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Abstract

We present a general compiler to add the publicly verifiable deletion property for various cryptographic primitives
including public key encryption, attribute-based encryption, and quantum fully homomorphic encryption. Our compiler
only uses one-way functions, or more generally hard quantum planted problems for NP, which are implied by one-way
functions. It relies on minimal assumptions and enables us to add the publicly verifiable deletion property with no
additional assumption for the above primitives. Previously, such a compiler needs additional assumptions such as
injective trapdoor one-way functions or pseudorandom group actions [Bartusek-Khurana-Poremba, ePrint:2023/370].
Technically, we upgrade an existing compiler for privately verifiable deletion [Bartusek-Khurana, ePrint:2022/1178] to
achieve publicly verifiable deletion by using digital signatures.
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1 Introduction
1.1 Background
Quantum mechanics yields new cryptographic primitives that classical cryptography cannot achieve. In particular, the
uncertainty principle enables us to certify deletion of information. Broadbent and Islam [BI20] introduced the notion of
quantum encryption with certified deletion, where we can generate a classical certificate for the deletion of quantum
ciphertext. We need a verification key generated along with a quantum ciphertext to check the validity of a certificate. The
root of this concept is revocable quantum time-release encryption by Unruh [Unr15], where a sender can revoke quantum
ciphertext if a receiver returns it before a pre-determined time. Encryption with certified deletion is useful because
encryption security holds even if adversaries obtain a secret decryption key after they generate a valid certificate for
deletion. After the work by Broadbent and Islam [BI20], many works presented extended definitions and new constructions
of quantum (advanced) encryption with certified deletion [HMNY21, Por23, BK22, HKM+23, BGG+23, BKP23]. In
particular, Bartusek and Khurana [BK22], and Hiroka, Kitagawa, Morimae, Nishimaki, Pal, and Yamakawa [HKM+23]
considered certified everlasting security, which guarantees that computationally unbounded adversaries cannot obtain
information about plaintext after a valid certificate was generated. Several works [HMNY21, Por23, BGG+23, BKP23]
considered public verifiability, where we can reveal verification keys without harming certified deletion security. These
properties are desirable for encryption with certified deletion in real-world applications.

In this work, we focus on cryptographic primitives with publicly verifiable deletion (PVD) [BKP23], which
satisfy certified everlasting security and public verifiability. Known schemes based on BB84 states are privately
verifiable [BI20, HMNY21, BK22, HKM+23], where we need to keep verification keys secret to ensure encryption
security. Some schemes are publicly verifiable [HMNY21, Por23, BGG+23, BKP23]. Public verifiability is preferable
to private verifiability since we need to keep many verification keys secret when we generate many ciphertexts of
encryption with privately verifiable deletion. More secret keys lead to more risks. In addition, anyone can verify
deletion in cryptography with PVD.

Hiroka, Morimae, Nishimaki, and Yamakawa [HMNY21] achieved interactive public key encryption with non-
everlasting PVD from extractable witness encryption [GKP+13], which is a strong knowledge-type assumption, and
one-shot signatures which require classical oracles [AGKZ20]. Poremba [Por23] achieved public key encryption (PKE)
and fully homomorphic encryption (FHE) with non-everlasting PVD based on lattices. He conjectured Ajtai hash
function satisfies a strong Gaussian collapsing property and proved the security of his constructions under the conjecture.
Later, Bartusek, Khurana, and Poremba [BKP23] proved the conjecture is true under the LWE assumption.

Bartusek, Garg, Goyal, Khurana, Malavolta, Raizes, and Roberts [BGG+23] achieved primitive X with PVD from X
and post-quantum secure indistinguishability obfuscation (IO) [BGI+12] where X ∈ {SKE, COM, PKE, ABE, FHE, TRE, WE}.1
They also achieved functional encryption with PVD and obfuscation with PVD, which rely on post-quantum IO. All
their constructions use subspace coset states [CLLZ21]. Bartusek et al. [BKP23] achieved PKE (resp. COM) with PVD
from injective trapdoor one-way functions (or superposition-invertible regular trapdoor functions) or pseudorandom
group actions [HMY22] (resp. almost-regular one-way functions). They also achieved primitive Y with PVD from
injective trapdoor one-way functions (or superposition-invertible regular trapdoor functions) or pseudorandom group
actions, and primitive Y where Y ∈ {ABE, QFHE, TRE, WE}. They obtained these results by considering certified
everlasting target-collapsing functions as an intermediate primitive.

As we explained above, known encryption with PVD constructions need strong and non-standard assump-
tions [HMNY21, BGG+23], algebraic assumptions [Por23, BKP23], or additional assumptions [BKP23]. This status is
unsatisfactory because Bartusek and Khurana [BK22] prove that we can achieve X with privately verifiable deletion2

from X where X ∈ {SKE, COM, PKE, ABE, FHE, TRE, WE}3 without any additional assumptions. Thus, our main
question in this work is the following.

Can we achieve encryption with PVD from minimal assumptions?
1SKE, COM, ABE, TRE, and WE stand for secret key encryption, commitment, attribute-based encryption, time-release encryption, and witness

encryption, respectively. Although Bartusek et al. [BGG+23] did not mention, we can apply their transformation to SKE and COM as the results by
Bartusek and Khurana [BK22].

2We do not abbreviate when we refer to this type to avoid confusion.
3Although Bartusek and Khurana [BK22] did not mention, we can apply their transformation to SKE.
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1.2 Our Results
We affirmatively answer the main question described in the previous section. We present a general transformation from
primitive Z into Z with PVD where Z ∈ {SKE, COM, PKE, ABE, QFHE, TRE, WE}. In the transformation, we only
use one-way functions, or more generally, hard quantum planted problems for NP, which we introduce in this work and
are implied by one-way functions.

More specifically, we extend the certified everlasting lemma by Bartusek and Khurana [BK22], which enables us to
achieve encryption with privately verifiable deletion, to a publicly verifiable certified everlasting lemma. We develop
an authentication technique based on (a variant of) the Lamport signature [Lam79] to reduce our publicly verifiable
certified everlasting lemma to Bartusek and Khurana’s certified everlasting lemma.

Our new lemma is almost as versatile as Bartusek and Khurana’s lemma. It is easy to apply it to all-or-nothing type
encryption4, where a secret key (or witness) holder can recover the entire plaintext. One subtle issue is that we need to
use QFHE for (Q)FHE with PVD. The reason is that we need to apply an evaluation algorithm to quantum ciphertext.
Note that we can use FHE and Bartusek and Khurana’s lemma to achieve FHE with privately verifiable deletion.

The advantages of our techniques are as follows:

• For Z′ ∈ {SKE, COM, PKE, ABE, QFHE, TRE}, we can convert plain Z′ into Z′ with PVD with no additional
assumption. For WE, we can convert it into WE with PVD additionally assuming one-way functions (or hard
quantum planted problems for NP).5 Bartusek et al. [BKP23] require injective (or almost-regular) trapdoor
one-way functions, pseudorandom group actions, or almost-regular one-way functions for their constructions.

• Our transformation is applicable even if the base scheme has quantum encryption and decryption (or committing)
algorithms.6 This means that our assumptions are minimal since Z with PVD implies both plain Z with
quantum encryption and decryption (or committing) algorithms and hard quantum planted problems for NP for
Z ∈ {SKE, COM, PKE, ABE, QFHE, TRE, WE}.

• Our approach is simple. Bartusek et al. [BKP23] introduced an elegant intermediate notion, certified everlasting
target-collapsing, to achieve cryptography with PVD. However, they use a few more intermediate notions (such
as balanced binary-measurement target-collision-resistance) for their approach.

1.3 Technical Overview
As explained in Section 1.1, Bartusek and Khurana [BK22] gave a generic compiler to add the privately verifiable
deletion property for various types of encryption. Our finding is that there is a surprisingly simple way to upgrade their
compiler to achieve publicly verifiable deletion by additionally using digital signatures.

Notations. For a bit string x, we write xj to mean j-th bit of x. For bit strings x, θ ∈ {0, 1}ℓ, we write |x⟩θ to mean
the BB84 state

⊗
j∈[ℓ] Hθj

∣∣xj
〉

where H is the Hadamard operator.

Certified everlasting lemma of [BK22]. The compiler of [BK22] is based on the certified everlasting lemma described
below.7 We describe it in the dual version, where the roles of computational and Hadamard bases are swapped for
convenience. We stress that the dual version is equivalent to the original one because they coincide under an appropriate
basis change.

Consider a family of distributions {Z(m)}m∈{0,1}λ+1 over classical strings, such that for any m ∈ {0, 1}λ+1, the
distributionZ(m) is computationally indistinguishable from the distributionZ(0λ+1). In other words, each distribution
Z(m) can be thought of as an “encryption” of the input m. Let Z̃(b) be an experiment between an adversary and
challenger defined as follows for b ∈ {0, 1}:

4SKE, PKE, ABE, (Q)FHE, TRE, and WE fall into this category.
5WE does not seem to imply one-way functions.
6The compilers of [BK22, BKP23] are also applicable to schemes that have quantum encryption and decryption (or committing) algorithms

though they do not explicitly mention it.
7For simplicity, we state a simplified version of the lemma that is sufficient for the conversion for PKE, FHE, TRE, and WE, but not for ABE. See

Lemma 4.1 for the general version.
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• The challenger samples x, θ ← {0, 1}λ and sends |x⟩θ and Z(θ, b⊕⊕
j:θj=1 xj) to the adversary.

• The adversary sends a classical string x′ ∈ {0, 1}λ and a quantum state ρ to the challenger.

• The challenger outputs ρ if x′j = xj for all j such that θj = 0, and otherwise outputs a special symbol ⊥ as the
output of the experiment.

The certified everlasting lemma states that for any QPT adversary, the trace distance between Z̃(0) and Z̃(1) is
negligible in λ.

The above lemma immediately gives a generic compiler to add the privately verifiable deletion property. To encrypt
a message b ∈ {0, 1}, we set the ciphertext to be (|x⟩θ , Enc(θ, b⊕⊕

j:θj=1 xj)), where x and θ are randomly chosen
from {0, 1}λ, and Enc is the encryption algorithm of the underlying scheme.8 The decryptor first decrypts the second
component to get (θ, b⊕⊕

j:θj=1 xj), recovers
⊕

j:θj=1 xj from |x⟩θ and θ, and then XORs it with b⊕⊕
j:θj=1 xj to

recover b. To delete the ciphertext and obtain a certificate x′, we measure |x⟩θ in the standard basis. To verify the
certificate, we check if x′j = xj for all j such that θj = 0. By utilizing the above lemma, we can see that an adversary’s
internal state will not contain any information about b given the verification algorithm’s acceptance. Therefore, the
scheme offers certified everlasting security. However, this scheme has only privately verifiable deletion because the
verification algorithm needs to know x and θ, which are part of the encryption randomness that has to be hidden from
the adversary.

Making verification public via digital signatures. We show a publicly verifiable variant of the certified everlasting
lemma by using digital signatures. Roughly speaking, our idea is to generate a signature for the BB84 state |x⟩θ by
coherently running the signing algorithm so that the verification of deletion can be done by the verification of the
signature, which can be done publicly. Note that the signature does not certify |x⟩θ as a quantum state. It rather certifies
its computational basis part (i.e., xj for j such that θj = 0). This is sufficient for our purpose because the verification of
deletion just checks the computational basis part.

With the above idea in mind, we modify the experiment Z̃(b) as follows:

• The challenger generates a key pair (vk, sigk) of a digital signature scheme and samples x, θ ← {0, 1}λ. Let
Usign be a unitary that works as follows:

|m⟩ |0 . . . 0⟩ 7→ |m⟩ |Sign(sigk, m)⟩ .

where Sign(sigk, ·) is a deterministic signing algorithm with a signing key sigk. The challenger sends vk,
Usign |x⟩θ |0 . . . 0⟩, and Z(sigk, θ, b⊕⊕

j:θj=1 xj) to the adversary.

• The adversary sends a classical string x′ ∈ {0, 1}λ, a signature σ, and a quantum state ρ to the challenger.

• The challenger outputs ρ if σ is a valid signature for x′, and otherwise outputs a special symbol ⊥ as the output of
the experiment.

We show that for any QPT adversary, the trace distance between Z̃(0) and Z̃(1) is negligible in λ if we instantiate the
digital signatures with an appropriate scheme as explained later. The crucial difference from the original lemma is
that the challenger does not need to check if x′j = xj for all j such that θj = 0 and only needs to run the verification
algorithm of the digital signature scheme.

By using the above variant similarly to the original privately verifiable construction, we obtain a generic compiler
that adds publicly verifiable deletion property. For clarity, we describe the construction below. To encrypt a
message b ∈ {0, 1}, the encryption algorithm generates a key pair (vk, sigk) of the digital signature scheme, chooses
x, θ ← {0, 1}λ, and outputs a ciphertext (Usign |x⟩θ , Enc(sigk, θ, b⊕⊕

j:θj=1 xj)) and a public verification key vk.
The decryptor first decrypts the second component to get (sigk, θ, b⊕⊕

j:θj=1 xj), uncompute the signature register of
the first component by using sigk to get |x⟩θ , recovers

⊕
j:θj=1 xj from |x⟩θ and θ, and then XORs it with b⊕⊕

j:θj=1 xj

8We write Enc(θ, b⊕⊕
j:θj=1 xj) to mean an encryption of the message (θ, b⊕⊕

j:θj=1 xj) where we omit the encryption key.

5



to recover b. To delete the ciphertext and obtain a certificate (x′, σ), we measure Usign |x⟩θ in the standard basis to get
(x′, σ). To verify the certificate, we check if σ is a valid signature for x′. By utilizing the above lemma, we can see that
the above scheme achieves certified everlasting security with public verification.

Proof idea and instantiation of digital signatures. We prove the above publicly verifiable version by reducing it to
the original one in [BK22]. Noting that Z(sigk, θ, b⊕⊕

j:θj=1 xj) computationally hides sigk by the assumption, a
straightforward reduction works if the digital signature scheme satisfies the following security notion which we call
one-time unforgeability for BB84 states.

Definition 1.1 (One-time unforgeability for BB84 states (informal)). Given vk and Usign |x⟩θ |0 . . . 0⟩ for uniformly
random x, θ ← {0, 1}λ, no QPT adversary can output x′ ∈ {0, 1}λ and a signature σ such that σ is a valid signature
for x′ and x′j ̸= xj for some j such that θj = 0 with a non-negligible probability.

It is easy to show that the Lamport signature satisfies the above property. This can be seen as follows. Recall that a
verification key of the Lamport signature consists of (vj,b)j∈[λ],b∈{0,1} where vj,b := f (uj,b) for a one-way function
f and uniformly random inputs (uj,b)j∈[λ],b∈{0,1}, and a signature for a message m ∈ {0, 1}λ is σ := (uj,mj)j∈[λ].
Suppose that there is an adversary that breaks the above property. Then, there must exist j ∈ [λ] such that x′j ̸= xj

and θj = 0, in which case the input state Usign |x⟩θ |0 . . . 0⟩ does not have any information of uj,1−xj . On the other
hand, to generate a valid signature for x′, the adversary has to find a preimage of vj,x′j

= vj,1−xj . This is impossible by
the one-wayness of f . Thus, a digital signature scheme that satisfies one-time unforgeability for BB84 states exists
assuming the existence of one-way functions.

Achieving minimal assumptions. In the above, we explain that one-way functions are sufficient for instantiating
the digital signature scheme needed for our compiler. On the other hand, encryption schemes with publicly verifiable
deletion does not seem to imply the existence of one-way functions because ciphertexts can be quantum. Thus, one-way
functions may not be a necessary assumption for them. To weaken the assumption, we observe that we can use hard
quantum planted problems for NP instead of one-way functions in the Lamport signature. Here, hard quantum planted
problems for a NP language L is specified by a quantum polynomial-time sampler that samples an instance-witness pair
(x, w) for the language L in such a way that no QPT adversary can find a witness for x with non-negligible probability.
Given such a sampler, it is easy to see that we can instantiate the digital signature scheme similar to the above except
that (vj,b, uj,b) is now replaced with an instance-witness pair sampled by the sampler.

We observe that Z with PVD implies the existence of hard quantum planted problems for NP where Z ∈
{SKE, COM, PKE, ABE, QFHE, TRE, WE}.9 This can be seen by considering the verification key as an instance and
certificate as a witness for an NP language. Our construction relies on hard quantum planted problems for NP and plain
Z with quantum encryption and decryption (or committing) algorithms, both of which are implied by Z with PVD, and
thus it is based on the minimal assumptions.

1.4 More on Related Works
Certified deletion for ciphertext with private verifiability. Broadbent and Islam [BI20] achieved one-time SKE
with privately verifiable deletion without any cryptographic assumptions. Hiroka et al. [HMNY21] achieved PKE
and ABE with non-everlasting privately verifiable deletion. They also achieve interactive PKE with non-everlasting
privately verifiable deletion and classical communication in the quantum random oracle model (QROM) from the LWE
assumption. However, none of their constructions satisfy certified everlasting security. Hiroka, Morimae, Nishimaki,
and Yamakawa [HMNY22] defined certified everlasting commitment and zero-knowledge (for QMA) by extending
everlasting security [MU10]. They achieved these notions by using plain commitment and QROM. Bartusek and
Khurana [BK22] defined certified everlasting security for various all-or-nothing type encryption primitives and presented
a general framework to achieve certified everlasting secure all-or-nothing type encryption and commitment with privately

9We assume that the verification algorithm of Z with PVD is a classical deterministic algorithm. If we allow it to be a quantum algorithm, we have
to consider hard quantum planted problems for QCMA, which are also sufficient to instantiate our compiler.
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verifiable deletion using BB84 states. They also studied secure computation with everlasting security transfer. Hiroka
et al. [HKM+23] also defined and achieved certified everlasting security for various cryptographic primitives. In
particular, they defined and achieved certified everlasting (collusion-resistant) functional encryption, garbled circuits,
and compute-and-compare obfuscation, which are outside of all-or-nothing type encryption. Their constructions are
also based on BB84 states and are privately verifiable. They also use a signature-based authentication technique for
BB84 states. However, its role is not achieving public verifiability but functional encryption security. See the paper by
Hiroka et al. [HKM+23] for the differences between their results and Bartusek and Khurana’s results [BK22].

Certified deletion for keys or secure key leasing. Kitagawa and Nishimaki [KN22] defined secret key functional
encryption with secure key leasing, where we can generate a classical certificate for the deletion of functional keys. They
achieved such a primitive with bounded collusion-resistance from one-way functions. Agrawal, Kitagawa, Nishimaki,
Yamada, and Yamakawa [AKN+23] defined PKE with secure key leasing, where we lose decryption capability after we
return a quantum decryption key. They achieved it from standard PKE. They also extended the notion to ABE with
secure key leasing and public key functional encryption with secure key leasing. They achieved them from standard
ABE and public key functional encryption, respectively. Garg et al. [BGG+23] presented a public key functional
encryption with secure key leasing scheme based on IO and injective one-way functions. Ananth, Poremba, and
Vaikuntanathan [APV23] also defined the same notion as PKE with secure key leasing (they call key-revocable PKE).
However, their definition differs slightly from that of Agrawal et al. [AKN+23]. They also studied key-revocable FHE
and PRF. They achieved them from the LWE assumption.

Secure software leasing. Ananth and La Placa [AL21] defined secure software leasing, where we lose software
functionality after we return a quantum software. They achieved secure software leasing for a subclass of evasive
functions from public key quantum money and the LWE assumptions. After that, several works proposed extensions,
variants, and improved constructions of secure software leasing [CMP20, BJL+21, KNY21, ALL+21].

2 Preliminaries
2.1 Notations
Here we introduce basic notations we will use in this paper.

In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or Gen) and classical variables
(e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic font and/or the bracket
notation for (mixed) quantum states (e.g., q or |ψ⟩).

Let x ← X denote selecting an element x from a finite set X uniformly at random, and y← A(x) denote assigning
to y the output of a quantum or probabilistic or deterministic algorithm A on an input x. When D is a distribution,
x ← D denotes sampling an element x from D. y := z denotes that y is set, defined, or substituted by z. Let
[n] := {1, . . . , n}. Let λ be a security parameter. For a bit string s ∈ {0, 1}n, si denotes the i-th bit of s. QPT stands
for quantum polynomial time. PPT stands for (classical) probabilistic polynomial time. We say that a quantum (resp.
probabilistic classical) algorithm is efficient if it runs in QPT (resp. PPT). A function f : N → R is a negligible
function if for any constant c, there exists λ0 ∈N such that for any λ > λ0, f (λ) < λ−c. We write f (λ) ≤ negl(λ)
to denote f (λ) being a negligible function. The trace distance between two quantum states ρ and σ denoted as TD(ρ, σ)

is given by 1
2∥ρ− σ∥tr, where ∥A∥tr := tr

√
A†A is the trace norm.

2.2 Cryptographic Tools
In this section, we review the cryptographic tools used in this paper.

Definition 2.1 (Signature). LetM be a message space. A signature scheme forM is a tuple of efficient algorithms
(Gen, Sign, Vrfy) where:

Gen(1λ)→ (vk, sigk): The key generation algorithm takes as input the security parameter 1λ and outputs a verification
key vk and a signing key sigk.
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Sign(sigk, m)→ σ: The signing algorithm takes as input a signing key sigk and a message m ∈ M and outputs a
signature σ.

Vrfy(vk, m, σ)→ ⊤ or ⊥: The verification algorithm is a deterministic algorithm that takes as input a verification key
vk, a message m and a signature σ and outputs ⊤ to indicate acceptance of the signature and ⊥ otherwise.

Correctness: For all m ∈ M, (vk, sigk) in the range of Gen(1λ), and σ ∈ Sign(sigk, m), we have Vrfy(vk, m, σ) = ⊤.

Definition 2.2 (Deterministic Signature). We say that a signature scheme SIG = (Gen, Sign, Vrfy) is a deterministic
signature if Sign(sigk, ·) is a deterministic function.

Definition 2.3 (Public Key Encryption). A PKE scheme is a tuple of efficient algorithms PKE = (Gen, Enc, Dec).

Gen(1λ)→ (pk, sk): The key generation algorithm takes the security parameter 1λ as input and outputs a public key
pk and a secret key sk.

Enc(pk, m)→ ct: The encryption algorithm takes pk and a plaintext m ∈ {0, 1} as input, and outputs a ciphertext ct.

Dec(sk, ct)→ m′: The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈ M or ⊥.

Correctness: For any m ∈ M, we have

Pr

m′ ̸= m

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
ct← Enc(pk, m)
m′ ← Dec(sk, ct)

 ≤ negl(λ).

Semantic Security: For any QPT A , we have∣∣∣∣Pr
[

A(pk, ct) = 1
∣∣∣∣ (pk, sk)← Gen(1λ)

ct← Enc(pk, 0)

]
− Pr

[
A(pk, ct) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
ct← Enc(pk, 1)

]∣∣∣∣ = negl(λ).

3 Signature with One-Time Unforgeability for BB84 states
Definition. We first provide the definition of one-time unforgeability for BB84 states.

Definition 3.1 (One-Time Unforgeability for BB84 states). Let SIG = (Gen, Sign, Vrfy) be a signature scheme. We
define the experiment Expotu-bb84

SIG,A (1λ) between an adversary A and challenger as follows.

1. The challenger runs (vk, sigk)← Gen(1λ) and generates x, θ ← {0, 1}λ. The challenger generates a quantum
state |ψ⟩ by applying the map |m⟩ |0 . . . 0⟩ → |m⟩ |Sign(sigk, m)⟩ to |x⟩θ ⊗ |0 . . . 0⟩. The challenger gives vk
and |ψ⟩ to A .

2. A outputs a pair of message and signature (x′, σ′) as the challenge message-signature pair to the challenger.

3. The experiment outputs 1 if the followings are satisfied.

• xi ̸= x′i holds for some i such that θi = 0.
• Vrfy(vk, x′, σ′) = 1 holds.

We say SIG is one-time unforgeable for BB84 states if, for any QPT adversary A , it holds that

Advotu-bb84
SIG,A (λ) := Pr

[
Expotu-bb84

SIG,A (1λ) = 1
]
= negl(λ).
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Construction. We construct a classical deterministic signature scheme SIG = (Gen, Sign, Vrfy) satisfying one-time
unforgeability for BB84 states using OWF f . The message space of SIG is {0, 1}ℓ.

Gen(1λ):

• Generate ui,b ← {0, 1}λ for every i ∈ [ℓ] and b ∈ {0, 1}.
• Compute vi,b ← f (ui,b) for every i ∈ [ℓ] and b ∈ {0, 1}.
• Output vk := (vi,b)i∈[ℓ],b∈{0,1} and sigk := (ui,b)i∈[ℓ],b∈{0,1}.

Sign(sigk, m):

• Parse (ui,b)i∈[ℓ],b∈{0,1} ← sigk.

• Output (ui,mi )i∈[ℓ].

Vrfy(vk, m, σ):

• Parse (vi,b)i∈[ℓ],b∈{0,1} ← vk and (wi)i∈[ℓ] ← σ.

• Output ⊤ if ui,mi = f (wi) holds for every i ∈ [ℓ] and otherwise output ⊥.

It is clear that SIG is a correct classical deterministic signature. Also, we have the following theorem.

Theorem 3.2. Assume f is OWF. Then, SIG satisfies one-time unforgeability for BB84 states.

Proof. For a computational basis position i ∈ [λ] (that is, i such that θi = 0), when we generate |ψ⟩ by applying the
map |m⟩ |0 . . . 0⟩ → |m⟩ |Sign(sigk, m)⟩ to |x⟩θ ⊗ |0 . . . 0⟩, |ψ⟩ contains only ui,b and not ui,1−b if xi = b. From this
fact, the one-time unforgeability of SIG directly follows from the security of f .

4 Certified Everlasting Lemmas
In this section, we first review the certified everlasting lemma by Bartusek and Khurana [BK22], which provides
cryptography with privately verifiable deletion. Next, we present our new certified everlasting lemma, which provides
cryptography with PVD.

Lemma 4.1 (Certified Everlasting Lemma [BK22]). Let {Zλ(·, ·, ·)}λ∈N be an efficient quantum operation with
three arguments: a λ-bit string θ, a bit β, and a quantum register A. For any QPT B , consider the following experiment
Z̃B

λ (b) over quantum states, obtained by running B as follows.

• Sample x, θ ← {0, 1}λ and initialize B with Zλ(θ, b⊕⊕
i:θi=1 xi, |x⟩θ).

• B’s output is parsed as a string x′ ∈ {0, 1}λ and a residual state on register B.

• If xi = x′i for all i such that θi = 0, output B, and otherwise output a special symbol ⊥.

Assume that for any QPT A , θ ∈ {0, 1}λ, β ∈ {0, 1}, and an efficiently samplable state |ψ⟩A,C on registers A
and C, we have ∣∣∣Pr[A(Zλ(θ, β, A), C) = 1]− Pr

[
A(Zλ(0λ, β, A), C) = 1

]∣∣∣ ≤ negl(λ).

Then, for any QPT B, we have
TD(Z̃B

λ (0), Z̃B
λ (1)) ≤ negl(λ).

Remark 4.2. Besides notational differences, the above lemma has the following differences from the original lemma by
[BK22].
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• We focus on QPT adversaries A and B, though the original lemma by [BK22] captures more general classes of
adversaries.

• The roles of computational basis position and Hadamard basis position in Z̃A ′λ
λ (b) are switched.

We can upgrade Lemma 4.1 to a publicly verifiable one by using signatures with one-time unforgeability for BB84
state introduced in Section 3.

Lemma 4.3 (Publicly Verifiable Certified Everlasting Lemma). Let SIG = (Gen, Sign, Vrfy) be a signature scheme
satisfying one-time unforgeability for BB84 states. Let {Zλ(·, ·, ·, ·, ·)}λ∈N be an efficient quantum operation with five
arguments: a verification key vk and a signing key sigk of SIG, a λ-bit string θ, a bit β, and a quantum register A. For
any QPT B, consider the following experiment Z̃B

λ (b) over quantum states, obtained by running B as follows.

• Sample x, θ ← {0, 1}λ and generate (vk, sigk)← Gen(1λ). Generate a quantum state |ψ⟩ by applying the map
|m⟩ |0 . . . 0⟩ → |m⟩ |Sign(sigk, m)⟩ to |x⟩θ ⊗ |0 . . . 0⟩. Initialize B with Zλ(vk, sigk, θ, b⊕⊕

i:θi=1 xi, |ψ⟩).

• B’s output is parsed as a pair of strings (x′, σ′) and a residual state on register B.

• If Vrfy(vk, x′, σ′) = ⊤, output B, and otherwise output a special symbol ⊥.
Assume that for any QPT A , key pair (vk, sigk) of SIG, θ ∈ {0, 1}λ, β ∈ {0, 1}, and an efficiently samplable
state |ψ⟩A,C on registers A and C, we have∣∣∣Pr[A(Zλ(vk, sigk, θ, β, A), C) = 1]− Pr

[
A(Zλ(vk, 0ℓsigk , θ, β, A), C) = 1

]∣∣∣ ≤ negl(λ), and (1)∣∣∣Pr[A(Zλ(vk, sigk, θ, β, A), C) = 1]− Pr
[

A(Zλ(vk, sigk, 0λ, β, A), C) = 1
]∣∣∣ ≤ negl(λ). (2)

Then, for any QPT B, we have
TD(Z̃B

λ (0), Z̃B
λ (1)) ≤ negl(λ).

Proof. We first define the following event Forge.

Forge: For (x′, σ′) output by B in Z̃B
λ (b), the followings are satisfied.

• xi ̸= x′i holds for some i such that θi = 0.
• Vrfy(vk, x′, σ′) = ⊤ holds.

We also define the event Forge∗ in the same way as Forge except that B is initialized with Zλ(vk, 0ℓsigk , θ, b ⊕⊕
i:θi=1 xi, |ψ⟩). From Equation (1), we have Pr[Forge] = Pr[Forge∗] + negl(λ). Also, from the one-time

unforgeability for BB84 states, we have Pr[Forge∗] = negl(λ). Thus, we obtain Pr[Forge] = negl(λ).
We define ẐB

λ (b) as the experiment defined in the same way as Z̃B
λ (b) except that the experiment outputs the

register B if and only if xi = x′i holds for all i such that θi = 0. Since Pr[Forge] = negl(λ), if Vrfy(vk, x′, σ′) = ⊤
holds, then xi = x′i holds for all i such that θi = 0, except negligible probability. Thus, we have

TD(Z̃B
λ (0), Z̃B

λ (1)) ≤ TD(ẐB
λ (0), ẐB

λ (1)) + negl(λ).

From Equation (2) and Lemma 4.1, we have TD(Z̃B
λ (0), Z̃B

λ (1)) = negl(λ). This completes the proof.

5 Instantiations
We can apply Lemma 4.3 to various cryptographic primitives.

5.1 Public-Key Encryption
First, we show how to apply Lemma 4.3 to PKE and obtain PKE with PVD.
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Definition. We define PKE with publicly verifiable deletion (PKE-PVD).

Definition 5.1 (PKE with Publicly Verifiable Deletion). A PKE scheme with publicly verifiable deletion is a tuple of
efficient algorithms PKE-PVD = (Gen, Enc, Dec, Del , Vrfy).

Gen(1λ)→ (pk, sk): The key generation algorithm takes the security parameter 1λ as input and outputs a public key
pk and a secret key sk.

Enc(pk, m)→ (vk, ct): The encryption algorithm takes pk and a plaintext m ∈ {0, 1} as input, and outputs a
verification key vk and a ciphertext ct .

Dec(sk, ct)→ m′: The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈ M or ⊥.

Del (ct)→ cert: The deletion algorithm takes ct as input and outputs a certification cert.

Vrfy(vk, cert)→ ⊤ or ⊥: The verification algorithm is a deterministic algorithm that takes vk and cert as input, and
outputs ⊤ or ⊥.

Decryption Correctness: For any m ∈ M, we have

Pr

m′ ̸= m

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, ct)← Enc(pk, m)
m′ ← Dec(sk, ct)

 ≤ negl(λ).

Verification Correctness: For any m ∈ M, we have

Pr

Vrfy(vk, cert) = ⊥

∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(vk, ct)← Enc(pk, m)
cert← Del (ct)

 ≤ negl(λ).

Semantic Security: For any QPT A , we have∣∣∣∣Pr
[

A(pk, vk, ct) = 1
∣∣∣∣ (pk, sk)← Gen(1λ)
(vk, ct)← Enc(pk, 0)

]
− Pr

[
A(pk, vk, ct 1) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(vk, ct)← Enc(pk, 1)

]∣∣∣∣ = negl(λ).

Definition 5.2 (Certified Deletion Security for PKE-PVD). Let PKE-PVD = (Gen, Enc, Dec, Del , Vrfy) be a PKE-
PVD scheme. We consider the following security experiment Expcert-del

PKE-PVD,A(λ, b) against a QPT adversary A .

1. The challenger computes (pk, sk)← Gen(1λ), and sends pk to A .

2. The challenger computes (vk, ct)← Enc(pk, b), and sends vk and ct to A .

3. At some point, A sends cert and its internal state ρ to the challenger.

4. The challenger computes Vrfy(vk, cert). If the outcome is ⊤, the challenger outputs ρ and otherwise outputs ⊥.

We say that PKE-PVD satisfies certified deletion security if for any QPT A , it holds that

TD(Expcert-del
PKE-PVD,A(λ, 0), Expcert-del

PKE-PVD,A(λ, 1)) ≤ negl(λ).

Remark 5.3. We define PKE-PVD and the certified deletion security for it as the plaintext space of PKE-PVD is {0, 1}
by default. We can generalize them into one for the plaintext space {0, 1}ℓ for any polynomial ℓ. Also, such a multi-bit
plaintext PKE-PVD can be constructed from a single-bit plaintext PKE-PVD by the standard hybrid argument.
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Construction. We construct a PKE-PVD scheme PKE-PVD = (Gen, Enc, Dec, Del , Vrfy) for the plaintext space
{0, 1}. The building blocks are as follows.

• A public-key encryption scheme PKE = PKE.(Gen, Enc, Dec).

• A deterministic signature SIG = SIG.(Gen, Sign, Vrfy).

Gen(1λ):

• Output (pk, sk)← PKE.Gen(1λ).

Enc(pk, m ∈ {0, 1}):

• Generate x, θ ← {0, 1}λ and generate (vk, sigk) ← SIG.Gen(1λ). Generate a quantum state |ψ⟩ by
applying the map |m⟩ |0 . . . 0⟩ → |m⟩ |SIG.Sign(sigk, m)⟩ to |x⟩θ ⊗ |0 . . . 0⟩.

• Generate pke.ct← PKE.Enc(pk, (sigk, θ, m⊕⊕
i:θi=1 xi)).

• Output vk and ct := (|ψ⟩ , pke.ct).

Dec(sk, ct):

• Parse ct into a quantum states ρ and classical bit string pke.ct.
• Compute (sigk, θ, β)← PKE.Dec(sk, pke.ct).
• Apply the map |m⟩ |0 . . . 0⟩ → |m⟩ |SIG.Sign(sigk, m)⟩ to ρ, measure the first λ qubits of the resulting

state in Hadamard basis, and obtain x̄.
• Output m← β⊕⊕

i:θi=1 x̄i.

Del (ct):

• Parse ct into a quantum state ρ and a classical string pke.ct.
• Measure ρ in the computational basis and obtain x′ and σ′.
• Output (x′, σ′).

Vrfy(vk, cert):

• Parse (z′, σ′)← cert.
• Output the result of SIG.Vrfy(vk, z′, σ′).

We see that PKE-PVD satisfies decryption correctness and verification correctness if SIG and PKE satisfy their
correctness notions. Also, the semantic security of PKE-PVD immediately follows from that of PKE. Also, we have
the following theorem.

Theorem 5.4. Assume SIG satisfies one-time unforgeability for BB84 states and PKE satisfies semantic security. Then,
PKE-PVD satisfies certified deletion security.

Proof. We define Zλ(vk, sigk, θ, β, A) be an efficient quantum process such that it generates (pk, sk)← Gen(1λ) and
outputs (pk, vk, Enc(pk, (sigk, θ, β)). Then, from the semantic security of PKE, for any QPT A , key pair (vk, sk) of
SIG, θ ∈ {0, 1}λ, β ∈ {0, 1}, and an efficiently samplable state |ψ⟩A,C on registers A and C, we have∣∣∣Pr[A(Zλ(vk, sigk, θ, β, A), C) = 1]− Pr

[
A(Zλ(vk, 0ℓsigk , θ, β, A), C) = 1

]∣∣∣ ≤ negl(λ), and∣∣∣Pr[A(Zλ(vk, sigk, θ, β, A), C) = 1]− Pr
[

A(Zλ(vk, sigk, 0λ, β, A), C) = 1
]∣∣∣ ≤ negl(λ).

Then, the certified deletion security of PKE-PVD follows from Lemma 4.3.

In Section 3, we show that a deterministic signature scheme with one-time unforgeability for BB84 states is implied
by OWF that is implied by a PKE scheme. Thus, we obtain the following theorem.

Theorem 5.5. Assume that there exists PKE. Then, there exists PKE-PVD.
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5.2 Other Primitives
By combining Lemma 4.3 with other types of primitives instead of PKE, we immediately obtain them with publicly
verifiable deletion. That is, we instantiate Zλ in Lemma 4.3 with these primitives. Formally, we have the following
theorem.

Theorem 5.6. If there exists
Z′ ∈ {SKE, COM, PKE, ABE, QFHE, TRE},

then, there exists Z′ with publicly verifiable deletion. If there exist WE and one-way functions, then there exists WE with
publicly verifiable deletion.

Remark 5.7. We additionally assume one-way functions for the case of WE since WE is unlikely to imply one-way
functions while any of Z′ ∈ {SKE, COM, PKE, ABE, QFHE, TRE} implies them.

We omit the definitions of these primitives (with publicly verifiable deletion) and refer the reader to [BK22, BKP23]
for them.10

6 Making Assumptions Minimal
In Section 5, we show that Z ∈ {SKE, COM, PKE, ABE, QFHE, TRE, WE} (and one-way functions in the case of
Z = WE) imply Z with publicly verifiable deletion. However, Z with publicly verifiable deletion does not seem to
imply either of plain (classical) Z or one-way functions in general. In this section, we explain how to weaken the
assumptions to minimal ones implied by Z with publicly verifiable deletion.

First, we observe that our compiler works even if we start with Z ∈ {SKE, COM, PKE, ABE, QFHE, TRE, WE}
that has quantum encryption and decryption (or committing) algorithms. Second, we observe our compiler works
even if the underlying digital signature scheme has a quantum key generation algorithm since the quantum encryption
algorithm runs it. Moreover, such a digital signature scheme with a quantum key generation algorithm that satisfies
one-time security for BB84 states can be constructed from hard quantum planted problems for NP defined below.

Definition 6.1 (Hard Quantum Planted Problem for NP). A quantum polynomial-time algorithm G is a sampler for an
NP relationR ⊆ {0, 1}∗ × {0, 1}∗ if, for every n, G(1n) outputs a pair (x, w) such that (x, w) ∈ R with probability
1. We say that the quantum planted problem corresponding to (G ,R) is hard if, for every QPT A , it holds that

Pr[(x, A(x)) ∈ R | (x, w)← G(1n)] ≤ negl(n).

It is clear that the construction in Section 3 works using hard quantum planted problems for NP instead of one-way
functions where input-output pairs of the one-way function are replaced with witness-instance pairs of the NP problem
if we allow the key generation algorithm of the signature scheme to be quantum. Combining the above observations, we
obtain the following theorem.

Theorem 6.2. Assume that there exists

Z ∈ {SKE, COM, PKE, ABE, QFHE, TRE, WE}

with quantum encryption and decryption (or committing) algorithms and hard quantum planted problems for NP. Then,
there exists Z with publicly verifiable deletion.

The assumption in the above theorem is minimal since

1. Z with quantum encryption and decryption (or committing) algorithms is immediately implied by Z with publicly
verifiable deletion by simply ignoring the deletion and verification algorithms, and

10The definitions in [BK22] only consider privately verifiable deletion, but it is straightforward to extend them to ones with publicly verifiable
deletion.
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2. Hard quantum planted problems for NP are implied by Z with publicly verifiable deletion by regarding the
verification key and certificate as instance and certificate, respectively.

Remark 6.3. In the second item above, we assume that the verification algorithm of Z with publicly verifiable deletion
is a classical deterministic algorithm. If it is allowed to be a quantum algorithm, we need to consider hard quantum
planted problems for QCMA instead of NP. The construction in Section 3 works with such problems if we allow the
verification algorithm to be quantum. Thus, the minimality of the assumption holds in this setting as well.
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