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Abstract

Recent work on dynamic structured and searchable symmetric encryption has focused on
achieving the notion of forward-privacy. This is mainly motivated by the claim that forward
privacy protects against adaptive file injection attacks (Zhang, Katz, Papamanthou, Usenix
Security, 2016 ). In this work, we revisit the notion of forward-privacy in several respects. First,
we observe that forward-privacy does not necessarily guarantee security against adaptive file
injection attacks if a scheme reveals other leakage patterns like the query equality. We then
propose a notion of security called correlation security which generalizes forward privacy. We
then show how correlation security can be used to formally define security against different kinds
of injection attacks. We then propose the first injection-secure multi-map encryption encryption
scheme and use it as a building block to design the first injection-secure searchable symmetric
encryption (SSE) scheme; which solves one of the biggest open problems in the field. Towards
achieving this, we also propose a new fully-dynamic volume-hiding multi-map encryption scheme
which may be of independent interest.
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1 Introduction

Structured encryption (STE) schemes encrypt data structures in such a way that they can be
privately queried. Roughly speaking, STE schemes are secure if they leak nothing about the
structure and queries beyond a well-specified and “reasonable” leakage function. Encrypted data
structures are one of the main building blocks in the design of sub-linear algorithms on encrypted
data, 1 for example, sub-linear encrypted search, graph and database algorithms [16, 15, 32]. Many
aspects of STE have been studied and improved over the years including its expressiveness [12,
38, 24, 30, 28], its locality [14, 3, 20, 5, 18] and its leakage profiles [32, 31, 39]. A special case
of STE is multi-map encryption which is a fundamental building block in the design of almost all
sub-linear encrypted algorithms. Roughly speaking, encrypted multi-maps store label/tuple pairs
and support get operations which, given a label, return the associated tuple.

Dynamism. An STE scheme is static if it supports queries over an encrypted data structure
that never changes and it is dynamic if it supports queries over an encrypted structure that can be
modified using, e.g., add, delete, or edit operations. Sub-linear dynamic EMMs were first achieved
in [34] but in such a way that update operations could be correlated with search operations. In
other words, while the adversary could not tell which label was being updated or queried, it could
tell that a particular update was for a label that was queried in the past. This motivated Stefanov,
Papamanthou and Shi to propose the notion of forward-privacy which, intuitively, guarantees that
update operations cannot be linked to previous search operations [43]. Stefanov et al. also described
the first forward-private EMM; achieving sub-linear query complexity with sub-linear client storage.
A few years later, Bost proposed a formal definition of forward-privacy and the first forward-private
EMM with optimal query complexity and client storage linear in the number of labels [8]. In [30],
however, Kamara and Moataz pointed out that Bost’s definition does not necessarily capture the
notion of forward-privacy and suggested a different formalization.

Searchable symmetric encryption from EMMs. As mentioned above, EMMs are the main
building block needed to achieve sub-linear and optimal searchable symmetric encryption (SSE)
[16].2 Given a document collection, the client builds a multi-map that indexes the document col-
lection, i.e., its labels are keywords and the tuples are the identifiers of the documents that contain
that keyword. It then encrypts the multi-map and the documents with a multi-map encryption
scheme and a standard symmetric encryption scheme, respectively, and sends the EMM and en-
crypted documents to the server. To search for a keyword w, the client privately queries the EMM
on w which reveals to the server the identifiers of the (encrypted) documents that need to be re-
turned. EMMs that reveal the response to a query are called response-revealing and ones that do
not are called response-hiding. 3

Injection attacks. Injection attacks were introduced by Zhang, Katz and Papamanthou [44] and
one of the main motivations to achieve forward-privacy (besides simply minimizing leakage) is that

1Another approach relies on property-preserving encryption (PPE) which also achieves sub-linear efficiency but
with qualitatively different leakage profiles.

2Note that there exist several ways to build an SSE scheme from an EMM and each approach leads to a different
efficiency vs. security tradeoff. For simplicity, we only describe the most natural approach to do so.

3Response-hiding EMMs can also be used but at the cost of an extra communication round.
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it prevents adaptive injection attacks. In a standard/non-adaptive injection attack the adversary
inserts files into the client’s document collection and combines the EMM’ s leakage with knowledge
of its chosen files to recover the client’s queries. More precisely, in the first phase of the attack,
the server finds a way to insert documents with carefully-chosen subsets of the keyword space. 4

This results in the new documents being indexed and encrypted, and the EMM being updated to
account for the new keywords. Later, when the client searches for a keyword w the server will learn
the identifiers of the documents that contain w. If some of those documents are injected documents
then it has learned some information about the client’s query.

In an adaptive injection attack, the server injects files after the client makes its queries and uses
the leakage of the EMM’s update operation to correlate the update (and its contents) to previous
queries. Forward privacy prevents such attacks because it guarantees that the updates caused by
the adversary’s adaptive file injections cannot be linked to previous queries.

The cost of injection attacks is measured in the number of documents that need to be injected
and their size. Zhang et al. describe a non-adaptive attack that can recover all of a client’s queries
at the cost of injecting log #W files each of size #W/2, where W is the keyword space. Note
that this attack—and others given in [44]—crucially rely on response identity leakage which can
be hidden using, e.g., response-hiding EMMs or ORAM-based solutions. However, Blackstone,
Kamara and Moataz [7] described file injection attacks that rely only on volume leakage which
makes them applicable to almost all constructions including ORAM-based solutions.

Limitations of forward-privacy. While forward privacy is an important notion it has limita-
tions. For conceptual clarity, we propose an alternative view on forward privacy and the security
guarantees it provides against injection attacks. Instead of considering adaptive vs. non-adaptive
injection attacks we will say that an injection attack is one where the adversary injects a file (and
therefore causes an update) at any time during a sequence of client operations. We then ask
whether the scheme reveals correlations between the update and the queries, where a correlation
is leakage that reveals whether two operations are for the same label. Injection attacks essentially
cause an update with an adversarially-known label and then use correlations between that update
and adversarially-unknown queries to learn the unknown query labels.

The first limitation of forward privacy is that it only prevents correlations between updates and
pre-injection queries. This was already pointed out in [44] as the authors explained that forward
privacy only prevents adaptive injection attacks. To see why, consider the following sequence of
operations on an EMM:

op = (op1, op2, op3, op4) =
(
(qry, `5), (qry, `2), (app, `5,v), (qry, `5)

)
,

where opi = (qry, `i) is a query operation on label `i and op3 = (app, `5,v) is an adversarially-
chosen append operation on `5 (i.e., append the tuple v to `5’s pre-existing tuple) that results from
a file injection. If the EMM is not forward-private, then its leakage on the append reveals that op3
and op1 are for the same label. If, on the other hand, the EMM is forward-private this correlation
is not revealed when the op3 occurs. Note, however, that the correlation between op3 and op4 could
be revealed when op4 occurs. Forward-privacy does not explicitly prevent this and, indeed, most
forward-private constructions [43, 8, 9, 22, 1] leak this information and provide no guarantees for
post-injection queries.

4This can be achieved in various ways depending on the application scenario.
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The second limitation is that forward privacy only provides a relatively weak form of security in
the sense that it only prevents direct correlations between updates and pre-injection queries but not
indirect correlations which could occur if additional patterns are leaked. This means that forward
privacy doesn’t necessarily protect pre-injection queries. To see why, consider a setting where the
sequence of operations above is executed with a scheme that is forward private but leaks the query
equality. In this case, forward privacy guarantees that op3 cannot be directly correlated with op1.
But an adversary can still learn op1’s label by observing that op4 is correlated with op3 (which is
not prevented by forward privacy) and then using the query equality to learn that op4 is correlated
with op1. The combination of these two correlations mean that op1’s label is `5.

1.1 Our Contributions

In this work, we focus on the security of dynamic structured encryption schemes. We make several
contributions including new security definitions and constructions.

Correlation attacks. As illustrated by the discussion above, forward-privacy has several lim-
itations including that it provides no guarantees for post-injection queries and that it does not
necessarily protect pre-injection queries against injection attacks because it does not prevent in-
direct correlations. We also observe that the attacks considered in [44] capture only a fraction
of how injections can be used to attack STE schemes. This motivates us to consider a broader
class of attacks we call correlation attacks that work as follows. First, the adversary learns the
labels/keywords associated to a subset of operations. Note that as opposed to injection attacks
where the adversary chooses the label/keyword for an update operation, in a correlation attack
the adversary could learn the label/keyword of any operation, e.g., queries, inserts, deletes etc.
Furthermore, this can be achieved using injections but not necessarily; it could also be achieved
using inference attacks or a known-data attack [27, 10, 7].5 In the second phase, the adversary
uses the leakage to correlate known operations to to unknown operations. Note that here we are
concerned with correlations to any operation not just queries. In other words, the adversary’s
goal is not necessarily to learn the labels/keywords of unknown queries but could be to learn the
labels/keywords of unknown updates, deletes etc.

Equality patterns and correlation graphs. Correlation attacks exploit leakage patterns that
reveal correlations between operations; the most immediate examples of such patterns are equality
patterns like the query equality which reveals if and when queries are for the same label/keyword,
the operation equality which reveals if and when operations are for the same label/keyword or the
backward query equality which reveals only if and when past queries are for the same label/keyword.
Equality patterns can be defined in various ways but in this work we introduce a simple and useful
representation we call correlation graphs. The correlation graph of a given equality pattern on a
sequence of operations is a graph with operations as vertices and edges between equal operations.
Correlation graphs can be composed to describe the correlations that result from leaking multiple
equality patterns. Specifically, given two (or more) equality patterns patt1 and patt2 with correlation
graphs G1 and G2, their union G1 ∪ G2 captures all the correlations revealed by the two patterns.

5When a correlation attack is used after an inference or known-data attack it is effectively “boosting” that attack.
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Correlation and injection security. We introduce and formalize the notion of correlation
security which, intuitively, guarantees that a leakage profile does not reveal certain correlations
between operations. In the context of correlation graphs we ask that no path exist between certain
types of operations. We formalize this intuition using a game-based definition that guarantees
that operations are indistinguishable given the correlation graph of the leakage on an adversarially-
chosen sequence of operations. By constraining exactly how the adversary can choose the sequence,
we can capture security against various kinds of correlation attacks. In particular, we show how to
define security against injection attacks by which we mean protection of both pre- and post-injection
queries. We also prove that if a scheme leaks only the query equality then it is injection-secure.
While this might seem counter-intuitive given the example above, note that in the example pre-
injection queries were correlated with updates by exploiting both the query equality between op4
and op1 and the correlation between op4 and op3 together.

An injection-secure EMM. We describe a dynamic multi-map encryption scheme called FIX
that only leaks the query equality. What this means intuitively is that, given a sequence of queries
and updates, the only thing leaked is the correlation between queries. Note that achieving this
leakage profile is quite surprising considering the scheme is dynamic. In fact, most dynamic
constructions—even forward-private ones—leak more; including correlations between queries and
past updates.

At a very high level, the scheme works by handling update operations (appends and deletes)
on a fixed but random schedule. This is accomplished by storing update operations in a stash at
the client and “pushing” them to the remotely-stored EMM only according to the schedule. If a
query occurs for a label whose updates have not been pushed yet, the information in the stash
is combined with the “stale” results from the remote EMM to provide a correct answer. Because
the schedule is fixed and independent of the update operations, the leakage is as well. We stress
that this is a very high level description of our approach and that it does not capture many of the
subtleties and challenges involved.

FIX is the first injection-secure multi-map; i.e., the first to protect both pre- and post-injection
queries which solves an important problem left open since [44]. It has query complexity O(log #L)
and append and delete complexity O(log2 #L), where #L is the size of the label space, under
reasonable assumptions and parameterization which we detail in Section 4.

A dynamic volume-hiding EMM. Our construction makes black-box use of a static volume-
hiding multi-map encryption scheme and of a dynamic volume-hiding multi-map encryption scheme.
The former can be instantiated using many well-known constructions [31, 40]. To instantiate the
latter, we design a new fully-dynamic volume-hiding multi-map encryption scheme we call DVLH
(Section 5.1). DVLH is a dynamic variant of the static volume-hiding encrypted multi-map of
Kamara and Moataz [31]. Similarly to their scheme, DVLH is lossy but we show that under natural
assumptions (i.e., updates are Zipf-distributed) the lossiness can be bounded to be a reasonable
amount with high probability (Section 5.2).6

Injection-secure SSE. An important application of EMMs is to the design of optimal SSE
schemes. An SSE scheme encrypts a document collection in such a way that it can support keyword
search; that is, given a keyword w, return the encrypted documents that include w. We show how

6Recent work by Amjad et al. [2] can also be used to instantiate the underlying dynamic volume-hiding EMM.
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to use FIX to design the first injection-secure SSE scheme. Under the same assumptions and
parameterization of FIX mentioned above, the SSE scheme has O(log #L) query complexity and
O(θ · log2 #L) add and delete complexity, where θ is a public parameter.

1.2 Related Work

Structured encryption was introduced by Chase and Kamara [15] as a generalization of index-
based searchable symmetric encryption (SSE) [42, 16]. The most common and important type of
STE schemes are multi-map encryption schemes which are a basic building block in the design
of optimal SSE schemes [16, 34, 11], expressive SSE schemes [12, 29, 30, 38, 24] and encrypted
databases [28, 13]. STE and encrypted multi-maps have been studied along several dimensions
including dynamism [34, 33, 11, 38, 26] and I/O efficiency [11, 14, 4, 37, 20, 5, 19].

The notion of forward privacy was introduced by Stefanov, Papamanthou and Shi [43] and
formally defined by Bost [8], who also proposed the first forward-private construction that does not
leverage oblivious RAM techniques. Kamara and Moataz pointed out in [30] that the definition of
[8] does not necessarily capture the intuitive security guarantee of forward-privacy and suggested
that it be formalized as requiring that updates be leakage-free. Backward privacy was introduced
by Bost, Minaud and Ohrimenko [9]. Several follow up works showed how to improve on the
constructions of [9], sometimes achieving both forward and backward privacy [36, 23, 25, 1, 17, 41].

2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power
set. We write x ← χ to represent an element x being sampled from a distribution χ, and x

$← X
to represent an element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x← A. Given a sequence O of n elements, we refer to its ith element as
Oi or O[i]. If T is a set then #T refers to its cardinality. Given strings x and y, we refer to their
concatenation as either 〈x, y〉 or x‖y.

Multi-maps. A static multi-map MM with capacity n is a collection of n label/tuple pairs
{(`i,vi)i}i≤n that supports Get operations. We denote the label space of a multi-map by L and the
set of labels stored in a multi-map MM by LMM. We write vi = MM[`i] to denote getting the tuple
associated with label `i. A multi-map is semi-dynamic if it also supports an insertion operation
and it is fully-dynamic if it supports both insertions and deletions. Note that one can define var-
ious kinds of insertions and deletions. In this work we focus on additions, appends, erasures and
deletions. An addition operation adds a label/tuple pair (`,v) to the multi-map and is denoted
as MM[`] := v. An append operation appends a tuple to the pre-existing tuple of a label. For
example, if the label/tuple pair (`,v) is already in the multi-map, then appending v′ to ` results in
` being associated with the tuple v‖v′. We sometimes write this as MM[`]

∥∥v′. An erase operation
removes a set of values v′ from the tuple v of a given label `. We sometimes write this MM[`]−v′.
A delete operation removes the entire label/tuple pair of a given label.

Document collections. A document collection is a set of documents DC = (D1, . . . , Dn), each
document consisting of a set of keywords from some universe W. We assume the universe of
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keywords is totally ordered (e.g., using lexicographic order) and denote by W[i] the ith keyword
in W. We assume every document has an identifier that is independent of its contents and denote
it id(Di). We assume the existence of an efficient indexing algorithm that takes as input a data
collection DC and outputs a multi-map that maps every keyword w in W to the identifiers of the
documents that contain w. In previous work, this multi-map is referred to as an inverted index or
as a database. For consistency, we refer to any multi-map derived in this way from a document
collection as a database and denote it DC. Given a keyword w, we denote by DC(w) ⊆ DC, the set
of all documents that contains w. We refer to the word-length of a document |D| as its volume.
We denote by coDC(w) ⊆W the set of keywords in W that co-occur with w; that is, the keywords
that are contained in documents that contain w. When DC is clear from the context we omit DC
and write only co(w).

Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms SKE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a
security parameter k and returns a secret key K; Enc is a probabilistic algorithm takes a key K
and a message m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and
a ciphertext c and returns m if K was the key under which c was produced. Informally, a private-
key encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs
do not reveal any partial information about the plaintext even to an adversary that can adaptively
query an encryption oracle. We say a scheme is random-ciphertext-secure against chosen-plaintext
attacks (RCPA) if the ciphertexts it outputs are computationally indistinguishable from random
even to an adversary that can adaptively query an encryption oracle.7 In addition to encryption
schemes, we also make use of pseudo-random functions (PRF) and permutations (PRP), which
are polynomial-time computable functions that cannot be distinguished from random functions by
any probabilistic polynomial-time adversary. We refer the reader to [35] for notation and security
definitions for these objects.

2.1 Structured Encryption

Structured encryption (STE) schemes encrypt data structures in such a way that they can be
privately queried. The first definitions of structured encryption were presented by Chase and
Kamara [15]. STE schemes can be interactive or non-interactive. Interactive schemes produce
encrypted structures that are queried or updated through an interactive two-party protocol between
a client and a server, whereas non-interactive schemes produce structures that can be queried or
updated by sending a single token. These schemes can also be response-hiding or response-revealing
where the former reveal the response to queries to the server whereas the latter do not. We recall
here the syntax of an interactive response-hiding dynamic structured encryption scheme.

Definition 2.1 (Interactive response-hiding dynamic structured encryption). An interactive response-
hiding dynamic structured encryption scheme ΣDS = (Setup,Query, Insert,Delete,Res) for data type
DS consists of the following polynomial time algorithms:

1. (K, st)← SetupC(1k,DS) is an algorithm that takes as input the security parameter k and a
data structure DS and outputs a secret key K and an (optional) state st.

7RCPA-secure encryption can be instantiated practically using either the standard PRF-based private-key encryp-
tion scheme or, e.g., AES in counter mode.
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2. ((r, st′),EDS′)← QueryC,S((K, q, st),EDS) is an interactive protocol executed between a client
C and server S. C inputs the secret key K, a query q and state st. S inputs the encrypted
data structure EDS. The protocol outputs a response r and an updated state st′ to the client
and an updated encrypted structure EDS′ to the server.

3. (st′,EDS′) ← InsertC,S((K, st, a),EDS) is an interactive protocol executed between a client C
and server S. The client inputs a secret key K, a state st and an add operation a.The server
inputs an encrypted structure EDS. The protocol outputs an updated state st′ to the client
and an updated encrypted structure EDS′ to the server.

4. (st′,EDS′)← DeleteC,S((K, st, d),EDS) is an interactive protocol executed between a client C
and server S. The client inputs a secret key K, a state st and a delete operation d. The
server inputs an encrypted structure EDS. The protocol outputs an updated state st′ to the
client and an updated encrypted structure EDS′ to the server.

5. r ← ResC(K, ct) is a deterministic algorithm that takes as input a secret key K and an
encrypted query result ct. It outputs a response r.

The syntax of a response-revealing scheme can be recovered by having Query output the response
directly and omitting the Res algorithm.

Adaptive security. The standard notion of security for STE guarantees that: (1) an encrypted
structure reveals no information about its underlying structure beyond the setup leakage LS; and
(2) the various operations that are supported (e.g., query, add, delete) reveal no information about
the structure and the operations beyond some stateful operation leakage LO. If this holds for non-
adaptively chosen operations then the scheme is said to be non-adaptively secure. If, on the other
hand, the operations can be chosen adaptively, the scheme is said to be adaptively-secure [16, 15].
Note that the operation leakage is usually broken down into separate leakage functions—one for
each supported operation—but here we consider a single leakage function LO for all operations.
The advantage of this formulation is that it allows us to more easily capture leakage that is a
function of different operations.

Definition 2.2 (Adaptive Security of dynamic interactive STE). Let Σ = (Setup,Query, Insert,Delete,
Res) be an interactive dynamic STE scheme and consider the following probabilistic experiments
where A is a stateful adversary, S is a stateful simulator, Λ = (LS,LO) is a leakage profile and
z ∈ {0, 1}∗:

RealΣ,A(k) : given z, A chooses a data structure DS and receives an encrypted structure EDS from
the challenger, where (K, st; EDS) ← Setup(1k,DS). A then adaptively chooses a polynomial
number of operations op1, . . . , opm and, for each one, the adversary and challenger execute
the appropriate protocol with A playing the role of the server and the challenger playing the
role of the client. Finally, the adversary outputs a bit b ∈ {0, 1}.

IdealΣ,A,S(k) : given z, A chooses a data structure DS. Given z and LS(DS) the simulator S sends
an encrypted data structure EDS to A. The adversary adaptively picks a polynomial number
of operations op1, . . . , opm and, for each one, A and S execute the appropriate protocol with
A playing the role of the server and S playing the role of the client. During these executions,
the simulator S only receives LO(DS, opi). Finally, the adversary outputs a bit b ∈ {0, 1}.
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We say that Σ is adaptively (LS,LO)-secure if there exists a PPT simulator S such that for all PPT
adversaries A, for all z ∈ {0, 1}∗:

|Pr[RealΣ,A(k) = 1]− Pr[IdealΣ,A,S(k) = 1]| ≤ negl(k).

Modeling leakage. The leakage of an STE scheme Σ is characterized by a leakage profile ΛΣ =
(LS,LO) composed of a setup leakage LS and an operation leakage LO. Each of these leakage
functions can themselves be functions of various leakage patterns. In this work, all leakage functions
and leakage patterns are stateful. We recall some leakage patterns that will appear throughout this
work:

• the query equality qeq takes as input a data structure and a query and reveals if and when
the query was repeated

• the operation equality oeq takes as input a data structure and an operation and reveals if and
when the query associated with the operation appeared in the past.

• the response length rlen takes as input a data structure and an query and reveals the length
of the query’s response.

3 Defining Correlation Security

In this work we focus on security against correlation attacks which are a generalization of injection
attacks. We describe our framework in the context of EMMs for concreteness but note that it
can be applied to any encrypted data structure. A correlation attack is a query-recovery attack
that works in two phases. First, the adversary learns the labels of a subset of operations, e.g., by
injecting files or executing an inference attack. Then, it uses leakage to link unknown operations
to known operations. We describe a framework that formally captures correlations revealed by
various leakage patterns and allows us to formalize security against correlation attacks.

Equality patterns & correlation graphs. An equality pattern reveals if and when two values
are the same. Examples include the query equality pattern which reveals if and when two queries
are the same and the operation equality pattern which reveals if and when two operations are
for the same label. Equality patterns can be defined in different ways (e.g., as binary vectors or
binary matrices) but, effectively, they can all be represented as graphs with operations as vertices
and edges between two operations if they are for the same label. We call such graphs correlation
graphs. For example, the query equality and the operation equality of the sequence

op = (op1, op2, op3, op4) =
(
(qry, `5), (qry, `2), (app, `5,v), (qry, `5)

)
can be represented with the graphs Gqeq and Goeq illustrated below:

op1 op2 op3 op4 op1 op2 op3 op4
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Leakage patterns reveal information incrementally, per operation, so it will be useful for us to
have notation to describe this. Given a leakage profile Λ = (LS,LO) and a sequence of operation
(op1, . . . , opi) we write Gi = Gi−1 + LO(DS, opi) to refer to the correlation graph that results from
adding LO(DS, opi) to Gi−1.

Composition of equality patterns. Encrypted search schemes often reveal more than a single
pattern so when evaluating their security one needs to consider the composition of the patterns.
For equality patterns this can be done by taking the union of their correlation graphs. For example,
consider a scheme with leakage profile

Λ =
(
LS,LO

)
=
(
?, (qeq, patt)

)
where patt reveals if a query was on the same label of a previous append. The correlation graphs
of qeq and patt on the sequence op above are Gqeq and Gpatt illustrated below,

op1 op2 op3 op4 op1 op2 op3 op4

and the correlation graph of LO is

op1 op2 op3 op4

Correlation security. Intuitively, our notion of correlation security guarantees that a leakage
profile hides certain correlations between operations. We formalize this using a game-based defini-
tion that guarantees that an adversary cannot distinguish between operations even when given the
correlation graph of adversarially-chosen operations. 8 By setting constraints on how exactly the
adversary is allowed to choose its operations, one can define security against specific correlation at-
tacks. More formally, let LO be an operation leakage and let π1, π2, π3 be predicates over sequences
of operations. Consider the following probabilistic experiment between a stateful adversary A and
a challenger:

Corrπ1,π2,π3
LO,A (k):

1. A chooses a data structure DS and receives ⊥ from the challenger C;
2. Let G0 be an empty graph;
3. A adaptively chooses polynomially-many operations op = (op1, . . . , opm) as follows. For

all 1 ≤ i ≤ m,
(a) A chooses and sends an operation opi such that π1(op1, . . . , opi) = 1 to the chal-

lenger;
(b) the challenger returns Gi = Gi−1 + LO(DS, opi) to A;

8Note that correlation-security is a security notion that is defined for leakage profiles not for STE schemes.
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4. A chooses two sequences of operations op?0 and op?1 of polynomial length λ such that
π2(op,op?0,op?1) = 1 and sends them to the challenger;

5. the challenger samples b $← {0, 1};
6. for all 1 ≤ i ≤ λ, let Gm+i = Gm+i−1 + LO(DS, op?b,i) to A;
7. A adaptively chooses polynomially-many operations op′ = (op′1, . . . , op′m′) operations as

follows. For all 1 ≤ i ≤ m′,
(a) A chooses and sends an operation op′i such that π3(op,op?0,op?1, op′1, . . . , op′i) = 1

to the challenger;
(b) the challenger returns Gm+λ+i = Gm+λ+i−1 + LO(DS, op′i) to A;

8. A outputs a bit b′;
9. The experiment outputs 1 if b′ = b and 0 otherwise.

Definition 3.1 (Correlation security). We say that a leakage profile Λ = (LS,LO) is (π1, π2, π3)-
correlation secure if for all ppt adversaries A,

Pr
[
Corrπ1,π2,π3

LO,A (k) = 1
]
≤ 1

2 + negl(k).

Injection security. As discussed in Section 1, injection attacks work by causing updates with
known labels and then using leakage to correlate the updates to queries with unknown labels.
And while forward privacy prevents direct collections between updates and pre-injection queries it
provides no guarantees for post-injection queries and does not prevent indirect correlations between
updates and pre-injection queries. In fact, all practical forward-private constructions [43, 8, 9, 22, 1]
have these limitations. To address these limitations, a leakage profile must prevent correlations
between updates and all queries not just pre-injection queries. This can be captured using our
definitional framework by imposing the following conditions on the adversary’s choice of operations:
in step 3 the adversary is free to choose any operation; in step 4 the challenge operations have to
be queries and must be different than any query chosen in step 3; and in step 7 the adversary can
choose any update but only queries that are different than the challenge queries. In the definition
below, we formalize this intuition.

Definition 3.2 (Security against injection attacks). Let inj = (π1, π2, π3), where

• π1(op) = 1 for all poly-size sequences of operations op;

• π2(op,op?0,op?1) outputs 1 if op?0 and op?1 are query-only sequences with the same query
equality leakage and if none of the queries in op?0 and op?1 are in op; otherwise it outputs 0;

• π3(op,op?0,op?1,op′) outputs 1 if none of the queries in op?0 and op?1 are in op′; otherwise
it outputs 0.

We say that a leakage profile Λ = (LS,LO) is secure against file injections if for all ppt adversaries
A,

Pr
[
Corrinj

LO,A(k) = 1
]
≤ 1

2 + negl(k).
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Notice that Definition 3.2 allows a leakage profile to reveal correlations between queries but not
between updates and queries. This is because the definition: (1) allows the challenge queries to
have the same labels as previous and future updates; but (2) prohibits the challenge queries from
having the same label as previous or future queries; and (3) prohibits the sequences of challenge
queries from having different query equality. In the following Theorem, we show that this is enough
to guarantee security against injection attacks in the sense that correlations to both pre- and
post-injection queries are prevented.

Theorem 3.3. The leakage profile Λ = (LS,LO) = (?, qeq) is injection-secure.

Proof. Consider the correlation graph G produced in a Corrinj
LO,A experiment. By definition of

(π1, π2, π3), the queries in the challenge sequence op?b = (qb,1, . . . , qb,λ) are not connected to any
other query nodes. Furthermore, since there is no add or delete leakage by the definition of Λ, there
are no edges incident to the add and delete nodes. It follows then that there is no path in G from
any adversarially-chosen operation to the challenge queries. Therefore, the best the adversary can
do is to guess b, from which the Theorem follows.

4 An Injection-Secure Encrypted Multi-Map

Our construction FIX = (Setup,Get,Append,Erase,Res) makes black-box use of a static volume-
hiding multi-map encryption scheme Σ = (Setup,Get,Res) and a dynamic volume-hiding multi-map
encryption scheme ∆ = (Setup,Get, Insert,Delete,Res). The details of the scheme are in Figures (1)
and (2). At a high-level, it works as follows.

Setup. The setup algorithm takes as input a security parameter k and a multi-map MM. It first
picks a permutation π from {0, · · · ,#LMM − 1} to LMM uniformly at random. It then instantiates
two multi-maps: (1) a new multi-map MMn with label space LMM and sets, for all ` ∈ LMM,
MMn[`] := ⊥ (an empty tuple); and (2) a multi-map MMstash. It also initializes a counter count
to 0. The multi-map MMstash will be used as a queue to purposely delay updates, while the
counter will be used to determine which labels to update at a given time. The setup algorithm
then encrypts MM by executing (Ko, sto,EMMo) ← Σ.Setup(1k,MM) and MMn by computing
(Kn, stn,EMMn) ← ∆.Setup(1k,MMn). The old encrypted multi-map EMMo will be queried but
never updated whereas the new encrypted multi-map EMMn will be both queried and updated.
Finally, the algorithm outputs a key K = (Ko,Kn), a state st = (sto, stn,MMstash, π, count), and
an encrypted multi-map EMM = (EMMo,EMMn).

Append & erase. The append and erase operations of FIX are based on the same core operation
we call Push. Given an append operation op = (app, `,v), the client updates its stash by appending
v‖add to MMstash[`], for all v ∈ v. It then “pushes” the changes as explained below. We sometimes
refer to v as `’s update tuple.

Given an erase operation op = (del, `,v) the client does the following. For all values v ∈ v,
if v‖add already exists in MMstash[`], it removes it from the stash. Otherwise it adds v‖del to
MMstash[`]. It then “pushes” the changes as described below.
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To push its updates, the client retrieves and updates µ label/tuple pairs chosen using the random
permutation π. More precisely, for all 0 ≤ i ≤ µ− 1, the client queries EMMo and EMMn on `π(j),
where j = count + i, resulting in responses ro and rn, respectively. It then uses ro, rn and its stash
to generate a new tuple vn. vn will contain the contents of rn and the values in MMstash[`π(j)] of
the form v‖add. If any value v in rn is also in MMstash[`π(j)] in the form v‖del, it is removed from
rn. Because EMMo is a static structure, all the values from ro that need to be erased are added
to vn using a lazy delete approach. Specifically, for every value v in ro that is in MM[`π(j)] in the
form v‖del, the client adds v‖del‖o to vn. The client then uses ∆’s delete operation to remove
the label/tuple pair for `π(j) from EMMn, and inserts the new pair (`π(j),vn). It also removes `π(j)
from the stash. Finally, it increments the counter by µ and outputs the updated state while the
server outputs the updated EMMn.

Get. This is a two-party protocol between the client and the server. Given a label `, the client
queries both EMMo and EMMn on ` using Σ.Get and ∆.Get, respectively. It then computes the
union of the results, and removes all the values in MMstash[`] tagged with del. It also removes all
the values in the result set from EMMo, if they are tagged with del‖o in the result set from EMMn.
The client then outputs the final result along with the updated state, while the server outputs
nothing.

Efficiency. The communication complexity of FIX.Get is

O
(
commΣ

Get(`) + comm∆
Get(`))

where commΣ
Get, comm∆

Get are the communication complexities of Σ.Get and ∆.Get respectively. The
query complexity of FIX is

O
(
timeΣ

Get(`) + time∆
Get(`) + delso(`) + #MMstash[`])

where timeΣ
Get, time∆

Get are the computational complexities of Σ.Get and ∆.Get respectively, delso(`)
is the number of erasure operations issued for values of ` in Σ, and #MMstash[`] is equal to the
number of values in the last #LMM/µ− 1 updates associated with `.

Storage complexity is the sum of the storage complexities induced by Σ and ∆. The communi-
cation complexities of FIX.Append and FIX.Erase are

O
(
µ · (commFIX

Get(`) + comm∆
Delete(`) + comm∆

Insert(`))
)

where commFIX
Get , comm∆

Insert and comm∆
Delete are the communication complexities of FIX.Get, ∆.Insert

and ∆.Delete, respectively.
The update complexity of FIX is

O
(
#v + µ · (timeFIX

Get(`) + time∆
Delete(`) + time∆

Insert(`))
)

where timeFIX
Get is the get complexity of FIX and time∆

Delete(`), time∆
Insert(`) are the computational

complexities of ∆.Delete, ∆.Insert respectively.
The size of the client state is analyzed in section 4.1. Note that it is independent of the

underlying schemes ∆ and Σ.
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Let Σ = (Setup,GetC,S) be a static response-hiding multi-map encryption scheme, ∆ =
(Setup,GetC,S, InsertC,S,DeleteC,S) be a dynamic response-hiding multi-map encryption scheme. Con-
sider the scheme FIX = (Setup,GetC,S,AppendC,S,EraseC,S) defined as follows:

• Setup
(
1k,MM

)
:

1. sample a permutation π
$← {{0, · · · ,#LMM − 1} → LMM};

2. initialize a multi-map MMn with label space LMM, an empty multi-map MMstash, and a
counter count initialized to 0;

3. compute
(Ko, sto,EMMo)← Σ.Setup(1k,MM);

4. compute
(Kn, stn,EMMn)← ∆.Setup(1k,MMn);

5. output (K, st,EMM) where K := (Ko,Kn), st := (sto, stn,MMstash, π, count) and EMM :=
(EMMo,EMMn).

• GetC,S
(
(K, st, `),EMM

)
:

1. C parses K as (Ko,Kn), st as (sto, stn,MMstash, π, count);
2. S parses EMM as (EMMo,EMMn);
3. C initializes an empty set v;
4. C and S execute

(ro,⊥)← Σ.GetC,S
(
(Ko, sto, `),EMMo

)
;

and,
(rn,⊥)← ∆.GetC,S

(
(Kn, stn, `),EMMn

)
;

5. C computes r+
local and r−local from MMstash[`] such that

r+
local = {v : v‖add ∈ MMstash[`]} and r−local = {v : v‖del ∈ MMstash[`]};

6. C sets r−o := {v : v‖del‖old ∈ rn};
7. C sets v :=

(
ro ∪ rn ∪ r+

local
)
\
(
r−local ∪ r−o

)
;

8. C outputs v, while S outputs ⊥.

Figure 1: FIX (Part 1).
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• AppendC,S
(
(K,µ, st, (`,v)),EMM

)
:

1. for all v ∈ v, C sets MMstash[`] := MMstash[`] ∪ {v‖add};
2. C and S execute PushC,S

(
(K,µ, st),EMM

)
;

• EraseC,S
(
(K,µ, st, (`,v)),EMM

)
:

1. for all v ∈ v,
(a) if v‖add /∈ MMstash[`], C sets MMstash[`] := MMstash[`] ∪ {v‖del}
(b) else it sets MMstash[`] := MMstash[`] \ {v‖add}

2. C and S execute PushC,S
(
(K,µ, st),EMM

)
;

• PushC,S
(
(K,µ, st),EMM

)
:

1. C parses K as (Ko,Kn) and st as (sto, stn,MMstash, π, count)
2. S parses EMM as (EMMo,EMMn);
3. for all 0 ≤ i ≤ µ− 1,

(a) set j := count + i mod #LMM;
(b) C and S execute

(ro,⊥)← Σ.GetC,S
(
(Ko, sto, `π(j)),EMMo

)
;

and
(rn,⊥)← ∆.GetC,S

(
(Kn, stn, `π(j)),EMMn

)
;

(c) for all v‖x ∈ MMstash[π(j)],
i. if x = add, C sets r+

local := r+
local ∪ {v};

ii. if x = del,
A. if v /∈ ro, C sets r−local := r−local ∪ {v}
B. else C sets r+

local := r+
local ∪ {v‖del‖old} ;

(d) C removes `π(j)’s tuple from MMstash[`π(j)];
(e) C computes vn = (rn ∪ r+

local) \ r−local;
(f) C and S execute

(r,⊥)← ∆.DeleteC,S

((
Kn, stn, `π(j)

)
,EMMn

)
;

(g) C and S execute

(st′n,EMM′n)← ∆.InsertC,S

((
Kn, stn,

(
`π(j),vn

))
,EMMn

)
;

4. C increments the counter count := count + µ;
5. C outputs an updated state st′ = (sto, st′n,MMstash, π, count), while S outputs an updated

structure EMM′ = (EMMo,EMM′n).

Figure 2: FIX (Part 2).
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Concrete efficiency. We now provide a concrete efficiency analysis assuming Σ is instantiated
with the static volume-hiding scheme VLH [31]9 and that ∆ is instantiated with our DVLH con-
struction detailed in Section 5. We assume that both VLH and DVLH are instantiated with an
optimal-time multi-map encryption scheme. The communication complexity of FIX.Get is then
equal to

O
(
λo + 2so + λn + 2sn)

where λo (resp., λn) is the parameter of the dynamic pseudo-random transform used in Σ (resp.,
∆) and 2so (resp., 2sn) is the largest value outputted by the PRF used by the transform in Σ (resp.,
∆).

The query complexity is

O
(
λo + 2so + λn + 2sn + delso(`) + #MMstash[`]),

the add and erase communication complexities are

O
(
µ · (λo + 2so + λn + 2sn)

)
and the add and erase computational complexities are

O
(
#v + µ · (λo + 2so + λn + 2sn + delso(`) + #MMstash[`])

)
.

To get a better sense of the concrete efficiency of our scheme we set the parameters as follows. If
µ is set to O(log #L), λn is set to O(λo) = O(log #L). and sn to so + log log #L then the query
communication and computational complexities are

O
(

log(#L) · 2so),

and the append and erase communication and computational complexities are

O
(

log2(#L) · 2so),

where so ≈ 10 for a multi-map with 50, 000 labels, 222 total values and with response-lengths that
are Zipf-distributed.

Correctness. Notice that FIX, when instantiated with VLH and DVLH, will result in a lossy
multi-map encryption scheme. As shown in [31], one way to measure lossyness is to calculate the
number of truncated labels in the encrypted multi-map. In particular, one can observe that for FIX
the number of truncated labels is at most equal to the sum of the number of truncated labels in
both VLH and DVLH. We refer the reader to [31] and Section 5.2 for more details on the number
of truncations in VLH and DVLH, respectively.

4.1 Client Stash Size

We now analyze the size of the client stash. Since append and erase operations both affect the
stash, we use the term update to refer to both operations. We consider two settings: (1) the
worst-case setting where we analyze the stash size independently of the update and tuple length
distributions; and (2) an average-case setting where updates are chosen uniformly at random and
where the update tuple lengths are Zipf distributed.

9If truncations in the static encrypted multi-map are not desirable, Σ can be instantiated with AVLH from [31]
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Worst case. In this setting, we assume that each update tuple has maximum tuple length smax,
i.e., for all updates op = (ω, `,v), where ω ∈ {app, del}, #v = smax. Recall that FIX has #LMM/µ
update cycles where for each cycle the tuples of µ labels get pushed to the encrypted structure.
Note that the mapping π that ties a label to its cycle is fixed at setup and never changes. Note
that the worst case occurs if every update is mapped to the update cycle that precedes the current
one because, in this case, the updates remain in the stash for #L/µ− 1 cycles before being evicted
and this is the maximum number of cycles possible. Therefore, the size of the stash is at most
#LMM · smax/µ, which means it is O(#L2

MM) if smax is O(#LMM). Interestingly, if we set µ to be
O(smax), the stash size is O(#LMM) which is the size of the state for most state-of-the-art dynamic
EMMs. For the rest of this subsection we set m ◦= #LMM.

Average case. The above bound on the stash size helps us understand the limitations of FIX in
the worst case but it does not tell us much about how the stash size behaves in practice since clients
are very unlikely to generate updates as described above and that all have size smax. This motivates
us to study a setting where the update lengths are sampled from some known distribution. More
precisely, we assume that the labels to be updated are selected uniformly at random and that the
size of their updates is picked uniformly at random from the set

U =
{

s0
1s ·Hm,s

,
s0

2s ·Hm,s
, . . . ,

s0
ms ·Hm,s

}
,

where s0 = smax ·Hm,s. In the Theorem below, we analyze the expected stash size in this average
case setting.

Theorem 4.1. If the update labels are sampled uniformly at random and if their update lengths are
sampled uniformly at random from U , then the expected stash size of FIX is at most Hm · smax/2µ.

Proof. We model the stash as a set of t ◦= m/µ bins B1, . . . ,Bt, where each bin is associated to µ
unique labels according to the random permutation π. We then consider the qth update experiment
where an “update label” `(q) is sampled uniformly at random, the size of its tuple v(q) is sampled
uniformly at random from U and v(q) is placed in `(q)’s associated bin Bπ(`(q)). Finally, bin Bq is
emptied.10

Let L(q) and S(q) be the random variables that output the number of labels in the stash and the
size of the stash after the qth update, respectively. We say that `(i), for 1 ≤ i ≤ q, survives until
the qth update experiment if it lands in a bin that was not emptied in the update experiments i
through q. First, notice that none of the labels `(i) for 1 ≤ i ≤ q− t+1 survive until the qth update
experiment. Furthermore, note that `(q) survives if it lands in any of the bins in {B1, . . . ,Bt}\By0 ,
where 1 ≤ y0 ≤ t is such that y0 ≡ q (mod t). Similarly, `(q−1) survives if it lands in any of the bins
in {B1, . . . ,Bt} \ {By0 ,By1}, where 1 ≤ y1 ≤ t is such that y1 ≡ q− 1 (mod t). More generally, for
all 0 ≤ i ≤ t − 2, `(q−i) survives if it lands in any of the bins in {B1, . . . ,Bt} \ {Byz}0≤z≤i, where
1 ≤ yz ≤ t is such that yz ≡ q − z (mod t). Let Xi be the random variable that outputs 1 if `(q−i)
survives and outputs 0 otherwise. It follows that L(q) =

∑t−2
i=0 Xi and that

E[L(q)] =
t−2∑
i=0

E[Xi] =
t−2∑
i=0

Pr [Xi = 1 ] =
t−2∑
i=0

(
t− (1 + i)

)
· 1
t

=
t−1∑
i=1

t− i
t

=
t−1∑
i=1

i

t
= t− 1

2 . (1)

10Note that for the proof, we assume that the number of updates, q, is larger than t. The result will hold when
q < t simply because fewer elements were inserted.
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Let Ti,j be the random variable that outputs the tuple size of the jth label in Bi after the qth
update experiment. We then have,

S(q) =
t∑
i=1

Li∑
j=1

Ti,j ,

where Li is the random variable that outputs the number of labels in Bi after the qth update
experiment. It follows that,

E[S(q)] =
t∑
i=1

E

 Li∑
j=1

Ti,j


=

t∑
i=1

E[Li] · E[Ti,1] (2)

= E[T1,1] ·
t∑
i=1

E[Li] (3)

= E[T1,1] · E
[

t∑
i=1

Li

]
= E[T1,1] · E

[
L(q)

]
(4)

where Equation (2) follows from Wald’s identity (since the Li’s are independent of the Ti,j ’s) and
from the fact that the Ti,j ’s are i.i.d., where Equation (3) is also due to the Ti,j ’s being i.i.d., and
where Equation (4) follows from L(q) =

∑t
i=1 Li.

Now recall that T1,1 outputs the length of the 1st tuple in B1 and that it is sampled uniformly
at random from U . We therefore have

E[T1,1] =
m∑
i=1

1
m
· smax ·Hm,1

i ·Hm,1
= smax

m
·
m∑
i=1

1
i

= Hm · smax
m

(5)

where the third equality follows from the fact
∑m
i=1 1/i = Hm. Plugging Equations (5) and (1)

into Equation (4), we have

E[S(q)] = Hm · smax
m

· t− 1
2 = Hm · smax · (m− µ)

2µ ·m ≤ Hm · smax
2µ ,

where the second equality follows from t = m/µ.

The key takeaway from this Theorem is that if we set µ to be O
(

logm
)
, the expected stash size

is in the order of smax (which is at least equal to m) since Hm is upper bounded by logm+ 1.

Concentration bound. For a more robust analysis, we give a high-probability bound on the
stash in the following Theorem.
Theorem 4.2. If the update labels sampled uniformly at random and if their tuple lengths are
sampled from a Zm,1 distribution, then, with probability greater than 1 − ε the stash size X is at
most

Hm · smax
2µ + smax ·

√
(m− 2µ) · ln(1/ε)

2µ .
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Proof. We model the stash similarly to Theorem 4.1 and use the same notation. The main difference
is that we define the random variable S(q) (size of the stash) as:

S(q) =
t−2∑
i=0

Xi · Ti,

where Xi is the random variable that outputs 1 if `(q−i) survives and outputs 0 otherwise, and Ti is
the random variable that outputs the tuple size of the (q − i)th update. It is easy to see that S(q)
will only account for the tuple lengths of the labels that survive which occurs when Xi is equal to
1.

From Theorem 4.1, we also know that

E[Ti] = Hm · smax
m

and
t−2∑
i=0

E[Xi] = t− 1
2

Now observe that the Xi’s and Ti’s are independent given that the tuple length is sampled
independently of whether the label “survives” or not. We can bound the expected value of S(q) as

E[S(q)] =
t−2∑
i=0

E[Xi · Ti] =
t−2∑
i=0

E[Xi] · E[Ti] = Hm · smax
m

· t− 1
2 ≤ Hm · smax

2µ . (6)

We set Yi
◦= Xi · Ti, for all i ∈ {0, · · · , t− 2} and note that the Yi’s are independent given that

the Xi’s and Ti’s are independent. Note also that 0 ≤ Yi ≤ smax. Using Hoeffding’s inequality, we
then have, for all δ > 0,

Pr
[
S(q) ≤

Hm · smax
2µ + δ

]
≥ Pr

[
S(q) ≤ E[S(q)] + δ

]
≥ 1− exp

( −2δ2∑t−2
i=0(smax − 0)2

)
= 1− exp

( −2δ2

(t− 2) · s2
max

)
= 1− exp

( −2δ2 · µ
(m− 2µ) · s2

max

)
.

Setting

δ = smax ·
√

(m− 2µ) · ln(1/ε)
2µ

ends finalizes the proof.

4.2 Security

We describe and prove the leakage profile of FIX. We first give a black-box description based on
the leakage profiles of Σ and ∆ and then describe a concrete profile when Σ and ∆ are instantiated
with state-of-the-art constructions.
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Black-box leakage. Let Σ be a static multi-map encryption scheme with leakage profile ΛΣ =
(LΣ

S ,LΣ
Q) and ∆ be a dynamic multi-map encryption scheme with leakage profile Λ∆ = (L∆

S ,L∆
O ).

The setup leakage of FIX is

LS(MM) =
(
LΣ

S (MMo),L∆
S (MM⊥)

)
,

where MMo is the original multi-map and MM⊥ is the multi-map with label space LMM and
MM⊥[`] = ⊥ for all ` ∈ LMM. The operation leakage of FIX is

• LO
(
MM, op

)
1. if op is a query, parse op as ` and output LΣ

Q(MMo, `) and L∆
O (MMn, `);

2. if op is an append or delete operation then, for all 0 ≤ i ≤ µ− 1,
(a) let j = count + i mod m

(b) output
i. LΣ

Q
(
MMo, `π(j)

)
,

ii. L∆
O
(
MMn, (qry, `π(j))

)
,

iii. L∆
O
(
MMn, (del, `π(j))

)
,

iv. L∆
O
(
MMn, (add, `π(j),vn)

)
(c) set count = count + µ;

where count is a stateful variable initialized to 1.

Theorem 4.3. Let ΛFIX = (LS,LO) where LS and LO are as above. If Σ is ΛΣ-secure and ∆ is
Λ∆-secure, then FIX is ΛFIX-secure.

Proof sketch: Let SΣ and S∆ be the simulators guaranteed to exist from the adaptive security of
Σ and ∆ and consider the simulator S that works as follows.

Simulating setup: given LΣ
S (MMo) and L∆

S (MM⊥), the simulator outputs EMMo ← SΣ
(
LΣ

S (MMo)
)

and EMMn ← S∆
(
L∆

S (MM⊥)
)
.

Simulating operations: if op is a get the simulator receives LΣ
Q(MMo, `) and L∆

O (MMn, `) and
uses

1. SΣ
(
LΣ

Q(MMo, `)
)

to simulate the query protocol of Σ, where SΣ plays the role of the
client;

2. S∆
(
L∆

O (MMn, `)
)

to simulate the query protocol of ∆, where S∆ plays the role of the
client.

If op is an append or erase operation,

• for all 0 ≤ i ≤ µ− 1 and j = count + i mod m the simulator,

1. receives LΣ
Q
(
MMo, `π(j)

)
and uses SΣ

(
LΣ

Q

(
MM, `π(j)

))
to simulate the query proto-

col of Σ, where SΣ plays the role of the client;
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2. receives L∆
O
(
MMn, (qry, `π(j))

)
and uses S∆

(
L∆

O

(
MMn, (qry, `π(j))

))
to simulate

the query protocol of ∆, where S∆ plays the role of the client;
3. receives L∆

O
(
MMn, (del, `π(j))

)
and uses S∆

(
L∆

O

(
MMn, (del, `π(j))

))
to simulate

the delete protocol of ∆, where S∆ plays the role of the client;
4. receives L∆

O
(
MMn, (add, `π(j),vn)

)
and uses S∆

(
L∆

O

(
MMn, (add, `π(j),vn)

))
to sim-

ulate the add protocol of ∆, where S∆ plays the role of the client,

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
Real(k) outputs 1 is negligibly close to the probability that Ideal(k) outputs 1. This can be shown
with the following sequence of games:

1. Game0: is the same as RealFIX,A(k).

2. Game1: is the same as Game0 except that: (1) EMMo is replaced by the output of SΣ
(
LΣ

S (MMo)
)
;

and (2) all executions of Σ.Get on some label ` is replaced by a simulated execution between
SΣ(LΣ

Q(MMo, `)) and the adversary.

3. Game2: is the same as Game1 except that: (1) EMMn is replaced by the output of S∆(L∆
S (MM⊥));

(2) all executions of ∆.Get on a label ` is replaced by a simulated execution between S∆(L∆
O (EMMn, `))

and the adversary; (3) all executions of ∆.Insert on an add operation op = (add, `,v) is re-
placed by a simulated execution between S∆(L∆

O (EMMn, op)) and the adversary; and (4) all
executions of ∆.Delete on a delete operation op = (del, `) is replaced by a simulated execution
between S∆(L∆

O (EMMn, op)).

Note that Game2 is the IdealL,A,SFIX(k) experiment and that Game0 and Game1 are indistinguishable
by the ΛΣ-security of Σ and that Game1 and Game2 are indistinguishable by the Λ∆-security of ∆.

Concrete leakage. We now analyze the leakage profile of FIX when its underlying EMMs are
instantiated with concrete schemes. Specifically, we assume Σ is a static volume-hiding multi-map
encryption scheme with leakage profile

ΛΣ = (LS,LQ) = (dsize(MMo), qeq),

where dsize is the data size pattern dsize(MM) = mMM. This leakage is acheived by the static
volume-hiding scheme VLH [31]. We also assume that ∆ has leakage profile

Λ∆ = (LS,LO) = (dsize(MMn), oeq).

Note that the above leakage profile can be achieved when ∆ is instantiated with our DVLH con-
struction from Section 5.1.

Theorem 4.4. If Σ is (dsize, qeq)-secure and if ∆ is (dsize, oeq)-secure, then FIX is injection-secure.

Proof. It follows from Theorem 4.3 that, when Σ and ∆ have the above leakage profiles, FIX has
setup leakage

LS = (dsize(MMo), dsize(MMn)) = mMM,

and operation leakage
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• LO
(
MM, op

)
:

1. if op is a query, parse op as ` and output qeq(MMo, `) and oeq(MMn, `);
2. if op is an append or erase operation then, for all 0 ≤ i ≤ µ− 1,

(a) let j = count + i mod m

(b) output
i. qeq

(
MMo, `π(j)

)
,

ii. oeq
(
MMn, (qry, `π(j))

)
,

iii. oeq
(
MMn, (del, `π(j))

)
,

iv. oeq
(
MMn, (add, `π(j),vn)

)
3. set count = count + µ;

where count is a stateful variable initialized to 1. We now show that LO can be simulated from the
following leakage function

• L′O(MM, op) :

1. if op is a query, parse op as ` and output qeq(MMo, `) and qeq(MMn, `)11;
2. if op is an append or erase operation, output ⊥.

More precisely, we will show that for any sequence of operations op = (op1, . . . , opn), one can
simulate the correlation graph induced by LO given only the correlation graph induced by L′O. In
the following we use the term update to refer to either an append or erase operation. Fist, note
that the sequence of operations op made by the client results in FIX making another sequence of
operations ω = (ω1, . . . , ωm) on EMMo and EMMn, where m > n. We refer to ω as the sequence
induced by op. More precisely, every query q in op induces two queries in ω: one on EMMo and
one on EMMn. Similarly, every update u in op induces µ sets of 4 operations in ω: one query
on MMo, one query on MMn and two updates on MMn. For notational convenience, we define the
function ϕ : op→ 2ω to map the set of operations in ω that correspond to an operation op in op.

Note also that the correlation graph of LO on op is really a correlation graph on ω; i.e., the
vertices are operations in ω and the edges are correlations created by qeq and oeq as described in
LO. In particular, this graph has three kinds of edges: (1) u-u edges which correlate update nodes;
(2) q-u edges which correlate queries and updates; and (3) q-q edges which correlate query nodes.

The u-u edges are fixed and independent of op so they can be simulated without any knowl-
edge. More precisely, we know that there always exist a u-u edge between the ith update in ω
and the jth update in ω if j < i and j = i mod mMM. 12 This is because FIX only executes
updates on a fixed schedule; specifically, a particular label is only updated every mMM update
on MMn. The q-u edges can also be simulated without any knowledge as follows. For a query
q in op, let i be its position in ω. Choose an unused index j′ uniformly at random in the set
{1, . . . ,mMM} and let j be the index of the j′th update in ω. If j < i then add a q-u edge be-
tween the second query in ϕ(q) and uj , where uj is the j′th update in ω. If j > i, then do not
add an edge but remember the correlation and add the edge when the j′th induced update occurs.

11As the labels are updated in a specific order defined by the random permutation π, and the leakage of an actual
update and a dummy update is indistinguishable, the only leakage during query on MMn is qeq and not oeq.

12We stress that we are referring to the ith and jth updates in ω and not the ith and jth operations in ω.
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Now, add edges between the second query in ϕ(q) and any update in ω that has a u-u edge with uj .

Summarizing, FIX has leakage profile

ΛFIX = (LS,LO) =
(
mMM, qeq

)
,

which, by Theorem 3.3, implies that it is secure against file injections.

5 A Dynamic Volume-Hiding Multi-Map Encryption Scheme

In this section, we introduce our new fully-dynamic volume-hiding multi-map encryption scheme
we call DVLH. Our scheme is built on top of a dynamic variant of the pseudo-random transform
PRT [31]. We first describe the dynamic version of the PRT, called DPRT, in Figure 3 and provide
a high level description in the following.

Overview. DPRT is a data structure transformation that takes as input a security parameter k,
a public parameter λ and a multi-map MM, and outputs a transformed multi-map MM′. Both the
multi-map transformation and Get algorithms of DPRT are the same as the ones of PRT. The only
difference is that DPRT now has an Insert, Append and an Erase algorithm that can add label/values
tuple to the multi-map or append/erase values to/from a tuple in the multi-map. More precisely,
all these algorithms take as input a security parameter k, a public parameter λ, a label/values
tuple (`,v) and a multi-map MM. The Insert algorithm executes DPRT on a multi-map composed
of a single label/tuple pair (`,v), and then adds the transformed tuple to the input multi-map.
Both Append and Erase algorithms initialize an empty multi-map MM?. Then, Append (resp.,
Erase) removes the dummy entries (if any) from MM[`] and adds the tuple (`,MM[`]||v) (resp.,
(`,MM[`] \ v)) to MM?. It then executes MM′ ← DPRT(1k, λ,MM?) and replaces MM[`] with the
transformed tuple MM′[`].13

5.1 Our Construction

Our dynamic volume-hiding scheme DVLH =
(
Setup,GetC,S, InsertC,S,DeleteC,S,AppendC,S,EraseC,S

)
makes use of DPRT—the dynamic version of the pseudo-random transform PRT and black-box use
of a dynamic response-hiding multi-map encryption scheme Σrh

MM that supports both Put and Delete
operations, where Delete takes as input a label ` and removes its tuple from the multi-map. For our
purposes, we would also like Σrh

MM to be optimal-time and to have update leakage at most LU = #v.
These last two properties are achieved by the constructions given in [1, 8] but these constructions
do not support Delete; instead, they only support edit− which takes as input a label ` and a value
1 ≤ i ≤ #MM[`] and removes the ith element of `’s tuple. Note, however, that these schemes also
support edit+ which takes as input a label ` and a value v and adds v to `’s tuple and that this is
enough to support Delete with leakage LO(Delete, `) = ⊥ as follows. Given a label `, it suffices to
call the underlying scheme’ s edit+ operation on the pair (`, ?), where ? is a special symbol outside

13In this description, we made the implicit assumption that the client knows whether a label ` already exists in
the multi-map when it performs an Insert or an Append. In general, this is not the case and there would be a need
for the client to keep a local state that stores such information.
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Let F : {0, 1}k × {0, 1}∗ → {0, 1}s be a pseudo-random function, rank: Rn → Rn be ranking function
and λ ∈ N be a public parameter. Consider the dynamic transform DPRT defined as follows:

• DPRT(1k, λ,MM):

1. sample a key K $← {0, 1}k;
2. instantiate an empty multi-map MM′;
3. for all ` ∈ LMM,

(a) let r := MM[`] and n` = #r;
(b) compute r′ :=rank(r);
(c) let n′` = λ+ FK(`||n`);
(d) if n′` > n`, set MM′[`] := (r′,⊥1, . . . ,⊥n′

`
−n`

);
(e) otherwise, set MM′[`] := (r′1, . . . , r′n′

`
);

4. output MM′.

• Get(`,MM): output MM[`].

• Insert(1k, λ, (`,v),MM):

1. execute MM′ ← DPRT(1k, λ, {(`,v)});
2. set MM[`] := MM′[`] and output the updated multi-map MM.

• Append(1k, λ, (`,v),MM):

1. instantiate an empty multi-map MM?;
2. remove all dummy entries from MM[`];
3. set MM?[`] := MM[`] ∪ v;
4. execute MM′ ← DPRT(1k, λ,MM?);
5. set MM[`] := MM′[`] and output the updated multi-map MM.

• Erase(1k, λ, (`,v),MM):

1. execute DPRT.Append(1k, λ, (`,v),MM) but replace step 3 with the following:
set MM?[`] := MM[`] \ v;

Figure 3: DPRT.
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Let DPRT be the dynamic pseudo-random transform described in Figure 3 and let Σrh
MM =

(Setup,GetC,S,PutC,S,DeleteC,S) be a dynamic response-hiding multi-map encryption scheme. Con-
sider the scheme DVLH = (Setup,GetC,S, InsertC,S,AppendC,S,DeleteC,S,EraseC,S) defined as follows:

• Setup
(
1k, λ,MM

)
:

1. compute MM′ ← DPRT(1k, λ,MM) and execute

(K, st,EMM)← Σrh
MM.Setup(1k,MM′);

2. output (K, st,EMM).

• GetC,S
(
(K, st, `),EMM

)
:

1. C and S execute
(r,⊥)← Σrh

MM.GetC,S
(
(K, st, `),EMM

)
;

2. C outputs r and S outputs ⊥.

• InsertC,S
(
(K,λ, st, (`,v)),EMM

)
:

1. C executes MM′ ← DPRT.Insert
(
1k, λ, (`,v),MM

)
where MM is an empty multi-map;

2. C and S execute

(st′,EMM′)← Σrh
MM.PutC,S

((
K, st, (`,MM′[`])

)
,EMM

)
;

3. C outputs an updated state st′ and S outputs EMM′.

• DeleteC,S
(
(K,λ, st, `),EMM

)
:

1. C and S execute
(st′,EMM′)← Σrh

MM.DeleteC,S
(
(K, st, `),EMM

)
;

2. C outputs an updated state st′ and S outputs EMM′.

• AppendC,S
(
(K,λ, st, (`,v)),EMM

)
:

1. C and S execute
(r,⊥)← Σrh

MM.GetC,S
(
(K, st, `),EMM

)
and,

(st?,EMM?)← Σrh
MM.DeleteC,S

(
(K, st, `),EMM

)
;

2. C executes MM′ ← DPRT.Append
(
1k, λ, (`,v), {(`, r)}

)
;

3. C and S execute

(st′,EMM′)← Σrh
MM.PutC,S

((
K, st?, (`,MM′[`])

)
,EMM?

)
;

4. C outputs an updated state st′ and S outputs EMM′.

• EraseC,S
(
(K,λ, st, (`,v)),EMM

)
:

1. execute DVLH.Append(1k, λ, st, (`,v),EMM) but replace step 2 with the following:
C executes MM′ ← DPRT.Erase

(
1k, λ, (`,v), {(`, r)}

)
;

Figure 4: DVLH.
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of the label space. Then, during a get operation, if the client retrieves a tuple that includes ?, it
outputs ⊥. The details of DVLH are provided in Figure 4. At a high level it works as follows.

Overview. Unlike VLHd in [31], DVLH is fully dynamic in the sense that it handles editing existing
tuples. Recall that the dynamism of VLHd is restricted to removing a label/tuple pair, adding a
new label/tuple pair, and editing an existing tuple while not modifying its size. The Setup and Get
protocols are the same as the ones of VLHd. So we only describe how all the Update protocols work.
The Delete algorithm removes the corresponding (`,v) pair from the encrypted multi-map. The
Append and Erase algorithms execute r ← Σrh

MM.Get and then remove ` from the encrypted multi-
map. The Append (resp., Erase) algorithm then executes DPRT.Append (resp., DPRT.Erase) on
(`,v) and a multi-map consisting of just one tuple {(`, r)}. This outputs a transformed multi-map
MM′ containing just the updated tuple; ` and its corresponding values. Finally, the client and the
server execute the Σrh

MM.Put protocol to put the new pair (`,MM′[`]) into the encrypted multi-map.
Lastly, the Insert algorithm first executes DPRT.Insert on (`,v) and an empty multi-map. This
outputs a transformed multi-map MM′ containing the transformed tuple; ` and its corresponding
values. The client and the server execute the Σrh

MM.Put protocol to put the new pair (`,MM′[`])
into the encrypted multi-map.

Efficiency. If Σrh
MM has optimal query complexity, the best and worst case communication com-

plexity for DVLH.Get is the same as VLH.Get which is O
(
λ) and O

(
λ + ν), where ν = 2s is the

largest value that can be taken by the pseudo-random function used by the transform. The average
case communication complexity is O

(
λ+2s−1). As for storage, it is the same as VLH. A label/tuple

deletion has asymptotically the same cost as the Σrh
MM.Delete protocol. As for Insert, it incurs the

same communication cost as Σrh
MM.Put operation asymptotically, as it executes a Put operation

within it.14 The communication cost of the Append and Erase operations is equal to the sum of
the communication costs of the Σrh

MM.Get, Σrh
MM.Delete and Σrh

MM.Put operations asymptotically, as
it executes a Get, Delete and Put operations within it.

Correctness. Similarly to VLHd, the correctness of DVLH is also affected by possible truncations.
The difference is that tuples can now be subjected to many truncations. A bound on the number
of labels effected by truncations is derived in Section 5.2.

Security. We now describe the leakage profile of DVLH assuming Σrh
MM is instantiated with one of

the standard dynamic multi-map encryption schemes [1, 8] all of which have leakage profile ΛMM =
(LS,LQ,LU) = (trlen, (qeq, bopeq, rlen), ulen) where trlen is the total response length (trlen(MM) =∑
`∈L #MM[`]), qeq is the query equality pattern that reveals if and when the label has been queried

in the past, bopeq is the backward operation equality pattern that reveals whether a query and
another operation are over the same label only in the case when the operation occurred before the
query, rlen is the response length of a query, and ulen is the number of values in an update. In the
following theorem, dsize is the data size pattern which is defined as dsize(MM) = #LMM and oeq is
the operation equality pattern that captures which operations were over the same label.

14Note however that, under the assumption of Σrh
MM having an optimal query and put complexity, the cost of the

Put operation is proportional to the length of the tuple which is in this case equal to O
(
λ+ ν) in the worst case.
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Theorem 5.1. If Σrh
MM is a (trlen, (qeq, bopeq, rlen), ulen)-secure dynamic multi-map encryption

scheme and F is a pseudo-random function, then DVLH is a (dsize, oeq, oeq)-secure dynamic multi-
map encryption scheme.

Proof. Let SMM be the simulator guaranteed to exist from the adaptive security of Σrh
MM. Consider

the simulator SDVLH, that works as follows:

Simulating setup: given dsize(MM) = #LMM, it computes θ =
∑#LMM
i=1 (λ+ri), where r1, . . . , r#LMM

$← {0, 1}s and outputs EMM← SMM(θ). It then stores r1, . . . , r#LMM in a set R.

Simulating operations: if op is the ith Get, SDVLH receives oeq(MM, `1, . . . , `i) from which it ex-
tracts γ =

(
qeq(MM, `1, . . . , `i), bopeq(MM, `1, . . . , `i)

)
. Using oeq, it also determines if the la-

bel `i that is being queried, has been queried or updated before. If this is the first time `i is be-
ing queried for, it removes a random element from the set R and assigns it to `i. Let us denote
this element as r`i . Otherwise, if the label had been queried in the past, then r`i had been al-
ready assigned . SDVLH now uses SMM(LQ(MM, `i)) where LQ(MM, `i) = (qeq, bopeq, r`i +λ),
to simulate a Get on EMM (recall that λ is public). Σrh

MM.Get is an interactive protocol so
here SDVLH uses SMM to play the role of the client.

If op is the ith Insert, Delete, Append or Erase operation, SDVLH receives oeq(MM, (op1, `1),
. . . , (opi, `i)) from which it extracts γ =

(
qeq(MM, `1, . . . , `i), bopeq(MM, `1, . . . , `i)

)
. It also

identifies whether the label `i on which the operation is performed, has been operated on in
the past.

1. if op is an Insert operation, SDVLH sets r`i to r where r
$← {0, 1}s. It then uses

SMM(LU(MM, (add, `i, ·))) where LU(MM, (add, `i, ·)) = r`i + λ to simulate a Put on
the EMM structure.

2. if op is an Delete operation, SDVLH discards r` if it exists. Then it uses SMM(⊥) to
simulate a Delete on the EMM.

3. otherwise, there are two sub-cases: if this is the first time `i is being operated on, it
removes a random element from R and assigns it to `i. Let us denote this element as
r`i . Otherwise, if the label had been operated on before, r`i already exists. SDVLH uses
SMM(LQ(MM, `i)) where LQ(MM, `i) = (qeq, bopeq, r`i + λ), to simulate a Get on EMM.
Then it uses SMM(⊥) to simulate a Delete on EMM. SDVLH then updates the value of r`i
such that r`i := r where r $← {0, 1}s. It then uses SMM(LU(MM, (add, `i, ·))) such that
LU(MM, (add, `i, ·)) = r`i + λ to simulate a Put on EMM.

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
Real(k) outputs 1 is negligibly close to the probability that Ideal(k) outputs 1. This can be shown
with a standard sequence of games:

1. Game0: is the same as RealDVLH,A(k).
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2. Game1: is the same as Game0 except that the pseudo-random function F is replaced with a
random function. Game1 and Game0 are indistinguishable, otherwise the pseudo-randomness
of F would be violated.

3. Game2: is the same as Game1 except that

• the encrypted multi-map EMM is replaced by the output of SMM(θ);
• the execution of Σrh

MM.GetC,S
(
(K, st, `),EMM

)
is replaced by a simulated execution be-

tween SMM(qeq, bopeq, r` + λ) and the adversary;
• the execution of Σrh

MM.DeleteC,S
(
(K, st, `),EMM

)
is replaced by a simulated execution

between SMM(⊥) and the adversary, and
• Σrh

MM.PutC,S
((
K, st, (`,v)

)
,EMM

)
is replaced by a simulated execution between SMM(r`+

λ) and the adversary.

Game2 and Game1 are indistinguishable, otherwise the (trlen, (qeq, bopeq, rlen), ulen)-security
of Σrh

MM would be violated.

4. Note that Game3 is the IdealL,A,SDVLH(k) experiment.

5.2 Correctness

To analyze correctness, we need an upper bound on the number of truncations after t ∈ N append
operations. Here, we use the term “append” interchangeably with “update” since it represents the
main non-trivial update. We assume that the updated labels are picked uniformly at random and
that only a single value is appended to their tuple.

We focus on multi-maps with Zipf-distributed tuple lengths. More precisely, for a given multi-
map size N (i.e., the sum of the tuple lengths) and label space L, we consider multi-maps with
tuple lenghts in

L =
{

N

Hm,1
,

N

2 ·Hm,1
, . . . ,

N

m ·Hm,1

}
,

where m ◦= #L. Before stating our theorem we recall some useful Lemmas related to negative
association.

Lemma 5.2 (Independence implies negative association [21]). If X1, . . . , Xn are independent ran-
dom variables, then they are negatively associated.

Lemma 5.3 (Zero-one principle [21]). If X1, . . . , Xn are zero-one random variables such that∑n
i=1Xi ≤ 1, then they are negatively associated.

Lemma 5.4 (Closure [21]). Negatively associated random variables satisfy the following closure
properties:

• if X1, . . . , Xn are negatively associated, if Y1, . . . , Ym are negatively associated, and if {Xi}i
and {Yj}j are mutually independent, then X1, . . . , Xn, Y1, . . . , Ym are negatively associated.
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• let X1, . . . , Xn be negatively associated random variables and let I1, . . . , Ik ⊆ [n] be disjoint
index sets for k ≥ 1. Furthermore, let {hj : R#Ij → R}j∈[k] be a set of functions that are all
either non-decreasing or all non-increasing and define Yj := hj(Xi, i ∈ Ij). Then Y1, · · · , Yk
are negatively associated. In other words, non-decreasing or non-increasing functions of dis-
joint subsets of negatively associated variables are also negatively associated.

Theorem 5.5. If the tuple lengths of a multi-map are assigned to labels uniformly at random
from L (without replacement) and if the update labels are sampled independently and uniformly at
random from L, then after t updates the number of truncations is at most

µ+

√
m · (t+ 1) ln(1/ε)

2
with probability at least 1− ε, where

µ ≤ 1
ν

(
N ·Hρ,1
Hm,1

− λ · ρ+ λ ·N ·Hρ,1
m ·Hm,1

+ (t− λ)
m

(
N + (t− λ)m

))
for all m,λ ∈ N, t ≥ λ and ρ = bN/(λ ·Hm,1)c.
Proof. Any label in the multi-map can get truncated either at setup or at one of the t updates. We
denote by X

(j)
i the indicator random variable that is equal to 1 if the ith label gets truncated at

the jth update if j > 0 or at setup when j = 0. We are interested in calculating the overall number
of truncations cross all labels. More formally we are interested in the concentration around the
following quantity:

S :=
m∑
i=1

t∑
j=0

X
(j)
i ,

where m is the size of the label space and t is the number of updates. In the rest of the , we proceed
as follows:
• in Claim 1 we bound the probability that a label is truncated at setup time,

• in Claim 2 we bound the probability that a label is truncated at the jth update, when j ≥ 1,

• in Claim 3 we bound the expected number of truncations,

• in Claim 4 we show that {X(j)
i }i,j are negatively associated for all i ∈ {1, · · · ,m} and j ∈

{0, · · · , t}.
We start by introducing some notation. For the ith label and jth update when j > 0, or setup

when j = 0, we denote by R
(j)
i the random variable equal to the output of the pseudo-random

function (PRF). For simplicity, we model the PRF as a random function with an output space
equal to {0, · · · , ν − 1}. That is, Pr

[
R

(j)
i = k

]
= 1/ν, for any k ∈ {0, · · · , ν − 1}. Similarly, we

denote by Y
(j)
i the length of the tuple of the ith label at either setup when j = 0 or at the jth

update when j > 0. In the following, we simplify our setting by assuming that the length of the
tuple increases with every update. That is, Y (j)

i = Y
(0)
i + j.15

15The tuple lengths linearly increase as a function of the number of updates, and as a result, the probability of any
tuple to get truncated will increase. This is a worst-case setting given that tuple lengths may decrease as a result of
a prior truncations, or simply because the fact that not all labels are not updated all the times (which our equality
entails). While this assumption leads to a looser bound, it makes the overall proof simpler.
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Claim 1. We show that

Pr
[
X

(0)
i = 1

]
= 1
ν ·m

(
N ·Hρ,1
Hm,1

− λ · ρ
)

where ρ = bN/(λ ·Hm,1)c, and λ, ν ∈ N.

Proof. First notice that a truncation occurs when the output of the random function is smaller than
the size of the tuple, plus, the constant λ. In particular, a truncation occurs when R(j)

i < Y
(j)
i −λ.

So at setup, i.e., when j = 0, we have:

Pr
[
X

(0)
i = 1

]
= Pr

[
R

(0)
i < Y

(0)
i − λ

]
=
∑
y∈L

Pr
[
R

(0)
i < Y

(0)
i − λ | Y (0)

i = y
]
· Pr

[
Y

(0)
i = y

]
= 1
m

∑
y∈L

Pr
[
R

(0)
i < y − λ

]

= 1
m

∑
y∈L,y>λ

y−λ−1∑
k=0

Pr
[
R

(0)
i = k

]
(7)

= 1
ν ·m

∑
y∈L,y>λ

(y − λ) (8)

Equality 7 holds since the random variable R
(0)
i is not defined to output negative values, and

therefore we restrict the support to be all elements y ∈ L such that y > λ. Given Equation 8, we
compute the non-negative integer ρ ∈ [m] such that

N

(ρ+ 1) ·Hm,1
< λ ≤ N

ρ ·Hm,1

and reformulate the summation in Equation 8 such that

Pr
[
X

(0)
i = 1

]
= 1
ν ·m

ρ∑
k=1

( N

k ·Hm,1
− λ)

= 1
ν ·m

(N ·Hρ,1
Hm,1

− λ · ρ)

Claim 2. If j ≤ λ, we show that

Pr
[
X

(j)
i = 1

]
= 1
ν ·m2

(
N ·Hρ,1
Hm,1

−
(
λ− j

)
· ρj
)

Otherwise if j > λ, we show that

Pr
[
X

(j)
i = 1

]
= 1
ν ·m2

(
N −

(
λ− j

)
m

)
where ρj = bN/((λ− j) ·Hm,1)c, and λ, ν ∈ N.
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Proof. The second case is similar to the one above except that we now have to account for increasing
lengths of the tuple, but more importantly, that a label can get truncated only if picked to be
updated. We call the event that the ith label gets updated at the jth step Seli,j . Given our
assumption that the labels get updated uniformly at random, we have Pr [ Seli,j ] = 1/m. Given all
of this we obtain the following

Pr
[
X

(j)
i = 1

]
= Pr

[
X

(j)
i = 1 | Seli,j

]
· Pr [ Seli,j ] + Pr

[
X

(j)
i = 1 | Seli,j

]
· Pr

[
Seli,j

]
= 1
m
· Pr

[
X

(j)
i = 1 | Seli,j

]
(9)

= 1
m
· Pr

[
R

(j)
i < Y

(j)
i − λ

]
(10)

= 1
m
·
∑
y∈L

Pr
[
R

(0)
i < Y

(0)
i + j − λ | Y (0)

i = y
]
· Pr

[
Y

(0)
i = y

]
= 1
ν ·m2

∑
y∈L,y>λ−j

(y + j − λ) (11)

Equality 9 holds since the event of truncating a label when the label itself was not selected to
be updated, {X(j)

i = 1 | Seli,j}, can never occur. Equality 10 holds as a label that gets updated
can be truncated iff the output of the random function is smaller than its tuple length minus the
constant λ. Equality 11 holds as the support is only defined for values y ∈ L such that y > λ− j.

We are going to consider two cases: (case 1 ) when j ≤ λ, and (case 2 ) when λ < j. For the
first case, we identify ρj such that

N

(ρj + 1) ·Hm,1
< λ− j ≤ N

ρj ·Hm,1

And similar to the calculation done in Claim 1, we can show that

Pr
[
X

(j)
i = 1

]
= 1
ν ·m2 (N ·Hρ,1

Hm,1
− (λ− j) · ρj)

In the second case, given that λ − j < 0 all the values y ∈ L are possible, and therefore Equation
11 is equivalent to

Pr
[
X

(j)
i = 1

]
= 1
ν ·m2

∑
y∈L

(y + j − λ)

= 1
ν ·m2

m∑
k=1

( N

k ·Hm,1
+ j − λ)

= 1
ν ·m2 (N − (λ− j)m)

Claim 3. We show that the expected value of S is at most

E[S] ≤ 1
ν

(
N ·Hρ,1
Hm,1

− λ · ρ+ λ ·N ·Hρ,1
m ·Hm,1

+ (t− λ)
m

(
N + (t− λ)m

))
where ρ = bN/((λ− j) ·Hm,1)c, and λ, ν ∈ N.
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Proof. The expected value of S is equal to:

E[S] = E[
m∑
i=1

t∑
j=0

X
(j)
i ]

= E[
m∑
i=1

X
(0)
i ] + E[

m∑
i=1

t∑
j=1

X
(j)
i ]

= E[
m∑
i=1

X
(0)
i ] + E[

m∑
i=1

λ∑
j=1

X
(j)
i ] + E[

m∑
i=1

t∑
j=λ+1

X
(j)
i ]

=
m∑
i=1

E[X(0)
i ] +

m∑
i=1

λ∑
j=1

E[X(j)
i ] +

m∑
i=1

t∑
j=λ+1

E[X(j)
i ]

=
m∑
i=1

1
ν ·m

(
N ·Hρ,1
Hm,1

− λ · ρ
)

+
m∑
i=1

λ∑
j=1

1
ν ·m2

(
N ·Hρ,1
Hm,1

− (λ− j) · ρj

)
+

m∑
i=1

t∑
j=λ+1

1
ν ·m2 (N − (λ− j)m)

(12)

≤
m∑
i=1

1
ν ·m

(
N ·Hρ,1
Hm,1

− λ · ρ
)

+
m∑
i=1

λ∑
j=1

1
ν ·m2

(
N ·Hρ,1
Hm,1

)
+

m∑
i=1

t∑
j=λ+1

1
ν ·m2 (N + (t− λ)m)

= 1
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N ·Hρ,1
Hm,1

− λ · ρ+ λ ·N ·Hρ,1
m ·Hm,1

+ (t− λ)
m

(
N + (t− λ)m
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(13)

Equality 12 holds since Xi,j is a Bernoulli random variable and the parameters are from Claims 1
and 2, for all i ∈ [m] and j ∈ {0, · · · , t}.

Claim 4. We show that the random variables {Xi,j}i,j are negatively associated, for all i ∈ [m]
and j ∈ {0, · · · , t}.

Proof. First recall that {X(j)
i }i, for j ∈ {1, · · · , t}, are zero-one random variables such that∑m

i=1X
(j)
i ≤ 1. Given Lemma 5.3, we now know that {X(j)

i }i are negatively associated. Moreover,
observe that {X(j)

i }i and {X(j′)
i }i for distinct j and j′ are mutually independent. This follows from

the fact that at any update step, the label that gets truncated is independent from the labels that
get truncated in the past or in the future. Using the first statement of Lemma 5.4, we now have that
{X(j)

i }i,j are NA for i ∈ [m] and j ∈ {1, · · · , t}. Also notice that {X(0)
i }i are independent random

variables and using Lemma 5.2, {X(0)
i }i are NA. Again using the first statement of Lemma 5.4, we

obtain that {X(j)
i }i,j are NA for i ∈ [m] and j ∈ {0, · · · , t}.

Given the result of of Claim 4, we can use Chernoff-Hoeffding bounds to bound S. This gives
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us, for δ ≥ 0,

Pr [S > E[S] + δ ] ≤ exp
(
− 2δ2∑m

i=1
∑t
j=0(1− 0)2

)

Pr [S ≤ E[S] + δ ] > 1− exp
(
− 2δ2

m · (t+ 1)

)

Setting ε = exp
(
−2δ2/(m · (t+ 1))

)
, we have

Pr

S ≤ E[S] +

√
m · (t+ 1) ln(1/ε)

2

 > 1− ε,

where E[S] is upper bounded in Claim 3.

6 An Injection-Secure SSE Scheme

We now present the first searchable symmetric encryption scheme that is secure against injection
attacks; i.e., that protects pre- and post-injection queries. The construction can be viewed as a
variant of the OPQ scheme of [6] with the underlying multi-map encryption scheme instantiated
with FIX and with a simple but important modification. Before describing this change, however, it
is useful to consider what happens if we were to use OPQ as-is.

The OPQ scheme. At a high level, the OPQ searchable symmetric encryption scheme is based
on an encrypted multi-map but uses it differently than the traditional index-based approach to
designing SSE. In other words, instead of encrypting the documents in the collection with a standard
encryption scheme and using an EMM to map keywords to document identifiers, OPQ maps the
keywords to tuples that consist of the documents that contain the keyword. This of course comes at
a price in storage but as observed in [6] it suppresses co-occurrence leakage. So one (flawed) attempt
at constructing an SSE scheme secure against injection attacks would be to use the OPQ scheme
with FIX as its underlying EMM. The problem with this approach is that the insert and delete
operations of OPQ reveal the size of the added/deleted document independently of the underlying
EMM’s add/delete leakage profile. This, in turn, means that using OPQ even with FIX as its
underlying EMM would not result in an SSE scheme with the appropriate leakage profile.

Overview. To address the limitation discussed above, we modify OPQ so that whenever a docu-
ment is added or deleted, FIX’s insert and delete operations are only invoked a fixed number of times
θ which is a public parameter. The scheme, FixSSE = (Setup, Search, Insert,Delete), is detailed in
Figure 5 and works as follows.
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Setup. The Setup algorithm takes as input a security parameter 1k and a document collection
DC = (D1, . . . , Dn), where each document Di is composed of keywords from some space W. It first
builds a multi-map MM that maps each keyword w ∈ W to a tuple t = (t1, . . . , tm) constructed
as follows. First, it finds the set of documents that contain the keyword w which we denote
DC(w) = {D ∈ DC : w ∈ D}. It then concatenates all the documents in DC(w) = (Dz1 , . . . , Dzm)
resulting in a document D? = Dz1‖ · · · ‖Dzm . The tuple element ti of t is then the ith B-sized
block of D?, where B ∈ N≥1. For simplicity we assume that, for all D ∈ DC, |D| is a multiple of B
but if this isn’t the case we just pad the last block to be of size B. It then runs FIX.Setup on MM
and outputs a key K, a state st and an encrypted multi-map EMM. Finally, the client outputs the
key K, the state st and the encrypted document collection EDC = EMM.

Search. This is a two-party protocol between the client and the server. The client and server
execute the FIX.Get protocol where the client’s input consists of the key K, the state st and a
keyword w ∈ W, whereas the server’s input consists of the encrypted document collection EDC.
The client outputs the subset of documents DC(w) and the server outputs ⊥.16

Insert. This is a two-party protocol between the client and the server. Given a document D, the
client builds a tuple t = (t1, . . . , tm) composed of B-sized blocks, where m = |D|/B. The client
extracts all keywords WD in document D. Then, for each w ∈ WD, the client and server execute
FIX.Append where the client’s input is K, st and an update u = (app, w, t) and the server’s input
is the encrypted document collection EDC. Then, for all i ∈ [θ −#WD], the client and the server
execute FIX.Append where the client’s input is K, st and an update u = (app,⊥, {⊥}) and the
server’s input is the encrypted document collection EDC. Finally, the client outputs an updated
state st′ whereas the server outputs an updated encrypted document collection EDC′.

Delete. The Delete protocol is the same as the Insert protocol except that instead of executing
FIX.Append, the client and server execute FIX.Erase.

Efficiency. The communication and computational complexities of FixSSE.Search are the same
as the communication and computational complexities of FIX.Get since the former just executes the
latter. Once executing the setup protocol and before any update operation, the expected storage
complexity is equal to O((λ + ν) · #W · B) where B is the block size and ν is the output size of
the pseudo-random function in both VLH and DVLH. The size of the stash in the worst-case is
at most #W/µ · |D?| where D? is the largest document stored by FixSSE.17 The communication
and computational complexities of FixSSE.Insert and FixSSE.Delete are θ times the complexities
of FIX.Append and FIX.Erase, respectively. Using the same parameters we used to analyze the
concrete efficiency of FIX and under the same assumptions, the complexity of FixSSE.Insert and
FixSSE.Delete is O(θ · log2(#L)).

16Note that FIX is a black-box construction that, itself, makes use of static and dynamic multi-map encryption
schemes. Depending on the correctness guarantees provided by the underlying concrete instantiations, the final
output of FIX.Get will vary. For simplicity, we assume here that FIX is instantiated with perfectly correct EMMs.

17As shown in Section 4, a more realistic bound can also be derived under the assumption that the documents are
sampled from some specific distribution such as the Zipf distribution.
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Security. The leakage profile of FixSSE is the same as FIX since all of the former’s operations just
execute the latter’s operations. The only difference is that during Insert and Delete operations θ
Append and Erase operations occur but since θ is a public parameter there is no additional leakage.
It follows then by Theorem 3.3 that FixSSE is secure against file injection attacks.
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Figure 5: The FixSSE searchable symmetric encryption scheme.
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[22] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans. Efficient dynamic searchable encryp-
tion with forward privacy. PoPETs ’18, Issue 1, 2018.
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