F ∗) ▷ repeat this for different files

outsourced to m storage nodes

4: sample random seed rs←$ {0, 1}w
5: output (rs, F, tg)
6:
7: mstoRNA.Prove
8: Time Node
9: input random seed rs, deposit time D, and audit frequency T
10: set i← 0 and et← 0
11: set st← rs
12: while et ≤ D do
13: st← PoEt.Prove(T, st)
14: advertise st
15: i← i+ 1
16: hi ← st
17: wait to receive PoR proofs from storage nodes ▷ wait time is determined

based on average network roundtrip time (RTT)

18: for all j ∈ [1,m] do
19: ri ← MT.AppendLeaf(πij) ▷ create a Merkle tree with PoRs received

from Storage Nodes

20: lϵ ← GCom
n .Update(v = i,V = hi ∥ ri) ▷ Algorithm 2

21: st← H(st ∥ lϵ)
22: et← et+ T

23: N ← i
24: HFNL ← st
25: output Com = (HFNL, lϵ)
26:
27: Storage Node
28: node j input processed file Fj , tag tgj , deposit time D, and audit frequency T
29: periodically input advertised state st
30: ci ← H(st)
31: πij ← PoR.Prove(PoR.pk, Fj , tgj , ci)
32: output πij

33:
34: mstoRNA.Verify
35: input commitment Com, tag {tgj}j∈[1,m], seed rs, public key PoR.pk
36: generate random c−element subset I∗ ⊂ [1, N] and send it to all provers.
37: wait to receive {hi, ri, πij , {lk}k∈∆i}i∈I∗ , where ∆i = {i[1, j − 1] ∥ 1− i[j]}j∈[1,n]

38: ▷ ∆i contains commitment openings for both GCom
n and MTi

39: for all i ∈ I∗ do
40: ci ← H(hi)
41: for all j ∈ [1,m] do
42: if MT.Verify(ri, πij) = false then return false ▷ verify MTi opening

43: if PoR.Verify(PoR.pk, tgj , πij , ci) = false then return false

44: if li ̸= H(i, ri, lp1 , . . . , lpd), where (p1, . . . , pd) = Parents(i) then return false

45: if ∃j ∈ ∆i : lj ̸= H(j, lj∥0, lj∥1) then return false ▷ verify GCom
n opening

46: if PoEt.Verify(T, hi) = false then return false

47: return true 21

Theorem 2. Let PoR be a stateless PoR scheme with ϵ-soundness and unpredictability.
Let PoEt be a PoEt scheme with δ-evaluation time. The time cost of PoR and hash
function evaluation are negligible w.r.t. T . The time cost of s0 sequential steps on the
server processor is T ′. If T ′ +2δD < T , the proposed mstoRNA scheme in Algorithm 3
is stateless, complete, and ϵ-sound.

Proof. (i: Completeness): This property directly follows from the completeness of the
PoR and PoEt schemes.

(ii: Soundness): The proof strategy of the mstoRNA scheme directly follows the proof in
Theorem 1. The mstoRNA verification algorithm requires the provers to compute PoR
challenges (and responses) in the Storage Node phase, and evaluate the PoEt in the
Time Node phase as in Algorithm 3. Therefore, based on Lemma 1, with the probability
(1 − α)c − (2 · n · w · q2)/2w, one can conclude that the PoR responses are valid and
the PoEt are evaluated as expected, due to sequentially of PoEt and unpredictability
of PoR. For Extraction phase, the random time slot with a length longer than T must
contain at least one PoR execution, and both the input and output of PoR can be
located via random oracle H. This makes the extraction works in a way that one can
invoke PoR extractor to recover the data.

22

	stoRNA: Stateless Transparent Proofs of Storage-time

