
Context Discovery and Commitment Attacks∗

How to Break CCM, EAX, SIV, and More

Sanketh Menda

Cornell Tech
Julia Len

Cornell Tech
Paul Grubbs

University of Michigan
Thomas Ristenpart

Cornell Tech

Abstract

A line of recent work has highlighted the importance of context commitment security, which

asks that authenticated encryption with associated data (AEAD) schemes will not decrypt the same

adversarially-chosen ciphertext under two different, adversarially-chosen contexts (secret key, nonce,

and associated data). Despite a spate of recent attacks, many open questions remain around context

commitment; most obviously nothing is known about the commitment security of important schemes

such as CCM, EAX, and SIV.

We resolve these open questions, and more. Our approach is to, first, introduce a new framework

that helps us more granularly define context commitment security in terms of what portions of a con-

text are adversarially controlled. We go on to formulate a new notion, called context discoverability

security, which can be viewed as analogous to preimage resistance from the hashing literature. We

show that unrestricted context commitment security (the adversary controls all of the two contexts)

implies context discoverability security for a class of schemes encompassing most schemes used in

practice. Then, we show new context discovery attacks against a wide set of AEAD schemes, includ-

ing CCM, EAX, SIV, GCM, and OCB3, and, by our general result, this gives new unrestricted context

commitment attacks against them.

Finally, we consider restricted context commitment security for the original SIV mode, for which

no prior attack techniques work (including our context discovery based ones). We are nevertheless able

to give a novel (2𝑛/3) attack using Wagner’s k-tree algorithm for the generalized birthday problem.

1 Introduction

Designers of authenticated encryption with associated data (AEAD) have traditionally targeted security

in the sense of confidentiality and ciphertext integrity, first in the context of randomized authenticated

encryption [7], and then nonce-based [37] and misuse-resistant AEAD [38].

But in recent years researchers and practitioners have begun realizing that confidentiality and in-

tegrity as previously formalized prove insufficient in a variety of contexts. In particular, the community is

beginning to appreciate the danger of schemes that are not key committing, meaning that an attacker can

compute a ciphertext such that it can successfully decrypt under two (or more) keys. Non-key-committing

AEAD was first shown to be a problem in the context of moderation in encrypted messaging [18, 26], and

later in password-based encryption [31], password-based key exchange [31], key rotation schemes [2], and

symmetric hybrid (or envelope) encryption [2].

Even more recently, new definitions have been proposed [5] that target committing to the key, as-

sociated data, and nonce. And while there have been proposals for new schemes [2, 5] that meet these

∗
© IACR 2023. The proceedings version of this paper appears at Eurocrypt 2023. This is the full version.

1

varying definitions, questions still remain about which current AEAD schemes are committing and in

which ways. Moreover, there have been no commitment results shown for a number of important prac-

tical AEAD schemes, such as CCM [19], EAX [12], and SIV [38]. Implementing (and standardizing) new

AEAD schemes takes time and so understanding which standard AEAD schemes can be securely used in

which settings is a pressing issue.

This work makes four main contributions. First, we provide a new, more granular framework for

commitment security, which expands on prior ones to better capture practical attack settings. Second,

we show the first key commitment attack against the original SIV mode, which was previously an open

question. Third, we introduce a new kind of commitment security notion for AEAD—what we call context
discoverability—which is analogous to preimage resistance for cryptographic hash functions. Fourth, we

give context discovery attacks against a range of schemes which, by a general implication, also yield new

commitment attacks against those schemes. A summary of our new attacks, including comparison with

prior ones, when relevant, is given in Figure 1.

Granular commitment notions. Recall that a nonce-based AEAD encryption algorithm Enc takes as

input a key 𝐾 , nonce 𝑁 , associated data 𝐴, and a message 𝑀 . It outputs a ciphertext 𝐶. Decryption Dec

likewise takes in a (𝐾, 𝑁 , 𝐴) triple, which we call the decryption context, along with a ciphertext 𝐶, and
outputs either a message 𝑀 or special error symbol ⊥.

While most prior work has focused on key commitment security, which requires commitment to only

one part (the key) of the decryption context, Bellare andHoang (BH) [5] suggest amore expansive sequence

of commitment notions for nonce-based AEAD. For the first, CMT-1, an adversary wins if it efficiently

computes a ciphertext 𝐶 and two decryption contexts (𝐾1, 𝑁1, 𝐴1) and (𝐾2, 𝑁2, 𝐴2) such that decryption of

𝐶 under either context works (does not output ⊥) and 𝐾1 ≠ 𝐾2. CMT-1 is often called key commitment.
1

CMT-3 relaxes the latter winning condition to allow awin should the decryption contexts differ in anyway.

We therefore refer to CMT-3 as context commitment and schemes that meet CMT-3 as context committing.
These notions form a strict hierarchy, with CMT-3 being the strongest. Despite this, most prior attacks [18,

26, 31, 2] have focused solely on key commitment (CMT-1).

Our first contribution is to refine further the definitional landscape for nonce-based AEAD schemes in

a way that is particularly useful for exploring context commitment attacks. In practice, attackers will often

face application-specific restrictions preventing full control over the decryption context. For example, in

the Dodis, Grubbs, Ristenpart, and Woodage (DGRW) [18] attacks against Facebook’s message franking

scheme, the adversary had to build a ciphertext that decrypts under two contexts with equivalent nonces.

Their (in BH’s terminology) CMT-1 attack takes on a special form, and we would like to be able to formally

distinguish between attacks that achieve additional adversarial goals (e.g., different keys but equivalent

nonces) and those that may not.

We therefore introduce a new, parameterized security notion that generalizes the BH notions. Our

CMT[Σ] notion specifies what we call a setting Σ = (ts, S, P) that includes a target specifier ts, a context
selector S, and a predicate P. The parameters ts and S specify which parts of the context are attacker-

controlled versus chosen by the game, and which of the latter are revealed to the attacker. Furthermore,

the predicate P takes as input the two decryption contexts and decrypted messages, and outputs whether

the pair of tuples satisfy a winning condition. An adversary wins if it outputs a ciphertext and two contexts

satisfying the condition that each decrypt the ciphertext without error. The resulting family of commit-

ment notions includes both CMT-1 and CMT-3 but also covers a landscape of further notions.

We highlight two sets of notions. The first set is composed of CMTk, CMTn, and CMTa, which use

predicates (𝐾1 ≠ 𝐾2), (𝑁1 ≠ 𝑁2), and (𝐴1 ≠ 𝐴2), respectively. The first notion is equivalent to CMT-

1; the latter two are new. All of them are orthogonal to each other and a scheme that meets all three

simultaneously achieves CMT-3. We say these notions are permissive because the predicates used do not

1
BH refer to this as CMTD-1, but for tidy AEAD schemes, CMT-1 and CMTD-1 are equivalent, so we prefer the compact term.

2

Scheme CDY∗
a CDY∗

n CMT∗
a CMT∗

k CMTk CMT-3

GCM [21] ⋆é §4 ⋆é §4 ⋆é §E ⋆é [26, 18] ⋆é [26, 18] ⋆é [26, 18]

SIV [39] ⋆é §4 ⋆é §5 ⋆é � ⋆é �
CCM [19] ⋆é §4 ⋆é � ⋆é �
EAX [12] ⋆é §4 ⋆é §4 ⋆é � ⋆é �
OCB3 [30] ⋆é §4 ⋆é [2] ⋆é [2] ⋆é [2]

PaddingZeros ⋆Ë � ⋆Ë � ⋆é §E ⋆Ë [2] ⋆Ë [5] ⋆é �
KeyHashing ⋆Ë � ⋆Ë � ⋆é §E ⋆Ë [2] ⋆Ë [2] ⋆é �
CAU-C1 [5] ⋆Ë � ⋆Ë � ⋆Ë [5] ⋆Ë [5] ⋆é �

Figure 1: Summary of context discovery and commitment attacks against a variety of popular AEAD

schemes. SymbolË indicates a proof that any attack will take at least 264 time, while symbol é indicates

the existence of an attack that takes less than 264 time; symbol ⋆ indicates results new to this paper and

⋆ indicates prior work (citation given). CMTk and CMT-3 are from Bellare and Hoang [5], where CMTk

was called CMT-1. The notions CDY
∗
a , CDY

∗
n , CMT

∗
a , and CMT

∗
k are introduced in this paper, and CDY

∗
a ,

CDY
∗
n , and CMT

∗
k are implied by CMTk. Symbol� indicates that the result is implied from one of the other

columns by a reduction shown in this paper.

make any demands on other components of the context. In contrast, restrictive variants, which we denote

via CMT
∗
k , CMT

∗
n , and CMT

∗
a , require equality for other context components. For example, the first uses

the predicate (𝐾1 ≠ 𝐾2) ∧ ((𝑁1, 𝐴1) = (𝑁2, 𝐴2)). These capture the types of restrictions faced in real attacks

mentioned above.

Breaking the original SIV. While priorwork has shown (in our terminology) CMT
∗
k attacks for GCM [26,

18], GCM-SIV [40, 31], ChaCha20/Poly1305 [26, 31], XChaCha20/Poly1305 [31], and OCB3 [2], an open

question of practical interest [41] is whether there also exists a CMT
∗
k attack against Synthetic IV (SIV)

mode [38]. We resolve this open question, showing an attack that works in time about 253. It requires new
techniques compared to prior attacks.

SIV combines a PRF 𝐹 with CTRmode encryption, encrypting by first computing a tag 𝑇 = 𝐹𝐾 (𝑁 ,𝐴,𝑀)
and then applying CTR mode encryption to 𝑀 , using 𝑇 as the (synthetic) IV and a second key 𝐾 ′

. The

tag and CTR mode output are, together, the ciphertext. Decryption recovers the message and then recom-

putes the tag, rejecting the ciphertext if it does not match. Schmieg [40] and Len, Grubbs, and Ristenpart

(LGR) [31] showed that when 𝐹 is a universal hash-based PRF, in particular GHASH for AES-GCM-SIV,

one can achieve a fast CMT
∗
k attack.

Their attack does not extend to other versions of SIV, perhaps most notably the original version that

uses for 𝐹 the S2V[CMAC] PRF [38]. This version has been standardized [27] and is available in popular

libraries like Tink [3]. For brevity here we describe the simpler case where 𝐹 is just CMAC; the body

will expand on the details. At first it might seem that CMAC’s well-known lack of collision resistance

(for adversarially-chosen keys), should extend to allow a simple CMT
∗
k attack: find 𝐾1, 𝐾2 such that 𝑇 =

CMAC𝐾1(𝑁 ,𝐴,𝑀) = CMAC𝐾2(𝑁 ,𝐴,𝑀 ′) for𝑀 ≠ 𝑀 ′
. But the problem is that we need𝑀,𝑀 ′

to also satisfy

𝑀 ⊕ CTR𝐾 ′
1
(𝑇) = 𝑀 ′ ⊕ CTR𝐾 ′

2
(𝑇) (1)

where CTR𝐾 (𝑇) denotes running counter mode with initialization vector 𝑇 and block cipher key 𝐾 . When

using a GHASH-based PRF, the second condition “plays well” with the algebraic structure of the first

condition, making it computationally easy to satisfy both simultaneously. But, here that does not work.

The core enabler for our attack is that we can recast the primary collision finding goal as a generalized

birthday bound attack. For block-aligned messages, we show how the two constraints above can be rewrit-

ten as a single equation that is the xor-sum of four terms, each taking values over {0, 1}𝑛. Were the terms

independently and uniformly random, one would immediately have an instance of a 4-sum problem, which

3

can be solved usingWagner’s k-tree algorithm [43] in time(2𝑛/3). But our terms are neither independent

nor uniformly random. Nevertheless, our main technical lemma shows that, in the ideal cipher model, the

underlying block cipher and the structure of the terms (which are dictated by the details of CMAC-SIV)

allows us to analyze the distribution of these terms and show that we can still apply the k-tree algorithm

and achieve the same running time. This technique may be of independent interest.

Using this, we construct a CMT
∗
k attack against S2V[CMAC]-SIV that works in time about 253, making it

practical and sufficiently damaging to rule out SIV as suitable for contexts where key commitment matters.

Context discoverability. Next we introduce a new type of security notion for AEAD. The cryptographic

hashing community has long realized the significance of definitions for both collision resistance and preim-

age resistance [14], the latter of which, roughly speaking, refers to the ability of an attacker to find some

input that maps to a target output. In analyzing CMTk security for schemes, we realized that in many cases

we can give very strong attacks that, given any ciphertext, can find a context that decrypts it—a sort of

preimage attack against AEAD. To avoid confusion, we refer to this new security goal for AEAD as con-
text discoverability (CDY), as the adversary is tasked with efficiently computing (“discovering”) a suitable

context for some target ciphertext.

While we have not seen real attacks that exploit context discoverability, since CDY is to CMT what

preimage resistance is to collision resistance, we believe that they are inevitable. We therefore view it

beneficial to get ahead of the curve and analyze the CDY security before concrete attacks surface.

We formalize a family of CDY definitions similarly to our treatment for CMT. Our CDY[Σ] notion is

parameterized by a setting Σ = (ts, S) that specifies a target specifier ts and a context selector S. Like for

CMT[Σ], ts and S specify the parts of the context that the attacker can choose and which parts are chosen

by the game and either hidden or revealed to the attacker. Unlike CMT, however, the attacker is always

given a target ciphertext and needs to only produce one valid decrypting context.

Similar to CMT
∗
k , CMT

∗
n , CMT

∗
a , we define the notions CDY

∗
k , CDY

∗
n , CDY

∗
a . The notion CDY

∗
k captures

the setting where an adversary is given arbitrary ciphertext 𝐶, nonce 𝑁 , and associated data 𝐴, and must

produce a key 𝐾 such that 𝐶 decrypts under (𝐾, 𝑁 , 𝐴). Similarly, CDY
∗
n and CDY

∗
a require the adversary to

provide a nonce and associated data, respectively, given the other components chosen arbitrarily. These

model restricted attack settings where parts of the context are not in the adversary’s control.

We also define CDY
∗[ts] which generalizes this intuition to any target specifier ts. For example, in

CDY
∗[ts = {n}] the adversary is given arbitrary ciphertext and nonce 𝑁 , and must produce a key 𝐾 and

associated data 𝐴 such that the ciphertext decrypts under (𝐾, 𝑁 , 𝐴).
We next analyze the relations between these sets of notions. In particular, we show that if an AEAD

scheme is “context compressing”—ciphertexts are decryptable under more than one context—then CMT-3

security implies CDY
∗
. This is analogous to collision resistance implying preimage resistance, though the

details are different. Further, we observe that almost all deployed AEAD schemes are context compressing

since they “compress” the nonce and associated data into a shorter tag. This allows us to focus on finding

CDY
∗[Σ] attacks for AEAD schemes to show that these schemes also do notmeet CMT[Σ] security. Selected

relationships are shown in Figure 2.

This opens up a new landscape of analysis, which we explore. We characterize a large class of AEAD

schemes that use non-preimage resistant MACs and, based on this weakness, develop fast CDY
∗
a attacks.

The set includes CCM, EAX, SIV, GCM, and OCB3. For EAX and CCM, this represents the first attacks

of any kind for committing security. For EAX and GCM, we are also able to give CDY
∗
n attacks, which is

perhaps even more surprising a priori, given that an adversary in this case only controls the nonce.

All this sheds light on the deficiencies of several popular design paradigms for AEAD, when viewed

from the perspective of context commitment security. These definitions also allow us to precisely com-

municate attacks and threat models. For example, CDY might suffice for some applications while others

might want the more computationally expensive CMT security.

4

CMTk CMTn CMTa

CDY
∗
k CDY

∗
n CDY

∗
a

CMT-3

CMTk CMTn CMTa

CMT
∗
k CMT

∗
n CMT

∗
a

CDY
∗

Th 1

CDY
∗
k CDY

∗
n CDY

∗
a

Figure 2: (Top) Selected relationships between permissive CMT notions and restrictive CDY notions. Solid

arrows represent implications. (Bottom) Selected relationships between CMT-3 and the notions we in-

troduce in this paper. Solid arrows represent implications. The dotted arrow from CMT-3 to CDY
∗
holds

assuming “context compression” as defined in Theorem 1.

Revisiting commitment-enhancing mechanisms. Finally, in Section E we use this new framework

to analyze proposed mechanisms for commitment security. First, we look at the folklore padding zeros

transform which prefixes zeroes to a message before encrypting and verifies the existence of these zeroes

at decryption. This transform was recommended in an early OPAQUE draft specification [29, §3.1.1] and

was shown by Albertini et al. [2, §5.3] to achieve FROB security and by Bellare and Hoang [5] to achieve

CMT-1 security. We show that this transform does not achieve our CMT
∗
a notion (and thus CMT-3) for

all AEAD schemes, ruling it out as a candidate commitment security transform. We then make similar

observations about the CommitKey transform which appends to the ciphertext a hash commitment to the

key and the nonce. Finally, we conclude by considering the practical key commitment security of the

recent CAU-C1 scheme from BH [5]. While a naive adaptation of DGRW’s [18] “invisible salamanders”

attack to this scheme takes about 281 time, we show a more optimized attack which takes a little more than

264 time, showing that 64-bit key-committing security does not preclude practical attacks.

Next steps and open problems. Our results resolve a number of open problems about AEAD com-

mitment security, and overall highlight the value of new definitional frameworks that surface different

avenues for attack. That said, we leave several open problems, such as whether different flavors of context

discovery or commitment attacks can be found against popular schemes—the blank entries in Figure 1.

Our attack techniques do not seem to work against these schemes, but whether positive security results

can be shown is unclear.

2 Background

Notation. We refer to elements of {0, 1}∗ as bitstrings, denote the length of a bitstring 𝑥 by |𝑥 | and the left-
most (i.e., “most-significant”) bit by msb(𝑥). Given two bitstrings 𝑥 and 𝑦, we denote their concatenation
by 𝑥 ‖ 𝑦, their bitwise xor by 𝑥 ⊕ 𝑦, and their bitwise and by 𝑥&𝑦. Given a number 𝑛, we denote its 𝑚-bit
encoding as encode𝑚(𝑛). For a finite set 𝑋 , we use 𝑥 ←$ 𝑋 to denote sampling a uniform, random element

from 𝑋 and assigning it to 𝑥 .
Sometimes, we operate in the finite field GF(2𝑛) with 2𝑛 elements. This field is defined using an irre-

ducible polynomial 𝑓 (𝛼) inGF(2)[𝛼] of degree 𝑛. While the choice of polynomial affects the representation

5

and the implementation of some field operations, all finite fields of size 2𝑛 are isomorphic, so the algorithms

presented do not rely on this detail. The elements of the field are polynomials 𝑥0+𝑥1𝛼+𝑥2𝛼2+⋯+𝑥𝑛−1𝛼𝑛−1
of degree 𝑛−1with binary coefficients 𝑥𝑖 ∈ GF(2). These polynomials can be represented by the 𝑛-bit string
𝑥0𝑥1⋯ 𝑥𝑛−1 of their coefficients. Both addition and subtraction of two 𝑛-bit strings, denoted 𝑥+𝑦 and 𝑥−𝑦,
respectively, is their bitwise xor 𝑥 ⊕ 𝑦. Multiplication of two 𝑛-bit strings, denoted 𝑥 ⋅ 𝑦, corresponds to
the multiplication of the corresponding polynomials 𝑥 and 𝑦 followed by modular reduction with the irre-

ducible polynomial 𝑓 (𝛼). For concreteness, we illustrate how to double a 128-bit string with the GCM [21]

polynomial 𝑓 (𝛼) = 1 + 𝛼 + 𝛼2 + 𝛼7 + 𝛼128, denoted 2 ⋅ 𝑥 , as (𝑥 ≫ 1) ⊕ Δ where Δ = 0128 if 𝑥127 = 0 and
Δ = 111000010120 otherwise. A general method for multiplying any two 128-bit strings is given in the

GCM specification [21, §6.3]. Once we have multiplication, we can implement the multiplicative inverse

of a nonzero 𝑛-bit string, denoted 𝑥−1 as 𝑥2𝑛−2 using Lagrange’s theorem.
2

Probability. An 𝑛-bit random variable 𝑋 is one whose value is probabilistically assigned, defined by

probability mass function 𝑝𝑋 (𝑥) ∶= Pr[𝑋 = 𝑥]. We require that the probability of 𝑋 over all 𝑛-bit strings
sums to one, ∑𝑥∈{0,1}𝑛 𝑝𝑋 (𝑥) = 1. We say that two 𝑛-bit random variables 𝑋 and 𝑌 are independent if, for
all 𝑥 ∈ {0, 1}𝑛 and for all 𝑦 ∈ {0, 1}𝑛, it holds that Pr[(𝑋 = 𝑥) ∧ (𝑌 = 𝑦)] = Pr[𝑋 = 𝑥] ⋅ Pr[𝑌 = 𝑦]. The 𝑛-bit
uniform random variable 𝑈 is the random variable with the probability mass function 𝑝𝑈 (𝑥) = 1

2𝑛 for all

𝑥 ∈ {0, 1}𝑛. Given two 𝑛-bit random variables 𝑋 and 𝑌 , we define the total variation distance between them

Δ(𝑋, 𝑌) ∶= max
𝑖 ∈ {0,1}𝑛

|| Pr(𝑋 = 𝑖) − Pr(𝑌 = 𝑖) || .

A random function 𝐹 from 𝑛-bit strings to 𝑚-bit strings is a collection {𝑋𝑖 ∶ 𝑖 ∈ {0, 1}𝑛} of 𝑚-bit random
variables 𝑋𝑖, one for each 𝑛-bit input, such that for all 𝑖 ∈ {0, 1}𝑛, 𝐹(𝑖) ∶= 𝑋𝑖. A random function 𝐹 from

𝑛-bit strings to 𝑚-bit strings is uniformly random if, for all 𝑖 ∈ {0, 1}𝑛, 𝐹(𝑖) is the 𝑚-bit uniform random

variable. Since there is only one uniformly random function from 𝑛-bit strings to 𝑚-bit strings, we refer
to it as the uniform random function. We say that two random functions 𝐹1 and 𝐹2 from 𝑛-bit strings to
𝑚-bit strings are independent if, for all 𝑖 ∈ {0, 1}𝑛 and for all 𝑗 ∈ {0, 1}𝑛, 𝐹1(𝑖) and 𝐹2(𝑗) are independent𝑚-bit
random variables.

Regularity and birthday attacks. Following Bellare and Kohno [6], we say that a function is regular if

each output has the same number of preimages. More formally, a function 𝐹 ∶ {0, 1}𝑛 → {0, 1}𝑚 for 𝑚 < 𝑛
is regular if |𝐹−1(𝑦)| = 2𝑛

2𝑚 for all 𝑦 ∈ {0, 1}𝑚, where 𝐹−1(𝑦) ∶= {𝑥 ∈ {0, 1}𝑛 ∶ 𝐹(𝑥) = 𝑦}. And, if 𝐹 is regular,

then a birthday attack which randomly samples input points, succeeds in finding a collision with about

2𝑚/2 trials. If 𝐹 is not regular, then a birthday attack is expected to succeed with fewer than 2𝑚/2 trials. In
sum, regularity captures the worst-case runtime for a birthday attack.

Code-based games. To formalize security experiments, we use the code-based games framework of Bel-

lare and Rogaway [11]; with refinements from Ristenpart, Shacham, and Shrimpton [36]. A procedure 𝑃 is

a sequence of code-like statements that accepts some input and produces some output. The types of vari-

ables in the code-like syntax should be clear from context and are assumed to be appropriately initialized.

For example, a variable-length array 𝑇 is initialized to be the empty array with subsequent operations

dynamically resizing it. Procedures can also use random coins, the use of coins is usually implicit (like

sampling from a discrete set) but should be clear from context. We use superscripts like 𝑃𝑄
to denote that

procedure 𝑃 calls procedure 𝑄. An adversary  is a procedure that implements an interface that should
be clear from context. And a game 𝐺 is a distinguished procedure that accepts an adversary  with a

specified interface as input, and denoted as 𝐺(). We use (𝐺 ⇒ 𝑥) to denote the event that the procedure
𝐺 outputs 𝑥 , over the random coins of the procedure. Finally, given a game 𝐺 and an adversary , we

denote the advantage of at 𝐺 by 𝐀𝐝𝐯𝐺() ∶= Pr[𝐺() ⇒ true] .
2
Since GF(2𝑛) is a field, the set of nonzero elements 𝑥 under multiplication form a cyclic group of order 2𝑛 − 1 so 𝑥2𝑛−1 = 1.

6

Cost of attacks. We represent cryptanalytic attacks by procedures and compute their cost using a unit-
cost RAM model. Specifically, following [36], we use the convention that each pseudocode statement of a

procedure runs in unit time. This lets us write the running time of a procedure as the maximum number

of statements executed, with the maximum taken over all inputs of a given size. Similarly, we define the

number of queries as the maximum number of queries executed over inputs of a given size. We recognize

that this is a simplification of the real-world (e.g., see Wiener [44]), but for the attacks discussed in this

paper, we nevertheless believe that it provides a good estimate.

Pseudorandom functions. A pseudorandom function (PRF) is a function F ∶ K ×M → Y defined over

a key space K ⊆ {0, 1}∗, message space M ⊆ {0, 1}∗, and output space Y ⊆ {0, 1}∗, that is indistinguishable
from a uniform random function. More formally, we define the PRF advantage of an adversary as

𝐀𝐝𝐯prfF () ∶= ||Pr[𝐾 ←$ K ∶ (F(𝐾, ⋅))] − Pr[𝑅←$ Func ∶ (𝑅)]|| ,

and say that F is a PRF if this advantage is small for all adversaries that run in a feasible amount of time.

Hash functions. A hash function is a function H ∶ K × M → Y, defined over a key space K ⊆ {0, 1}∗,
message space M ⊆ {0, 1}∗, and hash space Y ⊆ {0, 1}∗. There are many definitions for hash function

security [38], but we focus on collision-resistance which captures the hardness of finding distinct inputs

that produce colliding outputs. We define the collision-resistance advantage of adversary for H as

𝐀𝐝𝐯collH () ∶= Pr[𝐾 ←$ K, (𝑀1, 𝑀2)←$ (𝐾) ∶ (𝑀1 ≠ 𝑀2) and (H(𝐾,𝑀1) = H(𝐾,𝑀2))] .

and say that H is a collision-resistant hash function if this advantage is small for all adversaries that run

in a feasible amount of time.

Block ciphers and the ideal cipher model. An 𝑛-bit block cipher, or a block cipher with block length
𝑛 bits, is a function 𝐸 ∶ {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑛, where for each key 𝑘 ∈ {0, 1}𝑛, 𝐸(𝑘, ⋅) is a permutation on

{0, 1}𝑛. Since it is a permutation, it has an inverse which we denote by 𝐸−1(𝑘, ⋅). To simplify notation, we

sometimes use the shorthands 𝐸𝑘(⋅) ∶= 𝐸(𝑘, ⋅) and 𝐸−1𝑘 (⋅) ∶= 𝐸−1(𝑘, ⋅).
An 𝑛-bit ideal block cipher [28] is a random map 𝐸 ∶ {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}𝑛, such that for each

key 𝑘 ∈ {0, 1}𝑛, 𝐸𝑘(⋅) is a permutation on {0, 1}𝑛. Alternatively, we can think of an ideal block cipher as one

where for each key 𝑘 ∈ {0, 1}𝑛, 𝐸𝑘(⋅) is uniformly, randomly sampled from the set of permutations on 𝑛-bits.

Authenticated encryption schemes. An AEAD scheme is a triple of algorithms AEAD = (Kg,Enc,Dec),
defined over a key space K ⊆ {0, 1}∗, nonce space N ⊆ {0, 1}∗, associated data space A ⊆ {0, 1}∗, message

spaceM ⊆ {0, 1}∗, and ciphertext space C ⊆ {0, 1}∗.

1. Kg ∶ ∅ → K is a randomized algorithm that takes no input and returns a fresh secret key 𝐾 .

2. Enc ∶ (K×N×A×M) → (C∪ {⊥}) is a deterministic algorithm that takes a 4-tuple of a key 𝐾 , nonce
𝑁 , associated data 𝐴, and message 𝑀 and returns a ciphertext 𝐶 or an error (denoted by ⊥).

3. Dec ∶ (K × N × A × C) → (M ∪ {⊥}) is a deterministic algorithm that takes a 4-tuple of a key 𝐾 ,
nonce 𝑁 , associated data 𝐴, and ciphertext 𝐶 and returns a plaintext 𝑀 or an error (denoted by ⊥).

We call the non-message inputs to Enc—the key, nonce, and associated data—the encryption context and
the non-ciphertext inputs to Dec—the key, nonce, and associated data—the decryption context. And, for a
given message, say that an encryption context is valid if Enc succeeds (i.e., does not output ⊥). Similarly,

for a given ciphertext, say that a decryption context is valid if Dec succeeds (i.e., does not output ⊥).
For traditional AEAD correctness, we need Enc to be the inverse of Dec. In other words, for any 4-tuple

(𝐾, 𝑁 , 𝐴,𝑀) ∈ K ×N ×A ×M, it holds that

Dec(𝐾, 𝑁 , 𝐴, Enc(𝐾, 𝑁 , 𝐴,𝑀)) = 𝑀 .

7

CMT-1():

((𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2), 𝐶)←$ 
𝑀1 ← AEAD.Dec(𝐾1, 𝑁1, 𝐴1, 𝐶)
𝑀2 ← AEAD.Dec(𝐾2, 𝑁2, 𝐴2, 𝐶)
// decryption success
If 𝑀1 = ⊥ or 𝑀2 = ⊥

Return false

// commitment condition
If 𝐾1 = 𝐾2

Return false

Return true

CMT-3():

((𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2), 𝐶)←$ 
𝑀1 ← AEAD.Dec(𝐾1, 𝑁1, 𝐴1, 𝐶)
𝑀2 ← AEAD.Dec(𝐾2, 𝑁2, 𝐴2, 𝐶)
// decryption success
If 𝑀1 = ⊥ or 𝑀2 = ⊥

Return false

// commitment condition
If (𝐾1, 𝑁1, 𝐴1) = (𝐾2, 𝑁2, 𝐴2)

Return false

Return true

Figure 3: (Left) The CMT-1 game [5]. (Right) The CMT-3 game [5]. The differences are highlighted.

In addition, we impose tidyness [35], ciphertext validity, and length uniformity assumptions. Tidyness

requires that for any 4-tuple (𝐾, 𝑁 , 𝐴, 𝐶) ∈ K ×N ×A × C, it holds that

Dec(𝐾, 𝑁 , 𝐴, 𝐶) = 𝑀 ≠ ⊥ ⟹ Enc(𝐾, 𝑁 , 𝐴,𝑀) = 𝐶 .

Ciphertext validity requires that for every ciphertext 𝐶 ∈ C there exists at least one valid decryption

context (𝐾, 𝑁 , 𝐴) ∈ K ×N ×A; that is Dec(𝐾, 𝑁 , 𝐴, 𝐶) ≠ ⊥. Length uniformity requires that the length of

a ciphertext depends only on the length of the message and the length of the associated data.

Finally, for AEAD security, we use the traditional privacy and authenticity definitions [37, §3].

Committing authenticated encryption. A number of prior notions for committing AEAD have been

proposed. In Figure 3 we provide the CMT-1 and CMT-3 games from Bellare and Hoang [5]. The FROB

game from Farshim, Orlandi, and Rosie [24] adapted to the AEAD setting by Grubbs, Lu, and Risten-

part [26], is the same except that the final highlighted predicate is changed to “𝐾1 = 𝐾2 or 𝑁1 ≠ 𝑁2”. The

FROB game asks the adversary to produce a ciphertext that decrypts under two different keys with the

same nonce. The CMT-1 game is more permissive and removes the condition that the nonce be the same.

The CMT-3 game is even more permissive and relaxes the different key condition to different keys, nonces,

or associated data. Bellare and Hoang [5] show that CMT-3 implies CMT-1, which implies FROB. We will

expand on these definitions with a more general framework next.

3 Granular Committing Encryption Definitions

We provide a more general framework for defining commitment security for encryption. As motivation,

we observe that while the CMT-1 and the stronger CMT-3 notions provide good security goals for con-

structions, they do not precisely capture the way in which attacks violate security—which parts of the

decryption context does the attacker need to control, which parts have been pre-selected by some other

party, and which parts are known to the attacker.

These considerations are crucial for determining the exploitability of commitment vulnerabilities in

practice. For instance, the vulnerability in Facebook attachment franking [22] exploited by Dodis et al. [18,

§3] only works if the nonces are the same; and the key rotation attack described by Albertini et al. [2] only

works with keys previously imported to the key management service. And, looking ahead, we propose a

variant of the Subscribe with Google attack described by Albertini et al. [2] in which a malicious publisher

provides a full decryption context only knowing the honestly published ciphertext.

We provide a more general framework for commitment security notions that more precisely captures

attack settings. As we will see in subsequent sections, our definitions provide a clearer explanatory frame-

work for vulnerabilities.

8

CMT[ts, S, P]():

cat𝑐 ←$ S

cat𝑎 ←$ (Revealts(cat𝑐))
cat ← Mergets(cat𝑐 , cat𝑎)
If cat = ⊥:

Return false

(𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2)) ← cat

𝑀1 ← AEAD.Dec(𝐾1, 𝑁1, 𝐴1, 𝐶)
𝑀2 ← AEAD.Dec(𝐾2, 𝑁2, 𝐴2, 𝐶)
If 𝑀1 = ⊥ or 𝑀2 = ⊥:

Return false

Return P((𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))

Notion Predicate P

CMTk (𝐾1 ≠ 𝐾2)
CMTn (𝑁1 ≠ 𝑁2)
CMTa (𝐴1 ≠ 𝐴2)

CMT
∗
k (𝐾1 ≠ 𝐾2) ∧ (𝑁1, 𝐴1) = (𝑁2, 𝐴2)

CMT
∗
n (𝑁1 ≠ 𝑁2) ∧ (𝐾1, 𝐴1) = (𝐾2, 𝐴2)

CMT
∗
a (𝐴1 ≠ 𝐴2) ∧ (𝐾1, 𝑁1) = (𝐾2, 𝑁2)

Figure 4: (Left) The CMT[Σ] commitment security game, parameterized by Σ = (ts, S, P), a target selec-

tor ts, context selector S, and predicate P. (Right) Predicates for the permissive notions CMTk, CMTn,

CMTa and restrictive notions CMT
∗
k , CMT

∗
n , CMT

∗
a , where ts = ∅.

Committing security framework. We find it useful to expand the set of security notions to more

granularly capture the ways in which the two decryption contexts are selected that generalizes context

commitment security. In Figure 4 we detail the CMT[Σ] game, parameterized by a setting Σ = (ts, S, P)
that specifies a target specifier ts, a context selector S, and a predicate P (to be defined next.) The adver-

sary helps compute a ciphertext and two decryption contexts (𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2)), what we call a
commitment attack instance (cat). The adversary wins if 𝐶 decrypts under both decryption contexts, and

the two decryption contexts satisfy the predicate P. The parameterization allows attack settings in terms

of which portions of the commitment attack instance are attacker controlled versus chosen in some other

way, and which of the latter are revealed to the attacker.

We now provide more details. A commitment attack instance is a tuple (𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))
consisting of a ciphertext 𝐶 ∈ C; two keys 𝐾1, 𝐾2 ∈ K; two nonces 𝑁1, 𝑁2 ∈ N; and two associated data

𝐴1, 𝐴2 ∈ A. A target specifier ts is a subset of labels {C, k1, n1, a1, k2, n2, a2} × {⋅, ⋅̂}. The left set labels the
components of a commitment attack instance, called component labels, and the right set denotes whether

the specified component is revealed to the adversary (no hat means revealed and hat means not revealed.)

For example, ts = {k1, k̂2} indicates the 𝐾1 and 𝐾2 in the context, and that 𝐾1 is revealed to the attacker.

A context selector S is a randomized algorithm that takes no input and produces the challenger-defined

elements of a commitment attack instance, denoted cat𝑐 , as specified by the target specifier ts. The re-

veal function Revealts parameterized by ts, takes a subset of a commitment attack instance and reveals

the components that ts tells it to reveal; i.e., the specified components with no hat. The merge function

Mergets(cat𝑐 , cat𝑎) parameterized by the target specifier ts, takes two subsets of commitment attack in-

stances cat𝑐 (challenger-defined elements) and cat𝑎 (adversary-defined elements) and works as follows.

First, it checks for every component specified by ts that cat𝑐 has a corresponding value. Second, it checks

that for every component specified by ts, if cat𝑎 has a value, that it matches the value in cat𝑐 . If either of

these checks fail, it outputs ⊥. Otherwise, it returns their union cat𝑐 ∪ cat𝑎. Finally, the predicate P takes

two decryption contexts output by Mergets(cat𝑐 , cat𝑎), and outputs true if they satisfy some criteria (e.g.,

that 𝐾1 ≠ 𝐾2), and false otherwise.

We associate to a setting Σ = (ts, S, P), AEAD Π, and adversary the CMT advantage defined as

𝐀𝐝𝐯CMT[Σ]
Π () ∶= Pr [CMT[Σ]() ⇒ true] .

Taking a concrete security approach, we will track the running time used by  and provide explicit ad-

vantage functions. Adapting our notions to support asymptotic definitions of security is straightforward:

9

in our discussions we will often say a scheme is CMT[Σ] secure as informal shorthand that no adversary

can win the CMT[Σ] game with “good” probability using “reasonable” running time.

Capturing CMT-1, CMT-3, and more via predicates. To understand our definitional framework fur-

ther, we can start by seeing how to instantiate it to coincide with prior notions. Let ts = ∅ indicate the

empty target selector, meaning that  chooses the ciphertext and two decryption contexts fully. Then

the set of Σ settings that use the empty target selector defines a family of security goals, indexed solely

by predicates, which we denote by CMT[P]. This family includes CMT-1 by setting P ∶= (𝐾1 ≠ 𝐾2) and
CMT-3 by setting P ∶= (𝐾1, 𝑁1, 𝐴1) ≠ (𝐾2, 𝑁2, 𝐴2). Not all instances in this family are interesting: consider,

for example, when P always outputs true or false. Nevertheless, the flexibility here allows for more granular

specification of adversarial ability. For instance, the predicate that requires (𝐾1 ≠ 𝐾2) ∧ (𝑁1 = 𝑁2) captures
a setting like that of the Dodis et al. [18] attack against Facebook’s message franking, which requires that

both decryption contexts have the same nonce.

Three games of particular interest are those with predicates that focus on inequality of the three in-

dividual context components: (𝐾1 ≠ 𝐾2), (𝑁1 ≠ 𝑁2), and (𝐴1 ≠ 𝐴2). For notational brevity, we let game

CMTk ∶= CMT[P = (𝐾1 ≠ 𝐾2)] and similarly CMTn ∶= CMT[P = (𝑁1 ≠ 𝑁2)] and CMTa ∶= CMT[P =
(𝐴1 ≠ 𝐴2)]. Then CMTk corresponds to CMT-1, but CMTn and CMTa are new. They are also orthogonal to

CMT-1, in the sense that we can give schemes that achieve CMT-1 but not CMTa nor CMTn security (see

Theorem 10). All three are, however, implied by being CMT-3 secure, and a scheme that simultaneously

meets CMTk, CMTn, and CMTa also enjoys CMT-3 security (see Lemmas 8 and 9.)

Note that CMTk, CMTn, and CMTa are permissive: as long as the relevant component is distinct across

the two contexts, it does not matter whether the other components are distinct. Also, of interest are

restrictive versions; for example, we can consider CMT
∗
k ∶= CMT[(𝐾1 ≠ 𝐾2) ∧ (𝑁1, 𝐴1) = (𝑁2, 𝐴2)] which

requires that the nonces and associated data are the same. Similarly, we can define restrictive notions

CMT
∗
n and CMT

∗
a . Restrictive versions are useful as they correspond to attacks that have limited control

over the decryption context. Interestingly, these restrictive notions are not equivalent to the corresponding

permissive notions, nor does a scheme that simultaneously meets CMT
∗
k , CMT

∗
n , and CMT

∗
a achieve CMT-3

security (see Theorem 11.)

Targeted attacks. Returning to settings with target specifier ts ≠ ∅, we can further increase the family

of notions considered to capture situations where a portion of the context is pre-selected. For instance,

in the key rotation example of Albertini et al. [2] mentioned earlier, we would have ts = {k1, k2} and
S = {𝐾1 ←$ K;𝐾2 ←$ K;Return (𝐾1, 𝐾2)} to indicate that the malicious sender has to use the two randomly

generated keys.

However, not all targeted attack settings are interesting. For some target specifiers ts, we can specify

a context selector S such that no adversary can achieve non-zero advantage. In particular, if we have

ts = {C, k1, n1, a1} and have S pick ciphertext 𝐶 and context (𝐾1, 𝑁1, 𝐴1) such that AEAD.Dec(𝐾1, 𝑁1, 𝐴1, 𝐶)
returns ⊥, then no adversary can win the game, making the security notion trivial (all schemes achieve it.)

Hiding target components. Finally, our game considers target specifiers ts that indicate that some

values chosen by S should remain hidden from. For example, the Subscribe with Google attack described

by Albertini et al. [2] can be reframed as a meddler-in-the-middle attack as follows. A publisher creates

premium content 𝑀1 and encrypts it using a context (𝐾1, 𝑁1, 𝐴1) to get a ciphertext 𝐶. The ciphertext 𝐶 is

published, but the context (𝐾1, 𝑁1, 𝐴1) is hidden. A malicious third-party, only looking at the ciphertext 𝐶,
tries to construct a valid decryption context (𝐾2, 𝑁2, 𝐴2) and uses that to sell fake paywall bypasses. We

can formalize this setting by having the target specifier ts = {C, k̂1, n̂1, â1}, with the context selector S as

𝐾1 ←$ K; 𝑁1 ←$ N; 𝐴1 ←$ A; 𝑀1 ←$ M; Return (AEAD.Enc(𝐾1, 𝑁1, 𝐴1, 𝑀1), 𝐾1, 𝑁1, 𝐴1)

and with Revealts(𝐶, 𝐾1, 𝑁1, 𝐴1) outputting 𝐶.

10

CDY[ts, S]():

dat𝑐 ←$ S

dat𝑎 ←$ (Revealts(𝑡))
dat ← Mergets(dat𝑐 , dat𝑎)
If dat = ⊥:

Return false

(𝐶, (𝐾, 𝑁 , 𝐴)) ← dat

𝑀 ← AEAD.Dec(𝐾, 𝑁 , 𝐴, 𝐶)
If 𝑀 = ⊥:

Return false

Return true

CDY[{k, n}, S]():

(𝐶, 𝐾, 𝑁)←$ S

𝐴←$ (𝐶, 𝐾, 𝑁)
𝑀 ← AEAD.Dec(𝐾, 𝑁 , 𝐴, 𝐶)
If 𝑀 = ⊥:

Return false

Return true

CDY[{k, a}, S]():

(𝐶, 𝐾, 𝐴)←$ S

𝑁 ←$ (𝐶, 𝐾, 𝐴)
𝑀 ← AEAD.Dec(𝐾, 𝑁 , 𝐴, 𝐶)
If 𝑀 = ⊥:

Return false

Return true

Figure 5: (Left) The CDY[ts, S] commitment security game, parameterized by a target specifier ts and a

context selector S. (Middle) The variant of CDY[Σ] used in the definition of CDY
∗
a . (Right) The variant

of CDY[Σ] used in the definition of CDY
∗
n .

Context discoverability security. Dodis et al [18, §5] and Albertini et al. [2, §3.3] have pointed out that

traditional CMT games are analogous to collision-resistance for hash functions, in the sense that the goal

is to find two different encryption contexts (𝐾1, 𝑁1, 𝐴1, 𝑀1) and (𝐾2, 𝑁2, 𝐴2, 𝑀2) such that they produce the

same ciphertext 𝐶. Under this lens, CMT with targeting (and no hiding) is like second preimage resistance,

and CMT with targeting and hiding is like preimage resistance. But, the analogy to preimage resistance is

not perfect, since we are not asking for any preimage but rather one that is not the same as the original.

Further, this restriction is unnecessary. Going back to the meddler-in-the-middle example above, it suffices

for an on-path attacker to produce any valid context. Thus, we find it useful to define a new preimage

resistance-inspired notion of commitment security.

In Figure 5 we define the game CDY[ts, S], parameterized by a setting Σ = (ts, S) that specifies a target
specifier ts and a context selector S. In more detail, a discoverability attack instance (dat) is a ciphertext

and a decryption context (𝐶, (𝐾, 𝑁 , 𝐴)). Here, a target specifier ts is a subset of {k, n, a} × {⋅, ⋅̂} and a context
selector S is a randomized algorithm that takes no input and produces a ciphertext and the elements of a

decryption context specified by the target specifier ts. The reveal function Revealts and the merge func-

tion Mergets(dat𝑐 , dat𝑎) work similarly to their CMT counterparts. Finally, the goal of the adversary is to

produce one valid decryption context for the target ciphertext.

We associate to a setting Σ = (ts, S), AEAD scheme Π, and adversary the CDY advantage defined as

𝐀𝐝𝐯CDY[Σ]Π () = Pr [CDY[Σ]() ⇒ true] .

Restricted CDY and its variants. To more accurately capture attack settings and to prove relations, we

find it useful to define restricted variants of the CDY[Σ] game. A class of games of particular interest are

ones that allow targeting under any context selector; we call this class restricted CDY. For a target specifier
ts, let CDY∗[ts] be the game where the adversary is given a ciphertext and elements of a decryption context

specified by ts, all selected arbitrarily, and needs to produce the remaining elements of a decryption context

such that AEAD.Dec(𝐾, 𝑁 , 𝐴, 𝐶) ≠ ⊥. Formally, for an AEAD scheme Π and adversary , we define the

CDY
∗
advantage as

𝐀𝐝𝐯CDY
∗[ts]

Π () = Pr [for all S, CDY[ts, S]() ⇒ true] .

In addition, we find it useful to define three specific variants of CDY
∗
that allow targeting two-of-three

components of a decryption context. Let CDY
∗
a be the game where the adversary is given an arbitrary

ciphertext 𝐶, key 𝐾 , and nonce 𝑁 , and has to produce associated data 𝐴 such that AEAD.Dec(𝐾, 𝑁 , 𝐴, 𝐶) ≠
⊥. Formally, for an AEAD scheme Π and adversary, we define the CDY

∗
a advantage as

𝐀𝐝𝐯CDY
∗
a

Π () = Pr [for all S, CDY[{k, n}, S]() ⇒ true] .

11

The CDY
∗
k and CDY

∗
n games are defined similarly where the adversary has to produce a valid key and nonce

respectively such that decryption succeeds when the remaining inputs to decryption are pre-selected.

Formally, for an AEAD scheme Π and adversary, we define the CDY
∗
k and CDY

∗
n advantage as

𝐀𝐝𝐯CDY
∗
k

Π () = Pr [for all S, CDY[{n, a}, S]() ⇒ true] ,

𝐀𝐝𝐯CDY
∗
n

Π () = Pr [for all S, CDY[{k, a}, S]() ⇒ true] .

Note that the context selector can only select valid ciphertexts, which sidesteps issues with formatting.

Without this constraint, a context selector could select a ciphertext that has invalid padding for a scheme

that requires valid padding, thereby making the notion trivial (all schemes achieve it.)

Furthermore, specific variants like CDY
∗
a may be trivial even with this constraint. For instance, if

the ciphertext embeds the nonce, then one can pick some key 𝐾 , some ciphertext 𝐶 embedding some

nonce 𝑁1, some other nonce 𝑁2, then no CDY
∗
a adversary can pick associated data 𝐴 such that 𝐶 decrypts

correctly under (𝐾, 𝑁2, 𝐴). However, in the context of this restricted CDY notion, we think this is desired

behavior and delegate capturing nuances like this to the unrestricted CDYnotion (which can capture this by

restricting to context selectors which ensure that the nonce embedded is the same as the nonce provided.)

With context compression, CMT-3 implies restricted CDY. A CDY[Σ] attack does not always imply

a CMT[Σ] attack. Consider, for example, the “identity” AEAD that has Enc(𝐾, 𝑁 , 𝐴,𝑀) ⇒ 𝐾 ‖ 𝑁 ‖ 𝐴 ‖ 𝑀
which has an immediate CDY[Σ] attack but is CMT[Σ] secure since a ciphertext can only be decrypted

under one context.
3
However, continuing with the hash function analogy, we wonder if a “compression”

assumption could make this implication hold. In Theorem 1 we show this statement for CDY
∗[ts = ∅] and

CMT-3. And note that this generalizes to CDY
∗[ts] for any tswith an appropriate compression assumption.

Notably, it holds for CDY
∗
a if we assume compression over associated data rather than the full context.

Theorem 1. Fix some AEAD Π. Then for any adversary  that wins the CDY∗[ts = ∅] game, we can give
an adversary  such that

𝐀𝐝𝐯CDY
∗[ts=∅]

Π () ≤ 2 ⋅ 𝐀𝐝𝐯CMT-3

Π () + ProbBadCtxΠ , (2)

where ProbBadCtxΠ is the probability that a random decryption context, when used for encrypting a random
message, is the only valid decryption context for the resulting ciphertext.

Proof. This proof is adapted from Bellare and Rogaway [10, p.147], where they prove a similar theorem

for hash functions. We construct an adversary  that randomly samples a context (𝐾1, 𝑁1, 𝐴1), encrypts
a random message to get a ciphertext 𝐶, then asks the CDY adversary  to produce a decryption context

for 𝐶 to get (𝐾2, 𝑁2, 𝐴2). This ciphertext generation can be viewed as a valid CDY context selector S so

 wins if the returned context is different from the one it sampled; i.e., (𝐾1, 𝑁1, 𝐴1) ≠ (𝐾2, 𝑁2, 𝐴2). The
pseudocode for  and S is given in Figure 6 and the success probability is analyzed below.

Per the above discussion the advantage of  is

𝐀𝐝𝐯CMT-3

Π () = Pr[((𝐶) ≠ ⊥) ∧ (ctx1 ≠ ctx2)] , (3)

where without loss of generality, we are assuming that  always produces a valid context or fails and

produces ⊥. But, before simplifying this equation, we need to define some terminology. First, let us define

the set of valid decryption contexts for a ciphertext as

Γ(𝐶) ∶= {(𝐾, 𝑁 , 𝐴) ∶ (Π.Dec(𝐾, 𝑁 , 𝐴, 𝐶) ≠ ⊥)} .
3
While the “identity” AEAD is not secure in the sense of privacy [37, §3], one can construct a secure counterexample by using

a wide pseudorandom permutation [8].

12

:

𝐾1 ←$ K; 𝑁1 ←$ N; 𝐴1 ←$ A

𝑀1 ←$ M

ctx1 ← (𝐾1, 𝑁1, 𝐴1)
𝐶 ← Π.Enc(𝐾1, 𝑁1, 𝐴1, 𝑀1)
ctx2 ←$ (𝐶)
If ctx2 = ⊥:

Return ⊥
(𝐾1, 𝑁2, 𝐴2) ← ctx2

If (𝐾1, 𝑁1, 𝐴1) = (𝐾2, 𝑁2, 𝐴2)
Return ⊥

Return (𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))

S:

𝐾1 ←$ K; 𝑁1 ←$ N; 𝐴1 ←$ A

𝑀1 ←$ M

𝐶 ← Π.Enc(𝐾1, 𝑁1, 𝐴1, 𝑀1)
Return 𝐶

Figure 6: Pseudocode for the CMT-3 adversary and CDY
∗
context selector S, used in proof of Theorem 1.

Now, for a given message 𝑀 , let us also define the set of “bad” decryption contexts which when used for

encrypting 𝑀 , remain the only valid decryption context for the resulting ciphertext

BadCtxs(𝑀) ∶= {(𝐾, 𝑁 , 𝐴) ∶ |Γ(Π.Enc(𝐾, 𝑁 , 𝐴,𝑀))| = 1} .

Finally, let us define the probability that a random decryption context is bad

ProbBadCtxΠ ∶= Pr [(𝐾, 𝑁 , 𝐴) ∈ BadCtxs(𝑀)] ,

over the choice (𝐾, 𝑁 , 𝐴,𝑀)←$ (K × N × A ×M). Using this notation we can rewrite Equation 3, where

the probabilities are over the choice (𝐾, 𝑁 , 𝐴,𝑀)←$ (K ×N ×A ×M), as

𝐀𝐝𝐯CMT-3

Π () = Pr[((𝐶) ≠ ⊥) ∧ (ctx1 ≠ ctx2)]
≥ Pr[((𝐶) ≠ ⊥) ∧ (ctx1 ≠ ctx2) ∧ (ctx1 ∉ BadCtxs(𝑀))] .

Using conditional probability, we can rewrite this term as

Pr[ctx1 ≠ ctx2 | ((𝐶) ≠ ⊥) ∧ (ctx1 ∉ BadCtxs(𝑚))] ⋅ Pr[((𝐶) ≠ ⊥) ∧ (ctx1 ∉ BadCtxs(𝑚))] .

Recall that if ctx1 ∉ BadCtxs(𝑚), then the adversary must choose one of at least two valid contexts, each

of which are equally likely to be ctx1 (even conditioned on 𝐶). Thus the probably that it picks ctx1 is at

most 1/2, and so

𝐀𝐝𝐯CMT-3

Π () ≥
1
2
⋅ Pr[((𝐶) ≠ ⊥) ∧ (ctx1 ∉ BadCtxs(𝑚))]

≥
1
2
⋅ (Pr[(𝐶) ≠ ⊥] − Pr[ctx1 ∈ BadCtxs(𝑚)]) .

Putting it all together, we get that

𝐀𝐝𝐯CMT-3

Π () ≥
1
2
⋅ (𝐀𝐝𝐯

CDY
∗[ts=∅]

Π () − ProbBadCtxΠ) ,

and finally rearranging gives the desired result.

CMT-3 implies restricted variants of CDY. We now show that if an attack against any of CDY
∗
k , CDY

∗
n ,

or CDY
∗
a implies an attack against CMT-3. Theorem 2 shows this for CDY

∗
a , but it readily generalizes to

CDY
∗
k and CDY

∗
n .

13

:

𝐾1 ←$ K; 𝑁1 ←$ N; 𝐴1 ←$ A

𝑀1 ←$ M

𝐶 ← Π.Enc(𝐾1, 𝑁1, 𝐴1, 𝑀1)
𝐾2 ← 𝐾1 + 1; 𝑁2 ← 𝑁1 + 1
𝐴2 ←$ (𝐶, 𝐾2, 𝑁2)
If 𝐴2 = ⊥

Return ⊥
Return (𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))

S:

𝐾1 ←$ K; 𝑁1 ←$ N; 𝐴1 ←$ A

𝑀1 ←$ M

𝐶 ← Π.Enc(𝐾1, 𝑁1, 𝐴1, 𝑀1)
𝐾2 ← 𝐾1 + 1; 𝑁2 ← 𝑁1 + 1
Return (𝐶, 𝐾2, 𝑁2)

Figure 7: Pseudocode for the CMT-3 adversary and CDY
∗
a context selector S, used in proof of Theorem 2.

Theorem 2. Fix some AEAD Π with key space |K| ≥ 2 and nonce space |N| ≥ 2. Then for any adversary 
that wins the CDY∗a game, we can give an adversary  such that

𝐀𝐝𝐯CDY
∗
a

Π () = 𝐀𝐝𝐯CMT-3

Π () ,

and the runtime of  is that of .

Proof. We prove this by constructing  such that it succeeds whenever  succeeds. The adversary 
randomly samples a context (𝐾1, 𝑁1, 𝐴1), encrypts a random message to get a ciphertext 𝐶, selects some

other key 𝐾2 and nonce 𝑁2 and asks the CDY
∗
a adversary  to produce an associated data 𝐴2 such that

(𝐾2, 𝑁2, 𝐴2) can decrypt 𝐶. This ciphertext and partial context construction can be viewed as a valid context
selector S. The pseudocode for the adversary and the context selector S are given in Figure 7. And, notice

that by construction,  wins whenever succeeds.

This approach of constructing  readily generalizes to CDY
∗
n and CDY

∗
k . Further, notice that the 

constructed in Figure 7 wins CMTk and CMTn; and similar relations hold for adversaries  constructed

from CDY
∗
n and CDY

∗
k adversaries. Corollary 3 captures these implications.

Corollary 3. Fix some AEAD Π with key space |K| ≥ 2, nonce space |N| ≥ 2, and associated data space
|A| ≥ 2. Then the following three statements hold. First, for any adversary 1 that wins the CDY∗a game, we
can give an adversary 1 such that

𝐀𝐝𝐯CDY
∗
a

Π (1) = 𝐀𝐝𝐯CMTk
Π (1) = 𝐀𝐝𝐯CMTn

Π (1) .

Second, for any adversary2 that wins the CDY∗n game, we can give an adversary 2 such that

𝐀𝐝𝐯CDY
∗
n

Π (2) = 𝐀𝐝𝐯CMTk
Π (2) = 𝐀𝐝𝐯CMTa

Π (2) .

Third, for any adversary3 that wins the CDY∗k game, we can give an adversary 3 such that

𝐀𝐝𝐯CDY
∗
k

Π (3) = 𝐀𝐝𝐯CMTn
Π (3) = 𝐀𝐝𝐯CMTa

Π (3) .

And the runtimes of 1, 2, and 3 are that of1, 2, and 3, respectively.

4 Context Discovery Attacks against AEAD

We show context discovery attacks on many AEAD schemes which delegate their authenticity to a non-

preimage resistant MAC. Specifically, we show CDY
∗
a attacks on EAX [12], SIV [39], CCM [19], GCM [21],

and OCB3 [30], and CDY
∗
n attacks on EAX [12] and GCM [21].

14

𝐾 𝑁 𝐴 𝐶 tag

MAC

≠

⊥

NoFailDecrypt

𝑀

Figure 8: Decryption structure of AEAD schemes which delegate their authenticity to a MAC. Should

the MAC tag comparison fail, the routine outputs an error (⊥), otherwise a message is always output by

NoFailDecrypt.

We say that an AEAD delegates its authenticity to a MAC if during decryption, a message is output

whenever the MAC comparison succeeds. To formalize this, we define NoFailDecrypt as a class of decryp-
tion algorithms that never fail. In other words, given a key, nonce, associated data, and ciphertext, they

always produce a message. For example, ECB and CTR decryption are NoFailDecrypt algorithms since a

valid ciphertext decrypts under any choice of key, nonce, and associated data. On the other hand, CBC

with PKCS7 padding is not a NoFailDecrypt algorithm since there most ciphertexts do not decrypt under

all choices of key, nonce, and associated data because the decrypted plaintext has incorrect padding.

With this terminology, we say that an AEAD delegates its authenticity to a MAC if it can be written as

a combination of aMAC and a NoFailDecrypt algorithm such that if theMAC check fails, decryption fails;

if instead the MAC check passes, then decryption outputs the result of NoFailDecrypt (which never fails).

This structure is illustrated in Figure 8. As a concrete example, for EAX [12] (described in Figure 9), the

MAC corresponds to checking the OMAC tag, and the NoFailDecrypt corresponds to the CTR decryption.

In this section, we are particularly interested in schemes that compose this structure with a non-preimage

resistant MAC like CMAC [20], GMAC [21, §6.4], or OMAC [12, Fig 1].

The CDY
∗
a attacks we show on these schemes have the following outline. Following the definition of

the game, the challenger provides the adversary with a ciphertext 𝐶 ‖ tag, a target key 𝐾 , and a target nonce
𝑁 , and asks it to find an associated data 𝐴 such that Decrypt(𝐾, 𝑁 , 𝐴, 𝐶 ‖ tag) ≠ ⊥. Then, the adversary
exploits the lack of preimage resistance to find an associated data 𝐴 such that MAC(𝐾, 𝑁 , 𝐴, 𝐶) = tag

and returns 𝐴. Since, in these schemes, the tag check passing guarantees decryption success, we get that

decryption succeeds.

For EAX [12] and GCM [21], we also show CDY
∗
n attacks. They proceed in a similar fashion to the

CDY
∗
a attacks but now the adversary finds a nonce 𝑁 such that MAC(𝐾, 𝑁 , 𝐴, 𝐶) = tag. But, when the

nonce length is shorter than a block (which is always true with GCM, and may be true with EAX), the

CDY
∗
n attacks are slower than the CDY

∗
a attacks.

The remainder of the section describes the attacks on EAX. The attacks on SIV, CCM, GCM, and OCB3

are in Appendix B.

CDY∗
a and CDY∗

n attacks on EAX. We consider EAX over a 128-bit block cipher as defined in Bellare,

Rogaway, and Wagner [12]. For simplicity, we restrict to 128-bit tag, 128-bit nonce,
4
and block-aligned

messages and associated data. We note however that this is only to make the exposition simpler and is not

necessary for the attack. Pseudocode for the scheme with these parameter choices is given in Figure 9.

Let’s start by contextualizing the CDY
∗
a game. The challenger provides us with an 𝑚-block ciphertext

𝐶 = 𝐶1⋯𝐶𝑚 ‖ tag, a 128-bit target key 𝐾 , and a 96-bit target nonce 𝑁 . And the goal is to find a 1-block

4
EAX [12, Figure 4] supports an arbitrary length nonce; 128 bits is the default in the popular Tink library [3], see [4].

15

OMAC(𝐾,𝑀):

// Compute Constants
𝐿 ← 𝐸𝐾 (0128)
𝐵 ← 2 ⋅ 𝐿
// split into 𝑛-bit blocks
// & xor 𝐵 to the last block
Let 𝑀1,… , 𝑀𝑚 ← 𝑀
𝑀𝑚 ← 𝑀𝑚 ⊕ 𝐵
// CBC-MAC Evaluation
𝐶0 ← 0128

For 𝑖 = 1..𝑚:
𝐶𝑖 ← 𝐸𝐾 (𝐶𝑖−1 ⊕𝑀𝑖)

Return 𝐶𝑚

EAX-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶):

// Separate the Tag
𝐶 ‖ tag ← 𝐶
// Compute and Check Tag
 ← OMAC(𝐾, 0128 ‖ 𝑁)
 ← OMAC(𝐾, 01271 ‖ 𝐴)
 ← OMAC(𝐾, 012610 ‖ 𝐶)
If tag ≠ ( ⊕ ⊕ ):

Return ⊥
// CTR Decryption
𝑟 ← |𝐶|/16 // num blocks
For 𝑖 = 0..(𝑟 − 1):

𝑀𝑖 ← 𝐶𝑖 ⊕ 𝐸𝐾 ( + 𝑖)
Return 𝑀

(𝐶, 𝐾, 𝑁):

𝐶 ‖ tag ← 𝐶
// Compute 𝜉
𝜉 ← tag

𝜉 ← 𝜉 ⊕ OMAC𝐾 (0128 ‖ 𝑁)
𝜉 ← 𝜉 ⊕ OMAC𝐾 (012610 ‖ 𝐶)
// Reconstruct 𝐴 and Return
𝐴 ← 𝐸−1𝐾 (𝜉)
𝐴 ← 𝐴 ⊕ 𝐸𝐾 (01271) ⊕ (2 ⋅ 𝐸𝐾 (0128))
Return (𝐾, 𝑁 , 𝐴)

Figure 9: (Left) Pseudocode for OMAC [12, Fig 1], used in EAX, with block-aligned inputs. (Middle)
Pseudocode for EAX Mode [12] decryption with 128-bit tag, 128-bit nonce, and block-aligned messages

and associated data. (Right) Pseudocode for an CDY
∗
a attack on EAX.

associated data 𝐴 such that EAX-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶) ≠ ⊥. Notice from Figure 9 that decryption passing

reduces to the tag check passing. In other words, we can rewrite the goal as finding an associated data 𝐴
such that

tag = OMAC𝐾 (0128 ‖ 𝑁) ⊕ OMAC𝐾 (012610 ‖ 𝐶) ⊕ OMAC𝐾 (01271 ‖ 𝐴) . (4)

We can rearrange terms to get

OMAC𝐾 (01271 ‖ 𝐴) = tag ⊕ OMAC𝐾 (0128 ‖ 𝑁) ⊕ OMAC𝐾 (012610 ‖ 𝐶) .

Notice that the right-hand side is composed entirely of known terms, thus we can evaluate it to some

constant 𝜉 . Using the assumption that 𝐴 is 1-block, we can expand OMAC𝐾 to get

𝐸𝐾 (𝐸𝐾 (01271) ⊕ 𝐴 ⊕ (2 ⋅ 𝐸𝐾 (0128))) = 𝜉 .

Decrypting both sides under 𝐾 , and solving for 𝐴 gives

𝐴 = 𝐸−1𝐾 (𝜉) ⊕ 𝐸𝐾 (01271) ⊕ (2 ⋅ 𝐸𝐾 (0128)) .

The full pseudocode for this attack is given in Figure 9.

This attack generalizes to other parameter choices. It works as is against an arbitrary-length message,

an arbitrary-length tag, and an arbitrary-length nonce. In addition, this attack can also be adapted as a

CDY
∗
n attack. We start by rewriting Equation 4 as

OMAC𝐾 (0128 ‖ 𝑁) = tag ⊕ OMAC𝐾 (012610 ‖ 𝐶) ⊕ OMAC𝐾 (01271 ‖ 𝐶) ,

and solving for 𝑁 as we did for 𝐴 above. Since 𝑁 is 1 block (128 bits), the reduction is similar, and the

success probability remains one. If the nonce length was shorter, then assuming an idealized model like

the ideal cipher model, the success probability reduces by a multiplicative factor of 2−𝑓 ⋅128 where 𝑓 is the

fraction of bytes we do not have control over. For example, if we only had control over 14 of the 16 bytes

in an encoded block, then the success probability would reduce by 2−16.
This attack can also be adapted to provide partial control over the output plaintext. Notice that the

output plaintext is a CTR decryption under the chosen key with the OMAC of the nonce as IV. Assuming

an idealized model where the block cipher is an ideal cipher and OMAC is a random function, for every

new choice of key and nonce, we get a random output plaintext. So, by trying 2𝑚 key and nonce pairs, we

can expect to control 𝑚 bits of the output plaintext.

16

SIV-1b-Decrypt(𝐾, 𝐶):

c ← 1𝑛−6401310131

𝐶1 ‖ tag ← 𝐶
𝐼 ← tag

𝐾1 ‖ 𝐾2 ← 𝐾
// CTR Decryption
ctr ← 𝐼 & c

𝑀 ← 𝐶1 ⊕ 𝐸𝐾2 (ctr)
// IV Check
𝐼 ′ ← CMAC∗(𝐾1, 𝑀)
If 𝐼 ≠ 𝐼 ′:

Return ⊥
Return 𝑀

CMAC∗(𝐾,𝑀):

𝑆 ← CMAC(𝐾, 0𝑛)
Return CMAC(𝐾, 𝑆 ⊕ 𝑀)

CMAC(𝐾, 𝑋):

𝐾𝑠 ← 2 ⋅ 𝐸𝐾 (0𝑛)
Return 𝐸𝐾 (𝐾𝑠 ⊕ 𝑋)

Figure 10: (Left) Pseudocode for SIV Mode [39] decryption with an 𝑛-bit message and no associated data.

(Right) Pseudocode for CMAC* [39] and CMAC [20] with an 𝑛-bit input.

5 Restrictive Commitment Attacks via k-Sum Problems

The previous section’s CDY
∗
a and CDY

∗
n attacks against GCM, EAX, OCB3, SIV, and CCM immediately give

rise to permissive CMTk attacks against each scheme. This follows from our general result showing that

CMTk security implies CDY
∗
a and CDY

∗
n (Corollary 3). But this does not imply the ability to build restrictive

CMT
∗
k , CMT

∗
n , or CMT

∗
a attacks that require the non-adversarially controlled parts of the two decryption

contexts to be identical (see Theorem 11.)

Prior work has provided (in our terminology) CMT
∗
k attacks for GCM [26, 18], AES-GCM-SIV [40, 31],

ChaCha20/Poly1305 [26, 31], XChaCha20/Poly1305 [31], and OCB3 [2]. An open question of practical

interest [41] is whether there is a CMT
∗
k attack against SIV. We resolve this open question, showing an

attack that works in time about 2𝑛/3. It requires new techniques related to the fast solution of 𝑘-sum
problems, as we explain below.

Attack on 1-block SIV. We consider SIV over an 𝑛-bit block cipher (for 𝑛 ≥ 64) as defined in the draft

NIST specification [39]. For ease of exposition, we restrict to the case of an 𝑛-bit message and no associated

data, and describe how to generalize this to themulti-block case in Appendix D. Pseudocode for the scheme

with these parameter choices is given in Figure 10.

Here, the CMT
∗
k adversary seeks to produce a ciphertext 𝐶 = 𝐶1 ‖ tag and two 2𝑛-bit keys 𝐾 = 𝐾1 ‖ 𝐾2

and 𝐾 ′ = 𝐾 ′
1 ‖ 𝐾 ′

2 such that SIV-Decrypt(𝐾, 𝐶) ≠ ⊥ and SIV-Decrypt(𝐾 ′, 𝐶) ≠ ⊥. Notice from Figure 10

that this reduces to two simultaneous IV checks passing which can be written as

tag = CMAC∗(𝐾1, 𝐶1 ⊕ 𝐸𝐾2(tag & c)) = CMAC∗(𝐾 ′
1 , 𝐶1 ⊕ 𝐸𝐾 ′

2
(tag & c))

where c = 1𝑛−6401310131 is a constant specified by the SIV standard. Our attack strategy will be to choose

tag arbitrarily, so we can treat this as a constant value. Towards solving for the remaining variable 𝐶1, we

can substitute in the definition of CMAC∗
to get

tag = 𝐸𝐾1((2 ⋅ 𝐸𝐾1(0
𝑛)) ⊕ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0

𝑛)) ⊕ 𝐶1 ⊕ 𝐸𝐾2(tag & c))
= 𝐸𝐾 ′

1
((2 ⋅ 𝐸𝐾 ′

1
(0𝑛)) ⊕ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾 ′

1
(0𝑛)) ⊕ 𝐶1 ⊕ 𝐸𝐾 ′

2
(tag & c)) ,

which we can rearrange the two equalities by solving for the variable 𝐶1, giving us the following:

𝐶1 = 𝐸−1𝐾1
(tag) ⊕ (2 ⋅ 𝐸𝐾1(0

𝑛)) ⊕ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0
𝑛)) ⊕ 𝐸𝐾2(tag & c)

= 𝐸−1𝐾 ′
1
(tag) ⊕ (2 ⋅ 𝐸𝐾 ′

1
(0𝑛)) ⊕ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾 ′

1
(0𝑛)) ⊕ 𝐸𝐾 ′

2
(tag & c) . (5)

17

():

c ← 1𝑛−6401310131

// Arbitrarily pick a tag
tag←$ {0, 1}𝑛 ⧵ {0𝑛}
// Define helper functions
Def 𝐹1(𝐾1) ← 𝐸−1𝐾1 (tag) ⊕ 2 ⋅ 𝐸𝐾1 (0𝑛) ⊕ 𝐸𝐾1 (2 ⋅ 𝐸𝐾1 (0𝑛))
Def 𝐹2(𝐾2) ← 𝐸𝐾2 (tag & c)
Def 𝐹3(𝐾1) ← 𝐸−1𝐾 ′

1
(tag) ⊕ 2 ⋅ 𝐸𝐾 ′

1
(0𝑛) ⊕ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾1 (0𝑛))

Def 𝐹4(𝐾 ′
2) ← 𝐸𝐾 ′

2
(tag & c)

// Generate lists
For 𝑖 = 1, ..., 𝑞:

𝑥 ← encode128−2(𝑖)
// Domain separate the keys
𝐾1 ← 00 ‖ 𝑥; 𝐾2 ← 01 ‖ 𝑥; 𝐾 ′

1 ← 10 ‖ 𝑥; 𝐾 ′
2 ← 11 ‖ 𝑥

// Query a row
𝐿1[𝑖] ← 𝐹1(𝐾1); 𝐿2[𝑖] ← 𝐹2(𝐾2); 𝐿3[𝑖] ← 𝐹3(𝐾 ′

1); 𝐿4[𝑖] ← 𝐹4(𝐾 ′
2)

// Find an 4-way collision using Wagner’s k-tree algorithm [43]
res ← .fourWayCollision(𝐿1, 𝐿2, 𝐿3, 𝐿4)
If res = ∅:

Return ⊥
// Repackage the collision into ciphertext and keys
(𝑥1, 𝑥2, 𝑥3, 𝑥4) ← res

𝐶1 ← 𝐹1(𝑥1) ⊕ 𝐹2(𝑥2)
𝐾1 ← 00 ‖ 𝑥1; 𝐾2 ← 01 ‖ 𝑥2; 𝐾 ′

1 ← 10 ‖ 𝑥3; 𝐾 ′
2 ← 11 ‖ 𝑥4

Return 𝐶1 ‖ tag, 𝐾1 ‖ 𝐾2, 𝐾 ′
1 ‖ 𝐾 ′

2

Figure 11: Pseudocode for CMT
∗
k attack on SIV-1b, where fourWayCollision is defined in Figure 20.

The above implies that it suffices now to find 𝐾1, 𝐾2, 𝐾 ′
1 , 𝐾 ′

2 that satisfy Equation 5. To ease notation, we

define four helper functions, one for each term:

𝐹1(𝐾1) ∶= 𝐸−1𝐾1
(tag) ⊕ 2 ⋅ 𝐸𝐾1(0

𝑛) ⊕ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0
𝑛)) ,

𝐹2(𝐾2) ∶= 𝐸𝐾2(tag & c) ,
𝐹3(𝐾1) ∶= 𝐸−1𝐾 ′

1
(tag) ⊕ 2 ⋅ 𝐸𝐾 ′

1
(0𝑛) ⊕ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾1(0

𝑛)) ,

𝐹4(𝐾 ′
2) ∶= 𝐸𝐾 ′

2
(tag & c) ,

and recast Equation 5 as a 4-sum problem

𝐹1(𝐾1) ⊕ 𝐹2(𝐾2) ⊕ 𝐹3(𝐾 ′
1) ⊕ 𝐹4(𝐾 ′

2) = 0 .

If these were independent random functions, then we could directly apply Wagner’s k-tree algorithm [43]

for finding a 4-way collision (also referred to as the generalized birthday problem). But even modeling 𝐸
as an ideal cipher, the functions are neither random nor independent. For example, 𝐹1(𝑥) = 𝐹3(𝑥) always.

Towards resolving this, we first ensure that the keys 𝐾1, 𝐾2, 𝐾 ′
1 , and 𝐾 ′

2 are domain separated. This can

be easily arranged: see Figure 11 for the pseudocode of our CMT
∗
k adversary  against SIV. We now turn

to lower bounding’s advantage, which consists of two primary steps.

The first is that we argue that, in CMT
∗
k when running our adversary against SIV, the helper-function

outputs are statistically close to uniform. Then, we show that Wagner’s approach works for such values.

We observe that 𝐹2 and 𝐹4 trivially behave as independent random functions in the ideal cipher model

for 𝐸. The analysis for 𝐹1 and 𝐹3 is more involved. We use the following lemma, which bounds the distin-

guishing advantage between a uniform 𝑛-bit string and the output of a query to either 𝐹1 or 𝐹3.

18

Lemma 4. Let tag ∈ {0, 1}𝑛 ⧵ {0𝑛} and 𝜎 be an 𝑛-bit random permutation with inverse 𝜎−1 and 𝑈 be the
uniform random variable over 𝑛 bit strings. Define 𝑛-bit random variables (over the choice of 𝜎)

𝐴 ∶= 𝜎−1(tag) , 𝐵 ∶= 2 ⋅ 𝜎(0𝑛) , 𝐶 ∶= 𝜎(2 ⋅ 𝜎(0𝑛)) ,

where ⋅ denotes multiplication in GF(2𝑛). Then no adversary that makes one query to a procedure 𝑃 can
distinguish between 𝑃 ↦ (𝑈 , 𝑈 , 𝑈) and 𝑃 ↦ (𝐴, 𝐵, 𝐶) with probability greater than 6 ⋅ 2−𝑛.

The proof proceeds by constructing identical-until-bad games and applying the fundamental lemma of
game playing [11] to discern the distinguishing advantage. The proof appears in Appendix C.

We combine this with the following technical statement about applyingWagner’s k-tree algorithm [43]

to almost-random lists.

Theorem 5. Let 𝐿 be a list of 𝓁 4-tuples 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4), where each entry 𝑥 is distinguishable from an
4-tuple of independent uniformly random values with probability at most 𝜉 . Let 𝐿1, 𝐿2, 𝐿3, and 𝐿4 be lists
of 1-index (𝑥1), 2-index (𝑥2), 3-index (𝑥3), and 4-index (𝑥4) elements of 𝐿 respectively. Then Wagner’s k-tree
algorithm [43] finds a solution (𝑦1, 𝑦2, 𝑦3, 𝑦4) ∈ 𝐿1 × 𝐿2 × 𝐿3 × 𝐿4 such that

𝑦1 ⊕ 𝑦2 ⊕ 𝑦3 ⊕ 𝑦4 = 0 ,

with probability at least

(1 − 𝓁 ⋅ 𝜉)(1 − exp(−
𝓁2 ⋅ 2−𝑛/3

8))(1 − exp(1 −
𝓁4 ⋅ 2−4𝑛/3

8
−

2
𝓁4 ⋅ 2−4𝑛/3))

,

and time at most
20𝓁 + 4𝓁2 ⋅ 2−𝑛/3 + 4Sort(𝓁) + 2Sort((1/2)𝓁2 ⋅ 2−𝑛/3) ,

where Sort(𝑘) denotes the time to sort a list of 𝑘 items.

The proof proceeds by analyzing the algorithm step-by-step and at each step applyingChernoff bounds [25]

to compute a lower bound on the success probability. The proof appears in Appendix C.

With Lemma 4 and Theorem 5, we can now prove a lower bound on the advantage of the CMT
∗
k

adversary in Figure 11.

Theorem 6. Let  be the CMT
∗
k adversary against SIV over an 𝑛-bit ideal cipher 𝐸, detailed in Figure 11. It

makes 10𝑞 queries to 𝐸 and takes at most

35𝑞 + 4𝑞2 ⋅ 2−𝑛/3 + 4Sort(𝑞) + 2Sort((1/2)𝑞2 ⋅ 2−𝑛/3) + 11 ,

time, where Sort(𝑘) is the cost of sorting a list of 𝑘 items. Then the advantage

𝐀𝐝𝐯CMT
∗
k

SIV
() ≥ (1 − 8𝑞 ⋅ 2−𝑛)(1 − exp(−

𝑞2 ⋅ 2−𝑛/3

8))(1 − exp(1 −
𝑞4 ⋅ 2−4𝑛/3

8
−

2
𝑞4 ⋅ 2−4𝑛/3))

. (6)

Proof. By construction, the adversary (Figure 11) wins whenever it finds a collision, so it suffices to lower

bound this probability. First, the domain separation over the keys ensures that the two helper functions

never query the ideal cipher with the same key. This, by the properties of the ideal cipher, ensures inde-

pendence of the outputs. Second, 𝐹2 and 𝐹4 call the ideal cipher only once on a fixed output under a new

key each invocation, so their outputs are indistinguishable from an 𝑛-bit uniform random value. Third, 𝐹1
and 𝐹3 call the ideal cipher three times under the same key each invocation. However, applying Lemma 4

gives us that their outputs are distinguishable from an 𝑛-bit uniform random value with probability at most

19

6 ⋅2−𝑛. So, by the union bound, a row of outputs (𝐹1(𝐾1), 𝐹2(𝐾2), 𝐹3(𝐾 ′
1), 𝐹4(𝐾 ′

2)) is distinguishable from four

independent, uniformly random outputs with probability at most 8 ⋅ 2−𝑛. Then, Theorem 5 tells us that the

function fourWayCollision called by finds a collision with probability at least that of Equation 6.

It remains to analyze the cost of the adversary . First, it costs 2 operations to initialize c and tag.

Second, since each loop iteration costs 15 operations, the loop costs 15𝑞 operations. Third, from Theorem 5,

finding a 4-way collision on four lists of size 𝑞 using Wagner’s k-tree algorithm [43] costs at most

20𝑞 + 4𝑞2 ⋅ 2−𝑛/3 + 4Sort(𝑞) + 2Sort((1/2)𝑞2 ⋅ 2−𝑛/3)

operations. Fourth, repackaging the collision and returning costs 9 operations. So, the runtime is at most

35𝑞 + 4𝑞2 ⋅ 2−𝑛/3 + 4Sort(𝑞) + 2Sort((1/2)𝑞2 ⋅ 2−𝑛/3) + 11 .

Finally, since each loop iteration makes 10 ideal cipher queries, the algorithm makes 10𝑞 queries.

In the following corollary, we show that when the adversary makes approximately 2𝑛/3 queries, it can
win CMT

∗
k against SIV with high probability, taking time approximately 2𝑛/3.

Corollary 7. Let  be the CMT
∗
k adversary against SIV over an 𝑛-bit ideal cipher 𝐸, detailed in Figure 11

with 𝑞 = 10 ⋅ 2𝑛/3. It makes 100 ⋅ 2𝑛/3 queries to 𝐸 and takes at most

750 ⋅ 2𝑛/3 + 4Sort(10 ⋅ 2𝑛/3) + 2Sort(50 ⋅ 2𝑛/3) + 11 ,

time, where Sort(𝑛) is the cost of sorting a list of 𝑛 items. Then

𝐀𝐝𝐯CMT
∗
k

SIV
() ≥ (1 − 80 ⋅ 2−2𝑛/3) (1 − exp (−12.5 ⋅ 2𝑛/3)) (1 − exp (−1249)) .

6 Related Work

Key commitment for authenticated encryption was introduced in Farshim, Orlandi, and Rosie [24] through

full robustness (FROB), which in turn was inspired by key robustness notions in the public key setting by

Abdalla, Bellare, and Neven [1] and refined by Farshim et al. [23]. The FROB game asks that a ciphertext

only be able to decrypt under a single key. However, the FROB game was defined for randomized authen-

ticated encryption. Grubbs, Lu, and Ristenpart [26] adapted the FROB game to work with associated data,

where they ask that a ciphertext only be able to decrypt under a single key (with no constraints on the

associated data.) This notion was further generalized by Bellare and Hoang [5] to the nonce-based setting,

with their committing security 1 (CMT-1) definition. The CMT-1 game asks that a ciphertext only be able

to decrypt under a single key (with no constraints on the nonce nor the associated data.)

The real-world security implications of key commitment were first highlighted by Dodis et al. [18]

where they exploited the lack of key commitment when encrypting attachments in Facebook Messenger’s

message franking protocol [22] to send abusive images that cannot be reported. Albertini et al. [2] gener-

alized this attack from images to other file formats and called attention to more settings where lack of key

commitment can be exploited to defeat integrity. While both these attacks targeted integrity, Len, Grubbs,

and Ristenpart [31] introduced partitioning oracle attacks and showed how to use them for password

guessing attacks by exploiting lack of key commitment to obtain large speedups over standard dictionary

attacks, endangering confidentiality.

Proposals for constructing key committing ciphers also started in the Farshim, Orlandi, and Rosie

paper [24] where they showed that single-key Encrypt-then-MAC, Encrypt-and-MAC, and MAC-then-

Encrypt constructions produce key committing ciphers, when the MAC is collision-resistant. Grubbs, Lu,

and Ristenpart [26] showed that the Encode-then-Encipher construction [9] was key committing. Dodis

20

et al. [18] proposed a faster compression function-based key committing AEAD construction termed en-
cryptment, and also discussed the closely related Duplex construction [13], which is also key committing.

Albertini et al. [2] formally analyzed the folklore padding zeroes and key hashing transforms and showed

that they produce key committing AEAD at a lower performance cost than prior constructions. Bellare and

Hoang [5] constructed key committing variants of GCM and GCM-SIV termed CAU-C1 and CAU-SIV-C1,

and generic transforms UtC and RtC that can be used to turn unique-nonce secure and nonce-reuse secure

AEAD schemes respectively into key committing AEAD schemes.

The potential risk of delegating authenticity of an AEAD entirely to a non-collision-resistant MAC is

folklore. Farshim, Orlandi, and Rosie [24] who introduced the notion of committing AEAD also cautioned

against using non-collision-resistant MACs and CBC-MAC in particular.

On February 7, 2023, NIST announced the selection of the Ascon family for lightweight cryptography

standardization [42]. The finalist version of Ascon [17] specifies two AEAD parameter setsAscon-128 and

Ascon-128a. Both parameter sets specify a 128 bit tag, which by the birthday bound, upper bounds the

committing security at 64 bits. But, since the underlying algorithm is a variant of the Duplex construction

with a 320-bit permutation, and the same specification specifies parameters for a hash functionwith 128-bit

collision resistance, one can specify an AEAD with 128-bit committing security by tweaking parameters.

The Wagner paper [43] introducing the k-tree algorithm for the generalized birthday problem also

specified many applications to cryptanalysis including subexponential attacks on Schnorr and Okamoto-

Schnorr blind signatures over elliptic curve groups. Minder and Sinclair [34] generalized and formally

analyzed the k-tree algorithm. More recently, Lyubashevsky [33] and Liu and Yu [32] have adapted the

k-tree algorithm to give subexponential algorithms for variants of the Learning Parity with Noise problem.

Concurrent work. In independent and concurrent work made public very recently, Chan and Rog-

away [15] introduced a new definitional framework for committing AE. Their goal is to capture multiple

different types of commitment attacks—what they call misattributions, or an adversary being able to con-

struct distinct pairs (𝐾, 𝑁 , 𝐴,𝑀) and (𝐾 ′, 𝑁 ′, 𝐴′, 𝑀 ′) that both “explain” a single ciphertext 𝐶—in a unified

way. Their main definition only captures commitment to an entire (𝐾, 𝑁 , 𝐴,𝑀) tuple; but in [15, Ap-

pendix A], they briefly describe an extension to only require commitments to a subset of the values.

The extended version of their framework is similar to our CMT[Σ] definition. While both frameworks

aim to capture granular win conditions beyond CMT-3, they are orthogonal. Their framework models the

multi-key setting with many randomly chosen unknown-to-the-adversary, known-to-the-adversary, and

chosen-by-the-adversary keys. While our CMT[Σ] captures the distinction between permissive and restric-
tive notions, and settings that impose restrictions on the nonce and associated data. We also introduce the

notion of context discoverability and describe its relation to CMT[Σ].
Chan and Rogaway [15] also independently observed that AEAD with non-preimage resistant MACs

are vulnerable to commitment attacks and show attacks on GCM and OCB3 similar to the ones we give in

Section 4.

Acknowledgments

We thank the anonymous reviewers of Eurocrypt 2023 for their feedback. Sanketh thanks Giacomo Pope

for helpful discussions. This workwas supported in part byNSF grant CNS #2120651, and theNSFGraduate

Research Fellowship under Grant No. DGE-2139899.

References

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio, ed-

itor, Theory of Cryptography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,

21

February 9-11, 2010. Proceedings, volume 5978 of Lecture Notes in Computer Science, pages 480–497.
Springer, 2010. doi:10.1007/978-3-642-11799-2_28.

[2] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg. How to

abuse and fix authenticated encryption without key commitment. USENIX Security 2022, 2022. URL:

https://ia.cr/2020/1456.

[3] Moreno Ambrosin et al. Tink, 2021. URL: https://github.com/google/tink/releases/tag/v1.
6.1.

[4] Moreno Ambrosin et al. Tink EAX key manager, 2021. URL: https://github.com/google/tink/
blob/v1.6.1/java_src/src/main/java/com/google/crypto/tink/aead/AesEaxKeyManager.
java#L115-L116.

[5] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing authenticated encryption. In

Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trond-
heim, Norway, May 30 - June 3, 2022, Proceedings, Part II, volume 13276 of Lecture Notes in Computer
Science, pages 845–875. Springer, 2022. doi:10.1007/978-3-031-07085-3_29.

[6] Mihir Bellare and Tadayoshi Kohno. Hash function balance and its impact on birthday attacks. In

Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science, pages 401–418. Springer,
2004. doi:10.1007/978-3-540-24676-3_24.

[7] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions

and analysis of the generic composition paradigm. J. Cryptol., 21(4):469–491, 2008. doi:10.1007/
s00145-008-9026-x.

[8] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-preserving encryption.

In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryp-
tography, 16th Annual InternationalWorkshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009,
Revised Selected Papers, volume 5867 of Lecture Notes in Computer Science, pages 295–312. Springer,
2009. doi:10.1007/978-3-642-05445-7_19.

[9] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit nonces or re-

dundancy in plaintexts for efficient cryptography. In Tatsuaki Okamoto, editor, Advances in Cryptol-
ogy - ASIACRYPT 2000, 6th International Conference on the Theory andApplication of Cryptology and In-
formation Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume 1976 of Lecture Notes in Com-
puter Science, pages 317–330. Springer, 2000. URL: https://cseweb.ucsd.edu/~mihir/papers/ee.
pdf, doi:10.1007/3-540-44448-3_24.

[10] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. 2005. URL: https://web.
cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.

[11] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-

based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer
Science, pages 409–426. Springer, 2006. doi:10.1007/11761679_25.

22

https://doi.org/10.1007/978-3-642-11799-2_28
https://ia.cr/2020/1456
https://github.com/google/tink/releases/tag/v1.6.1
https://github.com/google/tink/releases/tag/v1.6.1
https://github.com/google/tink/blob/v1.6.1/java_src/src/main/java/com/google/crypto/tink/aead/AesEaxKeyManager.java#L115-L116
https://github.com/google/tink/blob/v1.6.1/java_src/src/main/java/com/google/crypto/tink/aead/AesEaxKeyManager.java#L115-L116
https://github.com/google/tink/blob/v1.6.1/java_src/src/main/java/com/google/crypto/tink/aead/AesEaxKeyManager.java#L115-L116
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-540-24676-3_24
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-642-05445-7_19
https://cseweb.ucsd.edu/~mihir/papers/ee.pdf
https://cseweb.ucsd.edu/~mihir/papers/ee.pdf
https://doi.org/10.1007/3-540-44448-3_24
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://doi.org/10.1007/11761679_25

[12] Mihir Bellare, Phillip Rogaway, and David A. Wagner. The EAX mode of operation. In Bimal K.

Roy and Willi Meier, editors, Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi,
India, February 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science, pages
389–407. Springer, 2004. URL: https://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf, doi:
10.1007/978-3-540-25937-4_25.

[13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge: Single-

pass authenticated encryption and other applications. In Ali Miri and Serge Vaudenay, editors, Se-
lected Areas in Cryptography - 18th International Workshop, SAC 2011, Toronto, ON, Canada, August
11-12, 2011, Revised Selected Papers, volume 7118 of Lecture Notes in Computer Science, pages 320–337.
Springer, 2011. doi:10.1007/978-3-642-28496-0_19.

[14] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based

hash-function constructions from PGV. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002,
22nd Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, volume 2442 of Lecture Notes in Computer Science, pages 320–335. Springer, 2002. doi:
10.1007/3-540-45708-9_21.

[15] John Chan and Phillip Rogaway. On committing authenticated-encryption. In European Symposium
on Research in Computer Security, pages 275–294. Springer, 2022. URL: https://ia.cr/2022/1260.

[16] Frank Denis et al. AEAD constructions, Robustness, 2022. URL: https://doc.libsodium.org/
secret-key_cryptography/aead#robustness.

[17] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2: Sub-

mission to nist, may 2021. URL: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf.

[18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking:

From invisible salamanders to encryptment. In Hovav Shacham and Alexandra Boldyreva, editors,

Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 155–186. Springer, 2018. doi:10.1007/978-3-319-96884-1_6.

[19] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The CCM Mode for Au-

thentication and Confidentiality. NIST Special Publication 800-38C, 2004. doi:10.6028/NIST.SP.
800-38C.

[20] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for

Authentication. NIST Special Publication 800-38B, 2005. doi:10.6028/NIST.SP.800-38B.

[21] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC. NIST Special Publication 800-38D, 2017. doi:10.6028/NIST.SP.800-38D.

[22] Facebook. Messenger secret conversations: Technical whitepaper, 2017. URL: https:
//about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-
technical-whitepaper.pdf.

[23] Pooya Farshim, Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Robust encryption,

revisited. In Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-Key Cryptography - PKC 2013 -
16th International Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, Febru-
ary 26 - March 1, 2013. Proceedings, volume 7778 of Lecture Notes in Computer Science, pages 352–368.
Springer, 2013. doi:10.1007/978-3-642-36362-7_22.

23

https://web.cs.ucdavis.edu/~rogaway/papers/eax.pdf
https://doi.org/10.1007/978-3-540-25937-4_25
https://doi.org/10.1007/978-3-540-25937-4_25
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://ia.cr/2022/1260
https://doc.libsodium.org/secret-key_cryptography/aead#robustness
https://doc.libsodium.org/secret-key_cryptography/aead#robustness
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38D
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://doi.org/10.1007/978-3-642-36362-7_22

[24] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric primitives under incorrect

usage of keys. IACR Trans. Symmetric Cryptol., 2017(1):449–473, 2017. doi:10.13154/tosc.v2017.
i1.449-473.

[25] Michel Goemans. Chernoff bounds, and some applications, 2015. URL: https://math.mit.edu/
~goemans/18310S15/chernoff-notes.pdf.

[26] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated en-

cryption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pages 66–97. Springer, 2017.
doi:10.1007/978-3-319-63697-9_3.

[27] Dan Harkins. Synthetic Initialization Vector (SIV) Authenticated Encryption Using the Advanced En-

cryption Standard (AES). Request for Comments - Informational, 2008. URL: https://datatracker.
ietf.org/doc/rfc5297/.

[28] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key search (an analysis of

DESX). J. Cryptol., 14(1):17–35, 2001. doi:10.1007/s001450010015.

[29] Hugo Krawczyk. The OPAQUE Asymmetric PAKE Protocol. Technical report, October 2019. URL:

https://datatracker.ietf.org/doc/draft-krawczyk-cfrg-opaque/03/.

[30] Ted Krovetz and Phillip Rogaway. The OCB Authenticated-Encryption Algorithm. Request for Com-

ments - Informational, 2014. URL: https://datatracker.ietf.org/doc/rfc7253/.

[31] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle attacks. In Michael Bailey and

Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, pages 195–212. USENIX Association, 2021. URL: https://ia.cr/2020/1491.

[32] Hanlin Liu and Yu Yu. A non-heuristic approach to time-space tradeoffs and optimizations for BKW.

In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology - ASIACRYPT 2022 - 28th In-
ternational Conference on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5-9, 2022, Proceedings, Part III, volume 13793 of Lecture Notes in Computer Science,
pages 741–770. Springer, 2022. doi:10.1007/978-3-031-22969-5_25.

[33] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random linear codes,

and the subset sum problem. In Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan,

editors, Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques,
8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems,
APPROX 2005 and 9th InternationalWorkshop on Randomization and Computation, RANDOM 2005,
Berkeley, CA, USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 378–389. Springer, 2005. doi:10.1007/11538462_32.

[34] Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm. J. Cryptol., 25(2):349–382, 2012.
doi:10.1007/s00145-011-9097-y.

[35] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic composi-

tion. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014
- 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Sci-
ence, pages 257–274. Springer, 2014. doi:10.1007/978-3-642-55220-5_15.

24

https://doi.org/10.13154/tosc.v2017.i1.449-473
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://doi.org/10.1007/978-3-319-63697-9_3
https://datatracker.ietf.org/doc/rfc5297/
https://datatracker.ietf.org/doc/rfc5297/
https://doi.org/10.1007/s001450010015
https://datatracker.ietf.org/doc/draft-krawczyk-cfrg-opaque/03/
https://datatracker.ietf.org/doc/rfc7253/
https://ia.cr/2020/1491
https://doi.org/10.1007/978-3-031-22969-5_25
https://doi.org/10.1007/11538462_32
https://doi.org/10.1007/s00145-011-9097-y
https://doi.org/10.1007/978-3-642-55220-5_15

[36] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Limitations

of indifferentiability and universal composability. IACR Cryptol. ePrint Arch., page 339, 2011. URL:
http://ia.cr/2011/339.

[37] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor,

Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002, Wash-
ington, DC, USA, November 18-22, 2002, pages 98–107. ACM, 2002. doi:10.1145/586110.586125.

[38] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem.

4004:373–390, 2006. doi:10.1007/11761679_23.

[39] Phillip Rogaway and Thomas Shrimpton. The SIV Mode of Operation for Determinis-

tic Authenticated-Encryption (Key Wrap) and Misuse-Resistant Nonce-Based Authenticated-

Encryption, 2007. Draft 0.32. URL: https://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf.

[40] Sophie Schmieg. Invisible Salamanders in AES-GCM-SIV, 2020. URL: https://keymaterial.net/
2020/09/07/invisible-salamanders-in-aes-gcm-siv/.

[41] Sophie, indistinguishable from random noise (@SchmiegSophie), 2020. via Twitter. URL:

https://web.archive.org/web/20200909134511/https://twitter.com/SchmiegSophie/
status/1303690812933382148.

[42] NIST Lightweight Cryptography Team. NIST announces the selection of the Ascon family for

lightweight cryptography standardization, feb 2023. URL: https://www.nist.gov/news-events/
news/2023/02/lightweight-cryptography-standardization-process-nist-selects-ascon.

[43] David A. Wagner. A generalized birthday problem. In Moti Yung, editor, Advances in Cryptology
- CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science, pages 288–303.
Springer, 2002. URL: https://people.eecs.berkeley.edu/~daw/papers/genbday.html.

[44] Michael J. Wiener. The full cost of cryptanalytic attacks. J. Cryptol., 17(2):105–124, 2004. doi:
10.1007/s00145-003-0213-5.

25

http://ia.cr/2011/339
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/11761679_23
https://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf
https://keymaterial.net/2020/09/07/invisible-salamanders-in-aes-gcm-siv/
https://keymaterial.net/2020/09/07/invisible-salamanders-in-aes-gcm-siv/
https://web.archive.org/web/20200909134511/https://twitter.com/SchmiegSophie/status/1303690812933382148
https://web.archive.org/web/20200909134511/https://twitter.com/SchmiegSophie/status/1303690812933382148
https://www.nist.gov/news-events/news/2023/02/lightweight-cryptography-standardization-process-nist-selects-ascon
https://www.nist.gov/news-events/news/2023/02/lightweight-cryptography-standardization-process-nist-selects-ascon
https://people.eecs.berkeley.edu/~daw/papers/genbday.html
https://doi.org/10.1007/s00145-003-0213-5
https://doi.org/10.1007/s00145-003-0213-5

A1-Encrypt(𝐾, 𝑁 , 𝐴,𝑀):

𝜏1 ← 𝐾
𝜏2 ← 𝑁 ⊕ 𝐴
𝐶inner ← 𝑀
Return 𝜏1 ‖ 𝜏2 ‖ 𝐶inner

A1-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶):

𝜏1 ‖ 𝜏2 ‖ 𝐶inner ← 𝐶
If 𝜏1 ≠ 𝐾 :

Return ⊥
If 𝜏2 ≠ (𝑁 ⊕ 𝐴):

Return ⊥
Return 𝐶inner

:

(𝐾1, 𝑁1, 𝐴1) ← (0𝑛, 1𝑛, 0𝑛)
(𝐾2, 𝑁2, 𝐴2) ← (0𝑛, 0𝑛, 1𝑛)
𝑀 ← 0𝑛

𝐶 ← A1-Encrypt(𝐾1, 𝑁1, 𝐴1, 𝑀)
Return (𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))

Figure 12: Pseudocode for A1 encryption and decryption, used in proof of Theorem 10.

A Selected Relations Between Granular Notions

In this section, we give proofs for selected relations between our granular commitment notions, introduced

in Section 3.

Permissive notions and CMT-3. Lemmas 8 and 9 show that CMT-3 implies the permissive notions, and

that satisfying all the permissive notions implies CMT-3.

Lemma 8. Fix some AEAD Π. Then for adversaries 1, 2, and 3 for CMTk, CMTn, and CMTa respec-
tively, we can construct adversaries 1, 2, and 3 for CMT-3 such that 𝐀𝐝𝐯CMTk

Π (1) ≤ 𝐀𝐝𝐯CMT-3

Π (1),
𝐀𝐝𝐯CMTn

Π (2) ≤ 𝐀𝐝𝐯CMT-3

Π (2), and 𝐀𝐝𝐯CMTa
Π (3) ≤ 𝐀𝐝𝐯CMT-3

Π (3). The runtime of 1, 2, and 3 is that
of1,2, and 3, respectively.

Proof. The CMT-3 predicate ((𝐾1 ≠ 𝐾2) ∨ (𝑁1 ≠ 𝑁2) ∨ (𝐴1 ≠ 𝐴2)) is logically implied by each of the CMTk,

CMTn, and CMTa predicates. Thus, a CMTk, CMTn, or CMTa adversary succeeds at the CMT-3 games

with at least as much probability as the CMTk, CMTn, or CMTa game respectively. So, statement holds by

setting 1 = 1, 2 = 2, and 3 = 3.

Lemma 9. Fix some AEAD Π. Let 𝜉1, 𝜉2, and 𝜉3 be constants such that for all adversaries 1, 2, and
3 for CMTk, CMTn, and CMTa respectively, it holds that 𝐀𝐝𝐯CMTk

Π (1) ≤ 𝜉1, 𝐀𝐝𝐯CMTn
Π (2) ≤ 𝜉2, and

𝐀𝐝𝐯CMTa
Π (3) ≤ 𝜉3. Then for all adversaries  for CMT-3, it holds that 𝐀𝐝𝐯CMT-3

Π () ≤ 3 ⋅max(𝜉1, 𝜉2, 𝜉3).

Proof. Suppose towards contradiction that there exists an adversary  for CMT-3 with 𝐀𝐝𝐯CMT-3

Π () >
3 ⋅ max(𝜉1, 𝜉2, 𝜉3). Then, on success,  produces a ciphertext and two contexts that satisfy the CMT-3

predicate ((𝐾1 ≠ 𝐾2) ∨ (𝑁1 ≠ 𝑁2) ∨ (𝐴1 ≠ 𝐴2)). So, we can find and fix an inequality (𝐾1 ≠ 𝐾2), (𝑁1 ≠ 𝑁2),
or (𝐴1 ≠ 𝐴2) that holds in at least one-third of the successes. If it is (𝐾1 ≠ 𝐾2), then 𝐀𝐝𝐯CMTk

Π () ≥
max(𝜉1, 𝜉2, 𝜉3), violating our assumptions. Similarly, if it was (𝑁1 ≠ 𝑁2) or (𝐴1 ≠ 𝐴2), we get a violation of

our assumptions.

Permissive notions are orthogonal. Theorem 10 shows that CMTk, CMTn, and CMTa capture orthogo-

nal security goals by constructing an AEAD which is maximally secure under one but maximally insecure

under the remaining two. For ease of exposition, we use a minimal counterexample which is not a se-

cure AEAD (in the sense of privacy [37, §3]), but, the underlying idea can be used to construct a secure

counterexample.

Theorem 10. We define an AEAD Π and construct a(1)-time adversary such that 𝐀𝐝𝐯CMTn
Π () = 1 and

𝐀𝐝𝐯CMTa
Π () = 1, and for all adversaries , 𝐀𝐝𝐯CMTk

Π () = 0.

Proof. Weprove this by constructing anAEAD𝐴1, which adapts the identity encryption scheme to include,

in the ciphertext, the key and the xor of the nonce and associated data, and checking these values during

decryption. Pseudocode for this scheme is given in Figure 12.

26

A2-Encrypt(𝐾, 𝑁 , 𝐴,𝑀):

𝜏 ← 𝐾 ⊕ 𝑁 ⊕ 𝐴
𝐶inner ← 𝑀
Return 𝜏 ‖ 𝐶inner

A2-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶):

𝜏 ‖ 𝐶inner ← 𝐶
If 𝜏 ≠ (𝐾 ⊕ 𝑁 ⊕ 𝐴):

Return ⊥
Return 𝐶inner

:

(𝐾1, 𝑁1, 𝐴1) ← (0𝑛, 1𝑛, 0𝑛)
(𝐾2, 𝑁2, 𝐴2) ← (1𝑛, 0𝑛, 0𝑛)
𝑀 ← 0𝑛

𝐶 ← A1-Encrypt(𝐾1, 𝑁1, 𝐴1, 𝑀)
Return (𝐶, (𝐾1, 𝑁1, 𝐴1), (𝐾2, 𝑁2, 𝐴2))

Figure 13: Pseudocode for A2 encryption and decryption, used in proof of Theorem 11

First, we construct the adversary, as defined in Figure 12, such that it produces two contexts which

have the same key and same xor of the nonce and associated data. And since decryption passes whenever

this holds, we get that 𝐀𝐝𝐯CMTn
𝐴11 () = 𝐀𝐝𝐯CMTa

𝐴11 () = 1.
Now, we argue that any adversary  for the CMTk game over AEAD 𝐴1 always fails. Recall that

the winning condition for the CMTk game is to produce a ciphertext 𝐶 and two contexts (𝐾1, 𝑁1, 𝐴1) and
(𝐾2, 𝑁2, 𝐴2) such that 𝐾1 ≠ 𝐾2, and decryption succeeds under both contexts. For 𝐴1, by construction,

the latter condition implies that 𝐾1 = 𝐾2, while the former condition implies that 𝐾1 ≠ 𝐾2, leading to a

contradiction.

Restrictive notions andCMT-3. Theorem 11 shows that, unlike with permissive notions (see Lemma 9),

satisfying all restrictive notions does not imply CMT-3. For ease of exposition, we use a minimal coun-

terexample which is not a secure AEAD (in the sense of privacy [37, §3]), but, the underlying idea can be

used to construct a secure counterexample.

Theorem 11. We define an AEAD Π and a (1)-time adversary  such that 𝐀𝐝𝐯CMTk
Π () = 1, and for all

adversaries 1, 2, and 3, 𝐀𝐝𝐯
CMT

∗
k

Π (1) = 0, 𝐀𝐝𝐯CMT
∗
n

Π (2) = 0, and 𝐀𝐝𝐯CMT
∗
a

Π (3) = 0.

Proof. Weprove this by constructing anAEAD𝐴2, which adapts the identity encryption scheme to include,

in the ciphertext, the xor of the key, nonce, and associated data, and check this value during decryption.

Pseudocode for this scheme is given in Figure 13.

First, we construct the adversary, as defined in Figure 12, such that it produces two contexts which

have the same xor of the key, nonce, and associated data. And since decryption passes whenever this holds,

we get that 𝐀𝐝𝐯CMTk
𝐴1 () = 1.

Now, we argue that any adversary 1 for the CMT
∗
k game over AEAD 𝐴1 always fails. Recall that

the winning condition for the CMT
∗
k game is to produce a ciphertext 𝐶 and two contexts (𝐾1, 𝑁1, 𝐴1) and

(𝐾2, 𝑁2, 𝐴2) such that 𝐾1 ≠ 𝐾2, (𝑁1, 𝐴1) = (𝑁2, 𝐴2), and decryption succeeds under both contexts. For

𝐴2, by construction, the last condition implies that (𝐾1 ⊕ 𝑁1 ⊕ 𝐴1) = (𝐾2 ⊕ 𝑁2 ⊕ 𝐴2), while the first two
conditions imply that (𝐾1 ⊕ 𝑁1 ⊕ 𝐴1) ≠ (𝐾2 ⊕ 𝑁2 ⊕ 𝐴2), leading to a contradiction. The arguments for 2
and 3 are similar.

27

CMAC(𝐾, 𝑋):

𝐾𝑠 ← 2 ⋅ 𝐸𝐾 (0128)
Return 𝐸𝐾 (𝐾𝑠 ⊕ 𝑋)

CMAC∗(𝐾, 𝐴,𝑀):

𝑆 ← CMAC(𝐾, 0128)
𝑆 ← (2 ⋅ 𝑆) ⊕ CMAC(𝐾, 𝐴)
Return CMAC𝐾 (𝑆 ⊕ 𝑀)

SIV-Decrypt(𝐾, 𝐴, 𝐶):

𝐶1 ‖ tag ← 𝐶
𝐼 ← tag

𝐾1 ‖ 𝐾2 ← 𝐾
// CTR Decryption
ctr ← 𝐼 & 16401310131

𝑀 ← 𝐶1 ⊕ 𝐸𝐾2 (ctr)
// IV Check
𝐼 ′ ← CMAC∗(𝐾1, 𝐴,𝑀)
If 𝐼 ≠ 𝐼 ′:

Return ⊥
Return 𝑀

(𝐶, 𝐾):

𝐶1 ‖ tag ← 𝐶
// Compute 𝜉
𝐾𝑠 ← 2 ⋅ 𝐸𝐾 (0128)
𝜉 ← 𝑀 ⊕ (2 ⋅ CMAC𝐾1 (0128))
𝜉 ← 𝜉 ⊕ 𝐸−1𝐾1 (tag)
𝜉 ← 𝜉 ⊕ (2 ⋅ 𝐸𝐾1 (0128))
// Reconstruct 𝐴 and Return
𝐴 ← 𝐸−1𝐾1 (𝜉) ⊕ (2 ⋅ 𝐸𝐾1 (0128))
Return (𝐾, 𝐴)

Figure 14: (Left/Top) Pseudocode for CMAC [20] with 128-bit inputs. (Left/Bottom) Pseudocode for

CMAC* [39] with a 128-bit message and a 128-bit associated data. (Middle) Pseudocode for SIV Mode [39]

decryption with a 128-bit message and a 128-bit associated data. (Right) Pseudocode for an CDY
∗
a attack

on SIV.

B Context Discovery Attacks on More Schemes

Continuing from Section 4, in this section we describe context discovery attacks on SIV [39], CCM [19],

GCM [21], and OCB3 [30].

CDY∗
a attack on SIV. We consider SIV over a 128-bit block cipher (like AES-128) as defined in the draft

NIST specification [39]. We restrict to the case of a 128-bit message and 128-bit associated data, and

pseudocode for the scheme with these parameter choices is given in Figure 14.

In more detail, we consider the setting where the challenger provides the adversary with a 1-block
ciphertext 𝐶 = 𝐶1 ‖ tag and a 256-bit target key 𝐾 . And the goal is to find an 1-block associated data 𝐴 such

that SIV-Decrypt(𝐾, 𝐴, 𝐶) ≠ ⊥. Notice from Figure 14 that decryption passing reduces to the IV check

passing. In other words, we can rewrite the goal as finding an associated data 𝐴 such that

tag = CMAC𝐾1(𝑀 ⊕ CMAC𝐾1(𝐴) ⊕ (2 ⋅ CMAC𝐾1(0
128))),

where 𝐾1 ‖ 𝐾2 ← 𝐾 and 𝑀 ← 𝐶1 ⊕ 𝐸𝐾2(ctr). Expand the outermost CMAC to get

tag = 𝐸𝐾1((𝑀 ⊕ CMAC𝐾1(𝐴) ⊕ (2 ⋅ CMAC𝐾1(0
128))) ⊕ (2 ⋅ 𝐸𝐾1(0

128))),

Decrypt both sides under 𝐾1 and rearrange to get

CMAC𝐾1(𝐴) = 𝑀 ⊕ (2 ⋅ CMAC𝐾1(0
128)) ⊕ 𝐸−1𝐾1

(tag) ⊕ (2 ⋅ 𝐸𝐾1(0
128)).

Notice that the right-hand side is composed entirely of known terms, thus we can evaluate it to some

constant 𝜉 . Since 𝐴 is 1-block, we can expand the CMAC to get

𝐸𝐾1(𝐴 ⊕ (2 ⋅ 𝐸𝐾1(0
128))) = 𝜉

Decrypt both sides under 𝐾1 and solve for 𝐴 to get

𝐴 = 𝐸−1𝐾1
(𝜉) ⊕ (2 ⋅ 𝐸𝐾1(0

128)).

The full pseudocode for this attack is given in Figure 14.

CDY∗
a attack on CCM. We consider CCM over a 128-bit block cipher (like AES-128) as defined in NIST

SP 800-38C [19], with a nonce size of 12 bytes and tag size of 16 bytes. For ease of exposition, we restrict

28

CCM Constants:

// adapted from §A.1 of [19]
t ← 16
n ← 12
q ← 3 // picked such that q + n = 15
encT ← encode3((t − 2)/2)
encQ ← encode3(q − 1)
CtrFlags ← 00000 ‖ encQ

EncodeMessage(𝐴,𝑁 ,𝑀):

// adapted from §A.2 of [19]
Adata ← (1 if |𝐴| > 0, 0 otherwise)
a ← (𝐴 length in bytes)
p ← (𝑀 length in bytes)
mlen ← encode24(p)
EncFlags ← 0 ‖ Adata ‖ encT ‖ encQ
𝐵0 ← EncFlags ‖ 𝑁 ‖mlen
// Encode ad length, ad, and message
𝑌 ← encode16(a) ‖ 𝐴 ‖𝑀
// split into 16-byte blocks
𝐵1,… , 𝐵𝑟 ← 𝑌
Return 𝐵0,… , 𝐵𝑟

CCM-Decrypt(𝐾, 𝐴, 𝑁 , 𝐶):

// CTR decryption
𝐽 ← CtrFlags ‖ 𝑁 ‖ encode24(0)
tag ← 𝐶0 ⊕ 𝐸𝐾 (𝐽)
𝑟 ← ⌈|𝐶|/16⌉ − 1 // num msg blocks
For 𝑖 = 1..𝑟 :

𝑀𝑖 ← 𝐶𝑖 ⊕ 𝐸𝐾 (𝐽 + 𝑖)
// CBC-MAC evaluation
𝐵0,… , 𝐵𝑟 ← EncodeMessage(𝐴,𝑁 ,𝑀)
𝑌0 ← 𝐸𝐾 (𝐵0)
For 𝑖 = 1..𝑟 :

𝑌𝑖 ← 𝐸𝐾 (𝑌𝑖−1 ⊕ 𝐵𝑖)
If tag ≠ 𝑌𝑟 :

Return ⊥
Return 𝑀

(𝐶, 𝐾, 𝑁):

𝐶0 ‖ 𝐶1 ← 𝐶
// CTR decrypt
𝐽 ← CtrFlags ‖ 𝑁 ‖ encode24(0)
𝑀 ← 𝐶1 ⊕ 𝐸𝐾 (𝐽 + 1)
// Compute Known Parts of Encode
EncFlags ← 0 ‖ 1 ‖ encT ‖ encQ
mlen ← encode24(16)
𝐵0 ← EncFlags ‖ 𝑁 ‖mlen
𝐵1 ← encode16(30) ‖ 014∗8

𝐵3 ← 𝑀
// Compute 𝐵2
𝐵2 ← 𝐸−1𝐾 (𝐵3 ⊕ 𝐸−1𝐾 (𝐸𝐾 (𝐽) ⊕ 𝐶0))
𝐵2 ← 𝐵2 ⊕ 𝐸𝐾 (𝐸𝐾 (𝐵0) ⊕ 𝐵1)
// Reconstruct 𝐴 and Return
𝐴 ← 014∗8 ‖ 𝐵2
Return (𝐾, 𝑁 , 𝐴)

Figure 15: (Bottom/Left) Pseudocode for CCMMode [19] decryption with 12 byte nonce and 16 byte tag,

for associated data of at most 216 bytes, and block-aligned messages and associated data of length 14+16 ⋅𝑚
bytes for some 𝑚 ≥ 0. (Bottom/Right) Pseudocode for an CDY

∗
a attack on CCM.

the message to be 16 bytes, and the associated data to be of length 14 + 16 ⋅ 𝑚 bytes for some 𝑚 ≥ 0, but
we note that this is only for exposition and the attack generalizes. Pseudocode for the scheme with these

parameter choices is given in Figure 15.

In more detail, we consider the setting where the challenger provides the adversary with a 1-block
ciphertext 𝐶 = 𝐶0 ‖ 𝐶1, a 128-bit target key 𝐾 , and a 96-bit target nonce. And the goal is to find an

associated data 𝐴 such that CCM-Decrypt(𝐾, 𝐴, 𝑁 , 𝐶) ≠ ⊥. Notice from Figure 15 that decryption passing

reduces to the tag check passing which lets us rewrite the goal as finding an associated data 𝐴 such that

𝐶0 = 𝐸𝐾 (𝐽) ⊕ 𝑌𝑟

where 𝑌𝑟 is the CBC-MAC of EncodeMessage(𝐴,𝑁 ,𝑀) as defined in Figure 15. Notice that for a 30-byte

associated data𝐴, 12-byte nonce𝑁 , and 16-byte message𝑀 , EncodeMessageworks as follows. It produces
four 16-byte blocks (𝐵0, 𝐵1, 𝐵2, 𝐵3) where 𝐵0 is flags and the nonce 𝑁 , 𝐵1 = encode16(30) ‖ 𝐴[∶ 14], 𝐵2 =
𝐴[14 ∶ 30], and 𝐵3 = 𝑚. Using this, we can expand 𝑌𝑟 to get

𝐶0 = 𝐸𝐾 (𝐽) ⊕ 𝐸𝐾 (𝐸𝐾 (𝐸𝐾 (𝐸𝐾 (𝐵0) ⊕ 𝐵1) ⊕ 𝐵2) ⊕ 𝐵3)

29

GHASH(𝐻,𝑋):

// Split into 16-byte blocks
𝑋1,… , 𝑋𝑚 ← 𝑋
// Compute 𝑋1 ⋅ 𝐻𝑚 +⋯ + 𝑋𝑚 ⋅ 𝐻
𝑌0 ← 0128

For 𝑖 = 1 to 𝑚:
𝑌𝑖 ← (𝑌𝑖−1 ⊕ 𝑋1) ⋅ 𝐻

Return 𝑌𝑚

GCM-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶):

𝐶 ‖ tag ← 𝐶
𝐽0 = 𝑁 ‖ 031 ‖ 1
// GHASH Evaluation
𝐻 ← 𝐸𝐾 (0128)
lens ← encode64(|𝐴|) ‖ encode64(|𝐶|)
𝑆 ← GHASH(𝐻,𝐴 ‖ 𝐶 ‖ lens)
If tag ≠ (𝑆 ⊕ 𝐸𝐾 (𝐽0)):

Return ⊥
// CTR Decryption
clen ← |𝐶|/128
For 𝑖 ← 1 to clen:

𝑀[𝑖] ← 𝐸𝐾 (𝐽0 + 𝑖) ⊕ 𝐶[𝑖]
Return 𝑀

Figure 16: (Left) Pseudocode for GHASH [21, §6.4]. (Right) Pseudocode for GCMMode [21, §7] decryption

with a 96-bit nonce, a 128-bit tag, and block-aligned messages and associated data.

Rearranging, decrypting both sides under 𝐾 , and solving for 𝐵2 we get

𝐵2 = 𝐸−1𝐾 (𝐸−1𝐾 (𝐶0 ⊕ 𝐸𝐾 (𝐽)) ⊕ 𝐵3) ⊕ 𝐸𝐾 (𝐸𝐾 (𝐵0) ⊕ 𝐵1)

Notice that we know all the terms on the right-hand side, so setting 𝐵2 to this value provides the desired

tag collision. The full pseudocode for this attack is given in Figure 15.

Finally, we turn to the statement at the onset that this attack generalizes to other parameter choices.

First, it generalizes to any block-aligned message, we’d just need to do more arithmetic to solve for 𝐵2.
Second, the associated data we choose can be arbitrary except for an aligned 16-byte block. Third, if we

only have partial control over an aligned block of associated data, then assuming an idealized model like

the ideal cipher model, the success probability reduces by a multiplicative factor of 2−𝑓 ⋅128 where 𝑓 is the

fraction of bytes we don’t have control over.

CDY∗
a and CDY∗

n Attacks on GCM. We consider GCM over a 128-bit block cipher (like AES-128) as

defined in NIST SP 800-38D [21]. For simplicity, we restrict to a 96-bit nonce, a 128-bit tag, and block-

aligned messages and associated data. We note however that this is to make the exposition easier, and the

attack generalizes to the case without these constraints. Pseudocode for the scheme with these parameter

choices is given in Figure 16.

Let’s start by contextualizing the CDY
∗
a game. The challenger provides us with an 𝑚-block ciphertext

𝐶 = 𝐶1⋯𝐶𝑚 ‖ tag, a 128-bit target key 𝐾 , and a 96-bit target nonce 𝑁 . And the goal is to find an 1-block

associated data 𝐴 such that GCM-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶) ≠ ⊥. Notice from Figure 16 that decryption passing

reduces to the tag check passing. In other words, we can rewrite the goal as finding an associated data 𝐴
such that

tag = GHASH(𝐻,𝐴 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0),

where 𝐻 = 𝐸𝐾 (0128), lens = encode64(1) ‖ encode64(|𝐶|), and 𝐽0 = 𝑁 ‖ 031 ‖ 1 are as defined in Figure 16. We

can rearrange terms to get

GHASH(𝐻,𝐴 ‖ 𝐶 ‖ lens) = tag ⊕ 𝐸𝐾 (𝐽0),

We can expand the GHASH as a polynomial over GF(2128) [21, §6.4], to get

𝐴 ⋅ 𝐻𝑚+2 + 𝐶1 ⋅ 𝐻𝑚+1 +⋯ + 𝐶𝑚 ⋅ 𝐻 2 + lens ⋅ 𝐻 = tag ⊕ 𝐸𝐾 (𝐽0). (7)

Since everything except 𝐴 is fixed, we can solve for 𝐴 as

𝐴 = 𝐻−(𝑚+2) (tag ⊕ 𝐸𝐾 (𝐽0) + 𝐶1 ⋅ 𝐻𝑚+1 +⋯ + 𝐶𝑚 ⋅ 𝐻 2 + lens ⋅ 𝐻) .

30

(𝐶, 𝐾, 𝑁):

𝐶 ‖ tag ← 𝐶
// Initialize Constants
𝐻 ← 𝐸𝐾 (0128)
lens = encode64(1) ‖ encode64(|𝐶|)
𝐽0 = 𝑁 ‖ 031 ‖ 1
// Reconstruct 𝐴 and Return
𝐴 = 𝐻−(𝑚+2) (tag ⊕ 𝐸𝐾 (𝐽0) + 𝐶1 ⋅ 𝐻𝑚+1 +⋯ + 𝐶𝑚 ⋅ 𝐻 2 + lens ⋅ 𝐻)
Return (𝐾, 𝑁 , 𝐴)

Figure 17: Pseudocode for a CDY
∗
a attack on GCM.

The full pseudocode for this attack is given in Figure 17.

Now, we turn to the statement at the onset that this attack generalizes to other parameter choices. First,

as-is it works against GCM with a shorter tag (which is just a truncation). Second, it readily generalizes

to shorter nonces, which requires us to update the generation 𝐽0 in the pseudocode. Third, it readily

generalizes to non-block aligned messages, which requires us to update the construction of lens and add

trailing zeroes to the final block. Fourth, it generalizes to the settingwith any block-aligned associated data,

as long as the attacker controls one block of associated data. If we have partial control over a block, then

assuming an idealized model like the ideal cipher model, the success probability reduces by a multiplicative

factor of 2−𝑓 ⋅128 where 𝑓 is the fraction of bytes we don’t have control over. For example, if we only had

control over 14 of the 16 bytes in an encoded block, then the success probability would reduce by 2−16.
Finally, this attack can also be adapted as a CDY

∗
n attack. Let’s start by rewriting Equation 7 as

tag ⊕ 𝐸𝐾 (𝐽0) =
𝓁
∑
𝑖=1

𝐴𝑖 ⋅ 𝐻 (𝑎−𝑖+1)+𝑚+1 +
𝑚
∑
𝑖=1

𝐶𝑖 ⋅ 𝐻 (𝑚−𝑖+1)+1 + lens ⋅ 𝐻,

for an 𝑚-block ciphertext 𝐶 = 𝐶1⋯𝐶𝑚 ‖ tag and 𝓁-block associated data 𝐴 = 𝐴1⋯𝐴𝓁; and 𝐻 = 𝐸𝐾 (0128),
lens = encode64(|𝐴|) ‖ encode64(|𝐶|), and 𝐽0 = 𝑁 ‖ 031 ‖ 1 as defined in Figure 16. Then rearranging we get

𝐽0 = 𝐸−1𝐾 (tag + 𝐴1 ⋅ 𝐻 𝓁+𝑚+1 +⋯ + 𝐴𝑎 ⋅ 𝐻𝑚+2

+ 𝐶1 ⋅ 𝐻𝑚+1 +⋯ + 𝐶𝑚 ⋅ 𝐻 2 + lens ⋅ 𝐻).
(8)

But, recall that 𝐽0 = 𝑁 ‖ 031 ‖ 1, so control over the nonce 𝑁 only give us control over the first 96 bits, and

the remaining 32 are constant. So, this attack doesn’t always work. But, in an idealized model like the

ideal cipher model, we can lower bound the success at about 2−32.

CDY∗
a Attack on OCB3. We consider OCB3 over a 128-bit block cipher as defined in IRTF RFC 7253 [30].

For simplicity, we restrict to the variant with a 96-bit nonce, 128-bit tag and block-aligned messages and

associated data. Pseudocode for the scheme with these parameter choices is given in Figure 18.

Let’s start by contextualizing the CDY
∗
a game. The challenger provides us with an 𝑚-block ciphertext

𝐶 = 𝐶1⋯𝐶𝑚 ‖ tag, a 128-bit target key 𝐾 , and a 96-bit target nonce 𝑁 . And the goal is to find an 1-block

associated data 𝐴 such thatOCB3-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶) ≠ ⊥. Notice from Figure 18 that decryption passing

reduces to the tag check passing. In other words, we can rewrite the goal as finding an associated data 𝐴
such that

tag = 𝐸𝐾 (Checksum𝑚 ⊕ Δ𝑚 ⊕ 𝐿$) ⊕OCB3-Hash(𝐾, 𝐴)

where Checksum𝑚, Δ𝑚, 𝐿$ are defined as in OCB3-Decrypt in Figure 18 using the input (𝐾, 𝑁 , 𝐶). We can

rearrange terms to get

OCB3-Hash(𝐾, 𝐴) = 𝐸𝐾 (Checksum𝑚 ⊕ Δ𝑚 ⊕ 𝐿$) ⊕ tag.

31

OCB3-Setup(𝐾):

𝐿∗ ← 𝐸𝐾 (0128)
𝐿$ ← 2 ⋅ 𝐸𝐾 (0128)
For 𝑖 ≥ 0:

𝐿[𝑖] ← 22+𝑖 ⋅ 𝐸𝐾 (0128)
def ntz(𝑖):

Return number of trailing zeroes

in the binary representation of 𝑖
def str2num(𝑠):

Return number represented by 𝑠

OCB3-Hash(𝐾, 𝐴):

𝐴1,… , 𝐴𝑚 ← 𝐴
sum0 ← 0128

Φ0 ← 0128

For 𝑖 ← 1 to 𝑚:
Φ𝑖 ← Φ𝑖−1 ⊕ 𝐿[ntz(𝑖)]
sum𝑖 ← sum𝑖−1 ⊕ 𝐸𝐾 (𝐴𝑖 ⊕ Φ𝑖)

Return sum𝑚

OCB3-Decrypt(𝐾, 𝑁 , 𝐴, 𝐶):

𝐶1,… , 𝐶𝑚 ‖ tag ← 𝐶
𝐿∗, 𝐿$, 𝐿 ← OCB3-Setup(𝐾)
// Per-Decryption Constants
nonce ← 031 ‖ 1 ‖ 𝑁
bottom ← str2num(nonce[123..128])
Ktop ← 𝐸𝐾 (nonce[1..122] ‖ 06)
Stretch ← Ktop ‖ (Ktop[1..64] ⊕ Ktop[9..72])
Δ0 ← Stretch[(1 + bottom)..(128 + bottom)]
Checksum0 ← 0128

// Decryption
For 𝑖 ← 0 to 𝑚:

Δ𝑖 ← Δ𝑖−1 ⊕ 𝐿[ntz(𝑖)]
𝑀𝑖 ← Δ𝑖 ⊕ 𝐸𝐾 (𝐶𝑖 ⊕ Δ𝑖)
Checksum𝑖 ← Checksum𝑖−1 ⊕𝑀𝑖

tag′ ← 𝐸𝐾 (Checksum𝑚 ⊕ Δ𝑚 ⊕ 𝐿$)
tag′ ← tag′ ⊕ OCB3-Hash(𝐾, 𝐴)
If tag′ ≠ tag:

Return ⊥
Return 𝑀

(𝐶, 𝐾, 𝑁):

𝐶1,… , 𝐶𝑚 ‖ tag ← 𝐶
// Setup
𝐿∗ ← 𝐸𝐾 (0128)
𝐿$ ← 2 ⋅ 𝐸𝐾 (0128)
For 𝑖 ≥ 0:

𝐿[𝑖] ← 22+𝑖 ⋅ 𝐸𝐾 (0128)
// Per-Decryption Constants
nonce ← 031 ‖ 1 ‖ 𝑁
bottom ← str2num(nonce[123..128])
Ktop ← 𝐸𝐾 (nonce[1..122] ‖ 06)
Stretch ← Ktop ‖ (Ktop[1..64] ⊕ Ktop[9..72])
Δ0 ← Stretch[(1 + bottom)..(128 + bottom)]
Checksum0 ← 0128

// Compute Checksum and Offsets
For 𝑖 ← 0 to 𝑚:

Δ𝑖 ← Δ𝑖−1 ⊕ 𝐿[ntz(𝑖)]
𝑀𝑖 ← Δ𝑖 ⊕ 𝐸𝐾 (𝐶𝑖 ⊕ Δ𝑖)
Checksum𝑖 ← Checksum𝑖−1 ⊕𝑀𝑖

// Reconstruct 𝐴 and Return
𝜉 ← 𝐸𝐾 (Checksum𝑚 ⊕ Δ𝑚 ⊕ 𝐿$) ⊕ tag

𝐴 = 𝐸−1𝐾 (𝜉) ⊕ 4 ⋅ 𝐸𝐾 (0128)
Return (𝐾, 𝑁 , 𝐴)

Figure 18: (Left/Top) Setup to generate key-dependent constants and define helper functions [30].

(Left/Bottom) Hash for processing associated data [30, §4.1], with block-aligned messages. (Middle)
Pseudocode for OCB3 mode [30, §4.2-§4.3] decryption, with block-aligned messages and associated data,

128-bit tag and a 96-bit nonce. (Right) Pseudocode for a CDY∗a attack on OCB3.

Notice that the right-hand side is composed entirely of known terms, so we can evaluate it to some constant

𝜉 . This allows us to simplify the equation to

OCB3-Hash(𝐾, 𝐴) = 𝜉 .

Using the assumption that 𝐴 is 1-block, we can expand OCB3-Hash(𝐾, 𝐴) to

𝐸𝐾 (𝐴 ⊕ 𝐿[ntz(1)]) = 𝜉 .

Recall from the definition of ntz in Figure 18 that ntz(1) − 0, and that 𝐿[1] = 4 ⋅𝐸𝐾 (0128). Using this, we can
simplify to

𝐸𝐾 (𝐴 ⊕ 4 ⋅ 𝐸𝐾 ′(0128)) = 𝜉 .

Then decrypt both sides

𝐴 ⊕ 4 ⋅ 𝐸𝐾 ′(0128) = 𝐸−1𝐾 (𝜉),

and solve for 𝐴 to get

𝐴 = 𝐸−1𝐾 (𝜉) ⊕ 4 ⋅ 𝐸𝐾 ′(0128).

The full pseudocode for this attack is given in Figure 18.

32

C Four Sum Attacks on Block Cipher Outputs

Procedure 𝑃 :

𝜋 ← {} // empty mapping Game 0

𝐴←$ {0, 1} // 𝜎−1(tag) Game 1

𝜋[𝐴] = tag

𝐵←$ {0, 1}𝑛 // 2 ⋅ 𝜎(0𝑛)
If 𝐴 = 0𝑛:

bad0 ← true

𝐵 ← 2 ⋅ tag
If 𝐴 ≠ 0𝑛 and 𝐵 = 2 ⋅ tag:

bad1 ← true

𝐵←$ {0, 1}𝑛 ⧵ {2 ⋅ tag}
𝜋[0𝑛] = 2−1𝐵
𝐶 ←$ {0, 1}𝑛 // 𝜎(2 ⋅ 𝜎(0𝑛)) = 𝜎(𝐵)
If 𝐵 = 0𝑛:

bad2 ← true

𝐶 ← 2−1𝐵
If 𝐵 = 𝐴:

bad3 ← true

𝐶 ← tag

If 𝐵 ≠ 0𝑛 and 𝐶 = 2−1𝐵:
bad4 ← true

𝐶 ←$ {0, 1}𝑛 ⧵ {2−1𝐵}
If 𝐵 ≠ 𝐴 and 𝐶 = tag:

bad5 ← true

𝐶 ←$ {0, 1}𝑛 ⧵ {tag}
𝜋[𝐵] = 𝐶
Return (𝐴, 𝐵, 𝐶)

Figure 19: Two games corresponding to computing procedure 𝑃 . Game 0, which models the “ideal” world,

does not include the highlighted statements, Game 1, which models the “real” world, includes highlighted

statements.

Randomness of three specific block cipher outputs. We start by showing that the three block cipher

outputs that arise in the SIV attack in Section 5, in the random cipher model, are indistinguishable from

three outputs of a uniform random function.

Lemma 4 (From §5). Let tag ∈ {0, 1}𝑛 ⧵ {0𝑛} and 𝜎 be an 𝑛-bit random permutation with inverse 𝜎−1 and 𝑈
be the uniform random variable over 𝑛 bit strings. Define 𝑛-bit random variables (over the choice of 𝜎)

𝐴 ∶= 𝜎−1(tag) , 𝐵 ∶= 2 ⋅ 𝜎(0𝑛) , 𝐶 ∶= 𝜎(2 ⋅ 𝜎(0𝑛)) ,

where ⋅ denotes multiplication in GF(2𝑛). Then no adversary that makes one query to a procedure 𝑃 can
distinguish between 𝑃 ↦ (𝑈 , 𝑈 , 𝑈) and 𝑃 ↦ (𝐴, 𝐵, 𝐶) with probability greater than 6 ⋅ 2−𝑛.

Proof. We start by constructing two identical-until-bad games Game 0 and Game 1 corresponding to 𝑃 ↦
(𝑈 , 𝑈 , 𝑈) and 𝑃 ↦ (𝐴, 𝐵, 𝐶) respectively. In Game 0, the output of the procedure 𝑃 is three independently

uniformly random 𝑛-bit strings. In Game 1, the output of the procedure 𝑃 is a sampling of 𝐴, 𝐵, and
𝐶 which are parameterized by a random permutation. We emulate this random permutation lazily by

independently uniformly randomly sampling mappings and setting a bad bit if the sampled mapping is

inconsistent with a previously sampled mapping, using the variable 𝜋 to keep track of previously sampled

mappings. The constructed games are shown in Figure 19.

33

Since these games are identical-until-bad the fundamental lemma of game playing [11] gives us that

the adversary’s distinguishing advantage is upper bounded by the probability that any of the bad bits are

set.

The bits bad0 and bad2 are set when a uniformly randomly sampled 𝑛-bit value (𝐴 and 𝐵) equals a fixed
𝑛-bit value (0𝑛 and 0𝑛). Similarly, bad3 is set when a uniformly randomly sampled 𝑛-bit value (𝐵) equals
a previously independently uniformly randomly sampled 𝑛-bit value (𝐴). Hence, the probability of these

bits being set is at most 2−𝑛 each.
The bits bad1 and bad5 can only be set when a uniformly randomly sampled 𝑛-bit value (𝐵 and 𝐶) equals

a fixed 𝑛-bit value (2 ⋅ tag and 0𝑛). Similarly, bad4 can only be set when a uniformly randomly sampled 𝑛-bit
value (𝐶) equals half of a previously independently uniformly randomly sampled 𝑛-bit value (𝐵). Hence,
the probability that these bits are set is also at most 2−𝑛 each.

Applying the union bound, the probability that any of the bad bits are set is at most 6 ⋅ 2−𝑛.

Solving the 4-sum problemwith almost-random lists. Next, we lower bound the success probability

of solving the 4-sum problem with lists consisting of entries which are indistinguishable from random,

using Wagner’s k-tree algorithm [43]. The proof uses Chernoff bounds which we recall below.

Lemma 12 (Chernoff bounds [25]). Let𝑋1,… , 𝑋𝑛 be independent, 0/1-valued random variables taking 1 with
probability 𝑝 and taking 0 with probability 1−𝑝. Let the sum𝑋 ∶= ∑𝑖 𝑋𝑖 and its expectation 𝜇 ∶= 𝔼[𝑋] = 𝑛𝑝.
Then,

1. (lower tail) Pr[𝑋 ≤ (1 − 𝛿)𝜇] ≤ exp(−
𝛿2𝜇
2) for all 0 ≤ 𝛿 < 1, and

2. (upper tail) Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp(−
𝛿2𝜇
2+𝛿) for all 0 ≤ 𝛿.

Theorem 5 (From §5). Let 𝐿 be a list of 𝓁 4-tuples 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4), where each entry 𝑥 is distinguishable
from an 4-tuple of independent uniformly random values with probability at most 𝜉 . Let 𝐿1, 𝐿2, 𝐿3, and 𝐿4
be lists of 1-index (𝑥1), 2-index (𝑥2), 3-index (𝑥3), and 4-index (𝑥4) elements of 𝐿 respectively. Then Wagner’s
k-tree algorithm [43] finds a solution (𝑦1, 𝑦2, 𝑦3, 𝑦4) ∈ 𝐿1 × 𝐿2 × 𝐿3 × 𝐿4 such that

𝑦1 ⊕ 𝑦2 ⊕ 𝑦3 ⊕ 𝑦4 = 0 ,

with probability at least

(1 − 𝓁 ⋅ 𝜉)(1 − exp(−
𝓁2 ⋅ 2−𝑛/3

8))(1 − exp(1 −
𝓁4 ⋅ 2−4𝑛/3

8
−

2
𝓁4 ⋅ 2−4𝑛/3))

,

and time at most
20𝓁 + 4𝓁2 ⋅ 2−𝑛/3 + 4Sort(𝓁) + 2Sort((1/2)𝓁2 ⋅ 2−𝑛/3) .

where Sort(𝑘) denotes the time to sort a list of 𝑘 items.

Proof. We start by conditioning on none of the entries 𝑥 of 𝐿 being distinguishable from a 4-tuple of inde-

pendent uniformly random values. Since we are given that each entry is distinguishable with probability

at most 𝜉 , the probability that any of the 𝓁 entries are distinguishable is at most 𝓁 ⋅ 𝜉 , by the union bound.

So, this condition that none of the entries are distinguishable holds with probability (1 − 𝓁 ⋅ 𝜉).
Wagner’s k-tree algorithm (see Figure 20) can only find 4-sum solutions with certain structure. To

capture this we are going to define the intermediate lists 𝐿12 and 𝐿34 and bound their size, then define colls
and bound its size.

34

Following the pseudocode, define

𝐿12 ∶= {(𝐿1[𝑖1] ⊕ 𝐿2[𝑖2], (𝑖1, 𝑖2))

∶ low𝑛/3(𝐿1[𝑖1] ⊕ 𝐿2[𝑖2]) = 0𝑛/3 , 𝑖1, 𝑖2 ∈ {1,… , 𝓁}} ,

Since we assumed that each entry of 𝐿1 and 𝐿2 is independently and uniformly sampled, each unique pair

(𝑧1, 𝑧2) ∈ 𝐿1 × 𝐿2 has an independent 2−𝑛/3 chance of satisfying low𝑛/3(𝑧1 ⊕ 𝑧2) = 0𝑛/3. Using the Chernoff
lower tail bound (Lemma 12) with 𝛿 = 1/2 we get that 𝐿12 has size at least (1/2)𝓁2 ⋅ 2−𝑛/3 with probability

1 − exp(−
𝓁2 ⋅ 2−𝑛/3

8) .

Using the same argument, we get the same bound for 𝐿34.
Next, following the pseudocode, define

colls ∶= {(𝐿12[𝑖1] ⊕ 𝐿34[𝑖2], (𝑖1, 𝑖2)) ∶ 𝐿12[𝑖1] ⊕ 𝐿34[𝑖2] = 0𝑛 , 𝑖1, 𝑖2 ∈ {1,… , 𝑚}} ,

where 𝑚 is the size of 𝐿12 and 𝐿34. Since we assumed that entries of 𝐿1, 𝐿2, 𝐿3, and 𝐿4 were independently
and uniformly sampled, and the lowBitMerge subroutine did not touch the high 2𝑛/3 bits, we can view the

high 2𝑛/3 bits of 𝐿12 and 𝐿34 as independently and uniformly sampled. Then, each unique pair (𝑧12, 𝑧34) ∈
𝐿12 ×𝐿34 has an independent 2−2𝑛/3 chance of satisfying 𝑧12⊕𝑧34 = 0𝑛. Using the Chernoff lower tail bound

(Lemma 12) with 𝛿 = 1 − 𝜇−1 we get that colls has size at least 2 with probability

1 − exp
(
−
𝜇
2 (1 −

1
𝜇)

2

)
= 1 − exp(1 −

𝜇
2
−

1
2𝜇)

,

where 𝜇 = 𝑚2 ⋅ 2−2𝑛/3. Simplifying and plugging in 𝑚 = (1/2)𝓁2 ⋅ 2−𝑛/3, we get the probability

1 − exp(1 −
𝓁4 ⋅ 2−4𝑛/3

8
−

2
𝓁4 ⋅ 2−4𝑛/3)

.

Unwinding the stack, the probability that Wagner’s k-tree algorithm (Figure 20) finds a solution is

lower bounded by the probability that the lists are indistinguishable from random, 𝐿12 and 𝐿34 have size
at least (1/2)𝓁2 ⋅ 2−𝑛/3, and colls has size at least 1, which, from the above discussion, is at least

(1 − 𝓁 ⋅ 𝜉)(1 − exp(−
𝓁2 ⋅ 2−𝑛/3

8))(1 − exp(1 −
𝓁4 ⋅ 2−4𝑛/3

8
−

2
𝓁4 ⋅ 2−4𝑛/3))

.

Now we turn to analyzing the runtime. We first analyze the subroutines merge and lowBitMerge,
then analyze the full fourWayCollision routine. First, themerge subroutine on lists of size 𝑚: the two sort
operations cost 2Sort(𝑚), and the body of the loop is run 2𝑚 times with at most 4 statements. So, the total

cost is 8𝑚 + 2Sort(𝑚). Second, the lowBitMerge subroutine on lists of size 𝑚: computing the intermediary

lists costs 2𝑚 operations, the two sort operations cost 2Sort(𝑚), and the body of the loop is run 2𝑚 times

with at most 4 statements. So, the total cost is 10𝑚 + 2Sort(𝑚).
Lastly, the fourWayCollision routine calls the lowBitMerge subroutine two times on lists of size 𝓁 and

themerge subroutine on lists of size (1/2)𝓁2 ⋅2−𝑛/3. Plugging in the above computed costs for the routines,

2(10𝓁 + 2Sort(𝓁)) + 8 ⋅ ((1/2)𝓁2 ⋅ 2−𝑛/3) + 2Sort((1/2)𝓁2 ⋅ 2−𝑛/3)

= 20𝓁 + 4𝓁2 ⋅ 2−𝑛/3 + 4Sort(𝓁) + 2Sort((1/2)𝓁2 ⋅ 2−𝑛/3) .

This completes the proof.

35

𝐿1 𝐿2 𝐿3 𝐿4

⋈𝑛/3 ⋈𝑛/3

𝐿12 𝐿34

⋈

fourWayCollision(𝐿1, 𝐿2, 𝐿3, 𝐿4):

𝐿12 ← lowBitMerge(𝑛/3, 𝐿1, 𝐿2)
𝐿34 ← lowBitMerge(𝑛/3, 𝐿3, 𝐿4)
colls ← merge(𝐿12, 𝐿34)
Return colls

merge(𝐿1, 𝐿2):

𝑚 ← |𝐿1 | = |𝐿2 |
// Compute the intermediary lists
For 𝑖 = 1, ..., 𝑚:

𝐻1.append(𝐿1[𝑖], 𝑖)
𝐻2.append(𝐿2[𝑖], 𝑖)

// Sort the intermediary lists
Sort(𝐻1); Sort(𝐻2)
// Look for collisions
colls ← []
𝑗1 ← 0; 𝑗2 ← 0
While 𝑗1 < 𝑚 or 𝑗2 < 𝑚:

If 𝐻1[𝑗1] == 𝐻2[𝑗2]:
𝑖1 ← 𝐻1[𝑗1]
𝑖2 ← 𝐻2[𝑗2]
colls.append(𝐿1[𝑖1] ⊕ 𝐿2[𝑖2], (𝑖1, 𝑖2))

Else If 𝐻1[𝑗1] < 𝐻2[𝑗2]:
𝑗1 ← 𝑗1 + 1

Else:

𝑗2 ← 𝑗2 + 1
Return colls

lowBitMerge(𝑠, 𝐿1, 𝐿2):

𝑚 ← |𝐿1 | = |𝐿2 |
// Compute the intermediary lists
For 𝑖 = 1, ..., 𝑚:

// low𝑠 denotes the low-𝑠 bits
𝐻1.append(low𝑠(𝐿1[𝑖]), 𝑖)
𝐻2.append(low𝑠(𝐿2[𝑖]), 𝑖)

// Sort the intermediary lists
Sort(𝐻1); Sort(𝐻2)
// Look for low-bit collisions
lbcolls ← []
𝑗1 ← 0; 𝑗2 ← 0
While 𝑗1 < 𝑚 or 𝑗2 < 𝑚:

If 𝐻1[𝑗1] == 𝐻2[𝑗2]:
𝑖1 ← 𝐻1[𝑗1]
𝑖2 ← 𝐻2[𝑗2]
lbcolls.append(𝐿1[𝑖1] ⊕ 𝐿2[𝑖2], (𝑖1, 𝑖2))

Else If 𝐻1[𝑗1] < 𝐻2[𝑗2]:
𝑗1 ← 𝑗1 + 1

Else:

𝑗2 ← 𝑗2 + 1
Return lbcolls

Figure 20: (Top) A visualization of Wagner’s k-tree algorithm [43] for finding a 4-way collision, where ⋈𝑠
and ⋈ denote the lowBitMerge andmerge subroutines, respectively. (Left/Top) Pseudocode for Wagner’s

k-tree algorithm [43] for finding a 4-way collision. (Left/Bottom) The merge subroutine which merges

two lists. (Right) The lowBitMerge subroutine [43] which merges two lists on their lower 𝑠 bits.

36

SIV-Decrypt(𝐾, 𝐴, 𝐶):

c ← 1𝑛−6401310131

𝐶1,… , 𝐶𝑚 ‖ tag ← 𝐶
𝐼 ← tag

𝐾1 ‖ 𝐾2 ← 𝐾
// CTR Decryption
ctr ← 𝐼 & c

For 𝑖 = 1..𝑚:
𝑀𝑖 ← 𝐶𝑖 ⊕ 𝐸𝐾2 (ctr + 𝑖 − 1)

// IV Check
𝐼 ′ ← CMAC∗(𝐾1, 𝐴,𝑀1 ‖ ⋯ ‖𝑀𝑚)
If 𝐼 ≠ 𝐼 ′:

Return ⊥
Return 𝑀

CMAC∗(𝐾, 𝐴,𝑀):

𝑆 ← CMAC(𝐾, 0𝑛)
𝑆 ← (2 ⋅ 𝑆) ⊕ CMAC(𝐾, 𝐴)
Return CMAC(𝐾,𝑀1 ‖ ⋯ ‖𝑀𝑚−1 ‖ (𝑆 ⊕𝑀𝑚))

CMAC(𝐾, 𝑋):

𝐾𝑠 ← 2 ⋅ 𝐸𝐾 (0𝑛)
𝑋1,… , 𝑋𝑚 ← 𝑋
𝑋𝑚 ← 𝑋𝑚 ⊕ 𝐾𝑠

𝜉0 ← 0𝑛

For 𝑖 = 1..𝑚:
𝜉𝑖 ← 𝐸𝐾 (𝜉𝑖−1 ⊕ 𝑋𝑖)

Return 𝜉𝑛

Figure 21: (Left) Pseudocode for SIV Mode [39] decryption with block-aligned message and associated

data. (Right) Pseudocode for CMAC* [39] with two block-aligned inputs, and CMAC [20] with block-

aligned input.

D Commitment Attack on Block-Aligned SIV

Continuing from Section 5, in this section we describe how to extend the commitment attack on one-block

SIV (in §5) to SIV [39] with block-aligned message and associated data. The pseudocode for this scheme

is given in Figure 21.

As in the one block case, the CMT
∗
k adversary seeks to produce a ciphertext 𝐶 = 𝐶1 ‖ ⋯ ‖ 𝐶𝑚 ‖ tag and

two 2𝑛-bit keys 𝐾 = 𝐾1 ‖𝐾2 and 𝐾 ′ = 𝐾 ′
1 ‖𝐾 ′

2 such that SIV-Decrypt(𝐾, 𝐶) ≠ ⊥ and SIV-Decrypt(𝐾 ′, 𝐶) ≠ ⊥.
Notice from Figure 21 that this reduces to two simultaneous IV checks passing which can be written as

tag = CMAC∗(𝐾1, 𝐴,𝑀) = CMAC∗(𝐾 ′
1 , 𝐴,𝑀

′)

where 𝑀 and 𝑀 ′
are CTR decryptions of 𝐶 under 𝐾2 and 𝐾 ′

2 respectively. Our attack strategy will be

to choose the tag tag, the associated data 𝐴, and the first (𝑚 − 1)-blocks of the ciphertext 𝐶1,… , 𝐶𝑚−1
arbitrarily, so we can treat them as constants. Towards solving for the remaining variable, the last block

of ciphertext, 𝐶𝑚, we can substitute in the definition of CMAC∗

tag = CMAC(𝐾1, 𝑀1 ‖ ⋯ ‖𝑀𝑚−1 ‖ (𝑀𝑚 ⊕ (2 ⋅ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0
𝑛))) ⊕ CMAC(𝐾1, 𝐴)))

= CMAC(𝐾 ′
1 , 𝑀

′
1 ‖ ⋯ ‖𝑀 ′

𝑚−1 ‖ (𝑀
′
𝑚 ⊕ (2 ⋅ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾 ′

1
(0𝑛))) ⊕ CMAC(𝐾 ′

1 , 𝐴))),

then substituting the definition of CMAC

tag = 𝐸𝐾1(𝜉𝑚−1 ⊕𝑀𝑚 ⊕ (2 ⋅ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0
𝑛))) ⊕ CMAC(𝐾1, 𝐴))

= 𝐸𝐾 ′
1(𝜉

′
𝑚−1 ⊕𝑀 ′

𝑚 ⊕ (2 ⋅ 𝐸𝐾 ′
1
(2 ⋅ 𝐸𝐾 ′

1
(0𝑛))) ⊕ CMAC(𝐾 ′

1 , 𝐴)),

where 𝜉𝑚−1 and 𝜉 ′𝑚−1 are intermediate values in the CMAC computation (see Figure 21). Rewriting𝑀𝑚 and

𝑀 ′
𝑚 in terms of 𝐶𝑚,

tag = 𝐸𝐾1(𝜉𝑚−1 ⊕ 𝐶𝑚 ⊕ 𝐸𝐾2((tag& c) + 𝑚 − 1) ⊕ (2 ⋅ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0
𝑛))) ⊕ CMAC(𝐾1, 𝐴))

= 𝐸𝐾 ′
1(𝜉

′
𝑚−1 ⊕ 𝐶𝑚 ⊕ 𝐸𝐾 ′

2
((tag& c) + 𝑚 − 1) ⊕ (2 ⋅ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾 ′

1
(0𝑛))) ⊕ CMAC(𝐾 ′

1 , 𝐴)),

where c = 1𝑛−6401310131. We can rearrange these equalities solving for the variable 𝐶𝑚, to get

𝐶𝑚 = 𝐸−1𝐾1
(tag) ⊕ 𝜉𝑚−1 ⊕ 𝐸𝐾2((tag& c) + 𝑚 − 1) ⊕ (2 ⋅ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0

𝑛))) ⊕ CMAC(𝐾1, 𝐴)
= 𝐸−1𝐾 ′

1
(tag) ⊕ 𝜉 ′𝑚−1 ⊕ 𝐸𝐾 ′

2
((tag& c) + 𝑚 − 1) ⊕ (2 ⋅ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾 ′

1
(0𝑛))) ⊕ CMAC(𝐾 ′

1 , 𝐴) (9)

37

The above implies that it suffices now to find 𝐾1, 𝐾2, 𝐾 ′
1 , 𝐾 ′

2 that satisfy Equation 9. To ease notation, we

define four helper functions, one for each term:

𝐹1(𝐾1) ∶= 𝐸−1𝐾1
(tag) ⊕ 𝜉𝑚−1 ⊕ (2 ⋅ 𝐸𝐾1(2 ⋅ 𝐸𝐾1(0

𝑛))) ⊕ CMAC(𝐾1, 𝐴) ,
𝐹2(𝐾2) ∶= 𝐸𝐾2((tag& c) + 𝑚 − 1) ,
𝐹3(𝐾1) ∶= 𝐸−1𝐾 ′

1
(tag) ⊕ 𝜉 ′𝑚−1 ⊕ (2 ⋅ 𝐸𝐾 ′

1
(2 ⋅ 𝐸𝐾 ′

1
(0𝑛))) ⊕ CMAC(𝐾 ′

1 , 𝐴) ,

𝐹4(𝐾 ′
2) ∶= 𝐸𝐾 ′

2
((tag& c) + 𝑚 − 1) ,

and recast Equation 9 as a 4-sum problem

𝐹1(𝐾1) ⊕ 𝐹2(𝐾2) ⊕ 𝐹3(𝐾 ′
1) ⊕ 𝐹4(𝐾 ′

2) = 0 .

Now, we can use techniques similar to the ones used in the one-block case to solve this in time about 2𝑛/3.

38

P0-GCM[𝐸].Dec(𝐾, 𝑁 , 𝐴, 𝐶):

𝐶 ‖ tag ← 𝐶
𝐽0 ← 𝑁 ‖ 0𝑛−𝓁−1 ‖ 1
// Tag check
𝐻 ← 𝐸𝐾 (0𝑛)
lens ← encode(𝑛/2)(|𝐴|) ‖ encode(𝑛/2)(|𝐶|)
𝑆 ← GHASH(𝐻,𝐴 ‖ 𝐶 ‖ lens)
If tag ≠ (𝑆 ⊕ 𝐸𝐾 (𝐽0)):

Return ⊥
// CTR decryption
clen ← |𝐶|/128
For 𝑖 ← 1 to clen:

𝑀[𝑖] ← 𝐸𝐾 (𝐽0 + 𝑖) ⊕ 𝐶[𝑖]
// Check padding zeroes
If 𝑀[1] ‖𝑀[2] ≠ 02𝑛:

Return ⊥
Return 𝑀[2..]

GHASH(𝐻,𝑋):

// Split into 16-byte blocks
𝑋1,… , 𝑋𝑚 ← 𝑋
// Compute 𝑋1 ⋅ 𝐻𝑚 +⋯ + 𝑋𝑚 ⋅ 𝐻
𝑌0 ← 0128

For 𝑖 = 1 to 𝑚:
𝑌𝑖 ← (𝑌𝑖−1 ⊕ 𝑋1) ⋅ 𝐻

Return 𝑌𝑚

():

// Initialize with arbitrary constants
𝑁 ← 0𝓁; 𝐾 ← 0𝑛

𝐽0 ← 𝑁 ‖ 0𝑛−𝓁−1 ‖ 1
𝐶 ← (0𝑛 ⊕ 𝐸𝐾 (𝐽0 + 1)) ‖ (0𝑛 ⊕ 𝐸𝐾 (𝐽0 + 2))
// Compute colliding associated data
𝛼1 ← 0𝑛; 𝛼2 ← 1𝑛

𝛽1 ← 0𝑛

𝐻 ← 𝐸𝐾 (0𝑛)
𝛽2 ← 𝐻−4 ⋅ (𝛼1𝐻 5 + 𝛼2𝐻 5 + 𝛽1𝐻 4)
𝐴1 ← 𝛼1 ‖ 𝛽1
𝐴2 ← 𝛼2 ‖ 𝛽2
// Repackage into a context collision
lens ← encode(𝑛/2)(|𝐴1 |) ‖ encode(𝑛/2)(|𝐶|)
tag ← GHASH(𝐻,𝐴1 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0)
Return (𝐶 ‖ tag), (𝐾, 𝑁 , 𝐴1), (𝐾, 𝑁 , 𝐴2)

Figure 22: (Left/Top) Pseudocode for GCM Mode [21, §7] decryption, over a 𝑛-bit block cipher, adapted

to check for a block of padding zeroes, with a 𝓁-bit nonce, a 𝑛-bit tag, and block-aligned messages and

associated data. (Left/Bottom) Pseudocode for GHASH [21, §6.4]. (Right) Pseudocode for CMT
∗
a attack

on P0-GCM[𝐸].

E Revisiting Commitment-Enhancing Transforms

First, we look at three folklore, generic commitment enhancing transforms—padding zeroes [2, 5], key

hashing [2], and libsodium’s recommendation [16]—that have been shown to achieve CMTk, and show

that they do not achieve CMT
∗
a and thus do not achieve CMT-3. Then, we turn to Bellare and Hoang’s [5]

CAU-C1 scheme, and show a practically relevant key commitment attack that takes about 264 time.

Padding zeroes transform. Padding zeroes is a folklore transform for turning a CTR-based encryption

scheme into a key committing encryption scheme. It calls for prefixing a string of zeroes to the beginning

of the message before encryption, and checking that the string remains intact during decryption. An early

draft of the OPAQUE protocol [29, §3.1.1] recommended it to make GCM usable for envelope encryption.

Albertini et al. [2, §5.3] formally analyzed this transform and showed that it achieves the CROB definition

of Farshim et al. [24], which is equivalent to FROB [24], when used with GCM and ChaCha20/Poly1305.

Bellare and Hoang [5, Appendix G] futher analyzed the scheme and showed that it is CMTk secure, when

used with GCM and ChaCha20/Poly1305.

We focus on the transform applied to GCM with an 𝑛-bit ideal cipher 𝐸, which we call P0-GCM[𝐸]
(pictured in Figure 22). We show that it does not achieve our restrictive CMT

∗
a notion. This means it also

does not achieve CMT-3 security. We present the following attack and note that it also generalizes to

ChaCha20/Poly1305.

Recall, from Figure 3 that to defeat restrictive CMT
∗
a it suffices to produce a ciphertext 𝐶, a nonce 𝑁 ,

39

a key 𝐾 , and different associated data 𝐴1 ≠ 𝐴2 such that Dec(𝐾, 𝑁 , 𝐴1, 𝐶) ≠ ⊥ and Dec(𝐾, 𝑁 , 𝐴2, 𝐶) ≠ ⊥.
This reduces to two constraints: the tag checks should pass, and the padding zeroes checks should pass.

First, let us arbitrarily fix the nonce 𝑁 ← 0𝓁 and key 𝐾 ← 0𝑛. Then to pass the padding zeroes check

constraint, we can construct the ciphertext as the CTR encryption of 02𝑛 under (𝐾, 𝑁) which is

𝐶 = (0𝑛 ⊕ 𝐸𝐾 (𝐽0 + 1)) ‖ (0𝑛 ⊕ 𝐸𝐾 (𝐽0 + 2))

where 𝐽0 ← 𝑁 ‖ 0𝑛−𝓁−1 ‖ 1 as defined in Figure 22.

Now, it remains to produce a tag tag that collides with this ciphertext 𝐶 under different associated data

𝐴1 ≠ 𝐴2. Let us construct the associated data as

𝐴1 ← 𝛼1 ‖ 𝛽1 and 𝐴2 ← 𝛼2 ‖ 𝛽2 ,

with some constants 𝛼1 ≠ 𝛼2 (to get 𝐴1 ≠ 𝐴2) and sacrificial blocks5 𝛽1 and 𝛽2 to be computed later.

Let tag1 and tag2 be the tags obtained with 𝐴1 and 𝐴2 respectively, then

tag1 ← GHASH(𝐻,𝐴1 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0),
tag2 ← GHASH(𝐻,𝐴2 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0) ,

where 𝐶 and 𝐾 were fixed earlier and 𝐻 ← 𝐸𝐾 (0𝑛), 𝐽0 ← 𝑁1‖0𝑛−𝓁−1‖1, and lens is an encoding of the lengths

of the ciphertext and associated data. So, for tag1 to equal tag2 it suffices to have

GHASH(𝐻,𝐴1 ‖ 𝐶 ‖ lens) = GHASH(𝐻,𝐴2 ‖ 𝐶 ‖ lens) .

Expanding GHASH as a polynomial

𝛼1 ⋅ 𝐻 5 + 𝛽1 ⋅ 𝐻 4 + 𝐸𝐾 (𝐽0 + 1) ⋅ 𝐻 3 + 𝐸𝐾 (𝐽0 + 2) ⋅ 𝐻 2 + lens ⋅ 𝐻
= 𝛼2 ⋅ 𝐻 5 + 𝛽2 ⋅ 𝐻 4 + 𝐸𝐾 (𝐽0 + 1) ⋅ 𝐻 3 + 𝐸𝐾 (𝐽0 + 2) ⋅ 𝐻 2 + lens ⋅ 𝐻 ,

and simplifying we get

𝛽1𝐻 4 + 𝛽2𝐻 4 = 𝛼1𝐻 5 + 𝛼2𝐻 5.

We can then simply choose an arbitrary value for 𝛽1 and solve for 𝛽2 to complete the attack. Pseudocode

for the attack is given in Figure 22.

Keyhashing transform. Albertini et al. [2, §5.4] proposed a generic transform for converting anyAEAD

scheme into one that ensures key commitment, or more formally FROB security. The scheme, which we

call CommitKey, uses independent collision-resistant PRFs 𝐹com and 𝐹enc to derive a commitment string and

AEAD encryption key, respectively, from the secret key and a nonce. While they provide four variants of

this scheme that either use a nonce or do not in the evaluation of 𝐹com and 𝐹enc, we will specifically focus

on their Type IV variant which uses a nonce for each PRF evaluation. Our results can be easily extended

to the other variants. Pseudocode for this scheme is given in Figure 23.

Since the ciphertext includes a collision-resistant commitment to the key, it achieves CMTk security.

Here, we show that it does not achieve our restrictive CMT
∗
a definition for all AEAD schemes, meaning it

does not meet CMT-3 security. We show that CommitKey cannot be used as a generic transform for any

type of context commitment. In particular, when it is used with GCM, we can provide an adversary that

breaks the restrictive CMT
∗
a security of the scheme. This attack is similar to the P0-GCM one.

First, we fix the nonce 𝑁 ← (0𝓁, 0𝓁) = (𝑁0, 𝑁1) and key 𝐾 ← 0𝑛. We also fix a one-block ciphertext

𝐶 ← 0𝑛 and compute the key commitment string as 𝐾enc ← 𝐹enc(𝐾, 𝑁0). Now, it remains to produce a tag

5
This is terminology from Schmieg [40], and refers to blocks the adversary must control.

40

CommitKey.Dec(𝐾, 𝑁 , 𝐴, 𝐶):

(𝑁0, 𝑁1) ← 𝑁 ; 𝐶inner ‖ 𝐾 ′
com

← 𝐶
𝐾enc ← 𝐹enc(𝐾, 𝑁0)
𝐾com ← 𝐹com(𝐾, 𝑁0)
If 𝐾 ′

com
≠ 𝐾com:

Return ⊥
𝑀 ← AEAD.Dec(𝐾enc, 𝑁1, 𝐴, 𝐶inner)
Return 𝑀

():

// Initialize with arbitrary constants
𝑁0 ← 0𝓁; 𝑁1 ← 0𝓁; 𝐾 ← 0𝑛

𝐶 ← 0𝑛

𝐾enc ← 𝐹enc(𝐾, 𝑁0)
𝐾com ← 𝐹com(𝐾, 𝑁0)
𝐽0 ← 𝑁 ‖ 0𝑛−𝓁−1 ‖ 1
// Compute colliding associated data
𝛼1 ← 0𝑛; 𝛼2 ← 1𝑛

𝛽1 ← 0𝑛

𝐻 ← 𝐸𝐾enc (0𝑛)
𝛽2 ← 𝐻−3 ⋅ (𝛼1𝐻 4 + 𝛼2𝐻 4 + 𝛽1𝐻 3)
𝐴1 ← 𝛼1 ‖ 𝛽1
𝐴2 ← 𝛼2 ‖ 𝛽2
// Repackage into a context collision
lens ← encode(𝑛/2)(|𝐴1 |) ‖ encode(𝑛/2)(|𝐶|)
tag ← GHASH(𝐻,𝐴1 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾enc (𝐽0)
Return (𝐶 ‖tag‖𝐾com), (𝐾, 𝑁 , 𝐴1), (𝐾, 𝑁 , 𝐴2)

Figure 23: (Left) The decryption algorithm for the generic transform scheme CommitKey proposed by Al-

bertini et al. [2, §5.4]. It transforms an AEAD scheme into one that is key-committing. (Right) Pseudocode
for CMT

∗
a attack on CommitKey[𝐸].

𝑇 that collides with this ciphertext 𝐶 under different associated data 𝐴1 ≠ 𝐴2. As before, we construct the

associated data as 𝐴1 ← 𝛼1 ‖ 𝛽1 and 𝐴2 ← 𝛼2 ‖ 𝛽2 with constants 𝛼1 ≠ 𝛼2 (to get 𝐴1 ≠ 𝐴2) and sacrificial

blocks 𝛽1 and 𝛽2 to be chosen later.

Let 𝑇1 and 𝑇2 be the tags obtained with 𝐴1 and 𝐴2 respectively, then

𝑇1 ← GHASH(𝐻,𝐴1 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0) ,
𝑇2 ← GHASH(𝐻,𝐴2 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0) ,

where𝐻 ← 𝐸𝐾 (0𝑛), 𝐽0 ← 𝑁1‖0𝑛−𝓁−1‖1, and lens is an encoding of the lengths of the ciphertext and associated
data. So, for 𝑇1 to equal 𝑇2 it suffices to have GHASH(𝐻,𝐴1 ‖ 𝐶) = GHASH(𝐻,𝐴2 ‖ 𝐶). Expanding GHASH
as a polynomial

𝛼1𝐻 4 + 𝛽1𝐻 3 + 𝐶𝐻 2 + lens ⋅ 𝐻 = 𝛼2𝐻 4 + 𝛽2𝐻 3 + 𝐶𝐻 2 + lens ⋅ 𝐻 ,

and simplifying to get

𝛽1 ⋅ 𝐻 3 + 𝛽2 ⋅ 𝐻 3 = 𝛼1 ⋅ 𝐻 4 + 𝛼2 ⋅ 𝐻 4 .

We can then simply choose an arbitrary value for 𝛽1 and solve for 𝛽2 to complete the attack. Pseudocode

for the attack is given in Figure 23.

TheLibsodiumapproach. Libsodium [16] proposed a generic transform for converting anAEAD scheme

into one with key commitment. The transform suggests replacing the AEAD’s tag 𝑇 with a cryptographic

hash of the tag 𝑇 , the key 𝐾 , and the nonce 𝑁 . This can be seen as a strengthening of the CommitKey dis-

cussed above, thus gets the CMTk security but unfortunately also suffers from a similar restrictive CMT
∗
a

attack. We show that the libsodium approach cannot be used as a generic transform over GCM, we provide

an adversary that breaks the restrictive CMT
∗
a security of the resulting scheme. This attack works similarly

to that for CommitKey.

First, we fix the nonce 𝑁 ← 0𝓁, key 𝐾 ← 0𝑛, and inner tag 𝑇 ← 0𝑛. We also fix a one-block ciphertext

𝐶′ ← 0𝑛, and compute the wrapper tag as tag ← 𝐹enc(𝐾, 𝑁 , 𝑡). Now, it remains to produce different

associated data 𝐴1 ≠ 𝐴2 such that the inner tag 𝑇 verifies the ciphertext 𝐶. As before, we construct the

41

libsodium.Dec(𝐾, 𝑁 , 𝐴, 𝐶):

𝐶inner ‖ tag ← 𝐶
𝑇 ← ComputeTag(𝐾, 𝑁 , 𝐴, 𝐶inner)
If H(𝑇 , 𝐾 , 𝑁) ≠ tag:

Return ⊥
𝑀 ← AEAD.Dec(𝐾, 𝑁 , 𝐴, 𝐶inner ‖ 𝑇)
Return 𝑀

():

// Initialize with arbitrary constants
𝑁 ← 0𝓁; 𝐾 ← 0𝑛

𝑇 ← 0𝑛; 𝐶 ← 0𝑛

𝐽0 ← 𝑁 ‖ 0𝑛−𝓁−1 ‖ 1
lens ← encode(𝑛/2)(|𝐴1 |) ‖ encode(𝑛/2)(|𝐶|)
// Compute colliding associated data
𝛼1 ← 0𝑛; 𝛼2 ← 1𝑛

𝛽1 ← 0𝑛

𝐻 ← 𝐸𝐾 (0𝑛)
𝛽1 ← 𝐻−3 (𝐸𝐾 (𝐽0) + 𝛼1 ⋅ 𝐻 4 + 𝐶 ⋅ 𝐻 2 + lens ⋅ 𝐻)
𝛽2 ← 𝐻−3 (𝐸𝐾 (𝐽0) + 𝛼2 ⋅ 𝐻 4 + 𝐶 ⋅ 𝐻 2 + lens ⋅ 𝐻)
𝐴1 ← 𝛼1 ‖ 𝛽1
𝐴2 ← 𝛼2 ‖ 𝛽2
// Repackage into a context collision
tag ← H(𝑇 , 𝐾 , 𝑁)
Return (𝐶 ‖ tag), (𝐾, 𝑁 , 𝐴1), (𝐾, 𝑁 , 𝐴2)

Figure 24: (Left) The decryption algorithm for libsodium’s approach [16]. It transforms a tag-based AEAD

scheme into one that is key-committing. (Right) Pseudocode for CMT
∗
a attack on libsodium’s approach.

associated data as 𝐴1 ← 𝛼1 ‖ 𝛽1 and 𝐴2 ← 𝛼2 ‖ 𝛽2 with constants 𝛼1 ≠ 𝛼2 (to get 𝐴1 ≠ 𝐴2) and sacrificial

blocks 𝛽1 and 𝛽2 to be chosen later.

Then we can write the tag check condition as

𝑇 = GHASH(𝐻,𝐴1 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0) ,
𝑇 = GHASH(𝐻,𝐴2 ‖ 𝐶 ‖ lens) ⊕ 𝐸𝐾 (𝐽0) ,

where𝐻 ← 𝐸𝐾 (0𝑛), 𝐽0 ← 𝑁1‖0𝑛−𝓁−1‖1, and lens is an encoding of the lengths of the ciphertext and associated
data. Since we set the inner tag 𝑇 = 0𝑛 earlier, we write this condition as

𝐸𝐾 (𝐽0) = GHASH(𝐻,𝐴1 ‖ 𝐶 ‖ lens) = GHASH(𝐻,𝐴2 ‖ 𝐶 ‖ lens) .

Expanding GHASH as a polynomial we get two equations

𝐸𝐾 (𝐽0) = 𝛼1 ⋅ 𝐻 4 + 𝛽1 ⋅ 𝐻 3 + 𝐶 ⋅ 𝐻 2 + lens ⋅ 𝐻 ,
𝐸𝐾 (𝐽0) = 𝛼2 ⋅ 𝐻 4 + 𝛽2 ⋅ 𝐻 3 + 𝐶 ⋅ 𝐻 2 + lens ⋅ 𝐻 ,

which can be rewritten as

𝛽1 = 𝐻−3 (𝐸𝐾 (𝐽0) + 𝛼1 ⋅ 𝐻 4 + 𝐶 ⋅ 𝐻 2 + lens ⋅ 𝐻) ,

𝛽2 = 𝐻−3 (𝐸𝐾 (𝐽0) + 𝛼2 ⋅ 𝐻 4 + 𝐶 ⋅ 𝐻 2 + lens ⋅ 𝐻) ,

Pseudocode for the attack is given in Figure 24.

Faster salamanders against Bellare andHoang’sCAU-C1. Bellare andHoang [5, §5] proposed tweak-

ing GCM tag generation using Davies-Meyer-inspired ideas to produce a key committing cipher CAU-C1.

Pseudocode for the tag generation portion of GCM and CAU-C1 are given in Figure 25. Both schemes use

a nonce of length 𝑚 and block cipher 𝐸 with block length 𝑛. In practice, typically GCM will be used with

AES-128 and so 𝑛 = 128. In the untruncated tag setting where CAU-C1 produces a 128-bit tag, Bellare and

Hoang prove that it provides 264 key committing security. But, 264 is on the edge of practicality, and it is

unclear if attacks like the invisible salamanders attack of Dodis et al. [18] are practical.

42

GCM-Tag(𝐾, 𝑁 , 𝐴, 𝐶):

𝐻 ← 𝐸𝐾 (0𝑛)
𝑅 ← GHASH(𝐻,𝐴 ‖ 𝐶)
// postprocess GHASH value
𝑌 ← 𝑁 ‖ 0𝑛−𝓁−1 ‖ 1
𝑆 ← 𝐸𝐾 (𝑌) ⊕ 𝑅
Return 𝑆

CAU-C1-Tag(𝐾, 𝑁 , 𝐴, 𝐶):

𝐻 ← 𝐸𝐾 (0𝑛)
𝑅 ← GHASH(𝐻,𝐴 ‖ 𝐶)
// postprocess GHASH value
𝑌 ← 𝑁 ‖ 0𝑛−𝓁−1 ‖ 1
𝑉 ← 𝑌 ⊕ 𝑅
𝑆 ← 𝐸𝐾 (𝑉) ⊕ 𝑉
Return 𝑆

Figure 25: (Left) Tag computation in GCM [21]. (Right) Tag computation in CAU-C1 [5]. The differences

are highlighted in blue.

Indeed, a straightforward adaptation of the invisible salamanders attack [18, §3.2] against Facebook’s

message franking scheme would require time about 281. To explain, recall that the DGRW attack works as

follows against GCM. At a high level, it relies on a sender Alice sending a ciphertext twice with the same

nonce 𝑁 , but with different keys 𝐾1 and 𝐾2 each time. Alice constructs the ciphertext so that under 𝐾1 and

𝑁 the ciphertext decrypts to an innocuous BMP image file and under 𝐾2 and 𝑁 the ciphertext decrypts to

an abusive JPEG image. When the recipient Bob tries to report the ciphertext corresponding to the abusive

image, only the first innocuous image will be seen by the platform.

In the simple version of the attack, Alice constructs the ciphertext by encrypting the abusive image un-

der 𝐾2 and 𝑁 and then solving a linear equation to compute the last ciphertext block needed. The resulting

ciphertext outputs to the same GHASH authentication tag under both (𝐾1, 𝑁) and (𝐾2, 𝑁). However, this
would mean that under (𝐾1, 𝑁) the ciphertext would decrypt to junk bytes. To create meaningful plain-

texts, the DGRW attack exploits the structures of JPEG and BMP images: when decrypting under (𝐾1, 𝑁)
to produce the harmless BMP image, the vital JPEG data is in junk bytes at the end of the file that the BMP

parser ignores, and when decrypting under (𝐾2, 𝑁) to produce the abusive JPEG image, the vital BMP data

is contained in a JPEG comment before the JPEG data that is ignored. Still, the attack relies on the first 4

bytes of the ciphertext to decrypt to plaintext bytes that are semantically meaningful for BMP and JPEG

parsers. The attack resolves this by fixing two keys and brute-force searching for a nonce 𝑁 that collides

the desired plaintext bytes to the same ciphertext bytes under each key, which requires time about 232.
DGRW suggest that this can be sped up by instead fixing a nonce and doing a birthday attack on the keys

to produce a collision, which should take time about 217.
CAU-C1 prevents this attack from working directly, because the attack now depends on colliding the

authentication tag 𝑆 computed using a Davies-Meyer hash shown in Figure 25 (right) rather than solving

a simple linear equation that exploits the structure of GHASH. An attacker could compensate by running

a birthday-style attack to find two keys such that they collide 𝐸𝐾 (𝑉) ⊕ 𝑉 , for different keys, to the same

value. For a block cipher 𝐸 with block length 128, this requires time about 264. However, the two keys

would also need to collide on the 4 bytes of plaintext, which now adds a multiplicative factor of 217. This
results in a total time of about 281.

We show a new invisible salamanders attack against CAU-C1 that takes about 264 + 232 time. This

brings the attack back into the feasible region for well-resourced adversaries. The key insight is that we

can essentially “separately” solve the problem of finding key collisions against the Davies-Meyer tag (in

time about 264) and finding ciphertexts for those keys that conform to the plaintext format requirements

for targeted file formats. For the latter, we focus on the file formats chosen in DGRW, namely a JPEG and

BMP. But our attack can readily be extended using the techniques of Albertini et al. [2, §4] to work against

more than 250 file format combinations.

Towards building up the attack, we work backwards from the adversary’s goal: computing two tuples

43

ff d8 ff fe L0L1 Junk Bytes JPEG ptxt suffixm₁

42 4d L0 L1 0000 BMP ptxt suffix Junk Bytesm₂

C0 C1 C2 C3 C5C4 BMP ctxt suffix Sacrifice JPEG ctxt suffixC

Figure 26: A slightly simplified construction of JPEG/BMP salamanders, adapted fromDodis et al. [18]. The

ciphertext 𝐶 (middle) is decrypted with (𝐾1, 𝑛) and (𝐾2, 𝑛) to get 𝑀1 (top) and 𝑀2 (bottom) respectively.

(𝐾1, 𝑁 , 𝐴,𝑀1) and (𝐾2, 𝑁 , 𝐴,𝑀2) such that

𝐶 ∶= CAU-C1.Enc(𝐾1, 𝑁 , 𝐴,𝑀1) = CAU-C1.Enc(𝐾2, 𝑁 , 𝐴,𝑀2) ,

where 𝑀1 is a valid JPEG image and 𝑀2 is a valid BMP image. This in turn implies that the tags

CAU-C1-Tag(𝐾1, 𝑁 , 𝐴, 𝐶) = CAU-C1-Tag(𝐾2, 𝑁 , 𝐴, 𝐶)

collide, which, substituting in the tag generation definitions gives that

𝐸𝐾1(𝑉1) ⊕ 𝑉1 = 𝐸𝐾2(𝑉2) ⊕ 𝑉2 . (10)

We choose 𝑉1 = 𝑉2 = 0𝑛, and we will see later how the attack arranges for this to be true. Doing so

simplifies Equation 10 to 𝐸𝐾1(0𝑛) = 𝐸𝐾2(0𝑛). We then can use a birthday attack to find 𝐾1, 𝐾2 satisfying this

equation in time about 264 since 𝐸 has blocksize 𝑛 = 128.
The attacker must then ensure that 0𝑛 = 𝑌1 ⊕ 𝑅1 and 0𝑛 = 𝑌2 ⊕ 𝑅2. Notice that 𝑌1 and 𝑌2 are just the

nonce 𝑁 with padding, so the attacker ends up needing to ensure that 𝑅1 = 𝑅2 which means finding a

GHASH collision

GHASH(𝐻1, 𝐴 ‖ 𝐶 ‖ lens) = GHASH(𝐻2, 𝐴 ‖ 𝐶 ‖ lens) . (11)

where lens encodes the lengths of the ciphertext 𝐶 and associated data 𝐴.
Before we can solve this equation, we need to fix the ciphertext. We want to construct a 𝜂-block

ciphertext 𝐶 = 𝜁1⋯ 𝜁𝜂 that decrypts under different key-nonce pairs (𝐾1, 𝑁) and (𝐾2, 𝑁) to a JPEG and

a BMP, respectively. The ciphertext starts with some leading bytes (to be fixed later) corresponding to

metadata; followed by an encryption of BMP data under (𝐾2, 𝑁); followed by the two sacrificial blocks

𝜁𝑗 and 𝜁𝑘 to be fixed later; followed by an encryption of JPEG data under (𝐾1, 𝑁). This construction is

illustrated in Figure 26.

We defer to Dodis et al. [18, §3.2] for technical details of this construction and note that this step can

be swapped out in favor of a different file format combination in which case we defer to Albertini et al. [2,

§4]. But, for the sake of runtime analysis we will mention a few details.

First, the two leading bytes in 𝑀1 and 𝑀2 (ff d8 and 42 4d) correspond to file headers and need to be

encoded precisely. Second, the ff fe in𝑀1 and 00 00 in𝑀2 correspond to the JPEG “comment header” and

the start of “BMP data” and need to be encoded precisely as well. Third, the L0 and L1 in 𝑀1 corresponds

to length of the “JPEG comment” parsed as 𝓁JPEGComment
∶= L0 + 256 ⋅ L1. Similarly, the L0 and L1 in 𝑀2

corresponds to length of the “BMP data” parsed as 𝓁BMPData
∶= L0+256⋅L1. Informally, since we are putting

the “BMP data” inside the “JPEG comment” we require that 𝓁JPEGComment > 𝓁BMPData, and that 𝓁BMPData is

greater than the size of our BMP file.

44

While this is not themost efficient approach, for simplicity, we followDodis et al. [18, §3.2] and ask that

the first 4 bytes be encoded precisely and they allow flexibility in the last two bytes. We start by picking

the kitten BMP file used in Dodis et al. [18, §3.2] which has size of 9502 bytes and fixing 𝓁BMPData = 9502
(i.e., L0=1e and L1=25). We then enumerate nonces until we can satisfy

Dec((𝐾1, 𝑁), 𝐶0𝐶1𝐶2𝐶3) = ff d8 ff fe , and

Dec((𝐾2, 𝑁), 𝐶0𝐶1𝐶2𝐶3) = 42 4d 1e 25 .

Put differently, we want

Enc((𝐾1, 𝑁), ff d8 ff fe) = Enc((𝐾2, 𝑁), 42 4d 1e 25) .

Using a birthday attack on the nonce, we can achieve this in about 232 time in the average case. Once we

have this, we can set

𝐶4𝐶5 ∶= Enc((𝐾2, 𝑁), 00 00)

and, with high probability, we will get that

L0 L1 ∶= Dec((𝐾1, 𝑁), 𝐶4𝐶5)

will satisfy

𝓁JPEGComment = L0 + 256 ⋅ L1 > 9502 = 𝓁BMPData ,

which is the sole remaining condition. In summary, with about 232 effort, we can find a nonce 𝑁 and

construct a ciphertext 𝐶 such that 𝐶 decrypts under (𝐾1, 𝑁) and (𝐾2, 𝑁) to a JPEG and a BMP respectively.

With the newly constructed ciphertext 𝐶 and fixed nonce 𝑁 in hand, we can go back to Equation 11,

writing it as two equations

𝑌 = GHASH(𝐻1, 𝐴 ‖ 𝐶 ‖ lens) ,
𝑌 = GHASH(𝐻2, 𝐴 ‖ 𝐶 ‖ lens) .

Split 𝐴 and 𝐶 into blocks as 𝐴 = 𝛼1⋯ 𝛼𝜈 and 𝐶 = 𝜁1⋯ 𝜁𝑗𝜁𝑘 ⋯ 𝜁𝜂 with sacrificial blocks 𝜁𝑗 and 𝜁𝑘 to be fixed

later. Then expanding GHASH as a polynomial gives

𝑌 =
𝜈
∑
𝑖=1

(𝛼𝑖 ⋅ 𝐻
𝑖+𝜂+1
1) +

𝜂

∑
𝑖=1

(𝜁𝑖 ⋅ 𝐻 𝑖+1
1) + lens ⋅ 𝐻1 , and

𝑌 =
𝜈
∑
𝑖=1

(𝛼𝑖 ⋅ 𝐻
𝑖+𝜂+1
2) +

𝜂

∑
𝑖=1

(𝜁𝑖 ⋅ 𝐻 𝑖+1
2) + lens ⋅ 𝐻2 .

Rearranging terms, we get that

𝜁𝑗 ⋅ 𝐻 𝑗+1
1 + 𝜁𝑘 ⋅ 𝐻 𝑘+1

1 = 𝑌 +
𝜈
∑
𝑖=1

(𝛼𝑖 ⋅ 𝐻
𝑖+𝜂+1
1) +

𝜂

∑
𝑖=1

(𝜁𝑖 ⋅ 𝐻 𝑖+1
1) + lens ⋅ 𝐻1 , and

𝜁𝑗 ⋅ 𝐻 𝑗+1
2 + 𝜁𝑘 ⋅ 𝐻 𝑘+1

2 = 𝑌 +
𝜈
∑
𝑖=1

(𝛼𝑖 ⋅ 𝐻
𝑖+𝜂+1
2) +

𝜂

∑
𝑖=1

(𝜁𝑖 ⋅ 𝐻 𝑖+1
2) + lens ⋅ 𝐻2 .

We can view these two equations as a system of 2 linear equations in 2 variables (𝜁𝑗 and 𝜁𝑘). Since we are
operating over the finite field GF(2128), we can solve this system via matrix inversion to find the sacrificial

blocks 𝜁𝑗 and 𝜁𝑘 .

45

	Introduction
	Background
	Granular Committing Encryption Definitions
	Context Discovery Attacks against AEAD
	Restrictive Commitment Attacks via k-Sum Problems
	Related Work
	Selected Relations Between Granular Notions
	Context Discovery Attacks on More Schemes
	Four Sum Attacks on Block Cipher Outputs
	Commitment Attack on Block-Aligned SIV
	Revisiting Commitment-Enhancing Transforms

