
Weakening Assumptions for Publicly-Verifiable Deletion

James Bartusek* Dakshita Khurana† Giulio Malavolta‡ Alexander Poremba§

Michael Walter¶

Abstract

We develop a simple compiler that generically adds publicly-verifiable deletion to a variety of
cryptosystems. Our compiler only makes use of one-way functions (or one-way state generators,
if we allow the public verification key to be quantum). Previously, similar compilers either
relied on the use of indistinguishability obfuscation (Bartusek et. al., ePrint:2023/265) or almost-
regular one-way functions (Bartusek, Khurana and Poremba, arXiv:2303.08676).

1 Introduction

Is it possible to provably delete information by leveraging the laws of quantum mechanics? An excit-
ing series of recent works [Unr15, BI20, HMNY21, HMNY22a, HMNY22b, Por23, BK22, BGG+23,
AKN+23, APV23, BKP23] built a variety of cryptosystems where an adversary holding a quantum
ciphertext is able to certifiably delete an underlying plaintext.

The notion of certified deletion was formally introduced by Broadbent and Islam [BI20] for
the one-time pad, where once the certificate is successfully verified, the plaintext remains hidden
even if the secret (one-time pad) key is later revealed. This work has inspired a large body of re-
search, aimed at understanding what kind of cryptographic primitives can be certifiably deleted.
Recently, [BK22] built a compiler that generically adds the certified deletion property described
above to any computationally secure commitment, encryption, attribute-based encryption, fully-
homomorphic encryption, witness encryption or timed-release encryption scheme, without making
any additional assumptions. Furthermore, it provides a strong information-theoretic deletion guaran-
tee: Once an adversary generates a valid (classical) certificate of deletion, they cannot recover the
plaintext that was previously computationally determined by their view even given unbounded time.
However, the compiled schemes satisfy privately verifiable deletion – namely, an encryptor gener-
ates a ciphertext together with secret parameters, these parameters are necessary for verification
and must be kept hidden from the adversary.

Publicly Verifiable Deletion. The above limitation was recently overcame in [BGG+23], which
obtained publicly-verifiable deletion (PVD) for all of the above primitives as well as new ones, such
as CCA encryption, obfuscation, maliciously-secure blind delegation and functional encryption1.

*UC Berkeley. Email: bartusek.james@gmail.com
†UIUC. Email: dakshita@illinois.edu
‡Max Planck Institute for Security and Privacy. Email: giulio.malavolta@hotmail.it
§Caltech. Email: aporemba@caltech.edu
¶Ruhr-Universität Bochum. michael.walter@rub.de
1A concurrent updated version of [HMNY22a] also obtained functional encryption with certified deletion, although

in the private-verification settings.

1

However, the compilation process proposed in [BGG+23] required the strong notion of indistin-
guishability obfuscation, regardless of what primitive one starts from. This was later improved
in [BKP23], which built commitments with PVD from injective (or almost-regular) one-way func-
tions, and𝑋 encryption with PVD for𝑋 ∈ {attribute-based,quantum fully-homomorphic,witness,
time-revocable}, assuming 𝑋 encryption and trapdoored variants of injective (or almost-regular)
one-way functions.

Weakening Assumptions for PVD. Given this state of affairs, it is natural to ask whether one can
further relax the assumptions underlying publicly verifiable deletion, essentially matching what is
known in the private verification setting. In this work, we show that the injectivity/regularity con-
straints on the one-way functions from prior work [BKP23] are not necessary to achieve publicly-
verifiable deletion; any one-way function suffices, or even a quantum weakening called a one-way
state generator (OWSG) [MY22] if we allow the verification key to be quantum. Kretschmer [Kre21]
showed that, relative to an oracle, pseudorandom state generators (PRSGs) [JLS18, MY22] exist even
if BQP = QMA (and thus NP ⊆ BQP). Because PRSGs are known to imply OWSGs [MY22], this
allows us to base our generic compiler for PVD on something potentially even weaker than the
existence of one-way functions.

In summary, we improve [BKP23] to obtain𝑋 with PVD for𝑋 ∈ {statistically-binding commitment,
public-key encryption, attribute-based encryption, fully-homomorphic encryption,
quantum fully-homomorphic encryption,witness encryption, timed-release encryption}, assuming
only 𝑋 and any one-way function. We also obtain 𝑋 with PVD for all the 𝑋 above, assuming only
𝑋 and any one-way state generator [MY22], but with a quantum verification key. Our primary con-
tribution is conceptual: Our construction is inspired by a recent work on quantum-key distribu-
tion [MW23], which we combine with a proof strategy that closely mimics [BKP23] (which in turn
builds on the proof techniques of [BK22]).

1.1 Technical Outline

We begin be recalling that prior work [BKP23] observed that, given an appropriate two-to-one one-
way function 𝑓 , a commitment (with certified deletion) to a bit 𝑏 can be

ComCD(𝑏) ∝
(︁
𝑦, |𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁
where (0, 𝑥0), (1, 𝑥1) are the two pre-images of (a randomly sampled) image 𝑦. Given an image 𝑦 and
a quantum state |𝜓⟩, they showed that any pre-image of 𝑦 constitutes a valid certificate of deletion
of the bit 𝑏. This certificate can be obtained by measuring the state |𝜓⟩ in the computational basis.

Furthermore, it was shown in [BKP23] that in fact two-to-one functions are not needed to in-
stantiate this template, it is possible to use more general types of one-way functions to obtain a
commitment of the form

ComCD(𝑏) ∝

⎛⎝𝑦, ∑︁
𝑥:𝑓(𝑥)=𝑦,𝑀(𝑥)=0

|𝑥⟩+ (−1)𝑏
∑︁

𝑥:𝑓(𝑥)=𝑦,𝑀(𝑥)=1

|𝑥⟩

⎞⎠ .

where 𝑀 denotes some binary predicate applied to the preimages of 𝑦. The work of [BKP23] de-
veloped techniques to show that this satisfies certified deletion, as well as binding as long as the

2

sets ∑︁
𝑥:𝑓(𝑥)=𝑦,𝑀(𝑥)=0

|𝑥⟩ and
∑︁

𝑥:𝑓(𝑥)=𝑦,𝑀(𝑥)=1

|𝑥⟩

are somewhat “balanced”, i.e. for a random image 𝑦 and the sets 𝑆0 = {𝑥 : 𝑓(𝑥) = 𝑦,𝑀(𝑥) = 0} and
𝑆1 = {𝑥 : 𝑓(𝑥) = 𝑦,𝑀(𝑥) = 1}, it holds that |𝑆0|

|𝑆1| is a fixed constant. Such “balanced” functions can
be obtained from injective (or almost-regular) one-way functions by a previous result of [HHK+09].

Our first observation is that it is not necessary to require 𝑥0, 𝑥1 to be preimages of the same
image 𝑦. Instead, we can modify the above template to use randomly sampled 𝑥0, 𝑥1, compute
𝑦0 = 𝐹 (𝑥0), 𝑦1 = 𝐹 (𝑥1), to obtain

ComCD(𝑏) ∝
(︁
(𝑦0, 𝑦1), |𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁
Unfortunately, as described, the phase 𝑏 may be statistically hidden when 𝐹 is a general one-way
function (in particular, 𝐹 does not need to be injective), which implies that the commitment above
is not binding. To restore binding, we can simply append a commitment to (𝑥0 ⊕ 𝑥1) to the state
above, resulting in

ComCD(𝑏) ∝
(︁
(𝑦0, 𝑦1),Com(𝑥0 ⊕ 𝑥1), |𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁
Assuming that Com is statistically binding, the bit 𝑏 is (statistically) determined by the commit-
ment state above, and in fact, can even be efficiently determined given 𝑥0 ⊕ 𝑥1. This is because a
measurement of |𝑥0⟩+(−1)𝑏 |𝑥1⟩ in the Hadamard basis yields a string𝑤 such that 𝑏 = (𝑥0⊕𝑥1) ·𝑤.

Certified deletion security for this template follows immediately from the technique in [BKP23]
(who themselves build on [BK22]), but we discuss it for completeness below. We consider an ex-
periment where the adversary is given an encryption of 𝑏 and outputs a deletion certificate. If the
certificate is valid, the output of the experiment is defined to be the adversary’s left-over state,
otherwise is it defined to be ⊥.

Our first step is to defer the dependence of the experiment on the bit 𝑏. In more detail, we will
instead imagine sampling the distribution by guessing a uniformly random 𝑐 ← {0, 1}, and ini-
tializing the adversary with ((𝑦0, 𝑦1),Com(𝑥0 ⊕ 𝑥1), |𝑥0⟩+ (−1)𝑐 |𝑥1⟩). The challenger later obtains
input 𝑏 and aborts the experiment (outputs ⊥) if 𝑐 ̸= 𝑏. Since 𝑐 was a uniformly random guess, the
trace distance between the 𝑏 = 0 and 𝑏 = 1 outputs of this modified experiment is at least half the
trace distance between the outputs of the original experiment. Moreover, we can further delay the
process of obtaining input 𝑏, and then abort or not until after the adversary outputs a certificate of
deletion. That is, we can consider a purification where a register C is initialized in a superposition
|0⟩+ |1⟩ of two choices for 𝑐, and is later measured to determine bit 𝑐.

Once the dependence of the experiment on 𝑏 has been deferred, as above, we can consider an-
other experiment where the challenger measures the superposition |𝑥0⟩+(−1)𝑐 |𝑥1⟩ before sending
it to the adversary 𝒜. Intuitively, performing this measurement removes information about 𝑏 from
𝒜’s view in a manner that is computationally undetectable by 𝒜. Observe that the ancilla register
C is unentangled with the rest of the experiment. In fact, the ancilla register is exactly |+⟩ when we
give the adversary |𝑥0⟩, and |−⟩ when we give the adversary |𝑥1⟩ (along with the remaining auxil-
iary information). By the semantic security of Com and the one-wayness of 𝐹 , finding 𝑥1 given 𝑥0
is hard (and vice versa), which means that the following event must always hold:

When the adversary outputs a valid certificate 𝛾, a projection of the pre-image register
onto |+⟩ succeeds if 𝛾 = 𝑥0, and a projection of the pre-image register onto |−⟩ succeeds if 𝛾 = 𝑥1.

3

Finally, we can use the fact (used, e.g., in [DS22]) that distinguishing between mixtures and
superpositions is as hard as swapping between 𝑥0 and 𝑥1 to show that the same event must also hold
(except with negligible probability) when the register containing the superposition |𝑥0⟩+(−1)𝑐 |𝑥1⟩
is not measured prior to sending it to 𝒜1. Because this event always holds, it is possible to show
that measuring C in the computational basis results in a uniformly random and independent 𝑐. By
definition of the experiment (abort when 𝑏 ̸= 𝑐, continue otherwise), this implies that the bit 𝑏 is set
in a way that is uniformly random and independent of the adversary’s view after deletion, giving
us the guarantee we desire.

We note that encryption with PVD can be obtained similarly by committing to each bit of the
plaintext as

EncCD(𝑏) ∝
(︁
(𝑦0, 𝑦1),Enc(𝑥0 ⊕ 𝑥1), |𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁
We also note that, following prior work [BK22, Por23, BKP23], a variety of encryption schemes (e.g.,
ABE, FHE, witness encryption) can be plugged into the above template to obtain the respective
encryption schemes with PVD.

2 Preliminaries

Let 𝜆 denote the security parameter. We write negl(·) to denote any negligible function, which is a
function 𝑓 such that for every constant 𝑐 ∈ N there exists𝑁 ∈ N such that for all𝑛 > 𝑁 , 𝑓(𝑛) < 𝑛−𝑐.

A finite-dimensional complex Hilbert space is denoted by ℋ, and we use subscripts to distin-
guish between different systems (or registers); for example, we let ℋA be the Hilbert space corre-
sponding to a system A. The tensor product of two Hilbert spaces ℋA and ℋB is another Hilbert
space denoted byℋAB = ℋA⊗ℋB. We let ℒ(ℋ) denote the set of linear operators overℋ. A quan-
tum system over the 2-dimensional Hilbert space ℋ = C2 is called a qubit. For 𝑛 ∈ N, we refer to
quantum registers over the Hilbert spaceℋ =

(︀
C2

)︀⊗𝑛 as 𝑛-qubit states. We use the word quantum
state to refer to both pure states (unit vectors |𝜓⟩ ∈ ℋ) and density matrices 𝜌 ∈ 𝒟(ℋ), where we
use the notation 𝒟(ℋ) to refer to the space of positive semidefinite linear operators of unit trace
acting onℋ. The trace distance of two density matrices 𝜌, 𝜎 ∈ 𝒟(ℋ) is given by

TD(𝜌, 𝜎) =
1

2
Tr

[︂√︁
(𝜌− 𝜎)†(𝜌− 𝜎)

]︂
.

A quantum channel Φ : ℒ(ℋA) → ℒ(ℋB) is a linear map between linear operators over the
Hilbert spaces ℋA and ℋB. We say that a channel Φ is completely positive if, for a reference system
R of arbitrary size, the induced map 𝐼R ⊗ Φ is positive, and we call it trace-preserving if Tr[Φ(𝑋)] =
Tr[𝑋], for all 𝑋 ∈ ℒ(ℋ). A quantum channel that is both completely positive and trace-preserving
is called a quantum CPTP channel.

A unitary 𝑈 : ℒ(ℋA) → ℒ(ℋA) is a special case of a quantum chanel that satisfies 𝑈 †𝑈 =
𝑈𝑈 † = 𝐼A. A projector Π is a Hermitian operator such that Π2 = Π, and a projective measurement is
a collection of projectors {Π𝑖}𝑖 such that

∑︀
𝑖Π𝑖 = 𝐼 .

A quantum polynomial-time (QPT) machine is a polynomial-time family of quantum circuits
given by {𝒜𝜆}𝜆∈N, where each circuit𝒜𝜆 is described by a sequence of unitary gates and measure-
ments; moreover, for each 𝜆 ∈ N, there exists a deterministic polynomial-time Turing machine
that, on input 1𝜆, outputs a circuit description of 𝒜𝜆.

4

Imported Theorem 2.1 (Distinguishing implies Mapping [DS22]). Let D be a projector, Π0,Π1 be
orthogonal projectors, and |𝜓⟩ ∈ Im (Π0 +Π1). Then,

‖Π1DΠ0 |𝜓⟩ ‖2 + ‖Π0DΠ1 |𝜓⟩ ‖2 ≥
1

2

(︀
‖D |𝜓⟩ ‖2 −

(︀
‖DΠ0 |𝜓⟩ ‖2 + ‖DΠ1 |𝜓⟩ ‖2

)︀)︀2
.

3 Main Theorem

Theorem 3.1. Let 𝐹 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) be a one-way function secure against QPT adversaries.
Let {𝒵𝜆(·)}𝜆∈N be a static or interactive2 distribution with an 𝑛(𝜆)-bit argument, such that for all 𝑧 ∈
{0, 1}𝑛(𝜆) and QPT adversary {𝒜𝜆}𝜆 it holds that⃒⃒⃒

Pr[𝒜𝜆(𝒵𝜆(𝑧)) = 1]− Pr[𝒜𝜆(𝒵𝜆(0
𝑛(𝜆))) = 1]

⃒⃒⃒
= negl(𝜆)

if 𝒵𝜆(·) is a static distribution, or⃒⃒⃒
Pr[𝒜𝒵𝜆(𝑧))

𝜆 = 1]− Pr[𝒜𝒵𝜆(0
𝑛(𝜆))

𝜆 = 1]
⃒⃒⃒
= negl(𝜆)

if 𝒵𝜆(·) is an interactive distribution.
Now, for any QPT adversary {𝒜𝜆}𝜆∈N, consider the following distribution

{︁ ̃︀𝒵𝒜𝜆
𝜆 (𝑏)

}︁
𝜆∈N,𝑏∈{0,1}

over

quantum states, obtained by running𝒜𝜆 as follows.

• Sample 𝑥0, 𝑥1 ← {0, 1}𝑛(𝜆), define 𝑦0 = 𝐹 (𝑥0), 𝑦1 = 𝐹 (𝑥1) and initialize𝒜𝜆 with3

𝒵𝜆(𝑥0 ⊕ 𝑥1), 𝑦0, 𝑦1,
1√
2

(︁
|𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁
.

• 𝒜𝜆’s output is parsed as a string 𝑥′ ∈ {0, 1}𝑛(𝜆) and a residual state on register A′.

• If 𝐹 (𝑥′) ∈ {𝑦0, 𝑦1}, then output A′, and otherwise output ⊥.

Then,

TD
(︁ ̃︀𝒵𝒜𝜆

𝜆 (0), ̃︀𝒵𝒜𝜆
𝜆 (1)

)︁
= negl(𝜆).

Proof. We define a sequence of hybrids.

• Hyb0(𝑏): This is the distribution
{︁ ̃︀𝒵𝒜𝜆

𝜆 (𝑏)
}︁
𝜆∈N,𝑏∈{0,1}

described above.

• Hyb1(𝑏): This distribution is sampled as follows.

– Sample 𝑥0, 𝑥1, 𝑦0 = 𝐹 (𝑥0), 𝑦1 = 𝐹 (𝑥1), prepare the state

1

2

∑︁
𝑐∈{0,1}

|𝑐⟩C ⊗ (|𝑥0⟩+ (−1)𝑐 |𝑥1⟩)A ,

and initialize 𝒜𝜆 with
𝒵𝜆(𝑥0 ⊕ 𝑥1), 𝑦0, 𝑦1,A.

2By interactive, we mean that 𝒵𝜆(·) is the description of an interactive machine.
3In the case that 𝒵𝜆(·) is interactive, 𝒜𝜆 is given access to the interactive machine 𝒵𝜆(𝑥0 ⊕ 𝑥1).

5

– 𝒜𝜆’s output is parsed as a string 𝑥′ ∈ {0, 1}𝑛(𝜆) and a residual state on register A′.
– If 𝐹 (𝑥′) /∈ {𝑦0, 𝑦1}, then output ⊥. Next, measure register C in the computational basis

and output ⊥ if the result is 1− 𝑏. Otherwise, output A′.

• Hyb2(𝑏): This distribution is sampled as follows.

– Sample 𝑥0, 𝑥1, 𝑦0 = 𝐹 (𝑥0), 𝑦1 = 𝐹 (𝑥1), prepare the state
1

2

∑︁
𝑐∈{0,1}

|𝑐⟩C ⊗ (|𝑥0⟩+ (−1)𝑐 |𝑥1⟩)A ,

and initialize 𝒜𝜆 with
𝒵𝜆(𝑥0 ⊕ 𝑥1), 𝑦0, 𝑦1,A.

– 𝒜𝜆’s output is parsed as a string 𝑥′ ∈ {0, 1}𝑛(𝜆) and a residual state on register A′.
– If 𝐹 (𝑥′) /∈ {𝑦0, 𝑦1}, then output⊥. Next, let 𝑐′ ∈ {0, 1} be such that 𝐹 (𝑥′) = 𝑦𝑐′ , measure

register C in the Hadamard basis, and output ⊥ if the result is 1 − 𝑐′. Next, measure
register C in the computational basis and output ⊥ if the result is 1 − 𝑏. Otherwise,
output A′.

Next, we define a hybrid Hyb′2 that will be convenient for the sake of the proof.

• Hyb′2(𝑏): This distribution is sampled as follows.

– Sample 𝑥0, 𝑥1, 𝑦0 = 𝐹 (𝑥0), 𝑦1 = 𝐹 (𝑥1), prepare the state
1

2

∑︁
𝑐∈{0,1}

|𝑐⟩C ⊗ (|𝑥0⟩+ (−1)𝑐 |𝑥1⟩)A ,

measure register A in the computational basis, and initialize 𝒜𝜆 with

𝒵𝜆(𝑥0 ⊕ 𝑥1), 𝑦0, 𝑦1,A.

– 𝒜𝜆’s output is parsed as a string 𝑥′ ∈ {0, 1}𝑛(𝜆) and a residual state on register A′.
– If 𝐹 (𝑥′) /∈ {𝑦0, 𝑦1}, then output⊥. Next, let 𝑐′ ∈ {0, 1} be such that 𝐹 (𝑥′) = 𝑦𝑐′ , measure

register C in the Hadamard basis, and output ⊥ if the result is 1 − 𝑐′. Next, measure
register C in the computational basis and output ⊥ if the result is 1 − 𝑏. Otherwise,
output A′.

We define Advt(Hyb𝑖) := TD (Hyb𝑖(0),Hyb𝑖(1)) . Let 𝐸′
2(𝑏) be the event that Hyb′2(𝑏) outputs ⊥

after measuring register C in the Hadamard basis and obtaining outcome 1−𝑐′, and let𝐸2(𝑏) be the
corresponding event in Hyb2(𝑏). To complete the proof, we show the following sequence of claims.

Claim 3.2. For any 𝑏 ∈ {0, 1}, Pr[𝐸′
2(𝑏)] = negl(𝜆).

Proof. First, note that the state of the system after the measurement of register A is the mixture

1

2
|+⟩ ⟨+|C ⊗ |𝑥0⟩ ⟨𝑥0|A +

1

2
|−⟩ ⟨−|C ⊗ |𝑥1⟩ ⟨𝑥1|A .

Thus, the event 𝐸′
2(𝑏) only occurs if the adversary outputs an 𝑥′ such that 𝐹 (𝑥′) = 𝑦1−𝑐′ , given

input𝒵𝜆(𝑥0⊕𝑥1), 𝑦0, 𝑦1, 𝑥𝑐′ . But this can only occur with negligible probability due to the semantic
security of 𝒵𝜆(·) and the one-wayness of 𝐹 .

6

Claim 3.3. For any 𝑏 ∈ {0, 1}, Pr[𝐸2(𝑏)] = negl(𝜆).

Proof. By Claim 3.2, it suffices to show that the difference between these events in Hyb2 and Hyb′2
is negligible. The only difference between these hybrids is the measurement of register A before
the adversary is initialized. At a high level, Imported Theorem 2.1 and the semantic security of 𝒵𝜆

imply that any adversary that can distinguish whether or not register A is measured can be used to
invert the one-way function with noticeable probability. Details follow.

First note that by the semantic security of 𝒵𝜆, no QPT adversary can distinguish 𝒵𝜆(𝑥0 ⊕
𝑥1), 𝑦0, 𝑦1,A from 𝒵𝜆(0

𝑛(𝜆)), 𝑦0, 𝑦1,A. Furthermore, note that by Imported Theorem 2.1 and the
one-wayness of 𝐹 , it is impossible for a QPT adversary given (𝑦0, 𝑦1) and register A initialized with
either the superposition state

1√
2
(|𝑥0⟩+ |𝑥1⟩)

or the mixture
1

2
|𝑥0⟩ ⟨𝑥0|+

1

2
|𝑥1⟩ ⟨𝑥1| ,

to predict with better than 1
2 +negl(𝜆) advantage whether A contains a mixture or a superposition.

That is, we can define

Π0 :=
∑︁

𝑥:𝐹 (𝑥)=𝑦0

|𝑥⟩ ⟨𝑥| , Π1 :=
∑︁

𝑥:𝐹 (𝑥)=𝑦1

|𝑥⟩ ⟨𝑥|

and see that any adversary with noticeable advantage in distinguishing the measurement (RHS of
Imported Theorem 2.1) implies an adversary that is just given (𝑦0, 𝑦1) and 𝑥𝑏 for some 𝑏 ∈ {0, 1},
and outputs an 𝑥1−𝑏 such that 𝐹 (𝑥1−𝑏) = 𝑦1−𝑏 (LHS of Imported Theorem 2.1).

Next, consider a reduction ℛ that obtains (𝑦0, 𝑦1) and register A from the challenger, where A
contains either the superposition or has been measured to obtain the mixture as above. ℛ first
initializes register C to the |+⟩ state. Then, it defines the function 𝐺𝑦1 : {0, 1}1+𝑛(𝜆) → {0, 1} to
map (𝑏, 𝑥) to 1 iff 𝑏 = 1 and 𝐹 (𝑥) = 𝑦1, and applies 𝐺𝑦1 as a phase oracle on registers (C,A).

Depending on whether A initially contained the superposition or the mixture, ℛ ends up with
either the superposition state

1

2

∑︁
𝑐∈{0,1}

|𝑐⟩C ⊗ (|𝑥0⟩+ (−1)𝑐 |𝑥1⟩)A

or the mixture
1

2
|+⟩ ⟨+|C ⊗ |𝑥0⟩ ⟨𝑥0|A +

1

2
|−⟩ ⟨−|C ⊗ |𝑥1⟩ ⟨𝑥1|A .

It then initializes 𝒜𝜆 with 𝒵𝜆(0), 𝑦0, 𝑦1,A, and then completes the rest of the game according to
Hyb2(𝑏), checking whether or not the event 𝐸2(𝑏) occurred. Any noticeable difference between
𝐸2(𝑏) and 𝐸′

2(𝑏) would imply that ℛ distiguishes whether or not register A was measured with
noticeable probability, a contradiction.

Claim 3.4. Advt(Hyb1) = negl(𝜆).

Proof. This follows directly from Claim 3.3 and the fact that Advt(Hyb2) = 0.

Claim 3.5. Advt(Hyb0) = negl(𝜆).

7

Proof. This follows because Hyb1(𝑏) is identically distributed to the distribution that outputs ⊥
with probability 1/2 and otherwise outputs Hyb0(𝑏), so the advantage of Hyb0 is at most double the
advantage of Hyb1.

4 Cryptography with Publicly-Verifiable Deletion

Let us now introduce some formal definitions. A public-key encryption (PKE) scheme with publicly-
verifiable deletion (PVD) has the following syntax.

• PVGen(1𝜆) → (pk, sk): the key generation algorithm takes as input the security parameter 𝜆
and outputs a public key pk and secret key sk.

• PVEnc(pk, 𝑏) → (vk, |ct⟩): the encryption algorithm takes as input the public key pk and a
plaintext 𝑏, and outputs a (public) verification key vk and a ciphertext |ct⟩.

• PVDec(sk, |ct⟩)→ 𝑏: the decryption algorithm takes as input the secret key sk and a ciphertext
|ct⟩ and outputs a plaintext 𝑏.

• PVDel(|ct⟩)→ 𝜋: the deletion algorithm takes as input a ciphertext |ct⟩ and outputs a deletion
certificate 𝜋.

• PVVrfy(vk, 𝜋)→ {⊤,⊥}: the verify algorithm takes as input a (public) verification key vk and
a proof 𝜋, and outputs ⊤ or ⊥.

Definition 4.1 (Correctness of deletion). A PKE scheme with PVD satisfies correctness of deletion if
for any 𝑏, it holds with 1−negl(𝜆) probability over (pk, sk)← PVGen(1𝜆), (vk, |ct⟩)← PVEnc(pk, 𝑏), 𝜋 ←
PVDel(|ct⟩), 𝜇← PVVrfy(vk, 𝜋) that 𝜇 = ⊤.

Definition 4.2 (Certified deletion security). A PKE scheme with PVD satisfies certified deletion se-
curity if it satisfies standard semantic security, and moreover, for any QPT adversary {𝒜𝜆}𝜆∈N, it holds
that

TD (EvPKE𝒜,𝜆(0),EvPKE𝒜,𝜆(1)) = negl(𝜆),

where the experiment EvPKE𝒜,𝜆(𝑏) is defined as follows.

• Sample (pk, sk)← PVGen(1𝜆) and (vk, |ct⟩)← PVEnc(pk, 𝑏).

• Run𝒜𝜆(pk, vk, |ct⟩), and parse their output as a deletion certificate 𝜋 and a state on register A′.

• If PVVrfy(vk, 𝜋) = ⊤, output A′, and otherwise output ⊥.

Construction via OWF. We now present our generic compiler that augments any (post-quantum
secure) PKE scheme with the PVD property, assuming the existence of one-way functions.

Construction 4.3 (PKE with PVD from OWF). Let 𝜆 ∈ N and let 𝐹 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) be a one-
way function, and let (Gen,Enc,Dec) be a standard (post-quantum) public-key encryption scheme.
Consider the PKE scheme with PVD consisting of the following efficient algorithms:

8

• PVGen(1𝜆): Same as Gen(1𝜆).

• PVEnc(pk, 𝑏): Sample 𝑥0, 𝑥1 ← {0, 1}𝑛(𝜆), define 𝑦0 = 𝐹 (𝑥0), 𝑦1 = 𝐹 (𝑥1), and output

vk := (𝑦0, 𝑦1), |ct⟩ :=
(︂
Enc(pk, 𝑥0 ⊕ 𝑥1),

1√
2

(︁
|𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁)︂
.

• PVDec(sk, |ct⟩): Parse |ct⟩ as a classical ciphertext ct′ and a quantum state |𝜓⟩. Compute
𝑧 ← Dec(sk, ct′), measure |𝜓⟩ in the Hadamard basis to obtain 𝑤 ∈ {0, 1}𝑛(𝜆), and output the
bit 𝑏 = 𝑧 · 𝑤.

• PVDel(|ct⟩): Parse |ct⟩ as a classical ciphertext ct′ and a quantum state |𝜓⟩. Measure |𝜓⟩ in
the computational basis to obtain 𝑥′ ∈ {0, 1}𝑛(𝜆), and output 𝜋 := 𝑥′.

• PVVrfy(vk, 𝜋): Parse vk as (𝑦0, 𝑦1) and output ⊤ if and only if 𝐹 (𝜋) ∈ {𝑦0, 𝑦1}.

Theorem 4.4. If one-way functions exist, then Construction 4.3 instantiated with any (post-quantum)
public-key encryption scheme satisfies correctness of deletion (according to Definition 4.1) as well as (ever-
lasting) certified deletion security according to Definition 4.2.

Proof. Let (Gen,Enc,Dec) be a standard (post-quantum) public-key encryption scheme. Then, cor-
rectness of deletion follows from the fact that measuring 1√

2
(|𝑥0⟩+|𝑥1⟩) in the Hadamard basis pro-

duces a vector orthogonal to 𝑥0⊕𝑥1, whereas measuring the state 1√
2
(|𝑥0⟩− |𝑥1⟩) in the Hadamard

basis produces a vector that is not orthogonal to 𝑥0 ⊕ 𝑥1. Certified deletion security follows from
Theorem 3.1, by setting 𝒵𝜆(𝑥0 ⊕ 𝑥1) = Enc(pk, 𝑥0 ⊕ 𝑥1) and invoking the semantic security of the
public-key encryption scheme (Gen,Enc,Dec).

Remark 4.5. Following [BK22], we can plug various primitives into the above compiler to obtain 𝑋 with
PVD for𝑋 ∈ {commitment, attribute-based encryption, fully-homomormphic encryption,witness encryption,
timed-release encryption}. To obtain the result for attribute-based encryption, we need to rely on Theo-
rem 3.1 instantiated with an interactive distribution 𝒵𝜆, following [BKP23].

5 Publicly-Verifiable Deletion from One-Way State Generators

In this section, we show how to base the assumptions behind our generic compiler for PVD to
something potentially even weaker than one-way functions, namely the existence of so-called one-
way state generators (if we allow for quantum verification keys). Morimae and Yamakawa [MY22]
introduced one-way state generator (OWSG) as a quantum analogue of a one-way function.

Definition 5.1 (One-Way State Generator). Let 𝑛 ∈ N be the security parameter. A one-way state
generator (OWSG) is a tuple (KeyGen,StateGen,Ver) consisting of QPT algorithms:

KeyGen(1𝑛)→ 𝑘: given as input 1𝑛, it outputs a uniformly random key 𝑘 ← {0, 1}𝑛.

StateGen(𝑘)→ 𝜑𝑘: given as input a key 𝑘 ∈ {0, 1}𝑛, it outputs an 𝑚-qubit quantum state 𝜑𝑘.

Ver(𝑘′, 𝜑𝑘)→ ⊤/⊥: given as input a supposed key 𝑘′ and state 𝜑𝑘, it outputs ⊤ or ⊥.

We require that the following property holds:

9

Correctness: For any 𝑛 ∈ N, the scheme (KeyGen, StateGen,Ver) satisfies

Pr[⊤ ← Ver(𝑘, 𝜑𝑘) : 𝑘 ← KeyGen(1𝑛), 𝜑𝑘 ← StateGen(𝑘)] ≥ 1− negl(𝑛).

Security: For any computationally bounded quantum algorithm 𝒜 and any 𝑡 = poly(𝜆):

Pr[⊤ ← Ver(𝑘′, 𝜑𝑘) : 𝑘 ← KeyGen(1𝑛), 𝜑𝑘 ← StateGen(𝑘), 𝑘′ ← 𝒜(𝜑⊗𝑡
𝑘)] ≤ negl(𝑛).

Morimae and Yamakawa [MY22] showed that if pseudorandom quantum state generators with
𝑚 ≥ 𝑐 · 𝑛 for some constant 𝑐 > 1 exist, then so do one-way state generators. Informally, a pseu-
dorandom state generator [JLS18, MY22] is a QPT algorithm that, on input 𝑘 ∈ {0, 1}𝑛, outputs an
𝑚-qubit state |𝜑𝑘⟩ such that |𝜑𝑘⟩⊗𝑡 over uniformly random 𝑘 is computationally indistinguishable
from a Haar random states of the same number of copies, for any polynomial 𝑡(𝑛).

Certified-everlasting theorem for OWSG. To prove that our generic compiler yields PVD even
when instantiated with a OWSG, it suffices to extend Theorem 3.1 as follows.

Theorem 5.2. Let (KeyGen, StateGen,Ver) be a OSWG. Let {𝒵𝜆(·, ·, ·, ·)}𝜆∈N be a quantum operation
with four arguments: a 𝑛(𝜆)-bit string 𝑧, two 𝑚(𝜆)-qubit quantum states (𝜓0, 𝜓1), and a 𝑛(𝜆)-qubit quan-
tum register A. Let A be a class of adversaries4 such that for all {𝒜𝜆}𝜆∈N ∈ A , and for any strings
𝑧 ∈ {0, 1}𝑛(𝜆), states (𝜓0, 𝜓1), and any state |𝜓⟩A,C on 𝑛(𝜆)-qubit register A and arbitrary size register C,⃒⃒⃒⃒

Pr[𝒜𝜆 (𝒵𝜆 (𝑧, 𝜓0, 𝜓1,A) ,C) = 1]− Pr[𝒜𝜆

(︁
𝒵𝜆

(︁
0𝑛(𝜆), 𝜓0, 𝜓1,A

)︁
,C

)︁
= 1]

⃒⃒⃒⃒
= negl(𝜆).

That is,𝒵𝜆 is semantically-secure against𝒜𝜆 with respect to its first input. For any {𝒜𝜆}𝜆∈N ∈ A , consider
the following distribution

{︁ ̃︀𝒵𝒜𝜆
𝜆 (𝑏)

}︁
𝜆∈N,𝑏∈{0,1}

over quantum states, obtained by running𝒜𝜆 as follows.

• Sample𝑥0, 𝑥1 ← {0, 1}𝑛(𝜆), generate quantum states𝜓𝑥0 and𝜓𝑥1 by running the procedure StateGen
on input 𝑥0 and 𝑥1, respectfully, and initialize𝒜𝜆 with

𝒵𝜆

(︂
𝑥0 ⊕ 𝑥1, 𝜓𝑥0 , 𝜓𝑥1 ,

1√
2

(︁
|𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁)︂
.

• 𝒜𝜆’s output is parsed as a string 𝑥′ ∈ {0, 1}𝑛(𝜆) and a residual state on register A′.

• If Ver(𝑥′, 𝜓𝑥𝑖) outputs ⊤ for some 𝑖 ∈ {0, 1}, then output A′, and otherwise output ⊥.

Then,

TD
(︁ ̃︀𝒵𝒜𝜆

𝜆 (0), ̃︀𝒵𝒜𝜆
𝜆 (1)

)︁
= negl(𝜆).

Proof. The proof is analogus to Theorem 3.1, except that we invoke the security of the OWSG,
rather than the one-wayness of the underlying one-way function.

4Technically, we require that for any {𝒜𝜆}𝜆∈N ∈ A , every adversary ℬ with time and space complexity that is linear
in 𝜆 more than that of 𝒜𝜆, is also in A .

10

Construction from OWSG. We now consider the following PKE scheme with PVD. The con-
struction is virtually identical to Construction 4.3, except that we replace one-way functions with
one-way state generators. This means that the verification key is now quantum.
Construction 5.3 (PKE with PVD from OWSG). Let 𝜆 ∈ N and let (KeyGen,StateGen,Ver) be a
OSWG, and let (Gen,Enc,Dec) be a standard (post-quantum) public-key encryption scheme. Con-
sider the following PKE scheme with PVD:

• PVGen(1𝜆): Same as Gen(1𝜆).

• PVEnc(pk, 𝑏): Sample 𝑥0, 𝑥1 ← {0, 1}𝑛(𝜆) and generate quantum states𝜓𝑥0 and𝜓𝑥1 by running
the procedure StateGen on input 𝑥0 and 𝑥1, respectfully. Then, output

vk := (𝜓𝑥0 , 𝜓𝑥1), |ct⟩ :=
(︂
Enc(pk, 𝑥0 ⊕ 𝑥1),

1√
2

(︁
|𝑥0⟩+ (−1)𝑏 |𝑥1⟩

)︁)︂
.

• PVDec(sk, |ct⟩): Parse |ct⟩ as a classical ciphertext ct′ and a quantum state |𝜓⟩. Compute
𝑧 ← Dec(sk, ct), measure |𝜓⟩ in the Hadamard basis to obtain 𝑤 ∈ {0, 1}𝑛(𝜆), and output the
bit 𝑏 = 𝑧 · 𝑤.

• PVDel(|ct⟩): Parse |ct⟩ as a classical ciphertext ct′ and a quantum state |𝜓⟩. Measure |𝜓⟩ in
the computational basis to obtain 𝑥′ ∈ {0, 1}𝑛(𝜆), and output 𝜋 := 𝑥′.

• PVVrfy(vk, 𝜋): Parse vk as (𝜓𝑥0 , 𝜓𝑥1) and output ⊤ if and only if Ver(𝜋, 𝜓𝑥𝑖) outputs ⊤, for
some 𝑖 ∈ {0, 1}. Otherwise, output ⊥.

Remark 5.4. Unlike in Construction 4.3, the verification key vk in Construction 5.3 is quantum. Hence, the
procedurePVVrfy(vk, 𝜋) in Construction 5.3 may potentially consume the public verification key (𝜓𝑥0 , 𝜓𝑥1)
when verifying a dishonest deletion certificate 𝜋. However, by the security of the OWSG scheme, we can
simply hand out (𝜓⊗𝑡

𝑥0
, 𝜓⊗𝑡

𝑥1
) for any number of 𝑡 = poly(𝜆) many copies without compromising security.

This would allow multiple users to verify whether a (potentially dishonest) deletion certificate is valid. We
focus on the case 𝑡 = 1 for simplicity.
Theorem 5.5. If one-way state generators exist, then Construction 5.3 instantiated with any (post-quantum)
public-key encryption scheme satisfies correctness of deletion (according to Definition 4.1) as well as (ever-
lasting) certified deletion security according to Definition 4.2.
Proof. Let (Gen,Enc,Dec) be a standard (post-quantum) public-key encryption scheme. Then, cor-
rectness of deletion follows from the fact that measuring 1√

2
(|𝑥0⟩+|𝑥1⟩) in the Hadamard basis pro-

duces a vector orthogonal to 𝑥0⊕𝑥1, whereas measuring the state 1√
2
(|𝑥0⟩− |𝑥1⟩) in the Hadamard

basis produces a vector that is not orthogonal to 𝑥0 ⊕ 𝑥1. Certified deletion security follows from
Theorem 3.1, by setting 𝒵𝜆(𝑥0 ⊕ 𝑥1) = Enc(pk, 𝑥0 ⊕ 𝑥1) and invoking the semantic security of the
public-key encryption scheme (Gen,Enc,Dec).

Following [BK22] and using the fact that pseudorandom state generators imply one-way state
generators [MY22], we immediately obtain:
Theorem 5.6. If pseudorandom quantum state generators with 𝑚 ≥ 𝑐 · 𝑛 for some constant 𝑐 > 1
exist, then there exists a generic compiler that that adds PVD to any (post-quantum) public-key encryp-
tion scheme. Moreover, we can plug various primitives into the the compiler to obtain 𝑋 with PVD for
𝑋 ∈ {commitment, attribute-based encryption, fully-homomormphic encryption,witness encryption,
timed-release encryption}.

11

References

[AKN+23] Shweta Agarwal, Fuyuki Kitagawa, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Public key encryption with secure key leasing. In Eurocrypt 2023 (to appear),
2023.

[APV23] Prabhanjan Ananth, Alexander Poremba, and Vinod Vaikuntanathan. Revocable
cryptography from learning with errors. Cryptology ePrint Archive, Paper 2023/325,
2023. https://eprint.iacr.org/2023/325.

[BGG+23] James Bartusek, Sanjam Garg, Vipul Goyal, Dakshita Khurana, Giulio Malavolta,
Justin Raizes, and Bhaskar Roberts. Obfuscation and outsourced computation with
certified deletion. Cryptology ePrint Archive, Paper 2023/265, 2023.

[BI20] Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. Lec-
ture Notes in Computer Science, page 92–122, 2020.

[BK22] James Bartusek and Dakshita Khurana. Cryptography with certified deletion. Cryp-
tology ePrint Archive, Paper 2022/1178, 2022. https://eprint.iacr.org/2022/1178.

[BKP23] James Bartusek, Dakshita Khurana, and Alexander Poremba. Publicly-verifiable dele-
tion via target-collapsing functions, 2023.

[DS22] Marcel Dall’Agnol and Nicholas Spooner. On the necessity of collapsing. Cryptology
ePrint Archive, Paper 2022/786, 2022. https://eprint.iacr.org/2022/786.

[HHK+09] Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, Ruggero Morselli, and
Ronen Shaltiel. Reducing complexity assumptions for statistically-hiding commit-
ment. Journal of Cryptology, 22(3):283–310, 2009.

[HMNY21] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Quantum
encryption with certified deletion, revisited: Public key, attribute-based, and classical
communication. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryp-
tology - ASIACRYPT 2021 - 27th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part
I, volume 13090 of Lecture Notes in Computer Science, pages 606–636. Springer, 2021.

[HMNY22a] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified
everlasting functional encryption. Cryptology ePrint Archive, Paper 2022/969, 2022.
https://eprint.iacr.org/2022/969.

[HMNY22b] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified
everlasting zero-knowledge proof for QMA. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryp-
tology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceed-
ings, Part I, volume 13507 of Lecture Notes in Computer Science, pages 239–268. Springer,
2022.

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. Cryptology
ePrint Archive, Paper 2018/544, 2018. https://eprint.iacr.org/2018/544.

12

https://eprint.iacr.org/2023/325
https://eprint.iacr.org/2022/1178
https://eprint.iacr.org/2022/786
https://eprint.iacr.org/2022/969
https://eprint.iacr.org/2018/544

[Kre21] William Kretschmer. Quantum pseudorandomness and classical complexity. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[MW23] Giulio Malavolta and Michael Walter. Non-interactive quantum key distribution.
Cryptology ePrint Archive, Paper 2023/500, 2023. https://eprint.iacr.org/2023/
500.

[MY22] Tomoyuki Morimae and Takashi Yamakawa. Quantum commitments and signatures
without one-way functions. LNCS, pages 269–295. Springer, Heidelberg, 2022.

[Por23] Alexander Poremba. Quantum proofs of deletion for learning with errors. In
Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference,
ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of
LIPIcs, pages 90:1–90:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[Unr15] Dominique Unruh. Revocable quantum timed-release encryption. J. ACM, 62(6), dec
2015.

13

https://eprint.iacr.org/2023/500
https://eprint.iacr.org/2023/500

	Introduction
	Technical Outline

	Preliminaries
	Main Theorem
	Cryptography with Publicly-Verifiable Deletion
	Publicly-Verifiable Deletion from One-Way State Generators
	References

