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Abstract

The HADES design strategy aims to provide an efficient
way to instantiate Arithmetization-Oriented primitives
by generalizing substitution-permutation networks to
include partial S-box rounds. A notable instance of
HADES, introduced by Grassi et al. at USENIX Security
’21, is POSEIDON. Owing to its impressive efficiency
and low arithmetic complexity, Poseidon has garnered
attention from designers of integrity-proof systems. An
updated version of POSEIDON, namely, Poseidon2 was
published recently at AfricaCrypt ’23 aiming to improve
the efficiency of POSEIDON by optimizing its linear
operations.

In this work, we show some caveats in the security ar-
gument of HADES against algebraic attacks. We provide
an upper bound on the complexity of XL attacks against
the HADES instances POSEIDON and Poseidon2. When
the desired security level is high, some instances of these
hash functions fail to provide the promised security. In
particular, the complexity of the XL attack against an
instance of POSEIDON and Poseidon2 claiming 512 bits
of desired security is upper bounded by 402.64 bits.

Furthermore, we quantify the complexity of Gröbner
basis attacks as a function of the number of S-boxes.
We observe that the complexity is lower than claimed
with the direct implication that there are cases where
the recommended number of rounds is insufficient for
meeting the claimed security. Concretely, the complexity
of a Gröbner basis attack for an instance with 1024 bits of
security is 731.77 bits and the original security argument
starts failing already at the 384-bit security level.

The findings presented in this paper are asymptotic in
nature and at this moment, only non-standard security
levels seem to be practically affected. The results were
shared with the designers.

1 Introduction

Arithmetization-Oriented (AO) primitives are a com-
mon building block for advanced cryptographic proto-
cols such as Zero-Knowledge (ZK) proofs, Multiparty
Computation (MPC), and Fully Homomorphic Encryp-
tion (FHE). AO primitives are usually defined over a
finite field of large order and designed to have a simple
and efficient algebraic representation. Examples of such
primitives are Rescue [4], Rescue-Prime [42], RPO [5], and
Chaghri [6] which are designed based on the Marvel-
lous design strategy [4], Griffin [28] and Anemoi [14]
which are Feistel-like designs, POSEIDON [29] and Po-
seidon2 [30] based on HADES design strategy, and more
examples such as MiMC [2], LowMC [3], Kreyvium [16],
FLIP [39], Rasta [23], Dasta [33], Pasta [24], Fasta [18],
Elisabeth [19], Rubato [32], Tip5 [43], to name just a few.

A promising approach fordesigning efficient AO prim-
itives is the HADES design strategy. POSEIDON and
its successor Poseidon2 are the most important and
widely used hash functions designed based on HADES
approach. POSEIDON is an efficient hash function oper-
ating over a prime field Fp. It is a sponge function [10]
instantiated by the POSEIDONπ permutation. Recently,
an optimized version, Poseidon2, was proposed which
only differs in the underlying permutation.

The main idea of the HADES design strategy is to
find the ideal combination of substitution-permutation
network (SPN) rounds called “full layers” and a Partial
SPN [27] (PSPN) rounds called “partial layers” to ensure
efficiency. In HADES, full layers are used to justify ar-
guments for the primitive’s resistance against statistical
attacks using the wide trail strategy. Then, partial rounds
are efficient rounds that not only improve the perfor-
mance of the design but also in combination with full
layers ensure resistance against algebraic attack. Indeed,
it is claimed that both full and partial layers provide
same resistance in case of algebraic attacks [31]. The flex-
ibility in utilizing the SPN and PSPN rounds provides
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the designers the opportunity to design optimal primi-
tives for various use cases. The security of the HADES
approach is based on an extensive analysis of various
techniques such as:

• Statistical attacks: Differential cryptanalysis, linear
cryptanalysis.

• Algebraic attacks: Interpolations attacks [34], Gröb-
ner basis attacks [21], Higher-Order differential at-
tacks [36], and Zero-Sum partitions attacks [13].

The security arguments of HADES and its instances
were scrutinized by third-party cryptanalysts which
presented security vulnerabilities exploiting the partial
layers [12, 35]. To wit, it has been observed that under
certain conditions, the linear operation of partial layers
results in invariant subspaces. Subsequently, the security
arguments and suggested secure parameters were up-
dated accordingly by imposing additional constraints on
the choice of the linear layer in the partial layer. Later, [9]
showed how to bypass two full rounds as an auxiliary ap-
proach for mounting algebraic attacks but no parameter
sets were yet shown to be vulnerable. Sauer designed an
algebraic attack to POSEIDON [40] and showed that the
resistance of POSEIDON against Gröbner basis attacks
is overstated. However, he did not provide any instance
that is indeed vulnerable.

Our contributions. We investigate the feasibility of
Gröbner basis attacks and XL attacks against POSEI-
DON and Poseidon2 as the most important instances of
HADES. Our approach is to conduct a thorough secu-
rity analysis against the CICO problem in the context of
Gröber basis and XL attacks, which are considered to
be among the most promising algebraic attacks against
AO designs [1].

To perform XL cryptanalysis, we calculate the smallest
degree D such that when the polynomial system describ-
ing POSEIDON is extended to degree D, the system is
over-determined and can be solved using linear algebra
techniques. An example of an instance whose claimed
security is violated using the XL attack can be found
in Table 1

λ log2(p) α t r RF RP CXL
512 64 3 24 8 8 42 402.64

Table 1: An instance of POSEIDON and Poseidon2 hash
functions with security parameter λ over the finite field
Fp. CXL is the upper bound of the complexity of the XL
attack.

To compute an upper bound for the complexity of
Gröbner basis attacks, we use the state-of-the-art ap-
proach to compute the solving degree through extrap-
olation and calculate an upper bound for it. Extrap-
olation of the solving degree is considered to be the

most accurate estimation of the Gröbner basis complex-
ity [4, 5, 9, 14,42,43]. Using our upper bound, we show
that the number of rounds is insufficient to provide the
claimed security level when the security level is high.
There are two main reasons for the overestimation of the
security of the POSEIDON instances. Firstly, the degree
of regularity of the system was assumed to follow the
Macaulay bound [37], which was shown to be inaccu-
rate [40] and quantified in our work. Secondly, it was
believed that partial rounds provide the same security
resistance against algebraic attacks as full rounds. We
demonstrate that in cases where the state size is larger
than two, partial rounds offer significantly less resis-
tance against Gröbner basis attacks than full rounds. To
show the impact of our observations and as a proof of
concept, we demonstrate an instance with 1024 bits of
security which are broken by our approach; the complete
parameter set can be found in Table 2.

λ log2(p) α t r RF RP CGB
1024 128 3 24 8 8 85 731.77

Table 2: an instance of POSEIDON hash function with
security parameter λ, state size t, rate r, and (RF ,RP) the
number of full and partial rounds, respectively. CGB is
the complexity of the Gröbner basis attack.

The proposed algebraic attacks suggest that the partial
layers do not provide the expected level of security
against algebraic attacks, requiring that the security
argument be re-evaluated for instances following this
design strategy.

Additionally, we conducted a more thorough investi-
gation into POSEIDON’s security argument with respect
to the claimed resistance against algebraic attacks. We
revealed three distinct flaws in these arguments, each
of which has implications for the required number of
rounds. First, we show a typo in the security argument
against Gröbner basis attacks in the full round setting.
Then, we show that the logical reasoning for the security
argument against the Gröbner basis attack is not sound.
Finally, we present an error in the symbolic computation
of bounds that undermines security.

Structure of the Paper. In Section 2, the notations used
throughout the paper and the required background ma-
terials are described. In Section 3, an overview of POSEI-
DON and Poseidon2 designs, their security arguments,
and the flaws in the security arguments are outlined.
In Section 4, a Gröbner basis attack is proposed, and vul-
nerable instances are demonstrated. In Section 5, the XL
attack is described and broken instances are described.
Finally, in Section 6, the paper is summarized, the steps
taken toward disclosure are outlined, and possible di-
rections for future research are discussed.
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2 Preliminaries

2.1 Notations
In this paper, we define λ as the security parame-
ter. To show an inclusive range of numbers, we use
[a,b] = {a, . . . ,b}. Vectors are denoted by bold capital
letters such as X,Y,Z, . . . and the elements of the vector
X are denoted by (x1, . . . ,xn). Matrices are denoted by
calligraphic capital letters such as M ,N where Mi, j is
the jth element in the ith row.

Definition 2.1 (Macaulay Matrix [38]). Let P ∈
K[x1, . . . ,xn] be a polynomial system with monomial
ordering ≺, the Macaulay matrix M [d](P ) of degree d
is a matrix with coefficients in K, where M [d]i, j is the
coefficient of the jth biggest monomial with respect to
≺ in the ith polynomial in the extended system. For ex-
ample, let P = {P1,P2}= {x2 + xy,y}. Then M [2](P ) for
degrevlex order is defined as:

M [2](P ) =

x2 xy y2 x y 1


1 1 0 0 0 0 P1
0 0 0 0 1 0 P2
0 1 0 0 1 0 xP2
0 0 1 0 1 0 yP2

.

Definition 2.2 (Linear Algebra Constant (ω) [44]). In
the rest of this paper, 2 < ω ≤ 2.3727 is defined as the
linear algebra constant and is the complexity of matrix
multiplication.

2.2 Polynomial Systems and How to Solve
Them

Let K be a field, the polynomial ring K[x1, . . . ,xn] is a set of
all polynomials in the variables x1, . . . ,xn and coefficients
in K. A polynomial system is a finite set of polynomials
P1, . . . ,Pm ∈ K[x1, . . . ,xn] such that:

P1(x1, . . . ,xn) = 0
P2(x1, . . . ,xn) = 0

...
Pm(x1, . . . ,xn) = 0

The polynomial systems typically describing AO hash
functions span a zero-dimensional ideal, meaning that
the set containing all their solutions is finite. In general,
solving a polynomial system is considered to be NP-hard
except in particular cases, e.g., when P1, . . . ,Pm are linear
functions. For the case when P1, . . . ,Pm are not linear
generic methods exist. In Sections 2.2.1 and 2.2.2 we
discuss the best currently known methods to solve a

general system. As a word of caution we stress that ad
hoc methods may outperform these generic algorithms
in particular cases, hence their complexity should be
interpreted only as an upper bound.

2.2.1 Univariate Polynomial Systems

The case where n = 1 is called a univariate polyno-
mial system. When solving a univariate polynomial
system of degree D defined over the finite field Fp the
Cantor/Zassenhaus [17] algorithm can be used with
complexity [41]:

O(D2(logD log logD)(log p+ logD)).

2.2.2 Multivariate Polynomial Systems

When n> 1 the polynomial system is said to be multivari-
ate. To solve multivariate polynomial systems defined
over a finite field, Gröbner basis methods are often used.
The steps to solve a multivariate polynomial system
using one of the Gröbner basis algorithms are:

1. Compute a Gröbner basis with respect to degrevlex
term order.

2. Convert the Gröbner basis to lex term order.

3. Find the roots of the polynomial system by factoring
univariate polynomials and extending the partial
solutions.

The primary motivation for first computing the Gröbner
basis in degrevlex order is its lower complexity compared
to other term orderings.

Complexity of Step 1. The complexity of computing a
Gröbner basis in degrevlex term order is upper bounded
by [11]:

O
((

n+dsol

dsol

)ω)
, (1)

where n is the number of variables in the multivariate
polynomial system and dsol is the solving degree of the
polynomial system [22].

Solving Degree. There are multiple notions of degrees
in the literature that aim to capture the complexity of the
Gröbner basis computation [8, 15]. In this work, we use
the solving degree, which is defined as the highest degree
of the polynomials involved in the computation of the
Gröbner basis using the celebrated F5 algorithm. In the
case of regular systems, the solving degree matches the
Macaulay bound which is defined as:

dsol =
m

∑
i=1

(di −1)+1,
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where di is the polynomial degree of Pi for 1 ≤ i ≤ m.
However, most of the AO primitives, when modeled

as a polynomial system, are not regular systems [4,9,40],
and in most of the cases, the solving degree grows slower
than the Macaulay bound.

To determine the solving degree, the current state-of-
the-art approach used in design and cryptanalysis is to
compute the solving degrees of round-reduced versions
of the system, and extrapolate a bound for it [1,4,9,14,40].

Complexity of Step 2. The computed Gröbner basis
in degrevlex order is usually complicated and not useful
for solving the system. Therefore, it is converted to a
Gröbner basis in lex order. The conversion is performed
using the FGLM [25] algorithm and the complexity is
upper bounded by:

O
(
nD3

)
,

where D is the degree of the zero-dimensional ideal.
In some cases, this step can be performed more effi-
ciently using the sparse FGLM [26] algorithm which has
asymptotic complexity of:

O(
√

6/nπD2+ n−1
n ). (2)

Complexity of Step 3. When the ideal is zero-
dimensional (as is the case for us), the Gröbner basis in
the lex order contains a unique univariate polynomial
that can be factored and is used to iteratively solve the
entire system. When the unique univariate polynomial
is factored, it results in a partial solution to the system.
In an iterative process, partial solutions are substituted
in other polynomials, and these are factored in a similar
way until a full solution is obtained. The complexity of
factoring a univariate polynomial is described in Sec-
tion 2.2.1.

2.2.3 The XL Attack

Another approach to solving multivariate polynomial
systems is the family of eXtended Linearization (XL) [20]
algorithms. To describe how the XL attack works, we
first state the Lemma 2.1.

Lemma 2.1. The number of monomials in variables
x1, . . . ,xn with degree less than or equal to D is

(n+D
D−1

)
.

Proof. Let the degree of xi be ai, then the degree of the
monomial is a1+ . . .+an. The degree is less than or equal
to D if:

a1 + . . .+an ≤ D ⇐⇒ a1 + . . .+an +b = D,

where each ai for 1 ≤ i ≤ n and b can take any value from
0 to D. The number of solutions for such a system is:(

n+D
D−1

)
.

.

The core idea of XL is to extend a polynomial system
by multiplying its polynomials by all monomials up to
a certain degree. More precisely, the polynomial system
P = {P1, . . . ,Pm} in variables x1, . . . ,xn is extended to:

Pext[d] = {m ·Pi|m ∈ Md},

where Md is a set of all monomials of degree at most d
in the same variables and is of size

(d+n
d−1

)
. The extended

system Pext[d] contains m
(d+n

d−1

)
polynomials. Consider

the case that all Pi have the same degree α, then the
maximum degree of Pext[d] is d + α and number of
monomials in Pext[d] is

(d+α+n
d+α−1

)
. When the number of

monomials is not larger than the number of polynomials
in the system, the Macaulay matrix of the polynomial
system is over-determined and can be solved using linear
algebra techniques. The complexity of the XL attack is
upper bounded by:

O
((

d +α+n
d +α−1

))ω

. (3)

2.3 The Sponge Construction
The Sponge construction [10] is a mode of operation that
transforms a fixed-length permutation to a hash function,
or in general a sponge function, that has variable-length
inputs and outputs. Let Fp be a finite field of order p and
f : Fn

p → Fn
p be a fixed-length transformation operating

over a state of size n with elements in Fp. The sponge
function F with rate r and capacity c where r+ c = n,
takes as input M of arbitrary length, and after applying
a padding function, generates the output H. The length
of the padded input and the output of F is a multiple of
r. The sponge function works as follows:

1. Let S be the state of the sponge function of length
n = r+ c.

2. The state S is initialized to (0, . . . ,0).
3. Absorbing phase: The padded message M is split

into χ blocks M1,M2, . . . ,Mχ of length r. For each
i ∈ 1,2, . . . ,χ, the Mi is added to the first r blocks of
S and the function f is applied i.e.,

S = f (S+Mi)

4. Squeezing phase: once all blocks of the padded
message have been absorbed, the squeezing phase
starts to generate the output. In this phase, the
function outputs blocks H1, . . . ,Hχ′ of length r and
update the internal state S by applying the function
f .
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Figure 1: A sponge function with rate r, capacity c, and
internal permutation f .

In Figure 1, a schematic construction of the sponge
function is illustrated. To study more about sponge
construction in the context of ZK-friendly hash functions,
we refer to [7].

Assuming that f is computationally indistinguishable
from a random permutation, a sponge function with
capacity c offers 2c/2 bits of collision resistance and
preimage resistance [10].

2.4 Security Definition of AO Hash Func-
tions

AO hash functions need to provide security against
preimage and collision attacks. Additionally, specific
AO hash functions, such as POSEIDON and Poseidon2
are required to be secure against Constrained Input-
Constraint Output (CICO) problem.

Definition 2.3 (Preimage resistance). A hash function
H : D → R is preimage resistant if for any y ∈ R it is
computationally infeasible to find x ∈ D such that H(x) =
y except in cases where x was already queried to H(·).

Definition 2.4 (Second-preimage resistance). A hash
function H : D → R is second-preimage resistant if for a
given x ∈ D, it is computationally infeasible to find x′ ∈ D
such that H(x) = H(x′).

Definition 2.5 (Collision resistance). A hash function
H : D → R is collision resistant if it is computationally
infeasible to find x,x′ ∈ D such that H(x) = H(x′).

Definition 2.6 (CICO resistance). A hash function H :
D→ R is CICO resistant if it is computationally infeasible
to find x∥x′ ∈ D and y∥y′ ∈ R such that H(x∥x′) = y∥y′

where ∥ represents the concatenation of elements.

2.5 The HADES Design Strategy
The HADES design strategy is a paradigm fordeveloping
efficient and secure AO primitives. HADES uses two
types of SPN networks, known as full layers—placed at
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Figure 2: The SPN layer at the beginning and the end are
full layers. The PSPN in the middle is the partial layer
where the S-box only applies to the first element of the
state.

the beginning and at the end of the permutation—and
partial layers, placed in the middle. Each full round of
HADES works as follows:

1. Add round keys.
2. Substitution (non-linear) layer applied to all the

elements in the state.
3. Permutation (linear) layer.

Each partial round of HADES works as follows:

1. Add round keys.
2. Substitution (non-linear) layer applied to specific

elements, usually the first one, in the state.
3. Permutation (linear) layer.

In Figure 2 an overview of the HADES design strategy
is depicted.

3 POSEIDON and Poseidon2

Let us denote the set of vectors over the finite field Fp

with arbitrary length with F∗
p. POSEIDON: F∗

p → (Fr
p)

χ′

is a hash function operating over Fp with output of
χ′ blocks of length r. It is constructed by using the
POSEIDONπ permutation in the sponge construction
with rate r and capacity c. POSEIDONπ is a permutation
with a state size of t and consists of R = RF +RP rounds,
where RF =R f +R f rounds are full rounds with t S-boxes,
and RP rounds are partial rounds with only one S-box
applied to the first element of the state. The POSEIDONπ

permutation is illustrated in Figure 3 and works as
follows:

1. Add round constants: ARCC : Ft
p → Ft

p, ARCC(X) =
X+C.
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2. Substitution layer: Sα : Fp → Fp, Sα(x) = xα, where
the S-box is applied to the first element (in partial
rounds), or all elements of the state (in full rounds).

3. Linear layer: LM : Ft
p → Ft

p, LM (X) = M ·X⊺ where
M is a MDS matrix.

Where M is a Cauchy matrix [45] and is defined as
follows:

Mi, j =
1

xi + y j
,

for pairwise distinct xi and y j with the condition that
xi + y j ̸= 0 for all i, j ∈ [1, t].

To improve the efficiency of POSEIDON, the authors
designed Poseidon2. Poseidon2 uses different partial
rounds and different linear layers. Posedion2 works as
follows:

1. Initial linear layer: LM ′ : Ft
p → Ft

p, LM ′(X) = M ′ ·X⊺

where M ′ is an MDS matrix.
2. For R rounds:

(a) Add round constants: ARCC : Ft
p → Ft

p

ARCC(X) = X+C.

In the case of partial rounds, C = (c1,0, . . . ,0).
(b) Substitution layer: Sα : Fp → Fp, Sα(x) = xα,

where the S-box is applied to the first element
(in partial rounds), or all elements of the state
(in full rounds).

(c) Linear layer: LM : Fp → Fp, LM (X) = M ·X⊺.

Where M is an MDS matrix. In case of full rounds,
M = M ′ and is same as the MDS matrices defined for
Griffin-π [28]. In case of partial rounds, M = M ′′ is
defined in [30, Section 5.2]. Figure 3 depicts how POSEI-
DON and Poseidon2 work and the updated operations
in Poseidon2 are denoted by dashed lines.

Instances of POSEIDON and Poseidon2 that provide
λ bits of security, guarantee that any algorithm that finds
collision or preimage requires a complexity of at least
2λ. In the case of the CICO problem, as long as finding
x∥x′ ∈ D using exhaustive search is not possible with
complexity less than 2λ, any algorithm that finds such
x∥x′ ∈ D requires a complexity of at least 2λ.

3.1 Security Claims for POSEIDON and Po-
seidon2

The analysis of POSEIDON’s security involves evalu-
ating the system’s vulnerability to two categories of
attacks, namely statistical attacks and algebraic attacks.
The authors established a constraint on the secure num-
ber of rounds R = RF +RP and the desired security level

AR
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AR
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S

S

S

Rp RfRf

AR
C

S

S

S

AR
C

S
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C

S

S

S

Rp RfRf

Figure 3: Construction of POSEIDONπ (bottom), and
POSEIDON2π (top) permutations. The modified steps
are shown with dashed line

λ by ensuring that none of the attacks can be executed
with a complexity of less than λ steps, thereby ensuring
the system’s resilience against potential attacks. In addi-
tion to this, the authors incorporated a security margin
to minimize the risk of any unpredicted weaknesses in
the system. The security margins are:

1. Two additional full rounds (+2RF), and

2. 7.5% of more partial rounds (+7.5%RP).

3.1.1 Generic Security

The sponge construction provides a generic security
level of 2c/2 bits. In addition, an ideal hash function with
security parameter λ is expected to provide 2λ bits of
security against preimage attacks. To provide resistance
against generic attacks, POSEIDON requires that λ ≤ c

2
and λ ≤ r.

3.2 Statistical Attacks
In [29, Equation 2], the minimum number of rounds to
ensure security against statistical attacks for S-boxes of
the form S(x) = xα is described as:{

6 if λ ≤ (⌊log2 p⌋− log2(α−1)) · (t +1)
10 otherwise.

(4)
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3.2.1 Algebraic Attacks

Evaluating the security of POSEIDON against algebraic
attacks suggests that Interpolation attacks and Gröbner
basis attacks have the lowest complexity. Therefore, the
constraints on the number of rounds derived from these
attacks are sufficient to provide resistance to other types
of algebraic attacks.

Interpolation Attacks. In [29, Equation 3], it is asserted
that for the security level of λ bits, the maximum number
of rounds vulnerable to the interpolation attack is:

R ≤ ⌈logα(2).min{λ, log2(p)}⌉+ ⌈logα(t)⌉ (5)

Gröbner Basis Attacks. In [29, Equation 5, 6], it is
asserted that for the security level of λ bits, the number
of rounds vulnerable to Gröbner basis is:R ≤ logα(2).min

{
λ

3 ,
log2(p)

2

}
R ≤ t −1+min

{
logα(2)·λ

t+1 ,
logα(2) log2(p)

2

} (6)

To compute the complexity, it is presumed that any
polynomial modelling of POSEIDON forms a regular
sequence. In such a case, the the solving degree would
coincide with the Macaulay bound [29, Section C.2.2].

3.3 Sufficient Number of Rounds
By applying the constraints specified in Equations (4)–(6)
and the security margin, the total number of rounds to
ensure the resistance of POSEIDON to studied attacks
can be computed. A Python script is provided to facili-
tate the computation of the number of rounds1. In our
analysis, we utilized this script to calculate the necessary
number of rounds required to ensure the security of our
chosen parameters.

3.4 Flaws in the Security Analysis of POSEI-
DON

In addition to the oversight described in Section 5 and
the major flaw described in Section 4, we identified
three more minor flaws which, when combined, increase
the likelihood of an attack to exist. In Section 3.4.1,
we demonstrate that using loose bounds in security
arguments leads to incorrect conclusions. In Section 3.4.2,
we investigate the security argument against Gröbner
basis attacks in the case of χ = 1, where the system is
already a Gröbner basis in the full-permutation setting.
We highlight a typo causing an underestimation of the
required number of rounds. Finally, in Section 3.4.3, we
identify a flaw in the symbolic computations of round-
level Gröbner basis analysis that led to an overestimation
of the number of rounds.

1https://extgit.iaik.tugraz.at/krypto/hadeshash

3.4.1 Improper Logic

The argument fordetermining the numberof rounds that
is safe against Gröbner basis attack can be summarized
as follows [29, Section 5.5.2]:

1. Compute the complexity of the attack as a function
of the POSEIDON parameters α,RF ,RP, t,r,χ,λ.

2. Optionally,derive an upper bound for the computed
complexity that is easier to manipulate.

3. Calculate the maximum number of rounds R∗
F and

R∗
P that can be attacked given the parameters of

POSEIDON.

4. Assume that all values for RF ,RP higher than R∗
F ,R

∗
P

cannot be attacked and are secure.

The problem arises due to Step 2, where a lower bound
should be used. As a result, Step 4 concludes resistance
against adversaries that Step 3 did not handle.

Consider a simple example: let us assume that a
sponge construction with rate r uses an N-round per-
mutation; further, assume an attack with complexity
23Nr. However, this expression may be challenging to
work with (e.g., because 3 is odd and we wish to take
a square root) so we attempt to simplify it by noting
that 23Nr ≤ 24Nr, although this is not a tight upper bound.
Using the argumentation shown above, we find N∗ from:

24N∗r = 2λ.

Solving for N∗ yields

N∗ =
λ

4r
.

Consequently, for all 0 ≤ N ≤ N∗, a sponge function
using the N-round permutation can be attacked. This is
still a true statement. Using the above argumentation, it
is then conjectured that the sponge function is safe from
attacks for all N ≥ N∗ = λ

4r . This is not a true statement as
now using the proper expression to find a safe number
of rounds Ns, we obtain

23Nsr = 2λ,

and find:

Ns =
λ

3r
.

Therefore, for all 0 ≤ N ≤ Ns, the sponge function can
be attacked, and for all N > Ns, the sponge function is
safe for the given security level. The problem is that for
N∗ ≤ N ≤ Ns, we argued that the sponge construction
with N rounds is safe, while it is not the case. When
using Step 3 and Step 4 outlined earlier, one should use

7

https://extgit.iaik.tugraz.at/krypto/hadeshash


a lower bound rather than an upper bound in Step 2, as
it may result in an overestimation of the resistance of
the sponge function against attacks.

Similarly, the resistance of POSEIDON against a round-
level Gröbnerbasis attack is found to be (up to reasonable
approximation) [29]:

CGB = 2Cq−C′
,

with

C = 2log2

(
αα

(α−1)α−1

)
C′ = log2

(
2π(α−1)q

α

)
q = (t −1)RF +RP +χ

That concludes Step 1. In Step 2, this approximation was
upper-bounded by:

CGB = 2C·q−C′ ≤ 2C·q, (7)

Ultimately, resistance against the round-level attack is
assumed as long as:

(t −1)RF +RP ≥C−1 min{λ, log2(p)}−1, (8)

Since (7) is not a tight bound (8) necessarily underesti-
mates the required number of round. The effect of this
omission is more noticeable when the power map α,
state size t, and rate χ grow.

3.4.2 Transcription Error

Full-Permutation Equation. In the full round equation
setting [29, Section C.2.2], a system of equations for the
entire R rounds is derived by considering each input as
a variable and applying the round functions to them.
When the number of input variables χ is the same as the
number of output variables, the resulting system will
consist of χ equations in χ variables, and the degree of
each polynomial is upper-bounded by Dα(R) = αR.

When χ= 1, the system consists of a single polynomial
of degree at most αR in one variable, which is already
a Gröbner basis in lex order. Therefore, the only step
required to complete the attack is the factorization of
the univariate polynomial. Per the security argument
provided in [29, Section C.2.2], one should have:

log2
(
αωR

)
≥ log2

(
α2R
)
≥ min{λ, log2(p)},

which implies:

R ≥
⌈

min{λ, log2(p)}
2log2 α

⌉
= logα(2) ·min{λ

2
,

log2(p)
2

},

where R = RF +RP. Later, the designers in [29, Equation
11], write the constraint for the full round attack as:

RF +RP ≥ logα(2) ·min{λ

3
,

log2(p)
2

}, (9)

where the denominator of the fraction λ

3 is 3 instead of
2. This mistake results in an overestimation of the secu-
rity that the POSEIDON permutation provides against
Gröbner basis attacks in the case where χ = 1.

As an example of how the mistake influences the
number of rounds, the constraint in [29, Equation 5]
would imply that 6 full rounds and 22 partial rounds
are sufficient for α = 3, t = 2, p ≈ 21024, and the desired
security level of 128 bits, whereas to gain that security
level for these parameters, at least 35 partial rounds are
required.

3.4.3 Symbolic Computation Error

In [29, Section C.2.2] it is shown that for security level of
λ, the maximum number of rounds that can be attacked
using Gröbner basis is:

(t −1)RF +RP +χ ≤C−1 ·min{λ, log2(p)χ}, (10)

with

C = 2log2

(
αα

(α−1)α−1

)
.

The designers argue that the maximal number of
rounds that can be attacked is when χ = 1 [29, Section
C.2.2] but this is not true. Rewritting (10), we get

(t −1)RF +RP ≤C−1 ·min{λ−χC,χ(log2(p)−C)}.

Here, the first argument of the minimum function
is indeed maximized for χ = 1, but the last argument
is maximized for χ = t −1 because λ−C is positive for
the suggested parameters of POSEIDON. Ultimately,
security is conjectured if:

(t −1)RF +RP ≥C−1 ·min{λ, log2(p)}+ t −2,

but if we address the algebra error, we obtain:

(t −1)RF +RP ≥C−1 ·min{λ+C(t −2), log2(p)(t −1)}.

Previously, the constraint for this kind of Gröbner
basis attack appeared to be less restrictive than the
other attacks, as it was subsumed by the constraints
for the other kinds of Gröbner basis attacks [29, Equa-
tion 11]. However, once the error is addressed, this is
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no longer true. More importantly, there are parameter
sets for which this constraint would require the highest
number of partial rounds to be secure. For example, for
α = 3, log2(p)≈ 256,λ = 1536,RF = 8, t = 8, an interpola-
tion attack would be thwarted if RP ≥ 158, a subspace
attack would fail if RP ≥ 80, and a full-permutation attack
requires RP ≥ 73, but a round-level Gröbner basis attack
require RP ≥ 230 to achieve required resistance. There-
fore, [29, Equation. 5] requires three constraints rather
than two and this omission does affect the required
number of rounds for some parameter sets.

4 The Gröbner Basis Attack

The CICO resistance of POSEIDON and Poseidon2 is
analyzed using the Gröbner basis attacks in this section.
To solve CICO problem, we first model POSEIDON and
Poseidon2 as a system of multivariate polynomials with
known output and unknown input and we solve the
system to find the desired input.

4.1 POSEIDON: Polynomial Modeling

POSEIDON is modeled for the case where α = 3, the
number of input blocks of size r is χ = 1 and the under-
lying permutation is applied only once. In POSEIDON,
which is a sponge function, the first r elements of the
input state of the permutation are absorbed from the in-
put, and the next c elements are initialized to a constant
value. Without loss of generality, we can assume that
the last c element of the input state is initialized to 0.

while it is possible to model POSEIDON in vari-
ous ways using algebraic relations describing them,
the model that minimizes the complexity of the Gröbner
basis attack is the preferred one.

After a thorough analysis of various methods for
polynomial modeling, we identified the approach used
by Sauer [40] that aims to minimize the solving degree of
the system results in the lowest theoretical complexity.

In the described polynomial system, Ci = {ci,1, . . . ,ci,t}
denotes the round constants for the round i ∈
{1, . . . ,R}. Xi = {xi,1, . . . ,xi,t} are the variables that
are describing the state of the round i ∈ {0, . . . ,R},
where X0 = (x1, . . . ,xr,0, . . . ,0) is the input and XR =
(H1, . . . ,Hr,xR,r+1, . . . ,xR,t) is the output. The first round
of the POSEIDON before multiplication by M can be
described as:

x1, j − (x0, j + c1, j)
α = 0 j ∈ [1,r],

that has 2r variables and r polynomials. The state after

the first and second S-box layers is modeled as follows:

x2, j −

((
r

∑
k=1

M j,k · x1,k +
t

∑
k=r+1

M j,k · cα

1,k

)
+ c2, j

)α

= 0,

where j ∈ [1, t]. The described polynomials add t new
variables and t new polynomials to the system. The next
R f full rounds (i.e., 3 ≤ i ≤ R f ) are modeled as:

xi, j −

((
t

∑
k=1

M j,k · xi−1,k

)
+ ci, j

)α

= 0 j ∈ [1, t],

which add (R f −2)t new variables and (R f −2) new
polynomials to the system. We introduce a variable Y
to simplify the equations for partial rounds and it is
initialized as:

Y⊺ = M · (xR f ,1, . . . ,xR f ,t)
⊺.

The partial rounds R f < i ≤ R f +RP are modeled as:

xi,1 − (y1 + ci,1)
α = 0

y j = M j,1 · xi,1 +
t

∑
k=2

M j,k · (yk + ci,k) j ∈ [1, t],

which add RP new variables and RP new polynomials
to the system. The last R f rounds R f +Rp < i ≤ R−1 are
modeled as:

xi, j − (y j + ci, j)
α = 0 j ∈ [1, t]

y j =
t

∑
k=1

M j,k · xi,k j ∈ [1, t],

that add (R f −1)t variables in (R f −1)t polynomials to
the system. Finally, the last round is modeled as:

t

∑
k=1

M −1
j,k · xR,k − (y j + cR, j)

α = 0 j ∈ [1, t].

The last round adds c new variables and t polynomial
to the system. The final system has r+(RF − 1)t +RP
polynomials of degree α in r+(RF −1)t +RP variables.

Considering that t and r as constants, the linear re-
gression of dsol on number of rounds RF ,RP based on
the experimental data is:

dsol = r
RF

2
+0.8RP +α (11)

4.2 Poseidon2: Polynomial Modeling
POSEIDON and Poseidon2 differ in the linear layer,
constant addition layer for partial rounds, and the initial
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round. The first round can be modeled as follows:

x1, j −

(
t

∑
k=1

M ′′[ j,k] · x0,k + c1, j

)α

= 0 j ∈ [1,r],

The full rounds are modeled in the same way as Sec-
tion 4.1 with different coefficients coming from M ′′. The
partial rounds are modeled as follows:

xi,1 − (y1 + ci,1)
α = 0

y j = M ′
j,1 · xi,1 +

t

∑
k=2

M ′
j,k · (yk) j ∈ [1, t].

Where Y is defined in the same way as Section 4.1. The
final system, similar to POSEIDON’s system, has r +
(RF −1)t +RP polynomials of degree α in r+(RF −1)t +
RP variables. The solving degree of Poseidon2 is equal
to POSEIDON when RF > 2 and hence Equation (11) is
the linear regression of the collected data for solving
degree.

4.3 Complexity of the Attack and Broken
Parameters

The complexity of computing Gröbner basis for different
instances of POSEIDON is determined by the solving
degrees. Our experiments confirm that POSEIDON and
Poseidon2 can be modeled as a sequence of polynomials
that are not regular. Therefore, the Macaulay bound used
in [29] overestimates the resistance against the Gröbner
basis attacks.

We show that partial rounds do not provide the same
level of resistance against algebraic attacks as full rounds.
More specifically, the complexity of the attack is a func-
tion of the number of S-boxes rather than the number of
rounds and the partial rounds increase the solving de-
gree by at most one in each round. Moreoverm There are
cases where partial rounds do not increase the solving
degree at all.

We calculated the solving degree for more than 100
different parameters of POSEIDON and Poseidon2, with
state size up to 5 and rate up to 4. Our experiments show
that the degree of the non-linear transfer, α, does not
affect the growth of the solving degree and only affects
the constant number in the affine equation of the upper
bound. The field size also has no effect on the solving
degree based on our experiments. In the case of Posei-
don2, the solving degree is the same as POSEIDON’s
solving degree when RF > 2. Using the collected data,
and the fact that the solving degree grows linearly as
a function of number of variables, we extrapolate the
solving degree as follows:

dsol = r
RF

2
+RP +α. (12)

In Figure 4,we compared the solving degree,ourupper
bound for solving degree, and the Macaulay bound
(POSEIDON’s claimed degree) in case of growth in the
number of partial rounds.

Using dsol , the complexity of the Gröbner basis attack
can be summarized as:

1. Computing the Gröbner Basis in degrevlex Order.

(
(RF −1) t +RP + r+ r RF

2 +RP +α

r RF
2 +RP +α

)2.3727

2. Changing the Term Order to lex Order. The degree
of the corresponding zero-dimensional ideal is:

dI = α
r·RF+RP ,

and the asymptotic complexity of the sparse FGLM
is:

O

(√
6

((RF −1)t +RP + r)π
(α)

(
2+ (RF−1)t+RP+r−1

(RF−1)t+RP+r

)
·dI

)
.

3. Complexity of Finding the Variety. The largest
degree of polynomials in the final Gröbner basis
with respect to lex order is:

dGB = α
r·(RF−1)+RP ,

and the complexity of finding the variety is:

O
(
(dGB)

2 (log(dGB) log log(dGB))(log p+ log(dGB))
)
.

In Table 3, we describe instances of POSEIDON and
Poseidon2 that the complexity of Gröbner basis attack
is less than their claimed security level.

λ α t r RF RP CGB CSFGLM CElim
1024 3 24 8 8 85 731.77 705.67 466.18
512 5 12 4 8 57 435.10 615.40 413.62
384 7 9 3 8 47 361.81 593.25 400.61

Table 3: Examples of POSEIDON and Poseidon2 hash
functions with security parameter λ over the finite field
Fp with log2(p) ≈ 128. CGB is the complexity of com-
puting the Gröbner basis in degrevlex order, CSFGLM is
the asymptotic complexity of sparse FGLM, and CElim
is the complexity factoring univariate polynomials and
recovering their roots.
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Figure 4: The comparison of our upper bound (dashed
line), the solving degree, and the Macaulay bound used
to argue POSEIDON security. In all three plots, t = 2, p =
65519, and RF is fixed.

5 The XL Attack

Let P denote the polynomial system describing POSEI-
DON. Then for the parameter sets (α, t,r,RF ,RP), P is a
system with N = r+(RF − 1)t +RP polynomials of de-
gree α in N = r+(RF −1)t+RP variables. To perform the
XL attack, we compute the smallest degree D such that
extending P results in an over-determined Macaulay
matrix. More precisely, the degree D is the smallest
non-negative integer such that:

N
(

N +D−α

D−1

)
≥
(

N +D
D−1

)
.

The degree D ensures that the Macaulay matrix of the
extended system is over-determined and can be solved
using linear algebra operations. In Table 4, some in-
stances that are vulnerable to XL attack is described.
These results apply to both Poseidon and Poseidon2.

λ log2(p) α t r RF RP D CXL
1024 128 3 24 8 8 85 50 459.87
512 64 3 24 8 8 42 45 402.64

Table 4: Instances of POSEIDON and Poseidon2 hash
functions with security parameter λ over the finite field
Fp. CXL is the upper bound of the complexity of the XL
attack and D is the degree of the extended system.

6 Discussion

We conclude this work by summarizing the results,
the steps taken toward disclosure and possible future
research directions.

6.1 Disclosure
The results presented in section 3.4 and section 4 were
shared with the designers. They have confirmed them
and updated their documentation to provide concrete
information about which instances of POSEIDON and
Poseidon2 are safe to use. They were subsequently up-
loaded to ePrint and shared on Twitter by one of the
designers. Due to time constraints, the XL attack pre-
sented in section 5 was not shared with the designers
and this will be done in parallel to the review process.

Since the vulnerabilities presented in this paper are
more pronounced in non-standard security levels we
are not aware of any practical instance directly affected
and therefore do not call for immediate action. However,
we encourage the potential users to take into account in
their risk assessment the ongoing erosion in the security
of HADES instances.
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6.2 Future Research Directions
In the pursuit of designing more secure ciphers, further
investigation into the behavior of symmetric primitives
with regard to algebraic attacks, as well as the analysis of
the interplay between theoretical complexities and the
actual running time of such attacks, is highly valuable.
Within the scope of our work, we employed conservative
upper bounds for determining the complexity of the
attacks. In the case of the Gröbner basis attacks, we
chose to neglect instances in which the solving degree
remains static during some rounds. Hence, we posit that
by adopting a less restrictive approach, we may improve
the efficacy of the attack and be able to successfully break
a larger set of parameters. Another possible direction
of research is to investigate the resistance of partial
SPN layers against algebraic attacks and quantify the
complexity of algebraic attacks as a function of the
number of rounds and the number of S-boxes in order
to design efficient and secure primitives. Finally, no
attempt was made to optimize the second and third
steps of the Gröbner basis attack despite these steps
sometimes being the bottleneck for a successful attack
(see table 3).

6.3 Summary
In this paper, we analyzed the security of POSEIDON
and Poseidon2 which are primitives based on the
HADES design strategy. We studied two categories of
algebraic attacks, namely XL attacks and Gröbner basis
attacks,andshowedthatpartial rounds are notproviding
the claimed resistance. Using Gröbner basis attacks, we
break instances of POSEIDON and Poseidon2 claiming
1024 bits of security using an attack whose complexity
is upper bounded by 2731.77 and show that the original
security argument does not hold for instances with as
small as 384 bits of claimed security. Using the XL attack,
we break instances of POSEIDON and Poseidon2 with
512 bits of security using an attack whose complexity is
upper bounded by 2402.64.
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