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Abstract. In post-quantum cryptography, hash-based signature schemes
are attractive choices because of the weak assumptions. Most existing
hash-based signature schemes are proven secure against post-quantum
chosen message attacks (CMAs), where the adversaries are able to exe-
cute quantum computations and classically query to the signing oracle.
In some cases, the signing oracle is also considered quantum-accessible,
meaning that the adversaries are able to send queries with superpositions
to the signing oracle. Considering this, Boneh and Zhandry [12] propose a
stronger security notion called existential unforgeability under quantum
chosen message attacks (EUF-qCMA). We call it quantum-access secu-
rity (or Q2 security in some literature). The quantum-access security of
practical signature schemes is lacking in research, especially of the hash-
based ones. In this paper, we analyze the quantum-access security of
hash-based signature schemes in two directions. First, we show concrete
quantum chosen message attacks (or superposition attacks) on existing
hash-based signature schemes, such as SPHINCS [7] and SPHINCS+ [9].
The complexity of the attacks is obviously lower than that of optimal
classical chosen message attacks, implying that quantum chosen message
attacks are more threatening than classical ones to these schemes. Sec-
ond, we propose a simple variant of SPHINCS+ and give security proof
against quantum chosen message attacks. As far as we know, it is the first
practical hash-based stateless signature scheme against quantum chosen
message attacks with concrete provable security.

Keywords: hash-based signatures, quantum security, post-quantum cryp-
tography, digital signatures, superposition attacks

1 Introduction

1.1 Background

Quantum-access Security of Signature Schemes. Signature schemes [21]
are essential primitives in cryptography. In the security analysis of a signature
⋆⋆ This work is carried out during his PhD study in Kyoto University, Japan.



scheme, one usually considers existential unforgeability under chosen message
attacks (EUF-CMA). In this model, the adversary can query messages to a
signing oracle. After the signing queries, the adversary is required to output a
valid signature σ∗ for a fresh message m∗. We say a scheme is EUF-CMA if any
polynomial-time adversary succeeds with negligible probability.

Quantum attacks on cryptographic schemes are usually classified into two
types [13, 24, 25]. In the first type, the adversary can use quantum computers
to execute some offline algorithms or evaluate some functions and send classi-
cal queries to the online oracles. This is called post-quantum security (or Q1
security in some literature). In the second type, the queries to the oracles are
also in superpositions. This is called quantum-access security (or Q2 security).
In signature schemes, the above EUF-CMA security is a kind of Q1 security.
In recent years, there is a large amount of research on Q2 security of various
cryptographic primitives, including pseudorandom functions [36], message au-
thentication codes [11], encryption schemes [12], signature schemes [2,12,16,18]
and so on.

In 2013, Boneh and Zhandry [12] propose a Q2 security notion called exis-
tential unforgeability under quantum chosen message attacks (EUF-qCMA). In
this experiment, the adversary is required to output (qs+1) forgeries for distinct
messages after qs quantum signing queries. They also show a separating exam-
ple, implying that EUF-qCMA is a strictly stronger security notion. However,
to the best of our knowledge, there is no concrete evidence to show that a Q2
attacker can be obviously stronger than a Q1 one for practical signature schemes
(although it is intuitively true).

Hash-based Signatures. Hash-based signature (HBS) schemes are ones
whose security is solely based on secure hash functions rather than mathematical
hard problems. Because of the weak assumptions and resistance to quantum
attacks, HBS schemes are fairly competitive in post-quantum cryptography.

The first practical stateless HBS scheme is SPHINCS [7]. It is based on
HORST (Hash to Obtain Random Subsets with Trees [32]), a few-time state-
less HBS scheme, where the number of signing operations is limited by a small
constant. A key pair of SPHINCS can issue at most 250 signatures and pro-
vide 128-bit quantum security4. So far, the state-of-art stateless HBS scheme is
SPHINCS+ [3,9], a variant using improved building blocks such as few-time sig-
natures and tweakable hash functions. It behaves better in terms of the signature
size, efficiency, security proof and the maximum number of signing executions
(reaching to 264). Recently, SPHINCS+ is selected as one of the NIST post-
quantum cryptography standardization.

In terms of the quantum-access security of HBS schemes, Boneh and Zhandry
[12] prove the EUF-qCMA security of Lamport’s scheme [29] and MSS [31]. The

4 In this paper, we always focus on signature schemes with security level 5 in NIST
post-quantum cryptography standardization. That is, breaking the security is at
least as hard as finding a preimage of AES-256. It implies 128-bit security, which
means that breaking the security requires about 2128 hash queries. In particular, we
focus on SPHINCS-256 and SPHINCS+-256s/256f.
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former is a one-time HBS scheme, and the latter is a stateful one. Hopefully,
other stateful HBS schemes (such as XMSS [15]) are also EUF-qCMA since
they are essentially variants of MSS and the structures are similar. However,
when it comes to stateless schemes, the cases become different. (The authors
proved the EUF-qCMA security of stateless MSS, but stateless MSS is far from
efficient in practice.) For practical stateless HBS schemes, such as SPHINCS and
SPHINCS+, the quantum-access security still lacks research.

Note that Boneh and Zhandry [12] proposed a generic construction of EUF-
qCMA schemes from UUF-RMA (universally unforgeable under random message
attacks) schemes by introducing a hash function modeled as a quantum random
oracle. However, the construction causes large security loss, which will be espe-
cially expensive for HBS schemes, whose security are highly related to the num-
ber of issued signatures. For instance, suppose we want an EUF-qCMA scheme
such that the probability of breaking the security is under 2−10 when qs ≤ 210

and qH ≤ 230 (number of signing queries and hash computations respectively),
which is a fairly weak requirement in practice. If we use the above generic con-
struction, we need a 2117-time UU-RMA scheme with 254-bit quantum security,
which far exceeds the security of SPHINCS+.

1.2 Our Contributions

In this paper, we give positive and negative results on quantum-access security
of HBS schemes.

– First, we show some qCMAs on two HBS schemes, SPHINCS and SPHINCS+.
The complexity of our attacks is much lower than the security in the classical
setting. We thus conclude that quantum chosen message attacks are more
threatening to security than classical CMAs for the two schemes.

– Second, we propose SPHINCS-FORS, a simple variant of SPHINCS+, whose
quantum-access security can be proven. We give formal security proof and
concrete security in sense of EUF-CMA and EUF-qCMA. As far as we know,
it is the first practical stateless HBS scheme with provable security against
qCMAs.

1.3 Main Techniques

Quantum Chosen Message Attacks on HBS Schemes We first give an
outline of SPHINCS and SPHINCS+. Roughly speaking, SPHINCS(+) intro-
duces a stateful signature HT and implicit 2h instances of few-time signature
key pairs (HORST in SPHINCS and FORS in SPHINCS+). HT is for signing
the public keys of the few-time signatures, and the few-time signatures are for
signing the messages. In each signing operation, it (pseudo-)randomly picks an
index idx ∈ {0, 1}h and uses the few-time signature key pairs labeled idx to sign
a message. The essential idea is that the index is picked randomly, and thus, each
few-time signature key pair is not used too many times in the signing operations.
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The core idea of our attack is to obtain enough few-time signatures associ-
ated with a single index. In SPHINCS, the index is calculated by pseudorandom
functions on the message m and included as a part of the SPHINCS signature.
Although the pseudorandom functions cannot be directly evaluated by adver-
saries without the secret key, they can be evaluated by signing queries. Fix some
index idx∗ ∈ {0, 1}h. A quantum-access adversary can search a message m∗

mapping to idx∗ by Grover’s algorithm with O(2h/2) quantum queries to the
signing oracle.

Thus, our quantum chosen message attack on SPHINCS runs as follows.
First, try to obtain enough number (say r) of messages m∗i mapping to an index
idx∗ by querying the signing oracle. This requires O(r2h/2) quantum signing
queries. Then, send m∗i (with pure states) to the signing oracle separately, and
obtain r HORST signatures associated with idx∗. This requires r signing queries.
When r is large enough, the HORST secret key associated with idx∗ will be
completely revealed, and the adversary can forge a signature forany message.
Finally, generate enough SPHINCS signatures associated with index idx∗ to
meet the requirement of one-more forgeries. Note that optimal classical chosen
message attacks on SPHINCS require approximately 2128 hash queries (when at
most 250 signatures are issued). The query complexity of our attacks are much
lower than that of classical attacks (see Table 1, Our Attacks (PO)).

Result 1 For some integer r, there exists a quantum chosen message attack on
SPHINCS such that

qs = O(r2h/2), qH = O((1− e− kr
t )−

k
2 r2

h
2 ),

where qs and qH denotes the number of quantum signing queries and quantum
hash queries, respectively.

The attack on SPHINCS+ is similar. The difference is that the index of
a SPHINCS+ signature is not directly included. Instead, it is calculated by
h0(z||m), where h0 is a hash function mapping to {0, 1}h and z is a (pseudo-
)randomizer determined by the message m. 5 Since z is included in the signature,
the index can be evaluated by a signing query (calculating z) and an additional
h0 query. Then, use Grover’s algorithm to find enough FORS signatures associ-
ated with an index idx∗. Finally, to generate a forgery (m∗i , σ

∗
i ), the adversary

needs to find a corresponding randomizer z∗i such that h0(z∗i ||m∗i ) = idx∗. It
requires O(2h/2) quantum queries to h0 by using Grover’s algorithm for each
forgery. Thus, the attack on SPHINCS+ requires more hash queries than that
on SPHINCS (see Table 1, Our Attacks (PO)).

Result 2 For some integer r, there exists a quantum chosen message attack on
SPHINCS+ such that

qs = O(r2h/2), qH = O((1− e− r
t )−

k
2 r2h).

5 SPHINCS+ has a probabilistic version where z is not determined by the message.
Our attack only works on the deterministic version of SPHINCS(+).
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In addition, Alagic et al. [2] propose another security notion called blind un-
forgeability (BU) considering quantum chosen message attacks. 6. Informally, the
(quantum-accessible) signing oracle now returns ⊥ for messages in a ε-fraction
blind subset of the message space, and it is infeasible to forge a signature for a
message in this blind subset. To distinguish the two, we call the previous security
model against qCMAs as PO model (Plus-one model). In our study, we also give
similar attacks on SPHINCS and SPHINCS+ in the BU model, and the time
complexity of the attacks is much lower than that in the PO model (see Table
1, Our Attacks(BU)).

By implementing the parameters in SPHINCS [7] and SPHINCS+ v.3 [3],
we give comparisons among the attacks in the EUF-CMA model, the PO model,
and the BU model. See more details in Table 1.

Scheme CMA Security Our Attack (PO) Our Attack (BU)
log qs log qH log qs log qH log qs log qH

SPHINCS-256 [7] 50 128 43 43 43 Small
SPHINCS+-256s [3] 64 128 48 80 43 43
SPHINCS+-256f [3] 64 128 46 80 42 42

Table 1. Comparisons between our qCMAs and the CMA security of SPHINCS(+),
which implies the bounds of tolerable hash queries. qs and qH denote the number of
(quantum) signing queries and quantum hash queries, respectively. For example, if the
adversary issues 243 quantum signing queries to the signing oracle and more than 243

quantum hash queries, then SPHINCS-256 will be broken in the PO model. “Small”
means that the attack only requires a polynomial number of queries.

A Provably Secure Stateless HBS Scheme against Quantum Chosen
Message Attacks Although we show qCMAs on SPHINCS and SPHINCS+,
the time complexity of the attacks does not imply the precise security levels of
the schemes against qCMAs. Indeed, it only implies upper bounds of the security.
We hope to construct a provably secure scheme, whose generic security against
qCMAs can be guaranteed and lower-bounded.

We start with the security analysis of few-time signature schemes, such as
HORS [32] and FORS [9]. Most the practical few-time signature schemes are
related to (variants of) subset resilient hash functions (SRH) [32, 35]. Unfortu-
nately, their quantum-access security cannot be reduced to subset resilience di-
rectly. To solve this problem, we propose a variant of subset resilience called weak
subset resilience (wSR, see details in Appendix C). We find that the EUF-qCMA
security of a randomized version of FORS (say rFORS, implicitly contained in

6 The notion is proposed for message authentication codes but can also be extended
to signature schemes.
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SPHINCS+) can then be reduced to wSR and some additional common security
notions for hash functions (such as multi-target collision resistance, mTCR).

Since wSR is a new notion and lack of research, the generic security needs
to be evaluated. We solve this problem by the quantum query lemma [34]. As a
result, the generic security of rFORS against r-time qCMAs can be bounded by

AdvEUF-qCMA
rFORS,r,q (A) ≤ O

(
q2(r+1)

(
r2

t

)k

+
q2ktr

2n

)
, (1)

where q denotes the number of queries to the hash functions (modeled as random
oracles) and k, t, n are parameters. The first term of Equation (1) comes from the
generic security of wSR. The second one comes from mTCR and the reduction.
They are negligible when r is a small constant number. (In practice, t ≈ 2

√
n

and k ≈
√
n ).

(To the best of our knowledge, there is no quantum generic security bound of
subset resilience. We also fill this gap, which could be independently interesting.
For example, it immediately implies concrete security of the related few-time
HBS schemes in terms of post-quantum EUF-CMA.)

We then turn to many-time schemes. The main reason for the insecurity
against the above qCMAs is that the index is determined by the message due
to the pseudorandom functions. A natural idea to resist these attacks is to in-
troduce additional randomness into the process of choosing the index. Here, we
use a simpler approach: we directly replace the index with randomness that is
independent of the message and include it in the signature. Now, the signatures
in a quantum signing response share a common few-time signature key pair in
a signing query. The EUF-qCMA security is thus reduced to the EUF-qCMA
security of the related few-time signature scheme, rFORS, which can be bounded
by Equation (1).

Although the new variant can avoid some qCMAs, it brings other risks. Since
the index is directly included in the signature, an adversary can arbitrarily choose
an index in the forgery. Thus, the EUF-CMA security of the new variant needs
to be re-analyzed.

Similarly, the EUF-CMA security of our new variant can be reduced to the
EUF-CMA security of rFORS. The remaining work is evaluating the EUF-CMA
security of rFORS. Indeed, the EUF-CMA security of rFORS can be tightly re-
duced to a variant of subset resilience called extended Target Subset Resilience
(eTSR). Unfortunately, the generic security of eTSR cannot be (tightly) evalu-
ated by the same approach. We use the adaptive reprogramming lemma [22] to
solve this problem. The EUF-CMA security of rFORS is then bounded by

AdvEUF-CMA
rFORS,r,q(A) ≤ O

(√
q

2n
+ q2

(
r

t

)k

+
q2

2n

)
. (2)

The first two terms of Equation (2) comes from the generic security of eTSR,
and the third one comes from mTCR.

Equipped with rFORS, the message-independent random index, and the same
HT as in SPHINCS+, we get our new variant called SPHINCS-FORS. (The name
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is given since the framework looks like SPHINCS (not SPHINCS+) equipped
with rFORS.) The outline of the security analysis of SPHINCS-FORS is sum-
marized in Figure 1.

wSR

Th.2

-
(+mTCR)

Th.5,6

EUF-qCMA
of rFORS

-
(+HT)

Th.1

EUF-qCMA of
SPHINCS-FORS

eTSR

Th.3

-
(+mTCR)

Th.6

EUF-CMA
of rFORS

-
(+HT)

Th.1

EUF-CMA of
SPHINCS-FORS

Hash Function Few-time HBS Many-time HBS

Fig. 1. The security proof sketch of SPHINCS-FORS.

Finally, the generic security of SPHINCS-FORS is evaluated as follows.

Result 3 Let the hash functions in SPHINCS-FORS be modeled as quantum
random oracles. For any adversary A, it holds that

AdvEUF-CMA
SPHINCS-FORS,qs,qH (A) ≤ O

(
qs

√
qH + qs

2n
+

qH
2n/2

+ q2H

qs∑
r=0

p(r, qs)

(
r

t

)k)
,

AdvEUF-qCMA
SPHINCS-FORS,qs,qH (A) ≤ O

(
qH
2n/2

+

qs∑
r=0

p(r, qs)·min

{
q
2(r+1)
H

(
r2

t

)k

+
q2Hkt

r

2n
, 1

})
,

where p(r, qs) = min{2r(log qs−h)+h−log r!, 2h}.

For EUF-CMA security, we expect it to reach 128-bit security as SPHINCS+,
which means that for fixed qs (e.g., qs = 264), AdvEUF-CMA

SPHINCS-FORS,qs,qH (A) reaches
to a constant only if qH reaches 2128. When n = 256, the dominant term is
q2H

∑qs
r=0 p(r; qs)(

r
t )

k. We adapt the parameters such that
∑qs

r=0 p(r, qs)(
r
t )

k
=

2−256, and then the resulting scheme provides 128-bit security against CMA.
It is more complicated for EUF-qCMA security. The dominant term is also

the one with the summation notion, which is larger than the above one. When r
is small, min{q2(r+1)

H ( r
2

t )
k+

q2Hktr

2n , 1} is negligibly small. When r becomes large,
p(r, qs) becomes negligibly small and the righthand term is always bounded by
1, so the product is still small. Thus, the sum of the products remains bounded
if the parameters are well stated.

We give instantiation of SPHINCS-FORS by adapting the parameters in
Table 2. We observe that SPHINCS-FORS has larger signature size and running
time, but can provide provable security in sense of EUF-qCMA.
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Scheme Parameters Security Size Provably Secure?
k log t h n log qs log qH

SPHINCS+-256s 22 14 64 256 48 ≤ 80 29272 %

SPHINCS-FORS v1 (Ours) 32 17 128 256 48 ≥ 80 47072 !

SPHINCS+-256s∗ 22 14 104 256 64 ≤ 128 41792 %

SPHINCS-FORS v2 (Ours) 48 18 128 384 64 ≥ 128 101424 !

Table 2. Comparison between (deterministic) SPHINCS+ and our variants against
quantum chosen message attacks. log qH ≤ a means that there exists a quantum chosen
message attack with 2a quantum hash queries. It implies an upper bound of the security
level (without security proof). log qH ≥ a means that any quantum chosen message
attack requires at least 2a hash queries. It implies a lower bound of the security level
(with security proof). Note that all the schemes in this table can provide at least 128-
bit EUF-CMA security when log qs ≤ 64.

1.4 Related Work

HBS schemes have a long history that begins with Lamport’s one-time signature
scheme [29]. SPHINCS [7] is the first practical stateless HBS using Goldreich’s
framework [20]. There are several variants of SPHINCS [5, 9, 27, 39]. The tight
security proof is recently given in the post-quantum setting [26].

The generic security of hash functions is the core of analyzing the concrete
security of HBS schemes. There is previous work proving the post-quantum
generic security [1,22,26,28,34,37,38]. Especially, SPHINCS-family is related to
subset resilience [4,35]. In recent concurrent work, Bouaziz–Ermann and Grilo et
al. [14] shows quantum generic security of (restricted) subset resilience when the
range of the “partial” hash (say t) is strictly exponential. Unfortunately, their
proof fails since t is not large enough in a practical HBS scheme. (For instance,
their proof once causes a term of reduction loss O(t1/48), which is considered a
negligible function when t is exponential. However, t is instantiated by 214 in
SPHINCS-256s, and thus the above term cannot be ignored.)

Quantum-access security is first considered for pseudorandom functions [36]
and then generalized to message authentication codes and signatures [11, 12].
After that, other quantum-access security notions are proposed [2,19] for message
authentication codes (and they can also be extended to fit signature schemes).
In particular, the blind unforgeability of Lamport’s scheme, WOTS, and GPV
signatures has been evaluated [16,30].

2 Preliminaries

2.1 Basic Preliminaries

Notations. For a set X, |X| denotes the cardinality of X and x ← X means
that x is uniformly chosen from X. For integer n ∈ N, denote [n] = {1, ..., n}.
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We say that ϵ : N → R is negligible function if for every constant c > 0, there
exists Nc > 0 such that ϵ(n) < n−c holds for all n > Nc. We denote by || the
concatenation operation.

Random Oracle Model. In the (classical) random oracle model [6], a ran-
dom function H is uniformly chosen at the beginning and one can compute H
by querying the random oracle. In quantum random oracle model [10], H is
quantum-accessible, i.e., one can query

∑
x,y ψx,y |x, y⟩ to the quantum random

oracle, and obtains
∑

x,y ψx,y |x, y ⊕H(x)⟩ in response.

Hash functions. In this paper, we frequently use hash functions mapping to
k (ordered) elements of set [t] (where t = 2τ for some integer τ). We can simply
sample such a function by sampling a hash function H ′ : {0, 1}∗ → {0, 1}k·log t,
splitting the output into k short strings of length τ , and then mapping the short
strings into integers in [t].

In the following, we denote a function H : {0, 1}∗ → [t]k by H = (h1, ..., hk),
where hi : {0, 1}∗ → [t] denotes the “partial” function mapping to the i-th
element of the output of H. To avoid ambiguity, we always use capital letters
(such as H) to denote a hash function and their corresponding small letters with
a subscript (such as hi) as the partial functions. For instance, in the case that
H is a hash function family mapping to [t]k, (h1, ..., hk) ← H means sampling
H ← H and letting H = (h1, ..., hk), rather than sampling k functions from H.

2.2 Security Notions for Hash-based Signature Schemes

Let Γ = (KeyGen, Sign,Ver) be a signature scheme. SigO denotes the signing
oracle that computes Sign(sk,m) where sk is the secret key. If SigO is quantum-
accessible, say |SigO⟩,it means that

|SigO⟩ :
∑
m,t

ψm,t |m, t⟩ 7→
∑
m,t

ψm,t |m, t⊕ Sign(sk,m)⟩ .

Especially, if Sign is probabilistic, SigO replies
∑

m,t ψm,t |m, t⊕ Sign(sk,m; r)⟩
with a random seed r for a query

∑
m,t ψm,t |m, t⟩.

This paper focuses on hash-based signature (HBS) schemes. The security of
an HBS scheme is related to the number of hash queries from the adversary. Let
qs and qH respectively denote the maximum number of signing queries and hash
queries. The security is defined as follows.

Experiment ExpEUF-CMA
Γ,qs,qH (1n,A)

(pk, sk)← KeyGen(1n)
(m∗, σ∗)← ASigO(pk)
If m∗ has not been queried to SigO and Ver(pk,m∗, σ∗) = 1, return 1,

otherwise return 0.

Experiment ExpEUF-qCMA
Γ,qs,qH

(1n,A)
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(pk, sk)← KeyGen(1n)
{(mj , σj)}j∈[r+1] ← A|SigO⟩(pk)
If mj ’s are distinct and for ∀j ∈ [qs + 1], Ver(pk,mj , σj) = 1, return 1,

otherwise return 0.

Definition 1. ( [12]) Let Γ be a signature scheme. We say it is existentially un-
forgeable under chosen message attacks (EUF-CMA) (or quantum chosen mes-
sage attacks (EUF-qCMA)) if for all probabilistic polynomial-time adversary A,
Pr[ExpEUF-CMA

Γ,qs,qH (1n,A)] ≤ negl(n) (or Pr[ExpEUF-qCMA
Γ,qs,qH

(1n,A)] ≤ negl(n)) holds,
where negl is a negligible function.

In addition, we introduce a security notion called blind unforgeability [2].
Let ε : N → R≥0 be an efficiently computable function. Bε,n be a subset of the
message spaceMn that is selected by placing each m ∈Mn independently with
probability ε(n). Define the blind signing oracle Bε,nSigO as follows:

Bε,nSigO : m 7→

{
Sign(sk,m) (m ̸∈ Bε,n),

⊥, (otherwise).

Similarly, when Bε,nSigO is quantum-accessible, say |Bε,nSigO⟩, it maps

|Bε,nSigO⟩ :
∑
m,t

ψm,t |m, t⟩ 7→
∑
m,t

ψm,t |m, t⊕Bε,nSigO(m)⟩ .

Then, the experiment of blind unforgeability under quantum chosen message
attacks is as follows:

Experiment ExpBU-qCMA
Γ,qs,qH

(1n,A)
(pk, sk)← KeyGen(1n)
(m∗, σ∗)← A|Bε,nSigO⟩(pk)
If m ∈ Bε,n ∧ Ver(pk,m∗, σ∗) = 1, return 1, otherwise return 0.

Remark 1. In this paper, we mainly discuss EUF-qCMA security instead of BU
except in Section 4.3. Apart from this subsection, we use the EUF-qCMA model
in Definition 1 to evaluate the security against qCMAs by default.

We omit the security parameter 1n in the inputs of the algorithms and ex-
periments for simplicity.

3 Hash-based Signature Schemes

In this section, we introduce two practical stateless HBS schemes, SPHINCS [7]
and SPHINCS+ [9]. Due to the complicated constructions, we follow the algo-
rithmic descriptions in [17] by treating the building blocks as black boxes. Briefly
speaking, SPHINCS(+) introduces a stateful HBS with hypertrees (denoted by
HT) and a few-time HBS. We first introduce the two building blocks and then
the schemes.
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3.1 Building Blocks – Few-time HBS Schemes

In this section, we introduce few-time HBS schemes, which are used as building
blocks in SPHINCS and SPHINCS+.

The first is Hash to Obtain Random Subsets (HORS) [32]. The outline of
HORS is as follows. In the key generation algorithm, it picks a one-way function
f : {0, 1}l(n) → {0, 1}n and an (r, k)-subset-resilient function H = (h1, ..., hk) :
{0, 1}m → [t]k. Then, it picks t random strings s1, ..., st from {0, 1}l(n) and
computes yj = f(sj) for each j ∈ [t]. Let (s1, ..., st) be the secret key and
(y1, ..., yt) be the public key. In the signing algorithm, it reveals k elements from
{sj}j∈[t] determined by H(m). Due to (r, k)-subset resilience of H, it is hard to
find a message m∗ such that the secret values in the corresponding signature are
covered by r (classical) queries to the signing oracle. The formal description is
depicted in Figure 2.

HORS.KeyGen(1λ)

F ← Fn, H = (h1, ..., hk)← H.
for j ∈ [t], sj ← {0, 1}l(n), yj = f(sj)
Y = (y1, ..., yt), S = (s1, ..., st)
pk = (Y, f,H), sk = (S, f,H).
return (pk, sk).

HORS.Sig(sk,m)

Parse S = (s1, ..., st) and H = (h1, ..., hk)
for i ∈ [k], xi = shi(m).
return σ = (x1, ..., xk).

HORS.Ver(pk,m, σ)

Parse σ = (x1, ..., xk) and H = (h1, ..., hk).
if for i ∈ [k], yhi(m) = f(xi) return 1
return 0

Fig. 2. Construction of Hash to Obtain Subsets (HORS).

SPHINCS [7] introduces a variant of HORS called HORST (HORS with
trees). HORST compresses the public key with a (bitmarked) hash tree, and
thus the signature needs to contain the corresponding authentication path. This
operation does not hurt the security except that it requires a second-preimage-
resistant hash function.

Furthermore, SPHINCS+ [9] introduces an improvement of HORST, which is
called FORS (Forest of Random Subsets). The main differences between HORST
and FORS are as follows. First, the key generation algorithm picks kt random
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strings from {0, 1}l(n) (rather than t strings) and divides them into k groups of t
strings. In the signing algorithm, instead of revealing k elements from t strings,
FORS reveals one element from each group. Second, FORS uses a tweakable
hash function F instead of the one-way function f , where the tweaks are the
indices of the strings. Third, instead of using bitmarked hash functions in the
hash tree, FORS uses a tweakable hash function Th in generating hash trees,
where the tweaks are the addresses of the nodes. Finally, since there are k hash
trees in FORS, it compresses the k roots by calling Th and denotes the value as
the public key.

In FORS, the message is not hashed. The signing algorithm directly splits
the message m into k digits with size log t and then proceeds with the following
steps. Thus, the scheme is not EUF-CMA secure. (One can forge a signature on
message m1||m2 given signatures on m1||m∗2 and m∗1||m2.) In practice, FORS
has to be used on hashed messages to achieve EUF-CMA. We call FORS with
integrated hashing as simplified FORS (sFORS).

sFORS.KeyGen(1λ)

H = (h1, ..., hk)← H
for (i, j) ∈ [k]× [t], si,j ← {0, 1}l(n), yi,j = F((i, j), si,j)
for i ∈ [k], yi ← TreeGen(Th, t, (yi,1, ..., yi,t)).
y0 = Th(0, (y1, ...yk)), S = (s1,1, ..., sk,t)
pk = (y0, H), sk = (S,H).
return (pk, sk).

sFORS.Sig(sk,m)

Parse S = (s1,1, ..., sk,t) and H = (h1, ..., hk)
for i ∈ [k], xi = si,hi(m).
for (i, j) ∈ [k]× [t], yi,j = F((i, j), si,j).
for i ∈ [k], πi ← TreeProv(Th, t, (yi,1, ..., yi,t), hi(m))
return σ = (x1, ..., xk, π1, ..., πk).

sFORS.pkFromSig(m,σ,H)

Parse σ = (x1, ..., xk, π1, ..., πk) and H = (h1, ..., hk).
for i ∈ [k], yi ← TreeVer(Th, t, hi(m),F((i, j), xi), πi).
return y′

0 = Th(0, (y1, ..., yk))

sFORS.Ver(pk,m, σ)

Parse pk = (y0, H)
return [[sFORS.pkFromSig(m,σ,H) = y0]]

Fig. 3. Construction of Simplified FORS.
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In SPHINCS+ [9], sFORS is never directly used. In each signing operation,
it introduces a (pseudo-)randomizer z. The message is then hashed with z, and
z is included in the signature. It results in a new scheme that achieves higher bit
security. We call it randomized FORS (rFORS). The formal constructions are
depicted in Figure 3 and 4.

rFORS.KeyGen(1λ)

(pk, sk)← sFORS.KeyGen(1λ)
k ← {0, 1}n
return (pk, (sk, k)).

rFORS.Sig((sk, k),m)

z = PRF(k,m)
σ ← sFORS.Sig(sk′, z||m)
return (z, σ).

rFORS.pkFromSig(m, (z, σ), H)

return sFORS.pkFromSig(z||m,σ,H)

rFORS.Ver(pk,m, (z, σ))

Parse pk = (y0, H)
return [[rFORS.pkFromSig(m, (z, σ), H) = y0]]

Fig. 4. Construction of Randomized FORS.

It is clear that the security of the few-time HBS schemes is related to the
security notions of the underlying hash functions. However, the concrete security
is lacking research in the quantum setting. We give formal proof for the concrete
Q1 and Q2 security in Appendix E.

3.2 Building Block – HT: The hypertree

HT is another building block in SPHINCS-like structure. It behaves as a stateful
signature scheme, where the signing and verification algorithms additionally take
as input a state st ∈ ST . Note that the state space is of polynomial size. The
syntax is defined as follows.

Definition 2. A hyper tree signature scheme HT = (HT.KeyGen,HT.Sign,HT.Ver)
consists of three polynomial-time algorithms along with an associated message
space M = {Mn} and a state space ST such that:

– The key generation algorithm KeyGen takes as input the security parameter
1n. It outputs a pair of keys (pk, sk).
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– For security parameter n, the signing algorithm Sign takes as input a secret
key sk, a message m ∈Mn and a state st ∈ ST . It outputs a signature σ.

– For security parameter n, the verification algorithm Ver takes as input a
public key pk, a message m ∈ Mn, a signature σ and a state st ∈ ST . It
outputs a bit b.

For any (pk, sk) ← KeyGen(1n), m ∈ Mn, st ∈ ST and σ ← Sign(sk,m, st),
it holds that Ver(pk,m, σ, st) = 1.

Although SPHINCS and SPHINCS+ use different HT, the security notions
for HT are the same and implicitly contained in [7, 9]. The security is a stateful
version of existential unforgeability under non-adaptive chosen message attacks.
We call it existential unforgeability under non-adaptive chosen message attacks
with states (EUF-sNACMA). In detail, the security experiment is defined as
follows.

Experiment ExpEUF-sNACMA
HT,qs,qH (A = (A1,A2))

(pk, sk)← KeyGen(1n)
({(mi, sti)}i∈[qs], S)← A1()
If sti are not distinct, return 0
For i ∈ [qs], σi ← Sign(sk,mi, sti)
(m∗, σ∗, st∗)← A2(pk, S, {σi}i∈[qs])
If st∗ = stj for some j ∧ m∗ ̸= mj ∧ Ver(pk,m∗, σ∗, st∗) = 1, return 1,

otherwise return 0.

Remark 2. In this paper, we do not depict the detailed construction of HT in
SPHINCS or SPHINCS+, since we always use it as a black box. We only care
about the security.

3.3 SPHINCS and SPHINCS+

SPHINCS and SPHINCS+ are practical stateless HBS schemes built from the
above two blocks. In each signing execution, the signer first pseudorandomly
picks a state from ST in HT, which authenticates the public key of the few-
time HBS. A signature contains (1) a few-time signature of the message, (2)
an HT signature of the public key of the corresponding few-time HBS, and (3)
a (pseudo-)randomizer. Note that in SPHINCS and its variants, the few-time
signatures are never explicitly verified. Instead, it uses pkFromSig to recover the
public key from the message and signature. The security of HT guarantees that
only the real public key can be verified in the next steps.

In SPHINCS, the few-time signature scheme is HORST (HORS with trees), a
variant of HORS. It compresses the HORS public key by a Merkle tree structure,
and the compressed public key can be generated by an algorithm pkFromSig
from the message and the signature. In this section, we also use HORS.Sig and
HORS.pkFromSig to denote the algorithms of HORS with trees.

The outlines of SPHINCS and SPHINCS+ are depicted in Figure 5. The
main differences are the choices of few-time signature schemes and the ways to
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pick the index. In particular, the index of SPHINCS+ is calculated by a hash
value of the message and the randomizer. Thus, it is not directly contained in
the signature.

SPHINCS.KeyGen(1λ) SPHINCS+.KeyGen(1λ)

skseed ← {0, 1}n, skseed ← {0, 1}n, h0 ← H0

(pkHT, skHT)← HT.KeyGen(1λ) (pkHT, skHT)← HT.KeyGen(1λ)
sk = (skseed, skHT), pk = pkHT sk = (skseed, skHT), pk = (pkHT, h0)
Output (pk, sk). Output (pk, sk).

SPHINCS.Sig(sk,m) SPHINCS+.Sig(sk,m)

z = PRFmsg(skseed,m) z = PRFmsg(skseed,m)
idx = PRFidx(skseed,m) idx = h0(z||m)
sidx = PRFseed(skseed, idx) sidx = PRFseed(skseed, idx)

(pkHORS, skHORS)← HORS.KeyGen(1λ; sidx) (pkFORS, skFORS)← sFORS.KeyGen(1λ; sidx)
σHORS ← HORS.Sig(skHORS, z||m) σFORS ← sFORS.Sig(skFORS, z||m)
σHT ← HT.Sig(skHT, pkFORS, idx) σHT ← HT.Sig(skHT, pkFORS, idx)
return (idx, z, σHT, σFORS). return (z, σHT, σFORS).

SPHINCS.Ver(pk,m, (idx, z, σHT, σFORS)) SPHINCS+.Ver(pk,m, (z, σHT, σFORS))

pkHORS ← HORS.pkFromSig(z||m,σHORS) idx = h0(z||m)
return HT.Ver(pkHT, pkHORS, σHT, idx) pkFORS ← sFORS.pkFromSig(z||m,σFORS)

return HT.Ver(pkHT, pkFORS, σHT, idx)

Fig. 5. The outline of SPHINCS and SPHINCS+

Remark 3. The scheme in Figure 5 is the deterministic version of SPHINCS+.
It can be converted into a probabilistic version by adding a random salt to the
input of PRFmsg. In this paper, we mainly focus on the deterministic version and
will discuss the probabilistic version in Section 5.2.

4 Quantum Chosen Message Attacks on SPHINCS(+)

4.1 Quantum Chosen Message Attacks on SPHINCS

Let qs be the number of signing queries. The optimal attack requires approxi-
mately 2128 hash queries to break the EUF-CMA security of SPHINCS-256 when
qs = 250. Approximately the same number of hash queries are needed to break
the EUF-CMA security of SPHINCS+-256s when qs = 264. Our attack shows
that if the signing oracle is quantum-accessible, the security will be lower.

In SPHINCS, idx = PRFidx(skseed,PRFmsg(skseed,m)). Fix skseed and let
f(m) = PRFidx(skseed,PRFmsg(skseed,m)) be the function mapping m to idx.
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Since idx is a part of the signature, f can be computed by querying the signing
oracle. By using Grover’s algorithm, one can search a message m mapping to
any index after O(2h/2) queries to the signing oracle.

Note that any index authenticates a key pair of the few-time signature
scheme. By repeating the above steps r times, one can obtain r message-signature
pairs w.r.t. the same few-time signature key pair. If the secret key of the few-time
signature is used too many times, the security level will be degraded rapidly.

The formal description of the attack on SPHINCS is as follows:

1. Denote f(m) = PRFidx(skseed,PRFmsg(skseed,m)) be the function that maps
the message m to the index idx ∈ {0, 1}h. Randomly pick idx∗ ∈ {0, 1}h,
and denote predicate F (m) = 1 iff f(m) = idx∗. Here, f and F are quantum-
computable by querying the signing oracle |SigO⟩ since |SigO⟩ maps

∣∣m, 0h〉
to |m, f(m)⟩ by discarding the signature register except the index part.

2. Run Grover’s algorithm on F (m). It returns a random m such that F (m) =
1. It implies a HORS signature labeled by idx∗. This requires O(2h/2) quan-
tum queries to the signing oracle. 7

3. Repeat the previous step r times. This requires O(r2h/2) quantum queries
to the signing oracle. 8 Let S be the set of labels of which the preimages
have appeared in the HORS signatures. In other words, let m(1), ...,m(r) be
the outputs of the Grover’s algorithm and z(j) be the pseudorandomness z
in the signature of m(j), then S = {hi(z(j)||m(j))}i∈[k],j∈[r].
Note that for each sj , the probability of appearing in a HORS signature is
k/t. The probability of appearing in r random signatures is 1 − (1 − k/t)r.
Thus, the expectation of |S| is

E[|S|] =
(
1−

(
1− k

t

)r)
· t ≥ (1− e− kr

t ) · t,

where the inequality comes from (1− x)α ≤ e−αx.
4. Denote function G(z||m) = 1 iff {hi(z||m)}i∈[k] ⊂ S. Run Grover’s algorithm

on G. It outputs z∗||m∗ whose corresponding preimages have appeared in
the HORS signatures. The expected number of quantum hash queries in this
step is

O

(√(
t

|S|

)k)
= O((1− e kr

t )−
k
2 ).

7 In this paper, we always use O(·) to describe the (upper-bound) number of queries
due to the implement of Grover’s algorithm. Note that Grover’s search could fail
in the case that the number of preimages is unknown (we only know the expected
number). It can be solved by repeating it constant times [26]. Since the repetition
only causes (at most) a constant factor on the time complexity, we ignore its effect
and only focus on the complexity related to the parameters of SPHINCS(+) and r.

8 We require the r results be distinct. It can be guaranteed by a simple modification.
Let i ∈ [r] and f (i)(m) = f(Ci||m), where Ci denotes the binary expression of i.
Define F (i)(m) = 1 iff f (i)(m) = idx∗ and run Grover’s algorithm on F (i) for each
i ∈ [r] instead. Thus, the results have distinct prefix of length ⌈log r⌉.
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5. Note that the signing oracle has been queried qs = O(r2h/2) times. The
attacker needs to return at least (qs+1) forgeries. Step 4 needs to be repeated
(qs + 1 − r) times. (It is unnecessary to compute σHT for the new forgeries
since all the forgeries share a common σHT.) The total number of hash queries
is

qH = O(qs + 1− r) ·O((1− e− kr
t )−

k
2 ) = O((1− e− kr

t )−
k
2 · r2h

2 ).

In SPHINCS-256, k = 32, t = 216 and h = 60. When r = 210, qs and qH are
approximately 240 and 261, respectively. When r = 214, qs reaches 243 and qH
decreases to 243 as well. It is much lower than the level of EUF-CMA security,
where qs = 250, and qH is expected to be 2128.

4.2 Quantum Chosen Message Attacks on SPHINCS+

In SPHINCS+, the index is not directly contained in the signature. Instead, the
index is computed by idx = h0(z||m), where z is a (pseudo-)randomizer and
part of the signature. It is not a big issue since we can modify the condition on
Grover’s algorithm to find a malicious randomizer z mapping to our malicious
index. In this section, we simply denote by H the hash computation of h0 and
(h1, ..., hk). (In practice, h0 and (h1, ..., hk) are parts of a function H.)

Our attack on SPHINCS+ is as follows:

1. Let z(m) be the function mapping from m to the corresponding z (which can
be evaluated by a signing query). For some idx∗ ∈ {0, 1}h, denote predicate
F (m) = 1 iff h0(z(m)||m) = idx∗. Similarly, F is quantum-computable by
querying |SigO⟩ and a quantum query to h0.

2. Run Grover’s algorithm on F (m). It outputs a random m such that F (m) =
1. It implies a sFORS signature labeled by idx∗. This requires O(2h/2) quan-
tum queries to the signing oracle and O(2h/2) quantum queries to h0.

3. Repeat the previous step r times. This requires O(r2h/2) quantum queries
to the signing oracle. For i ∈ [k], let Si be the set of labels of which the
preimages have appeared in the i-th tree of sFORS signatures. In other
words, Si = {hi(z(m(j))||m(j))}j∈[r].
For each si,j , the probability of appearing in an sFORS signature is 1/t. The
probability of appearing in r random signatures is 1− (1− 1/t)r. Thus, the
expectation of |Si| is

E[|Si|] =
(
1−

(
1− 1

t

)r)
· t ≥ (1− e− r

t ) · t,

and thus

E
[∏
i∈[k]

|Si|
]
≥ (1− e− r

t )k · tk.
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4. Denote function G(z||m) = 1 iff ∀i ∈ [k], hi(z||m) ∈ Si ∧ h0(z||m) = idx∗.
Run Grover’s algorithm on G. It outputs z∗||m∗ whose corresponding preim-
ages have appeared in sFORS signatures. The expected number of quantum
hash queries in this step is

O

(√(
2h · tk∏
i∈[k] |Si|

))
= O((1− e− r

t )−
k
2 · 2h

2 ).

5. The signing oracle has been queried qs = O(r2h/2) times. The forgery needs
to contain at least (qs+1) forgeries. Step 4 needs to be repeated (qs+1− r)
times. The total number of hash queries is

qH = O(r2
h
2 ) +O(qs +1− r) ·O((1− e− r

t )−
k
2 · 2h

2 ) = O((1− e− r
t )−

k
2 · r2h).

In SPHINCS+-256s, k = 22, t = 214 and h = 64. When r = 216, qs and
qH are approximately 248 and 280, respectively. It is also lower than the level of
EUF-CMA security, where qs = 264 and qH is expected to be 2128.

Remark 4. In a quantum algorithm, it may be problematic to maintain a quan-
tum state with large quantum memory (especially for HBS schemes due to the
large size of signatures). However, it is not an big issue since our attacks only
need the index idx (or the randomizer z) in the iterations of Grover’s algorithm,
and main parts of the quantum responses can be discarded.

4.3 Attacks in the BU model

Note that in the above attacks, the adversary has had the ability to forge a
signature for any message before the final step. Thus, if we use the BU model
instead, the adversary only need to forge one signature for a message in Bε,n,
and the large number of computations in the final step can be saved.

The strategy of the attack on SPHINCS in the BU model is similar to the
above one. The difference is: After the adversary obtain S, it does not directly
search a z||m such thatG(z||m) = 1. Instead, the adversary first search a message
m∗ ∈ Bε,n by querying the blind signing oracle. Then, it search z such that
G(z||m∗) = 1. It guarantees that the forgery is for a message in the blind region.
See details in Appendix D.

5 SPHINCS-FORS: A Provably Secure HBS Scheme
against Quantum Chosen Message Attacks

5.1 Generic Security of Few-time HBS Schemes

As a preparatory work, we begin with the security of the few-time HBS schemes,
which are used as building blocks in SPHINCS(+). To the best of our knowledge,
no quantum generic security bound is given before this work (even in the sense
of EUF-CMA). We fill the gap with the following corollaries.
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Corollary 1. Let the hash functions in HORS and sFORS be modeled as quan-
tum random oracles. It holds that

AdvEUF-CMA
HORS,r,q (A) ≤ O

(
q2(r+1)

(
rk

t

)k

+
q2kt

2n

)
,

AdvEUF-CMA
sFORS,r,q(A) ≤ O

(
q2(r+1)

(
r

t

)k

+
q2

2n

)
,

AdvEUF-qCMA
sFORS,r,q (A) ≤ O

(
q2(r+1)

(
r2

t

)k

+
q2ktr

2n

)
.

Corollary 2. Let the hash functions in rFORS be modeled as quantum random
oracles. It holds that

AdvEUF-CMA
rFORS,r,q(A) ≤ O

(√
q

2n
+ q2

(
r

t

)k

+
q2

2n

)
,

AdvEUF-qCMA
rFORS,r,q (A) ≤ O

(
q2(r+1)

(
r2

t

)k

+
q2ktr

2n

)
.

The security is proven in two steps. First, we observe that the security is
related to different variants of subset-resilient hash functions. Thus, we evaluate
the generic security of variants of subset resilience in Appendix C.2. Next, we
attempt to reduce the security of few-time HBS schemes to the variant of subset
resilience (and other assumptions). See details in Appendix E.

5.2 Discussion: How to Avoid Quantum Attacks?

We then discuss how to construct a many-time signature scheme with provable
security equipped with above few-time HBS schemes .

In the attacks in Section 4, the key idea is to search messages that map to
a single index idx∗. The search is done by iteratively running a function F in
Grover’s algorithm. A simple improvement to avoid these attacks is making F
randomized. That is, in each signing operation, the signer adds a random nonce
in calculating the pseudorandomness z = PRFmsg(skseed,m). It is indeed the
probabilistic version of SPHINCS+ [9]. Note that the nonce does not affect the
security reduction of EUF-CMA, but does affect the EUF-qCMA security.

Unfortunately, we cannot give a security proof of EUF-qCMA security for the
above variants, even if the random nonce is well sampled. Note that the security
under quantum chosen message attacks of SPHINCS(+) is more complicated for
the following reasons. First, in the classical setting, a response of the signing
query contains only one few-time signature. Since idx may differ in superpo-
sitions in the quantum-access setting, a quantum SPHINCS(+) signature may
contain many few-time signatures for multiple key pairs. This multi-instance case
exceeds the discussion in Section 5.1. Second, a quantum SPHINCS(+) signa-
ture may also contain a large number of HT signatures σHT in superpositions.
It makes the analysis even more complicated.
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So how do we construct a provably secure hash-based signature scheme under
qCMAs? Our solution is simple. The first step is to make each signing response
only contain few-time signatures related to one key pair. For this purpose, we
make the index of the few-time signature independent to the message. In each
signing query, the signing algorithm randomly picks a leaf from {0, 1}h instead of
running the pseudorandom function on the message. Since the randomness of a
signing query is global, the resulting signatures in superpositions share common
randomness and thus a common idx, implying a common few-time signature
key pair. In addition, note that σHT is the signature on the few-time signature
public key. Since all superpositions share a common public key, the resulting
σHT is also identical in all superpositions. The security is then reduced to the
quantum-access security of the few-time signature scheme in the single-instance
case, which has been evaluated in Section 5.1.

This variant can avoid the above attacks since the index is independent of the
message. However, note that the random index needs to be directly contained in
the signature, so an adversary can arbitrarily choose an index in the forgeries.
It causes lower security than SPHINCS+, especially in the EUF-CMA model.
Thus, the classical security also needs re-analyzed.

In the next subsection, we present SPHINCS-FORS, a variant of SPHINCS+
that follows the approach and provides provable EUF-qCMA security.

5.3 SPHINCS-FORS

Construction 1 Let PRFseed : {0, 1}n × {0, 1}h → {0, 1}n be a pseudorandom
function, and rFORS and HT be depicted in Subsection 3.1 and 3.2. SPHINCS-
FORS is depicted in Figure 6.

The difference from SPHINCS+ is as follows:

– The strategies for choosing the index are different. In SPHINCS-FORS, the
index is truly random in {0, 1}h while in SPHINCS+ it is pseudorandom
related to m. The random index is directly contained in the resulting signa-
ture.

– In SPHINCS-FORS, we use rFORS as the few-time signature. A minor dif-
ference is that in SPHINCS+, the (pseudo-)randomizer z is calculated by a
global function PRFmsg(skseed,m) while in SPHINCS-FORS, skseed differs in
different indices.

5.4 Security Analysis

In this subsection, we analyze the security of SPHINCS-FORS under (quantum)
chosen message attacks.

At first, we need to evaluate the security for HT. As we use the same HT as
SPHINCS+ and its (EUF-sNACMA) security has been evaluated in [9, 26], we
omit the formal analysis of HT. The success probability of breaking the security
is at most O(qH · 2−n/2), where qH denotes the number of hash queries.
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SPHINCS-FORS.KeyGen(1λ)

skseed ← {0, 1}n,
(pkHT, skHT)← HT.KeyGen(1λ)
sk = (skseed, skHT), pk = pkHT

Output (pk, sk).

SPHINCS-FORS.Sig(sk,m)

idx← {0, 1}h
sidx = PRFseed(skseed, idx)

(pkFORS, skFORS)← rFORS.KeyGen(1λ; sidx)
(z, σFORS)← rFORS.Sig(skFORS,m)
σHT ← HT.Sig(skHT, pkFORS, idx)
return (idx, z, σHT, σFORS).

SPHINCS-FORS.Ver(pk,m, (idx, z, σHT, σFORS))

pkFORS ← rFORS.pkFromSig(m, (z, σFORS))
return HT.Ver(pkHT, pkFORS, σHT, idx)

Fig. 6. The framework of SPHINCS-FORS

For a signature scheme Γ , let InSec∗Γ,r,qH (ξ) be the maximum of Adv∗Γ,r,qH (A)
for all ξ-time adversary A and ∗ ∈ {EUF-CMA,EUF-qCMA,EUF-sNACMA}. The
security of SPHINCS-FORS is proven as follows.

Theorem 1. For any ξ-time adversary A, it holds that

Adv∗SPHINCS-FORS,qs,qH (A) ≤InSecEUF-sNACMA
HT,2h,qH

(ξ) + InSecInd-PRF
PRFseed,2

h(ξ)

+

qs∑
r=0

p(r, qs) · InSec∗rFORS,r,qH (ξ),

where p(r, qs) = min{2r(log qs−h)+h−log r!, 2h} and ∗ ∈ {EUF-CMA,EUF-qCMA}.

From Theorem 1, Corollary 2 and Lemma 4, we have

Corollary 3. Let the hash functions in SPHINCS-FORS be modeled as quantum
random oracles. It holds that

AdvEUF-qCMA
SPHINCS-FORS,qs,qH (A) ≤ O

(
qH
2n/2

+

qs∑
r=0

p(r, qs)·min

{
q
2(r+1)
H

(
r2

t

)k

+
q2Hkt

r

2n
, 1

})
,

(3)

AdvEUF-CMA
SPHINCS-FORS,qs,qH (A) ≤ O

(
qs

√
qH + qs

2n
+

qH
2n/2

+ q2H

qs∑
r=0

p(r, qs)

(
r

t

)k)
.

(4)
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Note that here the term caused by adaptive reprogramming is O
(
qs

√
qH+qs

2n

)
rather than

∑qs
r=0 p(r, qs) ·

3r
2

√
qH+r+1

2n . It is because that the random oracle is
reprogrammed at most qs times in the reduction. For the same reason the terms
caused by SM-TCR, SM-DSPR and Ind-PRF are gathered to O(qH · 2−n/2).

5.5 Concrete Security

As a variant of SPHINCS+, SPHINCS-FORS is expected to reach (at least) the
same security level as SPHINCS+. However, we note that the EUF-CMA security
level of SPHINCS-FORS is lower than SPHINCS+ with the same parameters.
It is because of the different strategies of choosing the index. Since the index is
directly contained in the signature (just like what SPHINCS does), the adversary
is able to arbitrarily choose a target index to forge a signature. In Appendix G, we
show a concrete attack on SPHINCS-FORS, implying the difference in security
levels with SPHINCS+.

Thus, we need to increase some parameters to reach the same level as SPHINCS+
in the sense of EUF-CMA, and meanwhile provide provable security in the sense
of EUF-qCMA. As a result, the signature size and running time will become
larger.

We give two instances with different parameters and security levels. See de-
tails of the parameters in Table 2.

– As is observed in Section 4.2, (deterministic) SPHINCS+-256s can provide
at most 80-bit quantum-access security when qs = 248. By adapting the
parameters k, t, and h, we result in SPHINCS-FORS v1 that can provide at
least 80-bit security in the sense of provable quantum-access security.

– If we directly increase h in SPHINCS+-256s to 104, say SPHINCS+-256s∗,
it can provide at most 128-bit quantum-access security (due to our attacks)
when qs = 264. On the other hand, by adapting the parameters, we result in
SPHINCS-FORS v2 that can provide at least 128-bit security.

6 Conclusion and Open Questions

This paper analyzes the quantum-access security of HBS schemes in two di-
rections. First, we show quantum chosen message attacks (or superposition at-
tacks) on stateless HBS schemes, such as SPHINCS and SPHINCS+. The time
complexity of the quantum chosen message attacks is lower than the optimal
attacks in the classical setting. Next, we propose a variant of SPHINCS+ called
SPHINCS-FORS. It is a provably secure HBS scheme against quantum chosen
message attacks. As far as we know, it is the first practical HBS scheme with
provable security against quantum chosen message attacks.

Note that our attacks do not work on the probabilistic version of SPHINCS+.
Since there is no security proof, it is an open question whether probabilistic
SPHINCS+ is secure against quantum chosen message attacks. In addition, our
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security bound of SPHINCS-FORS against quantum chosen message attacks is
possibly non-tight. It shows a lower bound of the security, but we are not aware
of any concrete attacks that reach this bound. It is also an open question whether
we can get a tighter bound or if there exists a better attack.
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A Primitives

A.1 Hash Functions

Definition 3. (Efficient function family ensemble.) A function family ensemble
F = {Fn : Dn → Rn}n∈N is efficient if:

– F is samplable: there exists a probabilistic polynomial-time algorithm such
that given 1n, it outputs the description of a uniform element of Fn.

– F can be efficiently computed: there exists a deterministic polynomial-time
algorithm such that given x ∈ Dn and f ∈ Fn, it outputs f(x).

Definition 4. (One-wayness.) Let F = {Fn : {0, 1}l(n) → {0, 1}n} be an ef-
ficient function family ensemble. We say that F is a one-way function family
(OWF) if for any probabilistic polynomial-time algorithm A with q queries of f ,
there exists a negligible function ϵ(·) such that

AdvOW
F,q (A) ≜ Pr

f←Fn,x←{0,1}l(n)

[
f(x′) = f(x)

∣∣∣∣x′ ← A(1n, f, f(x))] ≤ ϵ(n)
for large enough n ∈ N.

In particular, if F is compressing, we say it is a hash function family. Usually,
we suppose the input of a hash function is a string of arbitrary length (Dn =
{0, 1}∗). If a hash function family is one-way, we say it is a preimage-resilient
hash function family (PRE).

A tweakable hash function is a special hash function taking as input a message
m together with a tweak T and a public parameter P . Especially, let T be the
tweak space, P be the public parameter space and M be the message space, a
tweakable hash function Th is defined as

Th : P × T ×M→ {0, 1}n.

Definition 5. (SM-TCR. [9]) Let Th be a tweakable hash function defined above.
Let p ≤ |T |. For an adversary A = (A1,A2), A1 is allowed to give p queries
to an oracle Th(P, ·, ·) where P is uniformly chosen from P. Denote the set of
A1’s queries be Q = {(Ti,Mi)}pi=1 and define the predicate DIST({Ti}pi=1) = 1
iff all tweaks are distinct. Then, A2 takes as input (Q,P ) and the state of A1,
and finally outputs (j,M). Define

AdvSM-TCR
Th,p,q (A) ≜ Pr

P←P
[Th(P, Tj ,Mj) = Th(P, Tj ,M)∧M ̸=Mj∧DIST({Ti}pi=1) = 1],

where q denotes the maximum number of queries to Th.
We say that Th is single-function multi-target target-collision-resistant for

distinct tweaks (SM-TCR) if for any polynomial-time adversary A, there exists
a negligible function ϵ(·) such that AdvSM-TCR

Th,p (A) ≤ ϵ(n) for large enough n ∈ N.
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Definition 6. (SM-DSPR. [9]) Let Th,DIST, Q be as defined above. Denote a
predicate SPP,T (M) = 1 iff there exists another M ′ ̸=M such that Th(P, T,M) =
Th(P, T,M ′). For adversary A = (A1,A2), A1 is allowed to give p queries to an
oracle Th(P, ·, ·) where P is uniformly chosen from P. Then, A2 takes as input
(Q,P ) and the state of A1, and finally outputs (j, b). Define

succ ≜ Pr
P←P

[SPP,Tj
(Mj) = b ∧ DIST({Ti}pi=1)],

triv ≜ Pr
P←P

[SPP,Tj (Mj) = 1 ∧ DIST({Ti}pi=1)]

and
AdvSM-DSPR

Th,p,q (A) ≜ max{0, succ− triv},

where q denotes the maximum of queries to Th.
We say that Th is single-function multi-target decisional second-preimage-

resistant for distinct tweaks (SM-DSPR) if for any polynomial-time adversary
A, there exists a negligible function ϵ(·) such that AdvSM-DSPR

Th,p (A) ≤ ϵ(n) for
large enough n ∈ N.

Then, we give a definition of preimage resistance for tweakable hash functions.
It is a tweakable version of Open-PRE [8] and has been implicitly used in the
security proof of SPHINCS+ [9].

Definition 7. (SM-OpenPRE.) Let Th be a tweakable hash function defined
above. Let p ≤ |T |. For an adversary A = (A1,A2), A1 is allowed to give p
queries to an oracle O initialized by a random P ∈ P. Taking as input Ti ∈
T, O randomly choose Mi ← M and output Yi = Th(P, Ti,Mi). Define Q =
{(Ti, Yi)}pi=1 be the input/output pairs of O and DIST({Ti}pi=1) as above. Then,
A2 takes as input (Q,P ) and the state of A1, and is given the access of an oracle
Open(i) = Mi. Let L be the list of the queries to Open(·). Finally, A2 outputs
(j,M). Define

AdvSM-OpenPRE
Th,p,q (A) = Pr

P←P
[Th(P, Tj ,M) = Yj ∧ DIST({Ti}pi=1) = 1 ∧ j /∈ L],

where q denotes the maximum number of queries to Th.
We say that Th is SM-OpenPRE if for any polynomial-time adversary A,

there exists a negligible function ϵ such that AdvSM-OpenPRE
Th,p (A) ≤ ϵ(n) for large

enough n ∈ N.

The following lemma shows that the insecurity of SM-OpenPRE can be re-
duced to SM-TCR or SM-DSPR.

Lemma 1. ( [8, 9]) Let Th be a tweakable hash function family and A be an
adversary against SM-OpenPRE of Th. Then, there exist polynomial-time re-
ductions BA and CA such that

AdvSM-OpenPRE
Th,p,q (A) ≤ 3 ·AdvSM-TCR

Th,p,q (B) +AdvSM-DSPR
Th,p,q (C).
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In particular, if the tweakable hash function Th is modeled as a random
oracle (which means that Th(P, T,M) = H(P ||T ||M) where H is a quantum
random oracle), the security has been evaluated in [9, 26].

Lemma 2. ( [8,9,26]) Let Th be constructed above mapping to {0, 1}n. For any
quantum adversary A making at most q queries to the quantum random oracle,
it holds that

AdvSM-TCR
Th,p,q (A) ≤ 8(2q + 1)2/2n + 16q2/|P|. (5)

AdvSM-DSPR
Th,p,q (A) ≤ 32pq2/2n + 16q2/|P|. (6)

Remark 5. It is conjectured that equation (6) is loose. In [9, 26], the author
conjectures that AdvSM-DSPR

Th,p,q (A) should be bounded by O(q2/2n) (without the
factor p).

In practice, the hash function Th is sampled by choosing the public param-
eter P ∈ P = {0, 1}n. (Thus, 16q2/|P| in Equation (5) and (6) is then bounded
by O(q2/2n).) Since P is public, we omit P and simply write Th(T,M) in the
following.

An SM-TCR tweakable hash function can be used to construct a tree struc-
ture [9]. For convenience, we only show the syntax and the security notion and
omit the detailed construction.

Proposition 1. Let τ be an ingeter, (y1, ..., yt) be a t-tuple of n-bit strings
where t = 2τ and Th : {0, 1}l × {0, 1}∗ → {0, 1}n be a tweakable hash func-
tion where l ≥ τ + 1. There exists a tuple of probabilistic algorithm Tree =
(TreeGen,TreeProv,TreeVer) where

– TreeGen(Th, t, (y1, ..., yt)) generates a hash tree with leaf (y1, ..., yt) and func-
tion Th, where the tweak of Th is the address of the node. Then, it outputs
the root of the hash tree.

– TreeProv(Th, t, (y1, ..., yt), i) runs TreeGen(Th, t, (y1, ..., yt)), obtains the hash
tree, and outputs the authentication path πi for leaf yi.

– TreeVer(Th, t, i, yi, πi) uses yi and its authentication path πi to generate the
root of the hash tree, and then outputs the root.

Lemma 3. Let Th : {0, 1}l ×{0, 1}∗ → {0, 1}n and Tree be depicted above. For
any (y1, ..., yt) and adversary A, there exists a reduction MA such that

Pr
Th,A

[
y∗ ̸= yi∗

y0 = TreeVer(Th, t, i∗, y∗, π∗)

∣∣∣∣ y0 ← TreeGen(Th, t, (y1, ..., yt))
(i∗, y∗, π∗)← A(Th, t, (y1, ..., yt))

]
≤ AdvSM-TCR

Th,t,qH (MA).

A.2 Signature Schemes

Definition 8. A signature scheme Γ = (KeyGen, Sign,Ver) consists of three
polynomial-time algorithms along with an associated message spaceM = {Mn}
such that:
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– The key generation algorithm KeyGen takes as input the security parameter
1n. It outputs a pair of keys (pk, sk), where pk and sk are called the public
key and the secret key respectively.

– For security parameter n, the signing algorithm Sign takes as input a secret
key sk and a message m ∈Mn. It outputs a signature σ.

– For security parameter n, the verification algorithm Ver takes as input a
public key pk, a message m ∈ Mn and a signature σ. It outputs a bit b. If
b = 1, we say σ is a valid signature of m.

For any (pk, sk)← KeyGen(1n), m ∈Mn and σ ← Sign(sk,m), it holds that
Ver(pk,m, σ) = 1.

A.3 Pseudorandom Functions

Definition 9. Let l(·) be a polynomial. A pseudorandom function PRF is a func-
tion mapping from {0, 1}κ × {0, 1}l(n) → {0, 1}n. {0, 1}κ is called the key space.
Let Fn be the function family mapping from {0, 1}l(n) to {0, 1}n. We say PRF
is an indistinguishable pseudorandom function (Ind-PRF) if for all polynomial-
time adversary A, there exists a negligible function negl such that

AdvInd-PRF
PRF,q (A) ≜

∣∣∣∣ Pr
k←{0,1}κ

[APRF(k,·)(1n) = 1]− Pr
f←Fn

[Af(·)(1n) = 1]

∣∣∣∣< negl(n),

where q denotes the maximum number of queries to PRF or f .

A pseudorandom function is usually instantiated by a hash function H(k, ·).
The following lemma proves the pseudorandomness if H is modeled as a quantum
random oracle.

Lemma 4. ( [33], Lemma 2.2) Let H : {0, 1}κ × {0, 1}l(n) → {0, 1}n and F :
{0, 1}l(n) → {0, 1}n be two quantum random oracles. Let A be an unbounded-time
adversary that can query H q times. It holds that∣∣∣∣ Pr

k←{0,1}κ
[AH(k,·),H(1n) = 1]− Pr[AF,H(1n) = 1]

∣∣∣∣≤ 2q · 2−κ/2.

In this paper, when we model the hash functions in a hash-based signature
schemes as quantum random oracles, we also model PRF as a quantum random
oracle H(k, ·). When κ = n, it can provide at least n/2-bit generic quantum
security in the sense of pseudorandomness.

B Toolbox

In this section, we show some useful lemmas related to quantum computations
and quantum random oracles.
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Lemma 5. (Quantum query complexity lemma. [34]) Let H be a random func-
tion mapping X to Y, r be a positive integer, and R be a relation over Yr. For
any quantum adversary A which can query H at most q times, it holds that

Pr
H

[
x1, ..., xr are distinct ∧ (H(x1), ...,H(xr)) ∈ R|(x1, ..., xr)← A|H⟩

]
≤(2q + 1)

2r
Pr

[
∃π ∈ Perm([r]) s.t. (yπ(1), ..., yπ(r)) ∈ R|(y1, ..., yr)← Yr

]
,

where Perm([r]) denotes the set of permutations of [r].

Corollary 4. Let F be an efficient function esemble modeled by a quantum
random oracle. For any quantum adversary A, it holds that

AdvOW
F,q(A) ≤ (2q + 1)2 · 2−n.

The next lemma show that if we perform a partial measurement in the process
of a quantum algorithm and the measurement obtains one of t outcomes, then
the final output of the algorithm will remain unchanged with probability at least
1/t.

Lemma 6. [12] Let A be a probabilistic quantum algorithm. Let A′ be another
algorithm described as follows: A′ runs as A but pauses it at an arbitrary stage
of execution, performs a partial measurement that obtains one of t outcomes,
and then resumes A. For any x, it holds that

Pr
A′
[x← A′] ≥ Pr

A
[x← A]/t.

Definition 10. [28] Let F ≜ {f : {0, 1}m → {0, 1}} be the collection of all
boolean functions with input space {0, 1}m. Let λ ∈ [0, 1] be a constant. Define a
family of distributions Dλ on F such that for f ← Dλ, ∀x ∈ {0, 1}m, f(x) = 1
with probability λ and f(x) = 0 with probability 1− λ.

Lemma 7. [28] Let A be an algorithm A issuing q quantum queries to f(·).
Define

Adv
Avg-Searchλ

F,q (A) ≜ Pr
f←Dλ

[f(x) = 1|x← Af ].

Then, for any adversary A, it holds that

Adv
Avg-Searchλ

F,q (A) ≤ 8λ(q + 1)2.

Next we introduce the adaptive reprogramming lemma [22]. It shows that
if we reprogram the random oracle in some partially random records, then an
adversary is hard to tell the difference. For an oracle O : X → Y , x ∈ X and
y ∈ Y , denote Ox→y as an oracle that is the same as O except that it maps x to
y. The adaptive reprogramming lemma is as follows.
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Lemma 8. (Adaptive reprogramming lemma. [22]) Let X1, X2 and Y be finite
sets, O0 : X1 × X2 → Y be a random oracle and Reprob be the adaptive repro-
gramming game depicted in Figure 7. Let A be an algorithm issuing q quantum
queries to Ob and R classical queries to Reprogram. Then, the probability of
distinguishing b is at most

|Pr[ReproA1 = 1]| − |Pr[ReproA0 = 1]| ≤ 3R

2

√
q

|X1|
.

Game Reprob Reprogram(x2)

O1 := O0 (x1, y)← X1 × Y

b′ ← A|Ob⟩,Reprogram O1 := Ox1||x2→y
1

return b′ return x1

Fig. 7. Adaptive reprogramming games for b ∈ {0, 1}.

Lemma 9. (Grover’s Algorithm. [23]) Let F : X → {0, 1} be a predicate map-
ping an element of set X to a bit and F−1(1) = {x : F (x) = 1} is non-empty.
Let t = |F−1(1)| > 0. There is a quantum algorithm that randomly returns

x∗ ∈ F−1(1) with at most O(
√
|X|
t ) quantum queries to F .

We call the above quantum algorithm Grover’s algorithm.

C Subset Resilience and Its variants

Subset resilience is first proposed in HORS [32], a few-time HBS scheme. In this
section, we give definitions of several variants and analyze their generic security.

C.1 Definitions

Definition 11. (Subset Cover. [32, 35]) Let H = (h1, ...hk) be a hash func-
tion mapping {0, 1}m to [t]k and r ≥ 0 be an integer. We say that (r + 1)-
tuple (x, x1, ..., xr) ∈ {0, 1}m(r+1) is an (r, k)-subset cover of H if it holds that
{hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r] and x ̸∈ {xj}j∈[r].

Definition 12. (Restricted Subset Cover. [35]) Let H = (h1, ...hk) be a hash
function mapping {0, 1}m to [t]k and r ≥ 0 be an integer. We say that (r + 1)-
tuple (x, x1, ..., xr) ∈ {0, 1}m(r+1) is an (r, k)-restricted subset cover of H if it
holds that x ̸∈ {xj}j∈[r], and for ∀i ∈ [k], hi(x) ∈ {hi(xj)}j∈[r].
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Next, we show a weaker statement called weak subset cover that is useful in
the following sections.

Definition 13. (Weak Subset Cover.) Let H = (h1, ...hk) be a hash function
mapping {0, 1}m to [t]k and r ≥ 0 be an integer. We say an (r + 1)-tuple
(x1, ..., xr+1) ∈ {0, 1}m(r+1) is an (r, k)-weak subset cover of H if for ∀i ∈ [k],
it holds that |{hi(xj)}j∈[r+1]| ≤ r and xj’s are distinct. In other words, there
exists a collision in x1, ..., xr+1 w.r.t. each hi.

Corollary 5. If (x, x1, ..., xr) is an (r, k)-restricted subset cover of H, it is also
an (r, k)-weak subset cover of H.

If it is hard for any polynomial-time adversary to find a (restricted/weak-
)subset cover, then we say that the hash function family is (restricted/weak-
)subset-resilient.

Definition 14. Let H = {H : {0, 1}m → [t]k} be a hash function family. Let A
be an adversary that takes as input H = (h1, ..., hk) ← H, runs at most q hash
queries and finally outputs (x, x1, ..., xr) ∈ {0, 1}m(r+1). Define

Adv(r,k)-SR
H,q (A) ≜ Pr

H,A

[
{hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r] ∧ x /∈ {xj}j∈[r]

]
and

Adv(r,k)-rSR
H,q (A) ≜ Pr

H,A

[
∀i ∈ [k], hi(x) ∈ {hi(xj)}j∈[r] ∧ x /∈ {xj}j∈[r]

]
.

Let A be an adversary that takes as input H = (h1, ..., hk) ← H, runs at
most q hash queries and finally outputs (x1, ..., xr+1) ∈ {0, 1}m(r+1). Define

Adv(r,k)-wSR
H,q (A) ≜ Pr

H,A

[
∀i ∈ [k],

∣∣{hi(xj)}j∈[r+1]

∣∣ ≤ r∧x1, x2, ..., xr+1 are distinct
]
.

We say that H is a secure (r, k)(-restricted/weak) subset resilient hash function
family or (r, k)-SRH(/rSRH/wSRH) if Adv(r,k)-SR

H,q (A)/Adv(r,k)- rSR
H,q (A)/Adv(r,k)-wSR

H,q (A)
is negligible for any probabilistic polynomial-time quantum adversary A.

C.2 Generic Security with Quantum Queries

Theorem 2. Let H = {H : {0, 1}m → [t]k} be a random function family and r
be a positive integer. For any quantum probabilistic polynomial-time adversary
A, it holds that

Adv(r,k)-wSR
H,q (A) ≤ (2q + 1)2(r+1)

(
r2

t

)k

, (7)
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Adv(r,k)-rSR
H,q (A) ≤ (2q + 1)2(r+1)(2r + 2)

(
r

t

)k

, (8)

and

Adv(r,k)-SR
H,q (A) ≤ (2q + 1)2(r+1)(2r + 2)

(
rk

t

)k

. (9)

Proof. SinceH is a random function family, the success probability of adversaries
can be evaluated by Lemma 5. For i ∈ [k], denote by y(i) ∈ [t] the i-th element
of y.

1. (Proof of (7).)
For H = (h1, ..., hk) : {0, 1}∗ → [t]k, define R1 ⊆ [t]k(r+1) as follows:

R1 ≜ {(y1, y2, ..., yr+1) : ∀i ∈ [k],
∣∣{y(i)j }j∈[r+1]

∣∣ ≤ r}.
We analyze the size of R1. From (y1, ..., yr+1) ∈ R1, for every i ∈ [k], (at
least) two of y(i)1 , ..., y

(i)
r+1 are equal. Fix an i ∈ [k], we can traverse all the

possible (y
(i)
1 , ..., y

(i)
r+1) w.r.t. i as follows:

(a) Pick a pair of indices a1, a2 from [r].
(b) Pick y ∈ [t], let ya1 = ya2 = y.
(c) Traverse all possible values of y(i)j for all j ̸∈ {a1, a2} and j ∈ [r + 1].
The numbers of choices in the three steps are

(
r+1
2

)
, t and tr−1 respectively.

Thus, for all i ∈ [k], the total number of possible values of (y1, ..., yr+1) ∈ R1

is at most ((
r + 1

2

)
· t · tr−1

)k

=

(
(r + 1)r

2
tr
)k

≤ (r2tr)k.

In addition, it is not hard to see that relation R1 is not ordered (which means
that for any π ∈ Perm([r+1]), the statement (y1, ..., yr+1) ∈ R1 is equivalent
to the statement (yπ(1), ..., yπ(r+1)) ∈ R1). Due to Lemma 5, we have

Adv(r,k)-wSR
H,q (A) ≤ (2q + 1)2(r+1) (r

2tr)k

t(r+1)k
= (2q + 1)2(r+1)

(
r2

t

)k

,

which is what we expected.
2. (Proof of (8).)

Note that in Lemma 5, the elements in a solution have to be distinct, but
those in a restricted subset cover do not. (In a restricted subset cover, only
x ̸∈ {xj}j∈[r] is demanded, and thus xj can be equal to another xj′ .) We
divide a restricted subset cover into several cases.
Fix r,H andA. Recall thatH = (h1, ..., hk)← H and (x, x1, ..., xr)← A(H).
Let 1 ≤ s ≤ r be some integer. Define

f(s) ≜ Pr
H,A

[
∀i ∈ [k], hi(x) ∈ {hi(xj)}j∈[r] ∧ x ̸∈ {xj}j∈[r] ∧

∣∣{xj}j∈[r]∣∣ = s

]
.
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Then, we have
Adv(r,k)-rSR

H,q (A) =
∑
s∈[r]

f(s),

and

f(r) = Pr
H,A

[
{hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r] ∧ x, x1, ..., xr are distinct

]
.

First, we give a bound for the case that r = s.

Lemma 10. f(r) ≤ (2q + 1)2(r+1)(r + 1)( rt )
k.

Proof. For H = (h1, ..., hk) : {0, 1}∗ → [t]k, define R2 ⊆ [t]k(r+1) as follows:

R2 ≜
{
(y, y1, ..., yr) : ∀i ∈ [k], y(i) ∈ {y(i)j }j∈[r]

}
.

Next, we analyze the size of R2. For convenience, we call the first element of
(y, y1, ..., yr) ∈ R2 as y0.
First, there are exactly tk possible values of y0. Then, for any fixed y0 =

(y
(1)
0 , ..., y

(k)
0 ), it holds that y(i)0 ∈ {y(i)j }j∈[r] for each i ∈ [k]. This implies

that y(i)j = y
(i)
0 for some j ∈ [r]. We can traverse all the possible value of

(y
(i)
1 , ..., y

(i)
r ) for each i w.r.t. y0 by the following steps:

(a) Pick j ∈ [r] and let y(i)j = y
(i)
0 .

(b) Traversing all the possible value of y(i)j′ for all j′ ∈ [r] and j′ ̸= j.
The number of possible values of (y(i)1 , ..., y

(i)
r ) w.r.t. y0 is at most r · tr−1 for

each i. Thus, considering all i ∈ [k] and traversing all possible values of y0,
the total number of (y0, y1, ..., yr) is at most

(r · tr−1)k · tk = (rtr)k.

Unlike R1, relation R2 is ordered. Define

R∗2 ≜ {(y1, ..., yr+1) : ∃π ∈ Perm([r + 1]) s.t. (yπ(1), ..., yπ(r+1)) ∈ R2}.

Observe that for any π ∈ Perm([r]), the statement (y, y1, ..., yr) ∈ R2 is
equivalent to the statement (y, y(π(1)), ..., yπ(r)) ∈ R2. This implies that the
order of R2 is only determined by the first element. Thus, we can traverse
all the possible values of (y1, ..., yr+1) ∈ R∗2 by the following steps:
(a) Pick (y, y1, ..., yr) ∈ R2.
(b) Pick j ∈ [r+1], and insert y between (j−1)-th element and the j-th ele-

ment of (y1, ..., yr). In other words, traverse (y, y1, ...yr), (y1, y, y2, ..., yr),
..., (y1, ..., yr, y).

Thus, we have
|R∗2| ≤ (r + 1)|R2| ≤ (r + 1)(rtr)k.

Due to Lemma 5, we have

f(r) ≤ (2q + 1)2(r+1) (r + 1)(rtr)k

t(r+1)k
= (2q + 1)2(r+1)(r + 1)

(
r

t

)k

.
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Next, we consider the case that s < r.
If the adversary output an (r, k)-restricted subset cover (x, x1, ..., xr) such
that |{xj}j∈[r]| = s < r. Let {xj}j∈[r] = {x′j′}j′∈[s] after reordering. Then,
it is not hard to see that (x, x′1, ..., x

′
s) is an (s, k)-restricted cover and all

the elements are distinct. The probability of this event is also bounded by
Lemma 10. That is, for all 1 ≤ s ≤ r it holds that

f(s) ≤ (2q + 1)2(s+1)(s+ 1)

(
s

t

)k

≤ (2q + 1)2(s+1)(r + 1)

(
r

t

)k

.

Thus, we have

Adv(r,k)-rSR
H,q (A) =

∑
s∈[r]

(2q+1)2(s+1)(r+1)

(
r

t

)k

≤ (2q+1)2(r+1)(2r+2)

(
r

t

)k

.

3. (Proof of (9).)
Similarly, fix r,H,A. For s ∈ [r], we define

g(s) ≜ Pr
H,A

[
x /∈ {x1, ..., xr}∧{hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r]∧

∣∣{xj}j∈[r]∣∣ = s

]
,

and thus
Adv(r,k)-SR

H,q (A) =
∑
s∈[r]

g(s).

As above, we first consider the case that s = r.
For H = (h1, ..., hk) : {0, 1}∗ → [t]k, define R3 ⊆ [t]k(r+1) as follows:

R3 ≜ {(y, y1, ..., yr) : {y(i)}i∈[k] ⊆ {y
(i)
j }i∈[k],j∈[r]}.

We divide R3 into k subsets R3,1, ..., R3,k, where, for m ∈ [k],

R3,m ≜ {((y, y1, ..., yr) ∈ R3 :
∣∣{y(i)}i∈[k]∣∣ = m}.

Observe that R3,m’s are disjoint and that R3 =
⋃

m∈[k]R3,m. More precisely,
the statement (y, y1, ..., yr) ∈ R3,m implies that {y(i)}i∈[k] contains exactly
m elements in [t], and {y(i)j }i∈[k],j∈[r] covers them. Since there are at most rk
elements in set {y(i)j }i∈[k],j∈[r], there are rk “chances” to cover the m target
elements. We can traverse all the elements of R3,m by the following steps:
(a) Pick m distinct elements x1, ..., xm from [t]. Let X = {x1, ..., xm}.

The number of choices in this step is
(
t
m

)
.

(b) Pick y(1), ..., y(k) from Xk such that {y(i)}i∈[k] = X.
This step is equivalent to the experiment of putting k different balls into
m different bins such that there is at least one ball in each bin. The
number of choices is

{
k
m

}
·m!, where

{
k
m

}
denotes Stirling number of the

second kind.
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(c) Next, we require that {y(i)j }i∈[k],j∈[r] covers X = {y(i)}i∈[k]. Since |X| =
m, we only need to choosem elements of {y(i)j }i∈[k],j∈[r], make them equal
to a permutation of X, and do not have any demand for the remaining
(rk −m) elements.
The number of choices in the two substeps are

(
rk
m

)
and m! respectively.

(d) Finally, since the remaining (rk−m) elements have no demand, traverse
all the possible y(i)j that have not been assigned in the above steps.
The number of choices in this step is t(rk−m).

To sum up, the total number of elements in R3,m is

|R3,m| =
(
t

m

){
k

m

}
·m! ·

(
rk

m

)
·m! · trk−m

≤ t
m

m!
·
{
k

m

}
·m! ·

(
rk

m

)
·m! · trk−m

=

{
k

m

}
·
(
rk

m

)
·m! · trk

=

{
k

m

}
· (rk)m · trk,

where (·)m denotes the falling factorial:

(x)m = x · (x− 1) · ... · (x−m+ 1).

Thus, we have

|R3| =
k∑

m=1

|R3,m| ≤
k∑

m=1

{
k

m

}
· (rk)m · trk = (rk)k · trk,

where the last equality uses the fact that
∑k

m=1

{
k
m

}
(x)m = xk.

Similar to R2, we define

R∗3 ≜ {(y1, ..., yr+1) : ∃π ∈ Perm([r + 1]) s.t. (yπ(1), ..., yπ(r+1)) ∈ R3},

and then we have

|R∗3| ≤ (r + 1)|R3| ≤ (r + 1)(rk)k · trk.

Due to Lemma 5, we have

g(r) ≤ (2q + 1)2(r+1) (r + 1)(rk)k · trk

t(r+1)k
= (2q + 1)2(r+1)(r + 1)

(
rk

t

)k

,

and for s ∈ [r],

g(s) ≤ (2q + 1)2(s+1)(s+ 1)

(
sk

t

)k

≤ (2q + 1)2(s+1)(r + 1)

(
rk

t

)k

.

Thus,

Adv(r,k)-SR
H,q (A) =

∑
s∈[r]

(2q+1)2(s+1)(r+1)

(
rk

t

)k

≤ (2q+1)2(r+1)(2r+2)

(
rk

t

)k

.
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C.3 Target Subset Resilience

Target subset resilience (TSR) [32] is a variant of subset resilience. In (r, k)-TSR
experiment, the adversary is given a hash functionH = (h1, ..., hk) and r random
targets x1, ...xr. Then, the adversary is required to output a single element x
such that {hi(x)}i∈[k] ⊂ {hi(xj)}i∈[k],j∈[r]. It is not hard to see that (r, k)-TSR
is a weaker notion than (r, k)-SR.

In this section we propose a target version of restricted subset resilience,
which is called extended target subset resilience (eTSR). Unlike TSR, the ad-
versary in eTSR can adaptively control the target to some extent. In detail,
the adversary is able to adaptively query a (classical) oracle Box. For a query
xj , Box randomly chooses zj ∈ {0, 1}n and returns (zj , H(zj ||xj)). After r
queries, the adversary is required to output (x, z) such that for each i ∈ [k],
hi(z||x) ∈ {hi(zj ||xj)}j∈[r] and (x, z) ̸∈ {(xj , zj)}j∈[r] hold. Note that (r, k)-
eTSR is a weaker notion than than (r, k)-rSR.

Definition 15. (Extended Target Subset Resilience.) Let H = {H = (h1, ..., hk) :
{0, 1}m+n → [t]k} be a hash function family. Let ABox be an adversary that
queries Box at most r times, computes H at most q times and then outputs
(x, z) ∈ {0, 1}m+n. Define

Adv(r,k)-eTSR
H,q (A) ≜ Pr

Box,H,A

[
∀i ∈ [k], hi(z||x) ∈ {hi(zj ||xj)}j∈[r]∧(x, z) ̸∈ {(xj , zj)}j∈[r]

]
.

We say that hash function family H is an (r, k)-extended target-subset-resilient
hash function family ((r, k)-eTSRH) if Adv(r,k)-eTSR

H,q (A) is negligible for any prob-
abilistic polynomial-time quantum adversary A.

Here we modelH as a quantum-accessible H : {0, 1}m+n → [t]k and h1, ..., hk :
{0, 1}m+n → [t] be the partial oracle. Then, the experiment of eTSR is depicted
as Game 0 in Figure 8.

Theorem 3. Let H be modeled as a quantum-accessible random oracle H and r
be a positive integer. For any quantum probabilistic polynomial-time adversary
A, it holds that

Adv(r,k)-eTSR
H,q (A) ≤ 3r

2

√
q + r + 1

2n
+ 8(q + r + 2)2

(
r

t

)k

.

Proof. We use the technique in the security proof of (multi-target) extended col-
lision resistance in [28] and [22]. We prove this theorem by showing the following
games:

– Game 0 is the original experiment of eTSR.
– Game 1 differs from Game 0 in that Box is replaced by Box’. Every time
A queries xj to the oracle Box’, Box’ randomly picks zj , randomly chooses
y
(1)
j , ..., y

(k)
j ∈ [t] and reprograms hi(zj ||xj) := y

(i)
j for each i ∈ [k]. (In other
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Game 0 Box(xj)

(x, z)← A|H⟩,Box() zj ← {0, 1}n
if ∀i ∈ [k], hi(z||x) ∈ {hi(zj ||xj)}j∈[r] return (zj ,H(zj ||xj))

if (x, z) ̸∈ {(xj , zj)}j∈[r] return 1
return 0

Game 1 Box’(xj)

(x, z)← A|H⟩,Box’() zj ← {0, 1}n

if ∀i ∈ [k], hi(z||x) ∈ {y(i)
j }j∈[r] yj := y

(1)
j ||...||y

(k)
j ← [t]k

if (x, z) ̸∈ {(xj , zj)}j∈[r] return 1 H := Hzj ||xj→yj

return 0 return (zj , yj)

Fig. 8. Hybrid arguments in the proof of Theorem 3.

words, it reprograms H(zj ||xj) := yj = y
(1)
j ||...||y

(k)
j .) Then, it returns (zj , yj)

to the adversary. See details in Figure 8.
Next, we show that the probabilities of Game 0 and Game 1 are negligible
close by Lemma 8. If not, the adversary A can be used to distinguish Repro0
and Repro1 in Figure 7. In Game 0, H is simulated by O0 and Box is simu-
lated by Reprogram0 with additional classical query to O0. In Game 1, Box’
is simulated by Reprogram1 with additional classical query to O1. In total, it
issues (q+r+1) queries to Ob (q for simulating H, r for simulating Box/Box’
and 1 for the final verification). Due to Lemma 8, we have

|Pr[Game 0]− Pr[Game 1]| ≤ 3r

2

√
q + r + 1

2n
. (10)

– In Game 1, the adversary outputs (x, z) such that for all i ∈ [k], hi(z||x)
is covered by {y(i)j }j∈[r]. Define S = {y(1)a1 ||...||y

(k)
ak }(a1,...,ak)∈[r]k . In other

words, S contains all y = y(1)||...||y(k) where y(i) ∈ {y(i)j }j∈[r] for each i.
Thus, the adversary is to output (x, z) such that H(z||x) ∈ S and (x, z) is
not equal to any (xj , zj).
Note that |S| ≤ rk. Without loss of generality, we suppose |S| = rk. (If
|S| < rk, the success probability is obviously smaller. Here our purpose is to
find an upper bound of the probability.) Reorder S = {y′1, ..., y′rk}.
Next, we use an adversary succeeding in Game 1 to construct a reduction
breaking Avg-Searchλ in Lemma 7.
Let f ← Dλ : {0, 1}m+n → {0, 1} and λ = ( rt )

k. Let I : {0, 1}m+n → [rk] and
g : {0, 1}m+n → [t]k\S be random functions. Construct H̃ : {0, 1}m+n → [t]k

as follows: for any (z||x) ∈ {0, 1}m+n, define:
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H̃(z||x) =


yj , x = xj ∧ z = zj ,

y′I(z||x), f(z||x) = 1,

g(x), otherwise.

Note that the outputs of H̃ distributes uniformly. Thus, an adversary in
Game 2 finds (x, z) such that f(z||x) = 1. Due to Lemma 7, we have

Pr[Game 1] ≤ 8(q + r + 1 + 1)2
(
r

t

)k

= 8(q + r + 2)

(
r

t

)k

. (11)

From equation (10) and (11), we complete the proof.

Interleaved target subset resilience (ITSR) [9] is another variant of target
resilience and has been used in constructing SPHINCS+. It can be consid-
ered an extended version of eTSR. We introduce another hash function h0 :
{0, 1}m+n → {0, 1}h (where h is a constant) and modify the oracle Box to
an interleaved version iBox. Given xj as input, iBox picks random zj and out-
puts (zj , h0(zj ||xj), H(zj ||xj)). After queries, the adversary outputs (x, z) that,
for each i ∈ [k], (hi(z||x), h0(z||x)) ∈ {(hi(zj ||xj), h0(zj ||xj))}j∈[r] and (x, z) ̸∈
{(xj , zj)}j∈[r] hold. Note that if h = 0, ITSR becomes the same as eTSR.

Definition 16. (Interleaved Target Subset Resilience.) Let H = {H = (h1, ..., hk) :
{0, 1}m+n → [t]k} and H0 = {h0 : {0, 1}m+n → {0, 1}h} be hash function fam-
ilies. Let AiBox be an adversary that queries iBox at most r times, computes
(H,h0) at most q times and then outputs (x, z) ∈ {0, 1}m+n. Define

Adv(r,k)-ITSR
H,H0,q

(A) ≜ Pr
iBox,H,H0,A

[
∀i ∈ [k],(hi(z||x), h0(z||x)) ∈ {(hi(zj ||xj), h0(zj ||xj))}j∈[r]

(x, z) ̸∈ {(xj , zj)}j∈[r]

]
.

We say that hash function family pair (H,H0) is an (r, k)-interleaved target sub-
set resilient hash function family ((r, k)-ITSRH) if Adv(r,k)-ITSR

H,H0,q
(A) is negligible

for any probabilistic polynomial-time quantum adversary A.

Remark 6. In practice (e.g., in SPHINCS+ [9]), H0 and H are instantiated by
a separation of a single hash function family. That is, pick a hash function Hmsg
mapping to {0, 1}h+k log t and let Hmsg(z||x) = (MD||idx). H denotes the map
from (z||x) to MD and h0 denotes the map to idx.

In [9], the authors give an attack on ITSR and conjecture a bound for the
security. Here we give a concrete lower bound of the security in the quantum-
accessible random oracle model. The idea mainly follows [9] except using Lemma
8.
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Game 0

(x, z)← A|h0⟩,|H⟩,iBox()
if ∀i ∈ [k], (h0(z||x), hi(z||x)) ∈ {(h0(z||x), hi(zj ||xj))}j∈[r]

if (x, z) ̸∈ {(xj , zj)}j∈[r] return 1
return 0

Box(xj)

zj ← {0, 1}n
return (zj , h0(zj ||xj),H(zj ||xj))

Game 1

(x, z)← A|h0⟩,|H⟩,iBox’()

if ∀i ∈ [k], (h0(z||x), hi(z||x)) ∈ {(y(0)
j , y

(i)
j )}j∈[r]

if (x, z) ̸∈ {(xj , zj)}j∈[r] return 1
return 0

iBox’(xj)

zj ← {0, 1}n

for ∀i ∈ [k], y(i)
j ← [t], y(0)

j ← {0, 1}h

yj := y
(1)
j ||...||y

(k)
j

H := Hzj ||xj→yj , h0 := h
zj ||xj→y

(0)
j

0

return (zj , y
(0)
j , yj)

Fig. 9. Hybrid arguments in the proof of Theorem 4.
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Theorem 4. Let H and h0 be modeled as quantum-accessible random oracles
H and h0 respectively and r be a positive integer. For any quantum probabilistic
polynomial-time adversary A, it holds that

Adv(r,k)-ITSR
H,h0,q

(A) ≤ 3r

2

√
q + r + 1

2n
+ 8(q + r + 2)2Γ,

where Γ =
∑

γ

(
1−

(
1− 1

t

)γ)k(r
γ

)(
1− 1

2h

)r−γ 1
2hγ .

Proof. We prove the statement by the following games, which is very similar to
Theorem 3. We write H′(z||x) = (H(z||x), h0(z||x)).

– Game 0 is the original experiment of ITSR as depicted in Figure 9.
– Game 1 differs from Game 0 expect that iBox is replaced by iBox’ in Figure

9. Every time iBox’ is queried with xj , it randomly samples y(0)j ,...,y(k)j where
y
(0)
j ∈ {0, 1}h and y(i)j ∈ [t] for other i ∈ [k], and does reprogramming. As in

Theorem 3, we have

|Pr[Game 0]− Pr[Game 1]| ≤ 3r

2

√
q + r + 1

2n
. (12)

– We give a bound for the probability of Game 1. Let y = (y
(0)
j ,...,y(k)j )j∈[r]

and z = (zj)j∈[r] be all the choices of y(i)j ’s and zj ’s in Box’ respectively. For
y ∈ {0, 1}h, let Jy be the set of index j that h0(zj ||xj) = y. That is

Jy ≜ {j : h0(zj ||xj) = y}.

Then, define

S(y) ≜
⋃

y∈{0,1}h:Jy ̸=∅

{(y(1)a1
||...||y(k)ak

, y)}(a1,...,ak)∈Jk
y
.

The adversary succeed if and only if it finds an (x, z) such that H ′(z||x) ∈
S(y) and x is not equal to any xj . The success probability is taken over the
choice of y, z, H′ and the randomness of A. That is

Pr[Game 2] ≤ Pr
y,z,H′,A

[
H′(z||x) ∈ S(y)

]
= Ey Pr

z,H′,A

[
H′(z||x) ∈ S(y)

]
.

Again, we use the adversary in Game 1 to construct a reduction breaking
Avg-Searchλ in Lemma 7. Fix y (and also S(y)). Let f ← Dλ : {0, 1}m+n →
{0, 1} and λ = |S|/tk. Let I : {0, 1}m+n → |S| and g : {0, 1}m+n → [t]k ×
{0, 1}h\S(y) be random functions. Reorder S(y) = {y′1, ..., y′|S(y)|}. Con-

struct H̃′ : {0, 1}m+n → [t]k × {0, 1}h as follows: for any (z||x) ∈ {0, 1}m+n,
define

H̃′(z||x) =


yj (x = xj ∧ z = zj),

y′I(z||x) (f(z||x) = 1),

g(x) (otherwise).
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If A succeeds in Game 1, then the reduction succeeds in Avg-Search with
the same probability. From Lemma 7, we have

Pr
z,H′,A

[
H′(z||x) ∈ S(y)

]
≤ 8(q + r + 2)2

|S(y)|
2htk

.

From the analysis in [9], for any y′ ∈ [t]k × {0, 1}h, the probability of
y′ ∈ S (over the choice of y) is at most Γ . Accordingly the expectation
of |S(y)|/(2htk) over the choice of y is at most Γ . Thus, we have

Pr[Game 1] ≤ Ey

[
8(q + r + 2)2

|S(y)|
2htk

]
≤ 8(q + r + 2)2Γ. (13)

From equation (12) and (13), we complete the proof.

Remark 7. We give an exact bound for the generic security of ITSR. Compared
to the conjecture in [9], we have an additional term 3r

2

√
q+r+1

2n here. This term
does not have an essential role if a mild security argument based on the notion
of security level is sufficient. Note that in HBS schemes, the security level is
defined as the complexity of qH , making the probability of breaking the security
reach a constant. For example, in SPHINCS+-256s (r = 264 and n = 256), this
additional term will cause 128-bit security, which is the same as the original
security level of SPHINCS+-256s. Thus, this additional term has a small impact
on the security level.

D Attacks in the BU model

In the following, we omit the parameter n and use Bϵ to denote Bϵ,n. The
strategy of attacking SPHINCS in the BU model is as follows.

1. Denote f(m) = PRFidx(skseed,PRFmsg(skseed,m)) be the function that maps
the message m to the index idx ∈ {0, 1}h. For some idx∗ ∈ {0, 1}h, denote
predicate F (m) = 1 iff f(m) = idx∗ and m /∈ Bε. Here, F is quantum-
computable by querying the signing oracle BεSigO.

2. Run Grover’s algorithm on F (m). This requires O
(√

2h

1−ε
)

queries to BεSigO.
3. Repeat the last step r times and denote S as above. The expectation of |S|

is also (1− e− kr
t ) · t.

4. Denote predicate F ′(m) = 1 iff BεSigO(m) = ⊥. It outputs a message m∗ ∈
Bε. This requires approximately O(ε−1/2) signing queries.

5. Denote function G(z) = 1 iff {hi(z||m∗)}i∈[k] ⊂ S . Run Grover’s algorithm
on G. It outputs z∗ such that the preimages corresponding to (z∗,m∗) have
appeared in S. The expected number of quantum hash queries in this step
is also O((1− e kr

t )−
k
2 ).

Then the adversary successfully generates a forgery σ∗ = (idx∗, z∗, σ∗HT, σ
∗
HORS)

form∗ ∈ Bε, where σ∗HT is obtained by an additional signing query and σ∗HORS
is obtained by S.
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The total number of required (quantum) queries is respectively

qs = O(r2
h
2 (1− ε)− 1

2 ) +O(ε−
1
2 ), qH = O((1− e− kr

t )−
k
2 ).

Note that qs is slightly larger than the original attack (increased by a polynomial√
ε) and qH decreases to 1/r2h/2 of the original one.

The above attack also works on SPHINCS+, but we have another one that
requires less queries. The main idea is similar. First, we find a message m∗ in
the blind region. Then, to sign a message for m∗, we need an sFORS signature
associated with some index idx∗. Note that the sFORS signature includes k
elements. We directly use Grover’s algorithm to search k messages (outside of
the blind region) that respectively map to the k target elements. It can be done
by quantum signing queries. Finally, the sFORS signature of m∗ is covered by
the k signatures, and a forgery is generated. The attack is as follows.

1. Find m∗ such that BεSigO(m∗) = ⊥. This requires O(ε−
1
2 ) quantum hash

queries to BεSigO.
2. Pick z∗ ∈ {0, 1}n and let idx∗ = h0(z

∗||m∗). Let function z(m) be the map
from m to the corresponding z. For i ∈ [k], denote predicate Fi(m) = 1 iff (1)
z(m) ̸= ⊥, (2) h0(z(m)||m) = idx∗, and (3) hi(z(m)||m) = hi(z

∗||m∗). Fi

is quantum-computable by querying BεSigO and a quantum query to h0, hi.
Run Grover’s algorithm on Fi. The expected number of Fi computations is
O(

√
(1− ε)−1 · 2h · t).

3. After that, the secret values in sFORS signature on m∗ is covered the k
signatures. A forgery is then generated.

In total, the number of required (quantum) queries is respectively

qs = O(k2
h+log t

2 (1− ε)− 1
2 ) +O(ε−

1
2 ), qH = O(k2

h+log t
2 (1− ε)− 1

2 ).

With the parameters in SPHINCS+-256s, qs and qH are both approximately
243, which is lower than our attack in the PO model.

The concrete complexity of our attacks is summarized in Table 1.

E Security Analysis of Few-time HBS Schemes

E.1 Proof of Corollary 1

In the security analysis, we use insecurity functions to show the maximum proba-
bility of breaking the security notions. For ∗ ∈ {SR,rSR,wSR,eTSR,OW} and hash
function family H, InSec∗H,qH (ξ) denotes the maximum number of Adv∗H,qH

(A)
for all ξ-time adversary A. In addition, for ∗ ∈ {SM-TCR,SM-DSPR} and tweak-
able hash function Th, InSec∗Th,q1,q2(ξ) denotes the maximum of Adv∗H,q1,q2

(A)
for all ξ-time adversary A.

First we show the EUF-CMA security of HORS and sFORS. The reduction
is straightforward and has been given in previous work [32,35].
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Lemma 11. For any ξ-time adversary A, it holds that

AdvEUF-CMA
HORS,r,qH (A) ≤ InSec(r,k)-SR

H,qH
(ξ) + kt · InSecOW

F,qH (ξ),

AdvEUF-CMA
sFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ)+InSec(r,k)-rSR
H,qH

(ξ)

+3InSecSM-TCR
F,kt,qH (ξ) + InSecSM-DSPR

F,kt,qH (ξ),

Next, we focus on EUF-qCMA security of sFORS.

Theorem 5. For any ξ-time adversary A, it holds that

AdvEUF-qCMA
sFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ) + InSec(r,k)-wSR
H,qH

(ξ)

+ ktr
(
3InSecSM-TCR

F,t,qH (ξ) + InSecSM-DSPR
F,t,qH (ξ)

)
.

Proof. Our proof follows the idea of proving the EUF-qCMA security of Lam-
port’s scheme in [12]. The outline is as follows. Assume H is weak subset-resilient
and the adversary eventually outputs forgeries for (distinct) m1, ...,mr+1. There
must exist some i∗ ∈ [k] such that hi∗(m1), ..., hi∗(mr+1) are distinct. As a hy-
bird argument, we measure the values of hi∗ in the signing queries 9. After the
measurement, the signing oracle will only return one of the preimages at position
i∗ in each signing query, but the adversary is required to output one more of
them, which can be used to break OpenPRE. From Lemma 6, each partial mea-
surement only causes security loss of t, a polynomial number. Since the partial
measurements are performed r times, a constant number, the overall security
loss is still polynomial.

Let A be a quantum adversary, we reduce AdvEUF-qCMA
sFORS,r,qH (A) by the following

hybrid arguments.

– Game 0 is the original EUF-qCMA experiment of sFORS for A.
– Game 1 differs from Game 0 as follows. In Game 1, the challenger stores

all the yi,j in key generation algorithm. Game 1 returns 0 if A outputs
a (m,σ) = (m, (x1, ..., xk, π1, ..., πk)) such that f(xi) ̸= yi,hi(m) for some
i ∈ [k].
The probabilities of Game 0 and Game 1 differ only if the adversary
generates a different hash tree of which the root collides with the real one.
By Lemma 3, this implies a reduction to SM-TCR of Th. That is, there
exists a reductionM1 such that

|Pr[Game 0]− Pr[Game 1]| ≤ AdvSM-TCR
Th,rkt,qH (M1). (14)

– Game 2 differs from Game 1 as follows. Given forgeries (mj , σj)j∈[r+1],
Game 2 outputs 0 if for ∀i ∈ [k], |{hi(mj)}j∈[r+1]| ≤ r holds. If the output
of the game differs, it implies that the adversary outputs a weak subset cover

9 We cannot learn from the final forgeries about which i∗ should be targeted, since the
measurements should be performed on-line. Instead, we guess it from [k] initially.
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of H = (h1, ..., hk), and thus succeeds in attacking the weak subset resilience
of H. There exists a reduction M2 such that

|Pr[Game 1]− Pr[Game 2]| ≤ Adv(r,k)-wSR
H,qH

(M2). (15)

If A succeeds in Game 2, there exists i∗ ∈ [k] such that |{hi∗(mj)}j∈[r+1]| =
r+1 holds, which means that hi∗(mj)’s are distinct for j ∈ [r+1]. In other
words, A outputs (r+1) preimages of {yi∗,j}j∈[t] after only r queries to the
signing oracle.

– Game 3 differs from Game 2 as follows. Before running A, Game 3 ran-
domly guesses i′ ∈ [k]. Game 3 outputs 1 if and only if Game 2 outputs 1
and i′ = i∗. We have

Pr[Game 2] ≤ k · Pr[Game 3]. (16)

Recall that in each signing query, the signing oracle can be operated as
follows:
1. Yield (k log t+ |σ|) qbits with initial state

⊗
k |0⟩j⊗|0⟩σ, where the first

k registers (with log t qubit for each10) compute and record hi(m) for
i ∈ [k] (say i-th j-register), and the last register computes the signature
(say σ-register).

2. Let Uhi be the unitary operation of hi. Perform Uhi from m-register to
i-th j-register.

3. Perform the remaining operations of the signing algorithm from j-registers
to σ-register, computing the signatures on σ-register.

4. Perform XOR operation from σ-register to t-register.
– Game 4 differs from Game 3 as follows. Every time A queries to the

signing oracle, perform a partial measurement on the i∗-th j-register after
the second step11. Since each measurement has at most t outcomes and there
are at most r measurements, due to Lemma 6 we have

Pr[Game 3] ≤ tr · Pr[Game 4]. (17)

– In Game 4, i∗-th j-register is measured and collapsed to a pure state j ∈ [t]
after the second steps. Thus, the σ-register in position si∗,j is also in a
pure state. The adversary can only obtain information about r elements of
{si∗,j}j∈[t], but it is required to output (r+1) of them in the forgeries. The
forgeries must contain an xi∗,u∗ where u∗ ∈ [t] is never the outcome of the
partial measurements on hi∗ (and thus si∗,u∗ is never revealed), but xi∗,u∗

is a preimage of yi∗,u∗ .
Given a successful adversary in Game 4, we construct a reduction M to
attack SM-OpenPRE of F. First, M queries all (i, j) ∈ [k]× [t] to oracle O
and obtains yi,j = F((i, j), si,j) for (i, j) ∈ [k] × [t] where si,j ’s are random

10 We always assume that t is a power of 2.
11 Note that this operation can affect the states of all registers, such as m, t and i-th

j-register for i ̸= i∗.
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strings picked by O. In the second stage, M obtains parameter P of F and
uses P and yi,j ’s to generate a public key of sFORS. Then, it queries the
oracle Open with all (i, j) ∈ [k] × [t] except i = i∗. In response, it obtains
all si,j ’s expect i = i∗ and sends the public key to A. When A sends a
quantum signing query,M performs a partial measurement after computing
hi∗ and suppose the outcome is u. It sends (i∗, u) to Open and obtains si∗,u
in response. It then simulates the signing oracle in Game 4 and sends the
corresponding signature to A. Finally, when A successfully returns (r + 1)
forgeries, there must be an xi∗,u∗ such that (i∗, u∗) is never sent to Open
and is a preimage of yi∗,u∗ . Sending xi∗,u∗ to the challenger completes the
SM-OpenPRE attack on F. We thus have

Pr[Game 4] ≤ AdvSM-OpenPRE
F,t,qH

(M).

By Lemma 1, there exist M3 and M4 such that

Pr[Game 4] ≤ 3AdvSM-TCR
F,t,qH (M3) + AdvSM-DSPR

F,t,qH (M4). (18)

From equation (14), (15), (16), (17) and (18), we complete the proof.

By introducing Theorem 5, Corollary 4, Lemma 2 and the conjectured bound
of SM-DSPR in Remark 5, we complete the proof of Corollary 1.

E.2 Proof of Corollary 2

We first show the reduction to security notions for hash functions as follows.

Theorem 6. For any ξ-time adversary A, it holds that

AdvEUF-CMA
rFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ) + InSec(r,k)-eTSR
H,qH

(ξ) + InSecInd-PRF,r
PRF (ξ)

+3InSecSM-TCR
F,kt,qH (ξ) + InSecSM-DSPR

F,kt,qH (ξ),

AdvEUF-qCMA
rFORS,r,qH (A) ≤ InSecSM-TCR

Th,rkt,qH (ξ) + InSec(r,k)-wSR
H,qH

(ξ)

+ ktr
(
3InSecSM-TCR

F,t,qH (ξ) + InSecSM-DSPR
F,t,qH (ξ)

)
.

Proof. 1. (Proof of EUF-CMA.)
The reduction of rFORS is similar to sFORS. The main difference is that
rFORS is not reduced to rSR. Instead, it is reduced to eTSR and the security
of PRF. Since the signing algorithm is deterministic, we suppose the adver-
sary does not require repeated messages in the experiment. Let (m∗, (z∗, σ∗))
be a forgery that A outputs.
The hybrid argument is as follows.
– Game 0 is the original EUF-CMA experiment of rFORS.
– Game 1 diffes from Game 0 in that it returns 0 if σ∗ contains a different

hash tree with the real one. As shown in the proof of Theorem 5, there
exists a reductionM1 such that

|Pr[Game 0]− Pr[Game 1]| ≤ AdvSM-TCR
Th,rkt,qH (M1) (19)
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– Game 2 differs from Game 1 in that it returns 0 if σ∗ contains a
preimage which has not been revealed in the signing queries. Also as
shown in the proof of Theorem 5, a difference of success probability with
Game 1 implies a breaker of SM-PRE of F. Then, there exist reduction
M2 and M3 such that

|Pr[Game 1]− Pr[Game 2]| ≤ 3AdvSM-TCR
F,t,qH (M2) + AdvSM-DSPR

F,t,qH (M3).
(20)

– Game 3 differs from Game 2 in that the signing oracle does not cal-
culate pseudorandom functions. Instead, it uses a truly random function
(which can be instantiated by querying a random oracle). If the prob-
ability differs, there exists a distingusher M4 breaking the security of
PRF:

|Pr[Game 3]− Pr[Game 2]| ≤ AdvInd-PRF
PRF,r (M4). (21)

– In Game 3, the adversary succeeds if hi(z∗||m∗) ∈ {hi(zj ||mj)}j∈[r]
holds for ∀i ∈ [k]. We construct a reductionM5 that breaks eTSR of H.
Given challengeH, it generates the key pair of rFORS and give the public
key to A. When the adversary queries mj to the signing oracle, M5

queries mj to the oracle Box and obtains (zj , H(zj)) in response. Then,
M5 generates the corresponding signature and gives it to A. Finally,
M5 returns (m∗, z∗) to the challenger. If A succeeds, thenM5 succeeds
with the same probability. We thus have

Pr[Game 3] ≤ Adv(r,k)-eTSR
H,qH

(M5). (22)

From equation (19), (20), (21) and (22), we complete the proof.

2. (Proof of EUF-qCMA.)
We claim that rFORS is at least as secure as sFORS (if we suppose that
the input of H is of arbitrary length). That is, if there exists an adversary
A breaks EUF-qCMA security of rFORS, then we construct M breaking
EUF-qCMA security of sFORS.
Given the public key pk of sFORS as the challenge, M randomly picks k ∈
{0, 1}n and then sends pk to A. Every time A queries

∑
m,t |m, t⟩,M com-

putes
∑

m,t |m,PRFk(m), t⟩ and queries
∑

m,t

∣∣(PRFk(m)||m
)
, t
〉

to the sign-
ing oracle. Then,M sends to A what it receives from the signing oracle. Fi-
nally, whenA returns {(m∗j , (z∗j , σ∗j ))}j∈[r+1],M returns {(z∗j ||m∗j , σ∗j )}j∈[r+1].
It is a set of valid forgeries of sFORS if A succeeds. We thus have

AdvEUF-qCMA
rFORS,r (A) ≤ AdvEUF-qCMA

sFORS,r (M).

By Theorem 5, we complete the proof.

By incorporating Theorem 3 to Theorem 6, we obtain the generic security of
rFORS in the random oracle model in Corollary 2.
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E.3 Concrete Security

In this subsection, we give an example of the concrete security of few-time signa-
tures by implementing the parameters used in SPHINCS-256 [7] (t = 216, k = 32,
n = 256). The concrete security of few-time signature schemes is summarized
in Figure 3. Here the security levels denote the logarithm of qH such that the
probabilities depicted in Corollary 1 reach a constant. It implies lower bounds
of the generic security of the schemes.

In addition, note that an attack on restricted-subset resilience immediately
implies a chosen message attack on the corresponding sFORS. In [35], a quantum
generic attack is shown on (r, k)-restricted subset resilience withO(kt

1
2 (1−

1

2k+1−1
)
)

quantum queries to H. It implies an upper bound of the generic security of
sFORS (and HORS) against CMA (and qCMA, respectively). The comparison
is also depicted in Table 3.

r CMA-HORS CMA-sFORS qCMA-sFORS Attacks [23,35]

1 87.0 116.5 108.5 128.0
2 52.3 79.0 73.6 114.8
3 36.6 56.6 50.3 87.2
4 27.8 43.8 37.4 67.0
5 22.1 35.4 29.2 60.2
6 18.2 29.6 23.7 52.6
7 15.3 25.3 19.7 44.9

Table 3. Concrete security of r-time HBS schemes derived from Corollary 1 with
concrete parameters in SPHINCS-256. The three columns in the left hand show lower
bounds of the logarithm of hash queries needed in breaking the generic security, and
the rightmost column shows upper bounds.

F Proof of Theorem 1

We only show the proof for EUF-qCMA security here. The proof for EUF-CMA
security is very similar and thus omitted.

As mentioned in Section 5.2, all the signatures contained in a response from
the signing oracle share a common index and thus a common rFORS key pair.
In each superposition, idx and σHT are identical. The only “quantum part’ of a
response is (z, σFORS), the signature of rFORS. It implies that the EUF-qCMA
security of SPHINCS-FORS is reduced to the EUF-qCMA security of rFORS
and the classical security of HT.

The statement can be proven by the following hybrid arguments.

– Game 0 is the original EUF-qCMA experiment of SPHINCS-FORS.
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– Game 1 differs from Game 0 in that, in the signing oracle, sidx is calculated
by TRF(idx) where TRF : {0, 1}h → {0, 1}λ is a truly random function. If
the success probability differs, it implies a reduction distinguishing PRFseed
and TRF. Note that there are at most 2h calls to PRF. We have

|Pr[Game 1]− Pr[Game 0]| ≤ InSecInd-PRF
PRFseed,2

h(ξ).

– Game 2 differs from Game 1 as follows. After A outputs (qs+1) message-
signature pairs, check whether there exists a forgery (m∗, Σ∗) = (m∗, (idx∗, z, σ∗FORS, σ

∗
HT))

such that pk∗FORS ̸= pkFORS, where pk∗FORS ← rFORS.pkFromSig(m∗, (z, σ∗FORS)),
sidx∗ = TRF(idx∗) and pkFORS ← rFORS.KeyGen(1n; sidx∗). If so, it returns
0.
Game 2 differs from Game 1 only if the adversary generates a HT signature
for a “fake” pk∗FORS which is not consistent to the real one. It implies a
reduction attacking the EUF-sNACMA security of HT. At the beginning,
the reduction generates the rFORS public keys w.r.t. all the indices in {0, 1}h
and sends them with the corresponding indices to the challenger. Then, it
obtains the HT signatures and the public key pkHT from the challenger. When
signing a message m from the adversary, it picks a random idx ∈ {0, 1}h,
generates the corresponding rFORS signature (z, σFORS). Then, it replies with
(idx, z, σFORS) and the corresponding σHT from the challenger. Finally, the
adversary outputs a pk∗FORS that is different from the real one. It implies a
forgery of HT with state idx∗. We have

Pr[Game 1] ≤ Pr[Game 2] +AdvEUF-sNACMA
HT,2h,qH

(A).

In Game 2, the adversary wins only if it generates (qs+1) rFORS forgeries
(of multiple instances) after qs signing queries. Note that in each signing
query, the signing oracle picks one idx ∈ {0, 1}h and signs the message by
the rFORS key pair associated with idx. Due to the pigeonhole principle,
there must exist a special idx∗ ∈ {0, 1}h that has been used r times in signing
queries and is used at least (r + 1) times in the forgeries for some r ≥ 0.

– Game 3 differs from Game 2 in that it guesses idx′ ∈ {0, 1}h at the
beginning of the experiment and outputs 0 if idx′ ̸= idx∗. We have

Pr[Game 2] ≤ 2h · Pr[Game 3].

– In Game 3, A wins if it generates (r + 1) forgeries for the rFORS key
pair associated with idx′ conditioned that it is chosen r times in qs signing
queries. It breaks the EUF-qCMA security of rFORS with r signing queries.
In addition, let Er be the event that a leaf is chosen r times. The probability
of Er is

(
qs
r

)
(1− 2−h)qs−r(2−h)r < 2r(log qs−h)−log r!. Thus, we have

Pr[Game 3] =
qs∑
r=0

Pr[Game 3|Er] · Pr[Er]

≤
qs∑
r=0

InSecEUF-qCMA
FORS,r,qH

(ξ) ·min{2r(log qs−h)−log r!, 1}.

This completes the proof.
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G An Attack on SPHINCS-FORS

In this section, we show a chosen message attack on SPHINCS-FORS focusing
on breaking eTSR. It is similar to the attack on SPHINCS+ focusing on ITSR,
but there are some slight differences. This implies the difference in security levels
between SPHINCS-FORS and SPHINCS+ in the EUF-CMA model and that the
EUF-CMA security bound of SPHINCS-FORS is tight.

First, the adversary queries arbitrary qs messages to the signing oracle and
obtains the corresponding sigantures. Let Sj be the set of labels of preim-
ages contained in the signature of mj , that is, Sj = {(idxj , i, hi(zj ||mj))}i∈[k].
After that, the adversary uses Grover’s algorithm to find (z∗,m∗) such that
∃idx∗ ∈ {0, 1}h : {(idx∗, i, hi(z∗||m∗))}i∈[k] ⊂

⋃qs
j=1 Sj and that m∗ has not been

queried. Then, (m∗, (idx∗, z∗, σ∗HT, σ
∗
FORS)) is a forgery where σ∗HT and σ∗FORS can

be calculated by the signatures received from the signing oracle.
Next, we evaluate the complexity of hash queries needed in the above attack.

For idx ∈ {0, 1}h, let Yidx be the set of y = y1||...||yk such that {(idx, i, yi)}i∈[k] ⊂
S =

⋃qs
j=1 Sj . Let Eidx,γ be the event that idx is picked γ times. We have

Pr[Eidx,γ ] =
(
qs
γ

)
(1− 1

2h
)qs−γ 1

2hγ and

E[|Yidx|] =
(
1−

(
1− 1

t

)γ)k(
qs
γ

)(
1− 1

2h

)qs−γ tk

2hγ
.

Thus,

E
[∑

idx

|Yidx|
]
=

(
1−

(
1− 1

t

)γ)k(
qs
γ

)(
1− 1

2h

)qs−γ tk

2γ
.

Let Γ =
(
1 −

(
1 − 1

t

)γ)k(qs
γ

)(
1 − 1

2h

)qs−γ 1
2hγ . We have E

[∑
idx |Yidx|

]
=

tk2hΓ . In the average case, the probability of the above Grover’s search is
E
[∑

idx |Yidx|
]
/tk = 2hΓ. The number of quantum hash queries is approximately

O(2−
h
2 Γ−

1
2 ).

Note that in SPHINCS+, the quantum hash query complexity needed in
breaking ITSR is O(Γ−

1
2 ). Thus, with the same parameters, the quantum bit

security of SPHINCS-FORS is h/2 lower than SPHINCS+.
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