Breaking DPA-protected Kyber via the
pair-pointwise multiplication

Estuardo Alpirez Bock', Gustavo Banegas®, Chris Brzuska’, Lukasz
Chmielewski?, Kirthivaasan Puniamurthy® and Milan Sorf!

! Xiphera LTD, Finland
estuardo.alpirezbock@xiphera.com
2 Qualcomm France SARL, France
gustavo@cryptme.in
3 Aalto University, Finland
chris.brzuska®@aalto.fi
kirthivaasan.puniamurthy@aalto.fi
4 Masaryk University, Czech Republic
chmiel@fi.muni.cz
xsorf@fi.muni.cz

Abstract. We present a new template attack that allows us to recover the secret key
in Kyber directly from the polynomial multiplication in the decapsulation process.
This multiplication corresponds to pair-pointwise multiplications between the NTT
representations of the secret key and an input ciphertext. For each pair-point
multiplication, a pair of secret coefficients are multiplied in isolation with a pair of
ciphertext coefficients, leading to side-channel information which depends solely on
these two pairs of values. Hence, we propose to exploit leakage coming from each
pair-point multiplication and use it for identifying the values of all secret coefficients.
Interestingly, the same leakage is present in DPA-protected implementations. Namely,
masked implementations of Kyber simply compute the pair-pointwise multiplication
process sequentially on secret shares, allowing us to apply the same strategy for
recovering the secret coefficients of each share of the key. Moreover, as we show,
our attack can be easily extended to target designs implementing shuffling of the
polynomial multiplication. We also show that our attacks can be generalised to work
with a known ciphertext rather than a chosen one.

To evaluate the effectiveness of our attack, we target the open source implementation
of masked Kyber from the mkm4 repository. We conduct extensive simulations which
confirm high success rates in the Hamming weight model, even when running the
simplest versions of our attack with a minimal number of templates. We show that
the success probabilities of our attacks can be increased exponentially only by a linear
(in the modulus ¢) increase in the number of templates. Additionally, we provide
partial experimental evidence of our attack’s success. In fact, we show via power
traces that, if we build templates for pairs of coefficients used within a pair-point
multiplication, we can perform a key extraction by simply calculating the difference
between the target trace and the templates. Our attack is simple, straightforward and
should not require any deep learning or heavy machinery means for template building
or matching. Our work shows that countermeasures such as masking and shuffling
may not be enough for protecting the polynomial multiplication in lattice-based
schemes against very basic side-channel attacks.

Keywords: Post-quantum Cryptography - Template attack -+ Kyber - Side-channel
Attack - Single Trace

*Author list in alphabetical order; see https://www.ams.org/profession/leaders/
CultureStatement04.pdf. Date of this document: 2023-04-18.

mailto:estuardo.alpirezbock@xiphera.com
mailto:gustavo@cryptme.in
mailto:chris.brzuska@aalto.fi
mailto:kirthivaasan.puniamurthy@aalto.fi
mailto:chmiel@fi.muni.cz
mailto:xsorf@fi.muni.cz
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

2 Breaking DPA-protected Kyber via the pair-pointwise multiplication

1 Introduction

In the the end of a rigorous competition process, NIST selected Kyber [BDK 18, ABD*20)
as one of the post-quantum secure key encapsulation mechanisms (KEM) to be standardized.
The main security requirement of the NIST competition is for the KEM to achieve message
confidentiality under chosen-plaintext (CPA) and chosen-ciphertext attacks (CCA) based on
problems which are plausibly post-quantum hard. A second important consideration in the
NIST competition is the resistance of implementations against side-channel attacks. Side-
channel vulnerabilities and resistance of Kyber implementations has emerged as a lively field
of research over the past few years, and the present article falls into this line of research as
well. In this paper we present a novel template attack (cf. [BCPT14, HKP*12a, HMA108])
on masked implementations of Kyber. Our attack is performed on the decapsulation phase
of Kyber and allows us to extract the long term secret key by creating and matching
templates corresponding to the polynomial multiplication process performed. In the
following, we give an overview on Kyber and recall details relevant to our attack.

Kyber’s key encapsulation (encryption) performs a matrix-vector multiplication in the
ring of polynomials R, = Z,[z]/(2%%% + 1) and then adds a small noise vector to the result.
In turn, for decapsulation (decryption), Kyber performs a vector multiplication between
a ciphertext b and a secret a, each of which corresponds to a polynomial. Polynomials
in Kyber are of degree 255 and their coefficients are integers between 0 and ¢ — 1, with

= 3329.

In Kyber, the above core IND-CPA-secure scheme is transformed into a CCA-secure
encryption scheme using the Fujisaki-Okamoto (FO) transform [FO13]. FO performs
re-encryption in the decryption process and prevents the decryption from returning a
message if re-encryption fails, thereby mitigating ciphertext malleability. We note however
that the FO transform does not prevent side-channel adversaries from performing CCA
attacks on Kyber, since the input ciphertext is always multiplied with the secret key right at
the beginning of the decapsulation process, independently of the validity of the ciphertext
(see [DTVV19, RRCB20, HHPT21, BNGD22]| for more examples of side-channel assisted
CCA attacks on post-quantum CCA-secure schemes).

Number theoretic transform. Standard multiplication of two polynomials is quadratic.
Thus, in Kyber (and other lattice-based systems), polynomials are first translated via
the number theoretic transform (NTT) into a representation where multiplication only
takes linear time. Namely, in the NTT domain, polynomial multiplications can be
computed point-wise. Given two polynomials & and b with coefficients (ag, @1, Qn_1)
and (bg,b1,...,b,—1) in the NTT domain, their point-wise multiplication is equal to
dob= (ap - bo,a1 -b1,...,an-1by—1). In Kyber the NTT is not performed on its entirety
due to its modulus polynomial, and the multiplication performed on NTT domain is actually
pair-pointwise (see Subsection 2.2). This property will play a role on the effectiveness of
our template attack, since per each pair-point multiplication, the coefficients are multiplied
more than once, providing thus more points of comparison between our templates and our
target trace.

Pair-pointwise multiplication. The size of the modulus ¢ in Kyber underlies several
constraints: (1) The ciphertext size grows linearly with the modulus, (2) the modulus
needs to be large enough to enable a rounding operation required for correctness, and (3)
the modulus needs to allow to perform the NTT, which requires decomposing the ring of
polynomials Z,[X]/(X?% + 1), which is a 256-dimensional vector space over Z,. In its
original proposal [ABD™17], the selected modulus g for Kyber was 7681. The modulus
q = 7681 allows to perform a full NTT on the polynomials, as A full NTT requires to
find a 512-th root of unity, i.e., a number ¢ such that ¢°'2 =1 mod ¢. Therefore in the

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 3

original proposal of Kyber, the multiplications between the NTT representations of the
secret key and ciphertexts were indeed performed in a point-wise fashion.

Nevertheless, a series of works later showed that Kyber could also be implemented using
a smaller modulus ¢ = 3329, in exchange of performing incomplete NTTs and calculating
the multiplication in a pair-pointwise fashion [ZXZ718, LS19]. Using this smaller modulus
allows for a more compact implementation of Kyber, since we need one bit less for encoding
each coefficient of a ciphertext and secret key. Moreover, this new modulus still allows to
perform fast multiplications between the NTT representations of the polynomials. Thus,
the specification of Kyber was updated and as of today the chosen modulus is ¢ = 3329.

With respect to ¢ = 3329, only the 256-th root of unity { exists, but not the 512-
th root. For this reason Kyber only performs incomplete NTTs, where polynomials of
degree 256 are transformed into 128 polynomials of degree 1. This is the reason why
the multiplication between two polynomials on NTT domain in Kyber corresponds to a
pair-pointwise multiplication. That is, for two transformed polynomials 4 and b we multiply
(ao +a17)(bo + b17), ..., (azs4 + azs557)(basa + bass).

Unfortunately as we will show in this work, pair-pointwise multiplications also lead to
more leakage in the presence of side-channel adversaries. Consider the case that we are
multiplying a secret key with some known value. Within each pair-point multiplication,
two coefficients of the secret key will be multiplied with with two different known values,
and then they will be added to each other. This means that each pair-point multiplication
corresponds to a series of operations where the only unknown values are two coefficients
with values between 0 and 3328. This simple observation motivates us to study whether we
can exploit the leakage coming from a pair-point multiplication and use it for identifying
the value of the secret coefficients.

1.1 Qur contribution

We propose an attack on the pair-pointwise multiplication of Kyber-like implementations.
We present a template attack strategy with different variations for extracting each coefficient
used within each pair-point multiplication. The variations of our attack are crafted
depending on the type of implementation we are attacking. For instance, our simplest
attack should work on implementations where the pair-point multiplication is not optimised,
but we find simple adaptations of the attack for targeting optimised implementations.
Moreover, we also provide extensions for attacking shuffled implementations. All the attack
strategies we present are based on the same idea, which we illustrate next by means of a
simple example.

For ease of explanation, we assume in the following that (a) the pair-pointwise multipli-
cation is implemented in a straightforward way without any optimisations (see Equation 2)
and (b) each multiplication in Equation 2 will provide enough leakage for successful
template matching. In practice, these two assumptions will not always hold, but they will
help clarifying the idea behind our attack.

Attack ldea. Let us assume that we want to find out whether the secret & (a on NTT
domain) of some implementation of Kyber has some coefficient with value, e.g. 328. To
determine whether & has some coefficient with value 328, we will construct a template
for the case that 328 is a coefficient in 3 and it is used as an operand in the polynomial
multiplication. We construct such a template as follows. In our own device, we fix the key
a such that (in NTT domain) all its coefficients have the value 328, i.e.

5 = (328,328,328, . . ., 328054, 32855).

4 Breaking DPA-protected Kyber via the pair-pointwise multiplication

As input ciphertext, we will provide a value b which on NTT domain has the half of its
coefficients equal to (e.g.) 2649, and the other half equal to 317, i.e.

b = (2649, 3171, 26495, 3175, ..., 2649554, 317255).

We then run the implementation on said inputs and record a power trace, which we will
use as our template and which we denote T3ag.

We now turn to the target device and run it on an input equal to the ciphertext used
for constructing our template, i.e. b s.t. b= (2649, 3171, 26494, 3173, . . ., 2649954, 317255).
We record a power trace, which we will denote as our target trace T;.

We will now perform a template matching which will help us find out whether the
secret & running on the target device has some coefficient equal to 328. The template
matching will also help us find out exactly which coefficient of & has the value 328. Recall
first that in the decapsulation process of Kyber, we multiply the ciphertext b with the
secret 4 in a pair-pointwise fashion. That means that our template trace T35 corresponds
to multiplications

(3280 + 328,)(2649 + 3171), (3285 + 3285) (26495 + 3173),. ..,
(328254 + 328255) (2649254 + 317255).

Note that for each multiplication, we perform the operations described in Equation 2.
Moreover, each multiplication is performed sequentially and the result of one multiplication
does not affect any other multiplication. If the secret a in the target device has some coef-
ficient a; equal to 328, we should be able to find good correlations at the points where that
coefficient was multiplied by 2649 (a; - by in Equation 2), or at the points where it was multi-
plied by 317 (a; - b1 in Equation 2) during some pair-pointwise multiplication. The location
of regions where we find good correlations lets us know which coeflicient in a has the value
328. For instance, assume the coefficients of 4 are (79,821, 104s,...,32812s,...,2013255).
When we perform template matching, we should find good correlations halfway through
the trace, at the position corresponding to the pair-pointwise multiplications using the
128th coefficient as operand. Namely, in both the template trace T32¢ and the target trace
T;, the given region corresponds to the power consumption of the same operations using
the same operands: 328 - 2649 (or 328 - 317).

Moreover, we expect to see bad correlations at all other regions in the trace, (unless a
coefficient with value 328 appears elsewhere). Namely in all other regions of the traces,
the power consumption corresponds to multiplications between different operands, and
thus the template should not match the target trace.

We can perform a complete extraction of all coeflicients in & by repeating the same
process described above, checking whether & has some coefficient equal to 0, equal to
1, equal to 2, ..., or equal to 3328. Thus, all we need to do is generate a total of 3329
templates and try matching each template with the target trace. Once we have recovered
all coefficients in &, we just need to transform them back to their standard domain and
this will let us recover a. Moreover, this same attack strategy will also allow us to attack
masked implementations, since we just need to recover the coefficients of each share, and
then combine them to reconstruct the key.

Attacking Kyber in practice and our results. The attack strategy described above
corresponds to the basic idea behind our attack and it requires only a total of ¢ templates
for a complete key extraction from a masked or unmasked implementation. Later in
Section 3 we provide concrete steps for performing our attack. We explain that sometimes,

1Note that these are just example values. In principle, we can choose any two values between 0 and
q — 1. What is important is that the values are located in the ciphertext on NTT domain as shown in the
example.

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 5

q traces may only allow us to extract one coefficient within each pair-point multiplication.
However with knowledge of that one coefficient, we can easily build an additional set of
q templates which will allow us to extract the remaining coefficient of each pair-point
multiplication. Moreover, we also present an attack strategy where we build templates for
each possible pair of coefficients within a pair-point multiplication. This attack strategy
is much more expensive since it requires a total of ¢? templates. On the positive side
however, it has a very high success probability since when performing template matching,
we compare regions corresponding to the complete pair-point multiplication process.

We also asses the effectiveness of our attack in practice. For this, we focus on the
masked implementation of [cod22] as a case study. We carefully analyse the pair-pointwise
multiplication process of this implementation, and perform simulations to determine the
success rate of our attack in the Hamming weight model, given only a single trace and
a known ciphertext. After an extensive analysis, we notice that our attack has a very
high success probability given an expected number of =~ 3¢ template traces. The following
points explain why the pair-pointwise multiplication in this implementation generates
enough leakage for our attack to succeed.

1. Instead of one multiplication (as in full NT'T), in pair-point multiplications, three
multiplications (cf. Equation (4)) depend on the same coefficient pair.

2. Since multiplications are performed mod ¢, the code requires 3 additional operations
to execute a modulus reduction after each multiplication.

3. While numbers in [0,...,q — 1] are 12-bit integers, the code uses 24-bit and 28-bit
values due to the modulus reduction. Thus, in the Hamming weight (H) model,
the expected information per instruction is H(24) ~~ 3.34 and H(28) =~ 3.45 bits of
information rather than only H(12) ~ 2.84.

Simulations for the Hamming weight model. On a high level, we want to know whether
each possible secret coefficient value (values between 0 and 3328) leads to unique hamming
weight values during the pair-point multiplication process. If this is the case, then we should
see enough leakage allowing us to uniquely determine the value of a secret coefficient
processed during a pair-point multiplication. For each possible secret coefficient, we
calculate the hamming weight of the result of all instructions executed during the pair-
point multiplication. We obtain thus hamming weight tuples for each possible secret
coefficient. As we show for all odd coefficients in a secret polynomial, about 90% of the
coefficient values actually have a unique hamming weight tuple. We interpret this as
evidence that we can extract the value of an odd secret coefficient with 90% chances of
correctness, using only ¢ templates. Later in the paper we explain how we can use the
extracted odd coefficients for extracting all even coefficients. Moreover, our simulation
results help us outlining attack extensions which allow us to increase our overall success
rates, given additional 2¢, 3¢ or 4¢ templates.

Experiments. We perform partial experiments using a ChipWhisperer Lite platform. In
the experiments, we aim for a simple attack where we create templates for possible pairs
of secret coefficient used within a pair-point multiplication. We acquire 10000 templates
for randomly generated pairs of values and try matching them with a target trace. Our
experiments show that it is indeed very easy to extract pairs of coefficients with this simple
technique.

State of the art. Attacks on the polynomial multiplication of Kyber have been successfully
performed via correlation power analysis [MBB122]. However already in early stages, it
was proposed to mask the polynomial multiplication in lattice based schemes as a means

6 Breaking DPA-protected Kyber via the pair-pointwise multiplication

to mitigate side-channel analysis [OSPG18, RACR™16, RRACT16]. For this reason, many
works focus on attacking other parts of the decapsulation process of Kyber. Primas, Pessl
and Mangard [PPM17], present a template attack on the inverse NTT during decryption.
This attack allows them to recover a decrypted message and use it for recovering the
session key. The attack is assisted by belief propagation for template matching and was
extended and improved in subsequent works [PP19, HHP*21]. In an alternative approach,
Dubrova, Ngo and Gértner propose to use deep learning techniques for recovering the
message and then recovering the long term secret key [DNG22] and a line of research has
demonstrated the success of deep-learning techniques for attacking lattice based schemes
[BNGD22, JWNT22, NWDP22, MKK*23]. We also refer the reader to [RCDB22] for a
recent survey on side-channel and fault attacks on Kyber and Dilithium.

The attacks mentioned above also succeed on masked implementations. Our attack
however differs significantly from any of these attacks given that (1) we directly extract the
long term secret key and (2) we should not require any deep learning, belief propagation
or heavy machinery means for constructing templates or matching the templates to our
target trace. In other words, our attack is much simpler and easy to replicate. From
our perspective, the easier it is to replicate an attack, the bigger the threat it imposes
in practice. Moreover, it is also very easy to explain and understand why our attack is
successful, and a clear understanding of the success of our attack may lead a clear path
towards effective countermeasures. We note that none of the countermeasures mitigating
the attacks mentioned in this section should affect the success of our attack, since our
attack targets calculations in Kyber which are not covered by those countermeasures.

2 Notation and preliminaries

We represent matrices by bold capital letters A, and vectors by bold small letters b,
b. Given a polynomial a = Z?;Ol a; X" of degree n — 1, we usually write a as a vector
a = (ag, a1, as,...,a,—1). Also, the operation - represents standard multiplication between
two integers, while o represents point wise multiplication between two polynomials in NTT
domain (cf. Subsection 2.2). When writing polynomial ¢ in NTT domain, we will often
write & for clarity, and also use the hat notation for matrices, e.g., A.

We next provide descriptions of Kyber. Our descriptions of the algorithms will be
simplified and we will elaborate mostly on the parts of the KEM which are relevant for
our attack. These include the decapsulation algorithm, the NTT transformation and the
multiplication between the secret key and the input ciphertext in the decapsulation. We
refer the reader to the supporting documentation from Kyber for more details on the
KEM [ABD*20].

2.1 Kyber

As previously mentioned, Kyber is a lattice-based key encapsulation mechanism (KEM). it
relies in the hardness of the Module-LWE problem. The latest parameters for Kyber are:
n = 256, q = 3329, = 2 and module dimension k = 2, 3, or 4. The security level of Kyber
increases with its module dimension (in the case k).

Algorithm 1 gives the overview of the key generation. The private key of Kyber consists
of a vector of polynomials of degree n = 256, and with coefficients in R, with ¢ = 3329.
The k determines the dimension of the vector. The functions SAMPLEy and SAMPLEg
are functions which uniformly sample values in the ring R, given a seed. The SAMPLEy
provides a uniform random matrix, and SAMPLEg gives uniform random vectors. The
function H is a secure hash function (SHA3 in Kyber).

Algorithms 2 and 3 describe the encryption and encapsulation functions in Kyber.
Particularly relevant for this work are the functions COMPRESS and DECOMPRESS, which

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 7

Algorithm 1: Kyber-CCA2-KEM Key Generation (simplified)
Output: Public key pk, secret key sk

1 Choose uniform seeds p, o, z

2 A € RF* « SampLEy(p)

3 a,e € R} + SAMPLER(0)

4 4+ NTT(a)

5 t«— Aca+NTT(e)

pk < (E, p)

7 sk + (4, pk,H(pk), 2)

8 return pk, sk

(<)

are defined as COMPRESS(u) := |u - 2¢/q] mod (2)¢ and DECOMPRESS := |¢/2% - u], with
d=10if k =2or 3 and d = 11 if k = 4. Note that the output of the encryption corresponds
to a ciphertext ¢, which consists of two compressed ciphertexts. This ciphertext ¢ will be
the input to the decapsulation algorithm.

Algorithm 2: Kyber-PKE Encryption (simplified)

Input: Public key pk = (£, p), message m, seed T
Output: Ciphertext ¢

A € RF** « SamPLEy (p)

r,e; € Rl es € Ry < SAMPLER(T)

b+ NTT (AT o NTT(r)) + 1

v+ NTT 1T o NTT(r)) + ez + ENCODE(m)

c1, c2 < CoMPRESS(b,v)

¢ = (c1,c2)

return c

N 0 A W e

Algorithm 4 shows the decapsulation algorithm. Note that the ciphertext is first
decompressed into its standard form b, and then in line 2 the ciphertext is transformed to
its NTT domain. After this transformation, a pair-pointwise multiplication between & and
b. This operation will be the target of our attack.

Algorithm 3: Kyber-CCA2-KEM Encryption (simplified)
Input: Public key pk = (£, p)

Output: Ciphertext ¢, shared key K

Choose uniform m

(K, 7) < H(m|[H(pk))

¢ «+ PKE.ENc(pk,m, T)

K « KDF(K||H(c))

return ¢, K

SNV

2.2 Number Theoretic Transform (NTT)

Kyber (as many other lattice-based cryptosystems) performs polynomial multiplications
which naively takes n? operations for polynomials of degree n — 1. However, multiplication
is sped up to linear time by transforming the polynomials into the NTT domain, allowing

8 Breaking DPA-protected Kyber via the pair-pointwise multiplication

Algorithm 4: Kyber-CCA2-KEM Decryption (simplified)
Input: secret key sk = (&, pk, H(pk), z), ciphertext ¢ = (c1, ¢2)
Output: Shared key K
b, v + DECOMPRESS(c1, ¢2)
m + DECODE(v — NTT 1 (a)” o NTT(b)))
(K, 7) < H(m||H(pk))
¢ + PKE.ENc(pk,m,T)
if ¢ = ¢ then
| K « KDF(K||H(c))
else
L K + KDF(z|[H(¢))

return K

o N o Uk W N =

©

for a so-called pointwise multiplication between the polynomials. The NTT is a version
of Fast Fourier Transform (FFT) but in a finite ring. To perform the transformation,
one can evaluate the polynomial at powers of a primitive root of unity which are usually
represented by the symbol (.

Kyber has dimension k, each dimension presents their own roots, and we represent it
by (i the set Cg, C,L ey ,?71. In the following, we will explain a little bit more the usage
of NTT in Kyber since it does not perform a complete NTT but an incomplete NTT. We
refer the reader to [Kan22] for more details on how the NTT can be implemented (to
Kyber and Dilithium).

The NTT on Kyber implementations. In Kyber since it exist only n-th roots of unity,
the modulus polynomial X™ + 1 can only be factored into polynomials of degree 2. Hence,
an incomplete NTT is performed, where we skip the last layer of NTT. Therefore after
the (incomplete) NTT transformation, a polynomial a corresponds to 128 polynomials of
degree 1 each. Polynomial a is thus transformed to

NTT(a) = a0+ a1z, as+asx, aq4+ asz,...,asss + ao552. (1)

The incomplete transformation of the polynomials to their NTT domains has an impact on
the way multiplications are performed in Kyber. Namely when computing the multiplication
between two transformed polynomials, we are not computing a point-wise multiplication
between the coefficients of the polynomials (i.e. a-b = (apbo = ¢, a1b1 = c1,...,anb, =
¢n)). Instead, we multiply the coefficients pairwise and, for instance, the first two coefficients
of the resulting polynomial are obtained as follows:

C1 = aobl + a1b0

_ (2)
co = apbo + a1b:¢

We will denote the multiplication in Equation 2 as pair-pointwise. We remark that it is
different from the point-wise multiplication computed when a complete NTT is applied to
the polynomials (such as in Dilithium).

Multiplication optimisations. In Equation 2 we see a very straightforward way of calcu-
lating a pair-pointwise multiplication, and obtaining the resulting two adjacent coefficients
of a polynomial. We see that a total of 5 multiplications are performed. This multiplication
process can be optimised via the Karatsuba algorithm in such way that we only need to
perform 3 multiplications per each pair-pointwise multiplication:

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 9

(ap + a1z)(bo + biz) mod (2 — ()
= aobo + ((CLO —+ al)(bo =+ bl) — aobo — albl)w + a1b1x2 (3)
= aobp + a1b1¢ + ((ao + a1)(bg + b1) — agbg — a1b1)x

Thus we can obtain the resulting polynomial ¢y + ¢z via

co = agbg + a1b1¢

(4)

c1 = (ag + a1)(bo + b1) — (agbo + a1br)

Observe that Karatsuba multiplication is the most popular approach for implementing

the pair-pointwise multiplication in Kyber. It allows us to reduce the number of multipli-

cations from five to four. This approach has been adapted by the software implementation

we analyse in this paper, and also in public hardware implementations of Kyber such
as [XL21].

Masking Kyber. There are several proposals to mask lattice-based schemes (NTRU [OSPG18],
Saber [BDK'21]), whereby the following works present concrete masking schemes for Ky-
ber [BGR™21, HKL.722]. The schemes consider masking of any secret dependent operation
such as the computation of inverse NTT, of the key derivation function on the decapsulation
process or, more commonly, masking of the polynomial multiplication with the long-term
secret. The idea for masking the polynomial multiplication on Kyber is the same as usually
applied in other cryptographic schemes: split the secret into shares and compute secret
dependent operations on each share. Then add the results. For Kyber it means that the
secret polynomials will be split into shares and then, the input ciphertext will be multiplied
with each share separately.

3 Our attack

In this section we explain our template attack on the decapsulation process of Kyber.
We recall that our attack allows us to extract the coefficients of the secret a during the
polynomial multiplication at the beginning of the decapsulation process. Note that the
coefficients that we extract will be in NTT domain, and after correctly recovering, we need
to transform them back to their standard domain.

In what follows we first describe our main attack and its steps. Subsequently, we show
how variants of our attack with a smaller or larger number of templates affect the success
probability of key recovery. Moreover, we explain how our attack can be directly applied
for targeting masked implementations and explain how we can extend our attack in order
to target implementations which apply shuffling to the polynomial multiplication.

Attacking Kyber in practice. In Subsection 1.1 we provided an example describing the
idea behind our attack. However when targeting real life implemenations of Kyber, we
should consider several aspects which may affect the success probability of our attack.
First as noted in Subsection 2.2, many implementations of Kyber optimise the pair-
pointwise multiplication via Karatsuba and thus the multiplication is not performed
exactly as described in Equation 2, and we may have less points of comparison for each
multiplication with a coefficient value we are trying to extract. Second, it is not clear
whether we will always get enough leakage from a multiplication operation, such that it
would allow us to distinguish the values of the operands being used. In practice this will
depend on the environment running the implementation of Kyber and on the way the
multiplication operations are implemented. For instance, the more clock cycles needed

10 Breaking DPA-protected Kyber via the pair-pointwise multiplication

for calculating one multiplication, the more points of comparison we will have when
performing template matching. However, some implementations and environments allow
to perform multiplications between operands within just one clock cycle. On the other
hand, we note that a single multiplication usually involves more operations than just the
multiplication itself, such as load operations and modular reductions. In any case, it is
worth analysing the number of operations within a pair-pointwise multiplication which
depend solely on one of the two coefficients ag or a; and try to exploit such operations
for trying to distinguish. In the following we first analyse possible leakage points for
attacking implementations of Kyber which make use of Karatsuba for implementing the
pair-pointwise multiplication. This analysis will help us crafting a template attack which
will succeed with high probability, and which will not require a very large number of
templates.

3.1 Attack steps - extracting the key via g + g templates

As we point out in Subsection 2.2, many implementations of Kyber implement the pair-
pointwise multiplication via Karatsuba, reducing thus the number of single multiplications
during the process. As we can see in Equation 4, for each pair of coefficients ay and a;,
coefficient ag is multiplied only once times by, while coefficient a; is multiplied once with
b1 and their product is multiplied with . If one multiplication is enough for extracting a
secret coefficient, then our attack would still work using only ¢ templates. Nevertheless,
there exist better chances of extracting each coefficient a; alone since there exist more
operations within the pair-pointwise multiplication which depend solely on a; without any
influence of ag. In the following, we will explain how we can use ¢ templates for extracting
all such a; values within each pair-point multiplication. These coefficients correspond
to all coefficients aq, a3, as,az, ..., asss3,ass5 in &. Then, with knowledge of all extracted
values, we will build new templates and will use them for extracting all remaining values
agp.

Generating the inputs. Note that when building templates and when obtaining the target
trace, we will be using chosen ciphertexts (and chosen keys when building templates),
which on NTT domain have a specific structure. Therefore we need to find polynomials in
standard domain which have the desired structure on NTT domain. It turns out we can do
this very easily since the NTT (and its incomplete version applied in Kyber) is a bijection.
Thus all we need to do is set a polynomial with the desired coefficients and run the inverse
NTT on it. More precisely for Kyber, we set 128 polynomials of degree 1, each with the
desired coefficients (see Subsection 2.2) and run the inverse NTT on them. In addition, we
also need to consider the compression and decompression properties of the ciphertext in
standard domain, since the input ciphertexts are provided to the decapsulation algorithm
in compressed form (see Algorithm 4). We recall that the compression and decompression
algorithms may introduce some errors in the least significant bits of some coefficients
of the polynomials. Thus, when setting a value b with a desired structure, and then
transforming it into its standard domain b, we should check whether b can be compressed
and decompressed, such that

DECOMPRESS(COMPRESS(b)) = b.

If the equation above holds, we ensure that on line 2 of Algorithm 4, NTT(b) is indeed
transformed into a vector with the structure we initially desired. In [HHP*21], the authors
dealt with the same issue for their chosen ciphertext attack on the decapsulation process
of Kyber. The authors needed a ciphertext b which on NTT domain would be sparse, and
they presented two methods for generating such ciphertexts and ensuring that they would
preserve the desired properties after compression and decompression. It turns out that for

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 11

us it is much easier to deal with this issue, since the structure we desire for the NTT-d
value is much more flexible as we explain below (and as will be seen in the attack steps
described in the rest of this section).

In essence for our attack, we simply require a ciphertext vector which on NTT domain
has either of the two following properties:

e For each pair of coefficient values by, b1, it holds that by # by, or
o For any two coefficients b;,b; in b it holds that b; # b;.

The first property is enough for attacking unprotected and even masked implementations.
The second property will be relevant for attacking implementations which implement
shuffling of the polynomial multiplication (see Subsection 3.3.1). Naturally, vectors with
the second property can also be used for attacking masked or unprotected implementations
since the second property implies the first property. Our advantage is that there is no
restriction with respect to the specific values these coefficients should have. Thus when
generating the inputs, we could simply set the desired vector B, run the inverse NTT on
it and then check whether the resulting vector preserves its form after compression and
decompression. Moreover, it is not even necessary that the vector in standard domain
preserves its original form. It is only important that the resulting vector can be transformed
via the NTT into a vector with any of the properties listed above. Therefore, it should be
very easy to just try out some values. Another simple strategy could be to set a vector
in standard domain b with small coefficient values. The small values ensure that the
coefficients will preserve their original values after compression and decompression. Then
we can simply apply the NTT to b and check whether the resulting vector b has the
desired properties listed above. Finally we point out that finding input ciphertexts which
achieve the second property can be done very easily and we may not even need to choose
those ciphertexts ourselves.

We now proceed to explaining the attack steps for extracting the secret a using a total
of 2¢ templates.

Step 1: Template building. We start by building templates in the exact same way as
described in our earlier example, starting by building the template Tj;. That is, we first
build a template for the case that the secret a consists completely of coefficients equal to 0

a= (00,01702, .. .,0255).

For the input ciphertext, we can choose a ciphertext equal to the one used in our
example. What’s important is that the polynomial has a structure where coefficients
corresponding to by and by are always different, i.e. by % b;. As an example, we consider
the ciphertext below.

b = (26490, 3171, 26495, 3175, . . ., 2649954, 317255).

We record thus a power trace and obtain the template T;. We repeat this process for
all possible values between 0 and ¢ — 1. For each new template, we change the value of
3 accordingly (i.e. setting & = (1o, 11, 12,...,1255),8 = (20, 21,29, ..., 2255), etc) and we
always use the same ciphertext b.

Step 2: Obtaining the target trace. We now turn to the target device running a key
decapsulation of Kyber and query it using our chosen ciphertext b, which on NTT domain
maps to the ciphertext b described above. We record a power trace during execution and
obtain our target trace T;.

12 Breaking DPA-protected Kyber via the pair-pointwise multiplication

We now have our set of templates and our target trace and can proceed to perform
template matching. The idea is that we will obtain enough information to identify good
matches for operations involving the operands a1, since this coefficient is used independently
in several operations during each pair-point multiplication. We will assume that we will
not be able to identify any matches for coefficients ag since this coefficient is only used
once independently during each pair-point multiplication.

Step 3: Template matching. We now match the target trace Ty with each template
T;. We expect to see no correlations between any regions of the traces, unless both the
target trace and the template used the same operands aq, by, b; within some pair-point
multiplication. First we compare the target trace with the template T. There are a total
of 128 pair-pointwise multiplications and thus, a total of 128 regions corresponding to this
operation in the power traces. We can numerate each region sequentially from 0 to 127. If
we observe some correlations between the target 7; and our template Ty on region i, then
we will know that the operand ag;41 has the value 0. We then repeat the process with all
remaining templates, or until we have extracted all a; operands of the polynomial &.

Step 4: Template building with extracted coefficients. In the previous step, we extracted
all operands corresponding to a; during a pair-point multiplication. We will now use the
knowledge of the extracted coefficients for building a new set of templates which will help
us extract all operands corresponding to ag in each pair-point multiplication.

Let us denote by 1 an operand a; whose value was extracted in the previous step. In
essence, we can now build templates in the same way as we did in Step 1, but the keys &
will now have the following structure. For each value j € [0,1,...,3328] we construct a
template for, i.e. each value we set for the key during each template generation, we set the
key as follows:

a= (jOawlvaa ¢3; s aj254; l/}255)-

We will denote the templates generated during this step as T}, and we will generate all
of them the same way as described in Step 1, using the same input ciphertext b. We
obtain a total of ¢ new templates T} y.

Step 5: Template matching We now perform template matching in the exact same way
as we did in Step 3, but using the templates 7}, we obtained in Step 4. We now expect
to see correlations which will let us extract all ag values. As opposed to the template
matching we performed on Step 3, we now will have more points of comparison for finding
correlations between some template 7}, and the target trace T;. Namely for a template
corresponding to a correct value j for some ag, we now expect to find correlations not only
on the single multiplication ag - by, but also on all remaining operations dependent on ag
and aq, i.e. all operations within the pair-point mutliplication. Since the value for a; has
already been rightly taken into consideration, a correct guess for ag will lead to a good
match for the complete region corresponding to the whole pair-point multiplication.

3.2 Attack alternatives varying the number of templates

We now discuss how the attack above may be implemented using a larger or a smaller
number of templates. The attack strategy remains the same, but having a larger number
of templates may increase our probabilities of success.

Attack using g templates. As explained in the beginning of this section, ideally our
attack would work using only ¢ templates. Here, the templates would allow us to extract

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 13

each coefficient in d one by one. This would allow us to attack Kyber with only 3329
templates, which is a fairly small number for such an attack. Moreover, such an attack
could potentially generalise to implementations of Dilithium [LDK*20] when collecting ¢
traces for the (larger) Dilithium modulus. Namely, Dilithium actually performs complete
NTTs on its polynomials and thus, multiplications are actually point-wise, and not pair-
pointwise. Thus each secret coefficient is multiplied once, and then a modulus reduction is
performed. In the Hamming weight model (see Section 4), this might not provide sufficient
leakage (since Hamming leakage of k bits scales with \/E), but the real-life leakage might
nevertheless suffice to attack also Dilithium.

Attack using g2 templates. As we have noted throughout this section, each pair-poitnt
multiplication provides the result of two coefficients of the product & o b. Each pair-point
multiplication involves two adjacent coefficients of 4, which we have referred so far as ag
and a1 (see Equation 2). Therefore, we could actually build templates for each possible
pair of coefficients ag,a;. When performing template matching, we will have many points
of comparison between the templates and the target traces, since we will be comparing
regions corresponding to the complete pair-point multiplication (similar to how we did in
Step 5 in Subsection 3.1). This increases thus our chances of successfully performing a
key extraction.

Making templates for each possible pair of coefficients implies that we need a total of
q? tamplates, which in Kyber translates to 33292 ~ 11M templates. While this number is
much larger than what we considered initially, this attack strategy is very likely to work.
Acquiring 11M traces may need several days. However such an attack complexity is still
considered a real threat.

3.3 Attack on DPA-protected Kyber

We now explain how we can apply or extend our attack for targeting DPA-protected
implementations of Kyber. We start by discussing our attack on masked implementations.

We can apply the exact same attack as described above on masked implementations of
Kyber. Our templates and the corresponding template matching can help us recover each
share of the secret key (exactly as described above). Once we have recovered all shares, we
just need to add them to obtain the secret key.

Note that one target trace suffices since each share is used independently and sequentially.
We are assuming here that in masked Kyber, we first multiply the ciphertext with share
one and then multiply the ciphertext with share two (and so on in case of higher order
masking). Such an assumption is very likely to hold for software implementations. For
hardware implementations, there exists the possibility of performing some multiplications
in parallel particularly since each pair of multiplications is performed independently of each
other (see Subsection 2.2). However for performing two or more multiplications at once,
the hardware design needs to count with two multiplier modules, and not all hardware
designs of Kyber will be implemented as such since having extra multipliers may imply
large costs in terms of area of the design.

Below we elaborate on how the chosen masking scheme may affect the complexity of
our attack. The main takeaways are: if the target implementation uses a masking scheme
with a modulus ¢, then the attack complexity and success probability are barely affected.
However if the masked implementation operates on a modulus notably larger than ¢, the
complexity increases linearly, and the success probability is also affected.

Masking schemes with modulus q. As explained in Section 2, masking schemes may
vary on the modulus ¢ they operate on. Let us first assume that we are attacking an
implementation with a masking scheme which produces shares which all have coefficients

14 Breaking DPA-protected Kyber via the pair-pointwise multiplication

with values between 0 and ¢ — 1 = 3328. In this case we will be able to perform a
key extraction using the same number of templates as for an unmasked implementation.
Namely, the templates we need for attacking such a masked implementation correspond
to multiplications between known coefficients (for our chosen ciphertext), and unknown
coefficients with values between 0 and ¢ — 1. Thus after obtaining all ¢ templates, we only
need to perform the template matching twice with respect to an unmasked implementation
(once for each share). The number of template matchings we perform increases linearly
with the degree of the masking scheme. However, if we perform template matching over a
power trace corresponding to the complete multiplication process involving both shares,
we only need to perform the matching once for each template. For each 0 < j < ¢ — 1,
each match will reveal which coefficient in any of the two shares has a value equal to j.

Masking schemes with modulus ¢’ >> q. Notably, the complexity of our attack
increases if the masking scheme generates shares with coefficients with values between 0
and some ¢’ which is notably larger than g. This is simply because we need to generate a
corresponding number of ¢’ templates. At the same time, we may have more collisions
given the larger number of possible values.

3.3.1 Attack on shuffled implementations - distinguishing via the input ciphertext

Initially, one may think that a straightforward countermeasure against the attack proposed
in this section is the randomised shuffling of the pair-point multiplications. Indeed, such
pair-pointwise multiplications may be easily shuffled since each pair-point multiplication
is independent and it doesn’t really matter in which order they are computed, as long
as the results are later placed on the correct coefficients of the resulting product. If we
target a shuffled implementation of Kyber, our attack as described in Subsection 3.1 would
allow us to extract all coefficients correctly, but we would not know the correct order
in which they appear on the resulting polynomial. Nevertheless, we observe that our
attack can be easily extended such that it is also effective on shuffled implementations,
given only one target trace. We explain the attack steps below. The main idea is that
we will use a chosen ciphertext whose coefficients all have a different and unique value.
We will use such a ciphertext for generating our templates the same way as described
before, obtaining thus ¢ templates. Then, we will use the same ciphertext for obtaining
our target trace. When performing template matching, for each template, we will try
matching it a total of 5 times, where for each try, we will shift the positions of each
pair-point multiplication. Whenever we obtain some match, we will know the value of
the operands for the chosen ciphertext and since each one of these operands is unique,
we will know its original position and this will reveal the position of the extracted secret
coefficient. The following description corresponds to an attack where we will first use ¢
templates for extracting all coefficients ag; 1 (i.e. the coefficient a; within each pair-point
multiplication), as we did in Subsection 3.1.

Generating the inputs. We choose an input ciphertext for which (on NTT domain) each
of its coefficients has a unique value. That is, given the ciphertext b= bo, b1,b2,. .., bass,
it holds that for each b;, b;, with i # j, b; # b;. For illustration purposes let us assume we
choose b as follows:

b =90,781,17532, 73, ..., 17254, 104955.

Template building. We build templates in the exact same way as described in Step 1 of
Subsection 3.1. Thus, we obtain a total of ¢ templates, each template for each possible

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 15

coefficient value. For a coefficient j, the templates will be of the form

T; =(jo +j1) - (90 + 781), (j2 + js) - (17532 + T3), ...,
(Jasa + Joss) - (17254 + 104955).

Obtaining the target trace. We obtain the target trace the same way as described in
Step 2 of Subsection 3.1, i.e. by providing our chosen ciphertext b as input. Note however
that this time our ciphertext (on NTT domain) consists of coeflicients with unique values.
Moreover, note that the resulting target trace corresponds to a shuffled evaluation of the
pair-pointwise multiplications. For instance, the target trace might correspond to the
following shuffled sequence of operations

Ti =(ag2 + a2s) - (baz + ba3), (a104 + a105) - (b1o4 + b105); - - -,
(ag + ay) - (bo + b1), (ase + as7) - (bse + bs7).

(Secret) coefficient extraction and location identification via template matching. We
now proceed to match our templates with the target trace in a similar way as described
in Step 3 of Subsection 3.1 with some additional steps. For each template T; we will
perform a template matching with the target trace as follows.

1. We first test a matching with the template T and target 7; the same way as tested
for our original attack. Let us assume we find a match at position ¢, revealing
thus that the secret coefficient used at that position has the value j, i.e. ag;41 =j.
Let us remark that at this point of our analysis, the template T} corresponds to
a non-shuffled sequence of pair-point multiplications. Let us also recall that for
generating the template and the target trace we used a ciphertext polynomial whose
coefficients (on NTT domain) are all different from each other. Finally, let us recall
that for obtaining a match, all input operands used within the analysed computations
need to be the same. I.e. for a pair-point multiplication, the same by, b; and ay
values need to be used in the template and in the target.

Given the observations above, we know that if at this point we obtain a match at
position 4, then the original, non-shuffled position of the extracted coefficient in the
secret key is at position i. The coefficients of our input ciphertext serve as orientation,
since they are unique and we know their position in the template traces.

2. We will now try to find out whether a value j appears in some shuffled pair-point
multiplication, and we will also find out where in the non-shuffled key the value
j is located. For this, we start shifting the multiplication regions of our trace T}.
Concretely we will shift the positions of all pair-point multiplications. Thus for each
template, there is a total of 128 shifts we can do since each template corresponds
to 128 pair-point multiplications. Let w denote the number of shifts we do on a
template and let Tj>“’ denote the template built for the coefficient value j and shifted
a total of w times. For instance if we shift the multiplications only once, we obtain
the template with the following form:

T =(jasa + jass) - (basa + bass), (o + 1) - (bo + b1),
(o +Js) - (b2 + b3), ..., (J2s2 + j253) - (bas2 + ba2s3)
3. Next we perform template matching with Tj>“’ and our target trace T;. Let us

assume we find a match at position i. The match tells us that the coefficient as;41
in the target trace has the value j. However since we know that the template Tj>“’

16

Breaking DPA-protected Kyber via the pair-pointwise multiplication

shifted the pair-point multiplications a total of w positions, we know that that it
is actually the coefficient a(;_q)4+1 in the (non-shuffled) secret key which has the
value j.

. We repeat the same matching + shifting process with all templates until we recover

all coefficients. Recall that we are recovering all coefficients a; for each pair-point
multiplication. Once we have recovered them, we can build a new set of ¢ templates,
by placing all recovered coefficients in their shuffled position and then just repeat
the matching process from Step 5 in Subsection 3.1. This will let us recover all
coefficeints ag in each (shuffled) pair-point multiplication. Since in the previous step
we learnt the original (non-shuffled) position of each pair-point multiplication, we
will also know the original position of the extracted aq coefficients in the non-shuffied

secret key.

4 Simulations and heuristic estimates

This section presents leakage simulation of our attacks (Section 3) on the implementation

in [HKL 22, cod22] for Cortex-M4.

4.1

The implementation we are analysing

Implementation of pair-point multiplication

Listing 1: Instructions for pair-point multiplica-

implements the pair-pointwise multipli- tion.
cation as shown in Listing 1 and corre- | , ldr polyO, [aptrl, #4
sponds to the Karatsuba multiplication 2 ldr polyl, [bptr]l, #4
algorithm [KOG3] (see Equation 4 for | s ldr poly2, [aptr], #4
reference). The procedure first loads a | + ~ 1dr poly3, [bptrl]l, #4
pair of secret coefficients ag|la; into a | 3
32-bit register poly0 and a pair of public | ° ldrh zeta, [zetaptr], #2
coefficients by||b; into a 32-bit register |
polyl. The coefficients ag, a1, by, and i smultt tmp, pol3.ro, polyl

L. R 9 montgomery q, qinv, tmp, tmp2
by are 12-bit integers in {0,..,3328}. In | _ smultb tmp2, tmp2, zeta
this overview, we skip over the instruc- |, smlabb tmp2, poly0, polyl, tmp2
tions at lines 3 and 4 which are the |,, montgomery q, qinv, tmp2, tmp
analogous load operations for the next |i;
pair of coefficients in the key and in the |14 smuadx tmp2, polyO, polyl
ciphertext. Next in line 8, we multiply |15 montgomery q, qinv, tmp2, tmp3
the top parts of the registers poly0 and
polyl, obtaining a product correspond- Listing 2: Montgomery subroutine.
ing to a;j - by. This product is a 24-bit 1 .macro montgomery q, qinv, a, tmp
result and it is stored in tmp. The | 2 smulbt \tmp, \a, \qinv
value in tmp is then reduced mod 3329 | 3 smlabb \tmp, \q, \tmp, \a
(line 9). Listing 2 gives the code of the | ¢ -endm

Montgomery subroutine and Appendix A explains why the deployed Montgomery reduction
algorithm for mod 3329 computation induces 3 further operations on 28-bit values. Next,
the result is multiplied by ¢ (line 10), added to ag - by (line 11) and reduced mod 3329
via Montgomery reduction (line 12), resulting in the constant term aj - by - ¢ + ag - by
(cf. Equation 2). Next, the code computes the sum of the cross term a; - by + ag - b1 (line
14) and reduces it mod 3329 (line 15).

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 17

4.2 Hamming weight model

We analyze leakage in the Hamming weight model which counts the number of ones in a
state. The assumption in this model is that the power consumption of a device is correlated
with the Hamming weight of the states during computations. In our analysis, we will
check whether each possible secret coefficient a; € {0, ..,3328} (or each possible pair of
coefficients) leads to unique hamming weight values during the pair-point multiplication.
If this is the case, then we expect that the leakage coming from a pair-point multiplication
will allow us to identify the value of the secret coefficient(s) used within that pair-point
multiplication. We present both heuristic estimates and simulations for Hamming weight.

For a heuristic estimate, we calculate the ezpected information that we obtain from
the Hamming weight of a uniformly random k-bit string. Namely, [log Pr[HW = i]| is the
number of bits of information which we weigh by the probability of obtaining a state with
hamming weight ¢, leading to the expected information (or Shannon Entropy)

=« (2)

for a uniformly random k-bitstring. Asymptotically, the expected information H (k) grows
linearly in vk. For k = 24 and k = 28, we have H(24) = 3.34 and H(28) = 3.45.

Recall that our attack using ¢ + ¢ templates (see Subsection 3.1) first extracts a; before
extracting ag. Concretely, the five operations up to and including line 10 in Listing 1 only
depend on a;. They first write a 24-bit value for multiplication of a; and by, then three
28-bit values in the Montgomery reduction (cf. Appendix A) and then another 24-bit value
for multiplication of a; - b; - . We obtain an overall expected information of

k k (k:)
H(k) := Y Pr[HW =i - |log (Pr[HW = i]) Z o
=0

i=

H(24) + H(28) + H(28) + H(28) + H(24)
—2. H(24)+3- H(28) ~2-3.34+ 3 - 3.45 = 6.68 + 10.35 = 13.69

bits leakage about a; only. Since a; is a 12-bit value, it is plausible that we extract a;
correctly with good probability from these five operations, even if not always, since 13.69
bits is only slightly above 12 bits and the random variable is concentrated around its
expectation rather than exactly at its expectation.

To extract both values ag and a;, we have two further Montgomery reductions (line
12 and line 15), each resulting in 3 more operations, leaking together 6 - H(28) =~ 20.7
additional bits of information and the computation and addition of cross terms in line 14
which generates another H(24)-bit value, leading to an overall expected leakage of

13.69 + 20.7 + 3.34 = 37.73

bits to extract a 12 + 12 = 24-bit value (ag, a1), suggesting that an attack trying out all
pairs should succeed with very high probability. We now turn to our simulation and their
results which corroborate our analyses.

4.3 Simulations in the Hamming weight model

We now provide simulations for the operations within the pair-point multiplications. In our
simulations we first focus on the first 5 instructions of the pair-point multiplication (see
previous subsections). Our simulations calculate which coefficients ag; 41 € [0,...,q — 1]
have unique combinations of hamming weight values (hamming weight tuples) during
these instructions. Recall from Equation 4 (and from the listings in this section), that on
the pair-point multiplication we have a1b;(. The value of (changes for each pair-point
multiplication. So for our simulations, we will initially fix (y and try out all possible values
for a; and all possible values b;. We will obtain the average probability that a value for

18 Breaking DPA-protected Kyber via the pair-pointwise multiplication

a1 leads to a unique hamming weight tuple. Then, we change to (; and iterate over all
possible values for as and all possible values for b5. We continue this process, obtaining
the averages for all ag;11, given all (;. We thus obtain probabilities for extracting each
odd coefficient, given a random ciphertext. Observe that in our simulations we do not
consider micro-architectural aspects, like instruction pipelining, of our target. In the next
section, we provide partial experimental evidence of the success of our attack.

As we will show, most of the values for an odd coefficient indeed lead to unique
hamming weight tuples. Only a small fraction of coefficients have collisions. On average,
3031 of these values have unique hamming weight tuples, i.e. there exist 3031 hamming
weight tuples which map to exactly one coefficient value. 259 coefficients lead to 2-way
collisions. This means that there exist 259/2 ~ 130 hamming weight tuples which map to
exactly two different coefficient values. Subsequently, there exist 34 coefficients which have
3-way collisions and 4 coefficients which have 4-way collisions each. The exist (on average)
only 0.03125 tuples which map to more than 4 different coefficient values. We now go on
more detail about the results of our simulations. Extracting odd coefficients (ag;4+1). Our
simulations show that for a uniformly random by; 11, the probability of extracting ag; 41
from the first 5 instruction is &~ 0.90. This means that given a random ciphertext, we
have good chances of extracting each odd coefficient. The probability of obtaining two
possible candidates for each odd coefficient is ~ 0.085, and the probability of obtaining
three possible candidates for each odd coefficient is ~ 0.011. Thus, taking a union bound,
we obtain that the probability that a given as;y1 has either a unique hamming weight
tuple, or a 2- or 3-way collision is &~ 0.996. For this reason in the rest of this analysis
we will only consider the case that we are dealing with coefficients with unique hamming
weight tuples, or with 2- or 3-way collisions.

Table 1: Simulation results. Under Number of Matches we see the probabilities that given
each (; we obtain 1-, 2- or 3-way collisions. The upper part of the table corresponds to
probabilities of extracting odd coefficients, given ¢ templates. The lower part corresponds
to probabilities of extracting pairs of coefficients, given ¢ templates.

Nr. of templates Root Number of Matches
1 2 3

G 2226 | 0.8696 0.108 0.018

_ & —2226 | 0.9344 0.0603 0.0042

¢-templates & 430 | 0.8688 0.1087 0.0178

Clag 1628 | 0.8715 0.1067 0.0173

Cion —1628 | 0.9329 0.0615 0.0044

Go 2226 | 0.9974 0.0025 1.01 x 107°
¢*-templates G —2226 | 0.9973 0.0026 7.1474 x 1076
G 430 | 0.9978 0.0021 4.6282 x 10~

Crog 1628 | 0.9973 0.0027 7.4805 x 106
Cror —1628 | 0.9976 0.0024 5.5263 x 106

In the table under Number of Matches (1), we see the probability that each odd
coefficient aq, ag, ..., as55 has a unique hamming weight tuple. We calculate this probability
over all by € [1,...,q — 1], and note that the probability is dependent on the value of
(. Thus, the probability that a; has a unique hamming weight tuple is different from
that of ag, a5, etc, but the probability is always between 0.801 and 0.937, with an average
of 0.90. Under Number of Matches (2) and (3) we see the analogous probabilities

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 19

that each odd coefficient ag;11 has a hamming weight tuple with a 2- and 3-way collision
correspondingly.

We recall that in our attack using ¢ + g templates (cf Subsection 3.1), we use the
first set of ¢ templates for extracting the odd coefficients. According to our results, we
should have a 90% chance of correctly extracting each odd coefficient - but we should recall
that in Kyber, the secret keys consist of polynomials of degree 255. Thus the probability
of extracting all odd coefficients correctly is notably smaller. In fact, if we consider all
probabilities of Table 1 for the chances that each odd coefficient has a unique hamming
weight tuple, we get a probability of

M2 p; ~ 1.2967 x 107°

of extracting all odd coefficients from one polynomial, given only ¢ templates. In the end
of this section however, we will explain how we can use the results of our simulations for
outlining an attack strategy which easily increases our success probabilities, with just a
linear increase on the number of templates needed.

Eztracting coefficient pairs (as;, azi+1). The lower part of Table 1 gives the probabilities
that each secret coefficient pair leads to a unique hamming weight tuple. We obtain these
probabilities in an analogous way as we did for the odd coefficients. Thus, the probabilities
for each pair (ag,a1), (az,a3)(aq,as),. .., (ass4,as55) are different as they are dependent
on (. Note that in this case, the hamming weight tuples consist of more values since we
are considering all instructions within one pair-point multiplication. Hence the very high
probabilities under Number of Matches (1). We can conclude from these results that if
we create templates for all possible pairs of secret coefficients, our success probabilities are
fairly high (we also provide experimental evidence for this variation of our attack in the
next section). However, we should recall that creating templates for all possible coefficient
pairs constitutes to creating a total of ¢? templates.

Efficiency Optimizations. While ¢? is a reasonable number of template traces, collecting
all of them is still quite consuming. Thus, we may indeed try extracting all odd coeflicients
first and then extracting all even coefficients with an additional set of templates. From
the discussions above we can conclude that our success probabilities of running a g + ¢
attack are not as high as we would originally hope (for the mkm4 implementation in the
Hamming weight model). However, the simulation results suggest a natural and very
simple way of optimising the success of the attack. In the following we outline an attack
adaptation which increases the success probability of our attack and only requires a linear
increase in the number of templates.

First, we can perform a template matching using ¢ templates (as originally done in
Subsection 3.1). For each coefficient we are trying to extract, we rank the top 3 candidate
values for which we get the best matches. Now we build templates for extracting the
even coefficients. We will create 3 versions of these templates. In each version we use a
different top 3 candidate for each odd coefficient, creating thus an additional set of 3¢
templates. Thus, we first determine the top three candidates for each ag;y; (with high
probability), and then try all three of them in combination with all possible as;, leading
to an overall number of ¢ + 3¢ templates. When trying to extract the even coefficients,
we get a very high success rate iff we are using the correct odd coefficient ag; 1. Namely
as we see in Table 1, each secret coefficient pair has a very high probability of having a
unique hamming weight tuple.

We can even optimise our attack further by considering top 4 match candidates for
each coefficient, generating thus an additional set of 4¢ templates. Concretely for the
optimised attacks using g + 3¢ and ¢ + 4¢q templates, we obtain success probabilities of

M} 27 p; ~ 0.6755 and IT1}20p; ~ 0.875

respectively. With 6¢ = 19974 templates, we have a very high success probability of 0.944,
given a single target trace and a random ciphertext.

20 Breaking DPA-protected Kyber via the pair-pointwise multiplication

‘Atacked Tra

: M’ “WW/W WW/\JM A/\VW‘/W M | ‘a V%‘W//W W /W /W ,‘I‘w‘ i ly I ‘V y Wq‘

==
=
=
~

: \
; WWWW\/\\NWJ\«/W V"\f e i , W N \V /M MV M»V/\J\/\, /W\QM”"VJ \/V W

i i THG 3 b1 e it yit it L)
ES Inths Conect Tamplate

MM MWMW% e m 7 /IMJR W\ MNW\\// M

Figure 1: Leakage characterization: target trace with marked pair-point multiplication
(top), subtraction of the target trace from an incorrect template (middle), and subtraction
of the target trace from the correct template.

g i

5 Experimental evidence

In this section we provide partial experimental results for the simplest, but most expensive,
variation of our attack. That is, we assess the success of the attack described in Subsec-
tion 3.2 under Attack using ¢? templates, but we only generate and test a subset of
templates, instead of generating all 11M templates. We want to assess whether we are able
to identify the values of pairs of secret coefficients from the target trace, and this turns
out to be very easy. As we see, we can simply calculate the difference between the target
trace and a template, and the resulting difference trace will tell us whether the template
matches or not. Namely if the pair of secret coefficients used in a template match with the
pair of secret coefficients used within some pair-point multiplication in the target trace,
then we should see a region in the difference trace with values very close to zero. We first
describe our experimental setup and then elaborate on our results.

Just as in the previous section, we target the masked implementation of Kyber from
the mkm4 repository, described in [HKL22], and we use the same experimental setup as
described in that paper. That is, our experiments are performed on the ChipWhisperer Lite
platform with an STM32F303 target [OC14] featuring an Arm Cortex-M4 core. This allows
easy verification with a standardised platform, and leads to low noise level and well aligned
traces. We will concentrate on the function poly_basemul from the implementation, as
this is the part of the program executing the pair-pointwise multiplication.

We obtain 10000 templates for randomly generated pairs of coefficients, including some
pairs which actually appear in the secret key we are trying to extract. Each template is
built using exactly one trace. Thus, for this experiment we generate exactly 10001 traces
(10 000 templates plus the target trace).

Figure 1 displays our simple method for visualising leakage. We follow the approach
described in [HKP*12b], which as mentioned before, simply consists on calculating the
difference between one template and our target trace (see Figures 3 and 4 in [HKP12D]).
The trace at the top of Figure 1 corresponds to our target trace, the area highlighted
corresponds to the calculation of one pair-point multiplication. The trace in the middle
corresponds to the resulting trace when we subtract the target from a template which
does not match the secret coefficients used within the pair-point multiplication highlighted.
In the bottom we see a trace corresponding to the difference between the target and a
template which uses the correct pair of secret coefficients. As we can see, the region
highlighted for this last trace has sample values very close to zero.

Whenever we compare a template for a pair of coefficients which appear on the key of
the target trace, our difference trace contains some region consisting of sample values very

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 21

close to zero (as in the bottom of Figure 1). Whenever we try comparing a template for a
pair of coeflicients which do not appear on the key, our difference trace does not have any
region resembling to the highlighted region at the bottom of Figure 1. In other words, this
partial experiment has a perfect success rate.

6 Countermeasures

The standard countermeasures of masking or shuffling the polynomial multiplication in
Kyber do not seem to be effective for protecting against the type of template attack we
present in this paper. In the following, we discuss possible countermeasures which, to the
very least, should impose significant obstacles for the success of our attack.

Shuffling of the multiplication steps. One possible countermeasure may be the random
shuffling of the operations performed within each pair-point multiplication. This would
make our template matching steps more difficult since the operation sequence in our
templates may not align with the sequential operation of the pair-point multiplication.
However, if the pair-point multiplication is optimised and implemented via Karatsuba,
there are not many different ways in which the operation sequence can be permuted while
maintaining correctness (see the listings in Section 4).

Masking schemes with larger modulus. As discussed in Subsection 3.3, masking schemes
which generate shares with coefficients with much larger values would certainly make our
attack more difficult. Such schemes would imply an increase on the number of templates
needed for our attack, and the chances of getting false positive matches would increase as
well. Unfortunately, such masking schemes would clearly imply an increase in the usage
of computational resources (e.g. memory and stack usage) and the online complexity of
Kyber.

Parallelisation of the pair-point multiplication. Parallelising several of the pair-point
multiplications prevents a straightforward application of our attack. Namely, the paralleli-
sation forces us to recover several coefficients simultaneously, so that the complexity of our
attack is squared when running 2 parallel threads and quadrupled when running 4 parallel
threads. The success probability, in turn, is expected to decrease, since the expected
information increases sub-linearly. Concretely, with 2 threads, the implementation would
leak from 56-bit values, whose expected information leakage is ~ 3.95, which is less than
two times the expected information from 28-bit values which is ~ 2 - 3.45 = 6.9. With 4
threads, the implementation would leak from 112-bit values, whose expected information
leakage is ~ 4.45 which is less than four times the expected information from 28-bit values
which is & 4 - 3.45 = 13.8. As already discussed however, performing multiplications in
parallel seems out of scope for constrained devices as the integration of an additional
multiplier entity would imply a big cost in terms of size.

Complete NTT and actual point-wise multiplication. Certainly, some of our attack
strategies cannot be applied on schemes which implement a complete NTT to its polynomials
and then multiplies them in proper point-wise fashion. For instance, our attack using
¢® templates does not work any more since two adjacent coefficients will be processed in
independent multiplications. We could still try applying our simplest attack using only ¢
templates, and the success would be dependent on how much leakage we obtain from one
integer multiplication plus one modular reduction. If that sequence of operations leads to
enough leakage, we could extend our attack for instance to Dilithium [LDK*20], which
was selected as a post-quantum candidate signature scheme. Dilithium performs a full
NTT and performs a point-wise multiplication.

22

Breaking DPA-protected Kyber via the pair-pointwise multiplication

Acknowledgements. Estuardo Alpirez Bock conducted part of this research while at
Aalto University. His work at Aalto and the work from Kirthivaasan Puniamurthy were
supported by MATINE, Ministry of Defence of Finland.

References

[ABD*+17]

[ABD*+20]

[BCP*14]

[BDK*18]

[BDK*21]

[BGR™21]

[BNGD22]

[cod22]

[DNG22]

[DTVV19]

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber (version 1.0) — submission to round 1 of the
NIST post-quantum project. submission to the NIST post-quantum cryptogra-
phy standardization project, 2017. https://pg-crystals.org/kyber/data/
kyber-specification.pdf.

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber (version 3.0) — submission to round 3 of the
NIST post-quantum project. submission to the NIST post-quantum cryptogra-
phy standardization project, 2020. https://pg-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf.

Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. Online template attacks. In Willi Meier and Debdeep
Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT 2014 - 15th
International Conference on Cryptology in India, New Delhi, India, December
14-17, 2014, Proceedings, volume 8885 of Lecture Notes in Computer Science,
pages 21-36. Springer, 2014.

Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS - kyber: A cca-secure module-lattice-based KEM. In 2018 IEEE
European Symposium on Security and Privacy, EuroSE&P 2018, London, United
Kingdom, April 24-26, 2018, pages 353-367. IEEE, 2018.

Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation of
SABER. ACM J. Emerg. Technol. Comput. Syst., 17(2):10:1-10:26, 2021.

Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking Kyber: First- and higher-order implementations.
TACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173-214, 2021.

Linus Backlund, Kalle Ngo, Joel Gértner, and Elena Dubrova. Secret key
recovery attacks on masked and shuffled implementations of CRYSTALS-
Kyber and saber. Cryptology ePrint Archive, Paper 2022/1692, 2022. https:
//eprint.iacr.org/2022/1692.

Github respository for masked kyber presented in [HKL'22], 2022. https:
//github.com/masked-kyber-m4/mkm4.

Elena Dubrova, Kalle Ngo, and Joel Gértner. Breaking a fifth-order masked
implementation of crystals-kyber by copy-paste. Cryptology ePrint Archive,
Paper 2022/1713, 2022. https://eprint.iacr.org/2022/1713.

Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.

https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2022/1692
https://github.com/masked-kyber-m4/mkm4
https://github.com/masked-kyber-m4/mkm4
https://eprint.iacr.org/2022/1713

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 23

[FO13]

[HHP+21]

[HKL*22]

[HKP+12a]

[HKP+12b)

[HMA*08]

[JWN+22]

[Kan22]

[KO63]

[LDK*20]

[LS19]

In Proceedings of ACM Workshop on Theory of Implementation Security
Workshop, TIS’19, page 2-9, New York, NY, USA, 2019. Association for
Computing Machinery.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. J. Cryptol., 26(1):80-101, 2013.

Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure Kyber.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):88-113, 2021.

Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Péppelmann,
Peter Schwabe, and Amber Sprenkels. First-order masked kyber on ARM
Cortex-M4. Cryptology ePrint Archive, Paper 2022/058, 2022. https://
eprint.iacr.org/2022/058.

Michael Hutter, Mario Kirschbaum, Thomas Plos, Jérn-Marc Schmidt, and
Stefan Mangard. Exploiting the difference of side-channel leakages. In Werner
Schindler and Sorin A. Huss, editors, Constructive Side-Channel Analysis and
Secure Design - Third International Workshop, COSADE 2012, Darmstadt,
Germany, May 3-4, 2012. Proceedings, volume 7275 of Lecture Notes in
Computer Science, pages 1-16. Springer, 2012.

Michael Hutter, Mario Kirschbaum, Thomas Plos, Jorn-Marc Schmidt, and
Stefan Mangard. Exploiting the difference of side-channel leakages. In Werner
Schindler and Sorin A. Huss, editors, Constructive Side-Channel Analysis
and Secure Design, pages 1-16, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and
Adi Shamir. Collision-based power analysis of modular exponentiation using
chosen-message pairs. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2008, 10th International
Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings, volume
5154 of Lecture Notes in Computer Science, pages 15—29. Springer, 2008.

Yanning Ji, Ruize Wang, Kalle Ngo, Elena Dubrova, and Linus Backlund. A
side-channel attack on a hardware implementation of crystals-kyber. Cryp-
tology ePrint Archive, Paper 2022/1452, 2022. https://eprint.iacr.org/
2022/1452.

M. J. Kannwischer. Polynomial Multiplication for Post-Quantum Cryptography.
PhD thesis, Nijmegen U., 2022.

A. Karatsuba and Yu. Ofman. Multiplication of Multidigit Numbers on
Automata. Soviet Physics Doklady, 7:595, January 1963.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-Dilithium,
2020. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

Vadim Lyubashevsky and Gregor Seiler. NTTRU: truly fast NTRU using
NTT. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):180-201, 2019.

https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/1452
https://eprint.iacr.org/2022/1452
https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions

24

Breaking DPA-protected Kyber via the pair-pointwise multiplication

[MBB*22]

[MKK*23]

[NWDP22]

(0C14]

[OSPG18]

[PP19)

[PPM17]

[RCDB22]

[RACR*16]

[RRCB20)

Catinca Mujdei, Arthur Beckers, Jose Bermundo, Angshuman Karmakar,
Lennert Wouters, and Ingrid Verbauwhede. Side-channel analysis of lattice-
based post-quantum cryptography: Exploiting polynomial multiplication.
Cryptology ePrint Archive, Report 2022/474, 2022. https://eprint.iacr.
org/2022/474.

Soundes Marzougui, levgen Kabin, Juliane Kramer, Thomas Aulbach, and
Jean-Pierre Seifert. On the feasibility of single-trace attacks on the Gaus-
sian sampler using a CDT. In Elif Bilge Kavun and Michael Pehl, editors,
Constructive Side-Channel Analysis and Secure Design - 14th International
Workshop, COSADE 2023, Munich, Germany, April 3-4, 2023, Proceedings,
volume 13979 of Lecture Notes in Computer Science, pages 149-169. Springer,
2023.

Kalle Ngo, Ruize Wang, Elena Dubrova, and Nils Paulsrud. Side-channel
attacks on lattice-based kems are not prevented by higher-order masking.
Cryptology ePrint Archive, Paper 2022/919, 2022. https://eprint.iacr.
org/2022/919.

Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source
platform for hardware embedded security research. In Emmanuel Prouff, editor,
Constructive Side-Channel Analysis and Secure Design - 5th International
Workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected
Papers, volume 8622 of Lecture Notes in Computer Science, pages 243-260.
Springer, 2014.

Tobias Oder, Tobias Schneider, Thomas Péppelmann, and Tim Giineysu.
Practical CCA2-secure and masked Ring-LWE implementation. IJACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(1):142-174, 2018.

Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Peter Schwabe and Nicolas Thériault, editors,
Progress in Cryptology - LATINCRYPT 2019 - 6th International Conference
on Cryptology and Information Security in Latin America, Santiago de Chile,
Chile, October 2-4, 2019, Proceedings, volume 11774 of Lecture Notes in
Computer Science, pages 130-149. Springer, 2019.

Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
513-533. Springer, 2017.

Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab
Baksi. Side-channel and fault-injection attacks over lattice-based post-quantum
schemes (Kyber, Dilithium): Survey and new results. Cryptology ePrint
Archive, Paper 2022/737, 2022. https://eprint.iacr.org/2022/737.

Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and
Ingrid Verbauwhede. Additively homomorphic ring-lwe masking. In Tsuyoshi
Takagi, editor, Post-Quantum Cryptography, pages 233244, Cham, 2016.
Springer International Publishing.

Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based PKE and kems. TACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307-335, 2020.

https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2022/919
https://eprint.iacr.org/2022/919
https://eprint.iacr.org/2022/737

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf 25

[RRACT16] Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and

[Seilg)

[XL21]

[ZXZ+18]

Ingrid Verbauwhede. Masking ring-lwe. J. Cryptogr. Eng., 6(2):139-153, 2016.

Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography. TACR Cryptol. ePrint Arch., page 39, 2018.

Yufei Xing and Shuguo Li. A compact hardware implementation of cca-secure
key exchange mechanism CRYSTALS-Kyber on FPGA. TACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(2):328-356, Feb.
2021.

Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu, Bao
Li, and Jingnan He. Preprocess-then-NTT technique and its applications to
kyber and newhope. In Fuchun Guo, Xinyi Huang, and Moti Yung, editors,
Information Security and Cryptology - 14th International Conference, Inscrypt
2018, Fuzhou, China, December 1/-17, 2018, Revised Selected Papers, volume
11449 of Lecture Notes in Computer Science, pages 117-137. Springer, 2018.

26 Breaking DPA-protected Kyber via the pair-pointwise multiplication

A Montgomery reduction

Kyber represents elements in Montgomery representation in order to avoid expensive
division by ¢ and computation mod ¢ and replace it by division by 2'¢ (taking the top
half of a register) and computation mod 26 (taking the bottom half of a register). In
the following, we present the Montgomery reduction with general R and ¢, but Kyber
indeed uses R = 2'6.Consider R = 2¥ > ¢, and an element a < ¢R. To reduce the
memory footprint we can store a/R and this reduces the element a by k bits, and it can
be efficiently implemented. In Montgomery domain, the idea is to make sure that the
element ¢ is a multiple of R by introducing a correction step. More precisely, imagine
that we want to find a value ¢, such that, a — tq is divisible by R. To bring the element
to the Montgomery domain, one computes t as ag~! (mod R) in a way that a —aq™'q
(mod R) = 0. Following closely Section 2.3.2 in [Kan22], Algorithm 6 shows the case of
signed Montgomery reduction from [Seil8§].

Algorithm 5: Montgomery reduction

Input: modulus ¢, R = 2" > ¢, ¢! mod (R), a € Z such that a < gR
Output: t = aR~! (mod ¢),0 <t < 2sq

1 t <+ a(—¢ ') mod (R)

2 t <+ (a+1tq)/R

3 sreturn ¢

Algorithm 6: Signed Montgomery reduction from [Seil8§]

Input: modulus ¢, R = 2" > ¢, ¢~ mod* (R), a € Z such that a < qR
Output: t = aR~! (mod q), |t| < ¢

1t + ag~' mod® (R)

2 t < (tq)/R

3 t+ |a/R] -t

4 return t

To better illustrate the Montgomery representation and reduction, we can show an
Example 1. The example is directly from [Kan22].

Example 1. Let R = 2!6 and that all our elements are in Z/qZ for ¢ = 3329. The
¢~ mod (R) = 3327, the - is the integer multiplication. For the example, we will multiply
two numbers a = 1234 and b = 17. First we bring the elements to the Montgomery domain
by computing @’ = 1234 - R mod® () =27and ¥ =17-R mod™ (¢) = 2226. Then, we
compute the multiplication a’ - " = 60102. Now, we apply the Montgomery reduction and
t = (60102 - 3327) mod (R) = 9018, and (a’ - & +¢-q)/R = (60102 + 9018 - 3329) = 459
which equals abR mod™ (). To bring the result to the “normal” domain, we need to apply
the Montgomery reduction again, ¢ = 19765 and (459 + 19765 - 3329)/R = 1004 which
is the result we were looking for. However, it is enough to transform one multiplication
into the Montgomery domain, e.g. b’ = 17 - R mod (q) = 226. After multiplication we
have ab’ = 2746884 and apply the Montgomery reduction, ¢ = 18940 and (ab’ + tq) =
(2746884 + 18940 - 3329)/R = 1004.

We now provide more details on how we determined the length of values for the
Hamming weight that we use in our numerical estimates in Section 4.2.

Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Sorf

27

(1) ay-b 12 + 12 = 24 bits
take bottom of register 16 bits
then multiply by ¢iny |ginv| = 12 bits

(2) (a1-b1)B - Ginv 16 + 12 = 28 bits
take bottom of register 16 bits
then multiply by ¢ lg| = 12 bits

(3) (a1 -b1)p - @) - 4 16 + 12 = 28 bits
add (aq - by) |ay - b1| = 24 bits

(4) ((a1 - b1)B * Ginv)B + (a1 - b1) max{24,28} = 28 bits
take top of register and call it ¢ |c| = 12 bits

(5)c-¢ 12 + 12 = 28 bits

	Introduction
	Our contribution

	Notation and preliminaries
	Kyber
	Number Theoretic Transform (NTT)

	Our attack
	Attack steps - extracting the key via q+q templates
	Attack alternatives varying the number of templates
	Attack on DPA-protected Kyber

	Simulations and heuristic estimates
	Implementation of pair-point multiplication
	Hamming weight model
	Simulations in the Hamming weight model

	Experimental evidence
	Countermeasures
	Montgomery reduction

