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Abstract. We present a framework for building practical anonymous credential schemes based on the
hardness of lattice problems. The running time of the prover and verifier is independent of the number
of users and linear in the number of attributes. The scheme is also compact in practice, with the proofs
being as small as a few dozen kilobytes for arbitrarily large (say up to 2128) numbers of users with
each user having several attributes. The security of our scheme is based on a new family of lattice
assumptions which roughly states that given short pre-images of random elements in some set S, it is
hard to create a pre-image for a fresh element in such a set. We show that if the set admits efficient
zero-knowledge proofs of knowledge of a commitment to a set element and its pre-image, then this yields
practically-efficient privacy-preserving primitives such as blind signatures, anonymous credentials, and
group signatures. We propose a candidate instantiation of a function from this family which allows for
such proofs and thus yields practical lattice-based primitives.

1 Introduction

With the recent announcement that the American National Institute of Standards and Technology (NIST)
will be standardizing three lattice-based encryption and digital signature schemes, together with the NSA
releasing their new CNSA 2.0 crypto suite which mandates that lattice-based constructions be the main
cryptographic tools for communication security beginning from 2030, it is looking increasingly likely that
lattices will form the future foundation of public key cryptography. While we already have several very efficient
almost-standardized schemes for encryption and digital signatures [17, 33, 69], the state of more advanced
quantum-safe cryptography is more murky with a lot of constructions being noticeably less efficient than
their classical counterparts. The last several years, however, have seen tremendous progress in constructing
efficient zero-knowledge proofs for lattice relations [15, 74, 35, 7, 34, 57] and this led to rather compact and
practical constructions of schemes like ring signatures, group signatures and confidential payment protocols
[36, 59, 61, 57]. A set of important primitives that are currently lacking in truly efficient instantiations fall
under the global umbrella of anonymous credentials.

At a very high level, in an anonymous credential scheme [26, 27, 29, 51] an issuer signs a set of credentials
for a user. The user can then present a subset of this credential set and give a zero-knowledge proof that they
were indeed signed by the issuer. For the scheme to be secure, it should be impossible for a user to present
a credential that the issuer never signed. For anonymity, when a user presents his credential, all his other
credentials should remain hidden – even from the issuer. Furthermore, multiple credential presentations by the
same user should remain unlinkable. Manifestations of such schemes have been adopted by the self-sovereign
identity community, which has developed open-source projects [44, 43, 72, 62] and standard drafts [50, 71]
catering for a market whose size is estimated in the billions of US dollars [66]. While there are some very
efficient instantiations of these schemes based on non-quantum-safe assumptions, to the best of our knowledge
there are no truly practical quantum-safe instantiations that are available.1

1 It is of course possible to construct these schemes using succinct zero-knowledge proofs such as STARKs, but the
cost of these constructions appears to be in the hundreds of kilobytes range.



Some recent lattice-based constructions of related primitives that previously didn’t have any efficient
quantum-safe instantiation based the security of the scheme on novel, but very plausible, lattice assumptions.
For example, the recent blind signature in [3] was based on the new “one-more-ISIS” assumption and
publicly-verifiable SNARKs were recently instantiated using a new k-R-ISIS assumption in [5]. The blind
signature in [3] is one of the most concretely-efficient quantum-safe constructions to date, while the work in
[5] is the first construction of its kind that gets within the vicinity of practicality. It is not too surprising that
the range of assumptions needed to be expanded in order to construct more efficient lattice-based primitives.
Analogously to the non-post-quantum setting, simple primitives like digital signatures can be efficiently based
on the hardness of the basic discrete logarithm problem, while the most efficient constructions of other more
advanced schemes crucially rely on much more esoteric assumptions. And so, analogously to the classical
setting, it makes sense to explore other assumptions for constructing advanced lattice-based primitives as
well.

In this paper we propose a new family of lattice problems some of whose members admit a practically-
efficient zero-knowledge proof for proving knowledge of a solution. We then show how to apply this zero-
knowledge proof to create fairly simple constructions of various efficient privacy-preserving lattice-based
primitives, such as blind signatures and anonymous credentials, based on the presumed hardness of the
new problem. The specific assumption we use in our paper is a particular instantiation from this family of
assumptions that yields efficient zero-knowledge proofs. The family of problems is very natural and can be
seen as a generalization of the underlying problem upon which the classic GPV signature scheme [41] is based.

Lattice-Based hash-and-Sign Signatures and Extensions. Privacy-based primitives are often constructed as
some combination of a hash-and-sign digital signature scheme and a zero-knowledge proof system. Hash-and-
sign lattice-based digital signatures based on the hardness of the standard SIS problem, first constructed in
[41], are abstractly based on the hardness of the following problem over some distribution of input matrices
A, which is parametrized by a global function f (there are also specific parameters n,m, β, β′ which are
determined based on the security parameter):

Definition 1.1 (The ISISf Problem (informal)). We are given a matrix A ∈ Zn×mp (chosen from some
distribution), a function f : [N ] → Znp , and access to an oracle who chooses a random input x ∈ [N ] and
outputs it together with a vector ∥s⃗∥ ≤ β satisfying As⃗ = f(x). The game is won by coming up with a fresh
tuple (x′, s⃗′) ∈ [N ]× Zm where ∥s⃗′∥ ≤ β′ and As⃗′ = f(x′).2

The hardness of the above problem depends on the choice of f , the distribution of A and how the oracle
chooses the vector s⃗.3 When the function f is instantiated as a cryptographic hash function (e.g. SHA)
which is modelled as a random oracle, A is chosen uniformly-random, and s⃗ is chosen from a distribution
with enough entropy, then the ISISf problem is equivalent to the well-known SIS and ISIS problems. If f is
modelled as a random oracle, then f(x) is uniformly-random in Znp , and so there is no advantage gained by
seeing a pre-image s⃗ of a random element in Znp because one could, in principle, do the pre-image sampling in
reverse. That is, one could instead generate a random s⃗ and if the distribution of s⃗ has enough entropy, then
it is the pre-image of a uniformly-random t⃗ = As⃗ (since (A, t⃗ = As⃗) is uniformly-random by the leftover hash
lemma).

Modelling f as a random oracle and furthermore being able to create a matrix A together with a trapdoor
which allows for pre-image sampling, gives rise to lattice-based hash-and-sign signatures based on the hardness
of ISISf [41]. The idea is simply to sign a message (digest) x with the pre-image s⃗. This allows us to sign
random messages x, but when f is modelled as a random oracle, it doesn’t matter whether x is chosen at
random or adaptively because f(x) is uniformly-random regardless – thus allowing the signing of arbitrary
messages is as secure as only being able to sign random ones.

When f is not a cryptographic hash function, then we don’t immediately obtain a signature scheme based
on ISISf by treating x as the message to be signed precisely because the ISISf problem requires x to be
2 Note that x

′ can be equal to one of the x, as long as s⃗
′ ̸= s⃗.

3 We will also want the set [N ] to be exponentially large so that there is a negligible chance of obtaining pre-images
on the same f(x).
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random, whereas in an attack on a signature scheme the x is chosen by the adversary. One could, of course,
propose a stronger version of ISISf in which the x is chosen by the attacking algorithm, but we feel that this
may require the function f to be needlessly “complicated” (e.g. something that’s close to a cryptographic
hash function like SHA) in order for the problem to remain hard.4 And we do not want the function circuit
to be too complex because building anonymous credentials from a signature scheme will additionally require
proving knowledge of the signature. Even though recent techniques for proving arbitrarily large circuits have
proof sizes of around 60 KB [12], this is still larger than proofs of simple linear or quadratic relations which
can be as small as a dozen KB for common lattice relations [57]. Furthermore, the more complex proofs of
arbitrary circuits will be less efficient, in terms of computation time, than proofs of simpler relations.

The main result of this work is to show how one can build an anonymous credential scheme based upon the
above-sketched construction of a signature scheme for random messages. We also propose a simple function f
which admits a very efficient zero-knowledge proof of the relation As⃗′ = f(x′), and for which we believe that
the ISISf problem is hard. We now discuss our choice of f and will sketch the anonymous credential scheme
construction and proof in Section 1.1.

Arguably the simplest way to instantiate f(x) is to let it be a linear function. For example, if we use the
natural correspondence between binary vectors of length logN with the set [N ], then if f(v⃗) = Bv⃗, where
v⃗ ∈ {0, 1}logN , one can use the practically-efficient zero-knowledge proofs from [57] to commit to s⃗ and v⃗ and
show that they have small norms and satisfy As⃗ = Bv⃗. At first glance, it might seem that the linearity of the
function interacts dangerously with the inherent linearity of lattices. For example, if v⃗1 + v⃗2 = v⃗3 and we have
As⃗i = f(v⃗i) for i = 1, 2, then A(s⃗1 + s⃗2) = f(v⃗3). In our definition of the problem, however, the v⃗i are chosen
at random and it is very unlikely that the sum of two randomly-chosen binary vectors will sum to another
binary one (i.e. the probability is (3/4)logN ). And if we sum more than 2 binary vectors, then the probability
that the resulting pre-image s⃗ which is a sum of the pre-images, will still be as small becomes negligible.5 So
the hardness of ISISf for the above-defined function relies in large part on the fact that the domain of f is
not closed under addition, even though f is a linear function over a larger domain. And so we conjecture that
instantiating f in this way (i.e. choosing f as a random linear function over some ring and its domain as
binary vectors) leads to a hard instance of ISISf . Furthermore, proving As⃗ = Bv⃗ for some short s⃗ and binary
v⃗ can be done very efficiently using the proofs from [57]. In particular, we do not see any better algorithm for
solving the ISISf problem when f is defined as above vs. when f is a cryptographic hash function as in [41].

1.1 Blind Signatures and Anonymous Credentials from ISISf

We will now give a high level sketch of our main construction – an efficient anonymous credential scheme
based on the hardness of the ISISf problem when one is able to give an efficient zero-knowledge proof of a
solution to ISISf . We will first sketch the construction and proof of a blind signature scheme and then explain
how essentially the same protocol can be turned into an anonymous credential scheme.

The Blind Signature Scheme. Recall that in a blind signature scheme, the user asks a signer to sign a message
m⃗ and can then prove to everyone that he has a signature for m⃗. The blindness property of the scheme states
that the signer cannot know during which interaction he signed m⃗, and the soundness property states that a
user who interacted with the signer k times can only produce k valid signed messages.

The signer creates a matrix A and a trapdoor which allows him to sample short s⃗ ∼ Dσ, for some standard
deviation σ, satisfying As⃗ = t⃗ for any t⃗ ∈ Znp . In the concrete instantiation, the matrix A, along with the

4 Still, investigating this stronger assumption with appropriate functions f could be an interesting research direction.
The one-more-ISIS assumption in [3] does allow the adversary access to an oracle to obtain pre-images of arbitrary
vectors, but requires him to find pre-images for a random set of vectors to win the game.

5 For example, the expected squared norm of a 512-dimensional Gaussian of standard deviation σ is 512σ
2. The

probability that the sum of three such Gaussians have squared norm less than this is less than 2−160.
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trapdoor and sampling algorithm, is as in the NTRU-based signature scheme [30, 69].6 The signer also creates
random matrices B1 and B2 (their dimensions will be clear from their usage). The public key is A,B1, B2
and the function f , while the secret key is the trapdoor for A.

If the user wants to sign a (digest of a ) message m⃗, he sends to the signer an Ajtai commitment of his
message committed under randomness r⃗ as c⃗ = B1m⃗+B2r⃗, along with a zero-knowledge proof (using [57])
that m⃗ and r⃗ have small norms and the linear relation c⃗ = B1m⃗ + B2r⃗ is satisfied. The signer checks the
proof, creates a uniformly-random “tag” x ∈ [N ] and then uses the trapdoor for A to create a short pre-image
s⃗ satisfying

As⃗ = f(x) +B1m⃗+B2r⃗. (1)

The pre-image s⃗ and the tag x are sent to the user. In order to prove that he has a signature of a message m⃗,
the user reveals m⃗ and creates a zero-knowledge proof of knowledge of s⃗, x satisfying (1). In the case that f
is a linear function, the exact same proof from [57] for proving c⃗ = B1m⃗+B2r⃗ can be used here as well.

The anonymity of the blind signature (i.e. that the signer cannot figure out during which interaction m⃗
was signed) is ensured by the fact that m⃗ is transferred to the signer in a computationally-hiding commitment
scheme and all the proofs are zero-knowledge. The more interesting part of the proof is showing that a user
cannot produce more signed messages than the number of queries that he makes to the signer. We will show
that if there is an adversary who can forge in the blind signature scheme, then there is an algorithm who can
solve the ISISf problem.

Given the matrix A and a function f in the ISISf problem, the reduction chooses matrices with small
coefficients R1 and R2, and then creates B1 = AR1 and B2 = AR2. By the LWE assumption, these look
indistinguishable from uniform. The public key for the blind signature is thus A,B1, B2, along with the
function f . In his first move, the adversary sends an Ajtai commitment to a message m⃗ using randomness r⃗
along with a zero-knowledge proof that the commitment is valid. In particular, the zero-knowledge proof
ensures that the commitment is of the form B1m⃗+B2r⃗ , and the reduction can extract the m⃗ and r⃗. By the
construction of B1 and B2, we have B1m⃗ + B2r⃗ = A(R1m⃗ + R2r⃗). The reduction then calls the oracle in
the ISISf definition and receives some s⃗, x satisfying As⃗ = f(x). Notice that the reduction can now create
s⃗′ = s⃗+R1m⃗+R2r⃗ that satisfies

As⃗′ = f(x) +B1m⃗+B2r⃗. (2)

The tuple (s⃗′, x) could be a valid signature except for the fact that the distribution of s⃗′ is not a discrete
Gaussian (as in the real scheme), but is a Gaussian perturbed by R1m⃗ + R2r⃗. To get s⃗′ to be a discrete
Gaussian, the reduction can use rejection sampling as in [53, Theorem 4.6] which converts shifted Gaussians
into zero-centered ones. If we accept, then we can send s⃗′ and x to the adversary as the signature of m⃗. If
there is a rejection, then we can again query the oracle to obtain another s⃗ and x and create another potential
vector s⃗′, and so on until the rejection sampling procedure accepts.

The above shows that the view of the adversary is identical in both the simulation and the real signature
scheme, and thus the adversary should be successful in creating a signature for a new message m⃗. In other
words, he is able to prove knowledge of an x ∈ [N ] and vectors m⃗, r⃗ satisfying (1), and these can be extracted
by the extractor. Since B1 = AR1 and B2 = AR2, we have the potential solution to the ISISf problem being

A(s⃗−R1m⃗−R2r⃗) = f(x). (3)

There are three possibilities for the x that is used in the forgery

1. x has not been queried to the oracle
2. x has been queried to the oracle, but was not seen by the adversary (i.e. it was discarded by the reduction

during rejection sampling)
3. x has been queried to the oracle and seen by the adversary
6 This implies that the scheme would be instantiated over some polynomial ring rather than Zp, as in the description

in this section. But since Zp is a sub-ring of the polynomial ring, all operations in the polynomial ring can also be
described as operations over vectors over Zp, and so the description in this section is actually more general than we
will need to be.
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In case 1, Equation (3) directly gives a solution to the ISISf problem. In case 2, the fact that x was already
queried means that the reduction has a vector s⃗′ satisfying As⃗′ = f(x). If s⃗′ ̸= s⃗ − R1m⃗ − R2r⃗, then we
again have a solution to ISISf . Because the adversary never saw s⃗′ and the entropy of pre-image sampling is
(exponentially) large, there is only a negligible chance that s⃗′ = s⃗−R1m⃗−R2r⃗.

In case 3, the adversary knows the value s̃ = s⃗′ +R1m⃗
′ +R2r⃗

′ where s⃗′ was such that As⃗′ = f(x), and it
produces a forgery s⃗, m⃗ ̸= m⃗′, r⃗ satisfying A(s⃗−R1m⃗−R2r⃗) = f(x). If s⃗′ = s̃−R1m⃗

′−R2r⃗ ̸= s⃗−R1m⃗−R2r⃗,
then we have a solution to the ISISf problem. In order for this to not be a solution, the adversary would need
to create s⃗, m⃗ ̸= m⃗′, r⃗ such that

(s̃− s⃗) +R1(m⃗− m⃗′) +R2(r⃗ − r⃗′) = 0. (4)

To prove that even an all-powerful adversary will fail to create such an equality, we need to rely on the
entropy of the matrix R1. In particular, we can set the distribution of R1 such that for every column of R1,
there exists another R′1 which differs from R1 in only that column, satisfying AR1 = AR′1 (c.f. [55, Lemma
4.4]). If for every R1, there is such a set of R′1, then for the R′1 which differs in the column corresponding to
the coordinate where m⃗ and m⃗′ differ, we will have R1(m⃗− m⃗′) ̸= R′1(m⃗− m⃗′). An important point is also
that when receiving the vector s̃, which is a result of rejection sampling that involves R1m⃗, the value of R1 is
hidden since the output of the rejection sampling hides the specific R1m⃗. In short, the success probability of
the reduction breaking the ISISf problem is at least half the probability that an adversary can forge the blind
signature.

Adapting the above to anonymous credentials and other privacy primitives. The framework for creating an
anonymous credential scheme is virtually identical to the one above for a blind signature scheme. The first
part of the scheme is the issuance of a credential for a set of attributes m⃗. This is done in the exact same
manner as signing in the blind signature scheme. The user submits a commitment to a vector of credentials
m⃗ along with a zero-knowledge proof that the commitment is validly formed, and the issuer creates a random
tag x along with a pre-image vector s⃗ satisfying (1). The one difference in an anonymous credential scheme
over a blind signature is that the user may not wish to reveal the entire attribute vector m⃗, whereas in the
blind signature scheme, the whole message is revealed. In this case, he can simply reveal the sub-vector m⃗′ of
m⃗ that he wishes and then prove knowledge of the remaining part of m⃗ in the zero-knowledge proof. The
security proof for the anonymous credential scheme is virtually identical to the one for the blind signature.

One can also easily adapt the framework to create a group signature scheme. The only change versus an
anonymous credential scheme would be that the user would additionally create a lattice-based encryption of
x along with the zero-knowledge proof, and additionally prove (again using the zero-knowledge proof from
[57]) that the ciphertext is a valid encryption of x. The size of the signature will be larger than that in [56],
but the advantage is that signing and verification time does not scale linearly in the group size.

1.2 Related Work

Prior works building privacy-preserving primitives such as group signatures, blind signatures, and anonymous
credentials [68, 61, 67], circumvented the need to prove knowledge of a random oracle pre-image by using the
standard-model digital signature framework of [1] instead of the hash-and-sign based approach. But these
standard-model signatures are a factor 5X - 10X longer because instantiating standard-model signatures
requires larger parameters and does not allow instantiating the trapdoored matrix A via the NTRU assumption
as we do.

Other constructions of efficient blind signatures [3, 13] which do not start from the signature in [1], and
do in fact use the NTRU trapdoor, unfortunately cannot be extended to anonymous credential schemes while
utilizing the the compact proofs from [57] for simple lattice relations. The technical reason is that in these
blind signature schemes, the user gets the signer to blindly sign H(µ) for some message µ and cryptographic
hash function H. In the proof, he reveals the whole µ, and proves knowledge of a simple relation that includes
H(µ). Because the user will only ever give one proof that includes µ, revealing µ is perfectly fine. In an
anonymous credential scheme, however, one may want to get a set of credentials (i.e. µ = µ′||µ′′) blindly
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signed, and then reveal only the µ′ part of it. This will require proving knowledge of a µ′′ that satisfies some
relation involving H(µ′||µ′′), which results in longer and slower proofs.7

1.3 Concurrent Work

We discuss concurrent works [45, 47], of which [45] was recently updated with applications to anonymous
credentials and appears at CRYPTO’23.

In common with prior work [68, 61, 67], both [45] and [47] avoid proving knowledge of random oracle
preimages. Both works follow the paradigm of ‘signatures with efficient protocols’ and design lattice-based
digital signature schemes tailored towards efficient zero-knowledge proofs of a message and signature. The
second work, [47] defines a new cryptographic primitive called commit-transferable signatures (CTS) in order
to instantiate this paradigm more efficiently. Similarly to our work, they rely on existing frameworks such as
[58] (with [45] additionally relying on [74])) to produce efficient zero-knowledge proofs to use inside their
constructions.

The biggest difference between our work and [45, 47] lies in the use of cryptographic assumptions. The
anonymous credential contructions of [45, 47] rely solely on the SIS and LWE assumptions and their ring
variants. In contrast, our work relies on the new ISISf assumption which we introduce. The main benefit
of this new assumption over the approaches in [45, 47] is that it allows us to use zero-knowledge proofs of
[58] to prove significantly fewer and simpler relations. This leads to a large efficiency improvement in our
anonymous credential constructions, with [45, 47] offering credential sizes of roughly 640KB and 500KB
respectively, and our work offering sizes of roughly 120KB (under ISISf ). Further, while [45, 47] rely on
trapdoor sampling techniques for standard lattices from [64], we rely on NTRU lattices and NTRU-based
trapdoors [30, 69]. Finally, as noted in [47], we use minimalistic definitions of anonymous credentials which do
not incorporate pseudonyms or user secret keys. Including these aspects would require additional commitments
and zero-knowledge proofs which would increase the complexity of our anonymous credentials, although we
do not believe they would add too much extra overhead.

1.4 Discussion and Open Problems

The most pertinent open problem is to analyze the hardness of the ISISf problem when instantiated with
a random linear f , or perhaps other classes of slightly higher-degree functions f which still yield efficient
zero-knowledge proofs.

Another open problem is to come up with a possibly stronger assumption that would result in tighter
reductions for our schemes. In particular, we feel that breaking our blind signature and anonymous credential
scheme is more difficult than what the security reductions imply. For example, we need to set parameters so
as to allow rejection sampling to work and for the matrix R1 to be chosen such that with high probability
there is another R′1 satisfying AR1 = AR′1.

If one looks closely at the proof sketch in Section 1.1, what we have essentially done is give a reduction
from ISISf to an “interactive” version of ISISf in which the adversary has more control over the pre-images
that he receives. In the ISISf problem, the adversary is given an oracle that outputs s⃗, x satisfying As⃗ = f(x),
whereas in the “interactive” version, the adversary can choose m⃗ and r⃗ as in (1) and then receives a random x
and s⃗ satisfying (1). His goal is then to satisfy (1) for a fresh m⃗. We have shown that if the random matrices
B1 and B2 are constructed as AR1 and AR2, and other parameters are set appropriately, then using rejection
sampling we are able to transform s⃗, x that satisfy As⃗ = f(x) into s⃗′, x that satisfy (1). Furthermore, picking
an R1 from a wide-enough distribution to guarantee the existence of another R′1 satisfying AR1 = AR′1 was
required to assure that the adversary could not create a forgery that satisfied (4). It is very much possible,
however, that setting the scheme parameters to allow for these particularities of the proof to go through is
not really necessary for security. Since asymptotically, the interactive ISISf problem is as hard as ISISf , it
7 The blind signature protocol of [13] does require a zero-knowledge proof involving H(·), but this proof is only done

in the intermediate interaction between the user and the signer, and so its relative inefficiency does not affect the
signature size.

6



Attributes Assumption
ISISf interactive ISISf Strong-RSA [23] qSDH [20]

8 122KB 26KB 1319B 608B
16 133KB 29KB 1910B 865B

Table 1: Output sizes for the anonymous credential schemes with 8 and 16 attributes.

makes sense to examine the interactive version on its own with a more favorable parameter setting. That is,
one could make the assumption that the interactive version of the ISISf problem is hard in the parameter
range that does not yield a reduction from ISISf .8 In Table 1, we give example parameters of instantiations
of an anonymous credential scheme based on the ISISf assumption and parameters required if one assumes
hardness of the interactive version. The scheme based on ISISf is noticeably more compact than the previously
most efficient anonymous credential scheme [45], which has output sizes of around 650KB. But as we also see,
there is a noticeable advantage in setting the scheme parameters smaller and assuming that the problem
(interactive ISISf ) is still hard. We believe that analyzing the security of this version of the problem, and
possibly building other more efficient schemes based on it, is a promising research direction when it comes to
building practical lattice-based schemes.

One of the main appeals of lattice cryptography, in addition to its versatility, is that its underlying
operations are very fast when instantiated over polynomial rings. It is therefore quite conceivable that
lattice-based constructions will be the fastest option out of all the post-quantum alternatives. Since most
anonymous credential schemes involve real-time interaction (e.g. credit card usage), speed is a very important
consideration in their real world deployment. Unlike the many efforts to construct efficient software for
discrete log, pairing-based, and PCP/IOP-based proof systems, there has not been much concentrated effort
to develop software for efficient lattice-based primitives. Part of the problem has been that there were not
many lattice-based protocols which were compact enough to be considered for practical deployment. We hope
that this paper provides some motivation for creating implementations of lattice-based privacy primitives
that are real-world ready.

2 Preliminaries

Let λ be a security parameter which is provided in unary to all involved algorithms. For n ∈ N, let
[n] := {1, . . . , n}. Let Zp denote the ring of integers modulo p. We write v⃗ ∈ Zmp to denote vectors over a ring
Zp. Matrices over Zp will be written as regular capital letters. By default, all vectors are column vectors.

We define U(S) to be the uniform distribution on the finite set S. We write x← D when x is sampled
according to the distribution D. Sometimes, we abuse the notation and write x← S to denote x← U(S).

Lattices. Let B = {⃗b1, . . . , b⃗n} ⊆ Rn be a set of linearly independent vectors. The n-dimensional full-rank
lattice generated by B is defined as follows:

Λ = Λ(B) :=
{

n∑
i=1

ci⃗bi : c1, . . . , cn ∈ Z

}
.

We denote B̃ = (⃗b′i)i∈[n] to be the Gram-Schmidt orthogonalization of B. Further, define the Gram-Schmidt
norm of B as ∥B̃∥ := maxi∈[n] ∥⃗b

′
i∥.

8 This is similar to how the SIS and LWE problems were first introduced – solving their random instances was shown
to be as hard as solving lattice problems in the worst case [4, 65, 70], but now the SIS and LWE problems are
used with parameters which do not satisfy these original reductions because these problems have since been very
well-studied on their own.
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Cyclotomic Rings. For a power of two d ≥ 4 and a positive integer p, let K = Q[X]/(Xd + 1) denote the 2d-th
cyclotomic field and R = Z[X]/(Xd + 1) be the corresponding ring of integers. Lower-case letters denote
elements in R and bold lower-case (resp. upper-case) letters represent column vectors (resp. matrices) with
coefficients in R. For a modulus q ∈ N, we define Rq := R/(q) = Zq[X]/(Xd + 1). Further, we define R×q to
be the set of polynomials in Rq which are invertible over Rq. For η ∈ N, define Sη := {x ∈ R : ∥x∥∞ ≤ η}.
Recall that, for any A ∈ Rn×mq , the q-ary lattice Λ⊥q (A) is defined as Λ⊥q (A) := {x ∈ Rm : Ax = 0 mod q}.

Coefficient representation and multiplication matrices. For a polynomial vector x ∈ Rl, define Coeffs(x) ∈ Zld

to be coefficient vector of x. Similarly, Coeffs−1(x⃗) ∈ Rl is the polynomial vector with coefficients x⃗.
For a polynomial f = f0 + f1X + . . .+ fd−1X

d−1 ∈ R, we define the multiplication matrix rot(f) ∈ Zd×d

as:

rot(f) =


f0 −fd−1 . . . −f1
f1 f0 . . . −f2
...

...
...

...
fd−1 . . . f1 f0

 .
In particular, we will use the property that for f, g ∈ R, rot(fg) = rot(f)rot(g). We extend this definition to
matrices over R. Namely, for a matrix F = (fi,j) ∈ R

n×m
q , we define

rot(F) =

rot(f1,1) rot(f1,2) . . . rot(f1,m)
...

...
...

...
rot(fn,1) rot(fn,2) . . . rot(fn,m)

 ∈ Znd×md.

Then, for any polynomial vector x ∈ Rmq we have the following property over Zq:

Coeffs(Fx) = rot(F)Coeffs(x).

Discrete Gaussian distribution. We recall the discrete Gaussian distribution used for the rejection sampling
and trapdoor sampling.

Definition 2.1. The n-dimensional Gaussian function ρ𝔰,⃗c : R→ (0, 1] is defined by

ρ𝔰,⃗c(x⃗) := exp
(
−∥x⃗− c⃗∥

2

2𝔰2

)
.

For any coset Λ+ t⃗ of a full-rank lattice Λ ⊂ Rn, ρ𝔰,⃗c(Λ+ t⃗) :=
∑
x⃗∈Λ+t⃗ ρ𝔰,⃗c(x⃗). Then, the discrete Gaussian

distribution over a coset of a lattice Λ+ t⃗ centred around c⃗ ∈ Rn with standard deviation 𝔰 > 0 is given by

∀x⃗ ∈ Λ+ t⃗, DΛ+t⃗,𝔰,⃗c(x⃗) :=
ρ𝔰,⃗c(x⃗)

ρ𝔰,⃗c(Λ+ t⃗)
.

We write Dn
𝔰,⃗c when Λ = Zn. Similarly, we ignore the subscript c⃗ when the distribution is centred around

0⃗ ∈ Zn.

Smoothing parameter. We recall the definition of a smoothing parameter [65]. Namely, for any n-dimensional
lattice Λ and a real number ϵ > 0, the smoothing parameter ηϵ(Λ) is the smallest s > 0 such that
ρ 1

s
√

2π
(Λ∗\{0}) ≤ ϵ. We also consider the scaled version η′ϵ(Λ) = 1√

2πηϵ(Λ). Further, for any ϵ > 0 we define

ηmin(ϵ) ∈ R to be such that PrA←Rn×m
q

[η′ϵ(Λ
⊥
q (A)) > ηmin(ϵ)] ≤ 2−d. Note that ηmin can be computed as in

[18, Lemma 2.5].
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Tail Bounds We recall the following tail bounds which are widely used in the literature. The first one focuses
on discrete Gaussians over integers and follows from [9, Lemma 1.5(i)] and was adapted in [53, Lemma
4.4]. The next one by Micciancio and Regev [65, Lemma 4.4] is a tail bound on discrete Gaussians over any
full-rank lattices.
Lemma 2.2 ([53]). Let x⃗← Dn

𝔰 and t > 1. Then

Pr
[
∥x⃗∥ > t · 𝔰

√
n
]
<

(
te

1−t
2

2

)n
.

Lemma 2.3 ([65]). Let Λ be an n-dimensional full-rank lattice, c⃗ ∈ Rn, 0 < ϵ < 1 and 𝔰 ≥ η′ϵ(Λ). Let
x⃗← DΛ,𝔰,⃗c. Then Pr [∥x⃗− c⃗∥ ≥ 𝔰

√
n] < 1+ϵ

1−ϵ · 2
−n.

Preimage sampling. Let A ∈ Rn×mq . Then, we denote A−1
𝔰 (u) to be the random variable x← Dmd

𝔰 conditioned
on Ax = u over Rq.

Rejection sampling. Rejection sampling [52, 53] is a widely used technique to ensure the zero-knowledge
property of many lattice-based (non-)interactive proofs.

Lemma 2.4 (Rejection Sampling [53]). Let V ⊆ Rℓ be a set of polynomials with norm at most T and
ρ : V → [0, 1] be a probability distribution. Fix the standard deviation 𝔰 = αT for α = O(

√
λ). Let

M = exp
(√

2(λ+ 1)
log e · 1

α
+ 1

2α2

)
= O(1).

Now, sample v← ρ and y← Dℓ
𝔰 , set z = y + v, and run b← Rej1(z,v, 𝔰,M) as defined in Figure 1. Then,

the probability that b = 1 is at least (1− 2−λ)/M and the distribution of (v, z), conditioned on b = 1, is within
statistical distance of 2−λ of the product distribution ρ×Dℓ

𝔰 .

Rej (z⃗, v⃗, 𝔰, M)
1: u← [0, 1)
2: if u > 1

M
· exp

(
−2⟨z⃗,v⃗⟩+∥v⃗∥2

2𝔰2

)
then

3: return 0 (i.e. reject)
4: else
5: return 1 (i.e. accept)

Fig. 1: Standard rejection sampling algorithm [53].

Recently, Boschini et al. [18] proposed a generalized rejection sampling method for ellipsoidal Gaussians over
any lattice, which was later used in the context of multi-signatures. Here, we use the (simplified) result from
[18, Theorem B.1] to apply rejection sampling on q-ary lattices9.
Lemma 2.5 (Generalized Rejection Sampling [18]). Take any α, T > 0 and ϵ ≤ 1/2. Let v ∈ Rmq be
such that ∥v∥ ≤ T , A ∈ Rn×mq ,w ∈ Rnq and t := Av ∈ Rnq . Also, pick 𝔰 ≥ max(αT, η′ϵ(Λ

⊥
q (A))). Then, for

any

t > 0, M := exp
(

1
2α2 + t

α

)
, ε := 2

(
1 + ϵ

1− ϵ

)
exp

(
−2t2 · π − 1

π

)
,

the statistical distance between distributions RejSamp and SimRS defined in Figure 2 is at most ε
2M + 2ϵ

M .
Moreover, the probability that RejSamp outputs something is at least 1−ε

M

(
1− 4ϵ

(1+ϵ)2

)
.

9 An almost identical application was described in [18, Section B.4] in the context of proving statistical honest-verifier
zero-knowledge of the Fiat-Shamir with aborts protocol [53].
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RejSamp(A,v, t,w)
1: if Av ̸= t then return ⊥
2: y← A−1

𝔰 (w)
3: z = y + v

4: return (A, t,w, z) with prob. min
(

D
md
𝔰 (z)

M ·Dmd
𝔰,v (z)

, 1
)

SimRS(A, t,w)
1: if Av ̸= t then return ⊥
2: z← A−1

𝔰 (t + w)
3: return (A, t,w, z) with prob. 1

M

Fig. 2: Rejection sampling on q-ary lattices.

2.1 NTRU Lattices
Using terminology from above, let d be a power of two, q a positive integer and f, g ∈ R such that f is
invertible over Rq. Let h = g/f ∈ Rq. The NTRU lattice associated to h and q is defined as

Λh,q := {(u, v) ∈ R2 : u+ vh = 0 mod q} .
Then, Λh,q is a 2d-dimensional full-rank lattice generated by the rows of

Ah,q :=
[
−rot(h) Id
q · Id 0

]
∈ Z2d×2d.

We recall that there is an efficient algorithm NTRU.TrapGen, which given modulus q and the ring dimension d,
outputs h ∈ Rq and a short basis of Λh,q. This is the core part of the key generation of the Falcon signature
scheme [69].
Lemma 2.6 ([30, 69]). There is an efficient algorithm NTRU.TrapGen(q, d) which outputs h ∈ Rq and a
basis B of Λh,q such that ∥B̃∥ ≤ 1.17√q.
The short basis can now be used for preimage sampling using the well-known GPV framework [41] and its
concrete instantiation in [30]. Namely, for any c ∈ R, one can efficiently sample (u, v) ∈ R2 from a discrete
Gaussian distribution conditioned on u+ vh = c mod q. We use the extended result following [73, Lemma
2.7], i.e. given additionally a ∈ Rm, we can efficiently sample (u, v,w) ∈ Rm+2 from a discrete Gaussian
distribution conditioned on u+ vh+ aTm = c mod q.
Lemma 2.7 ([31, 30, 41]). Let n ∈ N and ϵ = 2−λ/(4d). There is a PPT algorithm GSampler, which takes
(h,B) ← NTRU.TrapGen(q, d), a ∈ Rmq , standard deviation 𝔰 > 0 and a target vector c ∈ Rq as input, and
outputs a triple (u, v,w) ∈ Rm+2

q such that

∆
([
h aT 1

]−1
𝔰

(c), GSampler(h,a,B, 𝔰, c)
)
≤ 2−λ

as long as

𝔰 ≥ 1.17√q · η′ϵ(Z) where η′ϵ(Z) ≈ 1
π
·

√
1
2 ln

(
2 + 2

ϵ

)
.

2.2 Module-SIS and Module-LWE Problems
The security of our schemes relies on the well-known computational lattice problems Module-LWE (MLWE)
and Module-SIS (MSIS) [48]. Both problems are defined over Rq.

Definition 2.8 (MSISn,m,B). Given A ← Rn×mq , the Module-SIS problem with parameters n,m > 0 and
0 < B < q asks to find z ∈ Rmq such that Az = 0 over Rq and 0 < ∥z∥ ≤ B. An algorithm A is said to have
advantage ϵ in solving MSISn,m,B,q if

AdvMSIS
n,m,B,q(A) := Pr

[
0 < ∥z∥∞ ≤ B ∧ Az = 0

∣∣∣A← Rn×mq ; z← A(A)
]
≥ ϵ.

If the modulus is clear from the context, then we drop q from the subscript.
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As for Module-LWE, we consider its “knapsack version” which is equivalent to its standard definition up to
an additive negligible factor for typically chosen parameters [36, Appendix C]. In the paper we will use both
versions and assume they are equivalent.
Definition 2.9 (MLWEn,m,χ,q). The Module-LWE problem with parameters m ≥ n > 0 and an error
distribution χ over R asks the adversary A to distinguish between the following two cases: 1) (A,As) for
A← Rn×mq , a secret vector s← χm, and 2) (A, b)← Rn×mq ×Rnq . Then, A is said to have advantage ϵ in
solving MLWEn,m,χ,q if

AdvMLWE
n,m,χ,q(A) :=

∣∣∣Pr
[
b = 1

∣∣∣A← Rn×mq ; s← χm; b← A(A,As)
]

(5)

− Pr
[
b = 1

∣∣∣A← Rn×mq ; b← Rnq ; b← A(A, b)
]∣∣∣ ≥ ϵ.

For simplicity, if χ is a uniform distribution over Sη then we simply write MLWEn,m,η,q. Also, we drop the
subscript q if the modulus is clear from the context.

2.3 Non-Interactive Zero-Knowledge Proofs in the ROM
In this paper, we consider binary relations R ⊆ {0, 1}∗×{0, 1}∗. Then define LR := {x ∈ {0, 1}∗ : ∃w, (x,w) ∈
R} to be the language corresponding to R. We refer to x as a statement and w as a witness.

We recall the (slightly adapted) definitions of non-interactive zero-knowledge proofs (NIZK) in the random
oracle model from [67].
Definition 2.10 (NIZK). A non-interactive zero-knowledge proof system ΠNIZK for the relation R consists
of three PPT algorithms (Setup,Prove,Verify) which are defined as follows:

– Setup(1λ)→ crs : the setup algorithm which outputs the common reference string crs ∈ {0, 1}ℓ(λ),
– ProveH(crs, x,w) → π/⊥: the prover algorithm takes as input the common reference string crs ∈ {0, 1}ℓ,

statement x and witness w, either outputs a proof π or an abort symbol ⊥,
– VerifyH(crs, x, π) → 0/1: the verifier algorithm takes as input the common reference string crs ∈ {0, 1}ℓ,

statement x and a proof π and outputs a bit b where b = 1 means accept and b = 0 means reject.
Unless stated otherwise, we assume that crs can be generated as the output of another random oracle. In
other words, crs is a common random string. Hence, our protocols do not require a trusted setup.

We recall the key properties of NIZK used in this paper: (i) correctness, (ii) zero-knowledge, and (iii)
multi-proof extractability (i.e. straight-line extractability).

Definition 2.11 (Correctness). We say that a NIZK proof system ΠNIZK is correct if for all crs ∈ {0, 1}ℓ

and (crs, x,w) ∈ R, the probability that ProveH(crs, x,w) outputs ⊥ is negl(λ), and:

Pr
[
π ← ProveH(crs, x,w) : Verify(crs, x,w) = 1

∣∣∣∣π ̸= ⊥] = 1− negl(λ).

Definition 2.12 (Zero-Knowledge). We say that a NIZK proof system ΠNIZK is zero-knowledge if there
exists a simulator S = (S0,S1) which consists of two PPT algorithms with a shared state such that for any
PPT adversary A we have

AdvZK
ΠNIZK

(A) :=
∣∣∣Pr[1← AH,Prove(crs)]− Pr[1← AS0,S1(crs)]

∣∣∣ = negl(λ)

where Prove and S are prover and simulator oracles which, given (x,w), output ⊥ if (crs, x,w) ̸∈ R and
otherwise return ProveH(crs, x,w) and S1(crs, x) respectively. The probability is also taken over the randomness
of generating the common reference string crs← Setup(1λ).

Finally, we consider multi-proof extractability which corresponds to straight-line extractability. Here, the
adversary can pick the statements adaptively. In order to perform extraction in this stronger setting, the
common reference string is simulated and the corresponding trapdoor is provided to the extractor.
Definition 2.13 (Multi-Proof Extractability). The following hold:
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CRS Simulatability. For any PPT adversary A, we have:

Advcrs
ΠNIZK

(A) :=
∣∣∣Pr[crs← Setup(1λ) : 1← AH(crs)]− Pr[(c̃rs, τ)← Scrs(1

λ) : 1← AH(c̃rs)]
∣∣∣

is negligible.

Straight-Line Extractability. There exist constants e1, e2, c such that for any QH, Qs ∈ poly(λ) and any PPT
adversary A that makes at most QH random oracle queries with

Pr
[

(c̃rs, τ)← Scrs(1
λ),

{(xi, πi)}i∈[Qs] ← A
H(c̃rs)

: ∀i ∈ [Qs],VerifyH(c̃rs, xi, πi) = 1
]
≥ ε(λ),

where ε(λ) is non-negligible, we have

Pr

 (c̃rs, τ)← Scrs(1
λ), {(xi, πi)}i∈[Qs] ← A

H(c̃rs),
{wi ← Multi-Extract(QH, Qs, 1/ε, c̃rs, τ, xi, πi)}i∈[Qs] :
∀i ∈ [Qs], (c̃rs, xi,wi) ∈ R ∧ VerifyH(c̃rs, xi, πi)

 ≥ 1
2 · ε(λ)− negl(λ)

where the runtime of the extractor is upper-bounded by Qe1
H ·Q

e2
s · 1

ε(λ)c · poly(λ).

For proving various soundness properties, we will deal with expected PPT knowledge extractors. Since security
of our protocols rely on computation assumptions, it is essential for us to transform these extractors into
strict PPT algorithms. Below, we show a standard way to achieve this goal.

Lemma 2.14 (Expected-Time to Strict-Time Transformation). Take any efficient binary relation R
and any statement x. Let A be a probabilistic algorithm which runs in expected time at most T and

Pr
crs←{0,1}ℓ

[A(crs, x)→ w : (x,w) ∈ R] = ε.

Then, there is an algorithm B with an oracle access to A, which runs in time at most 2T
ε and

Pr
crs←{0,1}ℓ

[BA(crs, x)→ 1] ≥ ε/2.

Proof. The algorithm B is pretty intuitive: given input (crs, x), it runs A(crs, x) and checks whether A did
output a valid witness w. However, if the total runtime is more than Tmax := 2T/ε, then B aborts.

Denote X to be the binary random variable, which determines whether the output w from A is valid.
Similarly, let Y be the runtime of A(crs, x) . Then, we are interested in

Pr [X = 1 ∧ Y ≤ Tmax] ≥ Pr[X = 1]− Pr[Y > Tmax].

Note that Pr[X = 1] = ε, and also by Markov inequality we have Pr[Y > Tmax] ≤ ε/2. Hence, this concludes
the proof.

3 The ISISf Assumption

This section introduces a new family of lattice-based assumptions called ISISf (where ISIS stands for
Inhomogenous Shortest Integer Solution). With a similar flavour to the recently proposed lattice assumptions
[5, 2], the adversary is given short preimages of random (but not necessarily uniformly random) images
and its task is to come up with either a short preimage of a new image, or a new preimage (i.e. not the
one received earlier) to one of the images which was sent. More formally, let n,m, k ∈ N where the first
two variables correspond to the matrix dimensions and the last one represents the number of samples. We
consider a uniformly random n×m matrix A over Rq, and an efficiently computable function f : [N ]→ Znq .
The adversary is given x1, . . . , xk ← [N ] as well as vectors s1, . . . , sk ∈ Zmq , where each si ← A−1

𝔰 (f(xi)).
Then, it needs to come up with a new pair (x∗, s∗) (in particular, different from the previous ones) such that
As∗ = f(x∗) and s∗ is short.
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ExpISISf
pp (A)

1: A← Rn×m
q

2: for i ∈ [k] :
3: xi ← [N ]
4: si ← A−1

𝔰 (f(xi))
5: (x∗, s∗)← A(A, (xi, si)i∈[k])
6: if

(
As∗ = f(x∗)

)
∧
(
0 < ∥s∗∥ ≤ B

)
∧
(
(x∗, s∗) ̸∈ {(xi, si) : i ∈ [k]}

)
7: then return 1
8: else return 0

Fig. 3: The ISISf experiment.

Definition 3.1 (The ISISf Problem). Let pp := (q, d, n,m, N, k, 𝔰,B) be a tuple of functions of the security
parameter λ. Consider any efficiently computable function f : [N ]→ Rn

q. The ISISf assumption is defined by
the experiment in Figure 3. For an adversary A, we define

AdvISISf
pp (A) = Pr[ExpISISf

pp (A)→ 1].

The ISISpp
f assumption states that for every PPT adversary A, AdvISISf

pp (A) is negligible.

3.1 Concrete Instantiations of f

3.1.1 Random Function

An intuitive choice for f = RF is a random function, modelled in the security analysis as a random oracle.
In this case, if N = ω(poly(λ)) then following the GPV signature proof [41, Proposition 6.1], ISISf can be
tightly reduced to the plain Module-SIS assumption. Unfortunately, the issue with picking f to be random is
that in our constructions we need to prove knowledge of a preimage of f . This becomes slightly awkward
since then we would require proof systems that can actually prove statements related to the random oracle f .

3.1.2 Binary Encoding

In our constructions we will use the following family of functions f . Let t ∈ N and take any matrix B ∈ Znd×t
q .

Then, the function is defined as:

f(x) := Coeffs−1(B · enc(x)) ∈ Rn
q

where enc(x) ∈ {0, 1}t is a binary decomposition of x−1. Hence, naturally N = 2t. Clearly, proving knowledge
of a preimage x of f , i.e. f(x) = y, is equivalent to proving knowledge of a binary vector u⃗ ∈ {0, 1}t such
that Bu⃗ = Coeffs(y). This, in turn, can be proven using the [57] framework. The main purpose of the matrix
B is to provide flexibility when setting N and has no significant impact on the security (apart from a few
naive special cases). We denote the corresponding ISISf problem as ISISbin. In the following, we propose a few
standard attacks on ISISbin.

Relations to finding a short vector in the lattice. Regardless of the choice of f , one of the most naive attacks
would be to simply try any x and then use the lattice attacks to find a short vector s∗ such that

As∗ = f(x)

which has a flavour of the Inhomogenous-MSIS problem. Now, if B is a zero (resp. identity) matrix then this
corresponds to the plain (resp. Hermite Normal Form) Module-SIS [33].
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We propose another attack, which this time actually makes use of the k pairs (xi, si)i∈[k]. Denote
u⃗i = enc(xi) and s⃗i = Coeffs(si) for i ∈ [k]. Then, by definition of ISISbin we have 10:[

rot(A) −B
]
S = 0 where S :=

[
s⃗1 · · · s⃗k
u⃗1 · · · u⃗k

]
∈ Z(md+t)×k

q . (6)

Here, the attack is to consider the lattice Λ generated by columns of S and find a short vector (s⃗∗, u⃗∗) ∈ Λ,
such that ∥s⃗∗∥ ≤ B, u⃗∗ ∈ {0, 1}t and (s⃗∗, u⃗∗) ̸∈ S. We briefly explain why this allows us to solve ISISbin.
Suppose we found a vector (v1, . . . , vk) ∈ Zkq such that s⃗∗ =

∑k
i=1 vis⃗i and u⃗∗ =

∑k
i=1 viu⃗i, where s⃗∗ and u⃗∗

satisfy all the conditions above. Then, for s∗ = Coeffs−1(s⃗∗) we have

As∗ =
k∑
i=1

vis
∗ =

k∑
i=1

viCoeffs−1(Bu⃗i) = Coeffs−1

(
k∑
i=1

vi ·Bu⃗i

)
= Coeffs−1(Bu⃗∗).

Finally, by the conditions above, this gives us a valid ISISbin solution.
A naive solution to obtain (s⃗∗, u⃗∗) would be to hope that S has full-rank md+ t for large enough instances

k. Then, the adversary could pick any valid (s⃗∗, u⃗∗) and compute the linear combination v1, . . . , vk ∈ Zq
using linear algebra. The hardness of this problem lies in the fact that by (6) and the rank-nullity theorem,
we have that the rank of S is at most nd. Since in all our applications n ≤ m, this implies that S will never
have rank at least md+ t.

Relations to integer linear programming. Let us denote u⃗i = enc(xi) for i ∈ [k]. The attack involves finding
a short non-zero vector v⃗ ∈ Zkq such that

∑k
i=1 viu⃗i = 0⃗ (mod q). Note that if u⃗1, . . . , u⃗k as well as v⃗ are

sufficiently short w.r.t. q then the equation above holds over integers. Now, we can use techniques from integer
linear programming (ILP) [16, 42] to find such a vector v⃗. In particular, Herold and May [42, Theorem 1]
showed that under some mild assumptions, one can efficiently find such a binary vector v⃗ ∈ {0, 1}k, as long
as k ≥ 2t. Let i ∈ [k] such that vi ̸= 0. Then, if we denote s∗ := −(

∑
j ̸=i vjsj), then

As∗ = −
∑
j ̸=i

vjAsj = −
∑
j ̸=i

vjCoeffs−1(Bu⃗j) = viCoeffs−1(Bu⃗i) = Coeffs−1(Bu⃗i).

If 𝔰 is larger than the norm of the shortest norm of Λ⊥q (A), then by the unpredictability argument (c.f.
Lemma 3.8), with non-negligible probability we have s∗ ̸= si. Now, using the standard tail bounds (c.f.
Section 2), we can upper-bound the norm of s∗ by (k − 1) · 𝔰

√
md. Hence, if B is larger than that value

then (s∗, f−1(bi)) is a valid ISISbin solution11. Therefore, in order to prevent such attacks, we need to set
B ≈ 𝔰

√
md to be close to the tail bound of the discrete Gaussian distribution with standard deviation 𝔰.

3.2 Interactive Version

We are ready to introduce the interactive version of the ISISf problem which will be used as an underlying
cryptographic assumption for our anonymous credentials. The main difference is that we allow the adversary
to make preimage queries with respect to adaptively chosen messages, i.e. it has access to the preimage oracle
Opre. Here, Opre on input (mi, ri) first samples xi ← [N ] and then returns xi along with

si ← A−1
𝔰

(
f(xi) + C

[
mi

ri

])
where C is a uniformly random public matrix. The adversary’s goal is to come up with a new tuple
(x∗, s∗,m∗, r∗) such that s∗,m∗, r∗ are short vectors,

As∗ = f(x∗) + C
[
m∗
r∗
]

(7)

10 We recall the skew-circulant matrices and the function rot in Section 2.
11 Obviously, one could try to use ILP for smaller k to decrease the bound on s∗.
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ExpInt-ISISf
pp (A)

1: A← Rn×m
q

2: C← Rn×(ℓm+ℓr)
q

3: M = ∅
4: (x∗, s∗,m∗, r∗)← AOpre(A,C)

5: if
(
m∗ ̸∈ M

)
∧
(

As∗ = f(x∗) + C
[
m∗
r∗
])
∧
(
0 < ∥s∗∥ ≤ Bs

)
∧
(
∥(m∗, r∗)∥ ≤ Bm

)
6: then return 1
7: else return 0

Opre(m, r)
1: if ∥(m, r)∥ < Bm
2: then return ⊥
3: x← [N ]

4: s← A−1
𝔰

(
f(x) + C

[
m
r

])
5: M←M∪ {m}
6: return (x, s)

Fig. 4: Interactive version of the ISISf problem.

and m∗ ̸∈ {m1, . . . ,mk} where k is the number of oracle queries. In order to avoid trivial attacks, we require
the inputs (mi, ri) to the preimage oracle Opre to be short vectors as well.

Definition 3.2 (The Interactive ISISf Problem). Define public parameters pp := (q, d, n,m, ℓm, ℓr, N, 𝔰,Bs,Bm)
as a tuple of functions of the security parameter λ. Consider any efficiently computable function f : [N ]→ Rn

q.
The Int-ISISf assumption is defined by the experiment in Figure 4. For an adversary A, we define

AdvInt-ISISf
pp (A) = Pr[ExpInt-ISISf

pp (A)→ 1].

The Int-ISISpp
f assumption states that for every PPT adversary A, AdvInt-ISISf

pp (A) is negligible.

The main result of this section is an efficient reduction from the interactive ISISf to the one in Definition 3.2.

Theorem 3.3 (Int-ISISf =⇒ ISISf). Let pp := (q, d, n,m, ℓm, ℓr, N, 𝔰,Bs,Bm) be public parameters such
that q/2 > Bm ≥ 1,m = n log q + r, and

M := exp
(

1 + 1
2α2

)
and ε := 2

(
1 + ϵ

1− ϵ

)
exp

(
−2α2 · π − 1

π

)
where ϵ ≤ 1/2, α ≥ 1 and r > 0. Suppose 𝔰 ≥ max

(
ηmin(ϵ), αBmd

√
(ℓm + ℓr)m

)
. Then, for every adversary

A which makes at most Q queries to Opre, there is an adversary A′ which runs in time essentially identical
to A and

AdvISISf

pp′ (A′) ≥ 1
6QAdvInt-ISISf

pp (A)− ℓm + ℓr
12Q

√(
1 + 2−r

)d
− 1− 2−λ

6 − T 2
maxQ

12N

− ℓm
3 · 2

−rd −
(
Q− 2

3

)
Tmax

(
ε

2M − 2ϵ
M

)
− 2−d+2

3

where pp′ := (q, d, n,m, N, TmaxQ, 𝔰,B = Bs + Bmd
√

(ℓm + ℓr)m) and Tmax satisfies
(
1− 1

M

)Tmax ≤ 2−λ.

Proof. Assume without loss of generality that A makes exactly Q queries. We will prove the statement using
a hybrid argument. Namely, in each game we will either modify the execution of the Opre oracle, or change
the execution of the challenger. In the following, define Ei to be the event that A wins the Int-ISISf experiment.

Game1: This is the standard Interactive ISISf game. Hence, Pr[E1] = ε. Let us denote the preimage or-
acle O0 := Opre.

Game2: Here, instead of sampling C uniformly random, the challenger first picks a uniformly random matrix
of binary polynomials D ∈ Rm×(ℓm+ℓr)

q and sets C = AD.
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O1(m, r)
1: if ∥(m, r)∥ > Bm
2: then return ⊥
3: ctr = 0
4: while ctr ≥ 0 do
5: x← [N ]

6: s← A−1
𝔰

(
f(x) + C

[
m
r

])
7: u← [0, 1)
8: if u ≤ 1

M :
9: M←M∪ {m}

10: return (x, s)
11: ctr = ctr + 1
12: return ⊥

O2(m, r)
1: if ∥(m, r)∥ > Bm
2: then return ⊥
3: ctr = 0
4: ρ = ⊥
5: while ctr < Tmax do
6: x← [N ]

7: s← A−1
𝔰

(
f(x) + C

[
m
r

])
8: u← [0, 1)
9: if u ≤ 1

M ∧ ρ = ⊥ :
10: M←M∪ {m}
11: ρ = (x, s)
12: ctr = ctr + 1
13: return ρ

O3(m, r)
1: if ∥(m, r)∥ > Bm
2: then return ⊥
3: v = D

[
m
r

]
4: ctr = 0
5: ρ = ⊥
6: while ctr < Tmax do
7: x← [N ]
8: s̄← A−1

𝔰 (f(x))
9: s = s̄ + v

10: u← [0, 1)

11: if u ≤ min
(

D
md
𝔰 (s)

M ·Dmd
𝔰,v(s)

, 1
)
∧ ρ = ⊥ :

12: M←M∪ {m}
13: ρ = (x, s)
14: ctr = ctr + 1
15: return ρ

Fig. 5: Preimage oracles Opre used in the hybrid argument.

Lemma 3.4. Pr[E2] ≥ Pr[E1]− ℓm+ℓr

2

√(
1 + 2−r

)d
− 1.

Proof. The result follows directly from the ring version of the leftover hash lemma [19, Lemma 7].

Game3: In this game, we run Opre as O1 defined in Figure 5.

Lemma 3.5. Pr[E3] = Pr[E2].

Proof. Define CTR to be the random variable which is the value of ctr when O1 actually outputs (x, s). Then,
for any (m, r) such that ∥(m, r)∥ ≤ Bm, and any possible output (x, s) we have:

Pr[(x, s)← O1(m, r)] =
∞∑
i=0

Pr[(x, s)← O1(m, r) ∧ CTR = i]

=
∞∑
i=0

1
M

(
1− 1

M

)i
Pr[(x, s)← O0(m, r)]

= Pr[(x, s)← O0(m, r)].

When ∥(m, r)∥ > Bm, then both O1 and O0 output ⊥ in the first step. Hence, the two oracles behave
identically and thus Pr[E3] = Pr[E2].

Game4: In this game, we run Opre as O2 defined in Figure 5.

Lemma 3.6. Pr[E4] ≥ Pr[E3]−Q2−λ.

Proof. The only change is that we abort when ctr reaches Tmax. Hence, the statistical distance betweenO2(m, r)
and O1(m, r) is at most

(
1− 1

M

)Tmax ≤ 2−λ. Hence, Pr[E4] ≥ Pr[E3]−Q
(
1− 1

M

)Tmax ≥ Pr[E3]−Q2−λ.

Game5: It differs from the previous game in a sense that we abort whenever O2 picks an index x, which was
already sampled, even if it was not sent to the adversary. Recall that we still use the preimage oracle O2.

Lemma 3.7. Pr[E5] ≥ Pr[E4]− T
2
maxQ

2

2N .

Proof. The inequality follows directly from the birthday bound.
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Game6: We still use the preimage oracle O2. The only change is in the challenger execution. First, the
challenger additionally keeps track of all generated variables. Namely, define

X :=
{(

x, s−D
[
m
r

])
: x and s were generated while querying O2(m, r)

}
. (8)

In particular, X contains pairs which were not sent to adversary. Further,

Y :=
{(

x, s−D
[
m
r

])
: x and s were sent to A by O2(m, r)

}
. (9)

Then, we have the following simple relations: |X | = TmaxQ, |Y| = |M| ≤ Q and Y ⊆ X . In this game, the
challenger aborts when the output vectors from A satisfy the following:(

x∗, s∗ −D
[
m∗
r∗
])
∈ X\Y.

Lemma 3.8. Pr[E6] ≥ 1
2 · Pr[E5].

Proof. Denote X0 := {x ∈ [N ] : ∃s, (x, s) ∈ X} and similarly for Y0. It is easy to see that

Pr[E6 ∧ x
∗ ∈ Y0] = Pr[E5 ∧ x

∗ ∈ Y0] and Pr[E6 ∧ x
∗ ̸∈ X0] = Pr[E5 ∧ x

∗ ̸∈ X0].

In the following, we show Pr[E6 ∧ x
∗ ∈ X0\Y0] ≥ 1

2 Pr[E5 ∧ x
∗ ∈ X0\Y0] which concludes the proof. Suppose

that A wins Game5 and the output index is in X0\Y0, i.e. there exists a unique z such that (x∗, z) ∈ X\Y
(by conditions of Game5). Because this pair does not belong to Y, it was rejected during the execution of O2
on some input (m′, r′). Define

z∗ := s∗ −D
[
m∗ −m′

r∗ − r′
]
.

By definition of X\Y, s′ := z + D
[
m′

r′
]

is perfectly hidden among the preimages of f(x∗) + C
[
m′

r′
]

under

A since the adversary did not actually see s′. Let u be a polynomial vector with ternary coefficients in
Λ⊥q (A), which exists since m > n log q. Note that ∥u∥ ≤

√
md and 𝔰 ≥ αBmd

√
(ℓm + ℓr)m ≥

√
md ≥ ∥u∥.

Therefore, s∗ −D
[
m∗
r∗
]

= z ⇐⇒ s′ = z∗, and also

Pr
[
s′ = z∗

∣∣∣E5 ∧ x
∗ ∈ X0\Y0

]
≤

exp
(
−∥z∗∥2

−2𝔰2

)
exp

(
−∥z∗∥2

2𝔰2

)
+ exp

(
−∥z∗+u∥2

2𝔰2

)
+ exp

(
−∥z

∗+u∥2

2𝔰2

)
≤ 1

1 +
(

exp
(
− ⟨z

∗
,u⟩

𝔰
2

)
+ exp

(
⟨z∗

,u⟩
𝔰

2

))
exp

(
−∥u∥

2

2𝔰2

)
≤ 1

1 + 2 exp
(
−∥u∥

2

2𝔰2

)
≤ 1

1 + 2 exp
(
− 1

2
) ≤ 1

2 .

By taking the complement, we deduce that

Pr
[
s∗ −D

[
m∗
r∗
]
̸= z
∣∣∣E5 ∧ x

∗ ∈ X0\Y0

]
≥ 1

2 .

Finally, note that if E5 ∧ x
∗ ∈ X0\Y0 hold and additionally s∗ −D

[
m∗
r∗
]
̸= z, then we must have(

x∗, s∗ −D
[
m∗
r∗
])
̸∈ X\Y
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Game9

1. Generate A← Rn×m
q .

2. Sample D← {0, 1}md×(ℓm+ℓr)d and set C = AD.
3. Set M = ∅.
4. Sample j∗ ← [Q].
5. Run (x∗, s∗,m∗, r∗)← AO

′

(A,C), where O′ is defined below.

6. Define s̃ = s∗ −D
[
m∗
r∗
]

7. If all the conditions below hold, then return 1 and 0 otherwise:
– m∗ ̸∈ M and ∥(m∗, r∗)∥ ≤ Bm and ∥s∗∥ ≤ Bs (from the Int-ISISf game),
– As̃ = f(x∗) (from the Int-ISISf game),
– ∀(x, s) ̸= (x′, s′) ∈ X , x ̸= x′ (from Game5),
–
(
x∗, s̃

)
̸∈ X\Y (from Game6),

– if x∗ ∈ Y0, then x∗ must have been generated in the j∗-th oracle query (from Game7),
–
(
x∗, s̃

)
̸∈ Y (from Game9).

Fig. 6: Description of Game9. Here, O′ behaves as O2, apart from the j
∗-th query where it behaves like O3

(defined in Figure 5.)

since (x∗, z) ∈ X\Y and there is at most one pair in X of the form (x∗, ·) by the condition introduced in
Game5. This implies that

Pr[E6 ∧ x
∗ ∈ X0\Y0] ≥ 1

2 Pr[E5 ∧ x
∗ ∈ X0\Y0]

which concludes the proof.

Game7: At the beginning, the challenger samples an index j∗ ← [Q]. Then at the end, if x∗ ∈ Y0 and x∗ was
not sampled in the j∗-th query then the challenger aborts. We still use the preimage oracle O2.

Lemma 3.9. Pr[E7] ≥ 1
Q Pr[E6].

Proof. Clearly, if x∗ ̸∈ Y0 then the game behaves identically as before. However, if x∗ ∈ Y then with
probability at least 1/Q we have that x∗ was sampled during the j∗-th oracle query.

Game8: In this game, only for the j∗-th oracle query, instead of executing O2 we run O3 as in Figure 5.

Lemma 3.10. Pr[E8] ≥ Pr[E7]− Tmax
(
ε

2M + 2ϵ
M

)
− 2d.

Proof. First, we exclude the case that η′ϵ(Λ
⊥
q (A)) > ηmin which occurs with probability 2−d. Then, by our

parameter selection and Lemma 2.5, the statistical distance between O3(m, r) and O2(m, r) is at most
ε

2M + 2ϵ
M . Hence, the statement follows by the hybrid argument.

Game9: For presentation purposes, we summarise the security game in Figure 6. The difference from the
previous game is that the adversary loses whenever(

x∗, s∗ −D
[
m∗
r∗
])
∈ Y.

Lemma 3.11. Pr[E9] ≥ 1
3 Pr[E8]− ℓm·2

−rd

3 .
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Game′9

1. Generate A← Rn×m
q .

2. Sample D = (di)i∈[ℓm+ℓr] ← {0, 1}
md×(ℓm+ℓr)d and set C = AD.

3. Set M = ∅.
4. Sample j∗ ← [Q].
5. Run (x∗, s∗,m∗, r∗)← AO

′

(A,C), where O′ as in Figure 6.
6. If one of the conditions below does not hold, then return 0:

– m∗ ̸∈ M and ∥(m∗, r∗)∥ ≤ Bm and ∥s∗∥ ≤ Bs (from the Int-ISISf game),
– ∀(x, s) ̸= (x′, s′) ∈ X , x ̸= x′ (from Game5),
– x∗ must have been generated in the j∗-th oracle query (from Game7 and the condition x∗ ∈ Y0).

7. Let (mj
∗ , rj∗) be the input for the j∗-th query, s̄j∗ be the generated preimage, and denote the query

output as (x∗, sj∗) ∈ Y.
8. Let i∗ ∈ [ℓm] be the index for which m∗i∗ ̸= mj

∗
,i

∗ .
9. Flip a bit b← D, where D is defined as D(0) = 1/3 and D(1) = 2/3.

10. If b = 0, then set s̄ = s̄j∗ and D̄ = D.
11. If b = 1, sample s̄← Dmd

𝔰 and d̄← {0, 1}md conditioned on

As̄ = f(x∗), Ad̄ = Adi∗ , sj∗ = s̄ + D̄
[
mj

∗

rj∗

]
where D̄ :=

[
d1 · · · di∗−1 d̄ di∗+1 · · · dℓm+ℓr

]
.

12. Define s̃ = s∗ − D̄
[
m∗
r∗
]

13. If all the conditions below hold, then return 1 and 0 otherwise:
– As̃ = f(x∗) (from the Int-ISISf game),
– s̃ ̸= s̄ (from Game9 and the condition that x∗ ∈ Y0).

Fig. 7: Description of the alternative game Game′
9.

Proof. We follow the proof strategy from [54, Theorem 3.2]. Note that conditioned on x∗ ̸∈ Y0 the two
security games are identical. Hence, in the following we show

Pr[E9 ∧ x
∗ ∈ Y0] ≥ 1

3 Pr[E8 ∧ x
∗ ∈ Y0]− ℓm · 2

−rd

3 .

Let us consider the following alternative game Game′9 defined in Figure 7 and denote E′9 to be the event that
the adversary wins Game′9. We claim that Pr[E′9] = Pr[E9 ∧ x

∗ ∈ Y0]. Indeed, the only change is that the
challenger resamples the vectors s̄j∗ (which is the preimage generated in the j∗-th query) and D according to
their original distributions conditioned on what the adversary A already knows (e.g. it knows the value sj).
Hence, from now on we focus on Game′9.

Let us denote s̃j∗ := s∗ −D
[
m∗
r∗
]
. In the following, we will use the fact that when b = 0, we have s̃j∗ = s̃.

Next, we partition the success probability into two parts: Pr[E′9] = Pr[E′9 ∧ s̃j∗ ̸= sj ] + Pr[E′9 ∧ s̃j∗ = sj ]. Now,
one observes that

Pr[E′9 ∧ s̃j∗ ̸= sj ] ≥ Pr[E′9 ∧ s̃j∗ ̸= s̄j∗ ∧ b = 0]

≥ 1
3 · Pr[E′9 ∧ s̃j∗ ̸= s̄j∗ |b = 0]

≥ 1
3 Pr

[
E8 ∧ x

∗ ∈ Y0 ∧ s̃ ̸= s̄ ∧ s̃j∗ ̸= s̄j∗ |b = 0
]

≥ 1
3 Pr

[
E8 ∧ x

∗ ∈ Y0 ∧ s̃j∗ ̸= s̄j∗
]
.

For the second part, let us denote

S(D, i∗) :=
{[

d1 · · · di∗−1 e di∗+1 · · · dℓm+ℓr

]
: Ae = Adi∗ ∧ e ∈ {0, 1}(ℓm+ℓr)d

}
.
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Clearly, D ∈ S(D, i∗). Further,

Pr[E′9 ∧ s̃j∗ = sj ] ≥ Pr[E′9 ∧ s̃j∗ = s̄j∗ ∧ |S(D, i∗)| ≥ 2]
≥ Pr[E′9 ∧ s̃j∗ = s̄j∗ ∧ |S(D, i∗)| ≥ 2 ∧ b = 1].

For presentation purposes, define the event

E := (E8) ∧ (x∗ ∈ Y0) ∧ (s̃j∗ = s̄j∗) ∧ (|S(D, i∗)| ≥ 2) ∧ (b = 1).

Then,
Pr[E] ≥ 2

3 Pr[E8 ∧ x
∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ∧ |S(D, i∗)| ≥ 2]

≥ 2
3
(
Pr[E8 ∧ x

∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ]− Pr[E8 ∧ x
∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ∧ |S(D, i∗)| = 1]

)
≥ 2

3

(
Pr[E8 ∧ x

∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ]− ℓm
(
qn

2m

)d)
where for the last inequality we used the fact from [53, Lemma 5.2] to deduce that

Pr[E8 ∧ x
∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ∧ |S(D, i∗)| = 1]

≤ Pr[E8 ∧ x
∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ∧ ∃i, |S(D, i)| = 1]

≤ Pr[∃i, |S(D, i)| = 1]

≤
ℓm∑
i=1

Pr[|S(D, i)| = 1]

≤ ℓm
(
qn

2m

)d
= ℓm · 2

−rd.

Thus,
Pr[E′9 ∧ s̃j∗ = s̄j∗ ] ≥ Pr[E′9 ∧ s̃j∗ = s̄j∗ ∧ |S(D, i∗)| ≥ 2 ∧ b = 1]

≥ Pr[s̃ ̸= s̄|E] · Pr[E].

We claim that
Pr[s̃ = s̄|E] ≤ Pr[s̄ = s̄j∗ ∧ D̄ = D|E].

Indeed, suppose s̃ = s̄ which by definition implies

s∗ = s̄ + D̄
[
m∗
r∗
]
.

We know from E that s̃j∗ = s̄j∗ , i.e.

s̄j∗ + D
[
m∗
r∗
]

= s∗ = s̄ + D̄
[
m∗
r∗
]
.

Also, we know from Step 11 of Figure 7 that:

s̄j∗ + D
[
mj

∗

rj∗

]
= sj∗ = s̄ + D̄

[
mj

∗

rj∗

]
.

By subtracting the two equations, we end up with

(D− D̄)
[
m∗ −mj

∗

r∗ − rj∗

]
= 0.
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Since both matrices D, D̄ belong to S(D, i∗), we have (m∗i∗ −mj
∗
,i

∗)(dj,i∗ − d̄i∗) = 0 where di∗ , d̄i∗ are the
i∗-th columns of D, D̄ respectively. Since 2Bm < q, we deduce that this equation holds over integers. Further,
we know that m∗i∗ ̸= mj

∗
,i

∗ which implies that di∗ = d̄i∗ and thus D = D̄. Consequently, s̄ = s̄j∗ and the
claim follows. Hence, we have

Pr[s̃ = s̄|E] ≤ Pr[s̄ = s̄j∗ ∧ D̄ = D|E] ≤ Pr[D̄ = D|E] ≤ 1
2 .

This is because E includes the event that S(D, i∗) contains at least two elements. Therefore, we conclude that

Pr[E′9 ∧ s̃j∗ = s̄j∗ ] ≥ 1
2 ·

2
3

(
Pr[E8 ∧ x

∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ]− 2−rd
)

≥ 1
3 Pr[E8 ∧ x

∗ ∈ Y0 ∧ s̃j∗ = s̄j∗ ]− ℓm · 2
−rd

3
and thus

Pr[E9 ∧ x
∗ ∈ Y0] ≥ Pr[E′9] ≥ 1

3 Pr[E8 ∧ x
∗ ∈ Y0]− ℓm · 2

−rd

3
which finishes the proof.

Game10: In this game, throughout the experiment A queries Opre defined as O3 in Figure 5 (not only for the
j∗-th query).
Lemma 3.12. Pr[E10] ≥ Pr[E9]− (Q− 1)Tmax

(
ε

2M + 2ϵ
M

)
− 2−d.

Proof. It follows identically as in Lemma 3.10.

Finally, our reduction runs as a challenger in Game10. Namely, it first gets TmaxQ pairs (xi, si)i∈[TmaxQ] from
the ISISf challenger, i.e. As = f(xi), and then uses them to simulate the query outputs from O3. Note that if
A wins Game10 then the set X contains exactly these pairs, and further the output (x∗, s̃) does not belong to
X (from Game6 and Game9). Also,

∥s̃∥ ≤ ∥s∗∥+
∥∥∥∥D

[
m∗
r∗
]∥∥∥∥ ≤ Bs + Bmd

√
(ℓm + ℓr)m = B.

Therefore, the reduction outputs a valid ISISf solution. Now, using all the previous lemmas, the probability
that the reduction wins the ISISf game can be lower-bounded as

Pr[E10] ≥ Pr[E9]− (Q− 1)Tmax

(
ε

2M + 2ϵ
M

)
− 2−d

≥ 1
3 Pr[E8]− ℓm · 2

−rd

3 − (Q− 1)Tmax

(
ε

2M + 2ϵ
M

)
− 2−d

≥ 1
3 Pr[E7]− ℓm · 2

−rd

3 −
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

)
− 2−d+2

3

≥ 1
3Q Pr[E6]− ℓm · 2

−rd

3 −
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

)
− 2−d+2

3

≥ 1
6Q Pr[E5]− ℓm · 2

−rd

3 −
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

)
− 2−d+2

3

≥ 1
6Q Pr[E4]− T 2

maxQ

12N − ℓm · 2
−rd

3 −
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

)
− 2−d+2

3

≥ 1
6Q Pr[E3]− 2−λ

6 − T 2
maxQ

12N − ℓm · 2
−rd

3 −
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

)
− 2−d+2

3

≥ 1
6Q Pr[E2]− 2−λ

6 − T 2
maxQ

12N − ℓm · 2
−rd

3 −
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

)
− 2−d+2

3

≥ 1
6Q Pr[E1]− AddLoss
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where

AddLoss := ℓm + ℓr
12Q

√(
1 + 2−r

)d
− 1 + 2−λ

6 + T 2
maxQ

12N + ℓm · 2
−rd

3

+
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

)
+ 2−d+2

3

which concludes the proof.

Asymptotic parameter selection. Let d = O(λ), α = O(
√
λ) and ϵ = negl(λ). Then, M = O(1), ε = negl(λ)

and Tmax = O(λ).
Suppose we want Int-ISISf to be hard against efficient adversaries, and thus Q = poly(λ). This implies

that we need N to be exponential in λ. Next, to use the leftover hash lemma, we set r ≥ ω(log d). With these
parameters, if a PPT adversary A solves Int-ISISf with probability δ, then there is a PPT adversary which
solves ISISf with probability δ/(12Q)− negl(λ).

3.3 Applications to Exotic Signatures

We briefly explain how to build digital signatures [41, 69], group signatures [11, 68] and blind signatures [39,
3, 67] from the (interactive) ISISf assumption.

Signature schemes. We can directly build standard model signatures using the hash-and-sign GPV framework.
Namely, the secret key is a trapdoor for the public matrix A. Let C be another uniformly random matrix
(which corresponds to the C in the interactive ISISf problem). Then, to sign a (short) message m, we sample
a uniformly random x← [N ] and compute a short preimage s which satisfies As = f(x) + Cm. Thus, the
signature is a pair (x, s). Unforgeability follows directly from the Int-ISISf assumption.

Group signatures. Let L be the size of the group and for i ∈ [L], let mi to be the polynomial vector whose
coefficient vector is the binary representation of i. We follow the standard sign-and-encrypt approach. Namely,
the setup authority generates matrices (A,C), along with the trapdoor for preimage sampling. Then, for
each user i ∈ [L], it generates a uniformly random xi ← [N ] and computes a short preimage si that satisfies
Asi = f(xi) + Cmi. Hence, the signature for user i consists of a zero-knowledge proof of knowledge π that
i ∈ [L], xi ∈ [N ], and short si such that Asi = f(xi)+Cmi

12. Since we obtain π by applying the Fiat-Shamir
transformation to an interactive proof, the message to sign is included as an input to the hash function.

Blind signatures. We follow the Fischlin framework for constructing round-optimal blind signatures. The
public key are the matrices (A,C), while the secret key is a trapdoor for A. Suppose the user wants to obtain

a signature on a short message vector m. It first computes the Ajtai commitment [4] on m, i.e. u := C
[
m
r

]
,

where r is a fresh, short randomness vector, and sends u to the signer along with a proof πu of well-formedness
of u .The signer, who possess the trapdoor for matrix A, samples x← [N ] and returns to the user a short
vector s which satisfies As = f(x) + u. Finally, the user outputs as a signature a zero-knowledge proof of
knowledge πs of x ∈ [N ], short randomness r and a short vector s such that

As = f(x) + C
[
m
r

]
,

where m is a part of the statement. This is also the approach we take for constructing anonymous credentials
in Section 8 (see Section 4 for more background on anonymous credentials).

12 The signature should also contain a verifiable encryption of i using the opener’s public key.
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4 Background on Anonymous Credentials

We recall the definitions of the anonymous credentials. The entities involved in the scheme are the following:
(i) the issuer I certifies attributes of holders, (ii) the holder H receives credentials about their attributes and
uses them to authenticate to third parties, and (iii) the verifier V engages in a protocol with a holder H, and
learns a subset of the attributes of the holder.

Definition 4.1 (Anonymous Credentials). An anonymous credentials scheme is a triple (Init, IssueI,H,VerifyH,V)
of algorithms defined as follows:

– (ipk, isk)← Init(1λ, 1l): the initialisation algorithm takes as input the security parameter 1λ and the nonzero
size l (in unary) of the array of attributes the issuer will certify, and generates the issuer public key ipk
and the issuer secret key isk.

– cred/⊥ ← IssueI,H⟨(isk, attrs′, idx), (ipk, attrs, idx)⟩: this is the issuing protocol between issuer I and holder
H. The holder has as input the issuer public key ipk, an array attrs := [ai]i∈[l] of attributes ai ∈ {0, 1}

∗ and
an array idx ∈ [l]l

′

, 1 ≤ l′ ≤ l of l′ pairwise distinct indices for the attributes in attrs that will be revealed to
the issuer. The issuer has as input the issuer secret key isk, an array of disclosed attributes attrs′ := [a′i]i∈idx
and indices idx. The holder outputs a credential cred over attributes attrs if ∀i ∈ idx, attrs′i = attrsi or ⊥
otherwise.

– ⟨⊥, 1/0⟩ ← VerifyH,V⟨(cred, attrs, idx), (ipk, attrs′, idx)⟩: this is a protocol between a holder H and a verifier
V. The holder H has as input a credential cred, an array attrs := [ai]i∈[l] of attributes ai ∈ {0, 1}

∗ and an
array idx ∈ [l]l

′

, 1 ≤ l′ ≤ l of l′ pairwise distinct indices for the attributes in attrs that will be revealed to the
verifier. The verifier V has as input the issuer public key ipk of issuer I, an array of disclosed attributes
attrs′ := [a′i]i∈idx and indices idx. The verifier outputs 1 if cred is a valid credential from issuer I over
attributes attrs such that ∀i ∈ idx, attrs′i = attrsi, and 0 otherwise.

Related work. Anonymous credential systems offer to individuals the means to achieve control over the way
information about themselves is exchanged for purposes such as authentication to third parties and payments.
Camenisch and Lysyanskaya [24] present one of the first formal definitions and practical constructions for
anonymous credential systems. The protocols that realise these schemes enable holders to receive credentials
over their attributes from issuers, and later present subsets of these attributes to verifiers. These interactions
preserve the privacy of holders upon issuance (since the holder can hide a subset of the certified attributes)
and upon verification (since verifications are unlinkable and support the disclosure of subsets of the certified
attributes). Subsequent constructions based on CL signature scheme [23], BBS+ signature scheme [14, 8] and
associated efficient proof system [20], or on signatures based on SXDH assumption [49] are integrated into
prominent open-source self-sovereign identity projects such as Hyperledger Indy [44], Hyperledger Aries [43]
or the MATTR stack [63], or are proposed as an IETF standard draft [50]. These more recent constructions
are based on a combination of signature schemes supporting blind signing (to achieve issuer anonymity) and
multi-message (to efficiently accumulate multiple attributes into a single signature); commitment schemes
and efficient zero-knowledge proof systems (to achieve unlinkable presentations and prove properties about
pairs of attributes).

Additional aspects. The definitions above are minimalistic: while they capture the essential features of
anonymous credential systems (blind issuance for a subset of attributes, unlinkability of verifications and
selective disclosure of attributes), they exclude several aspects that feature in prominent related works, whose
absence we review and justify here. The first aspect relates to pseudonyms [26, 27, 29, 51], which are optional,
verifier-specific identifiers that a holder can present upon verification. Pseudonyms enable selective tracking
of holders, since verifiers can link verifications that used the same pseudonym. Pseudonyms at different
verifiers cannot be linked together, and verifier-specific pseudonyms cannot be forged arbitrarily by holders to
fraudulently present different personas. Pseudonyms are typically realised by adding a user initialisation and
registration phase during which the user generates a private key and has this key blindly signed by issuers;
pseudonyms can then be derived by committing the private key in a non-hiding way against a verifier-specific
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base and proving equality between the signed private key and the committed one. While neither user private
keys nor pseudonyms are captured in our definitions, we remark that these can be easily integrated on top of
any scheme that instantiates our definition: user secret key may simply be one of the undisclosed attributes
upon issuance; and verification may be extended to include commitments to undisclosed attributes alongside
proofs of equality between committed and signed attributes to achieve pseudonyms. A closely related aspect
is that of all-or-nothing transferability, that requires that sharing a credential amongst colluding holders
require sharing private key material, which represents a strong incentive not to engage in such practices.
This is once again typically achieved by including private keys in the issuance, whose knowledge must be
proved upon verification. Such keys might further be stored in HSMs or similar hardware facilities to make
the sharing of these keys impossible. Another aspect relates to enforceable one-show credentials [24]. This
property has meanwhile been decoupled from identity system proper, and has been further developed in
payment-systems under the wider notion of double-spending resistance. Finally, the topic of revocation of
anonymous credentials has received a lot of attention. The approaches proposed in the literature [25, 21, 22]
can be typically integrated on top of a basic scheme, provided that it supports blind issuance and proof of
knowledge of equality of committed attributes. These can be simply integrated on top of our construction, as
it shall become apparent later.

Security Definitions. Informally, we require the scheme to be secure against any coalition comprising a
malicious issuer, malicious holders and verifiers who attempt to learn more information about a victim
holder (e.g. learn an undisclosed attribute upon verification) or link the same victim holder across multiple
verifications. For example, if a holder repeatedly authenticates disclosing only their vaccination status, no
coalition of malicious verifiers/holders should learn any information about any of the other certified attributes,
nor should they be able to learn whether the same holder or two different ones disclosed twice that same
vaccination status. We also require credentials to be unforgeable, constraining the ability of any coalition of
malicious holders to successfully pass verification against an honest verifier for an array of attributes different
from those that were certified by an honest issuer.

In what follows we present definitions of correctness, anonymity and one-more unforgeability.

Definition 4.2 (Correctness). An anonymous credential scheme is correct if for any λ ∈ N, l ∈ N, l′ ∈ [l],
l′′ ∈ [l], any idx′ ∈ [l]l

′

such that its elements are pairwise distinct, any idx′′ ∈ [l]l
′′

such that its elements
are pairwise distinct, any array attrs := [a0, . . . , al−1], attrs′ := [a′0, . . . , a′l′−1] and attrs′′ := [a′′0 , . . . , a′′l′′−1] of
attributes such that ∀i ∈ idx′, attrsi = attrs′i and ∀i ∈ idx′′, attrsi = attrs′′i :

Pr
[
(ipk, isk)← Init(1λ, l) : ⊥ ← IssueI,H⟨(isk, attrs′, idx′), (ipk, attrs, idx′)⟩

]
≤ negl(λ) (10)

and

Pr

 (ipk, isk)← Init(1λ, l),
cred← IssueI,H⟨(isk, attrs′, idx′), (ipk, attrs, idx′)⟩ :

⟨⊥, 0⟩ ←
VerifyH,V⟨(cred, attrs, idx′′),

(ipk, attrs′′, idx′′)⟩

 ≤ negl(λ). (11)

Definition 4.3 (Anonymity Game). The anonymity game is played between adversary A and challenger
C.

1. Setup. The adversary receives the security parameter 1λ and outputs the issuer public key ipk.
2. Challenge. A chooses two arrays of attributes attrs0 and attrs1 such that |attrs0| = l and |attrs1| = l, and

an array of indices idx∗ ∈ [l]l
′

, 1 ≤ l′ ≤ l such that ∀i ∈ idx∗, attrs0,i = attrs1,i. The challenger C picks
b ∈ {0, 1}. Then, A and C run the IssueI,H⟨(·, ·, ·, ·), (ipk, attrsb, idx∗)⟩ protocol, where the challenger plays
the role of the holder on input attribute array attrsb and revealed indices idx∗ and the adversary plays the
role of the issuer. If the protocol succeeds, the challenger stores the generated credb. Next, the adversary
and the challenger run the VerifyH,V⟨(credb, attrsb, idx∗), (·, ·, ·)⟩ protocol, where the challenger plays the
role of the holder on input the credential credb generated previously, attribute array attrsb and revealed
indices idx∗ and the adversary plays the role of the verifier.
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3. Response. A outputs b′ and wins the game if b′ = b.

Definition 4.4 (Anonymity). A credential scheme has the Anonymity property if no PPT adversary A
can win the Anonymity game with advantage greater than 1

2 + negl(λ).

Definition 4.5 (One-More Unforgeability Game). The one-more unforgeability game is played between
adversary A and challenger C.

1. Setup. The challenger runs the Init algorithm, sends ipk to the adversary and stores isk and .
2. Queries. A has access to the following oracle:

– OIssue(H, attrs, idx): adversaryA requests the creation of a credential for holderH over disclosed attributes
attrs at indices idx. Then, C and A run the IssueI,H⟨(isk, attrs, idx), (·, ·, ·)⟩ protocol where the challenger
plays the role of the issuer I on input the issuer secret key isk, the requested attributes attrs and indices
idx, and the adversary plays the role of the holder. If it succeeds, the issuer increments QIssue.

3. Response. We say that A wins the one-more unforgeability game if it outputs L := {⟨attrsi, idxi⟩} of size
QIssue + 1 such that the following conditions hold:
– for all i ∈ [QIssue + 1], ⟨⊥, 1⟩ ← VerifyH,V⟨(·, ·, ·), (ipk, attrsi, idxi)⟩ where the challenger plays the role

of the verifier on input the issuer public key ipk and each of the pairs of attributes and indices
⟨attrsi, idxi⟩ ∈ L, and the adversary plays the role of the holder,

– for each distinct pairs ⟨attrsi, idxi⟩ ∈ L and ⟨attrsj , idxj⟩ ∈ L, there exists at least one index i∗ in both
idxi and idxj such that attrsi,i∗ ̸= attrsj,i∗ .

Definition 4.6 (One-More Unforgeability). A credential scheme is one-more unforgeable if no PPT
adversary A can win the one-more unforgeability game with greater than negligible advantage.

5 Proof of Knowledge of a Preimage of SISbin

In the construction of anonymous credentials, we will need to provide a proof of knowledge of the ISISbin
secret, as in Equation 7. For the interactive ISISbin case, it means proving knowledge of a vector u⃗ ∈ Zn

q̂, as
well as short vectors s⃗ ∈ Zm

q̂ and r⃗ ∈ Zℓr

q̂ such that

u⃗ ∈ {0, 1}t, ∥s⃗∥ ≤ Bs and ∥r⃗∥ ≤ Br,

P s⃗ = Bu⃗+ C

[
m⃗
r⃗

]
(mod q̂),

(12)

where
P ∈ Zn×m

q̂ , C ∈ Zn×(ℓm+ℓr)
q̂ , m⃗ ∈ Zℓm

q̂ , B ∈ Zn×t
q̂ , Bounds := (Bs,Br)

are parts of the statement, along with some auxiliary information aux. Clearly, as long as q|q̂, we can map
equations such as (7) to this setting with standard transformation from Rq to Zdq using multiplication matrices
(c.f. Section 2) and by lifting from Zq to Zq̂.

In order to prove (12), we make use of the LNP framework, developed recently by Lyubashevsky et al.
[57], for proving various lattice-related statements. For completeness, we provide the full protocol for proving
(12) and refer to [57] for more details.

5.1 Background

Notation. In the following, we introduce a few variables which might be also present in the other sections. We
highlight that these are only defined for this section, and thus they have no relation with variables outside
this section, unless specified otherwise.

Denote H to be the random oracle used for the NIZK. Let d̂ be a power-of-two and R̂ := Z[X]/(X d̂ + 1).
For a modulus q̂ ∈ N, define R̂q̂ := R̂/(q̂). In this work, q̂ = p̂1p̂2 is a product of two primes p̂i of the
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form p̂i = 5 (mod 8) and p̂1 < p̂2. For a polynomial x ∈ R̂q̂, we define x̃ to be the constant coefficient of x.
Furthermore, we assume that d̂ divides the security parameter λ.

Let σ : R̂q̂ → R̂q̂ be the ring automorphism defined by σ(X) := X−1. For a polynomial vector (and
similarly for a matrix) x = (x1, . . . , xn) ∈ R̂nq̂ , define σ(x) := (σ(x1), . . . , σ(xn)). Further, let τ ∈ N be such
that 1/p̂τ1 = negl(λ), i.e. a parameter used for soundness amplification.

ABDLOP Commitment. It was introduced in [57] and extends both the Ajtai [4] and BDLOP [10] constructions.
Let n,m1,m2, ℓ ∈ N and m2 ≥ n+ ℓ. The commitment key consists of uniformly random matrices

crs := (A1,A2,B) ∈ R̂n×m1
q̂ × R̂n×m2

q̂ × R̂ℓ×m2
q̂ .

Now, to commit to a message vector s1 ∈ R̂
m1
q̂ with small coefficients as well as a “full-fledged” polynomial

vector m ∈ R̂ℓq̂, we sample a randomness vector s2 ← χm2 , where χ is a probability distribution over R̂q̂,
and compute:

ABDLOP.Com(crs, s1,m; s2) :=
[
tA
tB

]
=
[
A1
0

]
s1 +

[
A2
B

]
s2 +

[
0
m

]
.

Note that when ℓ = 0 (resp. m1 = 0) then this construction ends up being the Ajtai (resp. BDLOP)
commitment scheme. In particular, the commitment size does not depend on the length m1 of s1 (but it does
on ℓ). Therefore, we will commit to long vectors with small coefficients in the “Ajtai” part s1 and commit to
a few garbage polynomials used for the proofs in the “BDLOP” part m. Hence, we call tA (resp. tB) the
“top part” (resp. “bottom part”) of the commitment. An opening of the commitment is a triple (s1,m, s2)13.

Relaxed openings. As folklore in lattice-based cryptography, we also consider relaxed openings of a commitment
which involve so-called relaxation factors. First, we fix ξ, ν > 0 and a power-of-two k and define the following
set C as14:

C :=
{
c ∈ R̂q̂ : ∥c∥∞ ≤ ξ ∧ σ−1(c) = c ∧ 2k

√
∥c2k∥1 ≤ ν

}
. (13)

Roughly speaking, the first condition σ−1(c) = c is needed to prove quadratic equations in the committed
messages which might additionally involve automorphisms. On the other hand, the second condition allows
us to use [57, Lemma 2.15] and deduce that if ∥r∥ ≤ B and c ∈ C then ∥cr∥ ≤ νB.

We define the set of relaxation factors as

C̄ :=
{
c− c′ : c, c′ ∈ C and c ̸= c′

}
,

i.e. set of differences of any two distinct elements in C. We will choose the constant ν such that (experimentally)
the probability for c← Sξ to satisfy 2k

√
∥c2k∥1 ≤ ν is at least 99%. In Figure 8 we show example parameters

(ξ, ν, k) and the lower-bound on the size of C.

d̂ ξ ν k |C|
64 8 140 32 2129

128 2 59 32 2147

Fig. 8: Example parameters to instantiate C for a modulus q̂ such that its smallest prime divisor p1 is greater
than 16.

For security of our protocols, we need the invertibility property of the set C, i.e. the difference of any two
distinct elements of C is invertible over R̂q̂. Hence, we apply [57, Lemma 2.6] and thus we only need the
13 Message m does not need to be included in the opening since it can be deterministically computed from tB and s2.
14 Looking ahead, this set will be a challenge space and will play a big role in our protocols.
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condition ξ < p̂1/2 where p̂1 is the smallest prime dividing q. Secondly, to achieve negligible soundness error,
we will need |C| to be exponentially large.

Now, we are ready to define the ABDLOP relaxed openings.

Definition 5.1. A relaxed opening of the ABDLOP commitment (tA, tB) w.r.t. a commitment key crs is a
tuple (s1,m, s2, c) ∈ R̂

m1
q̂ × R̂

ℓ
q̂ × R̂

m2
q̂ × C̄ which satisfies:

ABDLOP.Com(crs, s1,m; s2) = (tA, tB)
∥cs1∥ ≤ B1 and ∥cs2∥ ≤ B2.

Security properties. As shown in [57, Lemma 3.1], the ABDLOP commitment is binding with respect to
relaxed openings under the Module-SIS assumption. As for hiding, it follows from the fact that under the

Module-LWE assumption
[
A2
B

]
s2 looks pseudorandom.

Lemma 5.2 (Binding). Let ξ < p1/2 where p1 is the smallest prime dividing q̂. Then, the ABDLOP
commitment is computationally binding with respect to relaxed openings under the MSISn,m1+m2,B assumption

where B := 4ν
√
B2

1 + B2
2.

Lemma 5.3 (Hiding). The ABDLOP commitment is computationally hiding under the MLWEn+ℓ,m2,χ

assumption.

Approximate Range Proofs. We use the results developed in [40, 57] to upper-bound the operator norm of
a matrix ℜ← Binξ256×m. Here, Bin denotes the binomial distribution with a positive integer parameter ξ,
which is the distribution

∑ξ
i=1(ai − bi), where ai, bi ← {0, 1}. The variance of this distribution is ξ/2 and it

holds that Binξ1
± Binξ2

= Binξ1+ξ2
.

The bound on the operator norm of ℜ is used for the approximate range proof part, where we want
to show that s⃗ has relatively small coefficients w.r.t. to the proof system modulus q̂. Namely, let us define
functions ωmin(λ) and ωmax(λ) such that for any w⃗ ∈ Zm and any ξ ∈ N:

Pr
ℜ←Bin256×m

ξ

[∥ℜw⃗∥2 > ξ · ∥w⃗∥2 · ωmin(λ)2] ≤ 2−2λ,

Pr
ℜ←Bin256×m

ξ

[∥ℜw⃗∥2 < ξ · ∥w⃗∥2 · ωmax(λ)2] ≤ 2−λ.

It was shown in [40] (under a few natural heuristic assumptions) that ωmin(128) =
√

13 and ωmax(128) =
√

337.
In the soundness argument, we will use the following result from [57, Lemma 2.9] in a slightly more general
form (if one substitutes λ = 128 then it is identical to the aforementioned lemma):

Lemma 5.4. Fix m,P ∈ N and a bound b ≤ P/(8
√

2 ·ωmin(λ) ·m), and let w⃗ ∈ [±P/2]m with ∥w⃗∥ ≥ b, and
let y⃗ be an arbitrary vector in [±P/2]m. Then

Pr
R←Bin256×m

1

[
∥Rw⃗ + y⃗ mod P∥ < b√

2
· ωmin(λ)

]
< 2−λ.

5.2 The Protocol

We provide a brief summary of the Fiat-Shamir transformed [38] protocol from [57] to prove (12). We assume
that variables n,m, t, ℓr are divisible by d̂. First, note that by the sum-of-four-squares theorem, ∥s⃗∥ ≤ Bs is
equivalent to the existence of four integers a1, a2, a3, a4 ∈ Z such that B2 − ∥s⃗∥2 = a2

1 + a2
2 + a2

3 + a2
4. Thus,

we can define a vector a := (a1, a2, a3, a4, 0, . . . , 0) ∈ Zd̂q̂ and observe that:∥∥∥∥[s⃗a⃗
]∥∥∥∥ = Bs and

[
P 0
] [s⃗
a⃗

]
= P s⃗.
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Hence, we slightly abuse the notation and define m := m + d̂, s⃗ := (s⃗, a⃗) ∈ Zm
q̂ and P := [P 0] ∈ R̂n×m

q̂ .
Similarly, we proceed for the vector r⃗. Thus, we now need to prove that

∥s⃗∥ = Bs, ∥r⃗∥ = Br, u⃗ ∈ {0, 1}n, P s⃗ = Bu⃗+ C

[
m⃗
r⃗

]
. (14)

In this proof system, the common random string simply consists of uniformly random matrices which are
only used for the ABDLOP commitment scheme [57] :

crs := (A1,A2,By,Bg,b) ∈ R̂n×m1
q̂ × R̂n×m2

q̂ × R̂256/d̂×m2
q̂ × R̂τ×m2

q̂ × R̂m2
q̂ . (15)

We define the statement as the tuple:

x := (P,C, m⃗,B,Bounds := (Bs,Br), aux).

First round. Let s = Coeffs−1(s⃗) ∈ R̂m/d̂
q̂ and similarly for r,u. To begin with, we commit to the witness

(s, r). To be consistent with notation from [57] let s1 := (s, r,u) and m1 = m + ℓr + t. We commit to s1 using
the ABDLOP commitment (which in this case is just the Ajtai commitment), i.e. we sample the randomness
vector s2 ← χm2 , where χ is a probability distribution on ternary polynomials in R̂q̂, and compute:

tA := A1s1 + A2s2 where (A1,A2) ∈ R̂n×m1
q̂ × R̂n×m2

q̂ .

Then, we sample short masking vectors yi ← Dmi
𝔰i

for i = 1, 2, and compute w := A1y1 + A2y2. Finally, we
focus on the parts used to prove (14). Namely, we generate the polynomial vector y3 ← D256

𝔰3
and commit to

it as follows
ty := Bys2 + y3 where By ∈ R̂

256
d̂
×m2

q̂ .

Finally, we sample a polynomial vector g← {x ∈ R̂q̂ : x̃ = 0}τ and commit to it:

tg := Bgs2 + g where Bg ← R̂
τ×m2
q̂ .

Hence, the first message and the corresponding challenge are

a1 := (tA, ty, tg,w) and (ℜ0,ℜ1) = H(1, crs, x, a1) ∈ {0, 1}256×m1d̂ × {0, 1}256×m1d̂.

Second round. Given the first challenge (ℜ0,ℜ1), we compute the response

z⃗3 := y⃗3 + ℜs⃗1 ∈ Z256,

where y⃗3 := Coeffs(y3), s⃗1 := Coeffs(s1), and ℜ := ℜ0 −ℜ1, and apply rejection sampling on z⃗3. The second
message and the corresponding challenge are:

a2 := z⃗3 and (γi,j)i∈[τ ],j∈[256+n+3] = H(2, crs, x, a1, a2) ∈ Zτ×(256+n+3)
q̂ .

Third round. The prover’s goal now is to prove the following relations over Zq̂:

z⃗3 = y⃗3 + ℜs⃗1

P s⃗ = Bu⃗+ C

[
m⃗

r⃗

]
⟨s⃗, s⃗⟩ = B2

s

⟨r⃗, r⃗⟩ = B2
r

⟨u⃗, u⃗− 1⃗⟩ = 0

(16)
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where the terms in blue are secret and committed. We will use the following observation from [57, Lemma
2.4]: for any integer vectors x⃗0, x⃗1 ∈ Znq̂ , the constant coefficient of

Coeffs−1 (x⃗0)T σ
(

Coeffs−1(x⃗1)
)
∈ R̂q̂

is equal to ⟨x⃗0, x⃗1⟩ ∈ Zq̂. This implies that proving the first equation is equivalent to proving that for i ∈ [256],
the constant coefficient of

σ(𝔯i)
T s1 + σ(ei)

Ty3 − z3,i is equal to zero,

where 𝔯i is the polynomial vector such that its coefficient vector is the i-th row of ℜ, and ei is the polynomial
vector so that Coeffs(ei) is a unit vector15 with its i-th coefficient being 1. Similarly, the second equation is
equivalent to: for all i ∈ [n], the constant coefficient of:

σ(pi)
T s− σ(βi)

Tu−mC,i − σ(cr,i)
T r is equal to zero,

where:

– pi is the polynomial vector with its coefficients being the i-th row of P ,
– βi is the polynomial vector with its coefficients being the i-th row of B,

– we write C = [Cm Cr] such that C
[
m⃗
r⃗

]
= Cmm⃗+ Cr r⃗, and define m⃗C := Cmm⃗,

– cr,i is the polynomial vector with its coefficients being the i-th row of Cr.

Clearly, the last three equations are equivalent to

σ(s)T s− Bs, σ(r)T r− Br, σ
(

u− Coeffs−1(1t)
)T

u

having the constant coefficient equal to zero. Hence, we compute for i ∈ [τ ]:

hi := gi +
256∑
j=1

γi,j ·
(
σ(𝔯j)

T s1 + σ(ej)
Ty3 − zj

)
+

n∑
j=1

γi,256+j ·
(
σ(pj)

T s− σ(βj)
Tu−mC,j − σ(cr,j)

T r
)

+ γi,256+n+1 ·
(
σ(s)T s− Bs

)
+ γi,256+n+2 ·

(
σ(r)T r− Br

)
+ γi,256+n+3 · σ

(
u− Coeffs−1(1t)

)T
u ∈ R̂q̂.

(17)

Observe that by definition of g, the constant coefficients of h1, . . . , hτ are all zeroes. The third message and
the corresponding challenge are:

a3 := (h1, . . . , hτ ) and µ = (µi)i∈[τ ] = H(3, crs, x, a1, a2, a3) ∈ R̂τq̂ .

15 Concretely, it is a binary vector with exactly one 1 entry.
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Fourth round. The goal of the prover is now to prove the τ quadratic equations (with automorphisms) over
Rq̂ from (17). We now simply linear-combine them with the challenges µi, i.e. we prove a single equation:

0 =
τ∑
i=1

µi

 256∑
j=1

γi,j ·
(
σ(𝔯j)

T s1 + σ(ej)
Ty3 − z3,j

)

+
n∑
j=1

γi,256+j ·
(
σ(pj)

T s− σ(βj)
Tu−mC,j − σ(cr,j)

T r
)

+ γi,256+n+1 ·
(
σ(s)T s− Bs

)
+ γi,256+n+2 ·

(
σ(r)T r− Br

)
+ γi,256+n+3 · σ

(
u− Coeffs−1(1t)

)T
u + gi − hi

.

(18)

Let us define

B :=
[
By

Bg

]
, tB :=

[
ty
tg

]
, m :=

[
y3
g

]
∈ R̂256/d̂+τ

q̂ and ŝ :=


s1

σ(s1)
m

σ(m)

 . (19)

Recall that s1 = (s, r,u) and let us write 𝔯j := (𝔯s,j , 𝔯r,j , 𝔯u,j) such that

σ(𝔯j)
T s1 = σ(𝔯s,j)

T s + σ(𝔯r,j)
T r + σ(𝔯u,j)

Tu.

Then, the quadratic equation above can be written equivalently as

ŝTD2ŝ + dT1 ŝ + d0 = 0

where

D2 :=


0 0 0 0∑τ

i=1 µiγi,256+n+1 · Im/d̂
∑τ
i=1 µiγi,256+n+2 · Iℓr/d̂

∑τ
i=1 µiγi,256+n+3 · In/d̂ 0

0 0 0 0
0 0 0 0



d1 :=



∑τ
i=1 µi ·

(∑256
j=1 γi,jσ(𝔯s,j) +

∑n
j

′=1 γi,256+j′σ(pj′)
)

∑τ
i=1 µi ·

(∑256
j=1 γi,jσ(𝔯r,j)−

∑n
j

′=1 γi,256+j′σ(cr,j′)
)

∑τ
i=1 µi ·

(∑256
j=1 γi,jσ(𝔯u,j)−

∑n
j

′=1 γi,256+j′σ(βj′)− γi,256+n+3Coeffs−1(1t)
)

0∑τ
i=1
∑256
j=1 µiγi,jσ(ej)

µ
0


d0 := −

τ∑
i=1

µi ·

 256∑
j=1

z3,j +
n∑

j
′=1

mC,j
′ + γi,256+n+1Bs + γi,256+n+2Br + hi

 .

(20)

Eventually, we run the sub-protocol for proving a single quadratic equation with automorphisms. First, we
calculate the garbage term f1 = ŝTR2y + yTR2ŝ + rT1 y, where y is defined as

y :=


y1

σ(y1)
−By2
−σ(By2)

 ∈ R̂2(m1+256/d+τ)
q̂ , (21)
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and the commitment t = bT s2 + f1 to f1. Then, we set f0 = yTR2y + bTy2. Hence, the fourth message and
the corresponding challenge are (we defined C in Section 5.1):

a4 := (t, f0) and c := H(4, crs, x, a1, a2, a3, a4) ∈ C.

Final round. Given a challenge c, we compute zi = csi + yi for i = 1, 2 and apply rejection sampling on
z1, z2. So, the prover’s last message is a5 := (z1, z2) and thus the proof consists of

π := (a1, a2, a3, a4, a5).

Verification algorithm. The verifier is given a proof π and recomputes the corresponding challenges as well as
D2,d1, d0. Let us define

z :=


z1

σ(z1)
ctB −Bz2

σ(ctB −Bz2)

 . (22)

Finally, the verifier outputs 1 if all the following relations hold:
∥z1∥

?
≤ B1, ∥z2∥

?
≤ B2, ∥z⃗3∥

?
≤ B3,

h̃i
?= 0 for i ∈ [τ ],

A1z1 + A2z2
?= w + ctA,

zTD2z + cdT1 z + c2d0 − (ct− bT z2) ?= f0

and 0 otherwise.
For completeness, we provide a description of the NIZK proof system Π ISIS

NIZK = (ProveH
ISIS,VerifyH

ISIS) for
proving (12) in Figures 9 and 10. Similarly as in many prior works, e.g. [53], in practice we do not include
w, f0 in the proof and send c instead, since these components can be computed deterministically given other
parts of π and c. However, we keep the standard Fiat-Shamir transformation for simpler security analysis.

5.3 Security Analysis

In this subsection, we prove the key properties of Π ISIS
NIZK, i.e. correctness and zero-knowledge. As for knowledge

soundness, we will prove it directly when arguing unforgeability of our anonymous credentials in Section 8.

5.3.1 Correctness

Lemma 5.5 (Correctness). Let α1, α2, α3, ᾱ1, ᾱ2 ∈ O(
√
λ) and N, d̂ ∈ O(λ). Further, suppose χ is a

probability distribution over S1. Recall ν, ωmax from Section 5.1, and define the following variables:

𝔰1 := α1ν

√
B2
s + B2

r + t, 𝔰2 := α2ν

√
m2d̂, 𝔰3 := α3ωmax(λ)

√
B2
s + B2

r + t,

B1 := 𝔰1

√
2m1d̂, B2 := 𝔰2

√
2m2d̂, B3 := 1.7𝔰3

√
256

and the corresponding rejection rates:

Mi := exp
(√

2(λ+ 1)
log e · 1

αi
+ 1

2α2
i

)
for i ∈ {1, 2, 3}.

Then, Π ISIS
NIZK := (ProveH

ISIS,VerifyH
ISIS) is correct.

31



ProveISIS(crs, x,w)
Input: crs = (A1,A2,By,Bg,b), x = (P,C, m⃗,B,Bounds, aux), w = (s⃗, r⃗, u⃗)
Output: proof π
1: rst = 0 ▷ boolean which indicates if a restart is necessary
2: idx = 0 ▷ keeps track how many restarts occured
3: s1 = (s, r,u) ▷ s, r,u are the polynomial vectors with coeff. s⃗, r⃗, u⃗
4: while rst = 0 ∧ idx < N do
5: idx = idx + 1
6: s2 ← χm2 ▷ generate commitment randomness
7: tA = A1s1 + A2s2 ▷ Ajtai commitment to s1

8: y1 ← Dm1d̂
𝔰1

,y2 ← Dm2d̂
𝔰2

,y3 ← D256
𝔰3

▷ sample masking vectors
9: g← {x ∈ R̂q̂ : x̃ = 0}τ ▷ sample random polynomials with const. coeff. zero

10: w = A1y1 + A2y2 ▷ used to prove knowledge of a commitment opening
11: ty = Bys2 + y3 ▷ commitment to y3
12: tg = Bgs2 + g ▷ commitment to g
13: a1 = (tA, ty, tg,w) ▷ first message
14: (ℜ0,ℜ1) = H(1, crs, x, a1) ∈ {0, 1}256×m1d̂ × {0, 1}256×m1d̂ ▷ first challenge
15: ℜ = ℜ0 −ℜ1
16: s⃗1 = Coeffs(s1)
17: y⃗3 = Coeffs(y3)
18: z⃗3 = y⃗3 + ℜs⃗1 ∈ Z256 ▷ masked opening of ℜs⃗1
19: b3 ← Rej (z⃗3,ℜs⃗1, 𝔰3,M3)
20: a2 = z⃗3 ▷ second message
21: (γi,j)i∈[τ ],j∈[256+n+3] = H(2, crs, x, a1, a2) ∈ Zτ×(256+n+3)

q̂ ▷ second challenge
22: for i ∈ [τ ] do
23: compute hi as in (17)
24: a3 = h = (h1, . . . , hτ ) ▷ third message
25: (µi)i∈[τ ] = H(3, crs, x, a1, a2, a3) ∈ R̂τq̂ ▷ third challenge
26: compute B, tB ,m, ŝ,y as in (19) and (21)
27: compute D2,d1, d0 as in (20)
28: f1 = sTR2y + yTR2s + rT1 y
29: f0 = yTR2y + bTy2
30: t = bT s2 + f1 ▷ commitment to f1
31: a4 = (t, f0) ▷ fourth message
32: c = H(4, crs, x, a1, a2, a3, a4) ∈ C ▷ fourth challenge
33: for i ∈ {1, 2} do
34: zi = yi + csi ▷ maked opening of csi
35: bi ← Rej (zi, csi, 𝔰i,Mi) ▷ rejection sampling
36: π = (tA, ty, tg,w, z⃗3,h, t, f0, z⃗3,h, z1, z2) ▷ candidate proof π
37: rst = b1b2b3 ▷ if all rejection steps passed then rst = 1
38: if rst = 1 then return π
39: else return ⊥

Fig. 9: ProveH
ISIS algorithm.
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VerifyH
ISIS(crs, x, π)

Input: crs = (A1,A2,By,Bg,b), x = (P,C, m⃗,B,Bounds, aux), π
Output: bit b
1: parse π = (tA, ty, tg,w, z⃗3,h, t, f0, z⃗3,h, z1, z2)
2: a1 = (tA, ty, tg,w)
3: a2 = z⃗3
4: a3 = h
5: a4 = (t, f0)
6: (ℜ0,ℜ1) = H(1, crs, x, a1) ▷ recomputing the challenges
7: (γi,j)i∈[τ ],j∈[256+n+3] = H(2, crs, x, a1, a2)
8: (µi)i∈[τ ] = H(3, crs, x, a1, a2, a3)
9: c = H(4, crs, x, a1, a2, a3, a4)

10: B =
[
By

Bg

]
, tB =

[
ty
tg

]

11: z =


z1

σ(z1)
ctB −Bz2

σ(ctB −Bz2)

 ▷ grouping the masked openings to cs1 and cm

12: compute D2,d1, d0 as in (20)
13: if one of the conditions below does not hold, then return 0:

1. ∥z1∥
?
≤ B1, ∥z2∥

?
≤ B2, ∥z⃗3∥

?
≤ B3

2. h̃i
?= 0 for i ∈ [τ ]

3. A1z1 + A2z2
?= w + ctA

4. zTD2z + cdT1 z + c2d0 − (ct− bT z2) ?= f0
14: else return 1 ▷ all the verification checks passed

Fig. 10: VerifyH
ISIS algorithm.

Proof. First, one observes that both algorithms, and especially ProveH
ISIS, are strict polynomial time since

we bounded the number of restarts by O(λ). Next, we argue that the prover algorithm outputs ⊥ with
negligible probability. First, using Lemma 2.4 and the following inequalities (which hold with an overwhelming
probability):

∥cs1∥ ≤ ν
√
B2
s + B2

r + t, ∥cs2∥ ≤ ν
√
m2d̂, ∥ℜs⃗1∥ ≤ ωmax(λ) ·

√
B2
s + B2

r + t.

Hence, we deduce that in a single run the probability that b1b2b3 = 1 is at least (M1M2M3)−1 − negl(λ) by
Lemma 2.4, and thus the probability that ProveH

ISIS outputs ⊥, i.e. makes exactly N unsuccessful attempts, is
at most (

1− 1
M1M2M3

+ negl(λ)
)N

= negl(λ)

since M1,M2,M3 ∈ O(1) and N = O(λ).
In terms of verification equations, by Lemma 2.2 for t =

√
2 and the union bound, the probability that

∥z1∥ ≤ 𝔰1

√
2m1d̂ and ∥z2∥ ≤ 𝔰2

√
2m2d̂ is overwhelming. We argue similarly for ∥z⃗3∥ > 1.7𝔰3

√
256 where we

apply Lemma 2.2 for t = 1.7 instead 16. The rest of the verification checks hold by careful inspection of the
protocol (we refer to [57] for more details).

16 The reason is to ensure ≈ 2−128 correctness error when setting the parameters.
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5.3.2 Zero-Knowledge

Lemma 5.6 (Zero-Knowledge). Let m2 ≥ 256/d̂+ τ + 1, α1, α2, α3 ∈ O(
√
λ) and N, d ∈ O(λ). Define

the following variables:

𝔰1 := α1ν

√
B2
s + B2

r + t, 𝔰2 := α2ν

√
m2d̂, 𝔰3 := α3ωmax(λ)

√
B2
s + B2

r + t,

B1 := 𝔰1

√
2m1d̂, B2 := 𝔰2

√
2m2d̂, B3 := 1.7𝔰3

√
256

and the corresponding rejection rates:

Mi := exp
(√

2(λ+ 1)
log e · 1

αi
+ 1

2α2
i

)
for i ∈ {1, 2, 3}.

Then, under the MLWEn+256/d̂+τ+1,m2,χ,q̂
assumption Π ISIS

NIZK is zero-knowledge.

Proof. We prove the statement using a hybrid argument. Let A be a PPT algorithm, which makes at most Q0
queries to H and Q1 queries to ProveISIS, outputs 1 with probability ϵ. In each i-th game, we will introduce
PPT algorithms S0,S1, which have a shared state, and denote εi to be the probability that 1← AS0,S1(crs).

Game1: Here, S0 simulates the random oracle queries using lazy sampling and S1 runs ProveISIS(crs, x,w)
truthfully. By construction, ϵ1 = ϵ.

Game2: When S1 is queried, before executing Line 6 it first samples c← C. Then in Line 32, instead of calling
the random oracle S0, it uses the challenge c generated at the very beginning. If (4, crs, x, a1, a2, a3, a4) was
already queried earlier to S0, then S1 aborts. Otherwise, it continues with the ProveISIS(crs, x,w) algorithm.

We argue the indistinguishability following the proof of [53, Lemma 5.3]. Namely, the only difference between
Game1 and Game2 is that we directly program c in Line 32 without checking whether a := (4, crs, x, a1, a2, a3, a4)
was already set. Since A calls S0 at most Q0 times and S1 at most Q1 times, at most Q0 + NQ1 of such tuples
a will ever be set. Recall that a, and especially a1, contains w = A1y1 + A2y2. Therefore, at most Q0 + NQ1
values of w will be set. Also, with an overwhelming probability over the standard parameter choices [36,
Appendix C], matrix A2 can be written in the Hermite Normal Form as A2 = Â−1

2 [A′2 In] and thus

y2,2 = Â2(w−A1y1)−A′2y2,1.

where y2 := (y2,1,y2,2) ∈ R̂m2−(n+256/d̂+τ+1)
q̂ × R̂n+256/d̂+τ+1

q̂ . Hence, by [53, Lemma 4.4], for any fixed
w ∈ R̂nq̂ we have

Pr
[
A1y1 + A2y2 = w : y1 ← Dm1d̂

𝔰2
,y2 ← Dm2d̂

𝔰2

]
≤ max

w′
1∈R̂

n
q̂

Pr
[
y2,2 = w′1 : y2,2 ← Dnd̂

𝔰2

]
≤ 2−nd̂.

So, if S1 is accessed Q1 times and the probability of getting a collision each time is at most (Q0 + NQ1)2−nd̂,
then the probability that a collision occurs after Q1 queries is at most NQ1(Q0 + NQ1)2−nd̂. Since N, d ∈ O(λ)
and Q0, Q1 are polynomials in λ, we get

|ϵ2 − ϵ1| ≤ NQ1(Q0 + NQ1)2−nd̂ + negl(λ) = negl(λ).

Game3: Here, S1 directly computes zi = yi + csi for i = 1, 2 and w := A1z1 + A2z2 − ctA. Further, S1 later
calculates f0 := zTD2z + cdT1 z + c2d0 − 𝔣, where 𝔣 := ct− bT z2, instead. By the verification equations and
simple rearrangement argument, we have ϵ3 = ϵ2.
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Game5: Now, S1 directly samples each z2 ← Dm2d̂
𝔰2

and sets b2 = 1 with probability 1/M2. By Lemma 2.4, we
have |ϵ5 − ϵ4| ≤ N · 2−λ = negl(λ).

Game6: This time, S1 samples uniformly random ν ← R̂n+256/d̂+τ+1
q̂ and computes the commitment the

following way: 
tA
ty
tg
t

 := ν +


As1
y3
g
f1

 .
One can naturally construct a PPT adversary AMLWE which breaks Module-LWE with probability |ϵ5−ϵ4|/Q1.
Hence,

|ϵ6 − ϵ5| ≤ N ·Q1 · AdvMLWE
n+256/d̂+τ+1,m2,χ

(AMLWE) = negl(λ).

Game7: Here, S1 samples directly (tA, ty, tg, t)← R̂
n+256/d̂+τ+1
q̂ . Clearly, we have ϵ7 = ϵ6.

Game8: Now, S1 generates z1 ← Dm1d̂
𝔰1

and sets b1 = 1 with probability 1/M1. By Lemma 2.4, we have
|ϵ8 − ϵ7| ≤ N · 2−λ = negl(λ).

Game9: Here, S1 picks h ← {x ∈ R̂q̂ : x̃ = 0}τ directly. Since earlier g was chosen uniformly at ran-
dom from {x ∈ R̂q̂ : x̃ = 0}τ , we get ϵ9 = ϵ8.

Game10: This time S1 samples z⃗3 ← D256
𝔰3

and sets b3 = 1 with probability 1/M3. By Lemma 2.4,
|ϵ10 − ϵ9| ≤ N · 2−λ = negl(λ).

Now, note that in the last security game S1 does not use the witness w (recall that S0 only simulates
the random oracle H using lazy sampling). Hence, by the hybrid argument, |ϵ10− ϵ| = negl(λ) which concludes
the proof.

6 Efficient Multi-Proof Extractable Non-Interactive Zero-Knowledge Proofs

This section focuses on constructing multi-proof extractable NIZK for proving knowledge of a short vector
s⃗ ∈ R̂mq̂ such that ∥s⃗∥ ≤ B and P s⃗ = u⃗ over Zq̂ where P ∈ R̂n×m

q̂ and u⃗ ∈ Zn
q̂ are public. We define the

corresponding relation

RCom :=
{

x := (P, u⃗),w := s⃗ P ∈ Zn×m
q̂ , u⃗ ∈ R̂n

q̂, s⃗ ∈ R̂
m
q̂ : P s⃗ = u⃗ ∧ ∥s⃗∥ ≤ B

}
. (23)

Throughout the section, we follow the footsteps of del Pino and Katsumata [67][Section 4.3] who added
multi-proof extractability to the exact proof system by Bootle et al. [15]. Namely, we adapt the recently
proposed lattice-based framework for proving exact statements by Lyubashevsky et al. [57] to prove relation
RCom. However, as shown in [57, Appendix B], the protocol only satisfies standard knowledge soundness
property. Hence, we further apply the Katsumata transform [46] to achieve multi-proof extractability 17

Conceptually, the protocol will be almost identical to the in Section 5. Hence, we use the same notation as
in Section 5.1. As before, we assume that variables n,m are divisible by d̂. By the sum-of-four-squares theorem,
17 We note that in the random oracle model one could apply the standard “encryption-to-the-sky” paradigm to obtain

straight-line extractability (e.g. [3, 13]). We provide the Katsumata transform instead since it has more potential to
be further used to prove QROM security, as seen in [67]. We leave the quantum security analysis of the protocol,
and of our constructions for future work.
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∥s⃗∥ ≤ Bs is equivalent to the existence of four integers a1, a2, a3, a4 ∈ Z such that B2−∥s⃗∥2 = a2
1 +a2

2 +a2
3 +a2

4.
Thus, we can define a vector a := (a1, a2, a3, a4, 0, . . . , 0) ∈ Zd̂q̂ and observe that:∥∥∥∥[s⃗a⃗

]∥∥∥∥ = Bs and
[
P 0
] [s⃗
a⃗

]
= P s⃗.

Hence, we slightly abuse the notation and define m := m + 1, s⃗ := (s⃗, a⃗) ∈ Zm
q̂ and P := [P 0] ∈ R̂n×m

q̂ .
Therefore,

∥s⃗∥ = B and P s⃗ = u⃗. (24)

In this proof system, the common random string consists of uniformly random matrices which are only used
for the ABDLOP commitment scheme:

crs := (A1,A2,By,Bg,b) ∈ R̂n×m1
q̂ × R̂n×m2

q̂ × R̂256/d̂×m2
q̂ × R̂τ×m2

q̂ × R̂m2
q̂ . (25)

We define the statement as the tuple x := (P, u⃗,B).

First round. Let s = Coeffs−1(s⃗) and similarly for u. We start by committing to the witness s1 := s and let
m1 = m. We commit to s1 using the ABDLOP commitment, i.e. we sample the randomness vector s2 ← χm2 ,
where χ is a probability distribution on ternary polynomials in R̂q̂, and compute:

tA := A1s1 + A2s2 where (A1,A2) ∈ R̂n×m1
q̂ × R̂n×m2

q̂ .

Then, we sample short masking vectors yi ← Dmi
𝔰i

for i = 1, 2, and compute w := A1y1 + A2y2. Further, we
generate the polynomial vector y3 ← D256

𝔰3
and commit to it as follows

ty := Bys2 + y3 where By ∈ R̂
256

d̂
×m2

q̂ .

Finally, we sample a polynomial vector g← {x ∈ R̂q̂ : x̃ = 0}τ and commit to it:

tg := Bgs2 + g where Bg ← R̂
τ×m2
q̂ .

Hence, the first message and the corresponding challenge are

a1 := (tA, ty, tg,w) and (ℜ0,ℜ1) = H(1, crs, x, a1) ∈ {0, 1}256×m1d̂ × {0, 1}256×m1d̂.

Second round. Given the first challenge (ℜ0,ℜ1), we compute the response z⃗3 := y⃗3 + ℜs⃗1 ∈ Z256, where
ℜ := ℜ0−ℜ1 and also y⃗3 := Coeffs(y3), s⃗1 = Coeffs(s1). Then, we apply rejection sampling on z⃗3. The second
message and the corresponding challenge are:

a2 := z⃗3 and (γi,j)i∈[τ ],j∈[256+n+1] = H(2, crs, x, a1, a2) ∈ Zτ×(256+n+1)
q̂ .

Third round. The prover’s goal now is to prove the following relations over Zq̂:
z⃗3 = y⃗3 + ℜs⃗1

P s⃗1 = u⃗

⟨s⃗1, s⃗1⟩ = B2

where the terms in blue are secret and committed. As before, we deduce that proving the first equation is
equivalent to proving that for i ∈ [256], the constant coefficient of

σ(𝔯i)
T s1 + σ(ei)

Ty3 − z3,i is equal to zero,
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where 𝔯i is the polynomial vector such that its coefficient vector is the i-th row of ℜ, and ei is the polynomial
vector so that Coeffs(ei) is a unit vector with its i-th coefficient being 1. Similarly, the second equation is
equivalent to: for all i ∈ [n], the constant coefficient of:

σ(pi)
T s1 − σ(e′i)

Tu is equal to zero,

where pi is the polynomial vector with its coefficient vector being the i-th row of P , and e′i is the polynomial
vector so that Coeffs(e′i) is a unit vector with its i-th coefficient being 1. Obviously, the last equation is
equivalent to σ(s1)T s1 − B having the constant coefficient equal to zero. Hence, we compute

hi := gi +
256∑
j=1

γi,j ·
(
σ(𝔯j)

T s1 + σ(ej)
Ty3 − zj

)
+

n∑
j=1

γi,256+j ·
(
σ(pj)

T s1 − σ(e′j)
Tu
)

+ γi,256+n+1 ·
(
σ(s1)T s1 − B

)
∈ R̂q̂.

(26)

for i = 1, 2, . . . , τ . By definition of g, the constant coefficients of h1, . . . , hτ are all zeroes. The third message
and the corresponding challenge are:

a3 := (h1, . . . , hτ ) and µ = (µi)i∈[τ ] = H(3, crs, x, a1, a2, a3) ∈ R̂τq̂ .

Fourth round. The goal of the prover is now to prove the τ quadratic equations (with automorphisms) over
Rq̂ from (26). We now linear-combine them with the challenges µi:

0 =
τ∑
i=1

µi

 256∑
j=1

γi,j ·
(
σ(𝔯j)

T s1 + σ(ej)
Ty3 − zj

)
+

n∑
j=1

γi,256+j ·
(
σ(pj)

T s1 − σ(e′j)
Tu
)

+ γi,256+n+1 ·
(
σ(s1)T s1 − B

)
+ gi − hi

.
(27)

Let us define

B :=
[
By

Bg

]
, tB :=

[
ty
tg

]
, m :=

[
y3
g

]
∈ R̂256/d+τ

q̂ and ŝ :=


s1

σ(s1)
m

σ(m)

 . (28)

Then, the quadratic equation above can be written equivalently as

ŝTD2ŝ + dT1 ŝ + d0 = 0

where
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D2 :=


0 0∑τ

i=1 µiγi,256+n+1 · Im1
0

0 0
0 0



d1 :=


∑τ
i=1 µi ·

(∑256
j=1 γi,jσ(𝔯j) +

∑n
j

′=1 γi,256+j′σ(pj′)
)

0∑τ
i=1
∑256
j=1 µiγi,jσ(ej)

µ
0


d0 := −

τ∑
i=1

µi ·

 256∑
j=1

zj +
n∑

j
′=1

σ(e′j′)u + γi,256+n+1B + hi

 .

(29)

Next, we run the sub-protocol for proving a single quadratic equation with automorphisms identically as
before. First, we calculate the garbage term f1 = ŝTR2y + yTR2ŝ + rT1 y, where y is defined as

y :=


y1

σ(y1)
−By2
−σ(By2)

 ∈ R̂2(m1+256/d+τ)
q̂ , (30)

and the commitment t = bT s2 + f1 to f1. Then, we set f0 = yTR2y + bTy2. Hence, the fourth message and
the corresponding challenge are:

a4 := (t, f0) and c := H(4, crs, x, a1, a2, a3, a4) ∈ C.

Final round. Given a challenge c, we compute zi = csi + yi for i = 1, 2 and apply rejection sampling on
z1, z2. So, the prover’s last message is a5 := (z1, z2) and thus the proof consists of

π := (a1, a2, a3, a4, a5).

Verification algorithm. The verifier is given a proof π and recomputes the corresponding challenges as well as
D2,d1, d0. Denote

z :=


z1

σ(z1)
ctB −Bz2

σ(ctB −Bz2)

 . (31)

Finally, the verifier outputs 1 if all the following relations hold:
∥z1∥

?
≤ B1, ∥z2∥

?
≤ B2, ∥z⃗3∥

?
≤ B3,

h̃i
?= 0 for i ∈ [τ ],

A1z1 + A2z2
?= w + ctA,

zTD2z + cdT1 z + c2d0 − (ct− bT z2) ?= f0

and 0 otherwise.

6.1 Katsumata Transform

In order to make the protocol multi-proof extractable, we apply the Katsumata transform [46]. Recall that
the protocol from [57], as well as many prior linear-sized lattice-based proofs [7, 34, 15, 60, 74], follow the
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LHC.Comi(crsLHC, si,yi)
1: (ēi,1, ēi,2, ēi,3)← Sni

ηi
× Smi

ηi
× Smi

ηi

2: t̄i,1 = p̄ · (Āēi,1 + ēi,2)
3: t̄i,2 = p̄ · (B̄ēi,1 + ēi,3) + si
4: (f̄i,1, f̄i,2, f̄i,3)← D

ni

�̄�i
×Dmi

�̄�i
×Dmi

�̄�i

5: w̄i,1 = p̄ · (Āf̄i,1 + f̄i,2)
6: w̄i,2 = p̄ · (B̄f̄i,1 + f̄i,3) + yi
7: com = (t̄i,1, t̄i,2, w̄i,1, w̄i,2)
8: st = (ēi,1, ēi,2, ēi,3, f̄i,1, f̄i,2, f̄i,3)
9: return (com, st)

LHC.Openi(crsLHC, (com, c), st)
1: for j ∈ {1, 2, 3} do
2: z̄i,j = f̄i,j + c · ēi,j
3: b← Rej([z̄i,1 ∥ z̄i,2 ∥ z̄i,3],
4: c · [ēi,1 ∥ ēi,2 ∥ ēi,3], �̄�i, M̄i)
5: if b = 0 then return op = ⊥
6: else return op = [z̄i,1 ∥ z̄i,2 ∥ z̄i,3]
LHC.Verifyi(crsLHC, (com, c, (z, op ̸= ⊥))
1: (t̄i,1, t̄i,2, w̄i,1, w̄i,2)← com
2: [z̄i,1 ∥ z̄i,2 ∥ z̄i,3]← op
3: if ∥z̄i,1∥ > �̄�i

√
2nid then return 0

4: for j ∈ {2, 3} do
5: if ∥z̄i,j∥ > �̄�i

√
2mid̂ then return 0

6: z̄A = ct̄i,1 + w̄i,1 − p̄ · (Āz̄i,1 + z̄i,2)
7: z̄B = ct̄i,2 + w̄i,2 − p̄ · (Āz̄i,1 + z̄i,3)
8: if z̄A ̸= 0 ∨ z̄B ̸= z then return 0
9: else return 1

Fig. 11: Extractable linear homomorphic commitment from MLWE. Parts highlighted in gray correspond to the
Katsumata transform.

commit-and-prove approach. Namely, we first commit to s1 using randomness s2 and in the final round we
send the masked openings zi = yi + csi of si to prove knowledge of a commitment opening. Now, to make this
protocol straight-extractable, we use an extractable linear homomorphic commitment (LHC), which can be
seen as a linear homomorphic encryption scheme with pseudo-random public keys, and additionally encrypt
both si and yi.

In this section, we recall the (simplified) LHC construction from Module-LWE [46, Section 3.4]18. Since
we need to commit to both (s1,y1) and (s2,y2), we will need two instantiations. Fix i ∈ {1, 2}. The
common random string, i.e. the comitment key crsLHC

i = (Āi, B̄i) contains two uniformly random matrices
in Rmi×ni

q̂ × Rmi×ni

q̂ . Next, we have three algorithms: LHC.Comi, LHC.Openi and LHC.Verifyi which are
described in Figure 11. In the following, let p̄ < q̂ be an odd integer co-prime to q̂.

We present the NIZK proof system ΠCom
NIZK := (ProveH

Com,VerifyH
Com) for relation RCom in Figures 12

and 13. Intuitively, we take the protocol from above and additionally let the prover run (comi, sti) ←
LHC.Comi(crsLHC

i , si,yi) for i = 1, 2. Hence, the first message now includes com1 and com2. Then, in the final
round, the prover runs

opi ← LHC.Openi(crsLHC
i , (comi, c), sti)

and appends op1 and op2 to the final message (unless one of them is ⊥, then it restarts). Finally, the verifier
additionally checks for i = 1, 2 that

LHC.Verify(crsLHC
i , (comi, c, opi ̸= ⊥)) ?= 1.

6.2 Security Analysis

In this subsection, we prove the key properties of ΠCom
NIZK: correctness, zero-knowledge and multi-proof

extractability.
18 The reason why we do not apply the NTRU-type construction, as in [67], is that for efficiency we will pick relatively

small ring dimension d̂. In this case, the construction would rely on a Module-NTRU type assumption, which is still
relatively uncommon and not well-studied.
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ProveH
Com(crs, x,w)

Input: crs = (A1,A2,By,Bg,b, Ā1, Ā2, B̄1, B̄2), x = (P, u⃗,B), w = s⃗
Output: proof π
1: rst = 0 ▷ boolean which indicates if a restart is necessary
2: idx = 0 ▷ keeps track how many restarts occured
3: s1 = s ▷ s is the polynomial vectors with coeff. s⃗
4: while rst = 0 ∧ idx < N do
5: idx = idx + 1
6: s2 ← χm2 ▷ generate commitment randomness
7: tA = A1s1 + A2s2 ▷ Ajtai commitment to s1

8: y1 ← Dm1d̂
𝔰1

,y2 ← Dm2d̂
𝔰2

,y3 ← D256
𝔰3

▷ sample masking vectors
9: g← {x ∈ R̂q̂ : x̃ = 0}τ ▷ sample random polynomials with const. coeff. zero

10: w = A1y1 + A2y2 ▷ used to prove knowledge of a commitment opening
11: ty = Bys2 + y3 ▷ commitment to y3
12: tg = Bgs2 + g ▷ commitment to g
13: (com1, st1)← LHC.Com1((Ā1, B̄1), s1,y1) ▷ LHC to s1 and y1
14: (com2, st2)← LHC.Com2((Ā2, B̄2), s2,y2) ▷ LHC to s2 and y2
15: a1 = (tA, ty, tg,w,v, com1, com2) ▷ first message
16: (ℜ0,ℜ1) = H(1, crs, x, a1) ∈ {0, 1}256×m1d̂ × {0, 1}256×m1d̂ ▷ first challenge
17: ℜ = ℜ0 −ℜ1
18: s⃗1 = Coeffs(s1)
19: y⃗3 = Coeffs(y3)
20: z⃗3 = y⃗3 + ℜs⃗1 ∈ Z256 ▷ masked opening of ℜs⃗1
21: b3 ← Rej (z⃗3,ℜs⃗1, 𝔰3,M3)
22: a2 = z⃗3 ▷ second message
23: (γi,j)i∈[τ ],j∈[256+n+1] = H(2, crs, x, a1, a2) ∈ Zτ×(256+n+1)

q̂ ▷ second challenge
24: for i ∈ [τ ] do
25: compute hi as in (26)
26: a3 = h = (h1, . . . , hτ ) ▷ third message
27: (µi)i∈[τ ] = H(3, crs, x, a1, a2, a3) ∈ R̂τq̂ ▷ third challenge
28: compute B, tB ,m, ŝ,y as in (28) and (30)
29: compute D2,d1, d0 as in (29)
30: f1 = sTR2y + yTR2s + rT1 y
31: f0 = yTR2y + bTy2
32: t = bT s2 + f1 ▷ commitment to f1
33: a4 = (t, f0) ▷ fourth message
34: c = H(4, crs, x, a1, a2, a3, a4) ∈ C ▷ fourth challenge
35: for i ∈ {1, 2} do
36: zi = yi + csi ▷ maked opening of csi
37: bi ← Rej (zi, csi, 𝔰i,Mi) ▷ rejection sampling
38: opi ← LHC.Openi((Āi, B̄i), (comi, c), sti) ▷ opening of the LHC
39: if opi = ⊥ then b̄i = 0
40: else b̄i = 1
41: π = (tA, ty, tg,w, com1, com2, z⃗3,h, t, f0, z⃗3,h, z1, z2, op1, op2)
42: rst = b1b2b3b̄1b̄2 ▷ if all rejection steps passed then rst = 1
43: if rst = 1 then return π
44: else return ⊥

Fig. 12: ProveH
Com algorithm.
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VerifyH
Com(crs, x, π)

Input: crs = (A1,A2,By,Bg,b, Ā1, Ā2, B̄1, B̄2), x = (P, u⃗,B), π
Output: bit b
1: parse π = (tA, ty, tg,w, com1, com2, z⃗3,h, t, f0, z⃗3,h, z1, z2, op1, op2)
2: a1 = (tA, ty, tg,w,v, com1, com2)
3: a2 = z⃗3
4: a3 = h
5: a4 = (t, f0)
6: (ℜ0,ℜ1) = H(1, crs, x, a1) ▷ recomputing the challenges
7: (γi,j)i∈[τ ],j∈[256+n+1] = H(2, crs, x, a1, a2)
8: (µi)i∈[τ ] = H(3, crs, x, a1, a2, a3)
9: c = H(4, crs, x, a1, a2, a3, a4)

10: B =
[
By

Bg

]
, tB =

[
ty
tg

]

11: z =


z1

σ(z1)
ctB −Bz2

σ(ctB −Bz2)

 ▷ grouping the masked openings to cs1 and cm

12: compute D2,d1, d0 as in (20)
13: if one of the conditions below does not hold, then return 0:

1. ∥z1∥
?
≤ B1 := 𝔰1

√
2m1d̂, ∥z2∥

?
≤ B2 := 𝔰2

√
2m2d̂, ∥z⃗3∥

?
≤ B3 := 1.7

√
256

2. h̃i
?= 0 for i ∈ [τ ]

3. A1z1 + A2z2
?= w + ctA

4. zTD2z + cdT1 z + c2d0 − (ct− bT z2) ?= f0

5. LHC.Verifyi((Āi, B̄i), c, (zi, opi))
?= 1 for i ∈ {1, 2}

14: else return 1 ▷ all the verification checks passed

Fig. 13: VerifyH
Com algorithm.

6.2.1 Correctness

Lemma 6.1 (Correctness). Let α1, α2, α3, ᾱ1, ᾱ2 ∈ O(
√
λ), N, d ∈ O(λ). Recall ν, ωmax from Section 5.1

and define the following standard deviations:

𝔰1 := α1νB, 𝔰2 := α2ν

√
m2d̂, 𝔰3 := α3Bωmax(λ)

�̄�1 := ᾱ1η1ν
√

(n1 + 2m1)d, �̄�2 := ᾱ2η2ν
√

(n2 + 2m2)d

and the corresponding rejection rates for i ∈ {1, 2, 3} and j ∈ {1, 2}:

Mi := exp
(√

2(λ+ 1)
log e · 1

αi
+ 1

2α2
i

)
, M̄j := exp

(√
2(λ+ 1)

log e · 1
ᾱj

+ 1
2ᾱ2

j

)
.

Then, Πm
NIZK := (ProveH

ISIS,VerifyH
ISIS) for relation RCom is correct.

Proof. The proof is almost identical to Lemma 5.5. Let us argue that the prover algorithm outputs ⊥ with
negligible probability. By Lemma 2.4 and the following inequalities (which hold with an overwhelming
probability):

∥cs1∥ ≤ Bν, ∥cs2∥ ≤ ν
√
m2d̂, ∥ℜs⃗1∥ ≤ B · ωmax,

∥c · [ēi,1 ∥ ēi,2 ∥ ēi,3]∥ ≤ ηiν
√

(ni + 2mi)d for i = 1, 2,
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we deduce that in a single run the probability that b1b2b3b̄1b̄2 = 1 is at least (M1M2M3M̄1M̄2)−1 − negl(λ),
and thus the probability that ProveH

Com outputs ⊥, i.e. makes exactly N unsuccessful attempts, is at most(
1− 1

M1M2M3M̄1M̄2
+ negl(λ)

)N
= negl(λ)

since M1,M2,M3, M̄1, M̄2 ∈ O(1) and N = O(λ).
In terms of verification equations, by Lemma 2.2 for t =

√
2 and the union bound, the probability that

one of the following conditions holds: (i) ∥z1∥ > 𝔰1

√
2m1d̂, (ii) ∥z2∥ > 𝔰2

√
2m2d̂, (iii) ∥z̄i,1∥ > �̄�i

√
2nid̂ and

(iv) ∥z̄i,j∥ > �̄�i

√
2mid̂ for i ∈ {1, 2}, j ∈ {2, 3}, is negligible. We argue similarly for ∥z⃗3∥ > 1.7𝔰3

√
256 where

we apply Lemma 2.2 for t = 1.7 instead, as in Lemma 5.5. The rest of the verification checks hold by careful
inspection of the protocol.

LHC.ZKSimi(crsLHC, c, zi)
1: (z̄i,1, z̄i,2, z̄i,3)← D

ni

�̄�i
×Dmi

�̄�i
×Dmi

�̄�i

2: (t̄i,1, t̄i,2)← Rmi

q̂ ×R
mi

q̂

3: w1 = −cti,1 + p̄ · (Āz̄1 + z̄2)
4: w2 = −cti,2 + p̄ · (Āz̄1 + z̄3) + zi
5: com = (t̄i,1, t̄i,2, w̄i,1, w̄i,2)
6: u← [0, 1)
7: if u > 1/M̄i then op = ⊥
8: else op = [z̄i,1 ∥ z̄i,2 ∥ z̄i,3]
9: return (com, op)

Fig. 14: Simulator for LHC.

6.2.2 Zero-Knowledge

Theorem 6.2 (Zero-Knowledge). As before, let α1, α2, α3, ᾱ1, ᾱ2 ∈ O(
√
λ) and N, n, d ∈ O(λ). Define the

following standard deviations:

𝔰1 := α1Bν, 𝔰2 := α2ν

√
m2d̂, 𝔰3 := α3Bωmax(λ)

�̄�1 := ᾱ1η1ν
√

(n1 + 2m1)d, �̄�2 := ᾱ2η2ν
√

(n2 + 2m2)d

and the corresponding rejection rates for i ∈ {1, 2, 3} and j ∈ {1, 2}:

Mi := exp
(√

2(λ+ 1)
log e · 1

αi
+ 1

2α2
i

)
, M̄j := exp

(√
2(λ+ 1)

log e · 1
ᾱj

+ 1
2ᾱ2

j

)
.

Then, ΠCom
NIZK for relation RCom is zero-knowledge under the MLWE2m1,2m1+n1,η1

, MLWE2m2,2m2+n2,η2,q̂
and

MLWEn+256/d̂+τ+1,m2,χ,q̂
assumptions.

Proof. The proof is almost identical to the one in Lemma 5.6 and we show it using a hybrid argument. Let
A be a PPT algorithm, which makes at most Q0 queries to H and Q1 queries to ProveISIS, outputs 1 with
probability ϵ. In each i-th game, we will introduce PPT algorithms S0,S1, which have a shared state, and
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denote εi to be the probability that 1← AS0,S1(crs).

Game1: Here, S0 simulates the random oracle queries using lazy sampling and S1 runs ProveCom(crs, x,w)
truthfully. By construction, ϵ1 = ϵ.

Game2: When S1 is queried, before executing Line 6 it first samples c← C. Then in Line 34, instead of calling
the random oracle S0, it uses the challenge c generated at the very beginning. If (4, crs, x, a1, a2, a3, a4) was
already queried earlier to S0, then S1 aborts. Otherwise, it continues with the ProveCom(crs, x,w) algorithm.
Similarly as in Lemma 5.6, we argue that

|ϵ2 − ϵ1| ≤ NQ1(Q0 + NQ1)2−nd̂ + negl(λ) = negl(λ).

Game3: In this game, immediately after sampling c← C and generating y1,y2, the algorithm directly computes
zi = yi + csi and runs

(comi, opi)← LHC.ZKSimi((Āi, B̄i), c, zi)

defined in Figure 14 for i = 1, 2 instead. Then, by the zero-knowledge property of the extractable linear
homomorphic commitment [46, Lemma 3.12], there exist PPT adversaries Ā1, Ā2 such that

|ϵ3 − ϵ2| ≤ N ·
(

AdvMLWE
2m1,2m1+n1,η1

(Ā1) + AdvMLWE
2m2,2m2+n2,η2

(Ā2) + negl(λ)
)

= negl(λ).

Game4: Here, S1 directly computes zi = yi + csi for i = 1, 2 and w := A1z1 + A2z2 − ctA. Further, S1 later
calculates f0 := zTD2z + cdT1 z + c2d0 − 𝔣, where 𝔣 := ct− bT z2, instead. By the verification equations and
simple rearrangement argument, we have ϵ4 = ϵ3.

Game5: Now, S1 directly samples each z2 ← Dm2d̂
𝔰2

and sets b2 = 1 with probability 1/M2. By Lemma 2.4, we
have |ϵ5 − ϵ4| ≤ N · 2−λ = negl(λ).

Game6: This time, S1 samples uniformly random ν ← R̂n+256/d̂+τ+1
q̂ and computes the commitment the

following way: 
tA
ty
tg
t

 := ν +


As1
y3
g
f1

 .
One can then construct a PPT adversary AMLWE which breaks Module-LWE with probability |ϵ5 − ϵ4|/Q1.
Hence,

|ϵ6 − ϵ5| ≤ N ·Q1 · AdvMLWE
n+256/d̂+τ+1,m2,χ

(AMLWE) = negl(λ).

Game7: Here, S1 samples directly (tA, ty, tg, t)← R̂
n+256/d̂+τ+1
q̂ . Thus, ϵ7 = ϵ6.

Game8: Now, S1 generates z1 ← Dm1d̂
𝔰1

and sets b1 = 1 with probability 1/M1. By Lemma 2.4, we have
|ϵ8 − ϵ7| ≤ N · 2−λ = negl(λ).

Game9: Here, S1 picks h ← {x ∈ R̂q̂ : x̃ = 0}τ directly. Since earlier g was chosen uniformly at ran-
dom from {x ∈ R̂q̂ : x̃ = 0}τ , we get ϵ9 = ϵ8.

Game10: This time S1 samples z⃗3 ← D256
𝔰3

and sets b3 = 1 with probability 1/M3. By Lemma 2.4,
|ϵ10 − ϵ9| ≤ N · 2−λ = negl(λ).

We observe that in Game10 S1 does not use the witness w (recall that S0 only simulates the random oracle
H using lazy sampling). Hence, by the hybrid argument, |ϵ10 − ϵ| = negl(λ) which concludes the proof.

43



6.2.3 Multi-Proof Extractability

We concentrate on proving multi-proof extractability. First, we provide basic intuition. Assume there is a PPT
adversary which makes at most QH random oracle queries and outputs Qs statement-proof pairs (xi, πi)i∈[Qs]
with non-negligible probability ε. Intuitively, we will use the property of extractable linear homomorphic
commitments to extract a witness candidate wi for each xi from πi. Then, for a fixed i ∈ [Qs], we will prove
that the probability that wi is not a valid witness for xi must be negligible. Otherwise, we could run the
knowledge extractor E from [57, Appendix B] to obtain a witness w′i for xi. By nature of the [57] protocol,
both wi and w′i are parts of two relaxed opening (c.f. Definition 5.1) to the same ABDLOP commitment.
Hence, by Lemma 5.2 we conclude that wi ≠ w′i and the knowledge extractor finds a valid Module-SIS
solution.

Theorem 6.3 (Multi-Proof Extractability). Let B := 8ν
√
B2

1 + B2
2 and

q̂ > max
(
B, 16m1d̂B3,

2
ωmin(λ)2B

2
3

)
.

Then, the NIZK proof system ΠCom
NIZK for relation RCom is multi-proof extractable under the MLWEm1,m1+n1,η1

,
MLWEm2,m2+n2,η2

and the MSISn,m1+m2,B
assumptions.

Proof. We start with crs indistinguishability. Namely, define the simulator Scrs which first samples

c̃rs := (A1,A2,By,Bg,b)← R̂n×m1
q̂ × R̂n×m1

q̂ × R̂n×m2
q̂ × R̂256/d̂×m2

q̂ × R̂τ×m2
q̂ ,

(Ā1, Ā2)← R̂m1×n1
q̂ × R̂m2×n2

q̂ .

It also generates D̄i,1 ← Smi×mi
ηi

, D̄i,2 ← Smi×ni
ηi

and sets B̄i := D̄i,1Āi + D̄i,2. Finally, it outputs

c̃rs = (A1,A2,By,Bg,b, Ā1, Ā2, B̄1, B̄2)

and the trapdoor td = (D̄1,1, D̄1,2, D̄2,1, D̄2,2). Then, c̃rs is indistinguishable from random crs based on the
MLWEm1,n1,η1

and MLWEm2,n2,η2
assumptions.

We now turn to proving straight-line extractability. Suppose there is a PPT adversary which makes at most
QH random oracle queries and outputs Qs statement-proof pairs (xi, πi)i∈[Qs] with non-negligible probability
ε(λ). We start by formally defining the Multi-Extract algorithm in Figure 15. To provide more intuition on
what the algorithm does, consider the interactive proof implicitly defined in Figure 12 by ProveCom. Then, a
valid transcript is of the form

tr =
(
(tA, ty, tg, com1, com2), (ℜ0,ℜ1), z⃗3, (γi,j),h, (µi), (t, f0), c, (z1, z2, op1, op2)

)
where the challenges are highlighted in gray. One of the main observations is that if there also exists a valid
transcript

tr∗ =
(
(tA, ty, tg, com1, com2), (ℜ0,ℜ1), z⃗3, (γi,j),h, (µi), (t, f0), c, (z∗1, z

∗
2, op∗1, op∗2)

)
which has the same partial transcript as tr up to the last response, then we must have z1 = z∗1 and z2 = z∗2
assuming that the underlying encryption scheme (LHC) has no decryption error. Now, for a fixed c̃rs, statement
x and a valid transcript tr := (pref_tr, (z1, z2, op1, op2)), where pref_tr is the partial transcript which excludes
the last message, define the following set:

Γ (x, tr) :=
{
c∗ ∈ C : ∃(z

∗
1, z
∗
2, op∗1, op∗2) s.t.

(
pref_tr, (z∗1, z∗2, op∗1, op∗2)

)
is a valid transcript

}
.

44



Multi-Extract(QH, Qs, 1/ε, c̃rs, τ, x, π)
Input: QH, Qs, 1/ε, c̃rs := (A1,A2,By,Bg,b, Ā1, Ā2, B̄1, B̄2),
td := (D̄1,1, D̄1,2, D̄2,1, D̄2,2), x := (P, u⃗), π
Output: witness w, or a triple (⊥, (x, π, aux)), or (⊥,⊥) (unsuccessful)
1: parse π = (tA, ty, tg,w, com1, com2, z⃗3,h, t, f0, z⃗3,h, z1, z2, op1, op2)

2: B =
[
By

Bg

]
, tB =

[
ty
tg

]
3: compute D2,d1, d0 as in (20)
4: if one of the conditions below does not hold, then return 0:
5: com1 = (t̄1,1, t̄1,2, w̄1,1, w̄1,2)
6: com2 = (t̄2,1, t̄2,2, w̄2,1, w̄2,2)
7: BadChall = {c}
8: t = 0
9: while t ≤ Tmax := λ·2QH

ε do
10: b = 1
11: c′ ← C\BadChall
12: for i ∈ {1, 2} do z′i = (c′t̄i,2 + w̄i,2)− D̄i,1(c′t̄i,1 + w̄i,1) mod p̄

13: z′ =


z′1

σ(z′1)
c′tB −Bz′2

σ(c′tB −Bz′2)


14: 𝔣

′ := c′t− bT z′2
15: f ′0 = z′TD2z′ + c′dT1 z′ + c′2d0 − 𝔣

′

16: if one of the following conditions does not hold, then b = 0:
– ∥z′1∥ > B1 := 2𝔰1

√
2m1d̂

– ∥z′2∥ > B2 := 2𝔰2

√
2m2d̂

– A1z′1 + A2z′2 = w + c′tA
– f ′0 ̸= f0

17: if b = 1 then
18: c∗ = c′ − c
19: for i ∈ {1, 2} do
20: s∗i = z′

i−zi

c
′−c

21: w = s⃗∗1 ∈ Zmd̂
q̂

22: if (x,w) ∈ RCom then return w
23: else
24: aux = (s∗1, s

∗
2, c
∗)

25: return (⊥, (x, π, aux))
26: else BadChall← BadChall ∪ {c′}
27: t = t+ 1
28: return (⊥,⊥)

Fig. 15: Multi-Extract algorithm.
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At a high level, Multi-Extract is first given such an accepting transcript tr (technically it can manually produce
one given π). It also defines a set of bad challenges as BadChall := {c}. Then, it samples c′ ← C\BadChall,
decrypts (w̄i,1 + c′t̄i,1, w̄i,2 + c′t̄i,2) to obtain some z′i, for i = 1, 2, and checks whether

∥z′1∥
?
≤ B1 := 𝔰1

√
2m1d̂, ∥z′2∥

?
≤ B2 := 𝔰2

√
2m2d̂,

A1z′1 + A2z′2
?= w + c′tA, z′TD2z′ + c′dT1 z′ + c′2d0 − (c′t− bT z′2) ?= f0,

where

z′ :=


z′1

σ(z′1)
c′tB −Bz′2

σ(c′tB −Bz′2)

 .
If not then the algorithm adds c′ to BadChall and restarts the procedure.

Let GoodChall(x, tr) be the set of all challenges c′ ∈ C (including c) for which the procedure above
succeeds. The first step in analysing the success probability of Multi-Extract will be to lower-bound the size of
GoodChall(x, tr). To begin with, one observes that Γ (x, tr) ⊆ GoodChall(x, tr). Hence, we focus on showing a
lower bound on Γ (x, tr) instead. To this end, we present the following lemma. Since it is almost identical to
[67, Lemma 4.7], we omit the proof.
Lemma 6.4 ([67]). Let A be a PPT adversary that makes at most QH random oracle queries and

Pr
[

(c̃rs, td)← Scrs,

{(xk, πk)}k∈[Qs] ← A
H(c̃rs) : ∀k ∈ [Qs],VerifyH

Com(c̃rs, xk, πk) = 1
]
≥ ε(λ).

Then, we have

Pr
[

(c̃rs, td)← Scrs(1
λ),

{(xk, πk)}k∈[Qs] ← A
H(1λ, c̃rs)

: ∀k ∈ [Qs],VerifyH
Com(c̃rs, xk, πk) = 1

∧|Γ (xk, trk)| ≥ ε
2QH
· |C|

]
≥ ε(λ)

2 − negl(λ)

where the transcript trk is constructed naturally from πk using VerifyH
Com.

We use the lemma above to give an upper-bound on the following probability:

εfail := Pr
[

(c̃rs, td)← Scrs(1
λ),

{(xk, πk)}k∈[Qs] ← A
H(1λ, c̃rs)

: ∀k ∈ [Qs],VerifyH
ISIS(c̃rs, xk, πk) = 1,

∃i ∈ [Qs], (⊥,⊥)← Multi-Extract(inputi)

]
where inputi := (QH, Qs, 1/ε, c̃rs, τ, xi, πi). Consider a fixed i ∈ [Qs]. By Lemma 6.4, with probability at least
ε/2− negl(λ), for each k ∈ [Qs] we have |Γ (xk, trk)| ≥ ε

2QH
· |C|. Assuming this event occurs, then in each trial

of the loop in Line 9 of Multi-Extract, the probability that we pick c′ ∈ GoodChall(xi, tri) is at least ε/(2QH).
Hence, by repeating the procedure Tmax = λ · (2QH/ε) times, the algorithm fails on each trial with negligible
probability. Hence, by the union bound over i and the fact that Qs = poly(λ), we deduce that

εfail ≤
ε

2 + negl(λ).

Next, we focus on upper-bounding

εbind := Pr
[

(c̃rs, td)← Scrs(1
λ),

{(xk, πk)}k∈[Qs] ← A
H(1λ, c̃rs)

: ∀k ∈ [Qs],VerifyH
ISIS(c̃rs, xk, πk) = 1,

∃i ∈ [Qs], (⊥, (x, π, aux))← Multi-Extract(inputi)

]
where inputi := (QH, Qs, 1/ε, c̃rs, τ, xi, πi). To this end, we show Lemma 6.5 and conclude that εbind = negl(λ).
Finally, by simple calculation:

Pr

 (c̃rs, td)← Scrs(1
λ),

{(xk, πk)}k∈[Qs] ← A
H(1λ, c̃rs)

:
∀k ∈ [Qs],VerifyH

ISIS(c̃rs, xk, πk) = 1,
wk ← Multi-Extract(inputk)

(xk,wk) ∈ RCom

 = ε− εfail − εsp

≤ ε

2 − negl(λ)

which concludes the proof.
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Lemma 6.5. Let A be a PPT adversary that makes at most QH = poly(λ) random oracle queries and

Pr
[

(c̃rs, td)← Scrs(1
λ),

{(xk, πk)}k∈[Qs] ← A
H(c̃rs)

: ∀k ∈ [Qs],VerifyH
ISIS(c̃rs, xk, πk) = 1

]
≥ ε(λ),

where ε(λ) is non-negligible. Then, we have

Pr
[

(c̃rs, td)← Scrs(1
λ),

{(xk, πk)}k∈[Qs] ← A
H(1λ, c̃rs)

: ∀k ∈ [Qs],VerifyH
ISIS(c̃rs, xk, πk) = 1∧

∃i, (⊥, (x, π, aux))← Multi-Extract(inputi)

]
= negl(λ)

where inputi := (QH, Qs, 1/ε, c̃rs, τ, xi, πi).

Proof. Suppose that the probability above is non-negligible and denote it as δ(λ). We consider a PPT
algorithm P∗, which given (c̃rs, td), it essentially executes A to obtain Qs statement-proof pairs (xk, πk)k∈[Qs],
checks whether the proofs are valid, and then runs each Multi-Extract(inputk) to check whether it outputs
(⊥, (x, π, aux)). If not, then P∗ aborts. Otherwise, P∗ outputs the triple (x, π, aux). Let us also recall the
meaning of the output of P∗. Here, x = (P, u⃗) is a statement, π is the corresponding proof from Section 6
written as:

π = (tA, ty, tg,w, com1, com2, z⃗3,h, t, f0, z⃗3,h, z1, z2, op1, op2) (32)

and aux = (s∗1, s
∗
2, c
∗) is the relaxed opening of tA (c.f. Definition 5.1) such that (x, s⃗∗1) ̸∈ RCom. Clearly, the

probability that P∗ outputs something is δ. Further, P∗ runs in time Qs ·QH · poly(λ)/ε and makes at most
QH random oracle queries.

Now, we can use the knowledge extractor E from [57, Appendix B]. Roughly speaking, it runs P∗ once to
obtain a valid triple (x, π, aux) by simulating the random oracle queries. Denote π as in (32). Then, for fixed
random coins, fixed common reference string c̃rs and the fixed statement x (where the latter two are included
in the hash input of the Fiat-Shamir transformation in π), it re-runs P∗ with different random oracle outputs
in order to obtain additional valid triples of the form (x, π′, aux′) where

π′ = (tA, ty, tg,w, com1, com2, z⃗
′
3,h
′, t′, f ′0, z⃗

′
3,h
′, z′1, z

′
2, op′1, op′2). (33)

Clearly, for aux := (s∗1, s
∗
2, c
∗) and aux′ = (s′1, s

′
2, c
′) we might have s∗1 ̸= s′1. However, in this case E would find

two distinct relaxed openings to tA and by Lemma 5.2 it would compute a valid solution to the Module-SIS
problem. Hence, from now on we assume that every valid triple (x, πi, auxi) extracted from P∗ by E satisfies
auxi := (s∗1, s

∗
2, ci)

From [57, Theorem B.7], we deduce that given access to P∗, E runs in expected Qs ·Q
2
H · poly(λ)/ε time

and with probability at least

δ′ := δ − (QH + 1)
(

2
|C|

+ p̂
−d̂/2
1 + p̂−τ1 + 2−λ

)
(34)

outputs one of the following:

1. a triple (x, open, aux), where

x = (P, u⃗,B), open := (s1, s2, c) and aux := (s∗1, s
∗
2, c
∗)

such that (x, s⃗1) ∈ RCom, (x, s⃗∗1) ̸∈ RCom and both open and aux are relaxed openings of the same ABDLOP
commitment tA,

2. a non-zero vector s̄ ∈ R̂m1+m2
q̂ such that ∥s̄∥ ≤ B and[

A1 A2
]

s̄ = 0.
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ExpNTRU-ISISf
pp (A)

1: (a1,B)← NTRU.TrapGen(q, d)
2: a2 ← R

m
q

3: A =
[
a1 aT2 1

]
4: for i ∈ [k] :
5: xi ← [N ]
6: si ← GSampler(a1,a2,B, 𝔰, f(xi))
7: (x∗, s∗)← A(A, (xi, si)i∈[k])
8: if

(
As∗ = f(x∗)

)
∧
(
∥s∗∥ ≤ B

)
∧
(
(x∗, s∗) ̸∈ {(xi, si) : i ∈ [k]}

)
9: then return 1

10: else return 0

Fig. 16: The NTRU-ISISf experiment.

Clearly, in the second case E directly gets a valid Module-SIS solution so we only focus on the former one.
Note that (x, s⃗∗1) ̸∈ RCom thus we must have s⃗∗1 ̸= s⃗1. Consequently, E has found two distinct relaxed openings
to the same ABDLOP commitment and by Lemma 5.2, it can compute a valid Module-SIS solution. Hence, in
either case E solves MSISn,m1+m2,B

.
To finish the proof, we apply the expected-time to strict-time transformation (c.f. Lemma 2.14) on E . This

gives us an algorithm B which solves MSISn,m1+m2,B
with probability at least δ′/2 and runs in strict time

Qs ·Q
2
H ·

poly(λ)
ε · δ′

.

Therefore, if δ is non-negligible then B runs in strict polynomial time and solves MSISn,m1+m2,B
with

non-negligible probability. This leads to a contradiction.

7 The NTRU-ISISf Assumption

Note that due to the preimage sampling procedure, the ISISf assumption is not falsifiable. In this section, we
introduce the falsifiable version of the problem, called NTRU-ISISf , where the challenger additionally has the
NTRU trapdoor to produce short preimages.

Definition 7.1 (The NTRU-ISISf Problem). Let pp := (q, d,m,N, k, 𝔰,B) be a tuple of functions of the
security parameter λ. Consider any efficiently computable function f : [N ]→ Rq. The NTRU-ISISf assumption
is defined by the experiment in Figure 16. For an adversary A, we define

AdvNTRU-ISISf
pp (A) = Pr[ExpNTRU-ISISf

pp (A)→ 1].

The NTRU-ISISpp
f assumption states that for every PPT adversary A, the advantage AdvNTRU-ISISf

pp (A) is
negligible.

Similarly as in Section 3, we consider the interactive version of the NTRU-ISISf problem.

Definition 7.2 (The Interactive NTRU-ISISf Problem). Define public parameters pp := (q, d,m, ℓm, ℓr, N, 𝔰,Bs,Bm)
as a tuple of functions of the security parameter λ. Consider any efficiently computable function f : [N ]→ Rq.
The Int-NTRU-ISISf assumption is defined by the experiment in Figure 17. For an adversary A, we define

AdvInt-NTRU-ISISf
pp (A) = Pr[ExpInt-NTRU-ISISf

pp (A)→ 1].

The Int-NTRU-ISISpp
f assumption states that for every PPT adversary A, the advantage AdvInt-NTRU-ISISf

pp (A)
is negligible.
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ExpInt-NTRU-ISISf
pp (A)

1: (a1,B)← NTRU.TrapGen(q, d)
2: a2 ← R

m
q

3: A =
[
a1 aT2 1

]
4: C← R1×(ℓm+ℓr)

q

5: M = ∅
6: (x∗, s∗,m∗, r∗)← AOpre(A,C)

7: if
(
m∗ ̸∈ M

)
∧
(

As∗ = f(x∗) + C
[
m∗
r∗
])
∧
(
∥s∗∥ ≤ Bs

)
∧(

∥(m∗, r∗)∥ ≤ Bm
)

8: then return 1
9: else return 0

Opre(m, r)
1: if ∥(m, r)∥ < Bm
2: then return ⊥
3: x← [N ]

4: s← GSampler
(
a1,a2,B, 𝔰, f(x) + C

[
m
r

])
5: M←M∪ {m}
6: return (x, s)

Fig. 17: Interactive version of the NTRU-ISISf problem.

Using the proof strategy from Theorem 3.3, one can efficiently reduce Int-NTRU-ISISf to NTRU-ISISf . In
the following, we only provide a proof sketch and highlight the parts where it differs from the proof of
Theorem 3.3.

Theorem 7.3 (Int-NTRU-ISISf =⇒ NTRU-ISISf). Define the public parameters pp := (q, d,m, ℓm, ℓr, N, 𝔰,Bs,Bm)
such that Bm ≥ 1, (2κ+ 1)m+2 > q, and

M := exp
(

1 + 1
2α2

)
and ε := 2

(
1 + ϵ

1− ϵ

)
exp

(
−2α2 · π − 1

π

)
where ϵ = 2−δ/(4d), α ≥ 1 and κ ∈ Z+. Suppose

𝔰 ≥ max
(

1.17√q · η′ϵ(Z), αBmκd
√

(ℓm + ℓr)(m+ 2)
)
.

Then, for every adversary A which makes at most Q queries to Opre, there are adversaries A′ and B, which
run in time essentially identical to A and

AdvNTRU-ISISf

pp′ (A′) ≥ 1
6QAdvInt-NTRU-ISISf

pp (A)− ℓm + ℓr
6Q AdvMLWE

1,m+1,κ(B)− 2−λ

6 − T 2
maxQ

12N

− ℓm
3 ·

(
q

(2κ+ 1)m+2

)d
−
(
Q− 2

3

)
Tmax

(
ε

2M + 2ϵ
M

+ 2−δ+1
)

where pp′ := (q, d,m,N, TmaxQ, 𝔰,B = Bs+Bmκd
√

(ℓm + ℓr)(m+ 2)) and Tmax satisfies
(
1− 1

M

)Tmax ≤ 2−λ.

Proof. We closely follow the security games from the proof of Theorem 3.3 and explain the main differences.
Namely, Game1 is the interactive NTRU-ISISf . In Game2, we substitute the uniformly random C with C = AD
where D← S(m+2)×(ℓm+ℓr)

κ . Observe that now we do not use the leftover hash lemma anymore. Indeed, to
see that the latter is pseudorandom under the MLWE1,m+1,κ assumption, denote

D :=

d1,1 · · · dℓm+ℓr,1
d1,2 · · · dℓm+ℓr,2
d1,3 · · · dℓm+ℓr,3

 .
Then,

C =
[
a1 aT2 1

]
D =

[
a1d1,1 · · · a1dℓm+ℓr,1

]
+ u

where u := aT2
[
d2,1 · · · d2,ℓm+ℓr

]
+
[
d1,3 · · · dℓm+ℓr,3

]
. Hence, under the Module-LWE assumption, u is

pseudorandom, and so is C.
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One can then define security games from 3 to 7 as before. For Game6, we note that now there exists
a polynomial vector u ∈ Λ⊥q (A) with coefficients between −2κ and 2κ, since qd < (2κ + 1)(m+2)d. Hence,
∥u∥ ≤ 2κ

√
(m+ 2)d and

𝔰 ≥ αBmκd
√

(ℓm + ℓr)(m+ 2) ≥ κd
√

(m+ 2) ≥ 2κ
√

(m+ 2)d ≥ ∥u∥.

Thus, we can argue similarly as before that Pr[E6] ≥ 1
2 Pr[E5].

Clearly, Game7 stays unchanged. As for Game8, thanks to the structure of NTRU lattices, we do not
need to exclude the case when 𝔰 is smaller than the smoothing parameter of Λ⊥q (A). Now, in order to use
Lemma 2.5, we need the fact that applying GSampler is statistically close to sampling preimages from the
discrete Gaussian distribution, i.e. Lemma 2.7. Hence,

Pr[E8] ≥ Pr[E7]− Tmax

(
ε

2M + 2ϵ
M

+ 2−δ+1
)
.

Next, to analyse Game9, we need an upper-bound on the probability that |S(D, i)| = 1 for fixed i ∈ [ℓm].
Using the same techniques as in [53, Lemma 5.2], we can show that this happens with probability at most(

q

(2κ+1)m+2

)d
. Hence,

Pr[E9] ≥ 1
3 Pr[E8]− ℓm

3 ·
(

q

(2κ+ 1)m+2

)d
.

We can define Game10 as in the previous proof and deduce that

Pr[E10] ≥ Pr[E9]− (Q− 1)Tmax

(
ε

2M + 2ϵ
M

+ 2−δ+1
)
.

Finally, the rest of the proof from Theorem 3.3 remains unchanged.

8 Anonymous Credentials from NTRU-ISISf

This section focuses on building an efficient anonymous credentials scheme based on the newly defined
assumption NTRU-ISISf where f is a binary encoding function (see Section 3.1.2). Namely, let N = 2t. Then,
the function f : [N ]→ Rq is defined as

f(x) := Coeffs−1(B · enc(x)) ∈ Rq

where enc(x) is a binary decomposition of an integer 0 ≤ x− 1 < 2t and B ∈ Zd×t
q is a fixed matrix.

For convenience, we introduce the following notation which will be heavily used throughout this section.
For a matrix C ∈ Zn×lmq denoted as

C :=
[
C1 C2 · · · Cl

]
where each Ci ∈ Zn×mq ,

and a (possibly empty) subset S = (s1, . . . , sk) ⊆ [l], where s1 < . . . < sk, we define:

CS :=
[
Cs1

Cs2
· · · Csk

]
∈ Zn×kmq .

We introduce an identical notation to vectors and matrices over Zq and Rq. Further, we define S̄ := [l]\S to
be the complement of S with respect to [l].
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Parameter Explanation
d degree of the cyclotomic ring R
d̂ degree of the cyclotomic ring R̂ used in Π ISIS

NIZK and ΠCom
NIZK

q anonymous credentials modulus
q̂1 modulus for the proof system ΠCom

NIZK divisible by q
q̂2 modulus for the proof system Π ISIS

NIZK divisible by q
N domain size of the function f
t logN , length of the binary vector u⃗
h length of the string output by HM
l number of attributes, we assume d|lh
m length of a2
ℓr length of the randomness r generated by the holder
ℓm lh/d
ψ infinity norm of r and the output of HM
𝔰 preimages are sampled from D(m+2)d

𝔰

Table 2: Overview of parameters and notation.

8.1 Construction

We start with the summary of notation and parameters in Table 2, and define the building blocks, which
were developed throughout the paper and will be used in our main construction:

– Function f : [N ]→ Rq described in more detail in Section 3.1.2,
– The NIZK proof system Π ISIS

NIZK := (ProveHISIS
s ,VerifyHISIS

s ) (with a common random string crsISIS) described in
Section 5 for the relation (12), where the proof system modulus is q̂1,

– The NIZK proof system ΠCom
NIZK := (ProveHCom

Com ,VerifyHCom
Com ) (with a common random string crsCom) described

in Section 6 for the relation (23), where the proof system modulus is q̂2,
– Four hash functions Hcrs,HCom,HISIS,HM modelled as random oracles in the security proof. The first one is

a special hash function which we will only query on input 0 to obtain the crs for the underlying primitives,
i.e.

Hcrs(0) = (crsISIS, crsCom)

where crsISIS and crsCom are used by Π ISIS
NIZK and ΠCom

NIZK respectively. Next, HCom,HISIS are used by the NIZK
proof systems Π ISIS

NIZK and ΠCom
NIZK. Finally, we apply HM to hash attributes into a vector of length h with

coefficients between −ψ and ψ. As usual, one can use a single hash function instead of four by applying
the domain separation technique.

– NTRU trapdoor sampling functions (NTRU.TrapGen, GSampler) defined in Section 2.1.

We present the AnonCreds = (AnonCreds.Init,AnonCreds.Issue,AnonCreds.Verify) construction in Figure 18,
Figure 19 and Figure 20. We assume that all the involved parties retrieve (crsISIS, crsCom) by querying Hcrs(0).

Key generation. The key generation algorithm runs (a1,B)← NTRU.TrapGen(q, d) and samples a2 ← R
m
q . It

further generates vectors c0 ← R
ℓm
q and c1 ← R

ℓr
q . Then, we define the public key ipk = (a1,a2, c0, c1) and

secret key isk = B.

Credential issuing. Next, we give an intuition on the issuing protocol. The holder H is given ipk, attrs =
(a1, . . . , al), and the set of indices idx ⊆ [l] for which the attributes in attrs are public. Then, it computes the
polynomial vector

m = Coeffs−1(HM(a1), . . . ,HM(al)) ∈ R
ℓm
q . (35)
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AnonCreds.Init
Input: number of attributes l
Output: (ipk, isk)
1: (a1,B)← NTRU.TrapGen(q, d)
2: a2 ← R

m
q

3: (c0, c1)← Rℓm
q ×R

ℓr
q

4: ipk← (a1,a2, c0, c1)
5: isk← B
6: return (ipk, isk)

Fig. 18: AnonCreds.Init algorithm.

Further, to commit to m, H samples randomness r← S
ℓr

ψ and computes the commitment to m as

u := cT0 m + cT1 r ∈ Rq.

The next step is to prove knowledge of a commitment opening of u. Since we want to use the proof system
Π ISIS

NIZK, we need to translate this relation from Rq to Zq. Since Coeffs(m)idx (resp. Coeffs(m)idx) are public
(resp. hidden), we transform into a relation of the form (23) by defining:

P := [rot(cT0 )idx | rot(cT1 )],
s⃗ :=

(
Coeffs(m)idx,Coeffs(r)

)
,

u⃗ := Coeffs(u)− rot(cT0 )idxCoeffs(m)idx.

Then, using the properties of multiplication matrices we deduce that:

Coeffs(u) = rot(cT0 )Coeffs(m) + rot(cT1 )Coeffs(r)

= rot(cT0 )idxCoeffs(m)idx + rot(cT0 )idxCoeffs(m)idx + rot(cT1 )Coeffs(r)

and thus:

P s⃗ = rot(cT0 )idxCoeffs(m)idx + rot(cT1 )Coeffs(r)

= Coeffs(u)− rot(cT0 )idxCoeffs(m)idx

= u⃗.

Finally, since in ΠCom
NIZK we need to prove relations modulo q̂1, we prove instead:(

q̂1
q
· P
)
s⃗ = q̂1

q
· u⃗ (mod q̂1).

Hence, the holder sends the commitment u ∈ Rq and proof π.
The issuer I, given secret key isk, attributes attrs′, the set of indices idx and the message (u, π) from

H, first verifies the proof π, where both P and u⃗ can be manually computed by I. Further, it generates a
uniformly random x← [N ] and samples s← GSampler (a1,a2,B, 𝔰, f(x) + u), which by definition satisfies

[a1|a
T
2 |1]s = f(x) + u.

Then, I outputs (x, s) to H. The holder then checks whether s is short and satisfies the equation above. If so,
then the credential is a triple cred = (s, r, x).
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cred/⊥ ← AnonCreds.IssueI,H⟨(isk, attrs′, idx), (ipk, attrs, idx)⟩

This protocol between issuer I and holder H = (H1,H2) proceeds as follows:
H1(ipk, attrs, idx)

1: parse attrs = (a1, . . . , al)
2: m = Coeffs−1(HM(a1), . . . ,HM(al)) ∈ R

ℓm
q

3: r← S
ℓr

ψ

4: u = cT0 m + cT1 r
5: P = [rot(cT0 )idx | rot(cT1 )] ∈ Zd×(|idx|·h+ℓrd)

q

6: s⃗ =
(
Coeffs(m)idx,Coeffs(r)

)
∈ Z|idx|·h+ℓrd

q

7: u⃗ = Coeffs(u)− rot(cT0 )idxCoeffs(m)idx ∈ Zdq

8: π ← ProveHCom
Com

(
crsCom, (q̂1/q · P, q̂1/q · u⃗, ψ

√
h · |idx|+ ℓrd), s⃗

)
9: return (ρ1 = (u, π), stH = (m, r))

I(isk, attrs′, idx, ρ1)

1: parse ρ1 = (u, πm), attrs′ = (a1
′, . . . , al

′)
2: m′ = Coeffs−1(HM(a1

′), . . . ,HM(al
′)) ∈ Rℓm

q

3: P = [rot(cT0 )idx | rot(cT1 )] ∈ Zd×(|idx|·h+ℓrd)
q

4: u⃗ = Coeffs(u)− rot(cT0 )idxCoeffs(m′)idx ∈ Zdq

5: if VerifyHCom
Com

(
crsCom, (q̂1/q · P, q̂1/q · u⃗, ψ

√
h · |idx|+ ℓrd), π

)
= 0

6: then return ⊥
7: x← [N ]
8: s← GSampler (a1,a2,B, 𝔰, f(x) + u)
9: return ρ2 = (s, x)

H2(ipk, ρ2, stH)

1: parse ρ2 = (s, x), stH = (m, r)
2: if

(
∥s∥ > 𝔰

√
(m+ 2)d

)
∨
(
∥r∥ > ψ

√
ℓrd
)
∨
(

[a1|a
T
2 |1]s ̸= f(x) + cT0 m + cT1 r

)
3: then return ⊥
4: else return cred = (s, r, x)

Fig. 19: AnonCreds.Issue protocol.

Verification. We describe the protocol between the holder H(ipk, attrs, cred, idx) and the verifier V . Informally,
the holder wants to prove knowledge of a short vector s ∈ Rm+2

q , binary polynomial f(x) ∈ B, a short vector
r ∈ Rℓr

q , and private parts of m defined as in (35) (dictated by indices idx of public attributes) which satisfy:

[a1|a
T
2 |1]s = f(x) + cT0 m + cT1 r.

Now, we need to transform these relations to the ones of the form (12) in order to use Π ISIS
NIZK. From the

properties of multiplication matrices we get

rot([a1|a
T
2 |1])Coeffs(s)

= Coeffs([a1|a
T
2 |1]s)

= Coeffs(f(x)) + rot(cT0 )Coeffs(m) + rot(cT1 )Coeffs(r)

= Coeffs(f(x)) + rot(cT0 )idxCoeffs(m)idx + rot(cT0 )idxCoeffs(m)idx + rot(cT1 )Coeffs(r).

Hence, let us define

P := rot([a1|a
T
2 |1]), C := [rot(cT0 )idx | rot(cT0 )idx | rot(cT1 )], m⃗ := Coeffs(m)idx,

s⃗ := Coeffs(s), r⃗ := (Coeffs(m)idx,Coeffs(r)), u⃗ := enc(x).

One can check that
P s⃗ = Bu⃗+ C

[
m⃗
r⃗

]
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⟨⊥, 1/0⟩ ← AnonCreds.VerifyH,V⟨(cred, attrs, idx), (ipk, attrs′, idx)⟩

The protocol between holder H and verifier V:
H(ipk, attrs, cred, idx)

1: parse attrs = (a1, . . . , al), cred = (s, r, x)
2: m = (HM(a1), . . . ,HM(al)) ∈ R

ℓm
q

3: P = rot([a1|a
T
2 |1]) ∈ Zd×(m+2)d

q

4: C = [rot(cT0 )idx | rot(cT0 )idx | rot(cT1 )] ∈ Zd×(ℓm+ℓr)d
q

5: m⃗ = Coeffs(m)idx ∈ Z|idx|·h
q

6: s⃗ = Coeffs(s) ∈ Z(m+2)d
q

7: r⃗ = (Coeffs(m)idx,Coeffs(r)) ∈ Z|idx|·h+ℓrd
q

8: u⃗ = Coeffs(f(x)) ∈ Zdq

9: Bounds =
(
𝔰
√

(m+ 2)d, ψ
√

h · |idx|+ ℓrd

)
10: π ← ProveHISIS

ISIS (crsISIS, (q̂2/q · P, q̂2/q · C, m⃗, q̂2/q ·B,Bounds, idx), (s⃗, r⃗, u⃗))
11: return π

V(ipk, attrs′, idx, π)

1: parse attrs′ = (a1
′, . . . , al

′)
2: m′ = Coeffs−1(HM(a1

′), . . . ,HM(al
′)) ∈ Rℓm

q

3: P = rot([a1|a
T
2 |1]) ∈ Zd×(m+2)d

q

4: C = [rot(cT0 )idx | rot(cT0 )idx | rot(cT1 )] ∈ Zd×(ℓm+ℓr)d
q

5: m⃗′ = Coeffs(m′)idx ∈ Z|idx|·h
q

6: Bounds =
(
𝔰
√

(m+ 2)d, ψ
√

h · |idx|+ ℓrd

)
7: return VerifyHISIS

ISIS (crsISIS, (q̂2/q · P, q̂2/q · C, m⃗
′, q̂2/q ·B,Bounds, idx), π)

Fig. 20: AnonCreds.Verify protocol.

and also ∥s⃗∥ ≤ 𝔰
√

(m+ 2)d with high probability, ∥r⃗∥ ≤ ψ
√

h · |idx|+ ℓrd and u⃗ ∈ {0, 1}t. Then, to obtain a
relation of the form (12), we lift the equation from Zq to Zq̂2

as before, i.e. we prove instead:(
q̂2
q
· P
)
s⃗ =

(
q̂2
q
·B
)
u⃗+

(
q̂2
q
· C
)[

m⃗
r⃗

]
(mod q̂2).

Then, we end up with exactly the relation (12). Thus, the holder outputs the proof π from Π ISIS
NIZK to the

verifier V w.r.t. the statement

(q̂2/q · P, q̂2/q · C, m⃗, q̂2/q ·B,Bounds, idx),

where Bounds =
(
𝔰
√

(m+ 2)d, ψ
√

h · |idx|+ ℓrd

)
.

Finally, V given the public key ipk, set of attributes attrs′, set of indices idx and a proof π, manually
re-computes the statement (q̂2/q ·P, q̂2/q ·C, m⃗, q̂2/q ·B,Bounds, idx) and checks whether the proof π is valid.

8.2 Security Analysis

Lemma 8.1 (Correctness). Let δ, d = O(λ), ϵ = 2−δ/(4d) and 𝔰 ≥ 1.17√q · η′ϵ(Z). If both Π ISIS
NIZK and ΠCom

NIZK
are correct, then AnonCreds is correct.
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Proof. We start by remarking that any honest execution of AnonCreds.Init will succeed since it only entails
random sampling and an invocation of NTRU.TrapGen which, by Lemma 2.6, always succeeds.

We next show that given a successful execution of AnonCreds.Init, any honest execution of AnonCreds.Issue
succeeds with overwhelming probability (Equation 10): the first round H1(ipk, attrs, idx) performed by the
holder always succeeds since it only involves random sampling, algebraic operations and generation of a proof.
Not to mention the fact that for the vector s⃗ generated honestly by H1, we must have

∥s⃗∥ = ∥
(
Coeffs(m)idx,Coeffs(r)

)
∥ ≤ ψ

√
h · |idx|+ ℓrd.

Further, the round I(isk, attrs′, idx, ρ1) executed by the issuer might fail if

VerifyHCom
Com

(
crsCom, (q̂1/q · P, q̂1/q · u⃗, ψ

√
h · |idx|+ ℓrd), π

)
= 0,

but by the correctness of ΠCom
NIZK (c.f. Lemma 6.1) this happens with negligible probability. Here, we used

the fact that if both H and I are given attributes attrs and attrs′, which agree on indices in idx, then we
must have that u⃗ computed by H, and u⃗ computed by I, are identical. Finally, the last round H2(ipk, ρ2, stH)
performed by the holder may fail if ∥s∥ > 𝔰

√
(m+ 2)d. Recall that s ∈ Rm+2

q is generated such that

[a1|a
T
2 |1]s = f(x) + u.

Note that s2 is randomly sampled from a distribution statistically close to a discrete Gaussian distribution by
Lemma 2.7. Consequently, by Lemma 2.3, s satisfies the condition ∥s∥ ≤ 𝔰

√
(m+ 2)d, with an overwhelming

probability. Also, since r← S
ℓr

ψ , we get ∥r∥ ≤ ψ
√
ℓrd.

Finally we show that given a successful execution of AnonCreds.Init and of AnonCreds.Issue, any hon-
est execution of AnonCreds.Verify succeeds with overwhelming probability (Equation 11): the first round
H(ipk, attrs, cred, idx) executed by the holder always succeeds since it only involves random sampling, algebraic
operations and generation of a proof. Similarly as before, the vector r⃗ computed honestly by H satisfies

∥r⃗∥ = ∥(Coeffs(m)idx,Coeffs(r))∥ ≤ ψ
√

h · |idx|+ ℓrd.

Furthermore, the round V(ipk, attrs′, idx, π) executed by the verifier might fail if VerifyHISIS
ISIS (crsISIS, (q̂2/q ·

P, q̂2/q · C, m⃗
′, q̂2/q ·B,Bounds, idx), π) = 0 but by the correctness of Π ISIS

NIZK (c.f. Lemma 5.5) this happens
with negligible probability. Similarly as before, we used the observation that if both H and V are given
attributes attrs and attrs′, which agree on indices in idx, then we must have m⃗ (computed by H) is equal to
m⃗′ (computed by V).

Theorem 8.2 (Anonymity). Suppose ΠCom
NIZK and Π ISIS

NIZK are zero-knowledge and MLWE1,ℓr,ψ
assumption is

hard. Then, AnonCreds is anonymous.

Proof. Let A be a PPT adversary against the anonymity game. We prove the statement by introducing a
sequence of games where we denote ϵi the probability that A outputs wins the i-th game.

Game1: This is the standard anonymity game. By definition, the probability that A outputs b′ = b is
ϵ1.

Game2: In this game, instead of running ProveHISIS
ISIS , the challenger simulates the holder’s behaviour in

AnonCreds.VerifyH,V using the zero-knowledge simulator (Sim0,Sim1) of Π ISIS
NIZK. Namely, when A makes a

random oracle query to HISIS, the challenger calls Sim0. Furthermore, in the AnonCreds.VerifyH,V protocol,
the challenger now outputs a simulated proof πb ← Sim1(crsISIS, (q̂2/q · P, q̂2/q ·C, m⃗

′, q̂2/q)) to the adversary.
Note that Sim1 is only called once during the game.
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One can naturally construct a PPT adversary A′ which wins the zero-knowledge game of Π ISIS
NIZK with

probability |ϵ2 − ϵ1|. Concretely, the adversary first programs the output of Hcrs(0) to use the crsISIS provided
by the zero-knowledge game. Next, it internally runs A and simulates the challenger’s behaviour given access
to either the oracles (HISIS,Prove) or (Sim0,Sim1). Note that by the verification checks made by the challenger,
A queries only valid statements. Thus, by assumption we obtain:

|ϵ2 − ϵ1| ≤ AdvZK
Π

ISIS
NIZK

(A′) = negl(λ).

Game3: In this game, instead of running ProveHCom
Com in AnonCreds.Issue, the challenger simulates the proof πb

of a validity of a commitment ub using the zero-knowledge simulator (Sim0,Sim1) of ΠCom
NIZK. Namely, when A

makes random oracle query to HCom, the challenger calls Sim0. Further, the challenger computes simulated
proofs πb := Sim1(crsCom, (P, u⃗)). Finally, the challenger outputs (ub, πb) as the first message pair to A.

Similarly as before, one can construct a PPT adversary A′ which wins the zero-knowledge game of ΠCom
NIZK

with probability |ϵ3 − ϵ2|. Hence, by assumption on ΠCom
NIZK we get

|ϵ3 − ϵ2| ≤ AdvZK
Π

Com
NIZK

(A′) = negl(λ).

Game4: Here, the challenger simulates the commitment u. Namely, C picks the commitment u′ uniformly
at random from Rq and sets u := u′ + cT0 m. Then, there exists a natural PPT adversary AMLWE which
can distinguish cT1 r from a uniformly random polynomial u with probability at least |ϵ4 − ϵ3|, i.e. solves
Module-LWE. Hence,

|ϵ4 − ϵ3| ≤ AdvMLWE
1,ℓr,ψ

(AMLWE) = negl(λ).
Game5: Now, the challenger directly samples u uniformly at random from Rq. Clearly, we get ϵ5 = ϵ4. The
key observation here is that in Game5, the behaviour of the challenger is independent of the bit b. Hence, we
conclude that ϵ5 = 1/2 and the statement holds by the hybrid argument.

Theorem 8.3 (One-More Unforgeability). Let h = O(λ). Suppose ΠCom
NIZK is multi-proof extractable and

the proof system modulus q̂2 for Π ISIS
NIZK satisfies

q̂2 > max
(
𝔰
√

(m+ 2)d, ψ
√

(ℓm + ℓr)d, 16m1d̂B3,
2

ωmin(λ)2B
2
3

)
where m1,m2 are the parameters defined in Section 5. Then, AnonCreds is one-more unforgeable under the
Int-NTRU-ISISpp

f and MSISn,m1+m2,B̄ assumptions where pp := (q, d,m, ℓm, ℓr, N, 𝔰, 𝔰
√

(m+ 2)d, ψ
√

(ℓm + ℓr)d)

and B̄ = 4ν
√
B2

1 + B2
2.

Proof. Suppose there is a PPT adversary A which wins the one-more unforgeability game with non-neglibile
probability ϵ. Suppose A makes at most QIssue type queries and QHISIS

, QHCom
, QHM

queries to the random
oracles HISIS, HCom, and HM respectively. Without loss of generality, assume that A never repeats a random
oracle query.

Hybrid games. We prove the statement by introducing a sequence of games. In the following, let Ei be the
event that A wins in Gamei and denote Ci as the challenger in Gamei.

Game0: This is the standard one-more unforgeability game. Hence, by definition we have Pr[E0] = ϵ.

Game1: At the beginning of the game, C1 samples h⃗j ← {−ψ,−ψ + 1, . . . , ψ}h for all j ∈ [QHM
]. When

the adversary queries aj
′ as the j-th random oracle query to HM, then the challenger just outputs hj . However,

if some collision occurs, i.e. h⃗i = h⃗j for distinct indices i, j, then C1 aborts. By the union bound, we have

Pr[E1] ≥ Pr[E0]−
|QHM

|2

(2ψ + 1)h = Pr[E0]− negl(λ).
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Game2: In this game, the challenger programs the simulated c̃rs used for multi-proof extractability. Namely,
recall that in Game1 we had Hcrs(0) = (crsISIS, crsCom). Here, the challenger C2 honestly generates crssNIZK, but
it also runs the CRS simulator Scrs and obtains (c̃rs, td)← Scrs(1

λ). Then, it programs Hcrs(0) := (crsISIS, c̃rs)
and keeps td.

It is easy to see that Game3 and Game2 are indinstinguishable by the CRS indistinguishability property
of the multi-proof extractability, i.e. one can construct a PPT adversary Acrs such that

Pr[E2] ≥ Pr[E1]− Advcrs
Π

m
NIZK

(Acrs) = Pr[E1]− negl(λ).

Game3: In this game, the challenger C3 uses the multi-proof extractability of ΠCom
NIZK to extract witnesses for all

proofs π sent by A as a part of issue queries. Namely, when A submits the j-th issue query (attrs′j , idxj , uj , πj),
where j ∈ [QIssue], the challenger additionally runs

wj ← Multi-Extract
(

1λ, QHCom
, QIssue, 1/Pr[E2], td,

(
q̂1/q · Pj , q̂1/q · u⃗j

)
, πj

)
.

Let Abortextract be the event that wj ̸∈ RCom (q̂1/q · Pj , q̂1/q · u⃗j
)

for some j ∈ [QIssue], where Pj , u⃗j are
computed as in the honest execution of the issuer. If Abortextract occurs then C4 aborts the game and overwrites
the adversary’s forgery to be ⊥. Otherwise, it proceeds as C3. Observe that C4 does not make any use of the
extracted witnesses wj . In the following, let mj ∈ R

ℓm
q and rj ∈ R

ℓr
q be the vectors which satisfy:

wj =
(

Coeffs(mj)idxj
,Coeffs(rj)

)
and Coeffs(mj)idxj

= Coeffs(m′j)idxj

where m′j = Coeffs−1(HM(aj,1
′), . . . ,HM(aj,l

′)). In particular, we have

uj = cT0 mj + cT1 rj for j = 1, 2, . . . , QIssue.

The challenger stores the pairs (mj , rj)j∈[QIssue]. Intuitively, these pairs are the extracted message/randomness
committed and sent from the holder to the issuer. From now on, we will informally say that (mj , rj) is the
j-th issuing query to C3, rather than (uj , πj). By definition we have

∥(mj , rj)∥ =
∥∥∥(Coeffs(mj)idxj

,Coeffs(rj),Coeffs(m′j)idxj

)∥∥∥ ≤ ψ√(ℓm + ℓr)d.

Arguing identically as in [67, Lemma 3.6] and assuming that Pr[E2] is non-negligible, the runtime of C3 is still
poly(λ) and also

Pr[E3] ≥ 1
2 Pr[E2]− negl(λ).

Introducing a wrapper. Now, we provide a wrapper algorithm P∗ for A. Namely, P∗ is given the crsISIS for
the proof system Π ISIS

NIZK, and runs A as a challenger for Game3 (where crsISIS is programmed as a part of
Hcrs(0) := (crsISIS, c̃rs)). It all simulates all random oracle queries, apart from the one to HISIS, using lazy
sampling.

Suppose that at the end A outputs a set L := {⟨attrs∗i , idx∗i ⟩}. For each i ∈ [QIssue + 1], write attrs∗i =
(ai,1

∗, . . . , ai,l
∗) and define

m∗i := Coeffs−1(HM(ai,1
∗), . . . ,HM(ai,l

∗)) ∈ Rℓm
q . (36)

We let the algorithm P∗ find an index t which satisfies

Coeffs(m∗t )idx∗
t
̸∈
{

Coeffs(m1)idx∗
t
, . . . ,Coeffs(mQIssue

)idx∗
t

}
. (37)

If it cannot find one, then it outputs (⊥,⊥,⊥, 0). Otherwise, the algorithm outputs a pair (I, y, v,Q) defined
as follows. First, let

x := (q̂2/q · P, q̂2/q · C, m⃗, q̂2/q ·B,Bounds, aux := idx∗t ) (38)
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be the statement for relation (12) where

P := rot([a1|a
T
2 |1]), C := [rot(cT0 )idx∗

t
| rot(cT0 )idx∗

t
| rot(cT1 )], m⃗ := Coeffs(m)idxt

.

Also, let πt := (a1, a2, a3, a4, a5) be the proof sent by the adversaryA in AnonCreds.VerifyA,P∗⟨(·, ·, ·), (ipk, attrs∗t , idx∗t )⟩.
Define I := (I1, I2, I3, I4, I5) as

I1 := (1, crsISIS, x, a1), I2 := (2, crsISIS, x, a1, a2), . . . , I5 := (5, crsISIS, x, a1, a2, a3, a4, a5).

Then, it obtains the challenges by querying

(ℜ0,ℜ1) := HISIS (I1) ,
(γi,j)i∈[τ ],j∈[256+d+3] := HISIS (I2) ,
(µ1, . . . , µτ ) := HISIS (I3) ,
c := HISIS (I4)

and defines

tr :=
(
crsISIS, x, a1, (ℜ0,ℜ1), a2, (γi,j), a3, (µi), a4, c, a5

)
, and v := V (crsISIS, x, tr)

where V (crsISIS, x, tr) = 1 if tr is the accepting transcript for statement x with public parameters crsISIS, and 0
otherwise. This implies that P∗ makes at most QHISIS

+ 4 queries to HISIS. Finally, Q := (mj , rj)j∈[QIssue] and
P∗ outputs

(I, tr, v,Q).

Also, given such a tuple from P∗, where v = 1, we will denote:

I(m⃗) := m⃗ and I(aux) := aux = idx∗t .

Below, we provide a few basic properties of the wrapper P∗ to keep in mind for the remainer of the proof.

Lemma 8.4. Pr[(I, tr, v,Q)← P∗(crsISIS) ∧ v = 1] ≥ Pr[E3].

Proof. Suppose A wins Game3. Namely, the set L is of size QIssue + 1 such that (by definition of the one-more
unforgeability game):

– for all i ∈ [QIssue + 1], ⟨⊥, 1⟩ ← AnonCreds.VerifyA,P∗⟨(·, ·, ·), (ipk, attrs∗i , idx∗i )⟩,
– for each distinct pairs ⟨attrs∗i , idx∗i ⟩ ∈ L and ⟨attrs∗j , idx∗j ⟩ ∈ L, there exists at least one index i∗ in both

idx∗i and idx∗j such that attrsi,i∗ ̸= attrsj,i∗ .

We claim there exists an index t ∈ [QIssue + 1] such that (37). Suppose it is not the case. Then, by the
pigeonhole principle there are two distinct indices s, t ∈ [QIssue + 1] and j ∈ [QIssue] such that:

Coeffs(m∗s)idx∗
s

= Coeffs(mj)idx∗
s

and Coeffs(m∗t )idx∗
t

= Coeffs(mj)idx∗
t
.

It implies that for all i ∈ idx∗s ∩ idx∗t , HM(as,i
∗) = HM(at,i

∗). Since we excluded the case of getting a hash
collision in Game1, we have as,i

∗ = at,i
∗ which leads to the contradiction with the second winning condition of

one-more unforgeability. Thus, P∗ outputs v = 1.

Lemma 8.5. The following holds:

Pr
[
(I, tr, 1,Q)← P∗(crsISIS) ∧ I(m⃗) ̸∈ {Coeffs(m)I(aux) : ∃r ∈ Rℓr

q s.t. (m, r) ∈ Q}
]

= 1.

Proof. The statement can be shown in a similar manner as for Lemma 8.4.

Next, we state crucial forking property of P∗.
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Black-box access to: P∗(crsISIS)

1. Run P∗(crsISIS) with randomness ρ as follows: relay the QHISIS
+ 4 random oracle queries to the random

oracle and record all query-response pairs. Obtain (I, tr, v,Q). Set i = I4 and let ci be the response
to query i.

2. If v = 0, abort and return v = 0. Else, (m⃗, aux) := (I(m⃗), I(aux)).
3. Repeat:

(a) sample c′i ∈ C\{ci} without replacement,
(b) run P∗(crsISIS) with randomness ρ as follows to obtain (I ′, tr′, v′,Q′): answer the query to i with

c′i while answering all the other queries consistently if the query was performed by P∗ in the
previous run, and with fresh random values otherwise,

(c) If the input for some j-th issuing query to P∗ is of the form (m′j , r
′
j) where m⃗ = Coeffs(m′j)aux,

then stop running P∗ and directly go back to Step 3(a),
until an additional challenge c′i with v′ = 1 and I ′K = IK has been found, or until all challenges c′i ∈ C
have been tried.

4. If the latter case occurs, output v = 0.
5. Otherwise, return

(
(I, tr, v,Q), (I ′, tr′, v′,Q′)

)
.

Fig. 21: Basic extractors E(crsISIS) (defined with black text) and E ′(crsISIS) (defined with black and blue text).
Here, K ∈ {1, 2, 3, 4} is a fixed constant.

Lemma 8.6. Consider the algorithms E and E ′ in Figure 21. Then, Pr[0← E(crsISIS)] = Pr[0← E ′(crsISIS)].

Proof. Clearly, if E outputs v = 0 then so does E ′. Hence, suppose that when running E ′, in particular Step 3,
for some j-th issuing query to P∗, the input (m′j , r

′
j) satisfies m⃗ = Coeffs(m′j)aux. In this case, E ′ stops the

execution of P∗ and goes back to Step 3(a), while E continues running P∗. Assume P∗ returns (I ′, tr′, v′,Q′)
and I ′4 = I4. By our assumption on the j-th query,

m⃗ ∈ {Coeffs(m′)aux : ∃r′ ∈ Rℓr
q such that (m′, r′) ∈ Q′}. (39)

Thus, by Lemma 8.5 this implies v′ = 0. Therefore, E would still go back to Step 3(a), identically as E ′. This
concludes the proof.

Even though we will not use this lemma as a black-box, its core idea will be applied throughout the extraction
procedure. In particular, the key observation is that, by construction, E ′ after Step 2 never answers an issuing
query for any (m′j , r

′
j) such that m⃗ = Coeffs(m′j)aux. This will be crucial when reducing to Int-NTRU-ISISf .

Obviously, the lemma can be applied similarly if we reprogram the random oracle for I1, I2 or I3.

Defining the extractor. Since we will now analyse the protocol from Figures 9 and 10, let us denote for
simplicity:

q̂ := q̂2, P := q̂

q
· P, C := q̂

q
· C, B := q̂

q
·B

Bs := 𝔰
√

(m+ 2)d, Br := ψ

√
h · |idx|+ ℓrd.

If we want to apply the proof system Π ISIS
NIZK, we define the variables used in Section 5 as follows 19:

n := d, m := (m+ 2)d+ d̂, ℓm := |idx| · h, ℓr := (l − |idx|) · 2λ+ ℓrd+ d̂.

19 Note that we increase the values of m and ℓr by d̂ since instead of proving, e.g. ∥s⃗∥ ≤ Bs, we prove ∥s⃗∥ = Bs using
the transformation described in Section 5.2.
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Further, q̂ is product of two primes p̂1, p̂2 as described in Section 5.1.
Intuitively, we will use the extraction algorithm from [57, Appendix B] to extract from the prover P∗.

Namely, suppose in the first run (I, tr, 1,Q) ← P∗(crsISIS) and let (m⃗, aux) := (I(m⃗), I(aux)). Then, the
extractor wants to obtain short m∗, r∗, a short vector s∗ and f(x∗) ∈ B such that[

a1 aT2 1
]

s∗ = f(x∗) + cT0 m∗ + cT1 r∗ and m⃗ = Coeffs(m∗)aux.

The extractor will be constructed similarly as E ′ in Lemma 8.6, i.e. when the extractor has to answer any
issuing query for input (m, r)20, it stops running the current execution of P∗ if m⃗ = Coeffs(m)aux. This way,
we make sure that when our ideal extractor outputs (m∗, r∗, s∗, f(x∗)) satisfying the conditions above, it
never answered any issuing query on input of the form (m∗, ·) since m⃗ = Coeffs(m∗)aux. This gives us a
natural reduction to Int-NTRU-ISISf .

We start by defining the extractor E4(crsISIS), which is a (QHISIS
+ 4)-query random oracle algorithm in

Fig. 22. Informally, E4 finds the witness for a single quadratic equation with automorphism described in (18)
by constructing a (1, 1, 1, 3)-tree of transcripts using the extraction from [6].

Black-box access to: P∗(crsISIS)

1. Run P∗(crsISIS) with randomness ρ as follows: relay the QHISIS
+ 4 random oracle queries to the random

oracles and record all query-response pairs. Obtain (I, tr, v,Q). Set i = I4 and let ci be the response
to query i.

2. If v = 0, abort and return v = 0. Else, (m⃗, aux) := (I(m⃗), I(aux)).
3. Repeat:

(a) sample c′i ∈ C\{ci} without replacement,
(b) run P∗(crsISIS) with randomness ρ as follows to obtain (I ′, tr′, v′,Q′): answer the query to i with

c′i while answering all the other queries consistently if the query was performed by P∗ in the
previous run, and with fresh random value otherwise,

(c) If the input for some j-th issuing query to P∗ is of the form (m′j , r
′
j) where m⃗ = Coeffs(m′j)aux,

then stop running P∗ and directly go back to Step 3(a),
until either 2 additional challenges c′i with v′ = 1 and I ′4 = I4 have been found or until all challenges
c′i ∈ C have been tried.

4. If the latter case occurs, output v = 0.
5. For i = 0, 1, 2, tri :=

(
crsISIS, x, a1, (ℜ0,ℜ1), a2, (γi,j), a3, (µi), a4, c

(i), a
(i)
5

)
be the extracted tran-

scripts.
6. Parse a(i)

5 := (z(i)
1 , z(i)

2 ) and a1, a2, a3, a4 as in the protocol description in Figure 10,
7. Define c̄ := c(1) − c(0), s̄i = z(1)

i −z(0)
i

c
(1)−c(0) for i = 1, 2 and m̄ = (ȳ3, ḡ) := tB −Bs̄2.

8. If z(1)
i − c

(1)s̄i ̸= z(2)
i − c

(2)s̄i for some i = 1, 2:

– return I,

c̄ · ((z(2)
1 − z(1)

1

)
−
(
c(2) − c(1)

)
s̄1

)
c̄ ·
((

z(2)
2 − z(1)

2

)
−
(
c(2) − c(1)

)
s̄2

) as the MSIS solution to [A1 | A2] and v = 1.

9. Otherwise, return I, (s̄1, s̄2, m̄, c̄) and v = 1.

Fig. 22: Subextractor E4(crsISIS) as a (QHISIS
+ 4)-query random oracle algorithm.

20 Recall that the extractor, as an issuer, is only given its commitment u and proof π, but we use the multi-proof
extractability property to extract the secret m, r.
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Lemma 8.7. For any crsISIS, the extractor E4(crsISIS) makes an expected number of at most 3+2QHISIS
queries

to P∗(crsISIS). Furthermore, for uniformly random crsISIS, E4 outputs v = 1 with probability at least

Pr[E3]− (QHISIS
+ 1) · 2

|C|
.

Next, let I = (I1, I2, I3, I4, I5) be the index vector obtained by E4 in the first step and denote

(ℜ0,ℜ1) := H1 (I1) , (γi,j) := H2 (I2) , (µi) := H3 (I3) .

as the corresponding (recorded) random oracle responses. Further, parse

I4 :=
(
4, crsISIS, x, a1, (ℜ0,ℜ1), a2, (γi,j), a3, (µi), a4

)
.

Then, conditioned on v = 1, the extractor either returns (s̄1 := (s̄, r̄, ū), s̄2, m̄, c̄) ∈ Rm1
q ×R

m2
q ×R

256/d̂+τ
q ×C̄

which satisfies the following relations:tA
ty
tg

 =

A1
0
0

 s̄1 +

A2
By

Bg

 s̄2 +

 0
ȳ3
ḡ

 , ∥c̄s̄1∥ ≤ 2B1, ∥c̄s̄2∥ ≤ 2B2

and21

0 =
τ∑
i=1

µi

 256∑
j=1

γi,j ·
(
σ(𝔯j)

T s̄1 + σ(ej)
T ȳ3 − zj

)

+
n∑
j=1

γi,256+j ·
(
σ(pj)

T s̄− σ(βj)
T ū−mC,j − σ(cr,j)

T r̄
)

+ γi,256+n+1 ·
(
σ(s̄)T s̄− Bs

)
+ γi,256+n+2 ·

(
σ(r̄)T r̄− Br

)
+ γi,256+n+3 · σ(ū− x)T ū + gi − hi

,

(40)

or a MSISn,m1+m2,B̄ solution for the matrix [A1 | A2] where B̄ := 4ν
√
B2

1 + B2
2.

Proof. We first focus on the probability that E4 outputs v = 0. The first observation is that by Lemma 8.6,
we can simply remove Step 3(c). Then, the statement holds by proving almost identically as in [57, Lemma
B.8].

Next, we define the subextractor E3 which is informally responsible for proving knowledge of a solution of
multiple quadratic equations (41). We present the subextractor in Fig. 23. Here, E3 uses the early abort
feature of E4, as shown in [6]. That is, E4 computes the index vector I by running P∗ as the first step. This
allows the executions in the repeat loop of E3 to abort right after a single run of P∗ if I ′3 ̸= I3. This allows to
have the runtime of the extractor to be linear in the number of random oracle queries QHISIS

.
The main intuition is that by running E4 once, E3 obtains a candidate witness w (or a Module-SIS solution,

but we ignore the latter case). Since the ABDLOP commitment (tA, ty, tg) to the witness was sent before
getting (µi) and the commitment itself is binding, this means that the extracted witness must be independent
of the challenges µ1, . . . , µτ . Therefore, if for some index i ∈ [τ ], (41) does not hold, then only with probability
at most p̂−d̂/2

1 Equation 40, which is the relation that w satisfies by construction of E4, is true. Formally, the
proof simply combines Lemma 8.6 with [57, Lemma B.9] so we refer to [57] for more details.

21 See Equation 18 for more intuition on the following equation.
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Black-box access to: E4(crsISIS)

1. Run E4(crsISIS) with randomness ρ← R as follows: relay the QHISIS
+ 4 random oracle queries to the

random oracles and record all query-response pairs. Obtain (I, y, v). Set i = I3 and let (µ1, . . . , µτ )
be the response to query i.

2. If v = 0, abort and return v = 0. Else, (m⃗, aux) := (I(m⃗), I(aux)).
3. Repeat:

(a) sample (µ′1, . . . , µ
′
τ )← R̂τq̂ ,

(b) run E4(crsISIS) with randomness ρ as follows to obtain (I ′, y′, v′), aborting right after (or during)
the initial run of P∗(crsISIS) if one of the following conditions holds:
– I ′3 ̸= I3,
– the input for some j-th issuing query to P∗ is of the form (m′j , r

′
j) where m⃗ = Coeffs(m′j)aux,

answer the query to i with (µ′1, . . . , µ
′
τ ) while answering all the other queries consistently if the

query was performed by E4 in the previous run, and with fresh random value otherwise,
until a challenge (µ′1, . . . , µ

′
τ ) with v′ = 1 and I ′3 = I3 has been found.

4. If y (resp. y′) is a MSIS solution for the matrix [A1 | A2], return I, y (resp. y′) and v = 1.
5. Parse y = (s̄1, s̄2, m̄ = (ȳ3, ḡ), c̄) and y′ = (s̄′1, s̄

′
2, m̄

′ = (ȳ′3, ḡ
′), c̄′).

6. If s̄1 ̸= s̄′1 or s̄2 ̸= s̄′2, return I,
[
c̄c̄′(s̄1 − s̄′1)
c̄c̄′(s̄2 − s̄′2)

]
as the MSIS solution to [A1 | A2] and v = 1.

7. Parse s̄1 := (s̄, r̄, ū), (ℜ0,ℜ1) := H1 (I1) , (γi,j) := H2 (I2) and I3 :=
(3, crsISIS, x, tA, ty, tg,w, z⃗3, h1, . . . , hτ ).

8. If for i = 1, 2, . . . , τ we have

hi = gi +
256∑
j=1

γi,j ·
(
σ(𝔯j)

T s̄1 + σ(ej)
T ȳ3 − z3,j

)
+

n∑
j=1

γi,256+j ·
(
σ(pj)

T s̄− σ(βj)
T ū−mC,j − σ(cr,j)

T r̄
)

+ γi,256+n+1 ·
(
σ(s̄)T s̄− Bs

)
+ γi,256+n+2 ·

(
σ(r̄)T r̄− Br

)
+ γi,256+n+3 · σ(ū− x)T ū ∈ R̂q̂.

return I, (s̄1, s̄2, m̄, c̄) and v = 1.
9. Otherwise, return v = 0.

Fig. 23: Subextractor E3(crsISIS) as a (QHISIS
+ 4)-query random oracle algorithm.
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Lemma 8.8. For any crsISIS, the extractor E3 makes an expected number of at most 6 + 5QHISIS
queries to

P∗(crsISIS). Also, for uniformly random crsISIS, E3(crsISIS) outputs v = 1 with probability at least

Pr[E3]− (QHISIS
+ 1) ·

(
2
|C|

+ p̂
−d̂/2
1

)
.

Next, let I = (I1, I2, I3, I4, I5) be the index vector obtained by E3 in the first step and denote

(ℜ0,ℜ1) := H1 (I1) , (γi,j) := H2 (I2) , I3 := (3, crsISIS, x, tA, ty, tg,w, z⃗3, h1, . . . , hτ ).

Then, conditioned on v = 1, the extractor either returns (s̄1 := (s̄, r̄, ū), s̄2, m̄, c̄) ∈ Rm1
q ×R

m2
q ×R

256/d̂+τ
q ×C̄

which satisfies the following relations:tA
ty
tg

 =

A1
0
0

 s̄1 +

A2
By

Bg

 s̄2 +

 0
ȳ3
ḡ

 , ∥c̄s̄1∥ ≤ 2B1, ∥c̄s̄2∥ ≤ 2B2

and for i = 1, 2, . . . , τ we have22

hi = gi +
256∑
j=1

γi,j ·
(
σ(𝔯j)

T s̄1 + σ(ej)
T ȳ3 − z3,j

)
+

n∑
j=1

γi,256+j ·
(
σ(pj)

T s̄− σ(βj)
T ū−mC,j − σ(cr,j)

T r̄
)

+ γi,256+n+1 ·
(
σ(s̄)T s̄− Bs

)
+ γi,256+n+2 ·

(
σ(r̄)T r̄− Br

)
+ γi,256+n+3 · σ(ū− x)T ū ∈ R̂q̂,

(41)

or a MSISn,m1+m2,B̄ solution for the matrix [A1 | A2] where B̄ := 4ν
√
B2

1 + B2
2.

For the next step, we define the subextractor E2 which is informally responsible for extracting secret vectors
s⃗, r⃗, u⃗ that satisfy (42). The rough intuition for E2 is as follows. Suppose E2 runs E3 which outputs a witness
w which satisfies (41) (or a Module-SIS solution but then we are done). As before, since the ABDLOP
commitment (tA, ty, tg) to the witness was sent before getting (γi,j) and the commitment itself is binding,
this means that the extracted witness must be independent of the challenges (γi,j). Suppose the relevant
part of w does not satisfy (24). This implies that with probability at most p̂−τ1 all τ equations in (41) hold.
Formally, the analysis for E2 is almost identical to [57, Lemma B.10], combined with Lemma 8.6, and thus we
refer to the aforementioned result for more details.

Lemma 8.9. For any crsISIS, the extractor E2 makes an expected number of at most 12 + 11QHISIS
queries to

P∗(crsISIS). Also, for uniformly random crsISIS, E2 outputs v = 1 with probability at least

Pr[E3]− (QHISIS
+ 1) ·

(
2
|C|

+ p̂
−d̂/2
1 + p̂−τ1

)
.

Next, let I = (I1, I2, I3, I4, I5) be the index vector obtained by E2 in the first step and denote

(ℜ0,ℜ1) := H1 (I1) , I2 := (2, crsISIS, x, tA, ty, tg,w, z⃗3).

Then, conditioned on v = 1, the extractor either returns (s̄1 := (s̄, r̄, ū), s̄2, m̄, c̄) ∈ Rm1
q ×R

m2
q ×R

256/d̂+τ
q ×C̄

which satisfies the following relations:tA
ty
tg

 =

A1
0
0

 s̄1 +

A2
By

Bg

 s̄2 +

 0
ȳ3
ḡ

 , ∥c̄s̄1∥ ≤ 2B1, ∥c̄s̄2∥ ≤ 2B2

22 See the description of Equation 17 for more details.
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Black-box access to: E3(crsISIS)

1. Run E3(crsISIS) with randomness ρ← R as follows: relay the QHISIS
+ 4 random oracle queries to the

random oracles and record all query-response pairs. Obtain (I, y, v). Set i = I2 and let (γi,j) be the
response to query i.

2. If v = 0, abort and return v = 0. Else, (m⃗, aux) := (I(m⃗), I(aux)).
3. Repeat:

(a) sample (γ′i,j)← Zτ×(256+d+3)
q̂ ,

(b) run E3(crsISIS) with randomness ρ as follows to obtain (I ′, y′, v′), aborting right after (or during)
the initial run of P∗(crsISIS) if one of the following conditions holds:
– I ′2 ̸= I2,
– the input for some j-th issuing query to P∗ is of the form (m′j , r

′
j) where m⃗ = Coeffs(m′j)aux,

answer the query to i with (γ′i,j) while answering all the other queries consistently if the query
was performed by E4 in the previous run, and with fresh random value otherwise,

until a challenge (γ′i,j) with v′ = 1 and I ′2 = I2 has been found.
4. If y (resp. y′) is a MSIS solution for the matrix [A1 | A2], return I, y (resp. y′) and v = 1.
5. Parse y = (s̄1, s̄2, m̄ = (ȳ3, ḡ), c̄) and y′ = (s̄′1, s̄

′
2, m̄

′ = (ȳ′3, ḡ
′), c̄′).

6. If s̄1 ̸= s̄′1 or s̄2 ̸= s̄′2, return I,
[
c̄c̄′(s̄1 − s̄′1)
c̄c̄′(s̄2 − s̄′2)

]
as the MSIS solution to [A1 | A2] and v = 1.

7. Parse (ℜ0,ℜ1) := H1 (I1) and I2 := (2, crsISIS, x, tA, ty, tg,w, z⃗3).
8. Parse s̄1 := (s̄, r̄, ū) and define s⃗1 := Coeffs(s̄1), s⃗ := Coeffs(s̄), r⃗ := Coeffs(r̄), u⃗ := Coeffs(ū)
9. If all the following equations hold over Zq̂:

z⃗3 = y⃗3 + (ℜ0 −ℜ1)s⃗1,

P s⃗ = Bu⃗+ C

[
m⃗
r⃗

]
,

⟨s⃗, s⃗⟩ = B2
s ,

⟨r⃗, r⃗⟩ = B2
r ,

⟨u⃗, u⃗− 1⃗⟩ = 0,

return I, (s̄1, s̄2, m̄, c̄) and v = 1.
10. Otherwise, return v = 0.

Fig. 24: Subextractor E2(crsISIS) as a (QHISIS
+ 4)-query random oracle algorithm.
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and 

z⃗3 = y⃗3 + (ℜ0 −ℜ1)s⃗1

P s⃗ = Bu⃗+ C

[
m⃗

r⃗

]
⟨s⃗, s⃗⟩ = B2

s

⟨r⃗, r⃗⟩ = B2
r

⟨u⃗, u⃗− 1⃗⟩ = 0

(42)

where
s⃗1 := Coeffs(s̄1), s⃗ := Coeffs(s̄), r⃗ := Coeffs(r̄), u⃗ := Coeffs(ū),

or a MSISn,m1+m2,B̄ solution for the matrix [A1 | A2] where B̄ := 4ν
√
B2

1 + B2
2.

Finally, we define the extractor E1 in Figure 25 which is informally responsible for extracting from the
approximate range proof (c.f. Section 5.1). Intuitively, suppose E1 runs the subextractor E2 which outputs a
witness (s⃗1 = (s⃗, r⃗, u⃗), y⃗3) that satisfies (42) (or a Module-SIS solution), and in particular

z⃗3 = y⃗3 + ℜs⃗1 and ∥z⃗∥ ≤ B3

where ℜ := ℜ0 −ℜ1. Identically as in the previous case, since the ABDLOP commitment (tA, ty, tg) to the
witness was sent before getting (ℜ0,ℜ1) and the commitment is binding, the extracted witness must be
independent of the challenges (ℜ0,ℜ1). Now, suppose that ∥s⃗1∥ ≥

√
2

ωmin(λ) · B3. Then, by Lemma 5.4 only
with negligible probability at most 2−λ we can have

∥y⃗3 + ℜs⃗1 mod q̂∥ ≤ B3.

In order to use the lemma, we have the requirement q̂ > 16m1d̂B3. Thus, with overwhelming probability we
must have ∥s⃗1∥ ≤

√
2

ωmin(λ) · B3. If B3 is relatively small compared to the proof system modulus q̂, then by
combining with (40) we deduce the norm bounds on s⃗, r⃗ and that u⃗ has binary coefficients. For example, if
B3 <

ωmin(λ)√
2 ·

√
q̂ then

−q̂ < −B2
s ≤ ∥s⃗∥

2 − B2
s ≤ ∥s⃗1∥

2 − B2
s ≤

2
ωmin(λ)2 · B

2
3 < q̂

so we deduce that ∥s⃗∥2 = B2
s over integers (and similarly for r⃗ and u⃗).

Formally, the analysis for E1 is almost identical to [57, Lemma B.11], combined with Lemma 8.6, so we
skip the proof.

Lemma 8.10. For any crsISIS, the extractor E1(crsISIS) makes an expected number of at most 24 + 23QHISIS
queries to P∗(crsISIS). Also, for uniformly random crsISIS, E1 outputs v = 1 with probability at least

δ := Pr[E3]− (QHISIS
+ 1) ·

(
2
|C|

+ p̂
−d̂/2
1 + p̂−τ1 + 2−λ

)
.

Next, let I = (I1, I2, I3, I4, I5) be the index vector obtained by E2 in the first step and denote I1 :=
(1, crsISIS, x, tA, ty, tg,w). Then, conditioned on v = 1, the extractor either returns (s̄1 := (s̄, r̄, ū), s̄2, m̄, c̄) ∈
Rm1
q ×R

m2
q ×R

256/d̂+τ
q × C̄ which satisfies the following relations:tA

ty
tg

 =

A1
0
0

 s̄1 +

A2
By

Bg

 s̄2 +

 0
ȳ3
ḡ

 , ∥c̄s̄1∥ ≤ 2B1, ∥c̄s̄2∥ ≤ 2B2
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Black-box access to: E2(crsISIS)

1. Run E2(crsISIS) with randomness ρ← R as follows: relay the QHISIS
+ 4 random oracle queries to the

random oracles and record all query-response pairs. Obtain (I, y, v). Set i = I1 and let (ℜ0,ℜ1) be
the response to query i.

2. If v = 0, abort and return v = 0. Else, (m⃗, aux) := (I(m⃗), I(aux)).
3. Repeat:

(a) sample (ℜ′0,ℜ
′
1)← {0, 1}256×m1d̂ × {0, 1}256×m1d̂,

(b) run E2(crsISIS) with randomness ρ as follows to obtain (I ′, y′, v′), aborting right after (or during)
the initial run of P∗ if one of the following conditions holds:
– I ′1 ̸= I1,
– the input for some j-th issuing query to P∗ is of the form (m′j , r

′
j) where m⃗ = Coeffs(m′j)aux,

answer the query to i with (ℜ′0,ℜ
′
1) while answering all the other queries consistently if the

query was performed by E4 in the previous run, and with fresh random value otherwise,
until a challenge (ℜ′0,ℜ

′
1) with v′ = 1 and I ′1 = I1 has been found.

4. If y (resp. y′) is a MSIS solution for the matrix [A1 | A2], return I, y (resp. y′) and v = 1.
5. Parse y = (s̄1, s̄2, m̄ = (ȳ3, ḡ), c̄) and y′ = (s̄′1, s̄

′
2, m̄

′ = (ȳ′3, ḡ
′), c̄′).

6. If s̄1 ̸= s̄′1 or s̄2 ̸= s̄′2, return I,
[
c̄c̄′(s̄1 − s̄′1)
c̄c̄′(s̄2 − s̄′2)

]
as the MSIS solution to [A1 | A2] and v = 1.

7. Define s⃗1 := Coeffs(s̄1)
8. If ∥s⃗1∥ ≤

√
2

ωmin(λ) · B3, return I, (s̄1, s̄2, m̄, c̄) and v = 1.
9. Otherwise, return v = 0.

Fig. 25: Subextractor E1(crsISIS) as a (QHISIS
+ 4)-query random oracle algorithm.

and 

∥s⃗1∥ ≥
√

2
ωmin(λ) · B3

P s⃗ = Bu⃗+ C

[
m⃗

r⃗

]
⟨s⃗, s⃗⟩ = B2

s

⟨r⃗, r⃗⟩ = B2
r

⟨u⃗, u⃗− 1⃗⟩ = 0

(43)

where
s⃗1 := Coeffs(s̄1), s⃗ := Coeffs(s̄), r⃗ := Coeffs(r̄), u⃗ := Coeffs(ū),

or a MSISn,m1+m2,B̄ solution for the matrix [A1 | A2] where B̄ := 4ν
√
B2

1 + B2
2.

For the next observation, we define the following events parameterised by crsISIS:

AcceptcrsISIS
:=
[
(I, tr, v,Q)← P∗(crsISIS) ∧ v = 1

]
NoBadQuerycrsISIS

:=

 (I, tr, v,Q)← P∗(crsISIS) ∧ v = 1
∧ E1(crsISIS) never responds to any issuing query

from A on input (m′, ·) s.t. I(m⃗) = Coeffs(m′)I(aux)


Lemma 8.11. For any crsISIS, we have

Pr
[
AcceptcrsISIS

∧ NoBadQuerycrsISIS

]
= Pr

[
AcceptcrsISIS

]
.
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Proof. It follows in the similar vein as the proof of Lemma 8.6. Indeed, if (I, tr, 1,Q) ← P∗(crsISIS) and
(m⃗, aux) := (I(m⃗), I(aux)) then by the conditions described with blue text for the extractors from Figures 22
to 25, the extractor E1 never answers to any issuing query on input of the form (m′, ·) which satisfies
m⃗ = Coeffs(m′)aux. We call such a query a bad query.

To illustrate our reasoning more precisely, we show that E3(crsISIS) never answers a bad query. The case
for E2 and E1 follows similarly. In Step 1 of E3, it runs E4(crsISIS). Clearly, E4 never responds to a bad query
by construction. Now, if AcceptcrsISIS

holds then Step 2 of E3 passes.
Further, we consider the loop in Step 3 of E3. That is, the algorithm samples uniformly random challenges

(µ′i) and runs E4(crsISIS) with the same random coins, but with reprogrammed random oracle on input I3.
So now, we look at E4. It runs again P∗ (with the reprogrammed random oracle) but by the blue condition
in Step 3(b) of E3, if P∗ gets a bad query, we abort the current run of E4 and go back to Step 3(a) of E3.
Otherwise, P∗ outputs a tuple (I ′, tr′, v′,Q′). By the condition in Step 3(b) of E3, if I ′3 ̸= I3 then we go back
to Step 3(a) of E3. We also abort the current execution of E4 if v′ = 0 by Step 2 of E4.

Suppose we have not aborted the execution of E4 yet, so we are currently in the loop Step 3 of E4. Since
I ′3 = I3, this implies that I ′(m⃗) = m⃗ and I ′(aux) = aux. Therefore, Step 3(c) of E4 makes sure that P∗ does
not answer any bad query. This reasoning applies to each iteration of the loop in Step 3 of E3. Hence, we
conclude that E3 never responds to a bad query assuming AcceptcrsISIS

holds.

Now, we are ready to define our strict polynomial-time reduction from Game3 to Int-NTRU-ISISf and MSIS.
The reduction is given the instances of the aforementioned problems and hardwires them in Game3. Namely,
the Int-NTRU-ISISf challenges (a1,a2, c0, c1) will be put inside the public key ipk, while the MSIS challenge
matrix [A1 A2] will be programmed in the crsISIS. Then, the reduction runs E1(crsISIS) but it aborts after
2(24 + 23QHISIS

)/δ queries to P∗. Further, when there is any issuing query on input (m, r) that E1 must
answer, the reduction makes a preimage query (m, r) to the Int-NTRU-ISISf oracle Opre(m, r). This implies
that B makes at most O

(
QIssueQHISIS

δ

)
preimage queries and by Lemma 8.11, the reduction never makes a bad

query. Since δ is non-negligible, the reduction runs in strict polynomial time. Finally, by Lemma 2.14, the
probability that the reduction outputs a valid Int-NTRU-ISISf or MSIS solution is at least δ/2.

8.3 Concrete Instantiation

In this section, we propose concrete parameters to instantiate the anonymous credentials from the construction
above where we aim for 128-bit (classical) security. Note that one can directly obtain a blind signature by
simply setting the number of attributes l to be one. Then, the anonymity and one-more unforgeability map
to the blindness and one-more unforgeability properties of the blind signature respectively.

We split the instantiation procedure into three parts: (i) the core construction, (ii) the proof of knowledge
Π ISIS

NIZK, (iii) multi-proof extractable ΠCom
NIZK. As in many prior works, we measure the hardness of MSIS and

MLWE by the root Hermite factor (we refer to [37, Section 3.2.4] for more explanation on the methodology
and the references therein) where e.g. δ ≈ 1.0045 corresponds to 128 bits of security. We bound the number
of (random oracle and signing) queries by 264. Further, we assume hardness of the lattice problems with
respect to expected polynomial time adversaries the same as for strict polynomial time algorithms (which is
the case for currently the most efficient lattice attacks). In particular, this means that we do not need to
apply Lemma 2.14 to the knowledge extractors which would additionally result with worse parameters.

Core construction. We propose the parameters in Table 3. Namely, we set (d, q) = (4096,≈ 234) where q
is a prime congruent to 5 modulo 8. We provide a construction for l = 8 attributes. One then puts each
attribute inside the hash function HM which outputs vectors of length h = 512 with coefficients between −2
and 2. For correctness, we select δ = 412 (it will have a bigger meaning in setting parameters for one-more
unforgeability). As for anonymity, we require MLWE1,ℓr,ψ

to be hard. With the parameters proposed, the
root Hermite factor is 1.00115 which corresponds to around more than 600 bits of security. We describe
correctness and zero-knowledge of the proof systems separately below.

In the remainder, we focus on one-more unforgeability (c.f. Theorem 8.3) which is one of the most
challenging tasks. To begin with, note that the reduction for one-more unforgeability runs in time poly(λ) ·1/ε,
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parameter value
d 4096
q 17179861781 ≈ 234

N 2640

t 640
h 512
l 8
ℓr 2
ℓm 1
m 3
ψ 2
𝔰 ≈ 227

δ 284
κ 56
α 12
M 3
Tmax 678

Table 3: Parameters for the main construction. More explanation behind these variables can be found in Table 2
and Theorem 7.3.

where ε is the advantage of the adversary. Since we set ε = 2−128, we now need to consider 256-bit security
for one-more unforgeability. To this end, let us first focus on all the distinguishing advantages between the
security hybrids. With our parameters, we have

|QHM
|2

(2ψ + 1)h < 2−1100

and thus we ignore this part. If we assume 257-bit security for CRS indistinguishability (Game2) and 259-bit
security for straight-line extractability (Game3), then we aim for around 259-bit security for Game3. Further,
we will set the “knowledge error” term in Lemma 8.10 to be around 2−260. Thus, we end up with 260-bit
security for either the Int-NTRU-ISISf or the MSIS problems. The latter one will be analysed together with
Π ISIS

NIZK so we focus on Int-NTRU-ISISf . To this end, we look at Theorem 7.3 where the bound on the number
of queries is Q := QIssue ·QHISIS

= 2128.
We instantiate Theorem 7.3 with parameters from Table 3. We analyse each subtracted term in the

inequality. First, with our parameters the MLWE1,m+1,ψ problem has the root Hermite factor 1.0005 which
corresponds to more than 1000 bits of security. Thus, we loosely bound:

ℓm + ℓr
6Q AdvMLWE

1,m+1,κ(B) < 2−1000.

For the next term, we had set Tmax = 678, so that (1−1/M)Tmax < 2−396. Thus, the term 2λ/6 in Theorem 7.3
can be written alternatively as (1− 1/M)Tmax/6 < 2−398. Further, we can bound the rest of the terms with
our parameters:

T 2
maxQ

12N ≈ 2−493,
ℓm
3 ·

(
q

(2κ+ 1)m+2

)d
≈ 2−414,(

Q− 2
3

)
Tmax

(
ε

2M + 2ϵ
M

+ 2−δ+1
)
≈ 2−394.

Hence, the advantage of the reduction to the standard NTRU-ISISf is at least

2−260/6Q− (2−1000 + 2−398 + 2−493 + 2−414 + 2−394) ≈ 2−390.
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parameter explanation value
d̂ ring dimension of R̂ 128
p̂1 the smallest prime divisor of q̂2 17179861781
q̂2 proof system modulus divisible by q ≈ 288

ξ infinity norm on the challenges in C 17
ν parameter introduced in (13) 350
τ number of repetitions for soundness 10
n length of tA 30
m2 length of the randomness vector s2 68

Table 4: Parameters for the proof system Π
ISIS
NIZK.

parameter explanation value
d̂ ring dimension of R̂ 128
p̂1 the smallest prime divisor of q̂1 16253
p̂2 second prime divisor of q̂1 17179861781
q̂1 proof system modulus divisible by q ≈ 248

n length of tA 18
m2 length of the randomness vector s2 51
p̄ prime modulus used for LHC 68527215
n1 width of the matrix Ā1 from LHC 28
n2 width of the matrix Ā2 from LHC 28
η1 infinity norm of the encryption randomness ē1,j in LHC 1
η2 infinity norm of the encryption randomness ē1,j in LHC 1

Table 5: Parameters for the multi-proof extractable Π
Com
NIZK.

We heuristically assume that NTRU-ISISf is as hard as the standard MSIS1,m+2,B (or rather NTRU-SIS [69]).
Recall that the MSIS bound is

B = 𝔰
√

(m+ 2) · d+ Bmψd
√

(ℓm + ℓr)(m+ 2)) ≈ 233.83 < q.

As for the computational hardness, the root Hermite factor is 1.001425 which corresponds to more than 490
bits of security.

Parameters for Π ISIS
NIZK. As described above, we pick parameters so that the underlying proof system satisfies

correctness, zero-knowledge (with 130-bit security) and knowledge soundness (with 260-bit security). To this
end, we adapt the SAGE script provided in [57, Section 6.1] to compute the proof size produced by Π ISIS

NIZK.
We further optimise the proof by applying small tricks from [57], such as the Dilithium-G compression [32]
and reducing the number of garbage terms hi by a factor of two, as well as the recent bimodal Gaussian
technique described in [56, Section 3]. This allows us to moderately reduce the standard deviations related to
rejection sampling.

We set the ring dimension d̂ to be 128. Further, if we bound the number of oracle queries by 264, then
the knowledge error term (excluding the random oracle query bound) in Lemma 8.10 must be smaller than
≈ 2−324. We set p̂1 = q ≈ 234, so τ = 10. As for the challenge space C, in order to accommodate the 324 bits
of security, we experimentally pick (ξ, ν) = (17, 350). This gives us a challenge space of size at least 2327. As
for the approximate range proofs, we computed ωmin(192) = 1 and ωmax(192) =

√
530 using the cumulative

distribution function of chi-squared distribution with 256 degrees of freedom, as discussed in [40]. Finally,
the underlying computational assumption, i.e. MSIS, must hold with around 324-bit security. We satisfy this
condition by picking q̂ ≈ 288 and n = 30. The reason for such a large modulus, which we believe is the main
bottleneck, is the requirement on q̂ described in Theorem 8.3.
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Multi-proof extractable ΠCom
NIZK. We propose the parameters in Table 5. Recall that we need to satisfy correctness,

CRS indistinguishability (with 257-bit security), zero-knowledge (with 130-bit security) and straightline
extractability (with 259-bit security). Similarly as above, we apply the parameter selection strategy from [57,
56]. We additionally need to take into account the extractable linear homomorphic commitment (LHC) which
is required for Katsumata transform [46].

We first set parameters so that the underlying proof system [57] works23. Then, we pick parameters
related to the MLWE-based LHC exactly as in [46, Lemma 3.13]. First, we need large enough prime p̄ such
that we can encrypt both z1 and z2. Hence, we set p̂ such that

max
(
𝔰1

√
2m1d̂, 𝔰2

√
2m2d̂

)
≤ (p̄− 1)/4.

Then, we need to ensure that LHC provides no decryption errors. Consider the application where it is used,
i.e. Theorem 6.3. To this end, we require for i ∈ {1, 2} (using notation from there):

∥(ct̄i,2 + w̄i,2)− D̄i,1
(
ct̄i,1 + w̄i,1

)
}∥∞

=
∥∥p̄ · (D̄i,2z̄i,1 − D̄i,1z̄2 + z̄3

)
+ zi

∥∥
≤ p̄ ·

(√
nidηi · �̄�i

√
2nid+

√
midηi · �̄�i

√
2mid+ �̄�i

√
2mid

)
≤
√

2p̄
(
nidηi +midηi +

√
mid

)
�̄�i < q/2

(44)

and the lower-bounds on the standard deviations �̄�i are dictated by the correctness and zero-knowledge
conditions in Section 6.2. Recall that we need the proof system modulus large enough to prove the norm
bounds, i.e. it has to be (ψ

√
(ℓm + ℓr)d)2 ·O(λ). However, this condition is much milder than the one in (44).

What are still unknown from the inequality above are the values of ηi and ni. These need to be chosen such
that MLWEmi,mi+ni,ηi

is hard in order to provide both zero-knowledge and CRS indistinguishability. The
latter one becomes the bottleneck since we aim for 257-bit security. We found that it is possible to instantiate
the construction, and in particular satisfy all the aforementioned conditions, with the proof system modulus
q ≈ 248. Next, we pick η1 = η2 = 1 which results in setting n1 = n2 = 28 for the Module-LWE problem.

In order to keep the rejection rate small, we additionally apply the bimodal Gaussian technique from [56].
Note that, similarly as the randomness vector s2 for the ABDLOP commitment, the randomness vectors ēi,j
related to encrypting si are freshly created every time the prover algorithm is called24. Hence, leaking one bit
of information on ēi,j should not significantly decrease security of the protocol. Based on the observation
above, we can apply bimodal Gaussian rejection as described in [56, Section 3.1]. with this modification we
can still prove zero-knowledge but under a new assumption, called Extended-MLWE. Hence, by combining
this observation with [56], we can simply set α1, α2, α3, ᾱ, ᾱ2 all to be one. Thus, the repetition rate of the
ΠCom

NIZK is only 12.
As for straight-line extractability, we require the knowledge error term (without the random oracle query

bound) in (34) to be at most 2−324. To this end, we select parameters similarly as for Π ISIS
NIZK, e.g. the challenge

space or the bounds for approximate range proofs.

Conclusion. Finally, we are ready to present various signature sizes in Table 6 (see NTRU-ISISf .AnonCreds).
The public key ipk size is a single polynomial in Rq which is a public output of NTRU.TrapGen. All other parts
of ipk can be generated from a seed. Hence, we obtain the public key of size d log q/213 ≈ 4096 ·34/213 = 17KB.

As for the communication complexity, the proof size of π is around 398KB, about 80% of which is
linked to LHC. We highlight that one can further reduce the proof overhead, which comes with extractable
linear homomorphic commitments, by applying the NTRU-type construction from [46, Section 3.5]. Then,
as estimated in the aforementioned paper, it would reduce the overhead by around a factor of two, which
23 We note that we additionally apply the Dilithium compression techniques [57, Appendix A] which were not explicitly

described in Section 6.
24 In other words, Com in Fig. 11 is a one-time commitment [60].
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scheme signature communication public key
complexity size

NTRU-ISISf .AnonCreds 243KB 473KB 17KB
Int-NTRU-ISISf .AnonCreds 62KB 107KB 3.5KB

Table 6: Signature, communication and public key sizes for the concrete instantiations of our anonymous
credentials.

parameter value
d 1024
d̂ 128
q 33641 ≈ 215

q̂1 ≈ 241

q̂2 ≈ 250

N 2256

t 256
h 128
l 8
ℓr 2
ℓm 1
ψ 2
𝔰 658
B 214.86

Table 7: Parameters for our alternative variant Int-NTRU-ISISf .AnonCreds.

gives roughly less than 150KB. However, security of the protocol would rely on so-called decisional small
matrix ratio assumption, which does not yet seem to be a well-studied assumption. Since our construction
itself already relies on new assumptions (such as NTRU-ISISf or Extended-MLWE [56]), we stick with the
more standard but less efficient instantiation of LHC. By counting the sizes of (s, x) sent by the signer, which
is around 75KB, the overall communication size is ≈ 473KB. Finally, the signature size, which is the proof
produced from ΠNIZK, is around 243KB.

Reducing to Int-NTRU-ISISf only. There are a few artefacts of the security proof which make the parameters,
and consequently the signature size, unappealing. The main bottleneck lies in the non-tight reduction from
Int-NTRU-ISISf to NTRU-ISISf in Theorem 7.3. Let us start with the parameter m which is the length of
a2. Namely, it allows us to do a game hop where we switch from uniformly random matrix [cT0 |c

T
1 ] to the

one computed as [cT0 |c
T
1 ] = [a1|a

T
2 |1]D for a short random matrix D. Note that if m = 0 then this reasoning

would not go through. In other words, we cannot reduce distinguishing [cT0 |c
T
1 ] = [a1|1]D from a uniformly

random one to Module-LWE. The reason is that in the first case we know the trapdoor for a1 but not in the
latter one. However, it is completely non-trivial whether the scheme becomes insecure when m = 0. This
“artificial” problem has already appeared in the literature in the context of lattice-based group signatures [68,
61]. Another issue, which requires long enough m, is the witness indistinguishability argument of Theorem 7.3.
Namely, we want to make sure that with an overwhelming probability, for a uniformly random vector d0 with
coefficients in [−κ, κ], there exists another one d1 from the same set such that [a1|a

T
2 |1]d0 = [a1|a

T
2 |1]d1.

This requires us to pick m > log q
log(2κ+1) − 2 which has significant impact on the parameters. Not to mention

the fact that one has to deal with the security loss Q from Theorem 7.3.
In order to investigate the limits of our construction, we propose an alternative scheme (which we call

Int-NTRU-ISISf .AnonCreds in Table 6) where we ignore the issues pointed out above. In short, we heuristically
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assume that the reduced Int-NTRU-ISISf is as hard as the Module-SIS problem for the matrix [A C] and the

norm bound B :=
√
B2
s + B2

m. In particular, we can set m = 0.
We set parameters following the guidelines from the previous instantiation, and we summarise our selection

in Table 7. For convenience, we aim for only 124-bit security, which allows us to pick smaller ring dimension
d = 1024. In this case, we need to ensure 254-bit security for the Int-NTRU-ISISf , i.e. the MSIS problem.
Then, we need to make sure the “knowledge error” term (c.f. Lemmas 6.5 and 8.10) is at most 2−318 to
accommodate for the factor of QHISIS

= 264, which comes from the Fiat-Shamir transform.

Expected polynomial-time Multi-Extract. Unfortunately, even in our milder variant we still need to account for
the security loss depending on the adversary’s advantage ε, since the reduction sub-algorithm, i.e. Multi-Extract
runs in time poly(λ)/ε. Because we already assume hardness of Module-SIS against expected PPT adversaries,
it makes sense to make Multi-Extract expected polynomial time as well. Namely, in Figure 15, we allow the
main loop to run until it either outputs the correct witness w or the weak opening, or it runs out of challenges
to pick. The key observation is that the Multi-Extract algorithm is only run by the reduction if the initial
proof is valid. Hence, by the heavy rows argument [28], or its more fine-grained version in [6, Lemma 4], we
deduce that the expected runtime of Multi-Extract is poly(λ) and does not depend on ε anymore. In particular,
we can reduce the bit security by 128.

For fair comparison with certain related works, e.g. [3, 13], we ignore the Fiat-Shamir transform loss
QHISIS

which was also not explicitly considered in the aforementioned constructions. Thus, the signature is a
proof size for Π ISIS

NIZK with ≈ 128-bit security. In Table 1 we provide the signature sizes for both cases: either
reducing to NTRU-ISISf or Int-NTRU-ISISf using the same methodology as described throughout this section.
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